]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/scsi/megaraid/megaraid_sas.c
[SCSI] turn most scsi semaphores into mutexes
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / megaraid / megaraid_sas.c
CommitLineData
c4a3e0a5
BS
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.00-rc4
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/list.h>
c4a3e0a5
BS
29#include <linux/moduleparam.h>
30#include <linux/module.h>
31#include <linux/spinlock.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/uio.h>
35#include <asm/uaccess.h>
43399236 36#include <linux/fs.h>
c4a3e0a5 37#include <linux/compat.h>
0b950672 38#include <linux/mutex.h>
c4a3e0a5
BS
39
40#include <scsi/scsi.h>
41#include <scsi/scsi_cmnd.h>
42#include <scsi/scsi_device.h>
43#include <scsi/scsi_host.h>
44#include "megaraid_sas.h"
45
46MODULE_LICENSE("GPL");
47MODULE_VERSION(MEGASAS_VERSION);
48MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
49MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
50
51/*
52 * PCI ID table for all supported controllers
53 */
54static struct pci_device_id megasas_pci_table[] = {
55
56 {
57 PCI_VENDOR_ID_LSI_LOGIC,
58 PCI_DEVICE_ID_LSI_SAS1064R,
59 PCI_ANY_ID,
60 PCI_ANY_ID,
61 },
62 {
63 PCI_VENDOR_ID_DELL,
64 PCI_DEVICE_ID_DELL_PERC5,
65 PCI_ANY_ID,
66 PCI_ANY_ID,
67 },
68 {0} /* Terminating entry */
69};
70
71MODULE_DEVICE_TABLE(pci, megasas_pci_table);
72
73static int megasas_mgmt_majorno;
74static struct megasas_mgmt_info megasas_mgmt_info;
75static struct fasync_struct *megasas_async_queue;
0b950672 76static DEFINE_MUTEX(megasas_async_queue_mutex);
c4a3e0a5
BS
77
78/**
79 * megasas_get_cmd - Get a command from the free pool
80 * @instance: Adapter soft state
81 *
82 * Returns a free command from the pool
83 */
84static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
85 *instance)
86{
87 unsigned long flags;
88 struct megasas_cmd *cmd = NULL;
89
90 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
91
92 if (!list_empty(&instance->cmd_pool)) {
93 cmd = list_entry((&instance->cmd_pool)->next,
94 struct megasas_cmd, list);
95 list_del_init(&cmd->list);
96 } else {
97 printk(KERN_ERR "megasas: Command pool empty!\n");
98 }
99
100 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
101 return cmd;
102}
103
104/**
105 * megasas_return_cmd - Return a cmd to free command pool
106 * @instance: Adapter soft state
107 * @cmd: Command packet to be returned to free command pool
108 */
109static inline void
110megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
111{
112 unsigned long flags;
113
114 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
115
116 cmd->scmd = NULL;
117 list_add_tail(&cmd->list, &instance->cmd_pool);
118
119 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
120}
121
122/**
123 * megasas_enable_intr - Enables interrupts
124 * @regs: MFI register set
125 */
126static inline void
127megasas_enable_intr(struct megasas_register_set __iomem * regs)
128{
129 writel(1, &(regs)->outbound_intr_mask);
130
131 /* Dummy readl to force pci flush */
132 readl(&regs->outbound_intr_mask);
133}
134
135/**
136 * megasas_disable_intr - Disables interrupts
137 * @regs: MFI register set
138 */
139static inline void
140megasas_disable_intr(struct megasas_register_set __iomem * regs)
141{
142 u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
143 writel(mask, &regs->outbound_intr_mask);
144
145 /* Dummy readl to force pci flush */
146 readl(&regs->outbound_intr_mask);
147}
148
149/**
150 * megasas_issue_polled - Issues a polling command
151 * @instance: Adapter soft state
152 * @cmd: Command packet to be issued
153 *
154 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
155 */
156static int
157megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
158{
159 int i;
160 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
161
162 struct megasas_header *frame_hdr = &cmd->frame->hdr;
163
164 frame_hdr->cmd_status = 0xFF;
165 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
166
167 /*
168 * Issue the frame using inbound queue port
169 */
170 writel(cmd->frame_phys_addr >> 3,
171 &instance->reg_set->inbound_queue_port);
172
173 /*
174 * Wait for cmd_status to change
175 */
176 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
177 rmb();
178 msleep(1);
179 }
180
181 if (frame_hdr->cmd_status == 0xff)
182 return -ETIME;
183
184 return 0;
185}
186
187/**
188 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
189 * @instance: Adapter soft state
190 * @cmd: Command to be issued
191 *
192 * This function waits on an event for the command to be returned from ISR.
193 * Used to issue ioctl commands.
194 */
195static int
196megasas_issue_blocked_cmd(struct megasas_instance *instance,
197 struct megasas_cmd *cmd)
198{
199 cmd->cmd_status = ENODATA;
200
201 writel(cmd->frame_phys_addr >> 3,
202 &instance->reg_set->inbound_queue_port);
203
204 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
205
206 return 0;
207}
208
209/**
210 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
211 * @instance: Adapter soft state
212 * @cmd_to_abort: Previously issued cmd to be aborted
213 *
214 * MFI firmware can abort previously issued AEN comamnd (automatic event
215 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
216 * cmd and blocks till it is completed.
217 */
218static int
219megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
220 struct megasas_cmd *cmd_to_abort)
221{
222 struct megasas_cmd *cmd;
223 struct megasas_abort_frame *abort_fr;
224
225 cmd = megasas_get_cmd(instance);
226
227 if (!cmd)
228 return -1;
229
230 abort_fr = &cmd->frame->abort;
231
232 /*
233 * Prepare and issue the abort frame
234 */
235 abort_fr->cmd = MFI_CMD_ABORT;
236 abort_fr->cmd_status = 0xFF;
237 abort_fr->flags = 0;
238 abort_fr->abort_context = cmd_to_abort->index;
239 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
240 abort_fr->abort_mfi_phys_addr_hi = 0;
241
242 cmd->sync_cmd = 1;
243 cmd->cmd_status = 0xFF;
244
245 writel(cmd->frame_phys_addr >> 3,
246 &instance->reg_set->inbound_queue_port);
247
248 /*
249 * Wait for this cmd to complete
250 */
251 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
252
253 megasas_return_cmd(instance, cmd);
254 return 0;
255}
256
257/**
258 * megasas_make_sgl32 - Prepares 32-bit SGL
259 * @instance: Adapter soft state
260 * @scp: SCSI command from the mid-layer
261 * @mfi_sgl: SGL to be filled in
262 *
263 * If successful, this function returns the number of SG elements. Otherwise,
264 * it returnes -1.
265 */
266static inline int
267megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
268 union megasas_sgl *mfi_sgl)
269{
270 int i;
271 int sge_count;
272 struct scatterlist *os_sgl;
273
274 /*
275 * Return 0 if there is no data transfer
276 */
277 if (!scp->request_buffer || !scp->request_bufflen)
278 return 0;
279
280 if (!scp->use_sg) {
281 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
282 scp->
283 request_buffer,
284 scp->
285 request_bufflen,
286 scp->
287 sc_data_direction);
288 mfi_sgl->sge32[0].length = scp->request_bufflen;
289
290 return 1;
291 }
292
293 os_sgl = (struct scatterlist *)scp->request_buffer;
294 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
295 scp->sc_data_direction);
296
297 for (i = 0; i < sge_count; i++, os_sgl++) {
298 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
299 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
300 }
301
302 return sge_count;
303}
304
305/**
306 * megasas_make_sgl64 - Prepares 64-bit SGL
307 * @instance: Adapter soft state
308 * @scp: SCSI command from the mid-layer
309 * @mfi_sgl: SGL to be filled in
310 *
311 * If successful, this function returns the number of SG elements. Otherwise,
312 * it returnes -1.
313 */
314static inline int
315megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
316 union megasas_sgl *mfi_sgl)
317{
318 int i;
319 int sge_count;
320 struct scatterlist *os_sgl;
321
322 /*
323 * Return 0 if there is no data transfer
324 */
325 if (!scp->request_buffer || !scp->request_bufflen)
326 return 0;
327
328 if (!scp->use_sg) {
329 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
330 scp->
331 request_buffer,
332 scp->
333 request_bufflen,
334 scp->
335 sc_data_direction);
336
337 mfi_sgl->sge64[0].length = scp->request_bufflen;
338
339 return 1;
340 }
341
342 os_sgl = (struct scatterlist *)scp->request_buffer;
343 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
344 scp->sc_data_direction);
345
346 for (i = 0; i < sge_count; i++, os_sgl++) {
347 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
348 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
349 }
350
351 return sge_count;
352}
353
354/**
355 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
356 * @instance: Adapter soft state
357 * @scp: SCSI command
358 * @cmd: Command to be prepared in
359 *
360 * This function prepares CDB commands. These are typcially pass-through
361 * commands to the devices.
