]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/spi/spi-nxp-fspi.c
drm/msm: Fix range size vs end confusion
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-nxp-fspi.c
CommitLineData
a5356aef
YNG
1// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
55ab8487 6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
a5356aef
YNG
8 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
ce6f0697 30 * Boris Brezillon <bbrezillon@kernel.org>
a5356aef
YNG
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
55ab8487 34#include <linux/acpi.h>
a5356aef 35#include <linux/bitops.h>
67a12ae5 36#include <linux/bitfield.h>
a5356aef
YNG
37#include <linux/clk.h>
38#include <linux/completion.h>
39#include <linux/delay.h>
40#include <linux/err.h>
41#include <linux/errno.h>
42#include <linux/interrupt.h>
43#include <linux/io.h>
44#include <linux/iopoll.h>
45#include <linux/jiffies.h>
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/mutex.h>
49#include <linux/of.h>
50#include <linux/of_device.h>
51#include <linux/platform_device.h>
52#include <linux/pm_qos.h>
82ce7d0e 53#include <linux/regmap.h>
a5356aef 54#include <linux/sizes.h>
82ce7d0e 55#include <linux/sys_soc.h>
a5356aef 56
82ce7d0e 57#include <linux/mfd/syscon.h>
a5356aef
YNG
58#include <linux/spi/spi.h>
59#include <linux/spi/spi-mem.h>
60
61/*
62 * The driver only uses one single LUT entry, that is updated on
63 * each call of exec_op(). Index 0 is preset at boot with a basic
64 * read operation, so let's use the last entry (31).
65 */
66#define SEQID_LUT 31
67
68/* Registers used by the driver */
69#define FSPI_MCR0 0x00
70#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
71#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
72#define FSPI_MCR0_LEARN_EN BIT(15)
73#define FSPI_MCR0_SCRFRUN_EN BIT(14)
74#define FSPI_MCR0_OCTCOMB_EN BIT(13)
75#define FSPI_MCR0_DOZE_EN BIT(12)
76#define FSPI_MCR0_HSEN BIT(11)
77#define FSPI_MCR0_SERCLKDIV BIT(8)
78#define FSPI_MCR0_ATDF_EN BIT(7)
79#define FSPI_MCR0_ARDF_EN BIT(6)
80#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
81#define FSPI_MCR0_END_CFG(x) ((x) << 2)
82#define FSPI_MCR0_MDIS BIT(1)
83#define FSPI_MCR0_SWRST BIT(0)
84
85#define FSPI_MCR1 0x04
86#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
87#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
88
89#define FSPI_MCR2 0x08
90#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
91#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
92#define FSPI_MCR2_CLRLRPHS BIT(14)
93#define FSPI_MCR2_ABRDATSZ BIT(8)
94#define FSPI_MCR2_ABRLEARN BIT(7)
95#define FSPI_MCR2_ABR_READ BIT(6)
96#define FSPI_MCR2_ABRWRITE BIT(5)
97#define FSPI_MCR2_ABRDUMMY BIT(4)
98#define FSPI_MCR2_ABR_MODE BIT(3)
99#define FSPI_MCR2_ABRCADDR BIT(2)
100#define FSPI_MCR2_ABRRADDR BIT(1)
101#define FSPI_MCR2_ABR_CMD BIT(0)
102
103#define FSPI_AHBCR 0x0c
104#define FSPI_AHBCR_RDADDROPT BIT(6)
105#define FSPI_AHBCR_PREF_EN BIT(5)
106#define FSPI_AHBCR_BUFF_EN BIT(4)
107#define FSPI_AHBCR_CACH_EN BIT(3)
108#define FSPI_AHBCR_CLRTXBUF BIT(2)
109#define FSPI_AHBCR_CLRRXBUF BIT(1)
110#define FSPI_AHBCR_PAR_EN BIT(0)
111
112#define FSPI_INTEN 0x10
113#define FSPI_INTEN_SCLKSBWR BIT(9)
114#define FSPI_INTEN_SCLKSBRD BIT(8)
115#define FSPI_INTEN_DATALRNFL BIT(7)
116#define FSPI_INTEN_IPTXWE BIT(6)
117#define FSPI_INTEN_IPRXWA BIT(5)
118#define FSPI_INTEN_AHBCMDERR BIT(4)
119#define FSPI_INTEN_IPCMDERR BIT(3)
120#define FSPI_INTEN_AHBCMDGE BIT(2)
121#define FSPI_INTEN_IPCMDGE BIT(1)
122#define FSPI_INTEN_IPCMDDONE BIT(0)
123
124#define FSPI_INTR 0x14
125#define FSPI_INTR_SCLKSBWR BIT(9)
126#define FSPI_INTR_SCLKSBRD BIT(8)
127#define FSPI_INTR_DATALRNFL BIT(7)
128#define FSPI_INTR_IPTXWE BIT(6)
129#define FSPI_INTR_IPRXWA BIT(5)
130#define FSPI_INTR_AHBCMDERR BIT(4)
131#define FSPI_INTR_IPCMDERR BIT(3)
132#define FSPI_INTR_AHBCMDGE BIT(2)
133#define FSPI_INTR_IPCMDGE BIT(1)
134#define FSPI_INTR_IPCMDDONE BIT(0)
135
136#define FSPI_LUTKEY 0x18
137#define FSPI_LUTKEY_VALUE 0x5AF05AF0
138
139#define FSPI_LCKCR 0x1C
140
141#define FSPI_LCKER_LOCK 0x1
142#define FSPI_LCKER_UNLOCK 0x2
143
144#define FSPI_BUFXCR_INVALID_MSTRID 0xE
145#define FSPI_AHBRX_BUF0CR0 0x20
146#define FSPI_AHBRX_BUF1CR0 0x24
147#define FSPI_AHBRX_BUF2CR0 0x28
148#define FSPI_AHBRX_BUF3CR0 0x2C
149#define FSPI_AHBRX_BUF4CR0 0x30
150#define FSPI_AHBRX_BUF5CR0 0x34
