]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/scsi_lib.c
[SCSI] aic7xxx_old, eata_pio, ips, libsas: don't zero out sense_buffer in queuecommand
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / scsi_lib.c
CommitLineData
1da177e4
LT
1/*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
faead26d 19#include <linux/hardirq.h>
c6132da1 20#include <linux/scatterlist.h>
1da177e4
LT
21
22#include <scsi/scsi.h>
beb40487 23#include <scsi/scsi_cmnd.h>
1da177e4
LT
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
1da177e4
LT
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
6391a113 34#define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
5972511b 35#define SG_MEMPOOL_SIZE 2
1da177e4 36
fd820f40
FT
37/*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42#define SCSI_MAX_SG_SEGMENTS 128
43
1da177e4
LT
44struct scsi_host_sg_pool {
45 size_t size;
a8474ce2 46 char *name;
e18b890b 47 struct kmem_cache *slab;
1da177e4
LT
48 mempool_t *pool;
49};
50
a8474ce2 51#define SP(x) { x, "sgpool-" #x }
52c1da39 52static struct scsi_host_sg_pool scsi_sg_pools[] = {
1da177e4
LT
53 SP(8),
54 SP(16),
fd820f40 55#if (SCSI_MAX_SG_SEGMENTS > 16)
1da177e4 56 SP(32),
fd820f40 57#if (SCSI_MAX_SG_SEGMENTS > 32)
1da177e4 58 SP(64),
fd820f40 59#if (SCSI_MAX_SG_SEGMENTS > 64)
1da177e4 60 SP(128),
fd820f40
FT
61#endif
62#endif
63#endif
a8474ce2 64};
1da177e4
LT
65#undef SP
66
a1bf9d1d 67static void scsi_run_queue(struct request_queue *q);
e91442b6
JB
68
69/*
70 * Function: scsi_unprep_request()
71 *
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments: req - request to unprepare
76 *
77 * Lock status: Assumed that no locks are held upon entry.
78 *
79 * Returns: Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83 struct scsi_cmnd *cmd = req->special;
84
4aff5e23 85 req->cmd_flags &= ~REQ_DONTPREP;
beb40487 86 req->special = NULL;
e91442b6 87
e91442b6
JB
88 scsi_put_command(cmd);
89}
a1bf9d1d 90
1da177e4
LT
91/*
92 * Function: scsi_queue_insert()
93 *
94 * Purpose: Insert a command in the midlevel queue.
95 *
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns: Nothing.
102 *
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
a1bf9d1d
TH
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
1da177e4
LT
116
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
119
120 /*
d8c37e7b 121 * Set the appropriate busy bit for the device/host.
1da177e4
LT
122 *
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
125 *
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
132 */
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
137
1da177e4
LT
138 /*
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
141 */
142 scsi_device_unbusy(device);
143
144 /*
a1bf9d1d
TH
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
1da177e4
LT
147 *
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
150 *
a1bf9d1d 151 * Although we *don't* plug the queue, we call the request
1da177e4
LT
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
a1bf9d1d
TH
154 */
155 spin_lock_irqsave(q->queue_lock, flags);
59897dad 156 blk_requeue_request(q, cmd->request);
a1bf9d1d
TH
157 spin_unlock_irqrestore(q->queue_lock, flags);
158
159 scsi_run_queue(q);
160
1da177e4
LT
161 return 0;
162}
163
39216033 164/**
33aa687d 165 * scsi_execute - insert request and wait for the result
39216033
JB
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
33aa687d 174 * @flags: or into request flags;
39216033 175 *
59c51591 176 * returns the req->errors value which is the scsi_cmnd result
ea73a9f2 177 * field.
eb44820c 178 */
33aa687d
JB
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
39216033
JB
182{
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
186
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
192
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
17e01f21 197 req->retries = retries;
39216033 198 req->timeout = timeout;
4aff5e23
JA
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
39216033
JB
201
202 /*
203 * head injection *required* here otherwise quiesce won't work
204 */
205 blk_execute_rq(req->q, NULL, req, 1);
206
207 ret = req->errors;
208 out:
209 blk_put_request(req);
210
211 return ret;
212}
33aa687d 213EXPORT_SYMBOL(scsi_execute);
39216033 214
ea73a9f2
JB
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220 char *sense = NULL;
1ccb48bb 221 int result;
222
ea73a9f2 223 if (sshdr) {
24669f75 224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
ea73a9f2
JB
225 if (!sense)
226 return DRIVER_ERROR << 24;
ea73a9f2 227 }
1ccb48bb 228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
24669f75 229 sense, timeout, retries, 0);
ea73a9f2 230 if (sshdr)
e514385b 231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
ea73a9f2
JB
232
233 kfree(sense);
234 return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
6e68af66
MC
238struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
e18b890b 244static struct kmem_cache *scsi_io_context_cache;
aa7b5cd7 245
e650c305 246static void scsi_end_async(struct request *req, int uptodate)
6e68af66
MC
247{
248 struct scsi_io_context *sioc = req->end_io_data;
249
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
aa7b5cd7 253 kmem_cache_free(scsi_io_context_cache, sioc);
6e68af66
MC
254 __blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259 struct request_queue *q = rq->q;
260
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
265
3001ca77 266 return blk_rq_append_bio(q, rq, bio);
6e68af66
MC
267}
268
6712ecf8 269static void scsi_bi_endio(struct bio *bio, int error)
6e68af66 270{
6e68af66 271 bio_put(bio);
6e68af66
MC
272}
273
274/**
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
eb44820c 277 * @sgl: scatterlist
6e68af66
MC
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
281 *
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
285 */
286static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 int nsegs, unsigned bufflen, gfp_t gfp)
288{
289 struct request_queue *q = rq->q;
f5235962 290 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
bd441dea 291 unsigned int data_len = bufflen, len, bytes, off;
c6132da1 292 struct scatterlist *sg;
6e68af66
MC
293 struct page *page;
294 struct bio *bio = NULL;
295 int i, err, nr_vecs = 0;
296
c6132da1 297 for_each_sg(sgl, sg, nsegs, i) {
45711f1a 298 page = sg_page(sg);
c6132da1
JA
299 off = sg->offset;
300 len = sg->length;
301 data_len += len;
6e68af66 302
bd441dea
MC
303 while (len > 0 && data_len > 0) {
304 /*
305 * sg sends a scatterlist that is larger than
306 * the data_len it wants transferred for certain
307 * IO sizes
308 */
6e68af66 309 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
bd441dea 310 bytes = min(bytes, data_len);
6e68af66
MC
311
312 if (!bio) {
313 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314 nr_pages -= nr_vecs;
315
316 bio = bio_alloc(gfp, nr_vecs);
317 if (!bio) {
318 err = -ENOMEM;
319 goto free_bios;
320 }
321 bio->bi_end_io = scsi_bi_endio;
322 }
323
324 if (bio_add_pc_page(q, bio, page, bytes, off) !=
325 bytes) {
326 bio_put(bio);
327 err = -EINVAL;
328 goto free_bios;
329 }
330
331 if (bio->bi_vcnt >= nr_vecs) {
332 err = scsi_merge_bio(rq, bio);
333 if (err) {
6712ecf8 334 bio_endio(bio, 0);
6e68af66
MC
335 goto free_bios;
336 }
337 bio = NULL;
338 }
339
340 page++;
341 len -= bytes;
bd441dea 342 data_len -=bytes;
6e68af66
MC
343 off = 0;
344 }
345 }
346
347 rq->buffer = rq->data = NULL;
bd441dea 348 rq->data_len = bufflen;
6e68af66
MC
349 return 0;
350
351free_bios:
352 while ((bio = rq->bio) != NULL) {
353 rq->bio = bio->bi_next;
354 /*
355 * call endio instead of bio_put incase it was bounced
356 */
6712ecf8 357 bio_endio(bio, 0);
6e68af66
MC
358 }
359
360 return err;
361}
362
363/**
364 * scsi_execute_async - insert request
365 * @sdev: scsi device
366 * @cmd: scsi command
bb1d1073 367 * @cmd_len: length of scsi cdb
eb44820c 368 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
6e68af66
MC
369 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen: len of buffer
371 * @use_sg: if buffer is a scatterlist this is the number of elements
372 * @timeout: request timeout in seconds
373 * @retries: number of times to retry request
eb44820c
RL
374 * @privdata: data passed to done()
375 * @done: callback function when done
376 * @gfp: memory allocation flags
377 */
6e68af66 378int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
bb1d1073 379 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
6e68af66
MC
380 int use_sg, int timeout, int retries, void *privdata,
381 void (*done)(void *, char *, int, int), gfp_t gfp)
382{
383 struct request *req;
384 struct scsi_io_context *sioc;
385 int err = 0;
386 int write = (data_direction == DMA_TO_DEVICE);
387
c3762229 388 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
6e68af66
MC
389 if (!sioc)
390 return DRIVER_ERROR << 24;
391
392 req = blk_get_request(sdev->request_queue, write, gfp);
393 if (!req)
394 goto free_sense;
4aff5e23
JA
395 req->cmd_type = REQ_TYPE_BLOCK_PC;
396 req->cmd_flags |= REQ_QUIET;
6e68af66
MC
397
398 if (use_sg)
399 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400 else if (bufflen)
401 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
402
403 if (err)
404 goto free_req;
405
bb1d1073 406 req->cmd_len = cmd_len;
097b8457 407 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
6e68af66
MC
408 memcpy(req->cmd, cmd, req->cmd_len);
409 req->sense = sioc->sense;
410 req->sense_len = 0;
411 req->timeout = timeout;
17e01f21 412 req->retries = retries;
6e68af66
MC
413 req->end_io_data = sioc;
414
415 sioc->data = privdata;
416 sioc->done = done;
417
418 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419 return 0;
420
421free_req:
422 blk_put_request(req);
423free_sense:
6470f2ba 424 kmem_cache_free(scsi_io_context_cache, sioc);
6e68af66
MC
425 return DRIVER_ERROR << 24;
426}
427EXPORT_SYMBOL_GPL(scsi_execute_async);
428
1da177e4
LT
429/*
430 * Function: scsi_init_cmd_errh()
431 *
432 * Purpose: Initialize cmd fields related to error handling.
