]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/spi/spi-atmel.c
Linux 4.2-rc1
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-atmel.c
CommitLineData
754ce4f2
HS
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
754ce4f2
HS
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
1ccc404a 17#include <linux/dmaengine.h>
754ce4f2
HS
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
5a0e3ad6 21#include <linux/slab.h>
bcd2360c 22#include <linux/platform_data/atmel.h>
1ccc404a 23#include <linux/platform_data/dma-atmel.h>
850a5b67 24#include <linux/of.h>
754ce4f2 25
d4820b74
WY
26#include <linux/io.h>
27#include <linux/gpio.h>
5bdfd491 28#include <linux/pinctrl/consumer.h>
ce0c4caf 29#include <linux/pm_runtime.h>
bb2d1c36 30
ca632f55
GL
31/* SPI register offsets */
32#define SPI_CR 0x0000
33#define SPI_MR 0x0004
34#define SPI_RDR 0x0008
35#define SPI_TDR 0x000c
36#define SPI_SR 0x0010
37#define SPI_IER 0x0014
38#define SPI_IDR 0x0018
39#define SPI_IMR 0x001c
40#define SPI_CSR0 0x0030
41#define SPI_CSR1 0x0034
42#define SPI_CSR2 0x0038
43#define SPI_CSR3 0x003c
11f2764f
CP
44#define SPI_FMR 0x0040
45#define SPI_FLR 0x0044
d4820b74 46#define SPI_VERSION 0x00fc
ca632f55
GL
47#define SPI_RPR 0x0100
48#define SPI_RCR 0x0104
49#define SPI_TPR 0x0108
50#define SPI_TCR 0x010c
51#define SPI_RNPR 0x0110
52#define SPI_RNCR 0x0114
53#define SPI_TNPR 0x0118
54#define SPI_TNCR 0x011c
55#define SPI_PTCR 0x0120
56#define SPI_PTSR 0x0124
57
58/* Bitfields in CR */
59#define SPI_SPIEN_OFFSET 0
60#define SPI_SPIEN_SIZE 1
61#define SPI_SPIDIS_OFFSET 1
62#define SPI_SPIDIS_SIZE 1
63#define SPI_SWRST_OFFSET 7
64#define SPI_SWRST_SIZE 1
65#define SPI_LASTXFER_OFFSET 24
66#define SPI_LASTXFER_SIZE 1
11f2764f
CP
67#define SPI_TXFCLR_OFFSET 16
68#define SPI_TXFCLR_SIZE 1
69#define SPI_RXFCLR_OFFSET 17
70#define SPI_RXFCLR_SIZE 1
71#define SPI_FIFOEN_OFFSET 30
72#define SPI_FIFOEN_SIZE 1
73#define SPI_FIFODIS_OFFSET 31
74#define SPI_FIFODIS_SIZE 1
ca632f55
GL
75
76/* Bitfields in MR */
77#define SPI_MSTR_OFFSET 0
78#define SPI_MSTR_SIZE 1
79#define SPI_PS_OFFSET 1
80#define SPI_PS_SIZE 1
81#define SPI_PCSDEC_OFFSET 2
82#define SPI_PCSDEC_SIZE 1
83#define SPI_FDIV_OFFSET 3
84#define SPI_FDIV_SIZE 1
85#define SPI_MODFDIS_OFFSET 4
86#define SPI_MODFDIS_SIZE 1
d4820b74
WY
87#define SPI_WDRBT_OFFSET 5
88#define SPI_WDRBT_SIZE 1
ca632f55
GL
89#define SPI_LLB_OFFSET 7
90#define SPI_LLB_SIZE 1
91#define SPI_PCS_OFFSET 16
92#define SPI_PCS_SIZE 4
93#define SPI_DLYBCS_OFFSET 24
94#define SPI_DLYBCS_SIZE 8
95
96/* Bitfields in RDR */
97#define SPI_RD_OFFSET 0
98#define SPI_RD_SIZE 16
99
100/* Bitfields in TDR */
101#define SPI_TD_OFFSET 0
102#define SPI_TD_SIZE 16
103
104/* Bitfields in SR */
105#define SPI_RDRF_OFFSET 0
106#define SPI_RDRF_SIZE 1
107#define SPI_TDRE_OFFSET 1
108#define SPI_TDRE_SIZE 1
109#define SPI_MODF_OFFSET 2
110#define SPI_MODF_SIZE 1
111#define SPI_OVRES_OFFSET 3
112#define SPI_OVRES_SIZE 1
113#define SPI_ENDRX_OFFSET 4
114#define SPI_ENDRX_SIZE 1
115#define SPI_ENDTX_OFFSET 5
116#define SPI_ENDTX_SIZE 1
117#define SPI_RXBUFF_OFFSET 6
118#define SPI_RXBUFF_SIZE 1
119#define SPI_TXBUFE_OFFSET 7
120#define SPI_TXBUFE_SIZE 1
121#define SPI_NSSR_OFFSET 8
122#define SPI_NSSR_SIZE 1
123#define SPI_TXEMPTY_OFFSET 9
124#define SPI_TXEMPTY_SIZE 1
125#define SPI_SPIENS_OFFSET 16
126#define SPI_SPIENS_SIZE 1
11f2764f
CP
127#define SPI_TXFEF_OFFSET 24
128#define SPI_TXFEF_SIZE 1
129#define SPI_TXFFF_OFFSET 25
130#define SPI_TXFFF_SIZE 1
131#define SPI_TXFTHF_OFFSET 26
132#define SPI_TXFTHF_SIZE 1
133#define SPI_RXFEF_OFFSET 27
134#define SPI_RXFEF_SIZE 1
135#define SPI_RXFFF_OFFSET 28
136#define SPI_RXFFF_SIZE 1
137#define SPI_RXFTHF_OFFSET 29
138#define SPI_RXFTHF_SIZE 1
139#define SPI_TXFPTEF_OFFSET 30
140#define SPI_TXFPTEF_SIZE 1
141#define SPI_RXFPTEF_OFFSET 31
142#define SPI_RXFPTEF_SIZE 1
ca632f55
GL
143
144/* Bitfields in CSR0 */
145#define SPI_CPOL_OFFSET 0
146#define SPI_CPOL_SIZE 1
147#define SPI_NCPHA_OFFSET 1
148#define SPI_NCPHA_SIZE 1
149#define SPI_CSAAT_OFFSET 3
150#define SPI_CSAAT_SIZE 1
151#define SPI_BITS_OFFSET 4
152#define SPI_BITS_SIZE 4
153#define SPI_SCBR_OFFSET 8
154#define SPI_SCBR_SIZE 8
155#define SPI_DLYBS_OFFSET 16
156#define SPI_DLYBS_SIZE 8
157#define SPI_DLYBCT_OFFSET 24
158#define SPI_DLYBCT_SIZE 8
159
160/* Bitfields in RCR */
161#define SPI_RXCTR_OFFSET 0
162#define SPI_RXCTR_SIZE 16
163
164/* Bitfields in TCR */
165#define SPI_TXCTR_OFFSET 0
166#define SPI_TXCTR_SIZE 16
167
168/* Bitfields in RNCR */
169#define SPI_RXNCR_OFFSET 0
170#define SPI_RXNCR_SIZE 16
171
172/* Bitfields in TNCR */
173#define SPI_TXNCR_OFFSET 0
174#define SPI_TXNCR_SIZE 16
175
176/* Bitfields in PTCR */
177#define SPI_RXTEN_OFFSET 0
178#define SPI_RXTEN_SIZE 1
179#define SPI_RXTDIS_OFFSET 1
180#define SPI_RXTDIS_SIZE 1
181#define SPI_TXTEN_OFFSET 8
182#define SPI_TXTEN_SIZE 1
183#define SPI_TXTDIS_OFFSET 9
184#define SPI_TXTDIS_SIZE 1
185
11f2764f
CP
186/* Bitfields in FMR */
187#define SPI_TXRDYM_OFFSET 0
188#define SPI_TXRDYM_SIZE 2
189#define SPI_RXRDYM_OFFSET 4
190#define SPI_RXRDYM_SIZE 2
191#define SPI_TXFTHRES_OFFSET 16
192#define SPI_TXFTHRES_SIZE 6
193#define SPI_RXFTHRES_OFFSET 24
194#define SPI_RXFTHRES_SIZE 6
195
196/* Bitfields in FLR */
197#define SPI_TXFL_OFFSET 0
198#define SPI_TXFL_SIZE 6
199#define SPI_RXFL_OFFSET 16
200#define SPI_RXFL_SIZE 6
201
ca632f55
GL
202/* Constants for BITS */
203#define SPI_BITS_8_BPT 0
204#define SPI_BITS_9_BPT 1
205#define SPI_BITS_10_BPT 2
206#define SPI_BITS_11_BPT 3
207#define SPI_BITS_12_BPT 4
208#define SPI_BITS_13_BPT 5
209#define SPI_BITS_14_BPT 6
210#define SPI_BITS_15_BPT 7
211#define SPI_BITS_16_BPT 8
11f2764f
CP
212#define SPI_ONE_DATA 0
213#define SPI_TWO_DATA 1
214#define SPI_FOUR_DATA 2
ca632f55
GL
215
216/* Bit manipulation macros */
217#define SPI_BIT(name) \
218 (1 << SPI_##name##_OFFSET)
a536d765 219#define SPI_BF(name, value) \
ca632f55 220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
a536d765 221#define SPI_BFEXT(name, value) \
ca632f55 222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
a536d765
SK
223#define SPI_BFINS(name, value, old) \
224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 | SPI_BF(name, value))
ca632f55
GL
226
227/* Register access macros */
ea467326 228#ifdef CONFIG_AVR32
a536d765 229#define spi_readl(port, reg) \
ca632f55 230 __raw_readl((port)->regs + SPI_##reg)
a536d765 231#define spi_writel(port, reg, value) \
ca632f55 232 __raw_writel((value), (port)->regs + SPI_##reg)
11f2764f
CP
233