151#define FSPI_AHBRX_BUF6CR0 0x38
152#define FSPI_AHBRX_BUF7CR0 0x3C
153#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
154
155#define FSPI_AHBRX_BUF0CR1 0x40
156#define FSPI_AHBRX_BUF1CR1 0x44
157#define FSPI_AHBRX_BUF2CR1 0x48
158#define FSPI_AHBRX_BUF3CR1 0x4C
159#define FSPI_AHBRX_BUF4CR1 0x50
160#define FSPI_AHBRX_BUF5CR1 0x54
161#define FSPI_AHBRX_BUF6CR1 0x58
162#define FSPI_AHBRX_BUF7CR1 0x5C
163
164#define FSPI_FLSHA1CR0 0x60
165#define FSPI_FLSHA2CR0 0x64
166#define FSPI_FLSHB1CR0 0x68
167#define FSPI_FLSHB2CR0 0x6C
168#define FSPI_FLSHXCR0_SZ_KB 10
169#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
170
171#define FSPI_FLSHA1CR1 0x70
172#define FSPI_FLSHA2CR1 0x74
173#define FSPI_FLSHB1CR1 0x78
174#define FSPI_FLSHB2CR1 0x7C
175#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
176#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
177#define FSPI_FLSHXCR1_WA BIT(10)
178#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
179#define FSPI_FLSHXCR1_TCSS(x) (x)
180
181#define FSPI_FLSHA1CR2 0x80
182#define FSPI_FLSHA2CR2 0x84
183#define FSPI_FLSHB1CR2 0x88
184#define FSPI_FLSHB2CR2 0x8C
185#define FSPI_FLSHXCR2_CLRINSP BIT(24)
186#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
187#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
188#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
189#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
190#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
191
192#define FSPI_IPCR0 0xA0
193
194#define FSPI_IPCR1 0xA4
195#define FSPI_IPCR1_IPAREN BIT(31)
196#define FSPI_IPCR1_SEQNUM_SHIFT 24
197#define FSPI_IPCR1_SEQID_SHIFT 16
198#define FSPI_IPCR1_IDATSZ(x) (x)
199
200#define FSPI_IPCMD 0xB0
201#define FSPI_IPCMD_TRG BIT(0)
202
203#define FSPI_DLPR 0xB4
204
205#define FSPI_IPRXFCR 0xB8
206#define FSPI_IPRXFCR_CLR BIT(0)
207#define FSPI_IPRXFCR_DMA_EN BIT(1)
208#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
209
210#define FSPI_IPTXFCR 0xBC
211#define FSPI_IPTXFCR_CLR BIT(0)
212#define FSPI_IPTXFCR_DMA_EN BIT(1)
213#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
214
215#define FSPI_DLLACR 0xC0
216#define FSPI_DLLACR_OVRDEN BIT(8)
217
218#define FSPI_DLLBCR 0xC4
219#define FSPI_DLLBCR_OVRDEN BIT(8)
220
221#define FSPI_STS0 0xE0
222#define FSPI_STS0_DLPHB(x) ((x) << 8)
223#define FSPI_STS0_DLPHA(x) ((x) << 4)
224#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
225#define FSPI_STS0_ARB_IDLE BIT(1)
226#define FSPI_STS0_SEQ_IDLE BIT(0)
227
228#define FSPI_STS1 0xE4
229#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
230#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
231#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
232#define FSPI_STS1_AHB_ERRID(x) (x)
233
234#define FSPI_AHBSPNST 0xEC
235#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
236#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
237#define FSPI_AHBSPNST_ACTIVE BIT(0)
238
239#define FSPI_IPRXFSTS 0xF0
240#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
241#define FSPI_IPRXFSTS_FILL(x) (x)
242
243#define FSPI_IPTXFSTS 0xF4
244#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
245#define FSPI_IPTXFSTS_FILL(x) (x)
246
247#define FSPI_RFDR 0x100
248#define FSPI_TFDR 0x180
249
250#define FSPI_LUT_BASE 0x200
251#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
252#define FSPI_LUT_REG(idx) \
253 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
254
255/* register map end */
256
257/* Instruction set for the LUT register. */
258#define LUT_STOP 0x00
259#define LUT_CMD 0x01
260#define LUT_ADDR 0x02
261#define LUT_CADDR_SDR 0x03
262#define LUT_MODE 0x04
263#define LUT_MODE2 0x05
264#define LUT_MODE4 0x06
265#define LUT_MODE8 0x07
266#define LUT_NXP_WRITE 0x08
267#define LUT_NXP_READ 0x09
268#define LUT_LEARN_SDR 0x0A
269#define LUT_DATSZ_SDR 0x0B
270#define LUT_DUMMY 0x0C
271#define LUT_DUMMY_RWDS_SDR 0x0D
272#define LUT_JMP_ON_CS 0x1F
273#define LUT_CMD_DDR 0x21
274#define LUT_ADDR_DDR 0x22
275#define LUT_CADDR_DDR 0x23
276#define LUT_MODE_DDR 0x24
277#define LUT_MODE2_DDR 0x25
278#define LUT_MODE4_DDR 0x26
279#define LUT_MODE8_DDR 0x27
280#define LUT_WRITE_DDR 0x28
281#define LUT_READ_DDR 0x29
282#define LUT_LEARN_DDR 0x2A
283#define LUT_DATSZ_DDR 0x2B
284#define LUT_DUMMY_DDR 0x2C
285#define LUT_DUMMY_RWDS_DDR 0x2D
286
287/*
288 * Calculate number of required PAD bits for LUT register.