362 */
363static inline int
364megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
365 struct megasas_cmd *cmd)
366{
367 u32 sge_sz;
368 int sge_bytes;
369 u32 is_logical;
370 u32 device_id;
371 u16 flags = 0;
372 struct megasas_pthru_frame *pthru;
373
374 is_logical = MEGASAS_IS_LOGICAL(scp);
375 device_id = MEGASAS_DEV_INDEX(instance, scp);
376 pthru = (struct megasas_pthru_frame *)cmd->frame;
377
378 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
379 flags = MFI_FRAME_DIR_WRITE;
380 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
381 flags = MFI_FRAME_DIR_READ;
382 else if (scp->sc_data_direction == PCI_DMA_NONE)
383 flags = MFI_FRAME_DIR_NONE;
384
385 /*
386 * Prepare the DCDB frame
387 */
388 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
389 pthru->cmd_status = 0x0;
390 pthru->scsi_status = 0x0;
391 pthru->target_id = device_id;
392 pthru->lun = scp->device->lun;
393 pthru->cdb_len = scp->cmd_len;
394 pthru->timeout = 0;
395 pthru->flags = flags;
396 pthru->data_xfer_len = scp->request_bufflen;
397
398 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
399
400 /*
401 * Construct SGL
402 */
403 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
404 sizeof(struct megasas_sge32);
405
406 if (IS_DMA64) {
407 pthru->flags |= MFI_FRAME_SGL64;
408 pthru->sge_count = megasas_make_sgl64(instance, scp,
409 &pthru->sgl);
410 } else
411 pthru->sge_count = megasas_make_sgl32(instance, scp,
412 &pthru->sgl);
413
414 /*
415 * Sense info specific
416 */
417 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
418 pthru->sense_buf_phys_addr_hi = 0;
419 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
420
421 sge_bytes = sge_sz * pthru->sge_count;
422
423 /*
424 * Compute the total number of frames this command consumes. FW uses
425 * this number to pull sufficient number of frames from host memory.
426 */
427 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
428 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
429
430 if (cmd->frame_count > 7)
431 cmd->frame_count = 8;
432
433 return cmd->frame_count;
434}
435
436/**
437 * megasas_build_ldio - Prepares IOs to logical devices
438 * @instance: Adapter soft state
439 * @scp: SCSI command
440 * @cmd: Command to to be prepared
441 *
442 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
443 */
444static inline int
445megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
446 struct megasas_cmd *cmd)
447{
448 u32 sge_sz;
449 int sge_bytes;
450 u32 device_id;
451 u8 sc = scp->cmnd[0];
452 u16 flags = 0;
453 struct megasas_io_frame *ldio;
454
455 device_id = MEGASAS_DEV_INDEX(instance, scp);
456 ldio = (struct megasas_io_frame *)cmd->frame;
457
458 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
459 flags = MFI_FRAME_DIR_WRITE;
460 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
461 flags = MFI_FRAME_DIR_READ;
462
463 /*
464 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
465 */
466 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
467 ldio->cmd_status = 0x0;
468 ldio->scsi_status = 0x0;
469 ldio->target_id = device_id;
470 ldio->timeout = 0;
471 ldio->reserved_0 = 0;
472 ldio->pad_0 = 0;
473 ldio->flags = flags;
474 ldio->start_lba_hi = 0;
475 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
476
477 /*
478 * 6-byte READ(0x08) or WRITE(0x0A) cdb
479 */
480 if (scp->cmd_len == 6) {
481 ldio->lba_count = (u32) scp->cmnd[4];
482 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
483 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
484
485 ldio->start_lba_lo &= 0x1FFFFF;
486 }
487
488 /*
489 * 10-byte READ(0x28) or WRITE(0x2A) cdb
490 */
491 else if (scp->cmd_len == 10) {
492 ldio->lba_count = (u32) scp->cmnd[8] |
493 ((u32) scp->cmnd[7] << 8);
494 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
495 ((u32) scp->cmnd[3] << 16) |
496 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
497 }
498
499 /*
500 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
501 */
502 else if (scp->cmd_len == 12) {
503 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
504 ((u32) scp->cmnd[7] << 16) |
505 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
506
507 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
508 ((u32) scp->cmnd[3] << 16) |
509 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
510 }
511
512 /*
513 * 16-byte READ(0x88) or WRITE(0x8A) cdb
514 */
515 else if (scp->cmd_len == 16) {
516 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
517 ((u32) scp->cmnd[11] << 16) |
518 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
519
520 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
521 ((u32) scp->cmnd[7] << 16) |
522 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
523
524 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
525 ((u32) scp->cmnd[3] << 16) |
526 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
527
528 }
529
530 /*
531 * Construct SGL
532 */
533 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
534 sizeof(struct megasas_sge32);
535
536 if (IS_DMA64) {
537 ldio->flags |= MFI_FRAME_SGL64;
538 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
539 } else
540 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
541
542 /*
543 * Sense info specific
544 */
545 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
546 ldio->sense_buf_phys_addr_hi = 0;
547 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
548
549 sge_bytes = sge_sz * ldio->sge_count;
550
551 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
552 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
553
554 if (cmd->frame_count > 7)
555 cmd->frame_count = 8;
556
557 return cmd->frame_count;
558}
559
560/**
561 * megasas_build_cmd - Prepares a command packet
562 * @instance: Adapter soft state
563 * @scp: SCSI command
564 * @frame_count: [OUT] Number of frames used to prepare this command
565 */
566static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
567 *instance,
568 struct scsi_cmnd *scp,
569 int *frame_count)
570{
571 u32 logical_cmd;
572 struct megasas_cmd *cmd;
573
574 /*
575 * Find out if this is logical or physical drive command.
576 */
577 logical_cmd = MEGASAS_IS_LOGICAL(scp);
578
579 /*
580 * Logical drive command
581 */
582 if (logical_cmd) {
583
584 if (scp->device->id >= MEGASAS_MAX_LD) {
585 scp->result = DID_BAD_TARGET << 16;
586 return NULL;
587 }
588
589 switch (scp->cmnd[0]) {
590
591 case READ_10:
592 case WRITE_10:
593 case READ_12:
594 case WRITE_12:
595 case READ_6:
596 case WRITE_6:
597 case READ_16:
598 case WRITE_16:
599 /*
600 * Fail for LUN > 0
601 */
602 if (scp->device->lun) {
603 scp->result = DID_BAD_TARGET << 16;
604 return NULL;
605 }
606
607 cmd = megasas_get_cmd(instance);
608
609 if (!cmd) {
610 scp->result = DID_IMM_RETRY << 16;
611 return NULL;
612 }
613
614 *frame_count = megasas_build_ldio(instance, scp, cmd);
615
616 if (!(*frame_count)) {
617 megasas_return_cmd(instance, cmd);
618 return NULL;
619 }
620
621 return cmd;
622
623 default:
624 /*
625 * Fail for LUN > 0
626 */
627 if (scp->device->lun) {
628 scp->result = DID_BAD_TARGET << 16;
629 return NULL;
630 }
631
632 cmd = megasas_get_cmd(instance);
633
634 if (!cmd) {
635 scp->result = DID_IMM_RETRY << 16;
636 return NULL;
637 }
638
639 *frame_count = megasas_build_dcdb(instance, scp, cmd);
640
641 if (!(*frame_count)) {
642 megasas_return_cmd(instance, cmd);
643 return NULL;
644 }
645
646 return cmd;
647 }
648 } else {
649 cmd = megasas_get_cmd(instance);
650
651 if (!cmd) {
652 scp->result = DID_IMM_RETRY << 16;
653 return NULL;
654 }
655
656 *frame_count = megasas_build_dcdb(instance, scp, cmd);
657
658 if (!(*frame_count)) {
659 megasas_return_cmd(instance, cmd);
660 return NULL;
661 }
662
663 return cmd;
664 }
665
666 return NULL;
667}
668
669/**
670 * megasas_queue_command - Queue entry point
671 * @scmd: SCSI command to be queued
672 * @done: Callback entry point
673 */
674static int
675megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
676{
677 u32 frame_count;
678 unsigned long flags;
679 struct megasas_cmd *cmd;
680 struct megasas_instance *instance;
681
682 instance = (struct megasas_instance *)
683 scmd->device->host->hostdata;
684 scmd->scsi_done = done;
685 scmd->result = 0;
686
687 cmd = megasas_build_cmd(instance, scmd, &frame_count);
688
689 if (!cmd) {
690 done(scmd);
691 return 0;
692 }
693
694 cmd->scmd = scmd;
695 scmd->SCp.ptr = (char *)cmd;
696 scmd->SCp.sent_command = jiffies;
697
698 /*
699 * Issue the command to the FW
700 */
701 spin_lock_irqsave(&instance->instance_lock, flags);
702 instance->fw_outstanding++;
703 spin_unlock_irqrestore(&instance->instance_lock, flags);
704
705 writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
706 &instance->reg_set->inbound_queue_port);
707
708 return 0;
709}
710
711/**
712 * megasas_wait_for_outstanding - Wait for all outstanding cmds
713 * @instance: Adapter soft state
714 *
715 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
716 * complete all its outstanding commands. Returns error if one or more IOs
717 * are pending after this time period. It also marks the controller dead.
718 */
719static int megasas_wait_for_outstanding(struct megasas_instance *instance)
720{
721 int i;
722 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
723
724 for (i = 0; i < wait_time; i++) {
725
726 if (!instance->fw_outstanding)
727 break;
728
729 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
730 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
731 "commands to complete\n", i,
732 instance->fw_outstanding);
733 }
734
735 msleep(1000);
736 }
737
738 if (instance->fw_outstanding) {
739 instance->hw_crit_error = 1;
740 return FAILED;
741 }
742
743 return SUCCESS;
744}
745
746/**
747 * megasas_generic_reset - Generic reset routine
748 * @scmd: Mid-layer SCSI command
749 *
750 * This routine implements a generic reset handler for device, bus and host
751 * reset requests. Device, bus and host specific reset handlers can use this
752 * function after they do their specific tasks.
