]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/megaraid/megaraid_sas.c
[SCSI] megaraid_sas: call cmd completion from reset
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / megaraid / megaraid_sas.c
CommitLineData
c4a3e0a5
BS
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
05e9ebbe 13 * Version : v00.00.03.10-rc5
c4a3e0a5
BS
14 *
15 * Authors:
cc5968c8
SP
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
c4a3e0a5
BS
20 *
21 * List of supported controllers
22 *
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
25 */
26
27#include <linux/kernel.h>
28#include <linux/types.h>
29#include <linux/pci.h>
30#include <linux/list.h>
c4a3e0a5
BS
31#include <linux/moduleparam.h>
32#include <linux/module.h>
33#include <linux/spinlock.h>
e5a69e27 34#include <linux/mutex.h>
c4a3e0a5
BS
35#include <linux/interrupt.h>
36#include <linux/delay.h>
37#include <linux/uio.h>
38#include <asm/uaccess.h>
43399236 39#include <linux/fs.h>
c4a3e0a5 40#include <linux/compat.h>
cf62a0a5 41#include <linux/blkdev.h>
0b950672 42#include <linux/mutex.h>
c4a3e0a5
BS
43
44#include <scsi/scsi.h>
45#include <scsi/scsi_cmnd.h>
46#include <scsi/scsi_device.h>
47#include <scsi/scsi_host.h>
48#include "megaraid_sas.h"
49
50MODULE_LICENSE("GPL");
51MODULE_VERSION(MEGASAS_VERSION);
3d6d174a 52MODULE_AUTHOR("megaraidlinux@lsi.com");
c4a3e0a5
BS
53MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
54
55/*
56 * PCI ID table for all supported controllers
57 */
58static struct pci_device_id megasas_pci_table[] = {
59
f3d7271c
HK
60 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
61 /* xscale IOP */
62 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
63 /* ppc IOP */
64 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
65 /* xscale IOP, vega */
66 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
67 /* xscale IOP */
68 {}
c4a3e0a5
BS
69};
70
71MODULE_DEVICE_TABLE(pci, megasas_pci_table);
72
73static int megasas_mgmt_majorno;
74static struct megasas_mgmt_info megasas_mgmt_info;
75static struct fasync_struct *megasas_async_queue;
0b950672 76static DEFINE_MUTEX(megasas_async_queue_mutex);
c4a3e0a5 77
658dcedb
SP
78static u32 megasas_dbg_lvl;
79
7343eb65 80static void
81megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
82 u8 alt_status);
83
c4a3e0a5
BS
84/**
85 * megasas_get_cmd - Get a command from the free pool
86 * @instance: Adapter soft state
87 *
88 * Returns a free command from the pool
89 */
858119e1 90static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
c4a3e0a5
BS
91 *instance)
92{
93 unsigned long flags;
94 struct megasas_cmd *cmd = NULL;
95
96 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
97
98 if (!list_empty(&instance->cmd_pool)) {
99 cmd = list_entry((&instance->cmd_pool)->next,
100 struct megasas_cmd, list);
101 list_del_init(&cmd->list);
102 } else {
103 printk(KERN_ERR "megasas: Command pool empty!\n");
104 }
105
106 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
107 return cmd;
108}
109
110/**
111 * megasas_return_cmd - Return a cmd to free command pool
112 * @instance: Adapter soft state
113 * @cmd: Command packet to be returned to free command pool
114 */
115static inline void
116megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
117{
118 unsigned long flags;
119
120 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
121
122 cmd->scmd = NULL;
123 list_add_tail(&cmd->list, &instance->cmd_pool);
124
125 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
126}
127
1341c939
SP
128
129/**
130* The following functions are defined for xscale
131* (deviceid : 1064R, PERC5) controllers
132*/
133
c4a3e0a5 134/**
1341c939 135 * megasas_enable_intr_xscale - Enables interrupts
c4a3e0a5
BS
136 * @regs: MFI register set
137 */
138static inline void
1341c939 139megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
c4a3e0a5
BS
140{
141 writel(1, &(regs)->outbound_intr_mask);
142
143 /* Dummy readl to force pci flush */
144 readl(&regs->outbound_intr_mask);
145}
146
b274cab7
SP
147/**
148 * megasas_disable_intr_xscale -Disables interrupt
149 * @regs: MFI register set
150 */
151static inline void
152megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
153{
154 u32 mask = 0x1f;
155 writel(mask, &regs->outbound_intr_mask);
156 /* Dummy readl to force pci flush */
157 readl(&regs->outbound_intr_mask);
158}
159
1341c939
SP
160/**
161 * megasas_read_fw_status_reg_xscale - returns the current FW status value
162 * @regs: MFI register set
163 */
164static u32
165megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
166{
167 return readl(&(regs)->outbound_msg_0);
168}
169/**
170 * megasas_clear_interrupt_xscale - Check & clear interrupt
171 * @regs: MFI register set
172 */
173static int
174megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
175{
176 u32 status;
177 /*
178 * Check if it is our interrupt
179 */
180 status = readl(&regs->outbound_intr_status);
181
182 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
183 return 1;
184 }
185
186 /*
187 * Clear the interrupt by writing back the same value
188 */
189 writel(status, &regs->outbound_intr_status);
190
191 return 0;
192}
193
194/**
195 * megasas_fire_cmd_xscale - Sends command to the FW
196 * @frame_phys_addr : Physical address of cmd
197 * @frame_count : Number of frames for the command
198 * @regs : MFI register set
199 */
200static inline void
201megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
202{
203 writel((frame_phys_addr >> 3)|(frame_count),
204 &(regs)->inbound_queue_port);
205}
206
207static struct megasas_instance_template megasas_instance_template_xscale = {
208
209 .fire_cmd = megasas_fire_cmd_xscale,
210 .enable_intr = megasas_enable_intr_xscale,
b274cab7 211 .disable_intr = megasas_disable_intr_xscale,
1341c939
SP
212 .clear_intr = megasas_clear_intr_xscale,
213 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
214};
215
216/**
217* This is the end of set of functions & definitions specific
218* to xscale (deviceid : 1064R, PERC5) controllers
219*/
220
f9876f0b
SP
221/**
222* The following functions are defined for ppc (deviceid : 0x60)
223* controllers
224*/
225
226/**
227 * megasas_enable_intr_ppc - Enables interrupts
228 * @regs: MFI register set
229 */
230static inline void
231megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
232{
233 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
234
235 writel(~0x80000004, &(regs)->outbound_intr_mask);
236
237 /* Dummy readl to force pci flush */
238 readl(&regs->outbound_intr_mask);
239}
240
b274cab7
SP
241/**
242 * megasas_disable_intr_ppc - Disable interrupt
243 * @regs: MFI register set
244 */
245static inline void
246megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
247{
248 u32 mask = 0xFFFFFFFF;
249 writel(mask, &regs->outbound_intr_mask);
250 /* Dummy readl to force pci flush */
251 readl(&regs->outbound_intr_mask);
252}
253
f9876f0b
SP
254/**
255 * megasas_read_fw_status_reg_ppc - returns the current FW status value
256 * @regs: MFI register set
257 */
258static u32
259megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
260{
261 return readl(&(regs)->outbound_scratch_pad);
262}
263
264/**
265 * megasas_clear_interrupt_ppc - Check & clear interrupt
266 * @regs: MFI register set
267 */
268static int
269megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
270{
271 u32 status;
272 /*
273 * Check if it is our interrupt
274 */
275 status = readl(&regs->outbound_intr_status);
276
277 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
278 return 1;
279 }
280
281 /*
282 * Clear the interrupt by writing back the same value
283 */
284 writel(status, &regs->outbound_doorbell_clear);
285
286 return 0;
287}
288/**
289 * megasas_fire_cmd_ppc - Sends command to the FW
290 * @frame_phys_addr : Physical address of cmd
291 * @frame_count : Number of frames for the command
292 * @regs : MFI register set
293 */
294static inline void
295megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
296{
297 writel((frame_phys_addr | (frame_count<<1))|1,
298 &(regs)->inbound_queue_port);
299}
300
301static struct megasas_instance_template megasas_instance_template_ppc = {
302
303 .fire_cmd = megasas_fire_cmd_ppc,
304 .enable_intr = megasas_enable_intr_ppc,
b274cab7 305 .disable_intr = megasas_disable_intr_ppc,
f9876f0b
SP
306 .clear_intr = megasas_clear_intr_ppc,
307 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
308};
309
310/**
311* This is the end of set of functions & definitions
312* specific to ppc (deviceid : 0x60) controllers
313*/
314
c4a3e0a5
BS
315/**
316 * megasas_issue_polled - Issues a polling command
317 * @instance: Adapter soft state
318 * @cmd: Command packet to be issued
319 *
320 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
321 */
322static int
323megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
324{
325 int i;
326 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
327
328 struct megasas_header *frame_hdr = &cmd->frame->hdr;
329
330 frame_hdr->cmd_status = 0xFF;
331 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
332
333 /*
334 * Issue the frame using inbound queue port
335 */
1341c939 336 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
337
338 /*
339 * Wait for cmd_status to change
340 */
341 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
342 rmb();
343 msleep(1);
344 }
345
346 if (frame_hdr->cmd_status == 0xff)
347 return -ETIME;
348
349 return 0;
350}
351
352/**
353 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
354 * @instance: Adapter soft state
355 * @cmd: Command to be issued
356 *
357 * This function waits on an event for the command to be returned from ISR.
2a3681e5 358 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
c4a3e0a5
BS
359 * Used to issue ioctl commands.
360 */
361static int
362megasas_issue_blocked_cmd(struct megasas_instance *instance,
363 struct megasas_cmd *cmd)
364{
365 cmd->cmd_status = ENODATA;
366
1341c939 367 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5 368
2a3681e5
SP
369 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
370 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
c4a3e0a5
BS
371
372 return 0;
373}
374
375/**
376 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
377 * @instance: Adapter soft state
378 * @cmd_to_abort: Previously issued cmd to be aborted
379 *
380 * MFI firmware can abort previously issued AEN comamnd (automatic event
381 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
2a3681e5
SP
382 * cmd and waits for return status.
383 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
c4a3e0a5
BS
384 */
385static int
386megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
387 struct megasas_cmd *cmd_to_abort)
388{
389 struct megasas_cmd *cmd;
390 struct megasas_abort_frame *abort_fr;
391
392 cmd = megasas_get_cmd(instance);
393
394 if (!cmd)
395 return -1;
396
397 abort_fr = &cmd->frame->abort;
398
399 /*
400 * Prepare and issue the abort frame
401 */
402 abort_fr->cmd = MFI_CMD_ABORT;
403 abort_fr->cmd_status = 0xFF;
404 abort_fr->flags = 0;
405 abort_fr->abort_context = cmd_to_abort->index;
406 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
407 abort_fr->abort_mfi_phys_addr_hi = 0;
408
409 cmd->sync_cmd = 1;
410 cmd->cmd_status = 0xFF;
411
1341c939 412 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
413
414 /*
415 * Wait for this cmd to complete
416 */
2a3681e5
SP
417 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
418 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
c4a3e0a5
BS
419
420 megasas_return_cmd(instance, cmd);
421 return 0;
422}
423
424/**
425 * megasas_make_sgl32 - Prepares 32-bit SGL
426 * @instance: Adapter soft state
427 * @scp: SCSI command from the mid-layer
428 * @mfi_sgl: SGL to be filled in
429 *
430 * If successful, this function returns the number of SG elements. Otherwise,
431 * it returnes -1.
432 */
858119e1 433static int
c4a3e0a5
BS
434megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
435 union megasas_sgl *mfi_sgl)
436{
437 int i;
438 int sge_count;
439 struct scatterlist *os_sgl;
440
155d98f0
FT
441 sge_count = scsi_dma_map(scp);
442 BUG_ON(sge_count < 0);
c4a3e0a5 443
155d98f0
FT
444 if (sge_count) {
445 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
446 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
447 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
448 }
c4a3e0a5 449 }
c4a3e0a5
BS
450 return sge_count;
451}
452
453/**
454 * megasas_make_sgl64 - Prepares 64-bit SGL
455 * @instance: Adapter soft state
456 * @scp: SCSI command from the mid-layer
457 * @mfi_sgl: SGL to be filled in
458 *
459 * If successful, this function returns the number of SG elements. Otherwise,
460 * it returnes -1.
