]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/spi/spi-ep93xx.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / drivers / spi / spi-ep93xx.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
011f23a3
MW
2/*
3 * Driver for Cirrus Logic EP93xx SPI controller.
4 *
626a96db 5 * Copyright (C) 2010-2011 Mika Westerberg
011f23a3
MW
6 *
7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 *
9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 *
11 * For more information about the SPI controller see documentation on Cirrus
12 * Logic web site:
13 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
011f23a3
MW
14 */
15
16#include <linux/io.h>
17#include <linux/clk.h>
18#include <linux/err.h>
19#include <linux/delay.h>
20#include <linux/device.h>
626a96db 21#include <linux/dmaengine.h>
011f23a3
MW
22#include <linux/bitops.h>
23#include <linux/interrupt.h>
5bdb7613 24#include <linux/module.h>
011f23a3 25#include <linux/platform_device.h>
011f23a3 26#include <linux/sched.h>
626a96db 27#include <linux/scatterlist.h>
011f23a3
MW
28#include <linux/spi/spi.h>
29
a3b29245
AB
30#include <linux/platform_data/dma-ep93xx.h>
31#include <linux/platform_data/spi-ep93xx.h>
011f23a3
MW
32
33#define SSPCR0 0x0000
34#define SSPCR0_MODE_SHIFT 6
35#define SSPCR0_SCR_SHIFT 8
36
37#define SSPCR1 0x0004
38#define SSPCR1_RIE BIT(0)
39#define SSPCR1_TIE BIT(1)
40#define SSPCR1_RORIE BIT(2)
41#define SSPCR1_LBM BIT(3)
42#define SSPCR1_SSE BIT(4)
43#define SSPCR1_MS BIT(5)
44#define SSPCR1_SOD BIT(6)
45
46#define SSPDR 0x0008
47
48#define SSPSR 0x000c
49#define SSPSR_TFE BIT(0)
50#define SSPSR_TNF BIT(1)
51#define SSPSR_RNE BIT(2)
52#define SSPSR_RFF BIT(3)
53#define SSPSR_BSY BIT(4)
54#define SSPCPSR 0x0010
55
56#define SSPIIR 0x0014
57#define SSPIIR_RIS BIT(0)
58#define SSPIIR_TIS BIT(1)
59#define SSPIIR_RORIS BIT(2)
60#define SSPICR SSPIIR
61
62/* timeout in milliseconds */
63#define SPI_TIMEOUT 5
64/* maximum depth of RX/TX FIFO */
65#define SPI_FIFO_SIZE 8
66
67/**
68 * struct ep93xx_spi - EP93xx SPI controller structure
011f23a3 69 * @clk: clock for the controller
1232978a 70 * @mmio: pointer to ioremap()'d registers
626a96db 71 * @sspdr_phys: physical address of the SSPDR register
011f23a3
MW
72 * @tx: current byte in transfer to transmit
73 * @rx: current byte in transfer to receive
74 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
75 * frame decreases this level and sending one frame increases it.