234#define spi_readw(port, reg) \
235 __raw_readw((port)->regs + SPI_##reg)
236#define spi_writew(port, reg, value) \
237 __raw_writew((value), (port)->regs + SPI_##reg)
238
239#define spi_readb(port, reg) \
240 __raw_readb((port)->regs + SPI_##reg)
241#define spi_writeb(port, reg, value) \
242 __raw_writeb((value), (port)->regs + SPI_##reg)
ea467326
BD
243#else
244#define spi_readl(port, reg) \
245 readl_relaxed((port)->regs + SPI_##reg)
246#define spi_writel(port, reg, value) \
247 writel_relaxed((value), (port)->regs + SPI_##reg)
11f2764f
CP
248
249#define spi_readw(port, reg) \
250 readw_relaxed((port)->regs + SPI_##reg)
251#define spi_writew(port, reg, value) \
252 writew_relaxed((value), (port)->regs + SPI_##reg)
253
254#define spi_readb(port, reg) \
255 readb_relaxed((port)->regs + SPI_##reg)
256#define spi_writeb(port, reg, value) \
257 writeb_relaxed((value), (port)->regs + SPI_##reg)
ea467326 258#endif
1ccc404a
NF
259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260 * cache operations; better heuristics consider wordsize and bitrate.
261 */
262#define DMA_MIN_BYTES 16
263
8090d6d1
WY
264#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
265
ce0c4caf
WY
266#define AUTOSUSPEND_TIMEOUT 2000
267
1ccc404a
NF
268struct atmel_spi_dma {
269 struct dma_chan *chan_rx;
270 struct dma_chan *chan_tx;
271 struct scatterlist sgrx;
272 struct scatterlist sgtx;
273 struct dma_async_tx_descriptor *data_desc_rx;
274 struct dma_async_tx_descriptor *data_desc_tx;
275
276 struct at_dma_slave dma_slave;
277};
278
d4820b74
WY
279struct atmel_spi_caps {
280 bool is_spi2;
281 bool has_wdrbt;
282 bool has_dma_support;
283};
754ce4f2
HS
284
285/*
286 * The core SPI transfer engine just talks to a register bank to set up
287 * DMA transfers; transfer queue progress is driven by IRQs. The clock
288 * framework provides the base clock, subdivided for each spi_device.
754ce4f2
HS
289 */
290struct atmel_spi {
291 spinlock_t lock;
8aad7924 292 unsigned long flags;
754ce4f2 293
dfab30ee 294 phys_addr_t phybase;
754ce4f2
HS
295 void __iomem *regs;
296 int irq;
297 struct clk *clk;
298 struct platform_device *pdev;
754ce4f2 299
754ce4f2 300 struct spi_transfer *current_transfer;
0c3b9748 301 int current_remaining_bytes;
823cd045 302 int done_status;
754ce4f2 303
8090d6d1
WY
304 struct completion xfer_completion;
305
1ccc404a 306 /* scratch buffer */
754ce4f2
HS
307 void *buffer;
308 dma_addr_t buffer_dma;
d4820b74
WY
309
310 struct atmel_spi_caps caps;
1ccc404a
NF
311
312 bool use_dma;
313 bool use_pdc;
48203034 314 bool use_cs_gpios;
1ccc404a
NF
315 /* dmaengine data */
316 struct atmel_spi_dma dma;
8090d6d1
WY
317
318 bool keep_cs;
319 bool cs_active;
11f2764f
CP
320
321 u32 fifo_size;
754ce4f2
HS
322};
323
5ee36c98
HS
324/* Controller-specific per-slave state */
325struct atmel_spi_device {
326 unsigned int npcs_pin;
327 u32 csr;
328};
329
754ce4f2
HS
330#define BUFFER_SIZE PAGE_SIZE
331#define INVALID_DMA_ADDRESS 0xffffffff
332
5bfa26ca
HS
333/*
334 * Version 2 of the SPI controller has
335 * - CR.LASTXFER
336 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
337 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
338 * - SPI_CSRx.CSAAT
339 * - SPI_CSRx.SBCR allows faster clocking
5bfa26ca 340 */
d4820b74 341static bool atmel_spi_is_v2(struct atmel_spi *as)
5bfa26ca 342{
d4820b74 343 return as->caps.is_spi2;
5bfa26ca
HS
344}
345
754ce4f2
HS
346/*
347 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
348 * they assume that spi slave device state will not change on deselect, so
defbd3b4
DB
349 * that automagic deselection is OK. ("NPCSx rises if no data is to be
350 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
351 * controllers have CSAAT and friends.
754ce4f2 352 *
defbd3b4
DB
353 * Since the CSAAT functionality is a bit weird on newer controllers as
354 * well, we use GPIO to control nCSx pins on all controllers, updating
355 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
356 * support active-high chipselects despite the controller's belief that
357 * only active-low devices/systems exists.
358 *
359 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
360 * right when driven with GPIO. ("Mode Fault does not allow more than one
361 * Master on Chip Select 0.") No workaround exists for that ... so for
362 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
363 * and (c) will trigger that first erratum in some cases.
754ce4f2
HS
364 */
365
defbd3b4 366static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 367{
5ee36c98 368 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 369 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
370 u32 mr;
371
d4820b74 372 if (atmel_spi_is_v2(as)) {
97ed465b
WY
373 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
374 /* For the low SPI version, there is a issue that PDC transfer
375 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
5ee36c98
HS
376 */
377 spi_writel(as, CSR0, asd->csr);
d4820b74 378 if (as->caps.has_wdrbt) {
97ed465b
WY
379 spi_writel(as, MR,
380 SPI_BF(PCS, ~(0x01 << spi->chip_select))
381 | SPI_BIT(WDRBT)
382 | SPI_BIT(MODFDIS)
383 | SPI_BIT(MSTR));
d4820b74 384 } else {
97ed465b
WY
385 spi_writel(as, MR,
386 SPI_BF(PCS, ~(0x01 << spi->chip_select))
387 | SPI_BIT(MODFDIS)
388 | SPI_BIT(MSTR));
d4820b74 389 }
1ccc404a 390
5ee36c98 391 mr = spi_readl(as, MR);
48203034
CP
392 if (as->use_cs_gpios)
393 gpio_set_value(asd->npcs_pin, active);
5ee36c98
HS
394 } else {
395 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
396 int i;
397 u32 csr;
398
399 /* Make sure clock polarity is correct */
400 for (i = 0; i < spi->master->num_chipselect; i++) {
401 csr = spi_readl(as, CSR0 + 4 * i);
402 if ((csr ^ cpol) & SPI_BIT(CPOL))
403 spi_writel(as, CSR0 + 4 * i,
404 csr ^ SPI_BIT(CPOL));
405 }
406
407 mr = spi_readl(as, MR);
408 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
48203034 409 if (as->use_cs_gpios && spi->chip_select != 0)
5ee36c98
HS
410 gpio_set_value(asd->npcs_pin, active);
411 spi_writel(as, MR, mr);
412 }
defbd3b4
DB
413
414 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
5ee36c98 415 asd->npcs_pin, active ? " (high)" : "",
defbd3b4 416 mr);
754ce4f2
HS
417}
418
defbd3b4 419static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 420{
5ee36c98 421 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 422 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
423 u32 mr;
424
425 /* only deactivate *this* device; sometimes transfers to
426 * another device may be active when this routine is called.