461 */
858119e1 462static int
c4a3e0a5
BS
463megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
464 union megasas_sgl *mfi_sgl)
465{
466 int i;
467 int sge_count;
468 struct scatterlist *os_sgl;
469
155d98f0
FT
470 sge_count = scsi_dma_map(scp);
471 BUG_ON(sge_count < 0);
c4a3e0a5 472
155d98f0
FT
473 if (sge_count) {
474 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
475 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
476 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
477 }
c4a3e0a5 478 }
c4a3e0a5
BS
479 return sge_count;
480}
481
b1df99d9
SP
482 /**
483 * megasas_get_frame_count - Computes the number of frames
484 * @sge_count : number of sg elements
485 *
486 * Returns the number of frames required for numnber of sge's (sge_count)
487 */
488
b448de47 489static u32 megasas_get_frame_count(u8 sge_count)
b1df99d9
SP
490{
491 int num_cnt;
492 int sge_bytes;
493 u32 sge_sz;
494 u32 frame_count=0;
495
496 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
497 sizeof(struct megasas_sge32);
498
499 /*
500 * Main frame can contain 2 SGEs for 64-bit SGLs and
501 * 3 SGEs for 32-bit SGLs
502 */
503 if (IS_DMA64)
504 num_cnt = sge_count - 2;
505 else
506 num_cnt = sge_count - 3;
507
508 if(num_cnt>0){
509 sge_bytes = sge_sz * num_cnt;
510
511 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
512 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
513 }
514 /* Main frame */
515 frame_count +=1;
516
517 if (frame_count > 7)
518 frame_count = 8;
519 return frame_count;
520}
521
c4a3e0a5
BS
522/**
523 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
524 * @instance: Adapter soft state
525 * @scp: SCSI command
526 * @cmd: Command to be prepared in
527 *
528 * This function prepares CDB commands. These are typcially pass-through
529 * commands to the devices.
530 */
858119e1 531static int
c4a3e0a5
BS
532megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
533 struct megasas_cmd *cmd)
534{
c4a3e0a5
BS
535 u32 is_logical;
536 u32 device_id;
537 u16 flags = 0;
538 struct megasas_pthru_frame *pthru;
539
540 is_logical = MEGASAS_IS_LOGICAL(scp);
541 device_id = MEGASAS_DEV_INDEX(instance, scp);
542 pthru = (struct megasas_pthru_frame *)cmd->frame;
543
544 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
545 flags = MFI_FRAME_DIR_WRITE;
546 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
547 flags = MFI_FRAME_DIR_READ;
548 else if (scp->sc_data_direction == PCI_DMA_NONE)
549 flags = MFI_FRAME_DIR_NONE;
550
551 /*
552 * Prepare the DCDB frame
553 */
554 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
555 pthru->cmd_status = 0x0;
556 pthru->scsi_status = 0x0;
557 pthru->target_id = device_id;
558 pthru->lun = scp->device->lun;
559 pthru->cdb_len = scp->cmd_len;
560 pthru->timeout = 0;
561 pthru->flags = flags;
155d98f0 562 pthru->data_xfer_len = scsi_bufflen(scp);
c4a3e0a5
BS
563
564 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
565
566 /*
567 * Construct SGL
568 */
c4a3e0a5
BS
569 if (IS_DMA64) {
570 pthru->flags |= MFI_FRAME_SGL64;
571 pthru->sge_count = megasas_make_sgl64(instance, scp,
572 &pthru->sgl);
573 } else
574 pthru->sge_count = megasas_make_sgl32(instance, scp,
575 &pthru->sgl);
576
577 /*
578 * Sense info specific
579 */
580 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
581 pthru->sense_buf_phys_addr_hi = 0;
582 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
583
c4a3e0a5
BS
584 /*
585 * Compute the total number of frames this command consumes. FW uses
586 * this number to pull sufficient number of frames from host memory.
587 */
b1df99d9 588 cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
c4a3e0a5
BS
589
590 return cmd->frame_count;
591}
592
593/**
594 * megasas_build_ldio - Prepares IOs to logical devices
595 * @instance: Adapter soft state
596 * @scp: SCSI command
597 * @cmd: Command to to be prepared
598 *
599 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
600 */
858119e1 601static int
c4a3e0a5
BS
602megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
603 struct megasas_cmd *cmd)
604{
c4a3e0a5
BS
605 u32 device_id;
606 u8 sc = scp->cmnd[0];
607 u16 flags = 0;
608 struct megasas_io_frame *ldio;
609
610 device_id = MEGASAS_DEV_INDEX(instance, scp);
611 ldio = (struct megasas_io_frame *)cmd->frame;
612
613 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
614 flags = MFI_FRAME_DIR_WRITE;
615 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
616 flags = MFI_FRAME_DIR_READ;
617
618 /*
b1df99d9 619 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
c4a3e0a5
BS
620 */
621 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
622 ldio->cmd_status = 0x0;
623 ldio->scsi_status = 0x0;
624 ldio->target_id = device_id;
625 ldio->timeout = 0;
626 ldio->reserved_0 = 0;
627 ldio->pad_0 = 0;
628 ldio->flags = flags;
629 ldio->start_lba_hi = 0;
630 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
631
632 /*
633 * 6-byte READ(0x08) or WRITE(0x0A) cdb
634 */
635 if (scp->cmd_len == 6) {
636 ldio->lba_count = (u32) scp->cmnd[4];
637 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
638 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
639
640 ldio->start_lba_lo &= 0x1FFFFF;
641 }
642
643 /*
644 * 10-byte READ(0x28) or WRITE(0x2A) cdb
645 */
646 else if (scp->cmd_len == 10) {
647 ldio->lba_count = (u32) scp->cmnd[8] |
648 ((u32) scp->cmnd[7] << 8);
649 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
650 ((u32) scp->cmnd[3] << 16) |
651 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
652 }
653
654 /*
655 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
656 */
657 else if (scp->cmd_len == 12) {
658 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
659 ((u32) scp->cmnd[7] << 16) |
660 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
661
662 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
663 ((u32) scp->cmnd[3] << 16) |
664 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
665 }
666
667 /*
668 * 16-byte READ(0x88) or WRITE(0x8A) cdb
669 */
670 else if (scp->cmd_len == 16) {
671 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
672 ((u32) scp->cmnd[11] << 16) |
673 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
674
675 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
676 ((u32) scp->cmnd[7] << 16) |
677 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
678
679 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
680 ((u32) scp->cmnd[3] << 16) |
681 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
682
683 }
684
685 /*
686 * Construct SGL
687 */
c4a3e0a5
BS
688 if (IS_DMA64) {
689 ldio->flags |= MFI_FRAME_SGL64;
690 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
691 } else
692 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
693
694 /*
695 * Sense info specific
696 */
697 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
698 ldio->sense_buf_phys_addr_hi = 0;
699 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
700
b1df99d9
SP
701 /*
702 * Compute the total number of frames this command consumes. FW uses
703 * this number to pull sufficient number of frames from host memory.
704 */
705 cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
c4a3e0a5
BS
706
707 return cmd->frame_count;
708}
709
710/**
cb59aa6a
SP
711 * megasas_is_ldio - Checks if the cmd is for logical drive
712 * @scmd: SCSI command
713 *
714 * Called by megasas_queue_command to find out if the command to be queued
715 * is a logical drive command
c4a3e0a5 716 */
cb59aa6a 717static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
c4a3e0a5 718{
cb59aa6a
SP
719 if (!MEGASAS_IS_LOGICAL(cmd))
720 return 0;
721 switch (cmd->cmnd[0]) {
722 case READ_10:
723 case WRITE_10:
724 case READ_12:
725 case WRITE_12:
726 case READ_6:
727 case WRITE_6:
728 case READ_16:
729 case WRITE_16:
730 return 1;
731 default:
732 return 0;
c4a3e0a5 733 }
c4a3e0a5
BS
734}
735
658dcedb
SP
736 /**
737 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
738 * in FW
739 * @instance: Adapter soft state
740 */
741static inline void
742megasas_dump_pending_frames(struct megasas_instance *instance)
743{
744 struct megasas_cmd *cmd;
745 int i,n;
746 union megasas_sgl *mfi_sgl;
747 struct megasas_io_frame *ldio;
748 struct megasas_pthru_frame *pthru;
749 u32 sgcount;
750 u32 max_cmd = instance->max_fw_cmds;
751
752 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
753 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
754 if (IS_DMA64)
755 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
756 else
757 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
758
759 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
760 for (i = 0; i < max_cmd; i++) {
761 cmd = instance->cmd_list[i];
762 if(!cmd->scmd)
763 continue;
764 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
765 if (megasas_is_ldio(cmd->scmd)){
766 ldio = (struct megasas_io_frame *)cmd->frame;
767 mfi_sgl = &ldio->sgl;
768 sgcount = ldio->sge_count;
769 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
770 }
771 else {
772 pthru = (struct megasas_pthru_frame *) cmd->frame;
773 mfi_sgl = &pthru->sgl;
774 sgcount = pthru->sge_count;
775 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
776 }
777 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
778 for (n = 0; n < sgcount; n++){
779 if (IS_DMA64)
780 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
781 else
782 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
783 }
784 }
785 printk(KERN_ERR "\n");
786 } /*for max_cmd*/
787 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
788 for (i = 0; i < max_cmd; i++) {
789
790 cmd = instance->cmd_list[i];
791
792 if(cmd->sync_cmd == 1){
793 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
794 }
795 }
796 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
797}
798
c4a3e0a5
BS
799/**
800 * megasas_queue_command - Queue entry point
801 * @scmd: SCSI command to be queued
802 * @done: Callback entry point
803 */
804static int
805megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
806{
807 u32 frame_count;
c4a3e0a5
BS
808 struct megasas_cmd *cmd;
809 struct megasas_instance *instance;
810
811 instance = (struct megasas_instance *)
812 scmd->device->host->hostdata;
af37acfb
SP
813
814 /* Don't process if we have already declared adapter dead */
815 if (instance->hw_crit_error)
816 return SCSI_MLQUEUE_HOST_BUSY;
817
c4a3e0a5
BS
818 scmd->scsi_done = done;
819 scmd->result = 0;
820
cb59aa6a
SP
821 if (MEGASAS_IS_LOGICAL(scmd) &&
822 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
823 scmd->result = DID_BAD_TARGET << 16;
824 goto out_done;
c4a3e0a5
BS
825 }
826
02b01e01
SP
827 switch (scmd->cmnd[0]) {
828 case SYNCHRONIZE_CACHE:
829 /*
830 * FW takes care of flush cache on its own
831 * No need to send it down
832 */
833 scmd->result = DID_OK << 16;
834 goto out_done;
835 default:
836 break;
837 }
838
cb59aa6a
SP
839 cmd = megasas_get_cmd(instance);
840 if (!cmd)
841 return SCSI_MLQUEUE_HOST_BUSY;
842
843 /*
844 * Logical drive command
845 */
846 if (megasas_is_ldio(scmd))
847 frame_count = megasas_build_ldio(instance, scmd, cmd);
848 else
849 frame_count = megasas_build_dcdb(instance, scmd, cmd);
850
851 if (!frame_count)
852 goto out_return_cmd;
853
c4a3e0a5 854 cmd->scmd = scmd;
05e9ebbe 855 scmd->SCp.ptr = (char *)cmd;
c4a3e0a5
BS
856
857 /*
858 * Issue the command to the FW
859 */
e4a082c7 860 atomic_inc(&instance->fw_outstanding);
c4a3e0a5 861
1341c939 862 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
c4a3e0a5
BS
863
864 return 0;
cb59aa6a
SP
865
866 out_return_cmd:
867 megasas_return_cmd(instance, cmd);
868 out_done:
869 done(scmd);
870 return 0;
c4a3e0a5
BS
871}
872
147aab6a
CH
873static int megasas_slave_configure(struct scsi_device *sdev)
874{
875 /*
876 * Don't export physical disk devices to the disk driver.
877 *
878 * FIXME: Currently we don't export them to the midlayer at all.