433 *
434 * Arguments: cmd - command that is ready to be queued.
435 *
1da177e4
LT
436 * Notes: This function has the job of initializing a number of
437 * fields related to error handling. Typically this will
438 * be called once for each command, as required.
439 */
631c228c 440static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
1da177e4 441{
1da177e4 442 cmd->serial_number = 0;
52aeeca9 443 cmd->resid = 0;
1da177e4 444 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
1da177e4
LT
445 if (cmd->cmd_len == 0)
446 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
1da177e4
LT
447}
448
449void scsi_device_unbusy(struct scsi_device *sdev)
450{
451 struct Scsi_Host *shost = sdev->host;
452 unsigned long flags;
453
454 spin_lock_irqsave(shost->host_lock, flags);
455 shost->host_busy--;
939647ee 456 if (unlikely(scsi_host_in_recovery(shost) &&
ee7863bc 457 (shost->host_failed || shost->host_eh_scheduled)))
1da177e4
LT
458 scsi_eh_wakeup(shost);
459 spin_unlock(shost->host_lock);
152587de 460 spin_lock(sdev->request_queue->queue_lock);
1da177e4 461 sdev->device_busy--;
152587de 462 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
1da177e4
LT
463}
464
465/*
466 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467 * and call blk_run_queue for all the scsi_devices on the target -
468 * including current_sdev first.
469 *
470 * Called with *no* scsi locks held.
471 */
472static void scsi_single_lun_run(struct scsi_device *current_sdev)
473{
474 struct Scsi_Host *shost = current_sdev->host;
475 struct scsi_device *sdev, *tmp;
476 struct scsi_target *starget = scsi_target(current_sdev);
477 unsigned long flags;
478
479 spin_lock_irqsave(shost->host_lock, flags);
480 starget->starget_sdev_user = NULL;
481 spin_unlock_irqrestore(shost->host_lock, flags);
482
483 /*
484 * Call blk_run_queue for all LUNs on the target, starting with
485 * current_sdev. We race with others (to set starget_sdev_user),
486 * but in most cases, we will be first. Ideally, each LU on the
487 * target would get some limited time or requests on the target.
488 */
489 blk_run_queue(current_sdev->request_queue);
490
491 spin_lock_irqsave(shost->host_lock, flags);
492 if (starget->starget_sdev_user)
493 goto out;
494 list_for_each_entry_safe(sdev, tmp, &starget->devices,
495 same_target_siblings) {
496 if (sdev == current_sdev)
497 continue;
498 if (scsi_device_get(sdev))
499 continue;
500
501 spin_unlock_irqrestore(shost->host_lock, flags);
502 blk_run_queue(sdev->request_queue);
503 spin_lock_irqsave(shost->host_lock, flags);
504
505 scsi_device_put(sdev);
506 }
507 out:
508 spin_unlock_irqrestore(shost->host_lock, flags);
509}
510
511/*
512 * Function: scsi_run_queue()
513 *
514 * Purpose: Select a proper request queue to serve next
515 *
516 * Arguments: q - last request's queue
517 *
518 * Returns: Nothing
519 *
520 * Notes: The previous command was completely finished, start
521 * a new one if possible.
522 */
523static void scsi_run_queue(struct request_queue *q)
524{
525 struct scsi_device *sdev = q->queuedata;
526 struct Scsi_Host *shost = sdev->host;
527 unsigned long flags;
528
25d7c363 529 if (scsi_target(sdev)->single_lun)
1da177e4
LT
530 scsi_single_lun_run(sdev);
531
532 spin_lock_irqsave(shost->host_lock, flags);
533 while (!list_empty(&shost->starved_list) &&
534 !shost->host_blocked && !shost->host_self_blocked &&
535 !((shost->can_queue > 0) &&
536 (shost->host_busy >= shost->can_queue))) {
537 /*
538 * As long as shost is accepting commands and we have
539 * starved queues, call blk_run_queue. scsi_request_fn
540 * drops the queue_lock and can add us back to the
541 * starved_list.
542 *
543 * host_lock protects the starved_list and starved_entry.
544 * scsi_request_fn must get the host_lock before checking
545 * or modifying starved_list or starved_entry.
546 */
547 sdev = list_entry(shost->starved_list.next,
548 struct scsi_device, starved_entry);
549 list_del_init(&sdev->starved_entry);
550 spin_unlock_irqrestore(shost->host_lock, flags);
551
04846f25
AH
552
553 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554 !test_and_set_bit(QUEUE_FLAG_REENTER,
555 &sdev->request_queue->queue_flags)) {
556 blk_run_queue(sdev->request_queue);
557 clear_bit(QUEUE_FLAG_REENTER,
558 &sdev->request_queue->queue_flags);
559 } else
560 blk_run_queue(sdev->request_queue);
1da177e4
LT
561
562 spin_lock_irqsave(shost->host_lock, flags);
563 if (unlikely(!list_empty(&sdev->starved_entry)))
564 /*
565 * sdev lost a race, and was put back on the
566 * starved list. This is unlikely but without this
567 * in theory we could loop forever.
568 */
569 break;
570 }
571 spin_unlock_irqrestore(shost->host_lock, flags);
572
573 blk_run_queue(q);
574}
575
576/*
577 * Function: scsi_requeue_command()
578 *
579 * Purpose: Handle post-processing of completed commands.
580 *
581 * Arguments: q - queue to operate on
582 * cmd - command that may need to be requeued.
583 *
584 * Returns: Nothing
585 *
586 * Notes: After command completion, there may be blocks left
587 * over which weren't finished by the previous command
588 * this can be for a number of reasons - the main one is
589 * I/O errors in the middle of the request, in which case
590 * we need to request the blocks that come after the bad
591 * sector.
e91442b6 592 * Notes: Upon return, cmd is a stale pointer.
1da177e4
LT
593 */
594static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
595{
e91442b6 596 struct request *req = cmd->request;
283369cc
TH
597 unsigned long flags;
598
e91442b6 599 scsi_unprep_request(req);
283369cc 600 spin_lock_irqsave(q->queue_lock, flags);
e91442b6 601 blk_requeue_request(q, req);
283369cc 602 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4
LT
603
604 scsi_run_queue(q);
605}
606
607void scsi_next_command(struct scsi_cmnd *cmd)
608{
49d7bc64
LT
609 struct scsi_device *sdev = cmd->device;
610 struct request_queue *q = sdev->request_queue;
611
612 /* need to hold a reference on the device before we let go of the cmd */
613 get_device(&sdev->sdev_gendev);
1da177e4
LT
614
615 scsi_put_command(cmd);
616 scsi_run_queue(q);
49d7bc64
LT
617
618 /* ok to remove device now */
619 put_device(&sdev->sdev_gendev);
1da177e4
LT
620}
621
622void scsi_run_host_queues(struct Scsi_Host *shost)
623{
624 struct scsi_device *sdev;
625
626 shost_for_each_device(sdev, shost)
627 scsi_run_queue(sdev->request_queue);
628}
629
630/*
631 * Function: scsi_end_request()
632 *
633 * Purpose: Post-processing of completed commands (usually invoked at end
634 * of upper level post-processing and scsi_io_completion).
635 *
636 * Arguments: cmd - command that is complete.
637 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638 * bytes - number of bytes of completed I/O
639 * requeue - indicates whether we should requeue leftovers.
640 *
641 * Lock status: Assumed that lock is not held upon entry.
642 *
e91442b6 643 * Returns: cmd if requeue required, NULL otherwise.
1da177e4
LT
644 *
645 * Notes: This is called for block device requests in order to
646 * mark some number of sectors as complete.
647 *
648 * We are guaranteeing that the request queue will be goosed
649 * at some point during this call.
e91442b6 650 * Notes: If cmd was requeued, upon return it will be a stale pointer.
1da177e4
LT
651 */
652static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653 int bytes, int requeue)
654{
165125e1 655 struct request_queue *q = cmd->device->request_queue;
1da177e4
LT
656 struct request *req = cmd->request;
657 unsigned long flags;
658
659 /*
660 * If there are blocks left over at the end, set up the command
661 * to queue the remainder of them.
662 */
663 if (end_that_request_chunk(req, uptodate, bytes)) {
664 int leftover = (req->hard_nr_sectors << 9);
665
666 if (blk_pc_request(req))
667 leftover = req->data_len;
668
669 /* kill remainder if no retrys */
670 if (!uptodate && blk_noretry_request(req))
671 end_that_request_chunk(req, 0, leftover);
672 else {
e91442b6 673 if (requeue) {
1da177e4
LT
674 /*
675 * Bleah. Leftovers again. Stick the
676 * leftovers in the front of the
677 * queue, and goose the queue again.
678 */
679 scsi_requeue_command(q, cmd);
e91442b6
JB
680 cmd = NULL;
681 }
1da177e4
LT
682 return cmd;
683 }
684 }
685
686 add_disk_randomness(req->rq_disk);
687
688 spin_lock_irqsave(q->queue_lock, flags);
689 if (blk_rq_tagged(req))
690 blk_queue_end_tag(q, req);
8ffdc655 691 end_that_request_last(req, uptodate);
1da177e4
LT
692 spin_unlock_irqrestore(q->queue_lock, flags);
693
694 /*
695 * This will goose the queue request function at the end, so we don't
696 * need to worry about launching another command.