427 */
428 mr = spi_readl(as, MR);
429 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
430 mr = SPI_BFINS(PCS, 0xf, mr);
431 spi_writel(as, MR, mr);
432 }
754ce4f2 433
defbd3b4 434 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
5ee36c98 435 asd->npcs_pin, active ? " (low)" : "",
defbd3b4
DB
436 mr);
437
48203034
CP
438 if (!as->use_cs_gpios)
439 spi_writel(as, CR, SPI_BIT(LASTXFER));
440 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
5ee36c98 441 gpio_set_value(asd->npcs_pin, !active);
754ce4f2
HS
442}
443
6c07ef29 444static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
8aad7924
NF
445{
446 spin_lock_irqsave(&as->lock, as->flags);
447}
448
6c07ef29 449static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
8aad7924
NF
450{
451 spin_unlock_irqrestore(&as->lock, as->flags);
452}
453
1ccc404a
NF
454static inline bool atmel_spi_use_dma(struct atmel_spi *as,
455 struct spi_transfer *xfer)
456{
457 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
458}
459
1ccc404a
NF
460static int atmel_spi_dma_slave_config(struct atmel_spi *as,
461 struct dma_slave_config *slave_config,
462 u8 bits_per_word)
463{
464 int err = 0;
465
466 if (bits_per_word > 8) {
467 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469 } else {
470 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472 }
473
474 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476 slave_config->src_maxburst = 1;
477 slave_config->dst_maxburst = 1;
478 slave_config->device_fc = false;
479
11f2764f
CP
480 /*
481 * This driver uses fixed peripheral select mode (PS bit set to '0' in
482 * the Mode Register).
483 * So according to the datasheet, when FIFOs are available (and
484 * enabled), the Transmit FIFO operates in Multiple Data Mode.
485 * In this mode, up to 2 data, not 4, can be written into the Transmit
486 * Data Register in a single access.
487 * However, the first data has to be written into the lowest 16 bits and
488 * the second data into the highest 16 bits of the Transmit
489 * Data Register. For 8bit data (the most frequent case), it would
490 * require to rework tx_buf so each data would actualy fit 16 bits.
491 * So we'd rather write only one data at the time. Hence the transmit
492 * path works the same whether FIFOs are available (and enabled) or not.
493 */
1ccc404a
NF
494 slave_config->direction = DMA_MEM_TO_DEV;
495 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
496 dev_err(&as->pdev->dev,
497 "failed to configure tx dma channel\n");
498 err = -EINVAL;
499 }
500
11f2764f
CP
501 /*
502 * This driver configures the spi controller for master mode (MSTR bit
503 * set to '1' in the Mode Register).
504 * So according to the datasheet, when FIFOs are available (and
505 * enabled), the Receive FIFO operates in Single Data Mode.
506 * So the receive path works the same whether FIFOs are available (and
507 * enabled) or not.
508 */
1ccc404a
NF
509 slave_config->direction = DMA_DEV_TO_MEM;
510 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
511 dev_err(&as->pdev->dev,
512 "failed to configure rx dma channel\n");
513 err = -EINVAL;
514 }
515
516 return err;
517}
518
1ccc404a
NF
519static int atmel_spi_configure_dma(struct atmel_spi *as)
520{
1ccc404a 521 struct dma_slave_config slave_config;
2f767a9f 522 struct device *dev = &as->pdev->dev;
1ccc404a
NF
523 int err;
524
2f767a9f
RG
525 dma_cap_mask_t mask;
526 dma_cap_zero(mask);
527 dma_cap_set(DMA_SLAVE, mask);
1ccc404a 528
5e9af37e
LD
529 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
530 if (IS_ERR(as->dma.chan_tx)) {
531 err = PTR_ERR(as->dma.chan_tx);
532 if (err == -EPROBE_DEFER) {
533 dev_warn(dev, "no DMA channel available at the moment\n");
534 return err;
535 }
2f767a9f
RG
536 dev_err(dev,
537 "DMA TX channel not available, SPI unable to use DMA\n");
538 err = -EBUSY;
539 goto error;
1ccc404a 540 }
2f767a9f 541
5e9af37e
LD
542 /*
543 * No reason to check EPROBE_DEFER here since we have already requested
544 * tx channel. If it fails here, it's for another reason.
545 */
7758e390 546 as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
2f767a9f
RG
547
548 if (!as->dma.chan_rx) {
549 dev_err(dev,
550 "DMA RX channel not available, SPI unable to use DMA\n");
1ccc404a
NF
551 err = -EBUSY;
552 goto error;
553 }
554
555 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
556 if (err)
557 goto error;
558
559 dev_info(&as->pdev->dev,
560 "Using %s (tx) and %s (rx) for DMA transfers\n",
561 dma_chan_name(as->dma.chan_tx),
562 dma_chan_name(as->dma.chan_rx));
563 return 0;
564error:
565 if (as->dma.chan_rx)
566 dma_release_channel(as->dma.chan_rx);
5e9af37e 567 if (!IS_ERR(as->dma.chan_tx))
1ccc404a
NF
568 dma_release_channel(as->dma.chan_tx);
569 return err;
570}
571
572static void atmel_spi_stop_dma(struct atmel_spi *as)
573{
574 if (as->dma.chan_rx)
5398ad68 575 dmaengine_terminate_all(as->dma.chan_rx);
1ccc404a 576 if (as->dma.chan_tx)
5398ad68 577 dmaengine_terminate_all(as->dma.chan_tx);
1ccc404a
NF
578}
579
580static void atmel_spi_release_dma(struct atmel_spi *as)
581{
582 if (as->dma.chan_rx)
583 dma_release_channel(as->dma.chan_rx);
584 if (as->dma.chan_tx)
585 dma_release_channel(as->dma.chan_tx);
586}
587
588/* This function is called by the DMA driver from tasklet context */
589static void dma_callback(void *data)
590{
591 struct spi_master *master = data;
592 struct atmel_spi *as = spi_master_get_devdata(master);
593
8090d6d1 594 complete(&as->xfer_completion);
1ccc404a
NF
595}
596
597/*
11f2764f 598 * Next transfer using PIO without FIFO.
1ccc404a 599 */
11f2764f
CP
600static void atmel_spi_next_xfer_single(struct spi_master *master,
601 struct spi_transfer *xfer)
1ccc404a
NF
602{
603 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 604 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1ccc404a
NF
605
606 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
607
1ccc404a
NF
608 /* Make sure data is not remaining in RDR */
609 spi_readl(as, RDR);
610 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
611 spi_readl(as, RDR);
612 cpu_relax();
613 }
614
8090d6d1 615 if (xfer->tx_buf) {
f557c98b 616 if (xfer->bits_per_word > 8)
8090d6d1 617 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
f557c98b 618 else
8090d6d1
WY
619 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
620 } else {
1ccc404a 621 spi_writel(as, TDR, 0);
8090d6d1 622 }
1ccc404a
NF
623
624 dev_dbg(master->dev.parent,
f557c98b
RG
625 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
626 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
627 xfer->bits_per_word);
1ccc404a
NF
628
629 /* Enable relevant interrupts */
630 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
631}
632
11f2764f
CP
633/*
634 * Next transfer using PIO with FIFO.