753 */
754static int megasas_generic_reset(struct scsi_cmnd *scmd)
755{
756 int ret_val;
757 struct megasas_instance *instance;
758
759 instance = (struct megasas_instance *)scmd->device->host->hostdata;
760
017560fc
JG
761 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
762 scmd->serial_number, scmd->cmnd[0]);
c4a3e0a5
BS
763
764 if (instance->hw_crit_error) {
765 printk(KERN_ERR "megasas: cannot recover from previous reset "
766 "failures\n");
767 return FAILED;
768 }
769
c4a3e0a5 770 ret_val = megasas_wait_for_outstanding(instance);
c4a3e0a5
BS
771 if (ret_val == SUCCESS)
772 printk(KERN_NOTICE "megasas: reset successful \n");
773 else
774 printk(KERN_ERR "megasas: failed to do reset\n");
775
c4a3e0a5
BS
776 return ret_val;
777}
778
779static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
780{
781 unsigned long seconds;
782
783 if (scmd->SCp.ptr) {
784 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
785
786 if (seconds < 90) {
787 return EH_RESET_TIMER;
788 } else {
789 return EH_NOT_HANDLED;
790 }
791 }
792
793 return EH_HANDLED;
794}
795
796/**
797 * megasas_reset_device - Device reset handler entry point
798 */
799static int megasas_reset_device(struct scsi_cmnd *scmd)
800{
801 int ret;
802
803 /*
804 * First wait for all commands to complete
805 */
806 ret = megasas_generic_reset(scmd);
807
808 return ret;
809}
810
811/**
812 * megasas_reset_bus_host - Bus & host reset handler entry point
813 */
814static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
815{
816 int ret;
817
818 /*
819 * Frist wait for all commands to complete
820 */
821 ret = megasas_generic_reset(scmd);
822
823 return ret;
824}
825
826/**
827 * megasas_service_aen - Processes an event notification
828 * @instance: Adapter soft state
829 * @cmd: AEN command completed by the ISR
830 *
831 * For AEN, driver sends a command down to FW that is held by the FW till an
832 * event occurs. When an event of interest occurs, FW completes the command
833 * that it was previously holding.
834 *
835 * This routines sends SIGIO signal to processes that have registered with the
836 * driver for AEN.
837 */
838static void
839megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
840{
841 /*
842 * Don't signal app if it is just an aborted previously registered aen
843 */
844 if (!cmd->abort_aen)
845 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
846 else
847 cmd->abort_aen = 0;
848
849 instance->aen_cmd = NULL;
850 megasas_return_cmd(instance, cmd);
851}
852
853/*
854 * Scsi host template for megaraid_sas driver
855 */
856static struct scsi_host_template megasas_template = {
857
858 .module = THIS_MODULE,
859 .name = "LSI Logic SAS based MegaRAID driver",
860 .proc_name = "megaraid_sas",
861 .queuecommand = megasas_queue_command,
862 .eh_device_reset_handler = megasas_reset_device,
863 .eh_bus_reset_handler = megasas_reset_bus_host,
864 .eh_host_reset_handler = megasas_reset_bus_host,
865 .eh_timed_out = megasas_reset_timer,
866 .use_clustering = ENABLE_CLUSTERING,
867};
868
869/**
870 * megasas_complete_int_cmd - Completes an internal command
871 * @instance: Adapter soft state
872 * @cmd: Command to be completed
873 *
874 * The megasas_issue_blocked_cmd() function waits for a command to complete
875 * after it issues a command. This function wakes up that waiting routine by
876 * calling wake_up() on the wait queue.
877 */
878static void
879megasas_complete_int_cmd(struct megasas_instance *instance,
880 struct megasas_cmd *cmd)
881{
882 cmd->cmd_status = cmd->frame->io.cmd_status;
883
884 if (cmd->cmd_status == ENODATA) {
885 cmd->cmd_status = 0;
886 }
887 wake_up(&instance->int_cmd_wait_q);
888}
889
890/**
891 * megasas_complete_abort - Completes aborting a command
892 * @instance: Adapter soft state
893 * @cmd: Cmd that was issued to abort another cmd
894 *
895 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
896 * after it issues an abort on a previously issued command. This function
897 * wakes up all functions waiting on the same wait queue.
898 */
899static void
900megasas_complete_abort(struct megasas_instance *instance,
901 struct megasas_cmd *cmd)
902{
903 if (cmd->sync_cmd) {
904 cmd->sync_cmd = 0;
905 cmd->cmd_status = 0;
906 wake_up(&instance->abort_cmd_wait_q);
907 }
908
909 return;
910}
911
912/**
913 * megasas_unmap_sgbuf - Unmap SG buffers
914 * @instance: Adapter soft state
915 * @cmd: Completed command
916 */
917static inline void
918megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
919{
920 dma_addr_t buf_h;
921 u8 opcode;
922
923 if (cmd->scmd->use_sg) {
924 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
925 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
926 return;
927 }
928
929 if (!cmd->scmd->request_bufflen)
930 return;
931
932 opcode = cmd->frame->hdr.cmd;
933
934 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
935 if (IS_DMA64)
936 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
937 else
938 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
939 } else {
940 if (IS_DMA64)
941 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
942 else
943 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
944 }
945
946 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
947 cmd->scmd->sc_data_direction);
948 return;
949}
950
951/**
952 * megasas_complete_cmd - Completes a command
953 * @instance: Adapter soft state
954 * @cmd: Command to be completed
955 * @alt_status: If non-zero, use this value as status to
956 * SCSI mid-layer instead of the value returned
957 * by the FW. This should be used if caller wants
958 * an alternate status (as in the case of aborted
959 * commands)
960 */
961static inline void
962megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
963 u8 alt_status)
964{
965 int exception = 0;
966 struct megasas_header *hdr = &cmd->frame->hdr;
967 unsigned long flags;
968
969 if (cmd->scmd) {
970 cmd->scmd->SCp.ptr = (char *)0;
971 }
972
973 switch (hdr->cmd) {
974
975 case MFI_CMD_PD_SCSI_IO:
976 case MFI_CMD_LD_SCSI_IO:
977
978 /*
979 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
980 * issued either through an IO path or an IOCTL path. If it
981 * was via IOCTL, we will send it to internal completion.
982 */
983 if (cmd->sync_cmd) {
984 cmd->sync_cmd = 0;
985 megasas_complete_int_cmd(instance, cmd);
986 break;
987 }
988
989 /*
990 * Don't export physical disk devices to mid-layer.
991 */
992 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
993 (hdr->cmd_status == MFI_STAT_OK) &&
994 (cmd->scmd->cmnd[0] == INQUIRY)) {
995
996 if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
997 TYPE_DISK) {
998 cmd->scmd->result = DID_BAD_TARGET << 16;
999 exception = 1;
1000 }
1001 }
1002
1003 case MFI_CMD_LD_READ:
1004 case MFI_CMD_LD_WRITE:
1005
1006 if (alt_status) {
1007 cmd->scmd->result = alt_status << 16;
1008 exception = 1;
1009 }
1010
1011 if (exception) {
1012
1013 spin_lock_irqsave(&instance->instance_lock, flags);
1014 instance->fw_outstanding--;
1015 spin_unlock_irqrestore(&instance->instance_lock, flags);
1016
1017 megasas_unmap_sgbuf(instance, cmd);
1018 cmd->scmd->scsi_done(cmd->scmd);
1019 megasas_return_cmd(instance, cmd);
1020
1021 break;
1022 }
1023
1024 switch (hdr->cmd_status) {
1025
1026 case MFI_STAT_OK:
1027 cmd->scmd->result = DID_OK << 16;
1028 break;
1029
1030 case MFI_STAT_SCSI_IO_FAILED:
1031 case MFI_STAT_LD_INIT_IN_PROGRESS:
1032 cmd->scmd->result =
1033 (DID_ERROR << 16) | hdr->scsi_status;
1034 break;
1035
1036 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1037
1038 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1039
1040 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1041 memset(cmd->scmd->sense_buffer, 0,
1042 SCSI_SENSE_BUFFERSIZE);
1043 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1044 hdr->sense_len);
1045
1046 cmd->scmd->result |= DRIVER_SENSE << 24;
1047 }
1048
1049 break;
1050
1051 case MFI_STAT_LD_OFFLINE:
1052 case MFI_STAT_DEVICE_NOT_FOUND:
1053 cmd->scmd->result = DID_BAD_TARGET << 16;
1054 break;
1055
1056 default:
1057 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1058 hdr->cmd_status);
1059 cmd->scmd->result = DID_ERROR << 16;
1060 break;
1061 }
1062
1063 spin_lock_irqsave(&instance->instance_lock, flags);
1064 instance->fw_outstanding--;
1065 spin_unlock_irqrestore(&instance->instance_lock, flags);
1066
1067 megasas_unmap_sgbuf(instance, cmd);
1068 cmd->scmd->scsi_done(cmd->scmd);
1069 megasas_return_cmd(instance, cmd);
1070
1071 break;
1072
1073 case MFI_CMD_SMP:
1074 case MFI_CMD_STP:
1075 case MFI_CMD_DCMD:
1076
1077 /*
1078 * See if got an event notification
1079 */
1080 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1081 megasas_service_aen(instance, cmd);
1082 else
1083 megasas_complete_int_cmd(instance, cmd);
1084
1085 break;
1086
1087 case MFI_CMD_ABORT:
1088 /*
1089 * Cmd issued to abort another cmd returned
1090 */
1091 megasas_complete_abort(instance, cmd);
1092 break;
1093
1094 default:
1095 printk("megasas: Unknown command completed! [0x%X]\n",
1096 hdr->cmd);
1097 break;
1098 }
1099}
1100
1101/**
1102 * megasas_deplete_reply_queue - Processes all completed commands
1103 * @instance: Adapter soft state
1104 * @alt_status: Alternate status to be returned to
1105 * SCSI mid-layer instead of the status
1106 * returned by the FW
1107 */
1108static inline int
1109megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1110{
1111 u32 status;
1112 u32 producer;
1113 u32 consumer;
1114 u32 context;
1115 struct megasas_cmd *cmd;
1116
1117 /*
1118 * Check if it is our interrupt
1119 */
1120 status = readl(&instance->reg_set->outbound_intr_status);
1121
1122 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1123 return IRQ_NONE;
1124 }
1125
1126 /*
1127 * Clear the interrupt by writing back the same value
1128 */
1129 writel(status, &instance->reg_set->outbound_intr_status);
1130
1131 producer = *instance->producer;
1132 consumer = *instance->consumer;
1133
1134 while (consumer != producer) {
1135 context = instance->reply_queue[consumer];
1136
1137 cmd = instance->cmd_list[context];
1138
1139 megasas_complete_cmd(instance, cmd, alt_status);
1140
1141 consumer++;
1142 if (consumer == (instance->max_fw_cmds + 1)) {
1143 consumer = 0;
1144 }
1145 }
1146
1147 *instance->consumer = producer;
1148
1149 return IRQ_HANDLED;
1150}
1151
1152/**
1153 * megasas_isr - isr entry point
1154 */
1155static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1156{
1157 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1158 DID_OK);
1159}
1160
1161/**
1162 * megasas_transition_to_ready - Move the FW to READY state
1163 * @reg_set: MFI register set
1164 *
1165 * During the initialization, FW passes can potentially be in any one of
1166 * several possible states. If the FW in operational, waiting-for-handshake
1167 * states, driver must take steps to bring it to ready state. Otherwise, it
1168 * has to wait for the ready state.