697 */
698 scsi_next_command(cmd);
699 return NULL;
700}
701
a8474ce2
JA
702/*
703 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
705 */
706#define SCSI_MAX_SG_CHAIN_SEGMENTS 2048
1da177e4 707
a8474ce2
JA
708static inline unsigned int scsi_sgtable_index(unsigned short nents)
709{
710 unsigned int index;
711
712 switch (nents) {
1da177e4 713 case 1 ... 8:
a8474ce2 714 index = 0;
1da177e4
LT
715 break;
716 case 9 ... 16:
a8474ce2 717 index = 1;
1da177e4 718 break;
fd820f40 719#if (SCSI_MAX_SG_SEGMENTS > 16)
1da177e4 720 case 17 ... 32:
a8474ce2 721 index = 2;
1da177e4 722 break;
fd820f40 723#if (SCSI_MAX_SG_SEGMENTS > 32)
1da177e4 724 case 33 ... 64:
a8474ce2 725 index = 3;
1da177e4 726 break;
fd820f40
FT
727#if (SCSI_MAX_SG_SEGMENTS > 64)
728 case 65 ... 128:
a8474ce2 729 index = 4;
1da177e4 730 break;
fd820f40
FT
731#endif
732#endif
733#endif
1da177e4 734 default:
a8474ce2
JA
735 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736 BUG();
1da177e4
LT
737 }
738
a8474ce2
JA
739 return index;
740}
741
742struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
743{
744 struct scsi_host_sg_pool *sgp;
745 struct scatterlist *sgl, *prev, *ret;
746 unsigned int index;
747 int this, left;
748
749 BUG_ON(!cmd->use_sg);
750
751 left = cmd->use_sg;
752 ret = prev = NULL;
753 do {
754 this = left;
755 if (this > SCSI_MAX_SG_SEGMENTS) {
756 this = SCSI_MAX_SG_SEGMENTS - 1;
757 index = SG_MEMPOOL_NR - 1;
758 } else
759 index = scsi_sgtable_index(this);
760
761 left -= this;
762
763 sgp = scsi_sg_pools + index;
764
765 sgl = mempool_alloc(sgp->pool, gfp_mask);
766 if (unlikely(!sgl))
767 goto enomem;
768
45711f1a 769 sg_init_table(sgl, sgp->size);
a3bec5c5 770
a8474ce2
JA
771 /*
772 * first loop through, set initial index and return value
773 */
2a7c59e7 774 if (!ret)
a8474ce2 775 ret = sgl;
a8474ce2
JA
776
777 /*
778 * chain previous sglist, if any. we know the previous
779 * sglist must be the biggest one, or we would not have
780 * ended up doing another loop.
781 */
782 if (prev)
783 sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784
45711f1a
JA
785 /*
786 * if we have nothing left, mark the last segment as
787 * end-of-list
788 */
789 if (!left)
c46f2334 790 sg_mark_end(&sgl[this - 1]);
45711f1a 791
a8474ce2
JA
792 /*
793 * don't allow subsequent mempool allocs to sleep, it would
794 * violate the mempool principle.
795 */
796 gfp_mask &= ~__GFP_WAIT;
797 gfp_mask |= __GFP_HIGH;
798 prev = sgl;
799 } while (left);
800
801 /*
802 * ->use_sg may get modified after dma mapping has potentially
803 * shrunk the number of segments, so keep a copy of it for free.
804 */
805 cmd->__use_sg = cmd->use_sg;
806 return ret;
807enomem:
808 if (ret) {
809 /*
810 * Free entries chained off ret. Since we were trying to
811 * allocate another sglist, we know that all entries are of
812 * the max size.
813 */
814 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
815 prev = ret;
816 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
817
818 while ((sgl = sg_chain_ptr(ret)) != NULL) {
819 ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
820 mempool_free(sgl, sgp->pool);
821 }
822
823 mempool_free(prev, sgp->pool);
824 }
825 return NULL;
1da177e4
LT
826}
827
b58d9154
FT
828EXPORT_SYMBOL(scsi_alloc_sgtable);
829
0cde8d95 830void scsi_free_sgtable(struct scsi_cmnd *cmd)
1da177e4 831{
0cde8d95 832 struct scatterlist *sgl = cmd->request_buffer;
1da177e4
LT
833 struct scsi_host_sg_pool *sgp;
834
a8474ce2
JA
835 /*
836 * if this is the biggest size sglist, check if we have
837 * chained parts we need to free
838 */
839 if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
840 unsigned short this, left;
841 struct scatterlist *next;
842 unsigned int index;
843
844 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
845 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
846 while (left && next) {
847 sgl = next;
848 this = left;
849 if (this > SCSI_MAX_SG_SEGMENTS) {
850 this = SCSI_MAX_SG_SEGMENTS - 1;
851 index = SG_MEMPOOL_NR - 1;
852 } else
853 index = scsi_sgtable_index(this);
854
855 left -= this;
856
857 sgp = scsi_sg_pools + index;
858
859 if (left)
860 next = sg_chain_ptr(&sgl[sgp->size - 1]);
861
862 mempool_free(sgl, sgp->pool);
863 }
864
865 /*
866 * Restore original, will be freed below
867 */
868 sgl = cmd->request_buffer;
2a7c59e7
FT
869 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
870 } else
871 sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
a8474ce2 872
1da177e4
LT
873 mempool_free(sgl, sgp->pool);
874}
875
b58d9154
FT
876EXPORT_SYMBOL(scsi_free_sgtable);
877
1da177e4
LT
878/*
879 * Function: scsi_release_buffers()
880 *
881 * Purpose: Completion processing for block device I/O requests.
882 *
883 * Arguments: cmd - command that we are bailing.
884 *
885 * Lock status: Assumed that no lock is held upon entry.
886 *
887 * Returns: Nothing
888 *
889 * Notes: In the event that an upper level driver rejects a
890 * command, we must release resources allocated during
891 * the __init_io() function. Primarily this would involve
892 * the scatter-gather table, and potentially any bounce
893 * buffers.
894 */
895static void scsi_release_buffers(struct scsi_cmnd *cmd)
896{
1da177e4 897 if (cmd->use_sg)
0cde8d95 898 scsi_free_sgtable(cmd);
1da177e4
LT
899
900 /*
901 * Zero these out. They now point to freed memory, and it is
902 * dangerous to hang onto the pointers.
903 */
1da177e4
LT
904 cmd->request_buffer = NULL;
905 cmd->request_bufflen = 0;
906}
907
908/*
909 * Function: scsi_io_completion()
910 *
911 * Purpose: Completion processing for block device I/O requests.
912 *
913 * Arguments: cmd - command that is finished.
914 *
915 * Lock status: Assumed that no lock is held upon entry.
916 *
917 * Returns: Nothing
918 *
919 * Notes: This function is matched in terms of capabilities to
920 * the function that created the scatter-gather list.
921 * In other words, if there are no bounce buffers
922 * (the normal case for most drivers), we don't need
923 * the logic to deal with cleaning up afterwards.
924 *
925 * We must do one of several things here:
926 *
927 * a) Call scsi_end_request. This will finish off the
928 * specified number of sectors. If we are done, the
929 * command block will be released, and the queue
930 * function will be goosed. If we are not done, then
931 * scsi_end_request will directly goose the queue.
932 *
933 * b) We can just use scsi_requeue_command() here. This would
934 * be used if we just wanted to retry, for example.
935 */
03aba2f7 936void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1da177e4
LT
937{
938 int result = cmd->result;
631c228c 939 int this_count = cmd->request_bufflen;
165125e1 940 struct request_queue *q = cmd->device->request_queue;
1da177e4
LT
941 struct request *req = cmd->request;
942 int clear_errors = 1;
943 struct scsi_sense_hdr sshdr;
944 int sense_valid = 0;
945 int sense_deferred = 0;
946
631c228c 947 scsi_release_buffers(cmd);
1da177e4
LT
948
949 if (result) {
950 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
951 if (sense_valid)
952 sense_deferred = scsi_sense_is_deferred(&sshdr);
953 }
631c228c 954
1da177e4
LT
955 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
956 req->errors = result;
957 if (result) {
958 clear_errors = 0;
959 if (sense_valid && req->sense) {
960 /*
961 * SG_IO wants current and deferred errors
962 */
963 int len = 8 + cmd->sense_buffer[7];
964
965 if (len > SCSI_SENSE_BUFFERSIZE)
966 len = SCSI_SENSE_BUFFERSIZE;
967 memcpy(req->sense, cmd->sense_buffer, len);
968 req->sense_len = len;
969 }
b22f687d
PW
970 }
971 req->data_len = cmd->resid;
1da177e4
LT
972 }
973
1da177e4
LT
974 /*
975 * Next deal with any sectors which we were able to correctly
976 * handle.
977 */
d6b0c537
JB
978 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
979 "%d bytes done.\n",
980 req->nr_sectors, good_bytes));
981 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
982
983 if (clear_errors)
984 req->errors = 0;
985
986 /* A number of bytes were successfully read. If there
987 * are leftovers and there is some kind of error
988 * (result != 0), retry the rest.
989 */
990 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
991 return;
03aba2f7
LT
992
993 /* good_bytes = 0, or (inclusive) there were leftovers and
994 * result = 0, so scsi_end_request couldn't retry.
1da177e4
LT
995 */
996 if (sense_valid && !sense_deferred) {
997 switch (sshdr.sense_key) {
998 case UNIT_ATTENTION:
999 if (cmd->device->removable) {
03aba2f7 1000 /* Detected disc change. Set a bit
1da177e4
LT
1001 * and quietly refuse further access.
1002 */
1003 cmd->device->changed = 1;
03aba2f7 1004 scsi_end_request(cmd, 0, this_count, 1);
1da177e4
LT
1005 return;
1006 } else {
03aba2f7
LT
1007 /* Must have been a power glitch, or a
1008 * bus reset. Could not have been a
1009 * media change, so we just retry the
1010 * request and see what happens.
1011 */
1da177e4
LT
1012 scsi_requeue_command(q, cmd);
1013 return;
1014 }
1015 break;
1016 case ILLEGAL_REQUEST:
03aba2f7
LT
1017 /* If we had an ILLEGAL REQUEST returned, then
1018 * we may have performed an unsupported
1019 * command. The only thing this should be
1020 * would be a ten byte read where only a six
1021 * byte read was supported. Also, on a system
1022 * where READ CAPACITY failed, we may have
1023 * read past the end of the disk.
1024 */
26a68019
JA
1025 if ((cmd->device->use_10_for_rw &&
1026 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1da177e4
LT
1027 (cmd->cmnd[0] == READ_10 ||
1028 cmd->cmnd[0] == WRITE_10)) {
1029 cmd->device->use_10_for_rw = 0;
03aba2f7
LT
1030 /* This will cause a retry with a
1031 * 6-byte command.
1da177e4
LT
1032 */
1033 scsi_requeue_command(q, cmd);
03aba2f7 1034 return;
1da177e4 1035 } else {
e91442b6 1036 scsi_end_request(cmd, 0, this_count, 1);
1da177e4
LT
1037 return;
1038 }
1039 break;
1040 case NOT_READY:
03aba2f7 1041 /* If the device is in the process of becoming
f3e93f73 1042 * ready, or has a temporary blockage, retry.