626a96db
MW
76 * @dma_rx: RX DMA channel
77 * @dma_tx: TX DMA channel
78 * @dma_rx_data: RX parameters passed to the DMA engine
79 * @dma_tx_data: TX parameters passed to the DMA engine
80 * @rx_sgt: sg table for RX transfers
81 * @tx_sgt: sg table for TX transfers
82 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
83 * the client
011f23a3
MW
84 */
85struct ep93xx_spi {
011f23a3 86 struct clk *clk;
1232978a 87 void __iomem *mmio;
626a96db 88 unsigned long sspdr_phys;
011f23a3
MW
89 size_t tx;
90 size_t rx;
91 size_t fifo_level;
626a96db
MW
92 struct dma_chan *dma_rx;
93 struct dma_chan *dma_tx;
94 struct ep93xx_dma_data dma_rx_data;
95 struct ep93xx_dma_data dma_tx_data;
96 struct sg_table rx_sgt;
97 struct sg_table tx_sgt;
98 void *zeropage;
011f23a3
MW
99};
100
011f23a3
MW
101/* converts bits per word to CR0.DSS value */
102#define bits_per_word_to_dss(bpw) ((bpw) - 1)
103
011f23a3
MW
104/**
105 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
48738831 106 * @master: SPI master
011f23a3 107 * @rate: desired SPI output clock rate
f7ef1da9
HS
108 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
109 * @div_scr: pointer to return the scr divider
011f23a3 110 */
48738831 111static int ep93xx_spi_calc_divisors(struct spi_master *master,
56fc0b42 112 u32 rate, u8 *div_cpsr, u8 *div_scr)
011f23a3 113{
48738831 114 struct ep93xx_spi *espi = spi_master_get_devdata(master);
011f23a3
MW
115 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
116 int cpsr, scr;
117
118 /*
119 * Make sure that max value is between values supported by the
d9a01771 120 * controller.
011f23a3 121 */
56fc0b42 122 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
011f23a3
MW
123
124 /*
125 * Calculate divisors so that we can get speed according the
126 * following formula:
127 * rate = spi_clock_rate / (cpsr * (1 + scr))
128 *
129 * cpsr must be even number and starts from 2, scr can be any number
130 * between 0 and 255.
131 */
132 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
133 for (scr = 0; scr <= 255; scr++) {
134 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
f7ef1da9
HS
135 *div_scr = (u8)scr;
136 *div_cpsr = (u8)cpsr;
011f23a3
MW
137 return 0;
138 }
139 }
140 }
141
142 return -EINVAL;
143}
144
48738831 145static int ep93xx_spi_chip_setup(struct spi_master *master,
55f0cd3f
HS
146 struct spi_device *spi,
147 struct spi_transfer *xfer)
011f23a3 148{
48738831 149 struct ep93xx_spi *espi = spi_master_get_devdata(master);
55f0cd3f 150 u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
f7ef1da9
HS
151 u8 div_cpsr = 0;
152 u8 div_scr = 0;
011f23a3 153 u16 cr0;
f7ef1da9
HS
154 int err;
155
48738831 156 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
55f0cd3f 157 &div_cpsr, &div_scr);
f7ef1da9
HS
158 if (err)
159 return err;
011f23a3 160
f7ef1da9 161 cr0 = div_scr << SSPCR0_SCR_SHIFT;
55f0cd3f 162 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
d9b65dfd 163 cr0 |= dss;
011f23a3 164
48738831 165 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
55f0cd3f 166 spi->mode, div_cpsr, div_scr, dss);
48738831 167 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
011f23a3 168
8447e478
HS
169 writel(div_cpsr, espi->mmio + SSPCPSR);
170 writel(cr0, espi->mmio + SSPCR0);
f7ef1da9
HS
171
172 return 0;
011f23a3
MW
173}
174
d9a01771 175static void ep93xx_do_write(struct spi_master *master)
011f23a3 176{
d9a01771
HS
177 struct ep93xx_spi *espi = spi_master_get_devdata(master);
178 struct spi_transfer *xfer = master->cur_msg->state;
8447e478 179 u32 val = 0;
011f23a3 180
d9a01771
HS
181 if (xfer->bits_per_word > 8) {
182 if (xfer->tx_buf)
183 val = ((u16 *)xfer->tx_buf)[espi->tx];
8447e478 184 espi->tx += 2;
011f23a3 185 } else {
d9a01771
HS
186 if (xfer->tx_buf)
187 val = ((u8 *)xfer->tx_buf)[espi->tx];
8447e478 188 espi->tx += 1;
011f23a3 189 }
8447e478 190 writel(val, espi->mmio + SSPDR);
011f23a3
MW
191}
192
d9a01771 193static void ep93xx_do_read(struct spi_master *master)
011f23a3 194{
d9a01771
HS
195 struct ep93xx_spi *espi = spi_master_get_devdata(master);
196 struct spi_transfer *xfer = master->cur_msg->state;
8447e478 197 u32 val;
011f23a3 198
8447e478 199 val = readl(espi->mmio + SSPDR);
d9a01771
HS
200 if (xfer->bits_per_word > 8) {
201 if (xfer->rx_buf)
202 ((u16 *)xfer->rx_buf)[espi->rx] = val;
8447e478 203 espi->rx += 2;
011f23a3 204 } else {
d9a01771
HS
205 if (xfer->rx_buf)
206 ((u8 *)xfer->rx_buf)[espi->rx] = val;
8447e478 207 espi->rx += 1;
011f23a3
MW
208 }
209}
210
211/**
212 * ep93xx_spi_read_write() - perform next RX/TX transfer
213 * @espi: ep93xx SPI controller struct
214 *
215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216 * called several times, the whole transfer will be completed. Returns
217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
218 *
219 * When this function is finished, RX FIFO should be empty and TX FIFO should be
220 * full.