1169 */
1170static int
1171megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1172{
1173 int i;
1174 u8 max_wait;
1175 u32 fw_state;
1176 u32 cur_state;
1177
1178 fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1179
1180 while (fw_state != MFI_STATE_READY) {
1181
1182 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1183 " state\n");
1184 switch (fw_state) {
1185
1186 case MFI_STATE_FAULT:
1187
1188 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1189 return -ENODEV;
1190
1191 case MFI_STATE_WAIT_HANDSHAKE:
1192 /*
1193 * Set the CLR bit in inbound doorbell
1194 */
1195 writel(MFI_INIT_CLEAR_HANDSHAKE,
1196 &reg_set->inbound_doorbell);
1197
1198 max_wait = 2;
1199 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1200 break;
1201
1202 case MFI_STATE_OPERATIONAL:
1203 /*
1204 * Bring it to READY state; assuming max wait 2 secs
1205 */
1206 megasas_disable_intr(reg_set);
1207 writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1208
1209 max_wait = 10;
1210 cur_state = MFI_STATE_OPERATIONAL;
1211 break;
1212
1213 case MFI_STATE_UNDEFINED:
1214 /*
1215 * This state should not last for more than 2 seconds
1216 */
1217 max_wait = 2;
1218 cur_state = MFI_STATE_UNDEFINED;
1219 break;
1220
1221 case MFI_STATE_BB_INIT:
1222 max_wait = 2;
1223 cur_state = MFI_STATE_BB_INIT;
1224 break;
1225
1226 case MFI_STATE_FW_INIT:
1227 max_wait = 20;
1228 cur_state = MFI_STATE_FW_INIT;
1229 break;
1230
1231 case MFI_STATE_FW_INIT_2:
1232 max_wait = 20;
1233 cur_state = MFI_STATE_FW_INIT_2;
1234 break;
1235
1236 case MFI_STATE_DEVICE_SCAN:
1237 max_wait = 20;
1238 cur_state = MFI_STATE_DEVICE_SCAN;
1239 break;
1240
1241 case MFI_STATE_FLUSH_CACHE:
1242 max_wait = 20;
1243 cur_state = MFI_STATE_FLUSH_CACHE;
1244 break;
1245
1246 default:
1247 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1248 fw_state);
1249 return -ENODEV;
1250 }
1251
1252 /*
1253 * The cur_state should not last for more than max_wait secs
1254 */
1255 for (i = 0; i < (max_wait * 1000); i++) {
1256 fw_state = MFI_STATE_MASK &
1257 readl(&reg_set->outbound_msg_0);
1258
1259 if (fw_state == cur_state) {
1260 msleep(1);
1261 } else
1262 break;
1263 }
1264
1265 /*
1266 * Return error if fw_state hasn't changed after max_wait
1267 */
1268 if (fw_state == cur_state) {
1269 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1270 "in %d secs\n", fw_state, max_wait);
1271 return -ENODEV;
1272 }
1273 };
1274
1275 return 0;
1276}
1277
1278/**
1279 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1280 * @instance: Adapter soft state
1281 */
1282static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1283{
1284 int i;
1285 u32 max_cmd = instance->max_fw_cmds;
1286 struct megasas_cmd *cmd;
1287
1288 if (!instance->frame_dma_pool)
1289 return;
1290
1291 /*
1292 * Return all frames to pool
1293 */
1294 for (i = 0; i < max_cmd; i++) {
1295
1296 cmd = instance->cmd_list[i];
1297
1298 if (cmd->frame)
1299 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1300 cmd->frame_phys_addr);
1301
1302 if (cmd->sense)
1303 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1304 cmd->sense_phys_addr);
1305 }
1306
1307 /*
1308 * Now destroy the pool itself
1309 */
1310 pci_pool_destroy(instance->frame_dma_pool);
1311 pci_pool_destroy(instance->sense_dma_pool);
1312
1313 instance->frame_dma_pool = NULL;
1314 instance->sense_dma_pool = NULL;
1315}
1316
1317/**
1318 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1319 * @instance: Adapter soft state
1320 *
1321 * Each command packet has an embedded DMA memory buffer that is used for
1322 * filling MFI frame and the SG list that immediately follows the frame. This
1323 * function creates those DMA memory buffers for each command packet by using
1324 * PCI pool facility.
1325 */
1326static int megasas_create_frame_pool(struct megasas_instance *instance)
1327{
1328 int i;
1329 u32 max_cmd;
1330 u32 sge_sz;
1331 u32 sgl_sz;
1332 u32 total_sz;
1333 u32 frame_count;
1334 struct megasas_cmd *cmd;
1335
1336 max_cmd = instance->max_fw_cmds;
1337
1338 /*
1339 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1340 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1341 */
1342 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1343 sizeof(struct megasas_sge32);
1344
1345 /*
1346 * Calculated the number of 64byte frames required for SGL
1347 */
1348 sgl_sz = sge_sz * instance->max_num_sge;
1349 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1350
1351 /*
1352 * We need one extra frame for the MFI command
1353 */
1354 frame_count++;
1355
1356 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1357 /*
1358 * Use DMA pool facility provided by PCI layer
1359 */
1360 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1361 instance->pdev, total_sz, 64,
1362 0);
1363
1364 if (!instance->frame_dma_pool) {
1365 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1366 return -ENOMEM;
1367 }
1368
1369 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1370 instance->pdev, 128, 4, 0);
1371
1372 if (!instance->sense_dma_pool) {
1373 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1374
1375 pci_pool_destroy(instance->frame_dma_pool);
1376 instance->frame_dma_pool = NULL;
1377
1378 return -ENOMEM;
1379 }
1380
1381 /*
1382 * Allocate and attach a frame to each of the commands in cmd_list.
1383 * By making cmd->index as the context instead of the &cmd, we can
1384 * always use 32bit context regardless of the architecture
1385 */
1386 for (i = 0; i < max_cmd; i++) {
1387
1388 cmd = instance->cmd_list[i];
1389
1390 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1391 GFP_KERNEL, &cmd->frame_phys_addr);
1392
1393 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1394 GFP_KERNEL, &cmd->sense_phys_addr);
1395
1396 /*
1397 * megasas_teardown_frame_pool() takes care of freeing
1398 * whatever has been allocated
1399 */
1400 if (!cmd->frame || !cmd->sense) {
1401 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1402 megasas_teardown_frame_pool(instance);
1403 return -ENOMEM;
1404 }
1405
1406 cmd->frame->io.context = cmd->index;
1407 }
1408
1409 return 0;
1410}
1411
1412/**
1413 * megasas_free_cmds - Free all the cmds in the free cmd pool
1414 * @instance: Adapter soft state
1415 */
1416static void megasas_free_cmds(struct megasas_instance *instance)
1417{
1418 int i;
1419 /* First free the MFI frame pool */
1420 megasas_teardown_frame_pool(instance);
1421
1422 /* Free all the commands in the cmd_list */
1423 for (i = 0; i < instance->max_fw_cmds; i++)
1424 kfree(instance->cmd_list[i]);
1425
1426 /* Free the cmd_list buffer itself */
1427 kfree(instance->cmd_list);
1428 instance->cmd_list = NULL;
1429
1430 INIT_LIST_HEAD(&instance->cmd_pool);
1431}
1432
1433/**
1434 * megasas_alloc_cmds - Allocates the command packets
1435 * @instance: Adapter soft state
1436 *
1437 * Each command that is issued to the FW, whether IO commands from the OS or
1438 * internal commands like IOCTLs, are wrapped in local data structure called
1439 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1440 * the FW.
