]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/spi/spi-ep93xx.c
powerpc: sys_pkey_alloc() and sys_pkey_free() system calls
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-ep93xx.c
CommitLineData
011f23a3
MW
1/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
626a96db 4 * Copyright (C) 2010-2011 Mika Westerberg
011f23a3
MW
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
626a96db 24#include <linux/dmaengine.h>
011f23a3
MW
25#include <linux/bitops.h>
26#include <linux/interrupt.h>
5bdb7613 27#include <linux/module.h>
011f23a3 28#include <linux/platform_device.h>
011f23a3 29#include <linux/sched.h>
626a96db 30#include <linux/scatterlist.h>
55f0cd3f 31#include <linux/gpio.h>
011f23a3
MW
32#include <linux/spi/spi.h>
33
a3b29245
AB
34#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
011f23a3
MW
36
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
011f23a3 73 * @clk: clock for the controller
1232978a 74 * @mmio: pointer to ioremap()'d registers
626a96db 75 * @sspdr_phys: physical address of the SSPDR register
011f23a3
MW
76 * @tx: current byte in transfer to transmit
77 * @rx: current byte in transfer to receive
78 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
79 * frame decreases this level and sending one frame increases it.
626a96db
MW
80 * @dma_rx: RX DMA channel
81 * @dma_tx: TX DMA channel
82 * @dma_rx_data: RX parameters passed to the DMA engine
83 * @dma_tx_data: TX parameters passed to the DMA engine
84 * @rx_sgt: sg table for RX transfers
85 * @tx_sgt: sg table for TX transfers
86 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
87 * the client
011f23a3
MW
88 */
89struct ep93xx_spi {
011f23a3 90 struct clk *clk;
1232978a 91 void __iomem *mmio;
626a96db 92 unsigned long sspdr_phys;
011f23a3
MW
93 size_t tx;
94 size_t rx;
95 size_t fifo_level;
626a96db
MW
96 struct dma_chan *dma_rx;
97 struct dma_chan *dma_tx;
98 struct ep93xx_dma_data dma_rx_data;
99 struct ep93xx_dma_data dma_tx_data;
100 struct sg_table rx_sgt;
101 struct sg_table tx_sgt;
102 void *zeropage;
011f23a3
MW
103};
104
011f23a3
MW
105/* converts bits per word to CR0.DSS value */
106#define bits_per_word_to_dss(bpw) ((bpw) - 1)
107
011f23a3
MW
108/**
109 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
48738831 110 * @master: SPI master
011f23a3 111 * @rate: desired SPI output clock rate
f7ef1da9
HS
112 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
113 * @div_scr: pointer to return the scr divider
011f23a3 114 */
48738831 115static int ep93xx_spi_calc_divisors(struct spi_master *master,
56fc0b42 116 u32 rate, u8 *div_cpsr, u8 *div_scr)
011f23a3 117{
48738831 118 struct ep93xx_spi *espi = spi_master_get_devdata(master);
011f23a3
MW
119 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
120 int cpsr, scr;
121
122 /*
123 * Make sure that max value is between values supported by the
d9a01771 124 * controller.
011f23a3 125 */
56fc0b42 126 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
011f23a3
MW
127
128 /*
129 * Calculate divisors so that we can get speed according the
130 * following formula:
131 * rate = spi_clock_rate / (cpsr * (1 + scr))
132 *
133 * cpsr must be even number and starts from 2, scr can be any number
134 * between 0 and 255.