221 */
48738831 222static int ep93xx_spi_read_write(struct spi_master *master)
011f23a3 223{
48738831 224 struct ep93xx_spi *espi = spi_master_get_devdata(master);
d9a01771 225 struct spi_transfer *xfer = master->cur_msg->state;
011f23a3
MW
226
227 /* read as long as RX FIFO has frames in it */
8447e478 228 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
d9a01771 229 ep93xx_do_read(master);
011f23a3
MW
230 espi->fifo_level--;
231 }
232
233 /* write as long as TX FIFO has room */
d9a01771
HS
234 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
235 ep93xx_do_write(master);
011f23a3
MW
236 espi->fifo_level++;
237 }
238
d9a01771 239 if (espi->rx == xfer->len)
011f23a3 240 return 0;
011f23a3
MW
241
242 return -EINPROGRESS;
243}
244
a1108c7b
NC
245static enum dma_transfer_direction
246ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
247{
248 switch (dir) {
249 case DMA_TO_DEVICE:
250 return DMA_MEM_TO_DEV;
251 case DMA_FROM_DEVICE:
252 return DMA_DEV_TO_MEM;
253 default:
254 return DMA_TRANS_NONE;
255 }
256}
257
626a96db
MW
258/**
259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
48738831 260 * @master: SPI master
626a96db
MW
261 * @dir: DMA transfer direction
262 *
263 * Function configures the DMA, maps the buffer and prepares the DMA
264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265 * in case of failure.
266 */
267static struct dma_async_tx_descriptor *
48738831 268ep93xx_spi_dma_prepare(struct spi_master *master,
a1108c7b 269 enum dma_data_direction dir)
626a96db 270{
48738831 271 struct ep93xx_spi *espi = spi_master_get_devdata(master);
d9a01771 272 struct spi_transfer *xfer = master->cur_msg->state;
626a96db
MW
273 struct dma_async_tx_descriptor *txd;
274 enum dma_slave_buswidth buswidth;
275 struct dma_slave_config conf;
276 struct scatterlist *sg;
277 struct sg_table *sgt;
278 struct dma_chan *chan;
279 const void *buf, *pbuf;
d9a01771 280 size_t len = xfer->len;
626a96db
MW
281 int i, ret, nents;
282
d9a01771 283 if (xfer->bits_per_word > 8)
626a96db
MW
284 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
285 else
286 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
287
288 memset(&conf, 0, sizeof(conf));
a1108c7b 289 conf.direction = ep93xx_dma_data_to_trans_dir(dir);
626a96db 290
a1108c7b 291 if (dir == DMA_FROM_DEVICE) {
626a96db 292 chan = espi->dma_rx;
d9a01771 293 buf = xfer->rx_buf;
626a96db
MW
294 sgt = &espi->rx_sgt;
295
296 conf.src_addr = espi->sspdr_phys;
297 conf.src_addr_width = buswidth;
298 } else {
299 chan = espi->dma_tx;
d9a01771 300 buf = xfer->tx_buf;
626a96db
MW
301 sgt = &espi->tx_sgt;
302
303 conf.dst_addr = espi->sspdr_phys;
304 conf.dst_addr_width = buswidth;
305 }
306
307 ret = dmaengine_slave_config(chan, &conf);
308 if (ret)
309 return ERR_PTR(ret);
310
311 /*
312 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313 * because we are using @espi->zeropage to provide a zero RX buffer
314 * for the TX transfers and we have only allocated one page for that.