1441 *
1442 * Each frame has a 32-bit field called context (tag). This context is used
1443 * to get back the megasas_cmd from the frame when a frame gets completed in
1444 * the ISR. Typically the address of the megasas_cmd itself would be used as
1445 * the context. But we wanted to keep the differences between 32 and 64 bit
1446 * systems to the mininum. We always use 32 bit integers for the context. In
1447 * this driver, the 32 bit values are the indices into an array cmd_list.
1448 * This array is used only to look up the megasas_cmd given the context. The
1449 * free commands themselves are maintained in a linked list called cmd_pool.
1450 */
1451static int megasas_alloc_cmds(struct megasas_instance *instance)
1452{
1453 int i;
1454 int j;
1455 u32 max_cmd;
1456 struct megasas_cmd *cmd;
1457
1458 max_cmd = instance->max_fw_cmds;
1459
1460 /*
1461 * instance->cmd_list is an array of struct megasas_cmd pointers.
1462 * Allocate the dynamic array first and then allocate individual
1463 * commands.
1464 */
1465 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1466 GFP_KERNEL);
1467
1468 if (!instance->cmd_list) {
1469 printk(KERN_DEBUG "megasas: out of memory\n");
1470 return -ENOMEM;
1471 }
1472
1473 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1474
1475 for (i = 0; i < max_cmd; i++) {
1476 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1477 GFP_KERNEL);
1478
1479 if (!instance->cmd_list[i]) {
1480
1481 for (j = 0; j < i; j++)
1482 kfree(instance->cmd_list[j]);
1483
1484 kfree(instance->cmd_list);
1485 instance->cmd_list = NULL;
1486
1487 return -ENOMEM;
1488 }
1489 }
1490
1491 /*
1492 * Add all the commands to command pool (instance->cmd_pool)
1493 */
1494 for (i = 0; i < max_cmd; i++) {
1495 cmd = instance->cmd_list[i];
1496 memset(cmd, 0, sizeof(struct megasas_cmd));
1497 cmd->index = i;
1498 cmd->instance = instance;
1499
1500 list_add_tail(&cmd->list, &instance->cmd_pool);
1501 }
1502
1503 /*
1504 * Create a frame pool and assign one frame to each cmd
1505 */
1506 if (megasas_create_frame_pool(instance)) {
1507 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1508 megasas_free_cmds(instance);
1509 }
1510
1511 return 0;
1512}
1513
1514/**
1515 * megasas_get_controller_info - Returns FW's controller structure
1516 * @instance: Adapter soft state
1517 * @ctrl_info: Controller information structure
1518 *
1519 * Issues an internal command (DCMD) to get the FW's controller structure.
1520 * This information is mainly used to find out the maximum IO transfer per
1521 * command supported by the FW.
1522 */
1523static int
1524megasas_get_ctrl_info(struct megasas_instance *instance,
1525 struct megasas_ctrl_info *ctrl_info)
1526{
1527 int ret = 0;
1528 struct megasas_cmd *cmd;
1529 struct megasas_dcmd_frame *dcmd;
1530 struct megasas_ctrl_info *ci;
1531 dma_addr_t ci_h = 0;
1532
1533 cmd = megasas_get_cmd(instance);
1534
1535 if (!cmd) {
1536 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1537 return -ENOMEM;
1538 }
1539
1540 dcmd = &cmd->frame->dcmd;
1541
1542 ci = pci_alloc_consistent(instance->pdev,
1543 sizeof(struct megasas_ctrl_info), &ci_h);
1544
1545 if (!ci) {
1546 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1547 megasas_return_cmd(instance, cmd);
1548 return -ENOMEM;
1549 }
1550
1551 memset(ci, 0, sizeof(*ci));
1552 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1553
1554 dcmd->cmd = MFI_CMD_DCMD;
1555 dcmd->cmd_status = 0xFF;
1556 dcmd->sge_count = 1;
1557 dcmd->flags = MFI_FRAME_DIR_READ;
1558 dcmd->timeout = 0;
1559 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1560 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1561 dcmd->sgl.sge32[0].phys_addr = ci_h;
1562 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1563
1564 if (!megasas_issue_polled(instance, cmd)) {
1565 ret = 0;
1566 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1567 } else {
1568 ret = -1;
1569 }
1570
1571 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1572 ci, ci_h);
1573
1574 megasas_return_cmd(instance, cmd);
1575 return ret;
1576}
1577
1578/**
1579 * megasas_init_mfi - Initializes the FW
1580 * @instance: Adapter soft state
1581 *
1582 * This is the main function for initializing MFI firmware.
1583 */
1584static int megasas_init_mfi(struct megasas_instance *instance)
1585{
1586 u32 context_sz;
1587 u32 reply_q_sz;
1588 u32 max_sectors_1;
1589 u32 max_sectors_2;
1590 struct megasas_register_set __iomem *reg_set;
1591
1592 struct megasas_cmd *cmd;
1593 struct megasas_ctrl_info *ctrl_info;
1594
1595 struct megasas_init_frame *init_frame;
1596 struct megasas_init_queue_info *initq_info;
1597 dma_addr_t init_frame_h;
1598 dma_addr_t initq_info_h;
1599
1600 /*
1601 * Map the message registers
1602 */
1603 instance->base_addr = pci_resource_start(instance->pdev, 0);
1604
1605 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1606 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1607 return -EBUSY;
1608 }
1609
1610 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1611
1612 if (!instance->reg_set) {
1613 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1614 goto fail_ioremap;
1615 }
1616
1617 reg_set = instance->reg_set;
1618
1619 /*
1620 * We expect the FW state to be READY
1621 */
1622 if (megasas_transition_to_ready(instance->reg_set))
1623 goto fail_ready_state;
1624
1625 /*
1626 * Get various operational parameters from status register
1627 */
1628 instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1629 instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1630 0x10;
1631 /*
1632 * Create a pool of commands
1633 */
1634 if (megasas_alloc_cmds(instance))
1635 goto fail_alloc_cmds;
1636
1637 /*
1638 * Allocate memory for reply queue. Length of reply queue should
1639 * be _one_ more than the maximum commands handled by the firmware.
1640 *
1641 * Note: When FW completes commands, it places corresponding contex
1642 * values in this circular reply queue. This circular queue is a fairly
1643 * typical producer-consumer queue. FW is the producer (of completed
1644 * commands) and the driver is the consumer.
1645 */
1646 context_sz = sizeof(u32);
1647 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1648
1649 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1650 reply_q_sz,
1651 &instance->reply_queue_h);
1652
1653 if (!instance->reply_queue) {
1654 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1655 goto fail_reply_queue;
1656 }
1657
1658 /*
1659 * Prepare a init frame. Note the init frame points to queue info
1660 * structure. Each frame has SGL allocated after first 64 bytes. For
1661 * this frame - since we don't need any SGL - we use SGL's space as
1662 * queue info structure
1663 *
1664 * We will not get a NULL command below. We just created the pool.
1665 */
1666 cmd = megasas_get_cmd(instance);
1667
1668 init_frame = (struct megasas_init_frame *)cmd->frame;
1669 initq_info = (struct megasas_init_queue_info *)
1670 ((unsigned long)init_frame + 64);
1671
1672 init_frame_h = cmd->frame_phys_addr;
1673 initq_info_h = init_frame_h + 64;
1674
1675 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1676 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1677
1678 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1679 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1680
1681 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1682 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1683
1684 init_frame->cmd = MFI_CMD_INIT;
1685 init_frame->cmd_status = 0xFF;
1686 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1687
1688 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1689
1690 /*
1691 * Issue the init frame in polled mode
1692 */
1693 if (megasas_issue_polled(instance, cmd)) {
1694 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1695 goto fail_fw_init;
1696 }
1697
1698 megasas_return_cmd(instance, cmd);
1699
1700 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1701
1702 /*
1703 * Compute the max allowed sectors per IO: The controller info has two
1704 * limits on max sectors. Driver should use the minimum of these two.
1705 *
1706 * 1 << stripe_sz_ops.min = max sectors per strip
1707 *
1708 * Note that older firmwares ( < FW ver 30) didn't report information
1709 * to calculate max_sectors_1. So the number ended up as zero always.
1710 */
1711 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1712
1713 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1714 ctrl_info->max_strips_per_io;
1715 max_sectors_2 = ctrl_info->max_request_size;
1716
1717 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1718 ? max_sectors_1 : max_sectors_2;
1719 } else
1720 instance->max_sectors_per_req = instance->max_num_sge *
1721 PAGE_SIZE / 512;
1722
1723 kfree(ctrl_info);
1724
1725 return 0;
1726
1727 fail_fw_init:
1728 megasas_return_cmd(instance, cmd);
1729
1730 pci_free_consistent(instance->pdev, reply_q_sz,
1731 instance->reply_queue, instance->reply_queue_h);
1732 fail_reply_queue:
1733 megasas_free_cmds(instance);
1734
1735 fail_alloc_cmds:
1736 fail_ready_state:
1737 iounmap(instance->reg_set);
1738
1739 fail_ioremap:
1740 pci_release_regions(instance->pdev);
1741
1742 return -EINVAL;
1743}
1744
1745/**
1746 * megasas_release_mfi - Reverses the FW initialization
1747 * @intance: Adapter soft state
1748 */
1749static void megasas_release_mfi(struct megasas_instance *instance)
1750{
1751 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1752
1753 pci_free_consistent(instance->pdev, reply_q_sz,
1754 instance->reply_queue, instance->reply_queue_h);
1755
1756 megasas_free_cmds(instance);
1757
1758 iounmap(instance->reg_set);
1759
1760 pci_release_regions(instance->pdev);
1761}
1762
1763/**
1764 * megasas_get_seq_num - Gets latest event sequence numbers
1765 * @instance: Adapter soft state
1766 * @eli: FW event log sequence numbers information
1767 *
1768 * FW maintains a log of all events in a non-volatile area. Upper layers would
1769 * usually find out the latest sequence number of the events, the seq number at
1770 * the boot etc. They would "read" all the events below the latest seq number
1771 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1772 * number), they would subsribe to AEN (asynchronous event notification) and
1773 * wait for the events to happen.