289 *
290 * The pad stands for the number of IO lines [0:7].
291 * For example, the octal read needs eight IO lines,
292 * so you should use LUT_PAD(8). This macro
293 * returns 3 i.e. use eight (2^3) IP lines for read.
294 */
295#define LUT_PAD(x) (fls(x) - 1)
296
297/*
298 * Macro for constructing the LUT entries with the following
299 * register layout:
300 *
301 * ---------------------------------------------------
302 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
303 * ---------------------------------------------------
304 */
305#define PAD_SHIFT 8
306#define INSTR_SHIFT 10
307#define OPRND_SHIFT 16
308
309/* Macros for constructing the LUT register. */
310#define LUT_DEF(idx, ins, pad, opr) \
311 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
312 (opr)) << (((idx) % 2) * OPRND_SHIFT))
313
314#define POLL_TOUT 5000
315#define NXP_FSPI_MAX_CHIPSELECT 4
d166a735 316#define NXP_FSPI_MIN_IOMAP SZ_4M
a5356aef 317
82ce7d0e 318#define DCFG_RCWSR1 0x100
67a12ae5 319#define SYS_PLL_RAT GENMASK(6, 2)
82ce7d0e 320
31e92cbf
KS
321/* Access flash memory using IP bus only */
322#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
323
a5356aef
YNG
324struct nxp_fspi_devtype_data {
325 unsigned int rxfifo;
326 unsigned int txfifo;
327 unsigned int ahb_buf_size;
328 unsigned int quirks;
329 bool little_endian;
330};
331
82ce7d0e 332static struct nxp_fspi_devtype_data lx2160a_data = {
a5356aef
YNG
333 .rxfifo = SZ_512, /* (64 * 64 bits) */
334 .txfifo = SZ_1K, /* (128 * 64 bits) */
335 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
336 .quirks = 0,
337 .little_endian = true, /* little-endian */
338};
339
82ce7d0e 340static struct nxp_fspi_devtype_data imx8mm_data = {
941be8a7
HX
341 .rxfifo = SZ_512, /* (64 * 64 bits) */
342 .txfifo = SZ_1K, /* (128 * 64 bits) */
343 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
344 .quirks = 0,
345 .little_endian = true, /* little-endian */
346};
347
82ce7d0e 348static struct nxp_fspi_devtype_data imx8qxp_data = {
941be8a7
HX
349 .rxfifo = SZ_512, /* (64 * 64 bits) */
350 .txfifo = SZ_1K, /* (128 * 64 bits) */
351 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
352 .quirks = 0,
353 .little_endian = true, /* little-endian */
354};
355
82ce7d0e 356static struct nxp_fspi_devtype_data imx8dxl_data = {
c791e3c3
HX
357 .rxfifo = SZ_512, /* (64 * 64 bits) */
358 .txfifo = SZ_1K, /* (128 * 64 bits) */
359 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
360 .quirks = FSPI_QUIRK_USE_IP_ONLY,
361 .little_endian = true, /* little-endian */
362};
363
a5356aef
YNG
364struct nxp_fspi {
365 void __iomem *iobase;
366 void __iomem *ahb_addr;
367 u32 memmap_phy;
368 u32 memmap_phy_size;
d166a735
HX
369 u32 memmap_start;
370 u32 memmap_len;
a5356aef
YNG
371 struct clk *clk, *clk_en;
372 struct device *dev;
373 struct completion c;
82ce7d0e 374 struct nxp_fspi_devtype_data *devtype_data;
a5356aef
YNG
375 struct mutex lock;
376 struct pm_qos_request pm_qos_req;
377 int selected;
378};
379
31e92cbf
KS
380static inline int needs_ip_only(struct nxp_fspi *f)
381{
382 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
383}
384
a5356aef
YNG
385/*
386 * R/W functions for big- or little-endian registers:
387 * The FSPI controller's endianness is independent of
388 * the CPU core's endianness. So far, although the CPU
389 * core is little-endian the FSPI controller can use
390 * big-endian or little-endian.