315 *
316 * For performance reasons we allocate a new sg_table only when
317 * needed. Otherwise we will re-use the current one. Eventually the
318 * last sg_table is released in ep93xx_spi_release_dma().
319 */
320
321 nents = DIV_ROUND_UP(len, PAGE_SIZE);
322 if (nents != sgt->nents) {
323 sg_free_table(sgt);
324
325 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
326 if (ret)
327 return ERR_PTR(ret);
328 }
329
330 pbuf = buf;
331 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
332 size_t bytes = min_t(size_t, len, PAGE_SIZE);
333
334 if (buf) {
335 sg_set_page(sg, virt_to_page(pbuf), bytes,
336 offset_in_page(pbuf));
337 } else {
338 sg_set_page(sg, virt_to_page(espi->zeropage),
339 bytes, 0);
340 }
341
342 pbuf += bytes;
343 len -= bytes;
344 }
345
346 if (WARN_ON(len)) {
48738831 347 dev_warn(&master->dev, "len = %zu expected 0!\n", len);
626a96db
MW
348 return ERR_PTR(-EINVAL);
349 }
350
351 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
352 if (!nents)
353 return ERR_PTR(-ENOMEM);
354
a1108c7b
NC
355 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
356 DMA_CTRL_ACK);
626a96db
MW
357 if (!txd) {
358 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
359 return ERR_PTR(-ENOMEM);
360 }
361 return txd;
362}
363
364/**
365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
48738831 366 * @master: SPI master
626a96db
MW
367 * @dir: DMA transfer direction
368 *
369 * Function finishes with the DMA transfer. After this, the DMA buffer is
370 * unmapped.
371 */
48738831 372static void ep93xx_spi_dma_finish(struct spi_master *master,
a1108c7b 373 enum dma_data_direction dir)
626a96db 374{
48738831 375 struct ep93xx_spi *espi = spi_master_get_devdata(master);
626a96db
MW
376 struct dma_chan *chan;
377 struct sg_table *sgt;
378
a1108c7b 379 if (dir == DMA_FROM_DEVICE) {
626a96db
MW
380 chan = espi->dma_rx;
381 sgt = &espi->rx_sgt;
382 } else {
383 chan = espi->dma_tx;
384 sgt = &espi->tx_sgt;
385 }
386
387 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
388}
389
390static void ep93xx_spi_dma_callback(void *callback_param)
391{
d9a01771
HS
392 struct spi_master *master = callback_param;
393
a1108c7b
NC
394 ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
395 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
d9a01771
HS
396
397 spi_finalize_current_transfer(master);
626a96db
MW
398}
399
d9a01771 400static int ep93xx_spi_dma_transfer(struct spi_master *master)
626a96db 401{
48738831 402 struct ep93xx_spi *espi = spi_master_get_devdata(master);
626a96db
MW
403 struct dma_async_tx_descriptor *rxd, *txd;
404
a1108c7b 405 rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
626a96db 406 if (IS_ERR(rxd)) {
48738831 407 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
d9a01771 408 return PTR_ERR(rxd);
626a96db
MW
409 }
410
a1108c7b 411 txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
626a96db 412 if (IS_ERR(txd)) {
a1108c7b 413 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
48738831 414 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
d9a01771 415 return PTR_ERR(txd);
626a96db
MW
416 }
417
418 /* We are ready when RX is done */
419 rxd->callback = ep93xx_spi_dma_callback;
d9a01771 420 rxd->callback_param = master;
626a96db 421
d9a01771 422 /* Now submit both descriptors and start DMA */
626a96db
MW
423 dmaengine_submit(rxd);
424 dmaengine_submit(txd);
425
426 dma_async_issue_pending(espi->dma_rx);
427 dma_async_issue_pending(espi->dma_tx);
428
d9a01771
HS
429 /* signal that we need to wait for completion */
430 return 1;
011f23a3
MW
431}
432
433static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
434{
48738831
HS
435 struct spi_master *master = dev_id;
436 struct ep93xx_spi *espi = spi_master_get_devdata(master);
ac8d06df 437 u32 val;
011f23a3
MW
438
439 /*
440 * If we got ROR (receive overrun) interrupt we know that something is
441 * wrong. Just abort the message.