1774 */
1775static int
1776megasas_get_seq_num(struct megasas_instance *instance,
1777 struct megasas_evt_log_info *eli)
1778{
1779 struct megasas_cmd *cmd;
1780 struct megasas_dcmd_frame *dcmd;
1781 struct megasas_evt_log_info *el_info;
1782 dma_addr_t el_info_h = 0;
1783
1784 cmd = megasas_get_cmd(instance);
1785
1786 if (!cmd) {
1787 return -ENOMEM;
1788 }
1789
1790 dcmd = &cmd->frame->dcmd;
1791 el_info = pci_alloc_consistent(instance->pdev,
1792 sizeof(struct megasas_evt_log_info),
1793 &el_info_h);
1794
1795 if (!el_info) {
1796 megasas_return_cmd(instance, cmd);
1797 return -ENOMEM;
1798 }
1799
1800 memset(el_info, 0, sizeof(*el_info));
1801 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1802
1803 dcmd->cmd = MFI_CMD_DCMD;
1804 dcmd->cmd_status = 0x0;
1805 dcmd->sge_count = 1;
1806 dcmd->flags = MFI_FRAME_DIR_READ;
1807 dcmd->timeout = 0;
1808 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1809 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1810 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1811 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1812
1813 megasas_issue_blocked_cmd(instance, cmd);
1814
1815 /*
1816 * Copy the data back into callers buffer
1817 */
1818 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1819
1820 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1821 el_info, el_info_h);
1822
1823 megasas_return_cmd(instance, cmd);
1824
1825 return 0;
1826}
1827
1828/**
1829 * megasas_register_aen - Registers for asynchronous event notification
1830 * @instance: Adapter soft state
1831 * @seq_num: The starting sequence number
1832 * @class_locale: Class of the event
1833 *
1834 * This function subscribes for AEN for events beyond the @seq_num. It requests
1835 * to be notified if and only if the event is of type @class_locale
1836 */
1837static int
1838megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1839 u32 class_locale_word)
1840{
1841 int ret_val;
1842 struct megasas_cmd *cmd;
1843 struct megasas_dcmd_frame *dcmd;
1844 union megasas_evt_class_locale curr_aen;
1845 union megasas_evt_class_locale prev_aen;
1846
1847 /*
1848 * If there an AEN pending already (aen_cmd), check if the
1849 * class_locale of that pending AEN is inclusive of the new
1850 * AEN request we currently have. If it is, then we don't have
1851 * to do anything. In other words, whichever events the current
1852 * AEN request is subscribing to, have already been subscribed
1853 * to.
1854 *
1855 * If the old_cmd is _not_ inclusive, then we have to abort
1856 * that command, form a class_locale that is superset of both
1857 * old and current and re-issue to the FW
1858 */
1859
1860 curr_aen.word = class_locale_word;
1861
1862 if (instance->aen_cmd) {
1863
1864 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1865
1866 /*
1867 * A class whose enum value is smaller is inclusive of all
1868 * higher values. If a PROGRESS (= -1) was previously
1869 * registered, then a new registration requests for higher
1870 * classes need not be sent to FW. They are automatically
1871 * included.
1872 *
1873 * Locale numbers don't have such hierarchy. They are bitmap
1874 * values
1875 */
1876 if ((prev_aen.members.class <= curr_aen.members.class) &&
1877 !((prev_aen.members.locale & curr_aen.members.locale) ^
1878 curr_aen.members.locale)) {
1879 /*
1880 * Previously issued event registration includes
1881 * current request. Nothing to do.
1882 */
1883 return 0;
1884 } else {
1885 curr_aen.members.locale |= prev_aen.members.locale;
1886
1887 if (prev_aen.members.class < curr_aen.members.class)
1888 curr_aen.members.class = prev_aen.members.class;
1889
1890 instance->aen_cmd->abort_aen = 1;
1891 ret_val = megasas_issue_blocked_abort_cmd(instance,
1892 instance->
1893 aen_cmd);
1894
1895 if (ret_val) {
1896 printk(KERN_DEBUG "megasas: Failed to abort "
1897 "previous AEN command\n");
1898 return ret_val;
1899 }
1900 }
1901 }
1902
1903 cmd = megasas_get_cmd(instance);
1904
1905 if (!cmd)
1906 return -ENOMEM;
1907
1908 dcmd = &cmd->frame->dcmd;
1909
1910 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1911
1912 /*
1913 * Prepare DCMD for aen registration
1914 */
1915 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1916
1917 dcmd->cmd = MFI_CMD_DCMD;
1918 dcmd->cmd_status = 0x0;
1919 dcmd->sge_count = 1;
1920 dcmd->flags = MFI_FRAME_DIR_READ;
1921 dcmd->timeout = 0;
1922 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1923 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1924 dcmd->mbox.w[0] = seq_num;
1925 dcmd->mbox.w[1] = curr_aen.word;
1926 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1927 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1928
1929 /*
1930 * Store reference to the cmd used to register for AEN. When an
1931 * application wants us to register for AEN, we have to abort this
1932 * cmd and re-register with a new EVENT LOCALE supplied by that app
1933 */
1934 instance->aen_cmd = cmd;
1935
1936 /*
1937 * Issue the aen registration frame
1938 */
1939 writel(cmd->frame_phys_addr >> 3,
1940 &instance->reg_set->inbound_queue_port);
1941
1942 return 0;
1943}
1944
1945/**
1946 * megasas_start_aen - Subscribes to AEN during driver load time
1947 * @instance: Adapter soft state
1948 */
1949static int megasas_start_aen(struct megasas_instance *instance)
1950{
1951 struct megasas_evt_log_info eli;
1952 union megasas_evt_class_locale class_locale;
1953
1954 /*
1955 * Get the latest sequence number from FW
1956 */
1957 memset(&eli, 0, sizeof(eli));
1958
1959 if (megasas_get_seq_num(instance, &eli))
1960 return -1;
1961
1962 /*
1963 * Register AEN with FW for latest sequence number plus 1
1964 */
1965 class_locale.members.reserved = 0;
1966 class_locale.members.locale = MR_EVT_LOCALE_ALL;
1967 class_locale.members.class = MR_EVT_CLASS_DEBUG;
1968
1969 return megasas_register_aen(instance, eli.newest_seq_num + 1,
1970 class_locale.word);
1971}
1972
1973/**
1974 * megasas_io_attach - Attaches this driver to SCSI mid-layer
1975 * @instance: Adapter soft state
1976 */
1977static int megasas_io_attach(struct megasas_instance *instance)
1978{
1979 struct Scsi_Host *host = instance->host;
1980
1981 /*
1982 * Export parameters required by SCSI mid-layer
1983 */
1984 host->irq = instance->pdev->irq;
1985 host->unique_id = instance->unique_id;
1986 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1987 host->this_id = instance->init_id;
1988 host->sg_tablesize = instance->max_num_sge;
1989 host->max_sectors = instance->max_sectors_per_req;
1990 host->cmd_per_lun = 128;
1991 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1992 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1993 host->max_lun = MEGASAS_MAX_LUN;
1994
1995 /*
1996 * Notify the mid-layer about the new controller
1997 */
1998 if (scsi_add_host(host, &instance->pdev->dev)) {
1999 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2000 return -ENODEV;
2001 }
2002
2003 /*
2004 * Trigger SCSI to scan our drives
2005 */
2006 scsi_scan_host(host);
2007 return 0;
2008}
2009
2010/**
2011 * megasas_probe_one - PCI hotplug entry point
2012 * @pdev: PCI device structure
2013 * @id: PCI ids of supported hotplugged adapter
2014 */
2015static int __devinit
2016megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2017{
2018 int rval;
2019 struct Scsi_Host *host;
2020 struct megasas_instance *instance;
2021
2022 /*
2023 * Announce PCI information
2024 */
2025 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2026 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2027 pdev->subsystem_device);
2028
2029 printk("bus %d:slot %d:func %d\n",
2030 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2031
2032 /*
2033 * PCI prepping: enable device set bus mastering and dma mask
2034 */
2035 rval = pci_enable_device(pdev);
2036
2037 if (rval) {
2038 return rval;
2039 }
2040
2041 pci_set_master(pdev);
2042
2043 /*
2044 * All our contollers are capable of performing 64-bit DMA
2045 */
2046 if (IS_DMA64) {
2047 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2048
2049 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2050 goto fail_set_dma_mask;
2051 }
2052 } else {
2053 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2054 goto fail_set_dma_mask;
2055 }
2056
2057 host = scsi_host_alloc(&megasas_template,
2058 sizeof(struct megasas_instance));
2059
2060 if (!host) {
2061 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2062 goto fail_alloc_instance;
2063 }
2064
2065 instance = (struct megasas_instance *)host->hostdata;
2066 memset(instance, 0, sizeof(*instance));
2067
2068 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2069 &instance->producer_h);
2070 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2071 &instance->consumer_h);
2072
2073 if (!instance->producer || !instance->consumer) {
2074 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2075 "producer, consumer\n");
2076 goto fail_alloc_dma_buf;
2077 }
2078
2079 *instance->producer = 0;
2080 *instance->consumer = 0;
2081
2082 instance->evt_detail = pci_alloc_consistent(pdev,
2083 sizeof(struct
2084 megasas_evt_detail),
2085 &instance->evt_detail_h);
2086
2087 if (!instance->evt_detail) {
2088 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2089 "event detail structure\n");