1da177e4 1043 */
f3e93f73
JB
1044 if (sshdr.asc == 0x04) {
1045 switch (sshdr.ascq) {
1046 case 0x01: /* becoming ready */
1047 case 0x04: /* format in progress */
1048 case 0x05: /* rebuild in progress */
1049 case 0x06: /* recalculation in progress */
1050 case 0x07: /* operation in progress */
1051 case 0x08: /* Long write in progress */
1052 case 0x09: /* self test in progress */
1053 scsi_requeue_command(q, cmd);
1054 return;
1055 default:
1056 break;
1057 }
1da177e4 1058 }
311b581e
JB
1059 if (!(req->cmd_flags & REQ_QUIET))
1060 scsi_cmd_print_sense_hdr(cmd,
1061 "Device not ready",
1062 &sshdr);
1063
e91442b6 1064 scsi_end_request(cmd, 0, this_count, 1);
1da177e4
LT
1065 return;
1066 case VOLUME_OVERFLOW:
4aff5e23 1067 if (!(req->cmd_flags & REQ_QUIET)) {
3bf743e7 1068 scmd_printk(KERN_INFO, cmd,
03aba2f7 1069 "Volume overflow, CDB: ");
631c228c 1070 __scsi_print_command(cmd->cmnd);
3173d8c3
JB
1071 scsi_print_sense("", cmd);
1072 }
03aba2f7
LT
1073 /* See SSC3rXX or current. */
1074 scsi_end_request(cmd, 0, this_count, 1);
1da177e4
LT
1075 return;
1076 default:
1077 break;
1078 }
03aba2f7 1079 }
1da177e4 1080 if (host_byte(result) == DID_RESET) {
03aba2f7
LT
1081 /* Third party bus reset or reset for error recovery
1082 * reasons. Just retry the request and see what
1083 * happens.
1da177e4
LT
1084 */
1085 scsi_requeue_command(q, cmd);
1086 return;
1087 }
1088 if (result) {
4aff5e23 1089 if (!(req->cmd_flags & REQ_QUIET)) {
a4d04a4c 1090 scsi_print_result(cmd);
3173d8c3
JB
1091 if (driver_byte(result) & DRIVER_SENSE)
1092 scsi_print_sense("", cmd);
1093 }
1da177e4 1094 }
03aba2f7 1095 scsi_end_request(cmd, 0, this_count, !result);
1da177e4 1096}
1da177e4
LT
1097
1098/*
1099 * Function: scsi_init_io()
1100 *
1101 * Purpose: SCSI I/O initialize function.
1102 *
1103 * Arguments: cmd - Command descriptor we wish to initialize
1104 *
1105 * Returns: 0 on success
1106 * BLKPREP_DEFER if the failure is retryable
1da177e4
LT
1107 */
1108static int scsi_init_io(struct scsi_cmnd *cmd)
1109{
1110 struct request *req = cmd->request;
1da177e4
LT
1111 int count;
1112
1113 /*
3b003157 1114 * We used to not use scatter-gather for single segment request,
1da177e4
LT
1115 * but now we do (it makes highmem I/O easier to support without
1116 * kmapping pages)
1117 */
1118 cmd->use_sg = req->nr_phys_segments;
1119
1120 /*
3b003157 1121 * If sg table allocation fails, requeue request later.
1da177e4 1122 */
a8474ce2
JA
1123 cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1124 if (unlikely(!cmd->request_buffer)) {
7c72ce81 1125 scsi_unprep_request(req);
1da177e4 1126 return BLKPREP_DEFER;
7c72ce81 1127 }
1da177e4 1128
3b003157 1129 req->buffer = NULL;
1da177e4
LT
1130 if (blk_pc_request(req))
1131 cmd->request_bufflen = req->data_len;
3b003157
CH
1132 else
1133 cmd->request_bufflen = req->nr_sectors << 9;
1da177e4
LT
1134
1135 /*
1136 * Next, walk the list, and fill in the addresses and sizes of
1137 * each segment.
1138 */
1139 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
4a03d90e
RR
1140 BUG_ON(count > cmd->use_sg);
1141 cmd->use_sg = count;
1142 return BLKPREP_OK;
1da177e4
LT
1143}
1144
3b003157
CH
1145static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1146 struct request *req)
1147{
1148 struct scsi_cmnd *cmd;
1149
1150 if (!req->special) {
1151 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1152 if (unlikely(!cmd))
1153 return NULL;
1154 req->special = cmd;
1155 } else {
1156 cmd = req->special;
1157 }
1158
1159 /* pull a tag out of the request if we have one */
1160 cmd->tag = req->tag;
1161 cmd->request = req;
1162
1163 return cmd;
1164}
1165
7f9a6bc4 1166int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
7b16318d 1167{
3b003157 1168 struct scsi_cmnd *cmd;
7f9a6bc4
JB
1169 int ret = scsi_prep_state_check(sdev, req);
1170
1171 if (ret != BLKPREP_OK)
1172 return ret;
3b003157
CH
1173
1174 cmd = scsi_get_cmd_from_req(sdev, req);
1175 if (unlikely(!cmd))
1176 return BLKPREP_DEFER;
1177
1178 /*
1179 * BLOCK_PC requests may transfer data, in which case they must
1180 * a bio attached to them. Or they might contain a SCSI command
1181 * that does not transfer data, in which case they may optionally
1182 * submit a request without an attached bio.
1183 */
1184 if (req->bio) {
1185 int ret;
1186
1187 BUG_ON(!req->nr_phys_segments);
1188
1189 ret = scsi_init_io(cmd);
1190 if (unlikely(ret))
1191 return ret;
1192 } else {
1193 BUG_ON(req->data_len);
1194 BUG_ON(req->data);
1195
1196 cmd->request_bufflen = 0;
1197 cmd->request_buffer = NULL;
1198 cmd->use_sg = 0;
1199 req->buffer = NULL;
1200 }
7b16318d 1201
46c43db1 1202 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
7b16318d
JB
1203 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1204 cmd->cmd_len = req->cmd_len;
1205 if (!req->data_len)
1206 cmd->sc_data_direction = DMA_NONE;
1207 else if (rq_data_dir(req) == WRITE)
1208 cmd->sc_data_direction = DMA_TO_DEVICE;
1209 else
1210 cmd->sc_data_direction = DMA_FROM_DEVICE;
1211
1212 cmd->transfersize = req->data_len;
1213 cmd->allowed = req->retries;
1214 cmd->timeout_per_command = req->timeout;
3b003157 1215 return BLKPREP_OK;
7b16318d 1216}
7f9a6bc4 1217EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
7b16318d 1218
3b003157
CH
1219/*
1220 * Setup a REQ_TYPE_FS command. These are simple read/write request
1221 * from filesystems that still need to be translated to SCSI CDBs from
1222 * the ULD.
1223 */
7f9a6bc4 1224int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1da177e4 1225{
1da177e4 1226 struct scsi_cmnd *cmd;
7f9a6bc4 1227 int ret = scsi_prep_state_check(sdev, req);
1da177e4 1228
7f9a6bc4
JB
1229 if (ret != BLKPREP_OK)
1230 return ret;
1da177e4 1231 /*
3b003157 1232 * Filesystem requests must transfer data.
1da177e4 1233 */
3b003157
CH
1234 BUG_ON(!req->nr_phys_segments);
1235
1236 cmd = scsi_get_cmd_from_req(sdev, req);
1237 if (unlikely(!cmd))
1238 return BLKPREP_DEFER;
1239
7f9a6bc4 1240 return scsi_init_io(cmd);
3b003157 1241}
7f9a6bc4 1242EXPORT_SYMBOL(scsi_setup_fs_cmnd);
3b003157 1243
7f9a6bc4 1244int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
3b003157 1245{
3b003157
CH
1246 int ret = BLKPREP_OK;
1247
1da177e4 1248 /*
3b003157
CH
1249 * If the device is not in running state we will reject some
1250 * or all commands.
1da177e4 1251 */
3b003157
CH
1252 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1253 switch (sdev->sdev_state) {
1254 case SDEV_OFFLINE:
1255 /*
1256 * If the device is offline we refuse to process any
1257 * commands. The device must be brought online
1258 * before trying any recovery commands.
1259 */
1260 sdev_printk(KERN_ERR, sdev,
1261 "rejecting I/O to offline device\n");
1262 ret = BLKPREP_KILL;
1263 break;
1264 case SDEV_DEL:
1265 /*
1266 * If the device is fully deleted, we refuse to
1267 * process any commands as well.
1268 */
9ccfc756 1269 sdev_printk(KERN_ERR, sdev,
3b003157
CH
1270 "rejecting I/O to dead device\n");
1271 ret = BLKPREP_KILL;
1272 break;
1273 case SDEV_QUIESCE:
1274 case SDEV_BLOCK:
1275 /*
1276 * If the devices is blocked we defer normal commands.
1277 */
1278 if (!(req->cmd_flags & REQ_PREEMPT))
1279 ret = BLKPREP_DEFER;
1280 break;
1281 default:
1282 /*
1283 * For any other not fully online state we only allow
1284 * special commands. In particular any user initiated
1285 * command is not allowed.
1286 */
1287 if (!(req->cmd_flags & REQ_PREEMPT))
1288 ret = BLKPREP_KILL;
1289 break;
1da177e4 1290 }
1da177e4 1291 }
7f9a6bc4
JB
1292 return ret;
1293}
1294EXPORT_SYMBOL(scsi_prep_state_check);
1da177e4 1295
7f9a6bc4
JB
1296int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1297{
1298 struct scsi_device *sdev = q->queuedata;
1da177e4 1299
3b003157
CH
1300 switch (ret) {
1301 case BLKPREP_KILL:
1302 req->errors = DID_NO_CONNECT << 16;
7f9a6bc4
JB
1303 /* release the command and kill it */
1304 if (req->special) {
1305 struct scsi_cmnd *cmd = req->special;
1306 scsi_release_buffers(cmd);
1307 scsi_put_command(cmd);
1308 req->special = NULL;
1309 }
3b003157
CH
1310 break;
1311 case BLKPREP_DEFER:
1da177e4 1312 /*
3b003157
CH
1313 * If we defer, the elv_next_request() returns NULL, but the
1314 * queue must be restarted, so we plug here if no returning
1315 * command will automatically do that.