442 */
8447e478 443 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
011f23a3 444 /* clear the overrun interrupt */
8447e478 445 writel(0, espi->mmio + SSPICR);
48738831 446 dev_warn(&master->dev,
011f23a3 447 "receive overrun, aborting the message\n");
c7a909cf 448 master->cur_msg->status = -EIO;
011f23a3
MW
449 } else {
450 /*
451 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452 * simply execute next data transfer.
453 */
48738831 454 if (ep93xx_spi_read_write(master)) {
011f23a3
MW
455 /*
456 * In normal case, there still is some processing left
457 * for current transfer. Let's wait for the next
458 * interrupt then.
459 */
460 return IRQ_HANDLED;
461 }
462 }
463
464 /*
465 * Current transfer is finished, either with error or with success. In
466 * any case we disable interrupts and notify the worker to handle
467 * any post-processing of the message.
468 */
ac8d06df
HS
469 val = readl(espi->mmio + SSPCR1);
470 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
471 writel(val, espi->mmio + SSPCR1);
472
d9a01771 473 spi_finalize_current_transfer(master);
ac8d06df 474
011f23a3
MW
475 return IRQ_HANDLED;
476}
477
d9a01771
HS
478static int ep93xx_spi_transfer_one(struct spi_master *master,
479 struct spi_device *spi,
480 struct spi_transfer *xfer)
481{
482 struct ep93xx_spi *espi = spi_master_get_devdata(master);
483 u32 val;
484 int ret;
485
486 ret = ep93xx_spi_chip_setup(master, spi, xfer);
487 if (ret) {
488 dev_err(&master->dev, "failed to setup chip for transfer\n");
489 return ret;
490 }
491
492 master->cur_msg->state = xfer;
493 espi->rx = 0;
494 espi->tx = 0;
495
496 /*
497 * There is no point of setting up DMA for the transfers which will
498 * fit into the FIFO and can be transferred with a single interrupt.
499 * So in these cases we will be using PIO and don't bother for DMA.
500 */
501 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
502 return ep93xx_spi_dma_transfer(master);
503
504 /* Using PIO so prime the TX FIFO and enable interrupts */
505 ep93xx_spi_read_write(master);
506
507 val = readl(espi->mmio + SSPCR1);
508 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
509 writel(val, espi->mmio + SSPCR1);
510
511 /* signal that we need to wait for completion */
512 return 1;
513}
514
515static int ep93xx_spi_prepare_message(struct spi_master *master,
516 struct spi_message *msg)
517{
518 struct ep93xx_spi *espi = spi_master_get_devdata(master);
519 unsigned long timeout;
520
521 /*
522 * Just to be sure: flush any data from RX FIFO.