635 */
636static void atmel_spi_next_xfer_fifo(struct spi_master *master,
637 struct spi_transfer *xfer)
638{
639 struct atmel_spi *as = spi_master_get_devdata(master);
640 u32 current_remaining_data, num_data;
641 u32 offset = xfer->len - as->current_remaining_bytes;
642 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
643 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
644 u16 td0, td1;
645 u32 fifomr;
646
647 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
648
649 /* Compute the number of data to transfer in the current iteration */
650 current_remaining_data = ((xfer->bits_per_word > 8) ?
651 ((u32)as->current_remaining_bytes >> 1) :
652 (u32)as->current_remaining_bytes);
653 num_data = min(current_remaining_data, as->fifo_size);
654
655 /* Flush RX and TX FIFOs */
656 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
657 while (spi_readl(as, FLR))
658 cpu_relax();
659
660 /* Set RX FIFO Threshold to the number of data to transfer */
661 fifomr = spi_readl(as, FMR);
662 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
663
664 /* Clear FIFO flags in the Status Register, especially RXFTHF */
665 (void)spi_readl(as, SR);
666
667 /* Fill TX FIFO */
668 while (num_data >= 2) {
669 if (xfer->tx_buf) {
670 if (xfer->bits_per_word > 8) {
671 td0 = *words++;
672 td1 = *words++;
673 } else {
674 td0 = *bytes++;
675 td1 = *bytes++;
676 }
677 } else {
678 td0 = 0;
679 td1 = 0;
680 }
681
682 spi_writel(as, TDR, (td1 << 16) | td0);
683 num_data -= 2;
684 }
685
686 if (num_data) {
687 if (xfer->tx_buf) {
688 if (xfer->bits_per_word > 8)
689 td0 = *words++;
690 else
691 td0 = *bytes++;
692 } else {
693 td0 = 0;
694 }
695
696 spi_writew(as, TDR, td0);
697 num_data--;
698 }
699
700 dev_dbg(master->dev.parent,
701 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703 xfer->bits_per_word);
704
705 /*
706 * Enable RX FIFO Threshold Flag interrupt to be notified about
707 * transfer completion.
708 */
709 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710}
711
712/*
713 * Next transfer using PIO.
714 */
715static void atmel_spi_next_xfer_pio(struct spi_master *master,
716 struct spi_transfer *xfer)
717{
718 struct atmel_spi *as = spi_master_get_devdata(master);
719
720 if (as->fifo_size)
721 atmel_spi_next_xfer_fifo(master, xfer);
722 else
723 atmel_spi_next_xfer_single(master, xfer);
724}
725
1ccc404a
NF
726/*
727 * Submit next transfer for DMA.
1ccc404a
NF
728 */
729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730 struct spi_transfer *xfer,
731 u32 *plen)
732{
733 struct atmel_spi *as = spi_master_get_devdata(master);
734 struct dma_chan *rxchan = as->dma.chan_rx;
735 struct dma_chan *txchan = as->dma.chan_tx;
736 struct dma_async_tx_descriptor *rxdesc;
737 struct dma_async_tx_descriptor *txdesc;
738 struct dma_slave_config slave_config;
739 dma_cookie_t cookie;
740 u32 len = *plen;
741
742 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
743
744 /* Check that the channels are available */
745 if (!rxchan || !txchan)
746 return -ENODEV;
747
748 /* release lock for DMA operations */
749 atmel_spi_unlock(as);
750
751 /* prepare the RX dma transfer */
752 sg_init_table(&as->dma.sgrx, 1);
753 if (xfer->rx_buf) {
754 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
755 } else {
756 as->dma.sgrx.dma_address = as->buffer_dma;
757 if (len > BUFFER_SIZE)
758 len = BUFFER_SIZE;
759 }
760
761 /* prepare the TX dma transfer */
762 sg_init_table(&as->dma.sgtx, 1);
763 if (xfer->tx_buf) {
764 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
765 } else {
766 as->dma.sgtx.dma_address = as->buffer_dma;
767 if (len > BUFFER_SIZE)
768 len = BUFFER_SIZE;
769 memset(as->buffer, 0, len);
770 }
771
772 sg_dma_len(&as->dma.sgtx) = len;
773 sg_dma_len(&as->dma.sgrx) = len;
774
775 *plen = len;
776
777 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
778 goto err_exit;
779
780 /* Send both scatterlists */
ef40eb39
GU
781 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
782 DMA_FROM_DEVICE,
783 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1ccc404a
NF
784 if (!rxdesc)
785 goto err_dma;
786
ef40eb39
GU
787 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
788 DMA_TO_DEVICE,
789 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1ccc404a
NF
790 if (!txdesc)
791 goto err_dma;
792
793 dev_dbg(master->dev.parent,
2de024b7
EG
794 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
795 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
796 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
1ccc404a
NF
797
798 /* Enable relevant interrupts */
799 spi_writel(as, IER, SPI_BIT(OVRES));
800
801 /* Put the callback on the RX transfer only, that should finish last */
802 rxdesc->callback = dma_callback;
803 rxdesc->callback_param = master;
804
805 /* Submit and fire RX and TX with TX last so we're ready to read! */
806 cookie = rxdesc->tx_submit(rxdesc);
807 if (dma_submit_error(cookie))
808 goto err_dma;
809 cookie = txdesc->tx_submit(txdesc);
810 if (dma_submit_error(cookie))
811 goto err_dma;
812 rxchan->device->device_issue_pending(rxchan);
813 txchan->device->device_issue_pending(txchan);
814
815 /* take back lock */
816 atmel_spi_lock(as);
817 return 0;
818
819err_dma:
820 spi_writel(as, IDR, SPI_BIT(OVRES));
821 atmel_spi_stop_dma(as);
822err_exit:
823 atmel_spi_lock(as);
824 return -ENOMEM;
825}
826
154443c7
SE
827static void atmel_spi_next_xfer_data(struct spi_master *master,
828 struct spi_transfer *xfer,
829 dma_addr_t *tx_dma,
830 dma_addr_t *rx_dma,
831 u32 *plen)
832{
833 struct atmel_spi *as = spi_master_get_devdata(master);
834 u32 len = *plen;
835
836 /* use scratch buffer only when rx or tx data is unspecified */
837 if (xfer->rx_buf)
6aed4ee9 838 *rx_dma = xfer->rx_dma + xfer->len - *plen;
154443c7
SE
839 else {
840 *rx_dma = as->buffer_dma;
841 if (len > BUFFER_SIZE)
842 len = BUFFER_SIZE;
843 }
1ccc404a 844
154443c7 845 if (xfer->tx_buf)
6aed4ee9 846 *tx_dma = xfer->tx_dma + xfer->len - *plen;
154443c7
SE
847 else {
848 *tx_dma = as->buffer_dma;
849 if (len > BUFFER_SIZE)
850 len = BUFFER_SIZE;
851 memset(as->buffer, 0, len);
852 dma_sync_single_for_device(&as->pdev->dev,
853 as->buffer_dma, len, DMA_TO_DEVICE);
854 }
855
856 *plen = len;
857}
858
d3b72c7e
RG
859static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
860 struct spi_device *spi,
861 struct spi_transfer *xfer)
862{
863 u32 scbr, csr;
864 unsigned long bus_hz;
865
866 /* v1 chips start out at half the peripheral bus speed. */
867 bus_hz = clk_get_rate(as->clk);
868 if (!atmel_spi_is_v2(as))
869 bus_hz /= 2;
870
871 /*
872 * Calculate the lowest divider that satisfies the
873 * constraint, assuming div32/fdiv/mbz == 0.
874 */
875 if (xfer->speed_hz)
876 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
877 else
878 /*
879 * This can happend if max_speed is null.
880 * In this case, we set the lowest possible speed
881 */
882 scbr = 0xff;
883
884 /*
885 * If the resulting divider doesn't fit into the
886 * register bitfield, we can't satisfy the constraint.
887 */
888 if (scbr >= (1 << SPI_SCBR_SIZE)) {
889 dev_err(&spi->dev,
890 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
891 xfer->speed_hz, scbr, bus_hz/255);
892 return -EINVAL;
893 }
894 if (scbr == 0) {
895 dev_err(&spi->dev,
896 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
897 xfer->speed_hz, scbr, bus_hz);
898 return -EINVAL;
899 }
900 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
901 csr = SPI_BFINS(SCBR, scbr, csr);
902 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
903
904 return 0;
905}
906
754ce4f2 907/*
1ccc404a 908 * Submit next transfer for PDC.