135 */
136 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
137 for (scr = 0; scr <= 255; scr++) {
138 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
f7ef1da9
HS
139 *div_scr = (u8)scr;
140 *div_cpsr = (u8)cpsr;
011f23a3
MW
141 return 0;
142 }
143 }
144 }
145
146 return -EINVAL;
147}
148
48738831 149static int ep93xx_spi_chip_setup(struct spi_master *master,
55f0cd3f
HS
150 struct spi_device *spi,
151 struct spi_transfer *xfer)
011f23a3 152{
48738831 153 struct ep93xx_spi *espi = spi_master_get_devdata(master);
55f0cd3f 154 u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
f7ef1da9
HS
155 u8 div_cpsr = 0;
156 u8 div_scr = 0;
011f23a3 157 u16 cr0;
f7ef1da9
HS
158 int err;
159
48738831 160 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
55f0cd3f 161 &div_cpsr, &div_scr);
f7ef1da9
HS
162 if (err)
163 return err;
011f23a3 164
f7ef1da9 165 cr0 = div_scr << SSPCR0_SCR_SHIFT;
55f0cd3f 166 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
d9b65dfd 167 cr0 |= dss;
011f23a3 168
48738831 169 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
55f0cd3f 170 spi->mode, div_cpsr, div_scr, dss);
48738831 171 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
011f23a3 172
8447e478
HS
173 writel(div_cpsr, espi->mmio + SSPCPSR);
174 writel(cr0, espi->mmio + SSPCR0);
f7ef1da9
HS
175
176 return 0;
011f23a3
MW
177}
178
d9a01771 179static void ep93xx_do_write(struct spi_master *master)
011f23a3 180{
d9a01771
HS
181 struct ep93xx_spi *espi = spi_master_get_devdata(master);
182 struct spi_transfer *xfer = master->cur_msg->state;
8447e478 183 u32 val = 0;
011f23a3 184
d9a01771
HS
185 if (xfer->bits_per_word > 8) {
186 if (xfer->tx_buf)
187 val = ((u16 *)xfer->tx_buf)[espi->tx];
8447e478 188 espi->tx += 2;
011f23a3 189 } else {
d9a01771
HS
190 if (xfer->tx_buf)
191 val = ((u8 *)xfer->tx_buf)[espi->tx];
8447e478 192 espi->tx += 1;
011f23a3 193 }
8447e478 194 writel(val, espi->mmio + SSPDR);
011f23a3
MW
195}
196
d9a01771 197static void ep93xx_do_read(struct spi_master *master)
011f23a3 198{
d9a01771
HS
199 struct ep93xx_spi *espi = spi_master_get_devdata(master);
200 struct spi_transfer *xfer = master->cur_msg->state;
8447e478 201 u32 val;
011f23a3 202
8447e478 203 val = readl(espi->mmio + SSPDR);
d9a01771
HS
204 if (xfer->bits_per_word > 8) {
205 if (xfer->rx_buf)
206 ((u16 *)xfer->rx_buf)[espi->rx] = val;
8447e478 207 espi->rx += 2;
011f23a3 208 } else {
d9a01771
HS
209 if (xfer->rx_buf)
210 ((u8 *)xfer->rx_buf)[espi->rx] = val;
8447e478 211 espi->rx += 1;
011f23a3
MW
212 }
213}
214
215/**
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @espi: ep93xx SPI controller struct
218 *
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222 *
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
224 * full.
225 */
48738831 226static int ep93xx_spi_read_write(struct spi_master *master)
011f23a3 227{
48738831 228 struct ep93xx_spi *espi = spi_master_get_devdata(master);
d9a01771 229 struct spi_transfer *xfer = master->cur_msg->state;
011f23a3
MW
230
231 /* read as long as RX FIFO has frames in it */
8447e478 232 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
d9a01771 233 ep93xx_do_read(master);
011f23a3
MW
234 espi->fifo_level--;
235 }
236
237 /* write as long as TX FIFO has room */
d9a01771
HS
238 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239 ep93xx_do_write(master);
011f23a3
MW
240 espi->fifo_level++;
241 }
242
d9a01771 243 if (espi->rx == xfer->len)
011f23a3 244 return 0;
011f23a3
MW
245
246 return -EINPROGRESS;
247}
248
626a96db
MW
249/**
250 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
48738831 251 * @master: SPI master
626a96db
MW
252 * @dir: DMA transfer direction
253 *
254 * Function configures the DMA, maps the buffer and prepares the DMA
255 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
256 * in case of failure.