2090 goto fail_alloc_dma_buf;
2091 }
2092
2093 /*
2094 * Initialize locks and queues
2095 */
2096 INIT_LIST_HEAD(&instance->cmd_pool);
2097
2098 init_waitqueue_head(&instance->int_cmd_wait_q);
2099 init_waitqueue_head(&instance->abort_cmd_wait_q);
2100
2101 spin_lock_init(&instance->cmd_pool_lock);
2102 spin_lock_init(&instance->instance_lock);
2103
2104 sema_init(&instance->aen_mutex, 1);
2105 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2106
2107 /*
2108 * Initialize PCI related and misc parameters
2109 */
2110 instance->pdev = pdev;
2111 instance->host = host;
2112 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2113 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2114
2115 /*
2116 * Initialize MFI Firmware
2117 */
2118 if (megasas_init_mfi(instance))
2119 goto fail_init_mfi;
2120
2121 /*
2122 * Register IRQ
2123 */
2124 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2125 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2126 goto fail_irq;
2127 }
2128
2129 megasas_enable_intr(instance->reg_set);
2130
2131 /*
2132 * Store instance in PCI softstate
2133 */
2134 pci_set_drvdata(pdev, instance);
2135
2136 /*
2137 * Add this controller to megasas_mgmt_info structure so that it
2138 * can be exported to management applications
2139 */
2140 megasas_mgmt_info.count++;
2141 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2142 megasas_mgmt_info.max_index++;
2143
2144 /*
2145 * Initiate AEN (Asynchronous Event Notification)
2146 */
2147 if (megasas_start_aen(instance)) {
2148 printk(KERN_DEBUG "megasas: start aen failed\n");
2149 goto fail_start_aen;
2150 }
2151
2152 /*
2153 * Register with SCSI mid-layer
2154 */
2155 if (megasas_io_attach(instance))
2156 goto fail_io_attach;
2157
2158 return 0;
2159
2160 fail_start_aen:
2161 fail_io_attach:
2162 megasas_mgmt_info.count--;
2163 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2164 megasas_mgmt_info.max_index--;
2165
2166 pci_set_drvdata(pdev, NULL);
2167 megasas_disable_intr(instance->reg_set);
2168 free_irq(instance->pdev->irq, instance);
2169
2170 megasas_release_mfi(instance);
2171
2172 fail_irq:
2173 fail_init_mfi:
2174 fail_alloc_dma_buf:
2175 if (instance->evt_detail)
2176 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2177 instance->evt_detail,
2178 instance->evt_detail_h);
2179
2180 if (instance->producer)
2181 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2182 instance->producer_h);
2183 if (instance->consumer)
2184 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2185 instance->consumer_h);
2186 scsi_host_put(host);
2187
2188 fail_alloc_instance:
2189 fail_set_dma_mask:
2190 pci_disable_device(pdev);
2191
2192 return -ENODEV;
2193}
2194
2195/**
2196 * megasas_flush_cache - Requests FW to flush all its caches
2197 * @instance: Adapter soft state
2198 */
2199static void megasas_flush_cache(struct megasas_instance *instance)
2200{
2201 struct megasas_cmd *cmd;
2202 struct megasas_dcmd_frame *dcmd;
2203
2204 cmd = megasas_get_cmd(instance);
2205
2206 if (!cmd)
2207 return;
2208
2209 dcmd = &cmd->frame->dcmd;
2210
2211 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2212
2213 dcmd->cmd = MFI_CMD_DCMD;
2214 dcmd->cmd_status = 0x0;
2215 dcmd->sge_count = 0;
2216 dcmd->flags = MFI_FRAME_DIR_NONE;
2217 dcmd->timeout = 0;
2218 dcmd->data_xfer_len = 0;
2219 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2220 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2221
2222 megasas_issue_blocked_cmd(instance, cmd);
2223
2224 megasas_return_cmd(instance, cmd);
2225
2226 return;
2227}
2228
2229/**
2230 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2231 * @instance: Adapter soft state
2232 */
2233static void megasas_shutdown_controller(struct megasas_instance *instance)
2234{
2235 struct megasas_cmd *cmd;
2236 struct megasas_dcmd_frame *dcmd;
2237
2238 cmd = megasas_get_cmd(instance);
2239
2240 if (!cmd)
2241 return;
2242
2243 if (instance->aen_cmd)
2244 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2245
2246 dcmd = &cmd->frame->dcmd;
2247
2248 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2249
2250 dcmd->cmd = MFI_CMD_DCMD;
2251 dcmd->cmd_status = 0x0;
2252 dcmd->sge_count = 0;
2253 dcmd->flags = MFI_FRAME_DIR_NONE;
2254 dcmd->timeout = 0;
2255 dcmd->data_xfer_len = 0;
2256 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2257
2258 megasas_issue_blocked_cmd(instance, cmd);
2259
2260 megasas_return_cmd(instance, cmd);
2261
2262 return;
2263}
2264
2265/**
2266 * megasas_detach_one - PCI hot"un"plug entry point
2267 * @pdev: PCI device structure
2268 */
2269static void megasas_detach_one(struct pci_dev *pdev)
2270{
2271 int i;
2272 struct Scsi_Host *host;
2273 struct megasas_instance *instance;
2274
2275 instance = pci_get_drvdata(pdev);
2276 host = instance->host;
2277
2278 scsi_remove_host(instance->host);
2279 megasas_flush_cache(instance);
2280 megasas_shutdown_controller(instance);
2281
2282 /*
2283 * Take the instance off the instance array. Note that we will not
2284 * decrement the max_index. We let this array be sparse array
2285 */
2286 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2287 if (megasas_mgmt_info.instance[i] == instance) {
2288 megasas_mgmt_info.count--;
2289 megasas_mgmt_info.instance[i] = NULL;
2290
2291 break;
2292 }
2293 }
2294
2295 pci_set_drvdata(instance->pdev, NULL);
2296
2297 megasas_disable_intr(instance->reg_set);
2298
2299 free_irq(instance->pdev->irq, instance);
2300
2301 megasas_release_mfi(instance);
2302
2303 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2304 instance->evt_detail, instance->evt_detail_h);
2305
2306 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2307 instance->producer_h);
2308
2309 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2310 instance->consumer_h);
2311
2312 scsi_host_put(host);
2313
2314 pci_set_drvdata(pdev, NULL);
2315
2316 pci_disable_device(pdev);
2317
2318 return;
2319}
2320
2321/**
2322 * megasas_shutdown - Shutdown entry point
2323 * @device: Generic device structure
2324 */
2325static void megasas_shutdown(struct pci_dev *pdev)
2326{
2327 struct megasas_instance *instance = pci_get_drvdata(pdev);
2328 megasas_flush_cache(instance);
2329}
2330
2331/**
2332 * megasas_mgmt_open - char node "open" entry point
2333 */
2334static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2335{
2336 /*
2337 * Allow only those users with admin rights
2338 */
2339 if (!capable(CAP_SYS_ADMIN))
2340 return -EACCES;
2341
2342 return 0;
2343}
2344
2345/**
2346 * megasas_mgmt_release - char node "release" entry point
2347 */
2348static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2349{
2350 filep->private_data = NULL;
2351 fasync_helper(-1, filep, 0, &megasas_async_queue);
2352
2353 return 0;
2354}
2355
2356/**
2357 * megasas_mgmt_fasync - Async notifier registration from applications
2358 *
2359 * This function adds the calling process to a driver global queue. When an
2360 * event occurs, SIGIO will be sent to all processes in this queue.
2361 */
2362static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2363{
2364 int rc;
2365
0b950672 2366 mutex_lock(&megasas_async_queue_mutex);
c4a3e0a5
BS
2367
2368 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2369
0b950672 2370 mutex_unlock(&megasas_async_queue_mutex);
c4a3e0a5
BS
2371
2372 if (rc >= 0) {
2373 /* For sanity check when we get ioctl */
2374 filep->private_data = filep;
2375 return 0;
2376 }
2377
2378 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2379
2380 return rc;
2381}
2382
2383/**
2384 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2385 * @instance: Adapter soft state
2386 * @argp: User's ioctl packet
2387 */
2388static int
2389megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2390 struct megasas_iocpacket __user * user_ioc,
2391 struct megasas_iocpacket *ioc)
2392{
2393 struct megasas_sge32 *kern_sge32;
2394 struct megasas_cmd *cmd;
2395 void *kbuff_arr[MAX_IOCTL_SGE];
2396 dma_addr_t buf_handle = 0;
2397 int error = 0, i;
2398 void *sense = NULL;
2399 dma_addr_t sense_handle;
2400 u32 *sense_ptr;
2401
2402 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2403
2404 if (ioc->sge_count > MAX_IOCTL_SGE) {
2405 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2406 ioc->sge_count, MAX_IOCTL_SGE);
2407 return -EINVAL;
2408 }
2409
2410 cmd = megasas_get_cmd(instance);
2411 if (!cmd) {
2412 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2413 return -ENOMEM;
2414 }
2415
2416 /*
2417 * User's IOCTL packet has 2 frames (maximum). Copy those two
2418 * frames into our cmd's frames. cmd->frame's context will get
2419 * overwritten when we copy from user's frames. So set that value
2420 * alone separately
2421 */
2422 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2423 cmd->frame->hdr.context = cmd->index;
2424
2425 /*
2426 * The management interface between applications and the fw uses
2427 * MFI frames. E.g, RAID configuration changes, LD property changes
2428 * etc are accomplishes through different kinds of MFI frames. The
2429 * driver needs to care only about substituting user buffers with
2430 * kernel buffers in SGLs. The location of SGL is embedded in the
2431 * struct iocpacket itself.