754ce4f2
HS
909 * lock is held, spi irq is blocked
910 */
1ccc404a 911static void atmel_spi_pdc_next_xfer(struct spi_master *master,
8090d6d1
WY
912 struct spi_message *msg,
913 struct spi_transfer *xfer)
754ce4f2
HS
914{
915 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 916 u32 len;
754ce4f2
HS
917 dma_addr_t tx_dma, rx_dma;
918
8090d6d1 919 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2 920
8090d6d1
WY
921 len = as->current_remaining_bytes;
922 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
923 as->current_remaining_bytes -= len;
754ce4f2 924
8090d6d1
WY
925 spi_writel(as, RPR, rx_dma);
926 spi_writel(as, TPR, tx_dma);
754ce4f2 927
8090d6d1
WY
928 if (msg->spi->bits_per_word > 8)
929 len >>= 1;
930 spi_writel(as, RCR, len);
931 spi_writel(as, TCR, len);
754ce4f2 932
8090d6d1
WY
933 dev_dbg(&msg->spi->dev,
934 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
935 xfer, xfer->len, xfer->tx_buf,
936 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
937 (unsigned long long)xfer->rx_dma);
dc329442 938
8090d6d1
WY
939 if (as->current_remaining_bytes) {
940 len = as->current_remaining_bytes;
154443c7 941 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
8090d6d1 942 as->current_remaining_bytes -= len;
754ce4f2 943
154443c7
SE
944 spi_writel(as, RNPR, rx_dma);
945 spi_writel(as, TNPR, tx_dma);
754ce4f2 946
154443c7
SE
947 if (msg->spi->bits_per_word > 8)
948 len >>= 1;
949 spi_writel(as, RNCR, len);
950 spi_writel(as, TNCR, len);
8bacb219
HS
951
952 dev_dbg(&msg->spi->dev,
2de024b7
EG
953 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
954 xfer, xfer->len, xfer->tx_buf,
955 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
956 (unsigned long long)xfer->rx_dma);
154443c7
SE
957 }
958
76e1d14b 959 /* REVISIT: We're waiting for RXBUFF before we start the next
754ce4f2 960 * transfer because we need to handle some difficult timing
76e1d14b
TF
961 * issues otherwise. If we wait for TXBUFE in one transfer and
962 * then starts waiting for RXBUFF in the next, it's difficult
963 * to tell the difference between the RXBUFF interrupt we're
964 * actually waiting for and the RXBUFF interrupt of the
754ce4f2
HS
965 * previous transfer.
966 *
967 * It should be doable, though. Just not now...
968 */
76e1d14b 969 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
754ce4f2
HS
970 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
971}
972
8da0859a
DB
973/*
974 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
975 * - The buffer is either valid for CPU access, else NULL
b595076a 976 * - If the buffer is valid, so is its DMA address
8da0859a 977 *
b595076a 978 * This driver manages the dma address unless message->is_dma_mapped.
8da0859a
DB
979 */
980static int
754ce4f2
HS
981atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
982{
8da0859a
DB
983 struct device *dev = &as->pdev->dev;
984
754ce4f2 985 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
8da0859a 986 if (xfer->tx_buf) {
214b574a
JCPV
987 /* tx_buf is a const void* where we need a void * for the dma
988 * mapping */
989 void *nonconst_tx = (void *)xfer->tx_buf;
990
8da0859a 991 xfer->tx_dma = dma_map_single(dev,
214b574a 992 nonconst_tx, xfer->len,
754ce4f2 993 DMA_TO_DEVICE);
8d8bb39b 994 if (dma_mapping_error(dev, xfer->tx_dma))
8da0859a
DB
995 return -ENOMEM;
996 }
997 if (xfer->rx_buf) {
998 xfer->rx_dma = dma_map_single(dev,
754ce4f2
HS
999 xfer->rx_buf, xfer->len,
1000 DMA_FROM_DEVICE);
8d8bb39b 1001 if (dma_mapping_error(dev, xfer->rx_dma)) {
8da0859a
DB
1002 if (xfer->tx_buf)
1003 dma_unmap_single(dev,
1004 xfer->tx_dma, xfer->len,
1005 DMA_TO_DEVICE);
1006 return -ENOMEM;
1007 }
1008 }
1009 return 0;
754ce4f2
HS
1010}
1011
1012static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1013 struct spi_transfer *xfer)
1014{
1015 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
49dce689 1016 dma_unmap_single(master->dev.parent, xfer->tx_dma,
754ce4f2
HS
1017 xfer->len, DMA_TO_DEVICE);
1018 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
49dce689 1019 dma_unmap_single(master->dev.parent, xfer->rx_dma,
754ce4f2
HS
1020 xfer->len, DMA_FROM_DEVICE);
1021}
1022
1ccc404a
NF
1023static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1024{
1025 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1026}
1027
1ccc404a 1028static void
11f2764f 1029atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1ccc404a 1030{
1ccc404a 1031 u8 *rxp;
f557c98b 1032 u16 *rxp16;
1ccc404a
NF
1033 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1034
1035 if (xfer->rx_buf) {
f557c98b
RG
1036 if (xfer->bits_per_word > 8) {
1037 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1038 *rxp16 = spi_readl(as, RDR);
1039 } else {
1040 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1041 *rxp = spi_readl(as, RDR);
1042 }
1ccc404a
NF
1043 } else {
1044 spi_readl(as, RDR);
1045 }
f557c98b 1046 if (xfer->bits_per_word > 8) {
b112f058
AB
1047 if (as->current_remaining_bytes > 2)
1048 as->current_remaining_bytes -= 2;
1049 else
f557c98b
RG
1050 as->current_remaining_bytes = 0;
1051 } else {
1052 as->current_remaining_bytes--;
1053 }
1ccc404a
NF
1054}
1055
11f2764f
CP
1056static void
1057atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1058{
1059 u32 fifolr = spi_readl(as, FLR);
1060 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1061 u32 offset = xfer->len - as->current_remaining_bytes;
1062 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1063 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1064 u16 rd; /* RD field is the lowest 16 bits of RDR */
1065
1066 /* Update the number of remaining bytes to transfer */
1067 num_bytes = ((xfer->bits_per_word > 8) ?
1068 (num_data << 1) :
1069 num_data);
1070
1071 if (as->current_remaining_bytes > num_bytes)
1072 as->current_remaining_bytes -= num_bytes;
1073 else
1074 as->current_remaining_bytes = 0;
1075
1076 /* Handle odd number of bytes when data are more than 8bit width */
1077 if (xfer->bits_per_word > 8)
1078 as->current_remaining_bytes &= ~0x1;
1079
1080 /* Read data */
1081 while (num_data) {
1082 rd = spi_readl(as, RDR);
1083 if (xfer->rx_buf) {
1084 if (xfer->bits_per_word > 8)
1085 *words++ = rd;
1086 else
1087 *bytes++ = rd;
1088 }
1089 num_data--;
1090 }
1091}
1092
1093/* Called from IRQ
1094 *
1095 * Must update "current_remaining_bytes" to keep track of data
1096 * to transfer.
1097 */
1098static void
1099atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1100{
1101 if (as->fifo_size)
1102 atmel_spi_pump_fifo_data(as, xfer);
1103 else
1104 atmel_spi_pump_single_data(as, xfer);
1105}
1106
1ccc404a
NF
1107/* Interrupt
1108 *
1109 * No need for locking in this Interrupt handler: done_status is the
8090d6d1 1110 * only information modified.
1ccc404a
NF
1111 */
1112static irqreturn_t
1113atmel_spi_pio_interrupt(int irq, void *dev_id)
1114{
1115 struct spi_master *master = dev_id;
1116 struct atmel_spi *as = spi_master_get_devdata(master);
1117 u32 status, pending, imr;
1118 struct spi_transfer *xfer;
1119 int ret = IRQ_NONE;
1120
1121 imr = spi_readl(as, IMR);
1122 status = spi_readl(as, SR);
1123 pending = status & imr;
1124
1125 if (pending & SPI_BIT(OVRES)) {
1126 ret = IRQ_HANDLED;
1127 spi_writel(as, IDR, SPI_BIT(OVRES));
1128 dev_warn(master->dev.parent, "overrun\n");
1129
1130 /*
1131 * When we get an overrun, we disregard the current
1132 * transfer. Data will not be copied back from any
1133 * bounce buffer and msg->actual_len will not be
1134 * updated with the last xfer.