257 */
258static struct dma_async_tx_descriptor *
48738831
HS
259ep93xx_spi_dma_prepare(struct spi_master *master,
260 enum dma_transfer_direction dir)
626a96db 261{
48738831 262 struct ep93xx_spi *espi = spi_master_get_devdata(master);
d9a01771 263 struct spi_transfer *xfer = master->cur_msg->state;
626a96db
MW
264 struct dma_async_tx_descriptor *txd;
265 enum dma_slave_buswidth buswidth;
266 struct dma_slave_config conf;
267 struct scatterlist *sg;
268 struct sg_table *sgt;
269 struct dma_chan *chan;
270 const void *buf, *pbuf;
d9a01771 271 size_t len = xfer->len;
626a96db
MW
272 int i, ret, nents;
273
d9a01771 274 if (xfer->bits_per_word > 8)
626a96db
MW
275 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
276 else
277 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
278
279 memset(&conf, 0, sizeof(conf));
280 conf.direction = dir;
281
d4b9b578 282 if (dir == DMA_DEV_TO_MEM) {
626a96db 283 chan = espi->dma_rx;
d9a01771 284 buf = xfer->rx_buf;
626a96db
MW
285 sgt = &espi->rx_sgt;
286
287 conf.src_addr = espi->sspdr_phys;
288 conf.src_addr_width = buswidth;
289 } else {
290 chan = espi->dma_tx;
d9a01771 291 buf = xfer->tx_buf;
626a96db
MW
292 sgt = &espi->tx_sgt;
293
294 conf.dst_addr = espi->sspdr_phys;
295 conf.dst_addr_width = buswidth;
296 }
297
298 ret = dmaengine_slave_config(chan, &conf);
299 if (ret)
300 return ERR_PTR(ret);
301
302 /*
303 * We need to split the transfer into PAGE_SIZE'd chunks. This is
304 * because we are using @espi->zeropage to provide a zero RX buffer
305 * for the TX transfers and we have only allocated one page for that.
306 *
307 * For performance reasons we allocate a new sg_table only when
308 * needed. Otherwise we will re-use the current one. Eventually the
309 * last sg_table is released in ep93xx_spi_release_dma().
310 */
311
312 nents = DIV_ROUND_UP(len, PAGE_SIZE);
313 if (nents != sgt->nents) {
314 sg_free_table(sgt);
315
316 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
317 if (ret)
318 return ERR_PTR(ret);
319 }
320
321 pbuf = buf;
322 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
323 size_t bytes = min_t(size_t, len, PAGE_SIZE);
324
325 if (buf) {
326 sg_set_page(sg, virt_to_page(pbuf), bytes,
327 offset_in_page(pbuf));
328 } else {
329 sg_set_page(sg, virt_to_page(espi->zeropage),
330 bytes, 0);
331 }
332
333 pbuf += bytes;
334 len -= bytes;
335 }
336
337 if (WARN_ON(len)) {
48738831 338 dev_warn(&master->dev, "len = %zu expected 0!\n", len);
626a96db
MW
339 return ERR_PTR(-EINVAL);
340 }
341
342 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
343 if (!nents)
344 return ERR_PTR(-ENOMEM);
345
d4b9b578 346 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
626a96db
MW
347 if (!txd) {
348 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
349 return ERR_PTR(-ENOMEM);
350 }
351 return txd;
352}
353
354/**
355 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
48738831 356 * @master: SPI master
626a96db
MW
357 * @dir: DMA transfer direction
358 *
359 * Function finishes with the DMA transfer. After this, the DMA buffer is
360 * unmapped.