1da177e4 1316 */
3b003157
CH
1317 if (sdev->device_busy == 0)
1318 blk_plug_device(q);
1319 break;
1320 default:
1321 req->cmd_flags |= REQ_DONTPREP;
1da177e4
LT
1322 }
1323
3b003157 1324 return ret;
1da177e4 1325}
7f9a6bc4
JB
1326EXPORT_SYMBOL(scsi_prep_return);
1327
751bf4d7 1328int scsi_prep_fn(struct request_queue *q, struct request *req)
7f9a6bc4
JB
1329{
1330 struct scsi_device *sdev = q->queuedata;
1331 int ret = BLKPREP_KILL;
1332
1333 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1334 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1335 return scsi_prep_return(q, req, ret);
1336}
1da177e4
LT
1337
1338/*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1340 * return 0.
1341 *
1342 * Called with the queue_lock held.
1343 */
1344static inline int scsi_dev_queue_ready(struct request_queue *q,
1345 struct scsi_device *sdev)
1346{
1347 if (sdev->device_busy >= sdev->queue_depth)
1348 return 0;
1349 if (sdev->device_busy == 0 && sdev->device_blocked) {
1350 /*
1351 * unblock after device_blocked iterates to zero
1352 */
1353 if (--sdev->device_blocked == 0) {
1354 SCSI_LOG_MLQUEUE(3,
9ccfc756
JB
1355 sdev_printk(KERN_INFO, sdev,
1356 "unblocking device at zero depth\n"));
1da177e4
LT
1357 } else {
1358 blk_plug_device(q);
1359 return 0;
1360 }
1361 }
1362 if (sdev->device_blocked)
1363 return 0;
1364
1365 return 1;
1366}
1367
1368/*
1369 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1370 * return 0. We must end up running the queue again whenever 0 is
1371 * returned, else IO can hang.
1372 *
1373 * Called with host_lock held.
1374 */
1375static inline int scsi_host_queue_ready(struct request_queue *q,
1376 struct Scsi_Host *shost,
1377 struct scsi_device *sdev)
1378{
939647ee 1379 if (scsi_host_in_recovery(shost))
1da177e4
LT
1380 return 0;
1381 if (shost->host_busy == 0 && shost->host_blocked) {
1382 /*
1383 * unblock after host_blocked iterates to zero
1384 */
1385 if (--shost->host_blocked == 0) {
1386 SCSI_LOG_MLQUEUE(3,
1387 printk("scsi%d unblocking host at zero depth\n",
1388 shost->host_no));
1389 } else {
1390 blk_plug_device(q);
1391 return 0;
1392 }
1393 }
1394 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1395 shost->host_blocked || shost->host_self_blocked) {
1396 if (list_empty(&sdev->starved_entry))
1397 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398 return 0;
1399 }
1400
1401 /* We're OK to process the command, so we can't be starved */
1402 if (!list_empty(&sdev->starved_entry))
1403 list_del_init(&sdev->starved_entry);
1404
1405 return 1;
1406}
1407
1408/*
e91442b6 1409 * Kill a request for a dead device
1da177e4 1410 */
165125e1 1411static void scsi_kill_request(struct request *req, struct request_queue *q)
1da177e4 1412{
e91442b6 1413 struct scsi_cmnd *cmd = req->special;
e36e0c80
TH
1414 struct scsi_device *sdev = cmd->device;
1415 struct Scsi_Host *shost = sdev->host;
1da177e4 1416
788ce43a
JB
1417 blkdev_dequeue_request(req);
1418
e91442b6
JB
1419 if (unlikely(cmd == NULL)) {
1420 printk(KERN_CRIT "impossible request in %s.\n",
1421 __FUNCTION__);
1422 BUG();
1da177e4 1423 }
e91442b6
JB
1424
1425 scsi_init_cmd_errh(cmd);
1426 cmd->result = DID_NO_CONNECT << 16;
1427 atomic_inc(&cmd->device->iorequest_cnt);
e36e0c80
TH
1428
1429 /*
1430 * SCSI request completion path will do scsi_device_unbusy(),
1431 * bump busy counts. To bump the counters, we need to dance
1432 * with the locks as normal issue path does.
1433 */
1434 sdev->device_busy++;
1435 spin_unlock(sdev->request_queue->queue_lock);
1436 spin_lock(shost->host_lock);
1437 shost->host_busy++;
1438 spin_unlock(shost->host_lock);
1439 spin_lock(sdev->request_queue->queue_lock);
1440
e91442b6 1441 __scsi_done(cmd);
1da177e4
LT
1442}
1443
1aea6434
JA
1444static void scsi_softirq_done(struct request *rq)
1445{
1446 struct scsi_cmnd *cmd = rq->completion_data;
8884efab 1447 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1aea6434
JA
1448 int disposition;
1449
1450 INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452 disposition = scsi_decide_disposition(cmd);
1453 if (disposition != SUCCESS &&
1454 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455 sdev_printk(KERN_ERR, cmd->device,
1456 "timing out command, waited %lus\n",
1457 wait_for/HZ);
1458 disposition = SUCCESS;
1459 }
1460
1461 scsi_log_completion(cmd, disposition);
1462
1463 switch (disposition) {
1464 case SUCCESS:
1465 scsi_finish_command(cmd);
1466 break;
1467 case NEEDS_RETRY:
596f482a 1468 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1aea6434
JA
1469 break;
1470 case ADD_TO_MLQUEUE:
1471 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472 break;
1473 default:
1474 if (!scsi_eh_scmd_add(cmd, 0))
1475 scsi_finish_command(cmd);
1476 }
1477}
1478
1da177e4
LT
1479/*
1480 * Function: scsi_request_fn()
1481 *
1482 * Purpose: Main strategy routine for SCSI.
1483 *
1484 * Arguments: q - Pointer to actual queue.
1485 *
1486 * Returns: Nothing
1487 *
1488 * Lock status: IO request lock assumed to be held when called.
1489 */
1490static void scsi_request_fn(struct request_queue *q)
1491{
1492 struct scsi_device *sdev = q->queuedata;
1493 struct Scsi_Host *shost;
1494 struct scsi_cmnd *cmd;
1495 struct request *req;
1496
1497 if (!sdev) {
1498 printk("scsi: killing requests for dead queue\n");
e91442b6
JB
1499 while ((req = elv_next_request(q)) != NULL)
1500 scsi_kill_request(req, q);
1da177e4
LT
1501 return;
1502 }
1503
1504 if(!get_device(&sdev->sdev_gendev))
1505 /* We must be tearing the block queue down already */
1506 return;
1507
1508 /*
1509 * To start with, we keep looping until the queue is empty, or until
1510 * the host is no longer able to accept any more requests.
1511 */
1512 shost = sdev->host;
1513 while (!blk_queue_plugged(q)) {
1514 int rtn;
1515 /*
1516 * get next queueable request. We do this early to make sure
1517 * that the request is fully prepared even if we cannot
1518 * accept it.
1519 */
1520 req = elv_next_request(q);
1521 if (!req || !scsi_dev_queue_ready(q, sdev))
1522 break;
1523
1524 if (unlikely(!scsi_device_online(sdev))) {
9ccfc756
JB
1525 sdev_printk(KERN_ERR, sdev,
1526 "rejecting I/O to offline device\n");
e91442b6 1527 scsi_kill_request(req, q);
1da177e4
LT
1528 continue;
1529 }
1530
1531
1532 /*
1533 * Remove the request from the request list.
1534 */
1535 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1536 blkdev_dequeue_request(req);
1537 sdev->device_busy++;
1538
1539 spin_unlock(q->queue_lock);
e91442b6
JB
1540 cmd = req->special;
1541 if (unlikely(cmd == NULL)) {
1542 printk(KERN_CRIT "impossible request in %s.\n"
1543 "please mail a stack trace to "
4aff5e23 1544 "linux-scsi@vger.kernel.org\n",
e91442b6 1545 __FUNCTION__);
4aff5e23 1546 blk_dump_rq_flags(req, "foo");
e91442b6
JB
1547 BUG();
1548 }
1da177e4
LT
1549 spin_lock(shost->host_lock);
1550
1551 if (!scsi_host_queue_ready(q, shost, sdev))
1552 goto not_ready;
25d7c363 1553 if (scsi_target(sdev)->single_lun) {
1da177e4
LT
1554 if (scsi_target(sdev)->starget_sdev_user &&
1555 scsi_target(sdev)->starget_sdev_user != sdev)
1556 goto not_ready;
1557 scsi_target(sdev)->starget_sdev_user = sdev;
1558 }
1559 shost->host_busy++;
1560
1561 /*
1562 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563 * take the lock again.
1564 */
1565 spin_unlock_irq(shost->host_lock);
1566
1da177e4
LT
1567 /*
1568 * Finally, initialize any error handling parameters, and set up
1569 * the timers for timeouts.
1570 */
1571 scsi_init_cmd_errh(cmd);
1572
1573 /*
1574 * Dispatch the command to the low-level driver.
1575 */
1576 rtn = scsi_dispatch_cmd(cmd);
1577 spin_lock_irq(q->queue_lock);
1578 if(rtn) {
1579 /* we're refusing the command; because of
1580 * the way locks get dropped, we need to
1581 * check here if plugging is required */
1582 if(sdev->device_busy == 0)
1583 blk_plug_device(q);
1584
1585 break;
1586 }
1587 }
1588
1589 goto out;
1590
1591 not_ready:
1592 spin_unlock_irq(shost->host_lock);
1593
1594 /*
1595 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 * must return with queue_lock held.
1597 *
1598 * Decrementing device_busy without checking it is OK, as all such
1599 * cases (host limits or settings) should run the queue at some
1600 * later time.