391 */
392static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
393{
394 if (f->devtype_data->little_endian)
395 iowrite32(val, addr);
396 else
397 iowrite32be(val, addr);
398}
399
400static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
401{
402 if (f->devtype_data->little_endian)
403 return ioread32(addr);
404 else
405 return ioread32be(addr);
406}
407
408static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
409{
410 struct nxp_fspi *f = dev_id;
411 u32 reg;
412
413 /* clear interrupt */
414 reg = fspi_readl(f, f->iobase + FSPI_INTR);
415 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
416
417 if (reg & FSPI_INTR_IPCMDDONE)
418 complete(&f->c);
419
420 return IRQ_HANDLED;
421}
422
423static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
424{
425 switch (width) {
426 case 1:
427 case 2:
428 case 4:
429 case 8:
430 return 0;
431 }
432
433 return -ENOTSUPP;
434}
435
436static bool nxp_fspi_supports_op(struct spi_mem *mem,
437 const struct spi_mem_op *op)
438{
439 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
440 int ret;
441
442 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
443
444 if (op->addr.nbytes)
445 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
446
447 if (op->dummy.nbytes)
448 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
449
450 if (op->data.nbytes)
451 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
452
453 if (ret)
454 return false;
455
456 /*
457 * The number of address bytes should be equal to or less than 4 bytes.
458 */
459 if (op->addr.nbytes > 4)
460 return false;
461
462 /*
463 * If requested address value is greater than controller assigned
464 * memory mapped space, return error as it didn't fit in the range
465 * of assigned address space.
466 */
467 if (op->addr.val >= f->memmap_phy_size)
468 return false;
469
470 /* Max 64 dummy clock cycles supported */
471 if (op->dummy.buswidth &&
472 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
473 return false;
474
475 /* Max data length, check controller limits and alignment */
476 if (op->data.dir == SPI_MEM_DATA_IN &&
477 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
478 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
479 !IS_ALIGNED(op->data.nbytes, 8))))
480 return false;
481
482 if (op->data.dir == SPI_MEM_DATA_OUT &&
483 op->data.nbytes > f->devtype_data->txfifo)
484 return false;
485
007773e1 486 return spi_mem_default_supports_op(mem, op);
a5356aef
YNG
487}
488
489/* Instead of busy looping invoke readl_poll_timeout functionality. */
490static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
491 u32 mask, u32 delay_us,
492 u32 timeout_us, bool c)
493{
494 u32 reg;
495
496 if (!f->devtype_data->little_endian)
497 mask = (u32)cpu_to_be32(mask);
498
499 if (c)
500 return readl_poll_timeout(base, reg, (reg & mask),
501 delay_us, timeout_us);
502 else
503 return readl_poll_timeout(base, reg, !(reg & mask),
504 delay_us, timeout_us);
505}
506
507/*
508 * If the slave device content being changed by Write/Erase, need to
509 * invalidate the AHB buffer. This can be achieved by doing the reset
510 * of controller after setting MCR0[SWRESET] bit.
511 */
512static inline void nxp_fspi_invalid(struct nxp_fspi *f)
513{
514 u32 reg;
515 int ret;
516
517 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
518 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
519
520 /* w1c register, wait unit clear */
521 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
522 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
523 WARN_ON(ret);
524}
525
526static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
527 const struct spi_mem_op *op)
528{
529 void __iomem *base = f->iobase;
530 u32 lutval[4] = {};
531 int lutidx = 1, i;
532
533 /* cmd */
534 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
535 op->cmd.opcode);
536
537 /* addr bytes */
538 if (op->addr.nbytes) {
539 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
540 LUT_PAD(op->addr.buswidth),
541 op->addr.nbytes * 8);
542 lutidx++;
543 }
544
545 /* dummy bytes, if needed */
546 if (op->dummy.nbytes) {
547 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
548 /*
549 * Due to FlexSPI controller limitation number of PAD for dummy
550 * buswidth needs to be programmed as equal to data buswidth.
551 */
552 LUT_PAD(op->data.buswidth),
553 op->dummy.nbytes * 8 /
554 op->dummy.buswidth);
555 lutidx++;
556 }
557
558 /* read/write data bytes */
559 if (op->data.nbytes) {
560 lutval[lutidx / 2] |= LUT_DEF(lutidx,
561 op->data.dir == SPI_MEM_DATA_IN ?