361 */
48738831 362static void ep93xx_spi_dma_finish(struct spi_master *master,
d4b9b578 363 enum dma_transfer_direction dir)
626a96db 364{
48738831 365 struct ep93xx_spi *espi = spi_master_get_devdata(master);
626a96db
MW
366 struct dma_chan *chan;
367 struct sg_table *sgt;
368
d4b9b578 369 if (dir == DMA_DEV_TO_MEM) {
626a96db
MW
370 chan = espi->dma_rx;
371 sgt = &espi->rx_sgt;
372 } else {
373 chan = espi->dma_tx;
374 sgt = &espi->tx_sgt;
375 }
376
377 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
378}
379
380static void ep93xx_spi_dma_callback(void *callback_param)
381{
d9a01771
HS
382 struct spi_master *master = callback_param;
383
384 ep93xx_spi_dma_finish(master, DMA_MEM_TO_DEV);
385 ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
386
387 spi_finalize_current_transfer(master);
626a96db
MW
388}
389
d9a01771 390static int ep93xx_spi_dma_transfer(struct spi_master *master)
626a96db 391{
48738831 392 struct ep93xx_spi *espi = spi_master_get_devdata(master);
626a96db
MW
393 struct dma_async_tx_descriptor *rxd, *txd;
394
48738831 395 rxd = ep93xx_spi_dma_prepare(master, DMA_DEV_TO_MEM);
626a96db 396 if (IS_ERR(rxd)) {
48738831 397 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
d9a01771 398 return PTR_ERR(rxd);
626a96db
MW
399 }
400
48738831 401 txd = ep93xx_spi_dma_prepare(master, DMA_MEM_TO_DEV);
626a96db 402 if (IS_ERR(txd)) {
48738831
HS
403 ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
404 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
d9a01771 405 return PTR_ERR(txd);
626a96db
MW
406 }
407
408 /* We are ready when RX is done */
409 rxd->callback = ep93xx_spi_dma_callback;
d9a01771 410 rxd->callback_param = master;
626a96db 411
d9a01771 412 /* Now submit both descriptors and start DMA */
626a96db
MW
413 dmaengine_submit(rxd);
414 dmaengine_submit(txd);
415
416 dma_async_issue_pending(espi->dma_rx);
417 dma_async_issue_pending(espi->dma_tx);
418
d9a01771
HS
419 /* signal that we need to wait for completion */
420 return 1;
011f23a3
MW
421}
422
423static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
424{
48738831
HS
425 struct spi_master *master = dev_id;
426 struct ep93xx_spi *espi = spi_master_get_devdata(master);
ac8d06df 427 u32 val;
011f23a3
MW
428
429 /*
430 * If we got ROR (receive overrun) interrupt we know that something is
431 * wrong. Just abort the message.
432 */
8447e478 433 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
011f23a3 434 /* clear the overrun interrupt */
8447e478 435 writel(0, espi->mmio + SSPICR);
48738831 436 dev_warn(&master->dev,
011f23a3 437 "receive overrun, aborting the message\n");
c7a909cf 438 master->cur_msg->status = -EIO;
011f23a3
MW
439 } else {
440 /*
441 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
442 * simply execute next data transfer.
443 */
48738831 444 if (ep93xx_spi_read_write(master)) {
011f23a3
MW
445 /*
446 * In normal case, there still is some processing left
447 * for current transfer. Let's wait for the next
448 * interrupt then.
449 */
450 return IRQ_HANDLED;
451 }
452 }
453
454 /*
455 * Current transfer is finished, either with error or with success. In
456 * any case we disable interrupts and notify the worker to handle
457 * any post-processing of the message.
458 */
ac8d06df
HS
459 val = readl(espi->mmio + SSPCR1);
460 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
461 writel(val, espi->mmio + SSPCR1);
462
d9a01771 463 spi_finalize_current_transfer(master);
ac8d06df 464
011f23a3
MW
465 return IRQ_HANDLED;
466}
467
d9a01771
HS
468static int ep93xx_spi_transfer_one(struct spi_master *master,
469 struct spi_device *spi,
470 struct spi_transfer *xfer)
471{
472 struct ep93xx_spi *espi = spi_master_get_devdata(master);
473 u32 val;
474 int ret;
475
476 ret = ep93xx_spi_chip_setup(master, spi, xfer);
477 if (ret) {
478 dev_err(&master->dev, "failed to setup chip for transfer\n");
479 return ret;
480 }
481
482 master->cur_msg->state = xfer;
483 espi->rx = 0;
484 espi->tx = 0;
485
486 /*
487 * There is no point of setting up DMA for the transfers which will
488 * fit into the FIFO and can be transferred with a single interrupt.
489 * So in these cases we will be using PIO and don't bother for DMA.
490 */
491 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
492 return ep93xx_spi_dma_transfer(master);
493
494 /* Using PIO so prime the TX FIFO and enable interrupts */
495 ep93xx_spi_read_write(master);
496
497 val = readl(espi->mmio + SSPCR1);
498 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
499 writel(val, espi->mmio + SSPCR1);
500
501 /* signal that we need to wait for completion */
502 return 1;
503}
504
505static int ep93xx_spi_prepare_message(struct spi_master *master,
506 struct spi_message *msg)
507{
508 struct ep93xx_spi *espi = spi_master_get_devdata(master);
509 unsigned long timeout;
510
511 /*
512 * Just to be sure: flush any data from RX FIFO.