1601 */
1602 spin_lock_irq(q->queue_lock);
1603 blk_requeue_request(q, req);
1604 sdev->device_busy--;
1605 if(sdev->device_busy == 0)
1606 blk_plug_device(q);
1607 out:
1608 /* must be careful here...if we trigger the ->remove() function
1609 * we cannot be holding the q lock */
1610 spin_unlock_irq(q->queue_lock);
1611 put_device(&sdev->sdev_gendev);
1612 spin_lock_irq(q->queue_lock);
1613}
1614
1615u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616{
1617 struct device *host_dev;
1618 u64 bounce_limit = 0xffffffff;
1619
1620 if (shost->unchecked_isa_dma)
1621 return BLK_BOUNCE_ISA;
1622 /*
1623 * Platforms with virtual-DMA translation
1624 * hardware have no practical limit.
1625 */
1626 if (!PCI_DMA_BUS_IS_PHYS)
1627 return BLK_BOUNCE_ANY;
1628
1629 host_dev = scsi_get_device(shost);
1630 if (host_dev && host_dev->dma_mask)
1631 bounce_limit = *host_dev->dma_mask;
1632
1633 return bounce_limit;
1634}
1635EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636
b58d9154
FT
1637struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638 request_fn_proc *request_fn)
1da177e4 1639{
1da177e4
LT
1640 struct request_queue *q;
1641
b58d9154 1642 q = blk_init_queue(request_fn, NULL);
1da177e4
LT
1643 if (!q)
1644 return NULL;
1645
a8474ce2
JA
1646 /*
1647 * this limit is imposed by hardware restrictions
1648 */
1da177e4 1649 blk_queue_max_hw_segments(q, shost->sg_tablesize);
a8474ce2
JA
1650
1651 /*
1652 * In the future, sg chaining support will be mandatory and this
1653 * ifdef can then go away. Right now we don't have all archs
1654 * converted, so better keep it safe.
1655 */
1656#ifdef ARCH_HAS_SG_CHAIN
9cb83c75
FT
1657 if (shost->use_sg_chaining)
1658 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1659 else
1660 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
a8474ce2
JA
1661#else
1662 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1663#endif
1664
1da177e4
LT
1665 blk_queue_max_sectors(q, shost->max_sectors);
1666 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667 blk_queue_segment_boundary(q, shost->dma_boundary);
1da177e4 1668
1da177e4
LT
1669 if (!shost->use_clustering)
1670 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
465ff318
JB
1671
1672 /*
1673 * set a reasonable default alignment on word boundaries: the
1674 * host and device may alter it using
1675 * blk_queue_update_dma_alignment() later.
1676 */
1677 blk_queue_dma_alignment(q, 0x03);
1678
1da177e4
LT
1679 return q;
1680}
b58d9154
FT
1681EXPORT_SYMBOL(__scsi_alloc_queue);
1682
1683struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1684{
1685 struct request_queue *q;
1686
1687 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1688 if (!q)
1689 return NULL;
1690
1691 blk_queue_prep_rq(q, scsi_prep_fn);
b58d9154
FT
1692 blk_queue_softirq_done(q, scsi_softirq_done);
1693 return q;
1694}
1da177e4
LT
1695
1696void scsi_free_queue(struct request_queue *q)
1697{
1698 blk_cleanup_queue(q);
1699}
1700
1701/*
1702 * Function: scsi_block_requests()
1703 *
1704 * Purpose: Utility function used by low-level drivers to prevent further
1705 * commands from being queued to the device.
1706 *
1707 * Arguments: shost - Host in question
1708 *
1709 * Returns: Nothing
1710 *
1711 * Lock status: No locks are assumed held.
1712 *
1713 * Notes: There is no timer nor any other means by which the requests
1714 * get unblocked other than the low-level driver calling
1715 * scsi_unblock_requests().
1716 */
1717void scsi_block_requests(struct Scsi_Host *shost)
1718{
1719 shost->host_self_blocked = 1;
1720}
1721EXPORT_SYMBOL(scsi_block_requests);
1722
1723/*
1724 * Function: scsi_unblock_requests()
1725 *
1726 * Purpose: Utility function used by low-level drivers to allow further
1727 * commands from being queued to the device.
1728 *
1729 * Arguments: shost - Host in question
1730 *
1731 * Returns: Nothing
1732 *
1733 * Lock status: No locks are assumed held.
1734 *
1735 * Notes: There is no timer nor any other means by which the requests
1736 * get unblocked other than the low-level driver calling
1737 * scsi_unblock_requests().
1738 *
1739 * This is done as an API function so that changes to the
1740 * internals of the scsi mid-layer won't require wholesale
1741 * changes to drivers that use this feature.
1742 */
1743void scsi_unblock_requests(struct Scsi_Host *shost)
1744{
1745 shost->host_self_blocked = 0;
1746 scsi_run_host_queues(shost);
1747}
1748EXPORT_SYMBOL(scsi_unblock_requests);
1749
1750int __init scsi_init_queue(void)
1751{
1752 int i;
1753
aa7b5cd7
MC
1754 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1755 sizeof(struct scsi_io_context),
20c2df83 1756 0, 0, NULL);
aa7b5cd7
MC
1757 if (!scsi_io_context_cache) {
1758 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1759 return -ENOMEM;
1760 }
1761
1da177e4
LT
1762 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764 int size = sgp->size * sizeof(struct scatterlist);
1765
1766 sgp->slab = kmem_cache_create(sgp->name, size, 0,
20c2df83 1767 SLAB_HWCACHE_ALIGN, NULL);
1da177e4
LT
1768 if (!sgp->slab) {
1769 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770 sgp->name);
1771 }
1772
93d2341c
MD
1773 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1774 sgp->slab);
1da177e4
LT
1775 if (!sgp->pool) {
1776 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1777 sgp->name);
1778 }
1779 }
1780
1781 return 0;
1782}
1783
1784void scsi_exit_queue(void)
1785{
1786 int i;
1787
aa7b5cd7
MC
1788 kmem_cache_destroy(scsi_io_context_cache);
1789
1da177e4
LT
1790 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792 mempool_destroy(sgp->pool);
1793 kmem_cache_destroy(sgp->slab);
1794 }
1795}
5baba830
JB
1796
1797/**
1798 * scsi_mode_select - issue a mode select
1799 * @sdev: SCSI device to be queried
1800 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1801 * @sp: Save page bit (0 == don't save, 1 == save)
1802 * @modepage: mode page being requested
1803 * @buffer: request buffer (may not be smaller than eight bytes)
1804 * @len: length of request buffer.
1805 * @timeout: command timeout
1806 * @retries: number of retries before failing
1807 * @data: returns a structure abstracting the mode header data
eb44820c 1808 * @sshdr: place to put sense data (or NULL if no sense to be collected).
5baba830
JB
1809 * must be SCSI_SENSE_BUFFERSIZE big.
1810 *
1811 * Returns zero if successful; negative error number or scsi
1812 * status on error
1813 *
1814 */
1815int
1816scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1817 unsigned char *buffer, int len, int timeout, int retries,
1818 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1819{
1820 unsigned char cmd[10];
1821 unsigned char *real_buffer;
1822 int ret;
1823
1824 memset(cmd, 0, sizeof(cmd));
1825 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1826
1827 if (sdev->use_10_for_ms) {
1828 if (len > 65535)
1829 return -EINVAL;
1830 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1831 if (!real_buffer)
1832 return -ENOMEM;
1833 memcpy(real_buffer + 8, buffer, len);
1834 len += 8;
1835 real_buffer[0] = 0;
1836 real_buffer[1] = 0;
1837 real_buffer[2] = data->medium_type;
1838 real_buffer[3] = data->device_specific;
1839 real_buffer[4] = data->longlba ? 0x01 : 0;
1840 real_buffer[5] = 0;
1841 real_buffer[6] = data->block_descriptor_length >> 8;
1842 real_buffer[7] = data->block_descriptor_length;
1843
1844 cmd[0] = MODE_SELECT_10;
1845 cmd[7] = len >> 8;
1846 cmd[8] = len;
1847 } else {
1848 if (len > 255 || data->block_descriptor_length > 255 ||
1849 data->longlba)
1850 return -EINVAL;
1851
1852 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1853 if (!real_buffer)
1854 return -ENOMEM;
1855 memcpy(real_buffer + 4, buffer, len);
1856 len += 4;
1857 real_buffer[0] = 0;
1858 real_buffer[1] = data->medium_type;
1859 real_buffer[2] = data->device_specific;
1860 real_buffer[3] = data->block_descriptor_length;
1861
1862
1863 cmd[0] = MODE_SELECT;
1864 cmd[4] = len;
1865 }
1866
1867 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1868 sshdr, timeout, retries);
1869 kfree(real_buffer);
1870 return ret;
1871}
1872EXPORT_SYMBOL_GPL(scsi_mode_select);
1873
1da177e4 1874/**
eb44820c 1875 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1cf72699 1876 * @sdev: SCSI device to be queried
1da177e4
LT
1877 * @dbd: set if mode sense will allow block descriptors to be returned
1878 * @modepage: mode page being requested
1879 * @buffer: request buffer (may not be smaller than eight bytes)
1880 * @len: length of request buffer.
1881 * @timeout: command timeout
1882 * @retries: number of retries before failing
1883 * @data: returns a structure abstracting the mode header data
eb44820c 1884 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1cf72699 1885 * must be SCSI_SENSE_BUFFERSIZE big.