523 */
524 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
525 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
526 if (time_after(jiffies, timeout)) {
527 dev_warn(&master->dev,
528 "timeout while flushing RX FIFO\n");
529 return -ETIMEDOUT;
530 }
531 readl(espi->mmio + SSPDR);
532 }
533
534 /*
535 * We explicitly handle FIFO level. This way we don't have to check TX
536 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
537 */
538 espi->fifo_level = 0;
539
540 return 0;
541}
542
16779622
HS
543static int ep93xx_spi_prepare_hardware(struct spi_master *master)
544{
545 struct ep93xx_spi *espi = spi_master_get_devdata(master);
546 u32 val;
547 int ret;
548
549 ret = clk_enable(espi->clk);
550 if (ret)
551 return ret;
552
553 val = readl(espi->mmio + SSPCR1);
554 val |= SSPCR1_SSE;
555 writel(val, espi->mmio + SSPCR1);
556
557 return 0;
558}
559
560static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
561{
562 struct ep93xx_spi *espi = spi_master_get_devdata(master);
563 u32 val;
564
565 val = readl(espi->mmio + SSPCR1);
566 val &= ~SSPCR1_SSE;
567 writel(val, espi->mmio + SSPCR1);
568
569 clk_disable(espi->clk);
570
571 return 0;
572}
573
626a96db
MW
574static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
575{
576 if (ep93xx_dma_chan_is_m2p(chan))
577 return false;
578
579 chan->private = filter_param;
580 return true;
581}
582
583static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
584{
585 dma_cap_mask_t mask;
586 int ret;
587
588 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
589 if (!espi->zeropage)
590 return -ENOMEM;
591
592 dma_cap_zero(mask);
593 dma_cap_set(DMA_SLAVE, mask);
594
595 espi->dma_rx_data.port = EP93XX_DMA_SSP;
a485df4b 596 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
626a96db
MW
597 espi->dma_rx_data.name = "ep93xx-spi-rx";
598
599 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
600 &espi->dma_rx_data);
601 if (!espi->dma_rx) {
602 ret = -ENODEV;
603 goto fail_free_page;
604 }
605
606 espi->dma_tx_data.port = EP93XX_DMA_SSP;
a485df4b 607 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
626a96db
MW
608 espi->dma_tx_data.name = "ep93xx-spi-tx";
609
610 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
611 &espi->dma_tx_data);
612 if (!espi->dma_tx) {
613 ret = -ENODEV;
614 goto fail_release_rx;
615 }
616
617 return 0;
618
619fail_release_rx:
620 dma_release_channel(espi->dma_rx);
621 espi->dma_rx = NULL;
622fail_free_page:
623 free_page((unsigned long)espi->zeropage);
624
625 return ret;
626}
627
628static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
629{
630 if (espi->dma_rx) {
631 dma_release_channel(espi->dma_rx);
632 sg_free_table(&espi->rx_sgt);
633 }
634 if (espi->dma_tx) {
635 dma_release_channel(espi->dma_tx);
636 sg_free_table(&espi->tx_sgt);
637 }
638
639 if (espi->zeropage)
640 free_page((unsigned long)espi->zeropage);
641}
642
fd4a319b 643static int ep93xx_spi_probe(struct platform_device *pdev)
011f23a3
MW
644{
645 struct spi_master *master;
646 struct ep93xx_spi_info *info;
647 struct ep93xx_spi *espi;
648 struct resource *res;
6d6467ee 649 int irq;
011f23a3
MW
650 int error;
651
8074cf06 652 info = dev_get_platdata(&pdev->dev);
55f0cd3f
HS
653 if (!info) {
654 dev_err(&pdev->dev, "missing platform data\n");
655 return -EINVAL;
656 }
011f23a3 657
48a7776e
HS
658 irq = platform_get_irq(pdev, 0);
659 if (irq < 0) {
660 dev_err(&pdev->dev, "failed to get irq resources\n");
661 return -EBUSY;
662 }
663
664 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
665 if (!res) {
666 dev_err(&pdev->dev, "unable to get iomem resource\n");
667 return -ENODEV;
668 }
669
011f23a3 670 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
b2d185ed 671 if (!master)
011f23a3 672 return -ENOMEM;
011f23a3 673
1dfbf334 674 master->use_gpio_descriptors = true;
16779622
HS
675 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
676 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
d9a01771
HS
677 master->prepare_message = ep93xx_spi_prepare_message;
678 master->transfer_one = ep93xx_spi_transfer_one;
011f23a3 679 master->bus_num = pdev->id;
011f23a3 680 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 681 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1dfbf334
LW
682 /*
683 * The SPI core will count the number of GPIO descriptors to figure
684 * out the number of chip selects available on the platform.