879 * That will be fixed once LSI engineers have audited the
880 * firmware for possible issues.
881 */
882 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
883 return -ENXIO;
e5b3a65f
CH
884
885 /*
886 * The RAID firmware may require extended timeouts.
887 */
888 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
05e9ebbe 889 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
147aab6a
CH
890 return 0;
891}
892
7343eb65 893/**
894 * megasas_complete_cmd_dpc - Returns FW's controller structure
895 * @instance_addr: Address of adapter soft state
896 *
897 * Tasklet to complete cmds
898 */
899static void megasas_complete_cmd_dpc(unsigned long instance_addr)
900{
901 u32 producer;
902 u32 consumer;
903 u32 context;
904 struct megasas_cmd *cmd;
905 struct megasas_instance *instance =
906 (struct megasas_instance *)instance_addr;
907 unsigned long flags;
908
909 /* If we have already declared adapter dead, donot complete cmds */
910 if (instance->hw_crit_error)
911 return;
912
913 spin_lock_irqsave(&instance->completion_lock, flags);
914
915 producer = *instance->producer;
916 consumer = *instance->consumer;
917
918 while (consumer != producer) {
919 context = instance->reply_queue[consumer];
920
921 cmd = instance->cmd_list[context];
922
923 megasas_complete_cmd(instance, cmd, DID_OK);
924
925 consumer++;
926 if (consumer == (instance->max_fw_cmds + 1)) {
927 consumer = 0;
928 }
929 }
930
931 *instance->consumer = producer;
932
933 spin_unlock_irqrestore(&instance->completion_lock, flags);
934
935 /*
936 * Check if we can restore can_queue
937 */
938 if (instance->flag & MEGASAS_FW_BUSY
939 && time_after(jiffies, instance->last_time + 5 * HZ)
940 && atomic_read(&instance->fw_outstanding) < 17) {
941
942 spin_lock_irqsave(instance->host->host_lock, flags);
943 instance->flag &= ~MEGASAS_FW_BUSY;
944 instance->host->can_queue =
945 instance->max_fw_cmds - MEGASAS_INT_CMDS;
946
947 spin_unlock_irqrestore(instance->host->host_lock, flags);
948 }
949}
950
c4a3e0a5
BS
951/**
952 * megasas_wait_for_outstanding - Wait for all outstanding cmds
953 * @instance: Adapter soft state
954 *
955 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
956 * complete all its outstanding commands. Returns error if one or more IOs
957 * are pending after this time period. It also marks the controller dead.
958 */
959static int megasas_wait_for_outstanding(struct megasas_instance *instance)
960{
961 int i;
962 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
963
964 for (i = 0; i < wait_time; i++) {
965
e4a082c7
SP
966 int outstanding = atomic_read(&instance->fw_outstanding);
967
968 if (!outstanding)
c4a3e0a5
BS
969 break;
970
971 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
972 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
e4a082c7 973 "commands to complete\n",i,outstanding);
7343eb65 974 /*
975 * Call cmd completion routine. Cmd to be
976 * be completed directly without depending on isr.
977 */
978 megasas_complete_cmd_dpc((unsigned long)instance);
c4a3e0a5
BS
979 }
980
981 msleep(1000);
982 }
983
e4a082c7 984 if (atomic_read(&instance->fw_outstanding)) {
e3bbff9f
SP
985 /*
986 * Send signal to FW to stop processing any pending cmds.
987 * The controller will be taken offline by the OS now.
988 */
989 writel(MFI_STOP_ADP,
990 &instance->reg_set->inbound_doorbell);
658dcedb 991 megasas_dump_pending_frames(instance);
c4a3e0a5
BS
992 instance->hw_crit_error = 1;
993 return FAILED;
994 }
995
996 return SUCCESS;
997}
998
999/**
1000 * megasas_generic_reset - Generic reset routine
1001 * @scmd: Mid-layer SCSI command
1002 *
1003 * This routine implements a generic reset handler for device, bus and host
1004 * reset requests. Device, bus and host specific reset handlers can use this
1005 * function after they do their specific tasks.
1006 */
1007static int megasas_generic_reset(struct scsi_cmnd *scmd)
1008{
1009 int ret_val;
1010 struct megasas_instance *instance;
1011
1012 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1013
05e9ebbe
SP
1014 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1015 scmd->serial_number, scmd->cmnd[0], scmd->retries);
c4a3e0a5
BS
1016
1017 if (instance->hw_crit_error) {
1018 printk(KERN_ERR "megasas: cannot recover from previous reset "
1019 "failures\n");
1020 return FAILED;
1021 }
1022
c4a3e0a5 1023 ret_val = megasas_wait_for_outstanding(instance);
c4a3e0a5
BS
1024 if (ret_val == SUCCESS)
1025 printk(KERN_NOTICE "megasas: reset successful \n");
1026 else
1027 printk(KERN_ERR "megasas: failed to do reset\n");
1028
c4a3e0a5
BS
1029 return ret_val;
1030}
1031
05e9ebbe
SP
1032/**
1033 * megasas_reset_timer - quiesce the adapter if required
1034 * @scmd: scsi cmnd
1035 *
1036 * Sets the FW busy flag and reduces the host->can_queue if the
1037 * cmd has not been completed within the timeout period.
1038 */
1039static enum
1040scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1041{
1042 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1043 struct megasas_instance *instance;
1044 unsigned long flags;
1045
1046 if (time_after(jiffies, scmd->jiffies_at_alloc +
1047 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1048 return EH_NOT_HANDLED;
1049 }
1050
1051 instance = cmd->instance;
1052 if (!(instance->flag & MEGASAS_FW_BUSY)) {
1053 /* FW is busy, throttle IO */
1054 spin_lock_irqsave(instance->host->host_lock, flags);
1055
1056 instance->host->can_queue = 16;
1057 instance->last_time = jiffies;
1058 instance->flag |= MEGASAS_FW_BUSY;
1059
1060 spin_unlock_irqrestore(instance->host->host_lock, flags);
1061 }
1062 return EH_RESET_TIMER;
1063}
1064
c4a3e0a5
BS
1065/**
1066 * megasas_reset_device - Device reset handler entry point
1067 */
1068static int megasas_reset_device(struct scsi_cmnd *scmd)
1069{
1070 int ret;
1071
1072 /*
1073 * First wait for all commands to complete
1074 */
1075 ret = megasas_generic_reset(scmd);
1076
1077 return ret;
1078}
1079
1080/**
1081 * megasas_reset_bus_host - Bus & host reset handler entry point
1082 */
1083static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1084{
1085 int ret;
1086
1087 /*
80682fa9 1088 * First wait for all commands to complete
c4a3e0a5
BS
1089 */
1090 ret = megasas_generic_reset(scmd);
1091
1092 return ret;
1093}
1094
cf62a0a5
SP
1095/**
1096 * megasas_bios_param - Returns disk geometry for a disk
1097 * @sdev: device handle
1098 * @bdev: block device
1099 * @capacity: drive capacity
1100 * @geom: geometry parameters
1101 */
1102static int
1103megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1104 sector_t capacity, int geom[])
1105{
1106 int heads;
1107 int sectors;
1108 sector_t cylinders;
1109 unsigned long tmp;
1110 /* Default heads (64) & sectors (32) */
1111 heads = 64;
1112 sectors = 32;
1113
1114 tmp = heads * sectors;
1115 cylinders = capacity;
1116
1117 sector_div(cylinders, tmp);
1118
1119 /*
1120 * Handle extended translation size for logical drives > 1Gb
1121 */
1122
1123 if (capacity >= 0x200000) {
1124 heads = 255;
1125 sectors = 63;
1126 tmp = heads*sectors;
1127 cylinders = capacity;
1128 sector_div(cylinders, tmp);
1129 }
1130
1131 geom[0] = heads;
1132 geom[1] = sectors;
1133 geom[2] = cylinders;
1134
1135 return 0;
1136}
1137
c4a3e0a5
BS
1138/**
1139 * megasas_service_aen - Processes an event notification
1140 * @instance: Adapter soft state
1141 * @cmd: AEN command completed by the ISR
1142 *
1143 * For AEN, driver sends a command down to FW that is held by the FW till an
1144 * event occurs. When an event of interest occurs, FW completes the command
1145 * that it was previously holding.
1146 *
1147 * This routines sends SIGIO signal to processes that have registered with the
1148 * driver for AEN.
1149 */
1150static void
1151megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1152{
1153 /*
1154 * Don't signal app if it is just an aborted previously registered aen
1155 */
1156 if (!cmd->abort_aen)
1157 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1158 else
1159 cmd->abort_aen = 0;
1160
1161 instance->aen_cmd = NULL;
1162 megasas_return_cmd(instance, cmd);
1163}
1164
1165/*
1166 * Scsi host template for megaraid_sas driver
1167 */
1168static struct scsi_host_template megasas_template = {
1169
1170 .module = THIS_MODULE,
1171 .name = "LSI Logic SAS based MegaRAID driver",
1172 .proc_name = "megaraid_sas",
147aab6a 1173 .slave_configure = megasas_slave_configure,
c4a3e0a5
BS
1174 .queuecommand = megasas_queue_command,
1175 .eh_device_reset_handler = megasas_reset_device,
1176 .eh_bus_reset_handler = megasas_reset_bus_host,
1177 .eh_host_reset_handler = megasas_reset_bus_host,
05e9ebbe 1178 .eh_timed_out = megasas_reset_timer,
cf62a0a5 1179 .bios_param = megasas_bios_param,
c4a3e0a5 1180 .use_clustering = ENABLE_CLUSTERING,
9cb83c75 1181 .use_sg_chaining = ENABLE_SG_CHAINING,
c4a3e0a5
BS
1182};
1183
1184/**
1185 * megasas_complete_int_cmd - Completes an internal command
1186 * @instance: Adapter soft state
1187 * @cmd: Command to be completed
1188 *
1189 * The megasas_issue_blocked_cmd() function waits for a command to complete
1190 * after it issues a command. This function wakes up that waiting routine by
1191 * calling wake_up() on the wait queue.
1192 */
1193static void
1194megasas_complete_int_cmd(struct megasas_instance *instance,
1195 struct megasas_cmd *cmd)
1196{
1197 cmd->cmd_status = cmd->frame->io.cmd_status;
1198
1199 if (cmd->cmd_status == ENODATA) {
1200 cmd->cmd_status = 0;
1201 }
1202 wake_up(&instance->int_cmd_wait_q);
1203}
1204
1205/**
1206 * megasas_complete_abort - Completes aborting a command
1207 * @instance: Adapter soft state
1208 * @cmd: Cmd that was issued to abort another cmd
1209 *
1210 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1211 * after it issues an abort on a previously issued command. This function
1212 * wakes up all functions waiting on the same wait queue.
1213 */
1214static void
1215megasas_complete_abort(struct megasas_instance *instance,
1216 struct megasas_cmd *cmd)
1217{
1218 if (cmd->sync_cmd) {
1219 cmd->sync_cmd = 0;
1220 cmd->cmd_status = 0;
1221 wake_up(&instance->abort_cmd_wait_q);
1222 }
1223
1224 return;
1225}
1226
c4a3e0a5
BS
1227/**
1228 * megasas_complete_cmd - Completes a command
1229 * @instance: Adapter soft state
1230 * @cmd: Command to be completed
1231 * @alt_status: If non-zero, use this value as status to
1232 * SCSI mid-layer instead of the value returned
1233 * by the FW. This should be used if caller wants
1234 * an alternate status (as in the case of aborted
1235 * commands)
1236 */
858119e1 1237static void
c4a3e0a5
BS
1238megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1239 u8 alt_status)
1240{
1241 int exception = 0;
1242 struct megasas_header *hdr = &cmd->frame->hdr;
c4a3e0a5 1243
05e9ebbe
SP
1244 if (cmd->scmd)
1245 cmd->scmd->SCp.ptr = NULL;
c4a3e0a5
BS
1246
1247 switch (hdr->cmd) {
1248
1249 case MFI_CMD_PD_SCSI_IO:
1250 case MFI_CMD_LD_SCSI_IO:
1251
1252 /*
1253 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1254 * issued either through an IO path or an IOCTL path. If it
1255 * was via IOCTL, we will send it to internal completion.