562 LUT_NXP_READ : LUT_NXP_WRITE,
563 LUT_PAD(op->data.buswidth),
564 0);
565 lutidx++;
566 }
567
568 /* stop condition. */
569 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
570
571 /* unlock LUT */
572 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
573 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
574
575 /* fill LUT */
576 for (i = 0; i < ARRAY_SIZE(lutval); i++)
577 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
578
31e92cbf
KS
579 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
580 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
a5356aef
YNG
581
582 /* lock LUT */
583 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
584 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
585}
586
587static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
588{
589 int ret;
590
55ab8487 591 if (is_acpi_node(f->dev->fwnode))
592 return 0;
593
a5356aef
YNG
594 ret = clk_prepare_enable(f->clk_en);
595 if (ret)
596 return ret;
597
598 ret = clk_prepare_enable(f->clk);
599 if (ret) {
600 clk_disable_unprepare(f->clk_en);
601 return ret;
602 }
603
604 return 0;
605}
606
55ab8487 607static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
a5356aef 608{
55ab8487 609 if (is_acpi_node(f->dev->fwnode))
610 return 0;
611
a5356aef
YNG
612 clk_disable_unprepare(f->clk);
613 clk_disable_unprepare(f->clk_en);
55ab8487 614
615 return 0;
a5356aef
YNG
616}
617
618/*
619 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
620 * register and start base address of the slave device.
621 *
622 * (Higher address)
623 * -------- <-- FLSHB2CR0
624 * | B2 |
625 * | |
626 * B2 start address --> -------- <-- FLSHB1CR0
627 * | B1 |
628 * | |
629 * B1 start address --> -------- <-- FLSHA2CR0
630 * | A2 |
631 * | |
632 * A2 start address --> -------- <-- FLSHA1CR0
633 * | A1 |
634 * | |
635 * A1 start address --> -------- (Lower address)
636 *
637 *
638 * Start base address defines the starting address range for given CS and
639 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
640 *
641 * But, different targets are having different combinations of number of CS,
642 * some targets only have single CS or two CS covering controller's full
643 * memory mapped space area.
644 * Thus, implementation is being done as independent of the size and number
645 * of the connected slave device.
646 * Assign controller memory mapped space size as the size to the connected
647 * slave device.
648 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
649 * chip-select Flash configuration register.
650 *
651 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
652 * memory mapped size of the controller.
653 * Value for rest of the CS FLSHxxCR0 register would be zero.
654 *
655 */
656static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
657{
658 unsigned long rate = spi->max_speed_hz;
659 int ret;
660 uint64_t size_kb;
661
662 /*
663 * Return, if previously selected slave device is same as current
664 * requested slave device.
665 */
666 if (f->selected == spi->chip_select)
667 return;
668
669 /* Reset FLSHxxCR0 registers */
670 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
671 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
672 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
673 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
674
675 /* Assign controller memory mapped space as size, KBytes, of flash. */
676 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
677
678 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
679 4 * spi->chip_select);
680
681 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
682
683 nxp_fspi_clk_disable_unprep(f);
684
685 ret = clk_set_rate(f->clk, rate);
686 if (ret)
687 return;
688
689 ret = nxp_fspi_clk_prep_enable(f);
690 if (ret)
691 return;
692
693 f->selected = spi->chip_select;
694}
695
d166a735 696static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
a5356aef 697{
d166a735 698 u32 start = op->addr.val;
a5356aef
YNG
699 u32 len = op->data.nbytes;
700
d166a735
HX
701 /* if necessary, ioremap before AHB read */
702 if ((!f->ahb_addr) || start < f->memmap_start ||
703 start + len > f->memmap_start + f->memmap_len) {
704 if (f->ahb_addr)
705 iounmap(f->ahb_addr);
706
707 f->memmap_start = start;
708 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
709 len : NXP_FSPI_MIN_IOMAP;
710
711 f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
712 f->memmap_len);
713
714 if (!f->ahb_addr) {
715 dev_err(f->dev, "failed to alloc memory\n");
716 return -ENOMEM;
717 }
718 }
719
a5356aef 720 /* Read out the data directly from the AHB buffer. */
d166a735
HX
721 memcpy_fromio(op->data.buf.in,
722 f->ahb_addr + start - f->memmap_start, len);
723
724 return 0;
a5356aef
YNG
725}
726
727static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
728 const struct spi_mem_op *op)
729{
730 void __iomem *base = f->iobase;
731 int i, ret;
732 u8 *buf = (u8 *) op->data.buf.out;
733
734 /* clear the TX FIFO. */
735 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
736
737 /*
738 * Default value of water mark level is 8 bytes, hence in single
739 * write request controller can write max 8 bytes of data.
740 */
741
742 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
743 /* Wait for TXFIFO empty */
744 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
745 FSPI_INTR_IPTXWE, 0,
746 POLL_TOUT, true);
747 WARN_ON(ret);
748
749 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
750 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
751 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
752 }
753
754 if (i < op->data.nbytes) {
755 u32 data = 0;
756 int j;
757 /* Wait for TXFIFO empty */
758 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
759 FSPI_INTR_IPTXWE, 0,
760 POLL_TOUT, true);
761 WARN_ON(ret);
762
763 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
764 memcpy(&data, buf + i + j, 4);
765 fspi_writel(f, data, base + FSPI_TFDR + j);
766 }
767 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
768 }
769}
770
771static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
772 const struct spi_mem_op *op)
773{
774 void __iomem *base = f->iobase;
775 int i, ret;
776 int len = op->data.nbytes;
777 u8 *buf = (u8 *) op->data.buf.in;
778
779 /*
780 * Default value of water mark level is 8 bytes, hence in single
781 * read request controller can read max 8 bytes of data.