685 */
686 master->num_chipselect = 0;
55f0cd3f 687
011f23a3
MW
688 platform_set_drvdata(pdev, master);
689
690 espi = spi_master_get_devdata(master);
691
e6eb8d9b 692 espi->clk = devm_clk_get(&pdev->dev, NULL);
011f23a3
MW
693 if (IS_ERR(espi->clk)) {
694 dev_err(&pdev->dev, "unable to get spi clock\n");
695 error = PTR_ERR(espi->clk);
696 goto fail_release_master;
697 }
698
011f23a3
MW
699 /*
700 * Calculate maximum and minimum supported clock rates
701 * for the controller.
702 */
56fc0b42
AL
703 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
704 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
011f23a3 705
626a96db 706 espi->sspdr_phys = res->start + SSPDR;
6d6467ee 707
1232978a
HS
708 espi->mmio = devm_ioremap_resource(&pdev->dev, res);
709 if (IS_ERR(espi->mmio)) {
710 error = PTR_ERR(espi->mmio);
e6eb8d9b 711 goto fail_release_master;
011f23a3
MW
712 }
713
6d6467ee 714 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
48738831 715 0, "ep93xx-spi", master);
011f23a3
MW
716 if (error) {
717 dev_err(&pdev->dev, "failed to request irq\n");
e6eb8d9b 718 goto fail_release_master;
011f23a3
MW
719 }
720
626a96db
MW
721 if (info->use_dma && ep93xx_spi_setup_dma(espi))
722 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
723
011f23a3 724 /* make sure that the hardware is disabled */
8447e478 725 writel(0, espi->mmio + SSPCR1);
011f23a3 726
434eaf3b 727 error = devm_spi_register_master(&pdev->dev, master);
011f23a3
MW
728 if (error) {
729 dev_err(&pdev->dev, "failed to register SPI master\n");
84ddb3c1 730 goto fail_free_dma;
011f23a3
MW
731 }
732
733 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
6d6467ee 734 (unsigned long)res->start, irq);
011f23a3
MW
735
736 return 0;
737
626a96db
MW
738fail_free_dma:
739 ep93xx_spi_release_dma(espi);
011f23a3
MW
740fail_release_master:
741 spi_master_put(master);
011f23a3
MW
742
743 return error;
744}
745
fd4a319b 746static int ep93xx_spi_remove(struct platform_device *pdev)
011f23a3
MW
747{
748 struct spi_master *master = platform_get_drvdata(pdev);
749 struct ep93xx_spi *espi = spi_master_get_devdata(master);
011f23a3 750
626a96db 751 ep93xx_spi_release_dma(espi);
011f23a3 752
011f23a3
MW
753 return 0;
754}
755
756static struct platform_driver ep93xx_spi_driver = {
757 .driver = {
758 .name = "ep93xx-spi",
011f23a3 759 },
940ab889 760 .probe = ep93xx_spi_probe,
fd4a319b 761 .remove = ep93xx_spi_remove,
011f23a3 762};
940ab889 763module_platform_driver(ep93xx_spi_driver);
011f23a3
MW
764
765MODULE_DESCRIPTION("EP93xx SPI Controller driver");
766MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
767MODULE_LICENSE("GPL");
768MODULE_ALIAS("platform:ep93xx-spi");