1256 */
1257 if (cmd->sync_cmd) {
1258 cmd->sync_cmd = 0;
1259 megasas_complete_int_cmd(instance, cmd);
1260 break;
1261 }
1262
c4a3e0a5
BS
1263 case MFI_CMD_LD_READ:
1264 case MFI_CMD_LD_WRITE:
1265
1266 if (alt_status) {
1267 cmd->scmd->result = alt_status << 16;
1268 exception = 1;
1269 }
1270
1271 if (exception) {
1272
e4a082c7 1273 atomic_dec(&instance->fw_outstanding);
c4a3e0a5 1274
155d98f0 1275 scsi_dma_unmap(cmd->scmd);
c4a3e0a5
BS
1276 cmd->scmd->scsi_done(cmd->scmd);
1277 megasas_return_cmd(instance, cmd);
1278
1279 break;
1280 }
1281
1282 switch (hdr->cmd_status) {
1283
1284 case MFI_STAT_OK:
1285 cmd->scmd->result = DID_OK << 16;
1286 break;
1287
1288 case MFI_STAT_SCSI_IO_FAILED:
1289 case MFI_STAT_LD_INIT_IN_PROGRESS:
1290 cmd->scmd->result =
1291 (DID_ERROR << 16) | hdr->scsi_status;
1292 break;
1293
1294 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1295
1296 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1297
1298 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1299 memset(cmd->scmd->sense_buffer, 0,
1300 SCSI_SENSE_BUFFERSIZE);
1301 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1302 hdr->sense_len);
1303
1304 cmd->scmd->result |= DRIVER_SENSE << 24;
1305 }
1306
1307 break;
1308
1309 case MFI_STAT_LD_OFFLINE:
1310 case MFI_STAT_DEVICE_NOT_FOUND:
1311 cmd->scmd->result = DID_BAD_TARGET << 16;
1312 break;
1313
1314 default:
1315 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1316 hdr->cmd_status);
1317 cmd->scmd->result = DID_ERROR << 16;
1318 break;
1319 }
1320
e4a082c7 1321 atomic_dec(&instance->fw_outstanding);
c4a3e0a5 1322
155d98f0 1323 scsi_dma_unmap(cmd->scmd);
c4a3e0a5
BS
1324 cmd->scmd->scsi_done(cmd->scmd);
1325 megasas_return_cmd(instance, cmd);
1326
1327 break;
1328
1329 case MFI_CMD_SMP:
1330 case MFI_CMD_STP:
1331 case MFI_CMD_DCMD:
1332
1333 /*
1334 * See if got an event notification
1335 */
1336 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1337 megasas_service_aen(instance, cmd);
1338 else
1339 megasas_complete_int_cmd(instance, cmd);
1340
1341 break;
1342
1343 case MFI_CMD_ABORT:
1344 /*
1345 * Cmd issued to abort another cmd returned
1346 */
1347 megasas_complete_abort(instance, cmd);
1348 break;
1349
1350 default:
1351 printk("megasas: Unknown command completed! [0x%X]\n",
1352 hdr->cmd);
1353 break;
1354 }
1355}
1356
1357/**
1358 * megasas_deplete_reply_queue - Processes all completed commands
1359 * @instance: Adapter soft state
1360 * @alt_status: Alternate status to be returned to
1361 * SCSI mid-layer instead of the status
1362 * returned by the FW
1363 */
858119e1 1364static int
c4a3e0a5
BS
1365megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1366{
c4a3e0a5
BS
1367 /*
1368 * Check if it is our interrupt
1341c939 1369 * Clear the interrupt
c4a3e0a5 1370 */
1341c939 1371 if(instance->instancet->clear_intr(instance->reg_set))
c4a3e0a5 1372 return IRQ_NONE;
c4a3e0a5 1373
af37acfb
SP
1374 if (instance->hw_crit_error)
1375 goto out_done;
5d018ad0
SP
1376 /*
1377 * Schedule the tasklet for cmd completion
1378 */
1379 tasklet_schedule(&instance->isr_tasklet);
af37acfb 1380out_done:
c4a3e0a5
BS
1381 return IRQ_HANDLED;
1382}
1383
1384/**
1385 * megasas_isr - isr entry point
1386 */
7d12e780 1387static irqreturn_t megasas_isr(int irq, void *devp)
c4a3e0a5
BS
1388{
1389 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1390 DID_OK);
1391}
1392
1393/**
1394 * megasas_transition_to_ready - Move the FW to READY state
1341c939 1395 * @instance: Adapter soft state
c4a3e0a5
BS
1396 *
1397 * During the initialization, FW passes can potentially be in any one of
1398 * several possible states. If the FW in operational, waiting-for-handshake
1399 * states, driver must take steps to bring it to ready state. Otherwise, it
1400 * has to wait for the ready state.
1401 */
1402static int
1341c939 1403megasas_transition_to_ready(struct megasas_instance* instance)
c4a3e0a5
BS
1404{
1405 int i;
1406 u8 max_wait;
1407 u32 fw_state;
1408 u32 cur_state;
1409
1341c939 1410 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
c4a3e0a5 1411
e3bbff9f
SP
1412 if (fw_state != MFI_STATE_READY)
1413 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1414 " state\n");
1415
c4a3e0a5
BS
1416 while (fw_state != MFI_STATE_READY) {
1417
c4a3e0a5
BS
1418 switch (fw_state) {
1419
1420 case MFI_STATE_FAULT:
1421
1422 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1423 return -ENODEV;
1424
1425 case MFI_STATE_WAIT_HANDSHAKE:
1426 /*
1427 * Set the CLR bit in inbound doorbell
1428 */
e3bbff9f 1429 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1341c939 1430 &instance->reg_set->inbound_doorbell);
c4a3e0a5
BS
1431
1432 max_wait = 2;
1433 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1434 break;
1435
e3bbff9f
SP
1436 case MFI_STATE_BOOT_MESSAGE_PENDING:
1437 writel(MFI_INIT_HOTPLUG,
1438 &instance->reg_set->inbound_doorbell);
1439
1440 max_wait = 10;
1441 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1442 break;
1443
c4a3e0a5
BS
1444 case MFI_STATE_OPERATIONAL:
1445 /*
e3bbff9f 1446 * Bring it to READY state; assuming max wait 10 secs
c4a3e0a5 1447 */
b274cab7 1448 instance->instancet->disable_intr(instance->reg_set);
e3bbff9f 1449 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
c4a3e0a5
BS
1450
1451 max_wait = 10;
1452 cur_state = MFI_STATE_OPERATIONAL;
1453 break;
1454
1455 case MFI_STATE_UNDEFINED:
1456 /*
1457 * This state should not last for more than 2 seconds
1458 */
1459 max_wait = 2;
1460 cur_state = MFI_STATE_UNDEFINED;
1461 break;
1462
1463 case MFI_STATE_BB_INIT:
1464 max_wait = 2;
1465 cur_state = MFI_STATE_BB_INIT;
1466 break;
1467
1468 case MFI_STATE_FW_INIT:
1469 max_wait = 20;
1470 cur_state = MFI_STATE_FW_INIT;
1471 break;
1472
1473 case MFI_STATE_FW_INIT_2:
1474 max_wait = 20;
1475 cur_state = MFI_STATE_FW_INIT_2;
1476 break;
1477
1478 case MFI_STATE_DEVICE_SCAN:
1479 max_wait = 20;
1480 cur_state = MFI_STATE_DEVICE_SCAN;
1481 break;
1482
1483 case MFI_STATE_FLUSH_CACHE:
1484 max_wait = 20;
1485 cur_state = MFI_STATE_FLUSH_CACHE;
1486 break;
1487
1488 default:
1489 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1490 fw_state);
1491 return -ENODEV;
1492 }
1493
1494 /*
1495 * The cur_state should not last for more than max_wait secs
1496 */
1497 for (i = 0; i < (max_wait * 1000); i++) {
1341c939
SP
1498 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1499 MFI_STATE_MASK ;
c4a3e0a5
BS
1500
1501 if (fw_state == cur_state) {
1502 msleep(1);
1503 } else
1504 break;
1505 }
1506
1507 /*
1508 * Return error if fw_state hasn't changed after max_wait
1509 */
1510 if (fw_state == cur_state) {
1511 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1512 "in %d secs\n", fw_state, max_wait);
1513 return -ENODEV;
1514 }
1515 };
e3bbff9f 1516 printk(KERN_INFO "megasas: FW now in Ready state\n");
c4a3e0a5
BS
1517
1518 return 0;
1519}
1520
1521/**
1522 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1523 * @instance: Adapter soft state
1524 */
1525static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1526{
1527 int i;
1528 u32 max_cmd = instance->max_fw_cmds;
1529 struct megasas_cmd *cmd;
1530
1531 if (!instance->frame_dma_pool)
1532 return;
1533
1534 /*
1535 * Return all frames to pool
1536 */
1537 for (i = 0; i < max_cmd; i++) {
1538
1539 cmd = instance->cmd_list[i];
1540
1541 if (cmd->frame)
1542 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1543 cmd->frame_phys_addr);
1544
1545 if (cmd->sense)
e3bbff9f 1546 pci_pool_free(instance->sense_dma_pool, cmd->sense,
c4a3e0a5
BS
1547 cmd->sense_phys_addr);
1548 }
1549
1550 /*
1551 * Now destroy the pool itself
1552 */
1553 pci_pool_destroy(instance->frame_dma_pool);
1554 pci_pool_destroy(instance->sense_dma_pool);
1555
1556 instance->frame_dma_pool = NULL;
1557 instance->sense_dma_pool = NULL;
1558}
1559
1560/**
1561 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1562 * @instance: Adapter soft state
1563 *
1564 * Each command packet has an embedded DMA memory buffer that is used for
1565 * filling MFI frame and the SG list that immediately follows the frame. This
1566 * function creates those DMA memory buffers for each command packet by using
1567 * PCI pool facility.
1568 */
1569static int megasas_create_frame_pool(struct megasas_instance *instance)
1570{
1571 int i;
1572 u32 max_cmd;
1573 u32 sge_sz;
1574 u32 sgl_sz;
1575 u32 total_sz;
1576 u32 frame_count;
1577 struct megasas_cmd *cmd;
1578
1579 max_cmd = instance->max_fw_cmds;
1580
1581 /*
1582 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1583 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1584 */
1585 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1586 sizeof(struct megasas_sge32);
1587
1588 /*
1589 * Calculated the number of 64byte frames required for SGL
1590 */
1591 sgl_sz = sge_sz * instance->max_num_sge;
1592 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1593
1594 /*
1595 * We need one extra frame for the MFI command
1596 */
1597 frame_count++;
1598
1599 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1600 /*
1601 * Use DMA pool facility provided by PCI layer
1602 */
1603 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1604 instance->pdev, total_sz, 64,
1605 0);
1606
1607 if (!instance->frame_dma_pool) {
1608 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1609 return -ENOMEM;
1610 }
1611
1612 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1613 instance->pdev, 128, 4, 0);
1614
1615 if (!instance->sense_dma_pool) {
1616 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1617
1618 pci_pool_destroy(instance->frame_dma_pool);
1619 instance->frame_dma_pool = NULL;
1620
1621 return -ENOMEM;
1622 }
1623
1624 /*
1625 * Allocate and attach a frame to each of the commands in cmd_list.