1135 *
1136 * We will also not process any remaning transfers in
1137 * the message.
1ccc404a
NF
1138 */
1139 as->done_status = -EIO;
1140 smp_wmb();
1141
1142 /* Clear any overrun happening while cleaning up */
1143 spi_readl(as, SR);
1144
8090d6d1 1145 complete(&as->xfer_completion);
1ccc404a 1146
11f2764f 1147 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1ccc404a
NF
1148 atmel_spi_lock(as);
1149
1150 if (as->current_remaining_bytes) {
1151 ret = IRQ_HANDLED;
1152 xfer = as->current_transfer;
1153 atmel_spi_pump_pio_data(as, xfer);
8090d6d1 1154 if (!as->current_remaining_bytes)
1ccc404a 1155 spi_writel(as, IDR, pending);
8090d6d1
WY
1156
1157 complete(&as->xfer_completion);
1ccc404a
NF
1158 }
1159
1160 atmel_spi_unlock(as);
1161 } else {
1162 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1163 ret = IRQ_HANDLED;
1164 spi_writel(as, IDR, pending);
1165 }
1166
1167 return ret;
754ce4f2
HS
1168}
1169
1170static irqreturn_t
1ccc404a 1171atmel_spi_pdc_interrupt(int irq, void *dev_id)
754ce4f2
HS
1172{
1173 struct spi_master *master = dev_id;
1174 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2
HS
1175 u32 status, pending, imr;
1176 int ret = IRQ_NONE;
1177
754ce4f2
HS
1178 imr = spi_readl(as, IMR);
1179 status = spi_readl(as, SR);
1180 pending = status & imr;
1181
1182 if (pending & SPI_BIT(OVRES)) {
754ce4f2
HS
1183
1184 ret = IRQ_HANDLED;
1185
dc329442 1186 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
754ce4f2
HS
1187 | SPI_BIT(OVRES)));
1188
754ce4f2
HS
1189 /* Clear any overrun happening while cleaning up */
1190 spi_readl(as, SR);
1191
823cd045 1192 as->done_status = -EIO;
8090d6d1
WY
1193
1194 complete(&as->xfer_completion);
1195
dc329442 1196 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
754ce4f2
HS
1197 ret = IRQ_HANDLED;
1198
1199 spi_writel(as, IDR, pending);
1200
8090d6d1 1201 complete(&as->xfer_completion);
754ce4f2
HS
1202 }
1203
754ce4f2
HS
1204 return ret;
1205}
1206
754ce4f2
HS
1207static int atmel_spi_setup(struct spi_device *spi)
1208{
1209 struct atmel_spi *as;
5ee36c98 1210 struct atmel_spi_device *asd;
d3b72c7e 1211 u32 csr;
754ce4f2 1212 unsigned int bits = spi->bits_per_word;
754ce4f2
HS
1213 unsigned int npcs_pin;
1214 int ret;
1215
1216 as = spi_master_get_devdata(spi->master);
1217
defbd3b4 1218 /* see notes above re chipselect */
d4820b74 1219 if (!atmel_spi_is_v2(as)
defbd3b4
DB
1220 && spi->chip_select == 0
1221 && (spi->mode & SPI_CS_HIGH)) {
1222 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1223 return -EINVAL;
1224 }
1225
d3b72c7e 1226 csr = SPI_BF(BITS, bits - 8);
754ce4f2
HS
1227 if (spi->mode & SPI_CPOL)
1228 csr |= SPI_BIT(CPOL);
1229 if (!(spi->mode & SPI_CPHA))
1230 csr |= SPI_BIT(NCPHA);
48203034
CP
1231 if (!as->use_cs_gpios)
1232 csr |= SPI_BIT(CSAAT);
754ce4f2 1233
1eed29df
HS
1234 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1235 *
1236 * DLYBCT would add delays between words, slowing down transfers.
1237 * It could potentially be useful to cope with DMA bottlenecks, but
1238 * in those cases it's probably best to just use a lower bitrate.
1239 */
1240 csr |= SPI_BF(DLYBS, 0);
1241 csr |= SPI_BF(DLYBCT, 0);
754ce4f2
HS
1242
1243 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
67f08d69 1244 npcs_pin = (unsigned long)spi->controller_data;
850a5b67 1245
48203034
CP
1246 if (!as->use_cs_gpios)
1247 npcs_pin = spi->chip_select;
1248 else if (gpio_is_valid(spi->cs_gpio))
850a5b67
JCPV
1249 npcs_pin = spi->cs_gpio;
1250
5ee36c98
HS
1251 asd = spi->controller_state;
1252 if (!asd) {
1253 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1254 if (!asd)
1255 return -ENOMEM;
1256
48203034
CP
1257 if (as->use_cs_gpios) {
1258 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1259 if (ret) {
1260 kfree(asd);
1261 return ret;
1262 }
1263
1264 gpio_direction_output(npcs_pin,
1265 !(spi->mode & SPI_CS_HIGH));
5ee36c98
HS
1266 }
1267
1268 asd->npcs_pin = npcs_pin;
1269 spi->controller_state = asd;
754ce4f2
HS
1270 }
1271
5ee36c98
HS
1272 asd->csr = csr;
1273
754ce4f2 1274 dev_dbg(&spi->dev,
d3b72c7e
RG
1275 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1276 bits, spi->mode, spi->chip_select, csr);
754ce4f2 1277
d4820b74 1278 if (!atmel_spi_is_v2(as))
5ee36c98 1279 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
754ce4f2
HS
1280
1281 return 0;
1282}
1283
8090d6d1
WY
1284static int atmel_spi_one_transfer(struct spi_master *master,
1285 struct spi_message *msg,
1286 struct spi_transfer *xfer)
754ce4f2
HS
1287{
1288 struct atmel_spi *as;
8090d6d1 1289 struct spi_device *spi = msg->spi;
b9d228f9 1290 u8 bits;
8090d6d1 1291 u32 len;
b9d228f9 1292 struct atmel_spi_device *asd;
8090d6d1
WY
1293 int timeout;
1294 int ret;
1369dea6 1295 unsigned long dma_timeout;
754ce4f2 1296
8090d6d1 1297 as = spi_master_get_devdata(master);
754ce4f2 1298
8090d6d1
WY
1299 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1300 dev_dbg(&spi->dev, "missing rx or tx buf\n");
754ce4f2 1301 return -EINVAL;
8090d6d1 1302 }
754ce4f2 1303
8090d6d1
WY
1304 if (xfer->bits_per_word) {
1305 asd = spi->controller_state;
1306 bits = (asd->csr >> 4) & 0xf;
1307 if (bits != xfer->bits_per_word - 8) {
1308 dev_dbg(&spi->dev,
1309 "you can't yet change bits_per_word in transfers\n");
1310 return -ENOPROTOOPT;
1311 }
1312 }
754ce4f2 1313
8090d6d1
WY
1314 /*
1315 * DMA map early, for performance (empties dcache ASAP) and
1316 * better fault reporting.