782 */
783 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
784 /* Wait for RXFIFO available */
785 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
786 FSPI_INTR_IPRXWA, 0,
787 POLL_TOUT, true);
788 WARN_ON(ret);
789
790 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
791 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
792 /* move the FIFO pointer */
793 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
794 }
795
796 if (i < len) {
797 u32 tmp;
798 int size, j;
799
800 buf = op->data.buf.in + i;
801 /* Wait for RXFIFO available */
802 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
803 FSPI_INTR_IPRXWA, 0,
804 POLL_TOUT, true);
805 WARN_ON(ret);
806
807 len = op->data.nbytes - i;
808 for (j = 0; j < op->data.nbytes - i; j += 4) {
809 tmp = fspi_readl(f, base + FSPI_RFDR + j);
810 size = min(len, 4);
811 memcpy(buf + j, &tmp, size);
812 len -= size;
813 }
814 }
815
816 /* invalid the RXFIFO */
817 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
818 /* move the FIFO pointer */
819 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
820}
821
822static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
823{
824 void __iomem *base = f->iobase;
825 int seqnum = 0;
826 int err = 0;
827 u32 reg;
828
829 reg = fspi_readl(f, base + FSPI_IPRXFCR);
830 /* invalid RXFIFO first */
831 reg &= ~FSPI_IPRXFCR_DMA_EN;
832 reg = reg | FSPI_IPRXFCR_CLR;
833 fspi_writel(f, reg, base + FSPI_IPRXFCR);
834
835 init_completion(&f->c);
836
837 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
838 /*
839 * Always start the sequence at the same index since we update
840 * the LUT at each exec_op() call. And also specify the DATA
841 * length, since it's has not been specified in the LUT.
842 */
843 fspi_writel(f, op->data.nbytes |
844 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
845 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
846 base + FSPI_IPCR1);
847
848 /* Trigger the LUT now. */
849 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
850
851 /* Wait for the interrupt. */
852 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
853 err = -ETIMEDOUT;
854
855 /* Invoke IP data read, if request is of data read. */
856 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
857 nxp_fspi_read_rxfifo(f, op);
858
859 return err;
860}
861
862static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
863{
864 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
865 int err = 0;
866
867 mutex_lock(&f->lock);
868
869 /* Wait for controller being ready. */
870 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
871 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
872 WARN_ON(err);
873
874 nxp_fspi_select_mem(f, mem->spi);
875
876 nxp_fspi_prepare_lut(f, op);
877 /*
31e92cbf
KS
878 * If we have large chunks of data, we read them through the AHB bus by
879 * accessing the mapped memory. In all other cases we use IP commands
880 * to access the flash. Read via AHB bus may be corrupted due to
881 * existence of an errata and therefore discard AHB read in such cases.
a5356aef
YNG
882 */
883 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
31e92cbf
KS
884 op->data.dir == SPI_MEM_DATA_IN &&
885 !needs_ip_only(f)) {
d166a735 886 err = nxp_fspi_read_ahb(f, op);
a5356aef
YNG
887 } else {
888 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
889 nxp_fspi_fill_txfifo(f, op);
890
891 err = nxp_fspi_do_op(f, op);
892 }
893
894 /* Invalidate the data in the AHB buffer. */
895 nxp_fspi_invalid(f);
896
897 mutex_unlock(&f->lock);
898
899 return err;
900}
901
902static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
903{
904 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
905
906 if (op->data.dir == SPI_MEM_DATA_OUT) {
907 if (op->data.nbytes > f->devtype_data->txfifo)
908 op->data.nbytes = f->devtype_data->txfifo;
909 } else {
910 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
911 op->data.nbytes = f->devtype_data->ahb_buf_size;
912 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
913 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
914 }
915
31e92cbf
KS
916 /* Limit data bytes to RX FIFO in case of IP read only */
917 if (op->data.dir == SPI_MEM_DATA_IN &&
918 needs_ip_only(f) &&
919 op->data.nbytes > f->devtype_data->rxfifo)
920 op->data.nbytes = f->devtype_data->rxfifo;
921
a5356aef
YNG
922 return 0;
923}
924
82ce7d0e
KS
925static void erratum_err050568(struct nxp_fspi *f)
926{
927 const struct soc_device_attribute ls1028a_soc_attr[] = {
928 { .family = "QorIQ LS1028A" },
929 { /* sentinel */ }
930 };
82ce7d0e 931 struct regmap *map;
67a12ae5 932 u32 val, sys_pll_ratio;
82ce7d0e
KS
933 int ret;
934
935 /* Check for LS1028A family */
936 if (!soc_device_match(ls1028a_soc_attr)) {
937 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
938 return;
939 }
940
82ce7d0e
KS
941 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
942 if (IS_ERR(map)) {
943 dev_err(f->dev, "No syscon regmap\n");
944 goto err;
945 }
946
947 ret = regmap_read(map, DCFG_RCWSR1, &val);
948 if (ret < 0)
949 goto err;
950
67a12ae5
MW
951 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
952 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
82ce7d0e 953
67a12ae5
MW
954 /* Use IP bus only if platform clock is 300MHz */
955 if (sys_pll_ratio == 3)
82ce7d0e
KS
956 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
957
958 return;
959
960err:
961 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
962}
963
a5356aef
YNG
964static int nxp_fspi_default_setup(struct nxp_fspi *f)
965{
966 void __iomem *base = f->iobase;
967 int ret, i;
968 u32 reg;
969
970 /* disable and unprepare clock to avoid glitch pass to controller */
971 nxp_fspi_clk_disable_unprep(f);
972
973 /* the default frequency, we will change it later if necessary. */
974 ret = clk_set_rate(f->clk, 20000000);
975 if (ret)
976 return ret;
977
978 ret = nxp_fspi_clk_prep_enable(f);
979 if (ret)
980 return ret;
981
82ce7d0e
KS
982 /*
983 * ERR050568: Flash access by FlexSPI AHB command may not work with
984 * platform frequency equal to 300 MHz on LS1028A.