1626 * By making cmd->index as the context instead of the &cmd, we can
1627 * always use 32bit context regardless of the architecture
1628 */
1629 for (i = 0; i < max_cmd; i++) {
1630
1631 cmd = instance->cmd_list[i];
1632
1633 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1634 GFP_KERNEL, &cmd->frame_phys_addr);
1635
1636 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1637 GFP_KERNEL, &cmd->sense_phys_addr);
1638
1639 /*
1640 * megasas_teardown_frame_pool() takes care of freeing
1641 * whatever has been allocated
1642 */
1643 if (!cmd->frame || !cmd->sense) {
1644 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1645 megasas_teardown_frame_pool(instance);
1646 return -ENOMEM;
1647 }
1648
1649 cmd->frame->io.context = cmd->index;
1650 }
1651
1652 return 0;
1653}
1654
1655/**
1656 * megasas_free_cmds - Free all the cmds in the free cmd pool
1657 * @instance: Adapter soft state
1658 */
1659static void megasas_free_cmds(struct megasas_instance *instance)
1660{
1661 int i;
1662 /* First free the MFI frame pool */
1663 megasas_teardown_frame_pool(instance);
1664
1665 /* Free all the commands in the cmd_list */
1666 for (i = 0; i < instance->max_fw_cmds; i++)
1667 kfree(instance->cmd_list[i]);
1668
1669 /* Free the cmd_list buffer itself */
1670 kfree(instance->cmd_list);
1671 instance->cmd_list = NULL;
1672
1673 INIT_LIST_HEAD(&instance->cmd_pool);
1674}
1675
1676/**
1677 * megasas_alloc_cmds - Allocates the command packets
1678 * @instance: Adapter soft state
1679 *
1680 * Each command that is issued to the FW, whether IO commands from the OS or
1681 * internal commands like IOCTLs, are wrapped in local data structure called
1682 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1683 * the FW.
1684 *
1685 * Each frame has a 32-bit field called context (tag). This context is used
1686 * to get back the megasas_cmd from the frame when a frame gets completed in
1687 * the ISR. Typically the address of the megasas_cmd itself would be used as
1688 * the context. But we wanted to keep the differences between 32 and 64 bit
1689 * systems to the mininum. We always use 32 bit integers for the context. In
1690 * this driver, the 32 bit values are the indices into an array cmd_list.
1691 * This array is used only to look up the megasas_cmd given the context. The
1692 * free commands themselves are maintained in a linked list called cmd_pool.
1693 */
1694static int megasas_alloc_cmds(struct megasas_instance *instance)
1695{
1696 int i;
1697 int j;
1698 u32 max_cmd;
1699 struct megasas_cmd *cmd;
1700
1701 max_cmd = instance->max_fw_cmds;
1702
1703 /*
1704 * instance->cmd_list is an array of struct megasas_cmd pointers.
1705 * Allocate the dynamic array first and then allocate individual
1706 * commands.
1707 */
dd00cc48 1708 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
c4a3e0a5
BS
1709
1710 if (!instance->cmd_list) {
1711 printk(KERN_DEBUG "megasas: out of memory\n");
1712 return -ENOMEM;
1713 }
1714
c4a3e0a5
BS
1715
1716 for (i = 0; i < max_cmd; i++) {
1717 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1718 GFP_KERNEL);
1719
1720 if (!instance->cmd_list[i]) {
1721
1722 for (j = 0; j < i; j++)
1723 kfree(instance->cmd_list[j]);
1724
1725 kfree(instance->cmd_list);
1726 instance->cmd_list = NULL;
1727
1728 return -ENOMEM;
1729 }
1730 }
1731
1732 /*
1733 * Add all the commands to command pool (instance->cmd_pool)
1734 */
1735 for (i = 0; i < max_cmd; i++) {
1736 cmd = instance->cmd_list[i];
1737 memset(cmd, 0, sizeof(struct megasas_cmd));
1738 cmd->index = i;
1739 cmd->instance = instance;
1740
1741 list_add_tail(&cmd->list, &instance->cmd_pool);
1742 }
1743
1744 /*
1745 * Create a frame pool and assign one frame to each cmd
1746 */
1747 if (megasas_create_frame_pool(instance)) {
1748 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1749 megasas_free_cmds(instance);
1750 }
1751
1752 return 0;
1753}
1754
1755/**
1756 * megasas_get_controller_info - Returns FW's controller structure
1757 * @instance: Adapter soft state
1758 * @ctrl_info: Controller information structure
1759 *
1760 * Issues an internal command (DCMD) to get the FW's controller structure.
1761 * This information is mainly used to find out the maximum IO transfer per
1762 * command supported by the FW.
1763 */
1764static int
1765megasas_get_ctrl_info(struct megasas_instance *instance,
1766 struct megasas_ctrl_info *ctrl_info)
1767{
1768 int ret = 0;
1769 struct megasas_cmd *cmd;
1770 struct megasas_dcmd_frame *dcmd;
1771 struct megasas_ctrl_info *ci;
1772 dma_addr_t ci_h = 0;
1773
1774 cmd = megasas_get_cmd(instance);
1775
1776 if (!cmd) {
1777 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1778 return -ENOMEM;
1779 }
1780
1781 dcmd = &cmd->frame->dcmd;
1782
1783 ci = pci_alloc_consistent(instance->pdev,
1784 sizeof(struct megasas_ctrl_info), &ci_h);
1785
1786 if (!ci) {
1787 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1788 megasas_return_cmd(instance, cmd);
1789 return -ENOMEM;
1790 }
1791
1792 memset(ci, 0, sizeof(*ci));
1793 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1794
1795 dcmd->cmd = MFI_CMD_DCMD;
1796 dcmd->cmd_status = 0xFF;
1797 dcmd->sge_count = 1;
1798 dcmd->flags = MFI_FRAME_DIR_READ;
1799 dcmd->timeout = 0;
1800 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1801 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1802 dcmd->sgl.sge32[0].phys_addr = ci_h;
1803 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1804
1805 if (!megasas_issue_polled(instance, cmd)) {
1806 ret = 0;
1807 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1808 } else {
1809 ret = -1;
1810 }
1811
1812 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1813 ci, ci_h);
1814
1815 megasas_return_cmd(instance, cmd);
1816 return ret;
1817}
1818
31ea7088 1819/**
1820 * megasas_issue_init_mfi - Initializes the FW
1821 * @instance: Adapter soft state
1822 *
1823 * Issues the INIT MFI cmd
1824 */
1825static int
1826megasas_issue_init_mfi(struct megasas_instance *instance)
1827{
1828 u32 context;
1829
1830 struct megasas_cmd *cmd;
1831
1832 struct megasas_init_frame *init_frame;
1833 struct megasas_init_queue_info *initq_info;
1834 dma_addr_t init_frame_h;
1835 dma_addr_t initq_info_h;
1836
1837 /*
1838 * Prepare a init frame. Note the init frame points to queue info
1839 * structure. Each frame has SGL allocated after first 64 bytes. For
1840 * this frame - since we don't need any SGL - we use SGL's space as
1841 * queue info structure
1842 *
1843 * We will not get a NULL command below. We just created the pool.
1844 */
1845 cmd = megasas_get_cmd(instance);
1846
1847 init_frame = (struct megasas_init_frame *)cmd->frame;
1848 initq_info = (struct megasas_init_queue_info *)
1849 ((unsigned long)init_frame + 64);
1850
1851 init_frame_h = cmd->frame_phys_addr;
1852 initq_info_h = init_frame_h + 64;
1853
1854 context = init_frame->context;
1855 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1856 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1857 init_frame->context = context;
1858
1859 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1860 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1861
1862 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1863 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1864
1865 init_frame->cmd = MFI_CMD_INIT;
1866 init_frame->cmd_status = 0xFF;
1867 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1868
1869 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1870
1871 /*
1872 * disable the intr before firing the init frame to FW
1873 */
1874 instance->instancet->disable_intr(instance->reg_set);
1875
1876 /*
1877 * Issue the init frame in polled mode
1878 */
1879
1880 if (megasas_issue_polled(instance, cmd)) {
1881 printk(KERN_ERR "megasas: Failed to init firmware\n");
1882 megasas_return_cmd(instance, cmd);
1883 goto fail_fw_init;
1884 }
1885
1886 megasas_return_cmd(instance, cmd);
1887
1888 return 0;
1889
1890fail_fw_init:
1891 return -EINVAL;
1892}
1893
c4a3e0a5
BS
1894/**
1895 * megasas_init_mfi - Initializes the FW
1896 * @instance: Adapter soft state
1897 *
1898 * This is the main function for initializing MFI firmware.
1899 */
1900static int megasas_init_mfi(struct megasas_instance *instance)
1901{
1902 u32 context_sz;
1903 u32 reply_q_sz;
1904 u32 max_sectors_1;
1905 u32 max_sectors_2;
14faea9f 1906 u32 tmp_sectors;
c4a3e0a5 1907 struct megasas_register_set __iomem *reg_set;
c4a3e0a5 1908 struct megasas_ctrl_info *ctrl_info;
c4a3e0a5
BS
1909 /*
1910 * Map the message registers
1911 */
1912 instance->base_addr = pci_resource_start(instance->pdev, 0);
1913
1914 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1915 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1916 return -EBUSY;
1917 }
1918
1919 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1920
1921 if (!instance->reg_set) {
1922 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1923 goto fail_ioremap;
1924 }
1925
1926 reg_set = instance->reg_set;
1927
f9876f0b
SP
1928 switch(instance->pdev->device)
1929 {
1930 case PCI_DEVICE_ID_LSI_SAS1078R:
1931 instance->instancet = &megasas_instance_template_ppc;
1932 break;
1933 case PCI_DEVICE_ID_LSI_SAS1064R:
1934 case PCI_DEVICE_ID_DELL_PERC5:
1935 default:
1936 instance->instancet = &megasas_instance_template_xscale;
1937 break;
1938 }
1341c939 1939
c4a3e0a5
BS
1940 /*
1941 * We expect the FW state to be READY
1942 */
1341c939 1943 if (megasas_transition_to_ready(instance))
c4a3e0a5
BS
1944 goto fail_ready_state;
1945
1946 /*
1947 * Get various operational parameters from status register
1948 */
1341c939 1949 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
e3bbff9f
SP
1950 /*
1951 * Reduce the max supported cmds by 1. This is to ensure that the
1952 * reply_q_sz (1 more than the max cmd that driver may send)
1953 * does not exceed max cmds that the FW can support
1954 */
1955 instance->max_fw_cmds = instance->max_fw_cmds-1;
1341c939
SP
1956 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1957 0x10;
c4a3e0a5
BS
1958 /*
1959 * Create a pool of commands
1960 */
1961 if (megasas_alloc_cmds(instance))
1962 goto fail_alloc_cmds;
1963
1964 /*
1965 * Allocate memory for reply queue. Length of reply queue should
1966 * be _one_ more than the maximum commands handled by the firmware.
1967 *
1968 * Note: When FW completes commands, it places corresponding contex
1969 * values in this circular reply queue. This circular queue is a fairly
1970 * typical producer-consumer queue. FW is the producer (of completed
1971 * commands) and the driver is the consumer.
1972 */
1973 context_sz = sizeof(u32);
1974 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1975
1976 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1977 reply_q_sz,
1978 &instance->reply_queue_h);
1979
1980 if (!instance->reply_queue) {
1981 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1982 goto fail_reply_queue;
1983 }
1984
31ea7088 1985 if (megasas_issue_init_mfi(instance))
c4a3e0a5 1986 goto fail_fw_init;
c4a3e0a5
BS
1987
1988 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1989
1990 /*
1991 * Compute the max allowed sectors per IO: The controller info has two
1992 * limits on max sectors. Driver should use the minimum of these two.
1993 *
1994 * 1 << stripe_sz_ops.min = max sectors per strip
1995 *
1996 * Note that older firmwares ( < FW ver 30) didn't report information
1997 * to calculate max_sectors_1. So the number ended up as zero always.