513 */
514 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
515 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
516 if (time_after(jiffies, timeout)) {
517 dev_warn(&master->dev,
518 "timeout while flushing RX FIFO\n");
519 return -ETIMEDOUT;
520 }
521 readl(espi->mmio + SSPDR);
522 }
523
524 /*
525 * We explicitly handle FIFO level. This way we don't have to check TX
526 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
527 */
528 espi->fifo_level = 0;
529
530 return 0;
531}
532
16779622
HS
533static int ep93xx_spi_prepare_hardware(struct spi_master *master)
534{
535 struct ep93xx_spi *espi = spi_master_get_devdata(master);
536 u32 val;
537 int ret;
538
539 ret = clk_enable(espi->clk);
540 if (ret)
541 return ret;
542
543 val = readl(espi->mmio + SSPCR1);
544 val |= SSPCR1_SSE;
545 writel(val, espi->mmio + SSPCR1);
546
547 return 0;
548}
549
550static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
551{
552 struct ep93xx_spi *espi = spi_master_get_devdata(master);
553 u32 val;
554
555 val = readl(espi->mmio + SSPCR1);
556 val &= ~SSPCR1_SSE;
557 writel(val, espi->mmio + SSPCR1);
558
559 clk_disable(espi->clk);
560
561 return 0;
562}
563
626a96db
MW
564static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
565{
566 if (ep93xx_dma_chan_is_m2p(chan))
567 return false;
568
569 chan->private = filter_param;
570 return true;
571}
572
573static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
574{
575 dma_cap_mask_t mask;
576 int ret;
577
578 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
579 if (!espi->zeropage)
580 return -ENOMEM;
581
582 dma_cap_zero(mask);
583 dma_cap_set(DMA_SLAVE, mask);
584
585 espi->dma_rx_data.port = EP93XX_DMA_SSP;
a485df4b 586 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
626a96db
MW
587 espi->dma_rx_data.name = "ep93xx-spi-rx";
588
589 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
590 &espi->dma_rx_data);
591 if (!espi->dma_rx) {
592 ret = -ENODEV;
593 goto fail_free_page;
594 }
595
596 espi->dma_tx_data.port = EP93XX_DMA_SSP;
a485df4b 597 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
626a96db
MW
598 espi->dma_tx_data.name = "ep93xx-spi-tx";
599
600 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
601 &espi->dma_tx_data);
602 if (!espi->dma_tx) {
603 ret = -ENODEV;
604 goto fail_release_rx;
605 }
606
607 return 0;
608
609fail_release_rx:
610 dma_release_channel(espi->dma_rx);
611 espi->dma_rx = NULL;
612fail_free_page:
613 free_page((unsigned long)espi->zeropage);
614
615 return ret;
616}
617
618static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
619{
620 if (espi->dma_rx) {
621 dma_release_channel(espi->dma_rx);
622 sg_free_table(&espi->rx_sgt);
623 }
624 if (espi->dma_tx) {
625 dma_release_channel(espi->dma_tx);
626 sg_free_table(&espi->tx_sgt);
627 }
628
629 if (espi->zeropage)
630 free_page((unsigned long)espi->zeropage);
631}
632
fd4a319b 633static int ep93xx_spi_probe(struct platform_device *pdev)
011f23a3
MW
634{
635 struct spi_master *master;
636 struct ep93xx_spi_info *info;
637 struct ep93xx_spi *espi;
638 struct resource *res;
6d6467ee 639 int irq;
011f23a3 640 int error;
55f0cd3f 641 int i;
011f23a3 642
8074cf06 643 info = dev_get_platdata(&pdev->dev);
55f0cd3f
HS
644 if (!info) {
645 dev_err(&pdev->dev, "missing platform data\n");
646 return -EINVAL;
647 }
011f23a3 648
48a7776e
HS
649 irq = platform_get_irq(pdev, 0);
650 if (irq < 0) {
651 dev_err(&pdev->dev, "failed to get irq resources\n");
652 return -EBUSY;
653 }
654
655 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
656 if (!res) {
657 dev_err(&pdev->dev, "unable to get iomem resource\n");
658 return -ENODEV;
659 }
660
011f23a3 661 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
b2d185ed 662 if (!master)