1da177e4
LT
1886 *
1887 * Returns zero if unsuccessful, or the header offset (either 4
1888 * or 8 depending on whether a six or ten byte command was
1889 * issued) if successful.
eb44820c 1890 */
1da177e4 1891int
1cf72699 1892scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1da177e4 1893 unsigned char *buffer, int len, int timeout, int retries,
5baba830
JB
1894 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1895{
1da177e4
LT
1896 unsigned char cmd[12];
1897 int use_10_for_ms;
1898 int header_length;
1cf72699 1899 int result;
ea73a9f2 1900 struct scsi_sense_hdr my_sshdr;
1da177e4
LT
1901
1902 memset(data, 0, sizeof(*data));
1903 memset(&cmd[0], 0, 12);
1904 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1905 cmd[2] = modepage;
1906
ea73a9f2
JB
1907 /* caller might not be interested in sense, but we need it */
1908 if (!sshdr)
1909 sshdr = &my_sshdr;
1910
1da177e4 1911 retry:
1cf72699 1912 use_10_for_ms = sdev->use_10_for_ms;
1da177e4
LT
1913
1914 if (use_10_for_ms) {
1915 if (len < 8)
1916 len = 8;
1917
1918 cmd[0] = MODE_SENSE_10;
1919 cmd[8] = len;
1920 header_length = 8;
1921 } else {
1922 if (len < 4)
1923 len = 4;
1924
1925 cmd[0] = MODE_SENSE;
1926 cmd[4] = len;
1927 header_length = 4;
1928 }
1929
1da177e4
LT
1930 memset(buffer, 0, len);
1931
1cf72699 1932 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
ea73a9f2 1933 sshdr, timeout, retries);
1da177e4
LT
1934
1935 /* This code looks awful: what it's doing is making sure an
1936 * ILLEGAL REQUEST sense return identifies the actual command
1937 * byte as the problem. MODE_SENSE commands can return
1938 * ILLEGAL REQUEST if the code page isn't supported */
1939
1cf72699
JB
1940 if (use_10_for_ms && !scsi_status_is_good(result) &&
1941 (driver_byte(result) & DRIVER_SENSE)) {
ea73a9f2
JB
1942 if (scsi_sense_valid(sshdr)) {
1943 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1944 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1da177e4
LT
1945 /*
1946 * Invalid command operation code
1947 */
1cf72699 1948 sdev->use_10_for_ms = 0;
1da177e4
LT
1949 goto retry;
1950 }
1951 }
1952 }
1953
1cf72699 1954 if(scsi_status_is_good(result)) {
6d73c851
AV
1955 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1956 (modepage == 6 || modepage == 8))) {
1957 /* Initio breakage? */
1958 header_length = 0;
1959 data->length = 13;
1960 data->medium_type = 0;
1961 data->device_specific = 0;
1962 data->longlba = 0;
1963 data->block_descriptor_length = 0;
1964 } else if(use_10_for_ms) {
1da177e4
LT
1965 data->length = buffer[0]*256 + buffer[1] + 2;
1966 data->medium_type = buffer[2];
1967 data->device_specific = buffer[3];
1968 data->longlba = buffer[4] & 0x01;
1969 data->block_descriptor_length = buffer[6]*256
1970 + buffer[7];
1971 } else {
1972 data->length = buffer[0] + 1;
1973 data->medium_type = buffer[1];
1974 data->device_specific = buffer[2];
1975 data->block_descriptor_length = buffer[3];
1976 }
6d73c851 1977 data->header_length = header_length;
1da177e4
LT
1978 }
1979
1cf72699 1980 return result;
1da177e4
LT
1981}
1982EXPORT_SYMBOL(scsi_mode_sense);
1983
001aac25
JB
1984/**
1985 * scsi_test_unit_ready - test if unit is ready
1986 * @sdev: scsi device to change the state of.
1987 * @timeout: command timeout
1988 * @retries: number of retries before failing
1989 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1990 * returning sense. Make sure that this is cleared before passing
1991 * in.
1992 *
1993 * Returns zero if unsuccessful or an error if TUR failed. For
1994 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1995 * translated to success, with the ->changed flag updated.
1996 **/
1da177e4 1997int
001aac25
JB
1998scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1999 struct scsi_sense_hdr *sshdr_external)
1da177e4 2000{
1da177e4
LT
2001 char cmd[] = {
2002 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2003 };
001aac25 2004 struct scsi_sense_hdr *sshdr;
1da177e4 2005 int result;
001aac25
JB
2006
2007 if (!sshdr_external)
2008 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2009 else
2010 sshdr = sshdr_external;
2011
2012 /* try to eat the UNIT_ATTENTION if there are enough retries */
2013 do {
2014 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2015 timeout, retries);
2016 } while ((driver_byte(result) & DRIVER_SENSE) &&
2017 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2018 --retries);
2019
2020 if (!sshdr)
2021 /* could not allocate sense buffer, so can't process it */
2022 return result;
1da177e4 2023
1cf72699 2024 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1da177e4 2025
001aac25
JB
2026 if ((scsi_sense_valid(sshdr)) &&
2027 ((sshdr->sense_key == UNIT_ATTENTION) ||
2028 (sshdr->sense_key == NOT_READY))) {
1da177e4 2029 sdev->changed = 1;
1cf72699 2030 result = 0;
1da177e4
LT
2031 }
2032 }
001aac25
JB
2033 if (!sshdr_external)
2034 kfree(sshdr);
1da177e4
LT
2035 return result;
2036}
2037EXPORT_SYMBOL(scsi_test_unit_ready);
2038
2039/**
eb44820c 2040 * scsi_device_set_state - Take the given device through the device state model.
1da177e4
LT
2041 * @sdev: scsi device to change the state of.
2042 * @state: state to change to.
2043 *
2044 * Returns zero if unsuccessful or an error if the requested
2045 * transition is illegal.
eb44820c 2046 */
1da177e4
LT
2047int
2048scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2049{
2050 enum scsi_device_state oldstate = sdev->sdev_state;
2051
2052 if (state == oldstate)
2053 return 0;
2054
2055 switch (state) {
2056 case SDEV_CREATED:
2057 /* There are no legal states that come back to
2058 * created. This is the manually initialised start
2059 * state */
2060 goto illegal;
2061
2062 case SDEV_RUNNING:
2063 switch (oldstate) {
2064 case SDEV_CREATED:
2065 case SDEV_OFFLINE:
2066 case SDEV_QUIESCE:
2067 case SDEV_BLOCK:
2068 break;
2069 default:
2070 goto illegal;
2071 }
2072 break;
2073
2074 case SDEV_QUIESCE:
2075 switch (oldstate) {
2076 case SDEV_RUNNING:
2077 case SDEV_OFFLINE:
2078 break;
2079 default:
2080 goto illegal;
2081 }
2082 break;
2083
2084 case SDEV_OFFLINE:
2085 switch (oldstate) {
2086 case SDEV_CREATED:
2087 case SDEV_RUNNING:
2088 case SDEV_QUIESCE:
2089 case SDEV_BLOCK:
2090 break;
2091 default:
2092 goto illegal;
2093 }
2094 break;
2095
2096 case SDEV_BLOCK:
2097 switch (oldstate) {
2098 case SDEV_CREATED:
2099 case SDEV_RUNNING:
2100 break;
2101 default:
2102 goto illegal;
2103 }
2104 break;
2105
2106 case SDEV_CANCEL:
2107 switch (oldstate) {
2108 case SDEV_CREATED:
2109 case SDEV_RUNNING:
9ea72909 2110 case SDEV_QUIESCE:
1da177e4
LT
2111 case SDEV_OFFLINE:
2112 case SDEV_BLOCK:
2113 break;
2114 default:
2115 goto illegal;
2116 }
2117 break;
2118
2119 case SDEV_DEL:
2120 switch (oldstate) {
309bd271
BK
2121 case SDEV_CREATED:
2122 case SDEV_RUNNING:
2123 case SDEV_OFFLINE:
1da177e4
LT
2124 case SDEV_CANCEL:
2125 break;
2126 default:
2127 goto illegal;
2128 }
2129 break;
2130
2131 }
2132 sdev->sdev_state = state;
2133 return 0;
2134
2135 illegal:
2136 SCSI_LOG_ERROR_RECOVERY(1,
9ccfc756
JB
2137 sdev_printk(KERN_ERR, sdev,
2138 "Illegal state transition %s->%s\n",
2139 scsi_device_state_name(oldstate),
2140 scsi_device_state_name(state))
1da177e4
LT
2141 );
2142 return -EINVAL;
2143}
2144EXPORT_SYMBOL(scsi_device_set_state);
2145
a341cd0f
JG
2146/**
2147 * sdev_evt_emit - emit a single SCSI device uevent
2148 * @sdev: associated SCSI device
2149 * @evt: event to emit
2150 *
2151 * Send a single uevent (scsi_event) to the associated scsi_device.
2152 */
2153static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2154{
2155 int idx = 0;
2156 char *envp[3];
2157
2158 switch (evt->evt_type) {
2159 case SDEV_EVT_MEDIA_CHANGE:
2160 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2161 break;
2162
2163 default:
2164 /* do nothing */
2165 break;
2166 }
2167
2168 envp[idx++] = NULL;
2169
2170 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2171}
2172
2173/**
2174 * sdev_evt_thread - send a uevent for each scsi event
2175 * @work: work struct for scsi_device
2176 *
2177 * Dispatch queued events to their associated scsi_device kobjects
2178 * as uevents.
2179 */
2180void scsi_evt_thread(struct work_struct *work)
2181{
2182 struct scsi_device *sdev;
2183 LIST_HEAD(event_list);
2184
2185 sdev = container_of(work, struct scsi_device, event_work);
2186
2187 while (1) {
2188 struct scsi_event *evt;
2189 struct list_head *this, *tmp;
2190 unsigned long flags;
2191
2192 spin_lock_irqsave(&sdev->list_lock, flags);
2193 list_splice_init(&sdev->event_list, &event_list);
2194 spin_unlock_irqrestore(&sdev->list_lock, flags);
2195
2196 if (list_empty(&event_list))
2197 break;
2198
2199 list_for_each_safe(this, tmp, &event_list) {
2200 evt = list_entry(this, struct scsi_event, node);
2201 list_del(&evt->node);
2202 scsi_evt_emit(sdev, evt);
2203 kfree(evt);
2204 }
2205 }
2206}
2207
2208/**
2209 * sdev_evt_send - send asserted event to uevent thread
2210 * @sdev: scsi_device event occurred on
2211 * @evt: event to send
2212 *
2213 * Assert scsi device event asynchronously.
2214 */
2215void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2216{
2217 unsigned long flags;
2218
2219 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2220 kfree(evt);
2221 return;
2222 }
2223
2224 spin_lock_irqsave(&sdev->list_lock, flags);
2225 list_add_tail(&evt->node, &sdev->event_list);
2226 schedule_work(&sdev->event_work);
2227 spin_unlock_irqrestore(&sdev->list_lock, flags);
2228}
2229EXPORT_SYMBOL_GPL(sdev_evt_send);
2230
2231/**
2232 * sdev_evt_alloc - allocate a new scsi event
2233 * @evt_type: type of event to allocate
2234 * @gfpflags: GFP flags for allocation
2235 *
2236 * Allocates and returns a new scsi_event.