1998 */
14faea9f 1999 tmp_sectors = 0;
c4a3e0a5
BS
2000 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2001
2002 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2003 ctrl_info->max_strips_per_io;
2004 max_sectors_2 = ctrl_info->max_request_size;
2005
14faea9f 2006 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2007 }
2008
2009 instance->max_sectors_per_req = instance->max_num_sge *
2010 PAGE_SIZE / 512;
2011 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2012 instance->max_sectors_per_req = tmp_sectors;
c4a3e0a5
BS
2013
2014 kfree(ctrl_info);
2015
5d018ad0
SP
2016 /*
2017 * Setup tasklet for cmd completion
2018 */
2019
2020 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2021 (unsigned long)instance);
c4a3e0a5
BS
2022 return 0;
2023
2024 fail_fw_init:
c4a3e0a5
BS
2025
2026 pci_free_consistent(instance->pdev, reply_q_sz,
2027 instance->reply_queue, instance->reply_queue_h);
2028 fail_reply_queue:
2029 megasas_free_cmds(instance);
2030
2031 fail_alloc_cmds:
2032 fail_ready_state:
2033 iounmap(instance->reg_set);
2034
2035 fail_ioremap:
2036 pci_release_regions(instance->pdev);
2037
2038 return -EINVAL;
2039}
2040
2041/**
2042 * megasas_release_mfi - Reverses the FW initialization
2043 * @intance: Adapter soft state
2044 */
2045static void megasas_release_mfi(struct megasas_instance *instance)
2046{
2047 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2048
2049 pci_free_consistent(instance->pdev, reply_q_sz,
2050 instance->reply_queue, instance->reply_queue_h);
2051
2052 megasas_free_cmds(instance);
2053
2054 iounmap(instance->reg_set);
2055
2056 pci_release_regions(instance->pdev);
2057}
2058
2059/**
2060 * megasas_get_seq_num - Gets latest event sequence numbers
2061 * @instance: Adapter soft state
2062 * @eli: FW event log sequence numbers information
2063 *
2064 * FW maintains a log of all events in a non-volatile area. Upper layers would
2065 * usually find out the latest sequence number of the events, the seq number at
2066 * the boot etc. They would "read" all the events below the latest seq number
2067 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2068 * number), they would subsribe to AEN (asynchronous event notification) and
2069 * wait for the events to happen.
2070 */
2071static int
2072megasas_get_seq_num(struct megasas_instance *instance,
2073 struct megasas_evt_log_info *eli)
2074{
2075 struct megasas_cmd *cmd;
2076 struct megasas_dcmd_frame *dcmd;
2077 struct megasas_evt_log_info *el_info;
2078 dma_addr_t el_info_h = 0;
2079
2080 cmd = megasas_get_cmd(instance);
2081
2082 if (!cmd) {
2083 return -ENOMEM;
2084 }
2085
2086 dcmd = &cmd->frame->dcmd;
2087 el_info = pci_alloc_consistent(instance->pdev,
2088 sizeof(struct megasas_evt_log_info),
2089 &el_info_h);
2090
2091 if (!el_info) {
2092 megasas_return_cmd(instance, cmd);
2093 return -ENOMEM;
2094 }
2095
2096 memset(el_info, 0, sizeof(*el_info));
2097 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2098
2099 dcmd->cmd = MFI_CMD_DCMD;
2100 dcmd->cmd_status = 0x0;
2101 dcmd->sge_count = 1;
2102 dcmd->flags = MFI_FRAME_DIR_READ;
2103 dcmd->timeout = 0;
2104 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2105 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2106 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2107 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2108
2109 megasas_issue_blocked_cmd(instance, cmd);
2110
2111 /*
2112 * Copy the data back into callers buffer
2113 */
2114 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2115
2116 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2117 el_info, el_info_h);
2118
2119 megasas_return_cmd(instance, cmd);
2120
2121 return 0;
2122}
2123
2124/**
2125 * megasas_register_aen - Registers for asynchronous event notification
2126 * @instance: Adapter soft state
2127 * @seq_num: The starting sequence number
2128 * @class_locale: Class of the event
2129 *
2130 * This function subscribes for AEN for events beyond the @seq_num. It requests
2131 * to be notified if and only if the event is of type @class_locale
2132 */
2133static int
2134megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2135 u32 class_locale_word)
2136{
2137 int ret_val;
2138 struct megasas_cmd *cmd;
2139 struct megasas_dcmd_frame *dcmd;
2140 union megasas_evt_class_locale curr_aen;
2141 union megasas_evt_class_locale prev_aen;
2142
2143 /*
2144 * If there an AEN pending already (aen_cmd), check if the
2145 * class_locale of that pending AEN is inclusive of the new
2146 * AEN request we currently have. If it is, then we don't have
2147 * to do anything. In other words, whichever events the current
2148 * AEN request is subscribing to, have already been subscribed
2149 * to.
2150 *
2151 * If the old_cmd is _not_ inclusive, then we have to abort
2152 * that command, form a class_locale that is superset of both
2153 * old and current and re-issue to the FW
2154 */
2155
2156 curr_aen.word = class_locale_word;
2157
2158 if (instance->aen_cmd) {
2159
2160 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2161
2162 /*
2163 * A class whose enum value is smaller is inclusive of all
2164 * higher values. If a PROGRESS (= -1) was previously
2165 * registered, then a new registration requests for higher
2166 * classes need not be sent to FW. They are automatically
2167 * included.
2168 *
2169 * Locale numbers don't have such hierarchy. They are bitmap
2170 * values
2171 */
2172 if ((prev_aen.members.class <= curr_aen.members.class) &&
2173 !((prev_aen.members.locale & curr_aen.members.locale) ^
2174 curr_aen.members.locale)) {
2175 /*
2176 * Previously issued event registration includes
2177 * current request. Nothing to do.
2178 */
2179 return 0;
2180 } else {
2181 curr_aen.members.locale |= prev_aen.members.locale;
2182
2183 if (prev_aen.members.class < curr_aen.members.class)
2184 curr_aen.members.class = prev_aen.members.class;
2185
2186 instance->aen_cmd->abort_aen = 1;
2187 ret_val = megasas_issue_blocked_abort_cmd(instance,
2188 instance->
2189 aen_cmd);
2190
2191 if (ret_val) {
2192 printk(KERN_DEBUG "megasas: Failed to abort "
2193 "previous AEN command\n");
2194 return ret_val;
2195 }
2196 }
2197 }
2198
2199 cmd = megasas_get_cmd(instance);
2200
2201 if (!cmd)
2202 return -ENOMEM;
2203
2204 dcmd = &cmd->frame->dcmd;
2205
2206 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2207
2208 /*
2209 * Prepare DCMD for aen registration
2210 */
2211 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2212
2213 dcmd->cmd = MFI_CMD_DCMD;
2214 dcmd->cmd_status = 0x0;
2215 dcmd->sge_count = 1;
2216 dcmd->flags = MFI_FRAME_DIR_READ;
2217 dcmd->timeout = 0;
2218 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2219 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2220 dcmd->mbox.w[0] = seq_num;
2221 dcmd->mbox.w[1] = curr_aen.word;
2222 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2223 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2224
2225 /*
2226 * Store reference to the cmd used to register for AEN. When an
2227 * application wants us to register for AEN, we have to abort this
2228 * cmd and re-register with a new EVENT LOCALE supplied by that app
2229 */
2230 instance->aen_cmd = cmd;
2231
2232 /*
2233 * Issue the aen registration frame
2234 */
1341c939 2235 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
2236
2237 return 0;
2238}
2239
2240/**
2241 * megasas_start_aen - Subscribes to AEN during driver load time
2242 * @instance: Adapter soft state
2243 */
2244static int megasas_start_aen(struct megasas_instance *instance)
2245{
2246 struct megasas_evt_log_info eli;
2247 union megasas_evt_class_locale class_locale;
2248
2249 /*
2250 * Get the latest sequence number from FW
2251 */
2252 memset(&eli, 0, sizeof(eli));
2253
2254 if (megasas_get_seq_num(instance, &eli))
2255 return -1;
2256
2257 /*
2258 * Register AEN with FW for latest sequence number plus 1
2259 */
2260 class_locale.members.reserved = 0;
2261 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2262 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2263
2264 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2265 class_locale.word);
2266}
2267
2268/**
2269 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2270 * @instance: Adapter soft state
2271 */
2272static int megasas_io_attach(struct megasas_instance *instance)
2273{
2274 struct Scsi_Host *host = instance->host;
2275
2276 /*
2277 * Export parameters required by SCSI mid-layer
2278 */
2279 host->irq = instance->pdev->irq;
2280 host->unique_id = instance->unique_id;
2281 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2282 host->this_id = instance->init_id;
2283 host->sg_tablesize = instance->max_num_sge;
2284 host->max_sectors = instance->max_sectors_per_req;
2285 host->cmd_per_lun = 128;
2286 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2287 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2288 host->max_lun = MEGASAS_MAX_LUN;
122da302 2289 host->max_cmd_len = 16;
c4a3e0a5
BS
2290
2291 /*
2292 * Notify the mid-layer about the new controller
2293 */
2294 if (scsi_add_host(host, &instance->pdev->dev)) {
2295 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2296 return -ENODEV;
2297 }
2298
2299 /*
2300 * Trigger SCSI to scan our drives
2301 */
2302 scsi_scan_host(host);
2303 return 0;
2304}
2305
31ea7088 2306static int
2307megasas_set_dma_mask(struct pci_dev *pdev)
2308{
2309 /*
2310 * All our contollers are capable of performing 64-bit DMA
2311 */
2312 if (IS_DMA64) {
2313 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2314
2315 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2316 goto fail_set_dma_mask;
2317 }
2318 } else {
2319 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2320 goto fail_set_dma_mask;
2321 }
2322 return 0;
2323
2324fail_set_dma_mask:
2325 return 1;
2326}
2327
c4a3e0a5
BS
2328/**
2329 * megasas_probe_one - PCI hotplug entry point
2330 * @pdev: PCI device structure
2331 * @id: PCI ids of supported hotplugged adapter
2332 */
2333static int __devinit
2334megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2335{
2336 int rval;
2337 struct Scsi_Host *host;
2338 struct megasas_instance *instance;
2339
2340 /*
2341 * Announce PCI information
2342 */
2343 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2344 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2345 pdev->subsystem_device);
2346
2347 printk("bus %d:slot %d:func %d\n",
2348 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2349
2350 /*
2351 * PCI prepping: enable device set bus mastering and dma mask
2352 */
2353 rval = pci_enable_device(pdev);
2354
2355 if (rval) {
2356 return rval;
2357 }
2358
2359 pci_set_master(pdev);
2360
31ea7088 2361 if (megasas_set_dma_mask(pdev))
2362 goto fail_set_dma_mask;
c4a3e0a5
BS
2363
2364 host = scsi_host_alloc(&megasas_template,
2365 sizeof(struct megasas_instance));
2366
2367 if (!host) {
2368 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2369 goto fail_alloc_instance;
2370 }
2371
2372 instance = (struct megasas_instance *)host->hostdata;
2373 memset(instance, 0, sizeof(*instance));
2374
2375 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2376 &instance->producer_h);
2377 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2378 &instance->consumer_h);
2379
2380 if (!instance->producer || !instance->consumer) {
2381 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2382 "producer, consumer\n");
2383 goto fail_alloc_dma_buf;
2384 }
2385
2386 *instance->producer = 0;
2387 *instance->consumer = 0;
2388
2389 instance->evt_detail = pci_alloc_consistent(pdev,
2390 sizeof(struct
2391 megasas_evt_detail),
2392 &instance->evt_detail_h);
2393
2394 if (!instance->evt_detail) {
2395 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2396 "event detail structure\n");
2397 goto fail_alloc_dma_buf;
2398 }
2399
2400 /*
2401 * Initialize locks and queues
2402 */
2403 INIT_LIST_HEAD(&instance->cmd_pool);
2404
e4a082c7
SP
2405 atomic_set(&instance->fw_outstanding,0);
2406
c4a3e0a5
BS
2407 init_waitqueue_head(&instance->int_cmd_wait_q);
2408 init_waitqueue_head(&instance->abort_cmd_wait_q);
2409
2410 spin_lock_init(&instance->cmd_pool_lock);
7343eb65 2411 spin_lock_init(&instance->completion_lock);
c4a3e0a5 2412
e5a69e27 2413 mutex_init(&instance->aen_mutex);
c4a3e0a5
BS
2414 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2415