1317 */
1318 if ((!msg->is_dma_mapped)
1319 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1320 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1321 return -ENOMEM;
1322 }
1323
1324 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
754ce4f2 1325
8090d6d1
WY
1326 as->done_status = 0;
1327 as->current_transfer = xfer;
1328 as->current_remaining_bytes = xfer->len;
1329 while (as->current_remaining_bytes) {
1330 reinit_completion(&as->xfer_completion);
1331
1332 if (as->use_pdc) {
1333 atmel_spi_pdc_next_xfer(master, msg, xfer);
1334 } else if (atmel_spi_use_dma(as, xfer)) {
1335 len = as->current_remaining_bytes;
1336 ret = atmel_spi_next_xfer_dma_submit(master,
1337 xfer, &len);
1338 if (ret) {
1339 dev_err(&spi->dev,
1340 "unable to use DMA, fallback to PIO\n");
1341 atmel_spi_next_xfer_pio(master, xfer);
1342 } else {
1343 as->current_remaining_bytes -= len;
0c3b9748
AL
1344 if (as->current_remaining_bytes < 0)
1345 as->current_remaining_bytes = 0;
b9d228f9 1346 }
8090d6d1
WY
1347 } else {
1348 atmel_spi_next_xfer_pio(master, xfer);
b9d228f9
MB
1349 }
1350
1676014e
AS
1351 /* interrupts are disabled, so free the lock for schedule */
1352 atmel_spi_unlock(as);
1369dea6
NMG
1353 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1354 SPI_DMA_TIMEOUT);
1676014e 1355 atmel_spi_lock(as);
1369dea6
NMG
1356 if (WARN_ON(dma_timeout == 0)) {
1357 dev_err(&spi->dev, "spi transfer timeout\n");
8090d6d1 1358 as->done_status = -EIO;
f557c98b
RG
1359 }
1360
8090d6d1
WY
1361 if (as->done_status)
1362 break;
1363 }
1364
1365 if (as->done_status) {
1366 if (as->use_pdc) {
1367 dev_warn(master->dev.parent,
1368 "overrun (%u/%u remaining)\n",
1369 spi_readl(as, TCR), spi_readl(as, RCR));
1370
1371 /*
1372 * Clean up DMA registers and make sure the data
1373 * registers are empty.
1374 */
1375 spi_writel(as, RNCR, 0);
1376 spi_writel(as, TNCR, 0);
1377 spi_writel(as, RCR, 0);
1378 spi_writel(as, TCR, 0);
1379 for (timeout = 1000; timeout; timeout--)
1380 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1381 break;
1382 if (!timeout)
1383 dev_warn(master->dev.parent,
1384 "timeout waiting for TXEMPTY");
1385 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1386 spi_readl(as, RDR);
1387
1388 /* Clear any overrun happening while cleaning up */
1389 spi_readl(as, SR);
1390
1391 } else if (atmel_spi_use_dma(as, xfer)) {
1392 atmel_spi_stop_dma(as);
1393 }
1394
1395 if (!msg->is_dma_mapped
1396 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1397 atmel_spi_dma_unmap_xfer(master, xfer);
1398
1399 return 0;
1400
1401 } else {
1402 /* only update length if no error */
1403 msg->actual_length += xfer->len;
1404 }
1405
1406 if (!msg->is_dma_mapped
1407 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1408 atmel_spi_dma_unmap_xfer(master, xfer);
1409
1410 if (xfer->delay_usecs)
1411 udelay(xfer->delay_usecs);
1412
1413 if (xfer->cs_change) {
1414 if (list_is_last(&xfer->transfer_list,
1415 &msg->transfers)) {
1416 as->keep_cs = true;
1417 } else {
1418 as->cs_active = !as->cs_active;
1419 if (as->cs_active)
1420 cs_activate(as, msg->spi);
1421 else
1422 cs_deactivate(as, msg->spi);
8da0859a 1423 }
754ce4f2
HS
1424 }
1425
8090d6d1
WY
1426 return 0;
1427}
1428
1429static int atmel_spi_transfer_one_message(struct spi_master *master,
1430 struct spi_message *msg)
1431{
1432 struct atmel_spi *as;
1433 struct spi_transfer *xfer;
1434 struct spi_device *spi = msg->spi;
1435 int ret = 0;
1436
1437 as = spi_master_get_devdata(master);
1438
1439 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1440 msg, dev_name(&spi->dev));
1441
8090d6d1
WY
1442 atmel_spi_lock(as);
1443 cs_activate(as, spi);
1444
1445 as->cs_active = true;
1446 as->keep_cs = false;
1447
1448 msg->status = 0;
1449 msg->actual_length = 0;
1450
1451 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452 ret = atmel_spi_one_transfer(master, msg, xfer);
1453 if (ret)
1454 goto msg_done;
1455 }
1456
1457 if (as->use_pdc)
1458 atmel_spi_disable_pdc_transfer(as);
1459
754ce4f2 1460 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8090d6d1 1461 dev_dbg(&spi->dev,
54f4c51c 1462 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
754ce4f2 1463 xfer, xfer->len,
54f4c51c
RD
1464 xfer->tx_buf, &xfer->tx_dma,
1465 xfer->rx_buf, &xfer->rx_dma);
754ce4f2
HS
1466 }
1467
8090d6d1
WY
1468msg_done:
1469 if (!as->keep_cs)
1470 cs_deactivate(as, msg->spi);
754ce4f2 1471
8aad7924 1472 atmel_spi_unlock(as);
754ce4f2 1473
8090d6d1
WY
1474 msg->status = as->done_status;
1475 spi_finalize_current_message(spi->master);
1476
1477 return ret;
754ce4f2
HS
1478}
1479
bb2d1c36 1480static void atmel_spi_cleanup(struct spi_device *spi)
754ce4f2 1481{
5ee36c98 1482 struct atmel_spi_device *asd = spi->controller_state;
67f08d69 1483 unsigned gpio = (unsigned long) spi->controller_data;
defbd3b4 1484
5ee36c98 1485 if (!asd)
defbd3b4
DB
1486 return;
1487
5ee36c98 1488 spi->controller_state = NULL;
defbd3b4 1489 gpio_free(gpio);
5ee36c98 1490 kfree(asd);
754ce4f2
HS
1491}
1492
d4820b74
WY
1493static inline unsigned int atmel_get_version(struct atmel_spi *as)
1494{
1495 return spi_readl(as, VERSION) & 0x00000fff;
1496}
1497
1498static void atmel_get_caps(struct atmel_spi *as)
1499{
1500 unsigned int version;
1501
1502 version = atmel_get_version(as);
1503 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1504
1505 as->caps.is_spi2 = version > 0x121;
1506 as->caps.has_wdrbt = version >= 0x210;
1507 as->caps.has_dma_support = version >= 0x212;
1508}
1509
754ce4f2
HS
1510/*-------------------------------------------------------------------------*/
1511
fd4a319b 1512static int atmel_spi_probe(struct platform_device *pdev)
754ce4f2
HS
1513{
1514 struct resource *regs;
1515 int irq;
1516 struct clk *clk;
1517 int ret;
1518 struct spi_master *master;
1519 struct atmel_spi *as;
1520
5bdfd491
WY
1521 /* Select default pin state */
1522 pinctrl_pm_select_default_state(&pdev->dev);
1523
754ce4f2
HS
1524 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1525 if (!regs)
1526 return -ENXIO;
1527
1528 irq = platform_get_irq(pdev, 0);
1529 if (irq < 0)
1530 return irq;
1531
9f87d6f2 1532 clk = devm_clk_get(&pdev->dev, "spi_clk");
754ce4f2
HS
1533 if (IS_ERR(clk))
1534 return PTR_ERR(clk);
1535
1536 /* setup spi core then atmel-specific driver state */
1537 ret = -ENOMEM;
a536d765 1538 master = spi_alloc_master(&pdev->dev, sizeof(*as));
754ce4f2
HS
1539 if (!master)
1540 goto out_free;
1541
e7db06b5
DB
1542 /* the spi->mode bits understood by this driver: */
1543 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 1544 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
850a5b67 1545 master->dev.of_node = pdev->dev.of_node;
754ce4f2 1546 master->bus_num = pdev->id;
850a5b67 1547 master->num_chipselect = master->dev.of_node ? 0 : 4;
754ce4f2 1548 master->setup = atmel_spi_setup;
8090d6d1 1549 master->transfer_one_message = atmel_spi_transfer_one_message;
754ce4f2 1550 master->cleanup = atmel_spi_cleanup;
ce0c4caf 1551 master->auto_runtime_pm = true;
754ce4f2
HS
1552 platform_set_drvdata(pdev, master);
1553
1554 as = spi_master_get_devdata(master);
1555
8da0859a
DB
1556 /*
1557 * Scratch buffer is used for throwaway rx and tx data.
1558 * It's coherent to minimize dcache pollution.