985 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
986 * Layerscape LS1028A platform.
987 */
988 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
989 erratum_err050568(f);
990
a5356aef
YNG
991 /* Reset the module */
992 /* w1c register, wait unit clear */
993 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
994 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
995 WARN_ON(ret);
996
997 /* Disable the module */
998 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
999
1000 /* Reset the DLL register to default value */
1001 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1002 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1003
1004 /* enable module */
b7461fa5
HX
1005 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1006 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1007 base + FSPI_MCR0);
a5356aef
YNG
1008
1009 /*
1010 * Disable same device enable bit and configure all slave devices
1011 * independently.
1012 */
1013 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1014 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1015 fspi_writel(f, reg, base + FSPI_MCR2);
1016
1017 /* AHB configuration for access buffer 0~7. */
1018 for (i = 0; i < 7; i++)
1019 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1020
1021 /*
1022 * Set ADATSZ with the maximum AHB buffer size to improve the read
1023 * performance.
1024 */
1025 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1026 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1027
1028 /* prefetch and no start address alignment limitation */
1029 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1030 base + FSPI_AHBCR);
1031
1032 /* AHB Read - Set lut sequence ID for all CS. */
1033 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1034 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1035 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1036 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1037
1038 f->selected = -1;
1039
1040 /* enable the interrupt */
1041 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1042
1043 return 0;
1044}
1045
1046static const char *nxp_fspi_get_name(struct spi_mem *mem)
1047{
1048 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1049 struct device *dev = &mem->spi->dev;
1050 const char *name;
1051
1052 // Set custom name derived from the platform_device of the controller.
1053 if (of_get_available_child_count(f->dev->of_node) == 1)
1054 return dev_name(f->dev);
1055
1056 name = devm_kasprintf(dev, GFP_KERNEL,
1057 "%s-%d", dev_name(f->dev),
1058 mem->spi->chip_select);
1059
1060 if (!name) {
1061 dev_err(dev, "failed to get memory for custom flash name\n");
1062 return ERR_PTR(-ENOMEM);
1063 }
1064
1065 return name;
1066}
1067
1068static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1069 .adjust_op_size = nxp_fspi_adjust_op_size,
1070 .supports_op = nxp_fspi_supports_op,
1071 .exec_op = nxp_fspi_exec_op,
1072 .get_name = nxp_fspi_get_name,
1073};
1074
1075static int nxp_fspi_probe(struct platform_device *pdev)
1076{
1077 struct spi_controller *ctlr;
1078 struct device *dev = &pdev->dev;
1079 struct device_node *np = dev->of_node;
1080 struct resource *res;
1081 struct nxp_fspi *f;
1082 int ret;
71d80563 1083 u32 reg;
a5356aef
YNG
1084
1085 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1086 if (!ctlr)
1087 return -ENOMEM;
1088
b3281794
YNG
1089 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1090 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
a5356aef
YNG
1091
1092 f = spi_controller_get_devdata(ctlr);
1093 f->dev = dev;
82ce7d0e 1094 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
a5356aef
YNG
1095 if (!f->devtype_data) {
1096 ret = -ENODEV;
1097 goto err_put_ctrl;
1098 }
1099
1100 platform_set_drvdata(pdev, f);
1101
1102 /* find the resources - configuration register address space */
55ab8487 1103 if (is_acpi_node(f->dev->fwnode))
1104 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1105 else
1106 res = platform_get_resource_byname(pdev,
1107 IORESOURCE_MEM, "fspi_base");
1108
a5356aef
YNG
1109 f->iobase = devm_ioremap_resource(dev, res);
1110 if (IS_ERR(f->iobase)) {
1111 ret = PTR_ERR(f->iobase);
1112 goto err_put_ctrl;
1113 }
1114
1115 /* find the resources - controller memory mapped space */
55ab8487 1116 if (is_acpi_node(f->dev->fwnode))