2416 /*
2417 * Initialize PCI related and misc parameters
2418 */
2419 instance->pdev = pdev;
2420 instance->host = host;
2421 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2422 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2423
658dcedb 2424 megasas_dbg_lvl = 0;
05e9ebbe
SP
2425 instance->flag = 0;
2426 instance->last_time = 0;
658dcedb 2427
c4a3e0a5
BS
2428 /*
2429 * Initialize MFI Firmware
2430 */
2431 if (megasas_init_mfi(instance))
2432 goto fail_init_mfi;
2433
2434 /*
2435 * Register IRQ
2436 */
1d6f359a 2437 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
c4a3e0a5
BS
2438 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2439 goto fail_irq;
2440 }
2441
1341c939 2442 instance->instancet->enable_intr(instance->reg_set);
c4a3e0a5
BS
2443
2444 /*
2445 * Store instance in PCI softstate
2446 */
2447 pci_set_drvdata(pdev, instance);
2448
2449 /*
2450 * Add this controller to megasas_mgmt_info structure so that it
2451 * can be exported to management applications
2452 */
2453 megasas_mgmt_info.count++;
2454 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2455 megasas_mgmt_info.max_index++;
2456
2457 /*
2458 * Initiate AEN (Asynchronous Event Notification)
2459 */
2460 if (megasas_start_aen(instance)) {
2461 printk(KERN_DEBUG "megasas: start aen failed\n");
2462 goto fail_start_aen;
2463 }
2464
2465 /*
2466 * Register with SCSI mid-layer
2467 */
2468 if (megasas_io_attach(instance))
2469 goto fail_io_attach;
2470
2471 return 0;
2472
2473 fail_start_aen:
2474 fail_io_attach:
2475 megasas_mgmt_info.count--;
2476 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2477 megasas_mgmt_info.max_index--;
2478
2479 pci_set_drvdata(pdev, NULL);
b274cab7 2480 instance->instancet->disable_intr(instance->reg_set);
c4a3e0a5
BS
2481 free_irq(instance->pdev->irq, instance);
2482
2483 megasas_release_mfi(instance);
2484
2485 fail_irq:
2486 fail_init_mfi:
2487 fail_alloc_dma_buf:
2488 if (instance->evt_detail)
2489 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2490 instance->evt_detail,
2491 instance->evt_detail_h);
2492
2493 if (instance->producer)
2494 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2495 instance->producer_h);
2496 if (instance->consumer)
2497 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2498 instance->consumer_h);
2499 scsi_host_put(host);
2500
2501 fail_alloc_instance:
2502 fail_set_dma_mask:
2503 pci_disable_device(pdev);
2504
2505 return -ENODEV;
2506}
2507
2508/**
2509 * megasas_flush_cache - Requests FW to flush all its caches
2510 * @instance: Adapter soft state
2511 */
2512static void megasas_flush_cache(struct megasas_instance *instance)
2513{
2514 struct megasas_cmd *cmd;
2515 struct megasas_dcmd_frame *dcmd;
2516
2517 cmd = megasas_get_cmd(instance);
2518
2519 if (!cmd)
2520 return;
2521
2522 dcmd = &cmd->frame->dcmd;
2523
2524 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2525
2526 dcmd->cmd = MFI_CMD_DCMD;
2527 dcmd->cmd_status = 0x0;
2528 dcmd->sge_count = 0;
2529 dcmd->flags = MFI_FRAME_DIR_NONE;
2530 dcmd->timeout = 0;
2531 dcmd->data_xfer_len = 0;
2532 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2533 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2534
2535 megasas_issue_blocked_cmd(instance, cmd);
2536
2537 megasas_return_cmd(instance, cmd);
2538
2539 return;
2540}
2541
2542/**
2543 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2544 * @instance: Adapter soft state
31ea7088 2545 * @opcode: Shutdown/Hibernate
c4a3e0a5 2546 */
31ea7088 2547static void megasas_shutdown_controller(struct megasas_instance *instance,
2548 u32 opcode)
c4a3e0a5
BS
2549{
2550 struct megasas_cmd *cmd;
2551 struct megasas_dcmd_frame *dcmd;
2552
2553 cmd = megasas_get_cmd(instance);
2554
2555 if (!cmd)
2556 return;
2557
2558 if (instance->aen_cmd)
2559 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2560
2561 dcmd = &cmd->frame->dcmd;
2562
2563 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2564
2565 dcmd->cmd = MFI_CMD_DCMD;
2566 dcmd->cmd_status = 0x0;
2567 dcmd->sge_count = 0;
2568 dcmd->flags = MFI_FRAME_DIR_NONE;
2569 dcmd->timeout = 0;
2570 dcmd->data_xfer_len = 0;
31ea7088 2571 dcmd->opcode = opcode;
c4a3e0a5
BS
2572
2573 megasas_issue_blocked_cmd(instance, cmd);
2574
2575 megasas_return_cmd(instance, cmd);
2576
2577 return;
2578}
2579
31ea7088 2580/**
2581 * megasas_suspend - driver suspend entry point
2582 * @pdev: PCI device structure
2583 * @state: PCI power state to suspend routine
2584 */
2585static int __devinit
2586megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2587{
2588 struct Scsi_Host *host;
2589 struct megasas_instance *instance;
2590
2591 instance = pci_get_drvdata(pdev);
2592 host = instance->host;
2593
2594 megasas_flush_cache(instance);
2595 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2596 tasklet_kill(&instance->isr_tasklet);
2597
2598 pci_set_drvdata(instance->pdev, instance);
2599 instance->instancet->disable_intr(instance->reg_set);
2600 free_irq(instance->pdev->irq, instance);
2601
2602 pci_save_state(pdev);
2603 pci_disable_device(pdev);
2604
2605 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2606
2607 return 0;
2608}
2609
2610/**
2611 * megasas_resume- driver resume entry point
2612 * @pdev: PCI device structure
2613 */
2614static int __devinit
2615megasas_resume(struct pci_dev *pdev)
2616{
2617 int rval;
2618 struct Scsi_Host *host;
2619 struct megasas_instance *instance;
2620
2621 instance = pci_get_drvdata(pdev);
2622 host = instance->host;
2623 pci_set_power_state(pdev, PCI_D0);
2624 pci_enable_wake(pdev, PCI_D0, 0);
2625 pci_restore_state(pdev);
2626
2627 /*
2628 * PCI prepping: enable device set bus mastering and dma mask
2629 */
2630 rval = pci_enable_device(pdev);
2631
2632 if (rval) {
2633 printk(KERN_ERR "megasas: Enable device failed\n");
2634 return rval;
2635 }
2636
2637 pci_set_master(pdev);
2638
2639 if (megasas_set_dma_mask(pdev))
2640 goto fail_set_dma_mask;
2641
2642 /*
2643 * Initialize MFI Firmware
2644 */
2645
2646 *instance->producer = 0;
2647 *instance->consumer = 0;
2648
2649 atomic_set(&instance->fw_outstanding, 0);
2650
2651 /*
2652 * We expect the FW state to be READY
2653 */
2654 if (megasas_transition_to_ready(instance))
2655 goto fail_ready_state;
2656
2657 if (megasas_issue_init_mfi(instance))
2658 goto fail_init_mfi;
2659
2660 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2661 (unsigned long)instance);
2662
2663 /*
2664 * Register IRQ
2665 */
2666 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2667 "megasas", instance)) {
2668 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2669 goto fail_irq;
2670 }
2671
2672 instance->instancet->enable_intr(instance->reg_set);
2673
2674 /*
2675 * Initiate AEN (Asynchronous Event Notification)
2676 */
2677 if (megasas_start_aen(instance))
2678 printk(KERN_ERR "megasas: Start AEN failed\n");
2679
2680 return 0;
2681
2682fail_irq:
2683fail_init_mfi:
2684 if (instance->evt_detail)
2685 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2686 instance->evt_detail,
2687 instance->evt_detail_h);
2688
2689 if (instance->producer)
2690 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2691 instance->producer_h);
2692 if (instance->consumer)
2693 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2694 instance->consumer_h);
2695 scsi_host_put(host);
2696
2697fail_set_dma_mask:
2698fail_ready_state:
2699
2700 pci_disable_device(pdev);
2701
2702 return -ENODEV;
2703}
2704
c4a3e0a5
BS
2705/**
2706 * megasas_detach_one - PCI hot"un"plug entry point
2707 * @pdev: PCI device structure
2708 */
2709static void megasas_detach_one(struct pci_dev *pdev)
2710{
2711 int i;
2712 struct Scsi_Host *host;
2713 struct megasas_instance *instance;
2714
2715 instance = pci_get_drvdata(pdev);
2716 host = instance->host;
2717
2718 scsi_remove_host(instance->host);
2719 megasas_flush_cache(instance);
31ea7088 2720 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
5d018ad0 2721 tasklet_kill(&instance->isr_tasklet);
c4a3e0a5
BS
2722
2723 /*
2724 * Take the instance off the instance array. Note that we will not
2725 * decrement the max_index. We let this array be sparse array
2726 */
2727 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2728 if (megasas_mgmt_info.instance[i] == instance) {
2729 megasas_mgmt_info.count--;
2730 megasas_mgmt_info.instance[i] = NULL;
2731
2732 break;
2733 }
2734 }
2735
2736 pci_set_drvdata(instance->pdev, NULL);
2737
b274cab7 2738 instance->instancet->disable_intr(instance->reg_set);
c4a3e0a5
BS
2739
2740 free_irq(instance->pdev->irq, instance);
2741
2742 megasas_release_mfi(instance);
2743
2744 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2745 instance->evt_detail, instance->evt_detail_h);
2746
2747 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2748 instance->producer_h);
2749
2750 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2751 instance->consumer_h);
2752
2753 scsi_host_put(host);
2754
2755 pci_set_drvdata(pdev, NULL);
2756
2757 pci_disable_device(pdev);
2758
2759 return;
2760}
2761
2762/**
2763 * megasas_shutdown - Shutdown entry point
2764 * @device: Generic device structure
2765 */
2766static void megasas_shutdown(struct pci_dev *pdev)
2767{
2768 struct megasas_instance *instance = pci_get_drvdata(pdev);
2769 megasas_flush_cache(instance);
2770}
2771
2772/**
2773 * megasas_mgmt_open - char node "open" entry point
2774 */
2775static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2776{
2777 /*
2778 * Allow only those users with admin rights
2779 */
2780 if (!capable(CAP_SYS_ADMIN))
2781 return -EACCES;
2782
2783 return 0;
2784}
2785
2786/**
2787 * megasas_mgmt_release - char node "release" entry point
2788 */
2789static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2790{
2791 filep->private_data = NULL;
2792 fasync_helper(-1, filep, 0, &megasas_async_queue);
2793
2794 return 0;
2795}
2796
2797/**
2798 * megasas_mgmt_fasync - Async notifier registration from applications
2799 *
2800 * This function adds the calling process to a driver global queue. When an
2801 * event occurs, SIGIO will be sent to all processes in this queue.
2802 */
2803static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2804{
2805 int rc;
2806
0b950672 2807 mutex_lock(&megasas_async_queue_mutex);
c4a3e0a5
BS
2808
2809 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2810
0b950672 2811 mutex_unlock(&megasas_async_queue_mutex);
c4a3e0a5
BS
2812
2813 if (rc >= 0) {
2814 /* For sanity check when we get ioctl */
2815 filep->private_data = filep;
2816 return 0;
2817 }
2818
2819 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2820
2821 return rc;
2822}
2823
2824/**
2825 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2826 * @instance: Adapter soft state
2827 * @argp: User's ioctl packet
2828 */
2829static int
2830megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2831 struct megasas_iocpacket __user * user_ioc,
2832 struct megasas_iocpacket *ioc)
2833{
2834 struct megasas_sge32 *kern_sge32;
2835 struct megasas_cmd *cmd;
2836 void *kbuff_arr[MAX_IOCTL_SGE];
2837 dma_addr_t buf_handle = 0;
2838 int error = 0, i;
2839 void *sense = NULL;
2840 dma_addr_t sense_handle;
2841 u32 *sense_ptr;
b10c36a5 2842 unsigned long *sense_buff;
c4a3e0a5
BS
2843
2844 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2845
2846 if (ioc->sge_count > MAX_IOCTL_SGE) {
2847 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2848 ioc->sge_count, MAX_IOCTL_SGE);
2849 return -EINVAL;
2850 }
2851
2852 cmd = megasas_get_cmd(instance);
2853 if (!cmd) {
2854 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2855 return -ENOMEM;
2856 }
2857
2858 /*
2859 * User's IOCTL packet has 2 frames (maximum). Copy those two
2860 * frames into our cmd's frames. cmd->frame's context will get
2861 * overwritten when we copy from user's frames. So set that value
2862 * alone separately
2863 */
2864 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2865 cmd->frame->hdr.context = cmd->index;
2866
2867 /*
2868 * The management interface between applications and the fw uses
2869 * MFI frames. E.g, RAID configuration changes, LD property changes
2870 * etc are accomplishes through different kinds of MFI frames. The
2871 * driver needs to care only about substituting user buffers with
2872 * kernel buffers in SGLs. The location of SGL is embedded in the
2873 * struct iocpacket itself.