1559 */
754ce4f2
HS
1560 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1561 &as->buffer_dma, GFP_KERNEL);
1562 if (!as->buffer)
1563 goto out_free;
1564
1565 spin_lock_init(&as->lock);
1ccc404a 1566
754ce4f2 1567 as->pdev = pdev;
31407478 1568 as->regs = devm_ioremap_resource(&pdev->dev, regs);
543c954d
WY
1569 if (IS_ERR(as->regs)) {
1570 ret = PTR_ERR(as->regs);
754ce4f2 1571 goto out_free_buffer;
543c954d 1572 }
dfab30ee 1573 as->phybase = regs->start;
754ce4f2
HS
1574 as->irq = irq;
1575 as->clk = clk;
754ce4f2 1576
8090d6d1
WY
1577 init_completion(&as->xfer_completion);
1578
d4820b74
WY
1579 atmel_get_caps(as);
1580
48203034
CP
1581 as->use_cs_gpios = true;
1582 if (atmel_spi_is_v2(as) &&
1583 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1584 as->use_cs_gpios = false;
1585 master->num_chipselect = 4;
1586 }
1587
1ccc404a
NF
1588 as->use_dma = false;
1589 as->use_pdc = false;
1590 if (as->caps.has_dma_support) {
5e9af37e
LD
1591 ret = atmel_spi_configure_dma(as);
1592 if (ret == 0)
1ccc404a 1593 as->use_dma = true;
5e9af37e
LD
1594 else if (ret == -EPROBE_DEFER)
1595 return ret;
1ccc404a
NF
1596 } else {
1597 as->use_pdc = true;
1598 }
1599
1600 if (as->caps.has_dma_support && !as->use_dma)
1601 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1602
1603 if (as->use_pdc) {
9f87d6f2
JH
1604 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1605 0, dev_name(&pdev->dev), master);
1ccc404a 1606 } else {
9f87d6f2
JH
1607 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1608 0, dev_name(&pdev->dev), master);
1ccc404a 1609 }
754ce4f2
HS
1610 if (ret)
1611 goto out_unmap_regs;
1612
1613 /* Initialize the hardware */
dfec4a6e
BB
1614 ret = clk_prepare_enable(clk);
1615 if (ret)
de8cc234 1616 goto out_free_irq;
754ce4f2 1617 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1618 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
d4820b74
WY
1619 if (as->caps.has_wdrbt) {
1620 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1621 | SPI_BIT(MSTR));
1622 } else {
1623 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1624 }
1ccc404a
NF
1625
1626 if (as->use_pdc)
1627 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2
HS
1628 spi_writel(as, CR, SPI_BIT(SPIEN));
1629
11f2764f
CP
1630 as->fifo_size = 0;
1631 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632 &as->fifo_size)) {
1633 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1634 spi_writel(as, CR, SPI_BIT(FIFOEN));
1635 }
1636
754ce4f2
HS
1637 /* go! */
1638 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1639 (unsigned long)regs->start, irq);
1640
ce0c4caf
WY
1641 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1642 pm_runtime_use_autosuspend(&pdev->dev);
1643 pm_runtime_set_active(&pdev->dev);
1644 pm_runtime_enable(&pdev->dev);
1645
9f87d6f2 1646 ret = devm_spi_register_master(&pdev->dev, master);
754ce4f2 1647 if (ret)
1ccc404a 1648 goto out_free_dma;
754ce4f2
HS
1649
1650 return 0;
1651
1ccc404a 1652out_free_dma:
ce0c4caf
WY
1653 pm_runtime_disable(&pdev->dev);
1654 pm_runtime_set_suspended(&pdev->dev);
1655
1ccc404a
NF
1656 if (as->use_dma)
1657 atmel_spi_release_dma(as);
1658
754ce4f2 1659 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1660 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
dfec4a6e 1661 clk_disable_unprepare(clk);
de8cc234 1662out_free_irq:
754ce4f2 1663out_unmap_regs:
754ce4f2
HS
1664out_free_buffer:
1665 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1666 as->buffer_dma);
1667out_free:
754ce4f2
HS
1668 spi_master_put(master);
1669 return ret;
1670}
1671
fd4a319b 1672static int atmel_spi_remove(struct platform_device *pdev)
754ce4f2
HS
1673{
1674 struct spi_master *master = platform_get_drvdata(pdev);
1675 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2 1676
ce0c4caf
WY
1677 pm_runtime_get_sync(&pdev->dev);
1678
754ce4f2
HS
1679 /* reset the hardware and block queue progress */
1680 spin_lock_irq(&as->lock);
1ccc404a
NF
1681 if (as->use_dma) {
1682 atmel_spi_stop_dma(as);
1683 atmel_spi_release_dma(as);
1684 }
1685
754ce4f2 1686 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1687 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
754ce4f2
HS
1688 spi_readl(as, SR);
1689 spin_unlock_irq(&as->lock);
1690
754ce4f2
HS
1691 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1692 as->buffer_dma);
1693
dfec4a6e 1694 clk_disable_unprepare(as->clk);
754ce4f2 1695
ce0c4caf
WY
1696 pm_runtime_put_noidle(&pdev->dev);
1697 pm_runtime_disable(&pdev->dev);
1698
754ce4f2
HS
1699 return 0;
1700}
1701
ce0c4caf 1702#ifdef CONFIG_PM
c1ee8f3f
WY
1703static int atmel_spi_runtime_suspend(struct device *dev)
1704{
1705 struct spi_master *master = dev_get_drvdata(dev);
1706 struct atmel_spi *as = spi_master_get_devdata(master);
1707
1708 clk_disable_unprepare(as->clk);
1709 pinctrl_pm_select_sleep_state(dev);
1710
1711 return 0;
1712}
1713
1714static int atmel_spi_runtime_resume(struct device *dev)
1715{
1716 struct spi_master *master = dev_get_drvdata(dev);
1717 struct atmel_spi *as = spi_master_get_devdata(master);
1718
1719 pinctrl_pm_select_default_state(dev);
1720
1721 return clk_prepare_enable(as->clk);
1722}
1723
ec60dd37 1724static int atmel_spi_suspend(struct device *dev)
754ce4f2 1725{
c1ee8f3f 1726 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a
WY
1727 int ret;
1728
1729 /* Stop the queue running */
1730 ret = spi_master_suspend(master);
1731 if (ret) {
1732 dev_warn(dev, "cannot suspend master\n");
1733 return ret;
1734 }
754ce4f2 1735
c1ee8f3f
WY
1736 if (!pm_runtime_suspended(dev))
1737 atmel_spi_runtime_suspend(dev);
5bdfd491 1738
754ce4f2
HS
1739 return 0;
1740}
1741
ec60dd37 1742static int atmel_spi_resume(struct device *dev)
754ce4f2 1743{
c1ee8f3f 1744 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a 1745 int ret;
754ce4f2 1746
ce0c4caf 1747 if (!pm_runtime_suspended(dev)) {
c1ee8f3f 1748 ret = atmel_spi_runtime_resume(dev);
ce0c4caf
WY
1749 if (ret)
1750 return ret;
1751 }
ba938f3a
WY
1752
1753 /* Start the queue running */
1754 ret = spi_master_resume(master);
1755 if (ret)
1756 dev_err(dev, "problem starting queue (%d)\n", ret);
1757
1758 return ret;
754ce4f2 1759}
ce0c4caf
WY
1760
1761static const struct dev_pm_ops atmel_spi_pm_ops = {
1762 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1763 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1764 atmel_spi_runtime_resume, NULL)
1765};
ec60dd37 1766#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
754ce4f2 1767#else
ec60dd37 1768#define ATMEL_SPI_PM_OPS NULL
754ce4f2
HS
1769#endif
1770
850a5b67
JCPV
1771#if defined(CONFIG_OF)
1772static const struct of_device_id atmel_spi_dt_ids[] = {
1773 { .compatible = "atmel,at91rm9200-spi" },
1774 { /* sentinel */ }
1775};
1776
1777MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1778#endif
754ce4f2
HS
1779
1780static struct platform_driver atmel_spi_driver = {
1781 .driver = {
1782 .name = "atmel_spi",
ec60dd37 1783 .pm = ATMEL_SPI_PM_OPS,
850a5b67 1784 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
754ce4f2 1785 },
1cb201af 1786 .probe = atmel_spi_probe,
2deff8d6 1787 .remove = atmel_spi_remove,
754ce4f2 1788};
940ab889 1789module_platform_driver(atmel_spi_driver);
754ce4f2
HS
1790
1791MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
e05503ef 1792MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
754ce4f2 1793MODULE_LICENSE("GPL");
7e38c3c4 1794MODULE_ALIAS("platform:atmel_spi");