1117 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1118 else
1119 res = platform_get_resource_byname(pdev,
1120 IORESOURCE_MEM, "fspi_mmap");
1121
1a421eba
DC
1122 if (!res) {
1123 ret = -ENODEV;
a5356aef
YNG
1124 goto err_put_ctrl;
1125 }
1126
1127 /* assign memory mapped starting address and mapped size. */
1128 f->memmap_phy = res->start;
1129 f->memmap_phy_size = resource_size(res);
1130
1131 /* find the clocks */
55ab8487 1132 if (dev_of_node(&pdev->dev)) {
1133 f->clk_en = devm_clk_get(dev, "fspi_en");
1134 if (IS_ERR(f->clk_en)) {
1135 ret = PTR_ERR(f->clk_en);
1136 goto err_put_ctrl;
1137 }
a5356aef 1138
55ab8487 1139 f->clk = devm_clk_get(dev, "fspi");
1140 if (IS_ERR(f->clk)) {
1141 ret = PTR_ERR(f->clk);
1142 goto err_put_ctrl;
1143 }
a5356aef 1144
55ab8487 1145 ret = nxp_fspi_clk_prep_enable(f);
1146 if (ret) {
1147 dev_err(dev, "can not enable the clock\n");
1148 goto err_put_ctrl;
1149 }
a5356aef
YNG
1150 }
1151
f422316c
HC
1152 /* Clear potential interrupts */
1153 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1154 if (reg)
1155 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1156
a5356aef
YNG
1157 /* find the irq */
1158 ret = platform_get_irq(pdev, 0);
6b8ac10e 1159 if (ret < 0)
a5356aef 1160 goto err_disable_clk;
a5356aef
YNG
1161
1162 ret = devm_request_irq(dev, ret,
1163 nxp_fspi_irq_handler, 0, pdev->name, f);
1164 if (ret) {
1165 dev_err(dev, "failed to request irq: %d\n", ret);
1166 goto err_disable_clk;
1167 }
1168
1169 mutex_init(&f->lock);
1170
1171 ctlr->bus_num = -1;
1172 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1173 ctlr->mem_ops = &nxp_fspi_mem_ops;
1174
1175 nxp_fspi_default_setup(f);
1176
1177 ctlr->dev.of_node = np;
1178
69c23dbf 1179 ret = devm_spi_register_controller(&pdev->dev, ctlr);
a5356aef
YNG
1180 if (ret)
1181 goto err_destroy_mutex;
1182
1183 return 0;
1184
1185err_destroy_mutex:
1186 mutex_destroy(&f->lock);
1187
1188err_disable_clk:
1189 nxp_fspi_clk_disable_unprep(f);
1190
1191err_put_ctrl:
1192 spi_controller_put(ctlr);
1193
1194 dev_err(dev, "NXP FSPI probe failed\n");
1195 return ret;
1196}
1197
1198static int nxp_fspi_remove(struct platform_device *pdev)
1199{
1200 struct nxp_fspi *f = platform_get_drvdata(pdev);
1201
1202 /* disable the hardware */
1203 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1204
1205 nxp_fspi_clk_disable_unprep(f);
1206
1207 mutex_destroy(&f->lock);
1208
d166a735
HX
1209 if (f->ahb_addr)
1210 iounmap(f->ahb_addr);
1211
a5356aef
YNG
1212 return 0;
1213}
1214
1215static int nxp_fspi_suspend(struct device *dev)
1216{
1217 return 0;
1218}
1219
1220static int nxp_fspi_resume(struct device *dev)
1221{
1222 struct nxp_fspi *f = dev_get_drvdata(dev);
1223
1224 nxp_fspi_default_setup(f);
1225
1226 return 0;
1227}
1228
1229static const struct of_device_id nxp_fspi_dt_ids[] = {
1230 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
941be8a7 1231 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
0467a973 1232 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
941be8a7 1233 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
c791e3c3 1234 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
a5356aef
YNG
1235 { /* sentinel */ }
1236};
1237MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1238
55ab8487 1239#ifdef CONFIG_ACPI
1240static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1241 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1242 {}
1243};
1244MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1245#endif
1246
a5356aef
YNG
1247static const struct dev_pm_ops nxp_fspi_pm_ops = {
1248 .suspend = nxp_fspi_suspend,
1249 .resume = nxp_fspi_resume,
1250};
1251
1252static struct platform_driver nxp_fspi_driver = {
1253 .driver = {
1254 .name = "nxp-fspi",
1255 .of_match_table = nxp_fspi_dt_ids,
55ab8487 1256 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
a5356aef
YNG
1257 .pm = &nxp_fspi_pm_ops,
1258 },
1259 .probe = nxp_fspi_probe,
1260 .remove = nxp_fspi_remove,
1261};
1262module_platform_driver(nxp_fspi_driver);
1263
1264MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1265MODULE_AUTHOR("NXP Semiconductor");
1266MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
ce6f0697 1267MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
a5356aef 1268MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
ce6f0697 1269MODULE_LICENSE("GPL v2");