2874 */
2875 kern_sge32 = (struct megasas_sge32 *)
2876 ((unsigned long)cmd->frame + ioc->sgl_off);
2877
2878 /*
2879 * For each user buffer, create a mirror buffer and copy in
2880 */
2881 for (i = 0; i < ioc->sge_count; i++) {
9f35fa8a 2882 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
c4a3e0a5 2883 ioc->sgl[i].iov_len,
9f35fa8a 2884 &buf_handle, GFP_KERNEL);
c4a3e0a5
BS
2885 if (!kbuff_arr[i]) {
2886 printk(KERN_DEBUG "megasas: Failed to alloc "
2887 "kernel SGL buffer for IOCTL \n");
2888 error = -ENOMEM;
2889 goto out;
2890 }
2891
2892 /*
2893 * We don't change the dma_coherent_mask, so
2894 * pci_alloc_consistent only returns 32bit addresses
2895 */
2896 kern_sge32[i].phys_addr = (u32) buf_handle;
2897 kern_sge32[i].length = ioc->sgl[i].iov_len;
2898
2899 /*
2900 * We created a kernel buffer corresponding to the
2901 * user buffer. Now copy in from the user buffer
2902 */
2903 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2904 (u32) (ioc->sgl[i].iov_len))) {
2905 error = -EFAULT;
2906 goto out;
2907 }
2908 }
2909
2910 if (ioc->sense_len) {
9f35fa8a
SP
2911 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2912 &sense_handle, GFP_KERNEL);
c4a3e0a5
BS
2913 if (!sense) {
2914 error = -ENOMEM;
2915 goto out;
2916 }
2917
2918 sense_ptr =
2919 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2920 *sense_ptr = sense_handle;
2921 }
2922
2923 /*
2924 * Set the sync_cmd flag so that the ISR knows not to complete this
2925 * cmd to the SCSI mid-layer
2926 */
2927 cmd->sync_cmd = 1;
2928 megasas_issue_blocked_cmd(instance, cmd);
2929 cmd->sync_cmd = 0;
2930
2931 /*
2932 * copy out the kernel buffers to user buffers
2933 */
2934 for (i = 0; i < ioc->sge_count; i++) {
2935 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2936 ioc->sgl[i].iov_len)) {
2937 error = -EFAULT;
2938 goto out;
2939 }
2940 }
2941
2942 /*
2943 * copy out the sense
2944 */
2945 if (ioc->sense_len) {
2946 /*
b10c36a5 2947 * sense_buff points to the location that has the user
c4a3e0a5
BS
2948 * sense buffer address
2949 */
b10c36a5 2950 sense_buff = (unsigned long *) ((unsigned long)ioc->frame.raw +
2951 ioc->sense_off);
c4a3e0a5 2952
b10c36a5 2953 if (copy_to_user((void __user *)(unsigned long)(*sense_buff),
2954 sense, ioc->sense_len)) {
2955 printk(KERN_ERR "megasas: Failed to copy out to user "
2956 "sense data\n");
c4a3e0a5
BS
2957 error = -EFAULT;
2958 goto out;
2959 }
2960 }
2961
2962 /*
2963 * copy the status codes returned by the fw
2964 */
2965 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2966 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2967 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2968 error = -EFAULT;
2969 }
2970
2971 out:
2972 if (sense) {
9f35fa8a 2973 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
c4a3e0a5
BS
2974 sense, sense_handle);
2975 }
2976
2977 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
9f35fa8a 2978 dma_free_coherent(&instance->pdev->dev,
c4a3e0a5
BS
2979 kern_sge32[i].length,
2980 kbuff_arr[i], kern_sge32[i].phys_addr);
2981 }
2982
2983 megasas_return_cmd(instance, cmd);
2984 return error;
2985}
2986
2987static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2988{
2989 int i;
2990
2991 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2992
2993 if ((megasas_mgmt_info.instance[i]) &&
2994 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2995 return megasas_mgmt_info.instance[i];
2996 }
2997
2998 return NULL;
2999}
3000
3001static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3002{
3003 struct megasas_iocpacket __user *user_ioc =
3004 (struct megasas_iocpacket __user *)arg;
3005 struct megasas_iocpacket *ioc;
3006 struct megasas_instance *instance;
3007 int error;
3008
3009 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3010 if (!ioc)
3011 return -ENOMEM;
3012
3013 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3014 error = -EFAULT;
3015 goto out_kfree_ioc;
3016 }
3017
3018 instance = megasas_lookup_instance(ioc->host_no);
3019 if (!instance) {
3020 error = -ENODEV;
3021 goto out_kfree_ioc;
3022 }
3023
3024 /*
3025 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3026 */
3027 if (down_interruptible(&instance->ioctl_sem)) {
3028 error = -ERESTARTSYS;
3029 goto out_kfree_ioc;
3030 }
3031 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3032 up(&instance->ioctl_sem);
3033
3034 out_kfree_ioc:
3035 kfree(ioc);
3036 return error;
3037}
3038
3039static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3040{
3041 struct megasas_instance *instance;
3042 struct megasas_aen aen;
3043 int error;
3044
3045 if (file->private_data != file) {
3046 printk(KERN_DEBUG "megasas: fasync_helper was not "
3047 "called first\n");
3048 return -EINVAL;
3049 }
3050
3051 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3052 return -EFAULT;
3053
3054 instance = megasas_lookup_instance(aen.host_no);
3055
3056 if (!instance)
3057 return -ENODEV;
3058
e5a69e27 3059 mutex_lock(&instance->aen_mutex);
c4a3e0a5
BS
3060 error = megasas_register_aen(instance, aen.seq_num,
3061 aen.class_locale_word);
e5a69e27 3062 mutex_unlock(&instance->aen_mutex);
c4a3e0a5
BS
3063 return error;
3064}
3065
3066/**
3067 * megasas_mgmt_ioctl - char node ioctl entry point
3068 */
3069static long
3070megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3071{
3072 switch (cmd) {
3073 case MEGASAS_IOC_FIRMWARE:
3074 return megasas_mgmt_ioctl_fw(file, arg);
3075
3076 case MEGASAS_IOC_GET_AEN:
3077 return megasas_mgmt_ioctl_aen(file, arg);
3078 }
3079
3080 return -ENOTTY;
3081}
3082
3083#ifdef CONFIG_COMPAT
3084static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3085{
3086 struct compat_megasas_iocpacket __user *cioc =
3087 (struct compat_megasas_iocpacket __user *)arg;
3088 struct megasas_iocpacket __user *ioc =
3089 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3090 int i;
3091 int error = 0;
3092
83aabc1b
JG
3093 if (clear_user(ioc, sizeof(*ioc)))
3094 return -EFAULT;
c4a3e0a5
BS
3095
3096 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3097 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3098 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3099 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3100 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3101 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3102 return -EFAULT;
3103
3104 for (i = 0; i < MAX_IOCTL_SGE; i++) {
3105 compat_uptr_t ptr;
3106
3107 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3108 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3109 copy_in_user(&ioc->sgl[i].iov_len,
3110 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3111 return -EFAULT;
3112 }
3113
3114 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3115
3116 if (copy_in_user(&cioc->frame.hdr.cmd_status,
3117 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3118 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3119 return -EFAULT;
3120 }
3121 return error;
3122}
3123
3124static long
3125megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3126 unsigned long arg)
3127{
3128 switch (cmd) {
cb59aa6a
SP
3129 case MEGASAS_IOC_FIRMWARE32:
3130 return megasas_mgmt_compat_ioctl_fw(file, arg);
c4a3e0a5
BS
3131 case MEGASAS_IOC_GET_AEN:
3132 return megasas_mgmt_ioctl_aen(file, arg);
3133 }
3134
3135 return -ENOTTY;
3136}
3137#endif
3138
3139/*
3140 * File operations structure for management interface
3141 */
00977a59 3142static const struct file_operations megasas_mgmt_fops = {
c4a3e0a5
BS
3143 .owner = THIS_MODULE,
3144 .open = megasas_mgmt_open,
3145 .release = megasas_mgmt_release,
3146 .fasync = megasas_mgmt_fasync,
3147 .unlocked_ioctl = megasas_mgmt_ioctl,
3148#ifdef CONFIG_COMPAT
3149 .compat_ioctl = megasas_mgmt_compat_ioctl,
3150#endif
3151};
3152
3153/*
3154 * PCI hotplug support registration structure
3155 */
3156static struct pci_driver megasas_pci_driver = {
3157
3158 .name = "megaraid_sas",
3159 .id_table = megasas_pci_table,
3160 .probe = megasas_probe_one,
3161 .remove = __devexit_p(megasas_detach_one),
31ea7088 3162 .suspend = megasas_suspend,
3163 .resume = megasas_resume,
c4a3e0a5
BS
3164 .shutdown = megasas_shutdown,
3165};
3166
3167/*
3168 * Sysfs driver attributes
3169 */
3170static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3171{
3172 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3173 MEGASAS_VERSION);
3174}
3175
3176static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3177
3178static ssize_t
3179megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3180{
3181 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3182 MEGASAS_RELDATE);
3183}
3184
3185static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3186 NULL);
3187
658dcedb
SP
3188static ssize_t
3189megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3190{
3191 return sprintf(buf,"%u",megasas_dbg_lvl);
3192}
3193
3194static ssize_t
3195megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3196{
3197 int retval = count;
3198 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3199 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3200 retval = -EINVAL;
3201 }
3202 return retval;
3203}
3204
3205static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3206 megasas_sysfs_set_dbg_lvl);
3207
c4a3e0a5
BS
3208/**
3209 * megasas_init - Driver load entry point
3210 */
3211static int __init megasas_init(void)
3212{
3213 int rval;
3214
3215 /*
3216 * Announce driver version and other information
3217 */
3218 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3219 MEGASAS_EXT_VERSION);
3220
3221 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3222
3223 /*
3224 * Register character device node
3225 */
3226 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3227
3228 if (rval < 0) {
3229 printk(KERN_DEBUG "megasas: failed to open device node\n");
3230 return rval;
3231 }
3232
3233 megasas_mgmt_majorno = rval;
3234
3235 /*
3236 * Register ourselves as PCI hotplug module
3237 */
4041b9cd 3238 rval = pci_register_driver(&megasas_pci_driver);
c4a3e0a5
BS
3239
3240 if (rval) {
3241 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
83aabc1b
JG
3242 goto err_pcidrv;
3243 }
3244
3245 rval = driver_create_file(&megasas_pci_driver.driver,
3246 &driver_attr_version);
3247 if (rval)
3248 goto err_dcf_attr_ver;
3249 rval = driver_create_file(&megasas_pci_driver.driver,
3250 &driver_attr_release_date);
3251 if (rval)
3252 goto err_dcf_rel_date;
3253 rval = driver_create_file(&megasas_pci_driver.driver,
3254 &driver_attr_dbg_lvl);
3255 if (rval)
3256 goto err_dcf_dbg_lvl;
c4a3e0a5
BS
3257
3258 return rval;
83aabc1b
JG
3259err_dcf_dbg_lvl:
3260 driver_remove_file(&megasas_pci_driver.driver,
3261 &driver_attr_release_date);
3262err_dcf_rel_date:
3263 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3264err_dcf_attr_ver:
3265 pci_unregister_driver(&megasas_pci_driver);
3266err_pcidrv:
3267 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3268 return rval;
c4a3e0a5
BS
3269}
3270
3271/**
3272 * megasas_exit - Driver unload entry point
3273 */
3274static void __exit megasas_exit(void)
3275{
658dcedb
SP
3276 driver_remove_file(&megasas_pci_driver.driver,
3277 &driver_attr_dbg_lvl);
83aabc1b
JG
3278 driver_remove_file(&megasas_pci_driver.driver,
3279 &driver_attr_release_date);
3280 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
c4a3e0a5
BS
3281
3282 pci_unregister_driver(&megasas_pci_driver);
3283 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3284}
3285
3286module_init(megasas_init);
3287module_exit(megasas_exit);