2237 */
2238struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2239 gfp_t gfpflags)
2240{
2241 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2242 if (!evt)
2243 return NULL;
2244
2245 evt->evt_type = evt_type;
2246 INIT_LIST_HEAD(&evt->node);
2247
2248 /* evt_type-specific initialization, if any */
2249 switch (evt_type) {
2250 case SDEV_EVT_MEDIA_CHANGE:
2251 default:
2252 /* do nothing */
2253 break;
2254 }
2255
2256 return evt;
2257}
2258EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2259
2260/**
2261 * sdev_evt_send_simple - send asserted event to uevent thread
2262 * @sdev: scsi_device event occurred on
2263 * @evt_type: type of event to send
2264 * @gfpflags: GFP flags for allocation
2265 *
2266 * Assert scsi device event asynchronously, given an event type.
2267 */
2268void sdev_evt_send_simple(struct scsi_device *sdev,
2269 enum scsi_device_event evt_type, gfp_t gfpflags)
2270{
2271 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2272 if (!evt) {
2273 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2274 evt_type);
2275 return;
2276 }
2277
2278 sdev_evt_send(sdev, evt);
2279}
2280EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2281
1da177e4
LT
2282/**
2283 * scsi_device_quiesce - Block user issued commands.
2284 * @sdev: scsi device to quiesce.
2285 *
2286 * This works by trying to transition to the SDEV_QUIESCE state
2287 * (which must be a legal transition). When the device is in this
2288 * state, only special requests will be accepted, all others will
2289 * be deferred. Since special requests may also be requeued requests,
2290 * a successful return doesn't guarantee the device will be
2291 * totally quiescent.
2292 *
2293 * Must be called with user context, may sleep.
2294 *
2295 * Returns zero if unsuccessful or an error if not.
eb44820c 2296 */
1da177e4
LT
2297int
2298scsi_device_quiesce(struct scsi_device *sdev)
2299{
2300 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2301 if (err)
2302 return err;
2303
2304 scsi_run_queue(sdev->request_queue);
2305 while (sdev->device_busy) {
2306 msleep_interruptible(200);
2307 scsi_run_queue(sdev->request_queue);
2308 }
2309 return 0;
2310}
2311EXPORT_SYMBOL(scsi_device_quiesce);
2312
2313/**
2314 * scsi_device_resume - Restart user issued commands to a quiesced device.
2315 * @sdev: scsi device to resume.
2316 *
2317 * Moves the device from quiesced back to running and restarts the
2318 * queues.
2319 *
2320 * Must be called with user context, may sleep.
eb44820c 2321 */
1da177e4
LT
2322void
2323scsi_device_resume(struct scsi_device *sdev)
2324{
2325 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2326 return;
2327 scsi_run_queue(sdev->request_queue);
2328}
2329EXPORT_SYMBOL(scsi_device_resume);
2330
2331static void
2332device_quiesce_fn(struct scsi_device *sdev, void *data)
2333{
2334 scsi_device_quiesce(sdev);
2335}
2336
2337void
2338scsi_target_quiesce(struct scsi_target *starget)
2339{
2340 starget_for_each_device(starget, NULL, device_quiesce_fn);
2341}
2342EXPORT_SYMBOL(scsi_target_quiesce);
2343
2344static void
2345device_resume_fn(struct scsi_device *sdev, void *data)
2346{
2347 scsi_device_resume(sdev);
2348}
2349
2350void
2351scsi_target_resume(struct scsi_target *starget)
2352{
2353 starget_for_each_device(starget, NULL, device_resume_fn);
2354}
2355EXPORT_SYMBOL(scsi_target_resume);
2356
2357/**
eb44820c 2358 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
1da177e4
LT
2359 * @sdev: device to block
2360 *
2361 * Block request made by scsi lld's to temporarily stop all
2362 * scsi commands on the specified device. Called from interrupt
2363 * or normal process context.
2364 *
2365 * Returns zero if successful or error if not
2366 *
2367 * Notes:
2368 * This routine transitions the device to the SDEV_BLOCK state
2369 * (which must be a legal transition). When the device is in this
2370 * state, all commands are deferred until the scsi lld reenables
2371 * the device with scsi_device_unblock or device_block_tmo fires.
2372 * This routine assumes the host_lock is held on entry.
eb44820c 2373 */
1da177e4
LT
2374int
2375scsi_internal_device_block(struct scsi_device *sdev)
2376{
165125e1 2377 struct request_queue *q = sdev->request_queue;
1da177e4
LT
2378 unsigned long flags;
2379 int err = 0;
2380
2381 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2382 if (err)
2383 return err;
2384
2385 /*
2386 * The device has transitioned to SDEV_BLOCK. Stop the
2387 * block layer from calling the midlayer with this device's
2388 * request queue.
2389 */
2390 spin_lock_irqsave(q->queue_lock, flags);
2391 blk_stop_queue(q);
2392 spin_unlock_irqrestore(q->queue_lock, flags);
2393
2394 return 0;
2395}
2396EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2397
2398/**
2399 * scsi_internal_device_unblock - resume a device after a block request
2400 * @sdev: device to resume
2401 *
2402 * Called by scsi lld's or the midlayer to restart the device queue
2403 * for the previously suspended scsi device. Called from interrupt or
2404 * normal process context.
2405 *
2406 * Returns zero if successful or error if not.
2407 *
2408 * Notes:
2409 * This routine transitions the device to the SDEV_RUNNING state
2410 * (which must be a legal transition) allowing the midlayer to
2411 * goose the queue for this device. This routine assumes the
2412 * host_lock is held upon entry.
eb44820c 2413 */
1da177e4
LT
2414int
2415scsi_internal_device_unblock(struct scsi_device *sdev)
2416{
165125e1 2417 struct request_queue *q = sdev->request_queue;
1da177e4
LT
2418 int err;
2419 unsigned long flags;
2420
2421 /*
2422 * Try to transition the scsi device to SDEV_RUNNING
2423 * and goose the device queue if successful.
2424 */
2425 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2426 if (err)
2427 return err;
2428
2429 spin_lock_irqsave(q->queue_lock, flags);
2430 blk_start_queue(q);
2431 spin_unlock_irqrestore(q->queue_lock, flags);
2432
2433 return 0;
2434}
2435EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2436
2437static void
2438device_block(struct scsi_device *sdev, void *data)
2439{
2440 scsi_internal_device_block(sdev);
2441}
2442
2443static int
2444target_block(struct device *dev, void *data)
2445{
2446 if (scsi_is_target_device(dev))
2447 starget_for_each_device(to_scsi_target(dev), NULL,
2448 device_block);
2449 return 0;
2450}
2451
2452void
2453scsi_target_block(struct device *dev)
2454{
2455 if (scsi_is_target_device(dev))
2456 starget_for_each_device(to_scsi_target(dev), NULL,
2457 device_block);
2458 else
2459 device_for_each_child(dev, NULL, target_block);
2460}
2461EXPORT_SYMBOL_GPL(scsi_target_block);
2462
2463static void
2464device_unblock(struct scsi_device *sdev, void *data)
2465{
2466 scsi_internal_device_unblock(sdev);
2467}
2468
2469static int
2470target_unblock(struct device *dev, void *data)
2471{
2472 if (scsi_is_target_device(dev))
2473 starget_for_each_device(to_scsi_target(dev), NULL,
2474 device_unblock);
2475 return 0;
2476}
2477
2478void
2479scsi_target_unblock(struct device *dev)
2480{
2481 if (scsi_is_target_device(dev))
2482 starget_for_each_device(to_scsi_target(dev), NULL,
2483 device_unblock);
2484 else
2485 device_for_each_child(dev, NULL, target_unblock);
2486}
2487EXPORT_SYMBOL_GPL(scsi_target_unblock);
cdb8c2a6
GL
2488
2489/**
2490 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
eb44820c 2491 * @sgl: scatter-gather list
cdb8c2a6
GL
2492 * @sg_count: number of segments in sg
2493 * @offset: offset in bytes into sg, on return offset into the mapped area
2494 * @len: bytes to map, on return number of bytes mapped
2495 *
2496 * Returns virtual address of the start of the mapped page
2497 */
c6132da1 2498void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
cdb8c2a6
GL
2499 size_t *offset, size_t *len)
2500{
2501 int i;
2502 size_t sg_len = 0, len_complete = 0;
c6132da1 2503 struct scatterlist *sg;
cdb8c2a6
GL
2504 struct page *page;
2505
22cfefb5
AM
2506 WARN_ON(!irqs_disabled());
2507
c6132da1 2508 for_each_sg(sgl, sg, sg_count, i) {
cdb8c2a6 2509 len_complete = sg_len; /* Complete sg-entries */
c6132da1 2510 sg_len += sg->length;
cdb8c2a6
GL
2511 if (sg_len > *offset)
2512 break;
2513 }
2514
2515 if (unlikely(i == sg_count)) {
169e1a2a
AM
2516 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2517 "elements %d\n",
cdb8c2a6
GL
2518 __FUNCTION__, sg_len, *offset, sg_count);
2519 WARN_ON(1);
2520 return NULL;
2521 }
2522
2523 /* Offset starting from the beginning of first page in this sg-entry */
c6132da1 2524 *offset = *offset - len_complete + sg->offset;
cdb8c2a6
GL
2525
2526 /* Assumption: contiguous pages can be accessed as "page + i" */
45711f1a 2527 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
cdb8c2a6
GL
2528 *offset &= ~PAGE_MASK;
2529
2530 /* Bytes in this sg-entry from *offset to the end of the page */
2531 sg_len = PAGE_SIZE - *offset;
2532 if (*len > sg_len)
2533 *len = sg_len;
2534
2535 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2536}
2537EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2538
2539/**
eb44820c 2540 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
cdb8c2a6
GL
2541 * @virt: virtual address to be unmapped
2542 */
2543void scsi_kunmap_atomic_sg(void *virt)
2544{
2545 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2546}
2547EXPORT_SYMBOL(scsi_kunmap_atomic_sg);