2432 */
2433 kern_sge32 = (struct megasas_sge32 *)
2434 ((unsigned long)cmd->frame + ioc->sgl_off);
2435
2436 /*
2437 * For each user buffer, create a mirror buffer and copy in
2438 */
2439 for (i = 0; i < ioc->sge_count; i++) {
2440 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2441 ioc->sgl[i].iov_len,
2442 &buf_handle);
2443 if (!kbuff_arr[i]) {
2444 printk(KERN_DEBUG "megasas: Failed to alloc "
2445 "kernel SGL buffer for IOCTL \n");
2446 error = -ENOMEM;
2447 goto out;
2448 }
2449
2450 /*
2451 * We don't change the dma_coherent_mask, so
2452 * pci_alloc_consistent only returns 32bit addresses
2453 */
2454 kern_sge32[i].phys_addr = (u32) buf_handle;
2455 kern_sge32[i].length = ioc->sgl[i].iov_len;
2456
2457 /*
2458 * We created a kernel buffer corresponding to the
2459 * user buffer. Now copy in from the user buffer
2460 */
2461 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2462 (u32) (ioc->sgl[i].iov_len))) {
2463 error = -EFAULT;
2464 goto out;
2465 }
2466 }
2467
2468 if (ioc->sense_len) {
2469 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2470 &sense_handle);
2471 if (!sense) {
2472 error = -ENOMEM;
2473 goto out;
2474 }
2475
2476 sense_ptr =
2477 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2478 *sense_ptr = sense_handle;
2479 }
2480
2481 /*
2482 * Set the sync_cmd flag so that the ISR knows not to complete this
2483 * cmd to the SCSI mid-layer
2484 */
2485 cmd->sync_cmd = 1;
2486 megasas_issue_blocked_cmd(instance, cmd);
2487 cmd->sync_cmd = 0;
2488
2489 /*
2490 * copy out the kernel buffers to user buffers
2491 */
2492 for (i = 0; i < ioc->sge_count; i++) {
2493 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2494 ioc->sgl[i].iov_len)) {
2495 error = -EFAULT;
2496 goto out;
2497 }
2498 }
2499
2500 /*
2501 * copy out the sense
2502 */
2503 if (ioc->sense_len) {
2504 /*
2505 * sense_ptr points to the location that has the user
2506 * sense buffer address
2507 */
2508 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2509 ioc->sense_off);
2510
2511 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2512 sense, ioc->sense_len)) {
2513 error = -EFAULT;
2514 goto out;
2515 }
2516 }
2517
2518 /*
2519 * copy the status codes returned by the fw
2520 */
2521 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2522 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2523 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2524 error = -EFAULT;
2525 }
2526
2527 out:
2528 if (sense) {
2529 pci_free_consistent(instance->pdev, ioc->sense_len,
2530 sense, sense_handle);
2531 }
2532
2533 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2534 pci_free_consistent(instance->pdev,
2535 kern_sge32[i].length,
2536 kbuff_arr[i], kern_sge32[i].phys_addr);
2537 }
2538
2539 megasas_return_cmd(instance, cmd);
2540 return error;
2541}
2542
2543static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2544{
2545 int i;
2546
2547 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2548
2549 if ((megasas_mgmt_info.instance[i]) &&
2550 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2551 return megasas_mgmt_info.instance[i];
2552 }
2553
2554 return NULL;
2555}
2556
2557static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2558{
2559 struct megasas_iocpacket __user *user_ioc =
2560 (struct megasas_iocpacket __user *)arg;
2561 struct megasas_iocpacket *ioc;
2562 struct megasas_instance *instance;
2563 int error;
2564
2565 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2566 if (!ioc)
2567 return -ENOMEM;
2568
2569 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2570 error = -EFAULT;
2571 goto out_kfree_ioc;
2572 }
2573
2574 instance = megasas_lookup_instance(ioc->host_no);
2575 if (!instance) {
2576 error = -ENODEV;
2577 goto out_kfree_ioc;
2578 }
2579
2580 /*
2581 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2582 */
2583 if (down_interruptible(&instance->ioctl_sem)) {
2584 error = -ERESTARTSYS;
2585 goto out_kfree_ioc;
2586 }
2587 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2588 up(&instance->ioctl_sem);
2589
2590 out_kfree_ioc:
2591 kfree(ioc);
2592 return error;
2593}
2594
2595static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2596{
2597 struct megasas_instance *instance;
2598 struct megasas_aen aen;
2599 int error;
2600
2601 if (file->private_data != file) {
2602 printk(KERN_DEBUG "megasas: fasync_helper was not "
2603 "called first\n");
2604 return -EINVAL;
2605 }
2606
2607 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2608 return -EFAULT;
2609
2610 instance = megasas_lookup_instance(aen.host_no);
2611
2612 if (!instance)
2613 return -ENODEV;
2614
2615 down(&instance->aen_mutex);
2616 error = megasas_register_aen(instance, aen.seq_num,
2617 aen.class_locale_word);
2618 up(&instance->aen_mutex);
2619 return error;
2620}
2621
2622/**
2623 * megasas_mgmt_ioctl - char node ioctl entry point
2624 */
2625static long
2626megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2627{
2628 switch (cmd) {
2629 case MEGASAS_IOC_FIRMWARE:
2630 return megasas_mgmt_ioctl_fw(file, arg);
2631
2632 case MEGASAS_IOC_GET_AEN:
2633 return megasas_mgmt_ioctl_aen(file, arg);
2634 }
2635
2636 return -ENOTTY;
2637}
2638
2639#ifdef CONFIG_COMPAT
2640static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2641{
2642 struct compat_megasas_iocpacket __user *cioc =
2643 (struct compat_megasas_iocpacket __user *)arg;
2644 struct megasas_iocpacket __user *ioc =
2645 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2646 int i;
2647 int error = 0;
2648
2649 clear_user(ioc, sizeof(*ioc));
2650
2651 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2652 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2653 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2654 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2655 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2656 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2657 return -EFAULT;
2658
2659 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2660 compat_uptr_t ptr;
2661
2662 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2663 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2664 copy_in_user(&ioc->sgl[i].iov_len,
2665 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2666 return -EFAULT;
2667 }
2668
2669 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2670
2671 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2672 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2673 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2674 return -EFAULT;
2675 }
2676 return error;
2677}
2678
2679static long
2680megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2681 unsigned long arg)
2682{
2683 switch (cmd) {
2684 case MEGASAS_IOC_FIRMWARE:{
2685 return megasas_mgmt_compat_ioctl_fw(file, arg);
2686 }
2687 case MEGASAS_IOC_GET_AEN:
2688 return megasas_mgmt_ioctl_aen(file, arg);
2689 }
2690
2691 return -ENOTTY;
2692}
2693#endif
2694
2695/*
2696 * File operations structure for management interface
2697 */
2698static struct file_operations megasas_mgmt_fops = {
2699 .owner = THIS_MODULE,
2700 .open = megasas_mgmt_open,
2701 .release = megasas_mgmt_release,
2702 .fasync = megasas_mgmt_fasync,
2703 .unlocked_ioctl = megasas_mgmt_ioctl,
2704#ifdef CONFIG_COMPAT
2705 .compat_ioctl = megasas_mgmt_compat_ioctl,
2706#endif
2707};
2708
2709/*
2710 * PCI hotplug support registration structure
2711 */
2712static struct pci_driver megasas_pci_driver = {
2713
2714 .name = "megaraid_sas",
2715 .id_table = megasas_pci_table,
2716 .probe = megasas_probe_one,
2717 .remove = __devexit_p(megasas_detach_one),
2718 .shutdown = megasas_shutdown,
2719};
2720
2721/*
2722 * Sysfs driver attributes
2723 */
2724static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2725{
2726 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2727 MEGASAS_VERSION);
2728}
2729
2730static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2731
2732static ssize_t
2733megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2734{
2735 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2736 MEGASAS_RELDATE);
2737}
2738
2739static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2740 NULL);
2741
2742/**
2743 * megasas_init - Driver load entry point
2744 */
2745static int __init megasas_init(void)
2746{
2747 int rval;
2748
2749 /*
2750 * Announce driver version and other information
2751 */
2752 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2753 MEGASAS_EXT_VERSION);
2754
2755 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2756
2757 /*
2758 * Register character device node
2759 */
2760 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2761
2762 if (rval < 0) {
2763 printk(KERN_DEBUG "megasas: failed to open device node\n");
2764 return rval;
2765 }
2766
2767 megasas_mgmt_majorno = rval;
2768
2769 /*
2770 * Register ourselves as PCI hotplug module
2771 */
2772 rval = pci_module_init(&megasas_pci_driver);
2773
2774 if (rval) {
2775 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2776 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2777 }
2778
2779 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2780 driver_create_file(&megasas_pci_driver.driver,
2781 &driver_attr_release_date);
2782
2783 return rval;
2784}
2785
2786/**
2787 * megasas_exit - Driver unload entry point
2788 */
2789static void __exit megasas_exit(void)
2790{
2791 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2792 driver_remove_file(&megasas_pci_driver.driver,
2793 &driver_attr_release_date);
2794
2795 pci_unregister_driver(&megasas_pci_driver);
2796 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2797}
2798
2799module_init(megasas_init);
2800module_exit(megasas_exit);