011f23a3 663 return -ENOMEM;
011f23a3 664
16779622
HS
665 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
666 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
d9a01771
HS
667 master->prepare_message = ep93xx_spi_prepare_message;
668 master->transfer_one = ep93xx_spi_transfer_one;
011f23a3 669 master->bus_num = pdev->id;
011f23a3 670 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 671 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
011f23a3 672
55f0cd3f
HS
673 master->num_chipselect = info->num_chipselect;
674 master->cs_gpios = devm_kzalloc(&master->dev,
675 sizeof(int) * master->num_chipselect,
676 GFP_KERNEL);
677 if (!master->cs_gpios) {
678 error = -ENOMEM;
679 goto fail_release_master;
680 }
681
682 for (i = 0; i < master->num_chipselect; i++) {
683 master->cs_gpios[i] = info->chipselect[i];
684
685 if (!gpio_is_valid(master->cs_gpios[i]))
686 continue;
687
688 error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
689 GPIOF_OUT_INIT_HIGH,
690 "ep93xx-spi");
691 if (error) {
692 dev_err(&pdev->dev, "could not request cs gpio %d\n",
693 master->cs_gpios[i]);
694 goto fail_release_master;
695 }
696 }
697
011f23a3
MW
698 platform_set_drvdata(pdev, master);
699
700 espi = spi_master_get_devdata(master);
701
e6eb8d9b 702 espi->clk = devm_clk_get(&pdev->dev, NULL);
011f23a3
MW
703 if (IS_ERR(espi->clk)) {
704 dev_err(&pdev->dev, "unable to get spi clock\n");
705 error = PTR_ERR(espi->clk);
706 goto fail_release_master;
707 }
708
011f23a3
MW
709 /*
710 * Calculate maximum and minimum supported clock rates
711 * for the controller.
712 */
56fc0b42
AL
713 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
714 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
011f23a3 715
626a96db 716 espi->sspdr_phys = res->start + SSPDR;
6d6467ee 717
1232978a
HS
718 espi->mmio = devm_ioremap_resource(&pdev->dev, res);
719 if (IS_ERR(espi->mmio)) {
720 error = PTR_ERR(espi->mmio);
e6eb8d9b 721 goto fail_release_master;
011f23a3
MW
722 }
723
6d6467ee 724 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
48738831 725 0, "ep93xx-spi", master);
011f23a3
MW
726 if (error) {
727 dev_err(&pdev->dev, "failed to request irq\n");
e6eb8d9b 728 goto fail_release_master;
011f23a3
MW
729 }
730
626a96db
MW
731 if (info->use_dma && ep93xx_spi_setup_dma(espi))
732 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
733
011f23a3 734 /* make sure that the hardware is disabled */
8447e478 735 writel(0, espi->mmio + SSPCR1);
011f23a3 736
434eaf3b 737 error = devm_spi_register_master(&pdev->dev, master);
011f23a3
MW
738 if (error) {
739 dev_err(&pdev->dev, "failed to register SPI master\n");
84ddb3c1 740 goto fail_free_dma;
011f23a3
MW
741 }
742
743 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
6d6467ee 744 (unsigned long)res->start, irq);
011f23a3
MW
745
746 return 0;
747
626a96db
MW
748fail_free_dma:
749 ep93xx_spi_release_dma(espi);
011f23a3
MW
750fail_release_master:
751 spi_master_put(master);
011f23a3
MW
752
753 return error;
754}
755
fd4a319b 756static int ep93xx_spi_remove(struct platform_device *pdev)
011f23a3
MW
757{
758 struct spi_master *master = platform_get_drvdata(pdev);
759 struct ep93xx_spi *espi = spi_master_get_devdata(master);
011f23a3 760
626a96db 761 ep93xx_spi_release_dma(espi);
011f23a3 762
011f23a3
MW
763 return 0;
764}
765
766static struct platform_driver ep93xx_spi_driver = {
767 .driver = {
768 .name = "ep93xx-spi",
011f23a3 769 },
940ab889 770 .probe = ep93xx_spi_probe,
fd4a319b 771 .remove = ep93xx_spi_remove,
011f23a3 772};
940ab889 773module_platform_driver(ep93xx_spi_driver);
011f23a3
MW
774
775MODULE_DESCRIPTION("EP93xx SPI Controller driver");
776MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
777MODULE_LICENSE("GPL");
778MODULE_ALIAS("platform:ep93xx-spi");