]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/spi/spi-nxp-fspi.c
spi: spi-nxp-fspi: Add imx8dxl driver support
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-nxp-fspi.c
CommitLineData
a5356aef
YNG
1// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
55ab8487 6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
a5356aef
YNG
8 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
ce6f0697 30 * Boris Brezillon <bbrezillon@kernel.org>
a5356aef
YNG
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
55ab8487 34#include <linux/acpi.h>
a5356aef
YNG
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/err.h>
40#include <linux/errno.h>
41#include <linux/interrupt.h>
42#include <linux/io.h>
43#include <linux/iopoll.h>
44#include <linux/jiffies.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/mutex.h>
48#include <linux/of.h>
49#include <linux/of_device.h>
50#include <linux/platform_device.h>
51#include <linux/pm_qos.h>
52#include <linux/sizes.h>
53
54#include <linux/spi/spi.h>
55#include <linux/spi/spi-mem.h>
56
57/*
58 * The driver only uses one single LUT entry, that is updated on
59 * each call of exec_op(). Index 0 is preset at boot with a basic
60 * read operation, so let's use the last entry (31).
61 */
62#define SEQID_LUT 31
63
64/* Registers used by the driver */
65#define FSPI_MCR0 0x00
66#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
67#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
68#define FSPI_MCR0_LEARN_EN BIT(15)
69#define FSPI_MCR0_SCRFRUN_EN BIT(14)
70#define FSPI_MCR0_OCTCOMB_EN BIT(13)
71#define FSPI_MCR0_DOZE_EN BIT(12)
72#define FSPI_MCR0_HSEN BIT(11)
73#define FSPI_MCR0_SERCLKDIV BIT(8)
74#define FSPI_MCR0_ATDF_EN BIT(7)
75#define FSPI_MCR0_ARDF_EN BIT(6)
76#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
77#define FSPI_MCR0_END_CFG(x) ((x) << 2)
78#define FSPI_MCR0_MDIS BIT(1)
79#define FSPI_MCR0_SWRST BIT(0)
80
81#define FSPI_MCR1 0x04
82#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
83#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
84
85#define FSPI_MCR2 0x08
86#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
87#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
88#define FSPI_MCR2_CLRLRPHS BIT(14)
89#define FSPI_MCR2_ABRDATSZ BIT(8)
90#define FSPI_MCR2_ABRLEARN BIT(7)
91#define FSPI_MCR2_ABR_READ BIT(6)
92#define FSPI_MCR2_ABRWRITE BIT(5)
93#define FSPI_MCR2_ABRDUMMY BIT(4)
94#define FSPI_MCR2_ABR_MODE BIT(3)
95#define FSPI_MCR2_ABRCADDR BIT(2)
96#define FSPI_MCR2_ABRRADDR BIT(1)
97#define FSPI_MCR2_ABR_CMD BIT(0)
98
99#define FSPI_AHBCR 0x0c
100#define FSPI_AHBCR_RDADDROPT BIT(6)
101#define FSPI_AHBCR_PREF_EN BIT(5)
102#define FSPI_AHBCR_BUFF_EN BIT(4)
103#define FSPI_AHBCR_CACH_EN BIT(3)
104#define FSPI_AHBCR_CLRTXBUF BIT(2)
105#define FSPI_AHBCR_CLRRXBUF BIT(1)
106#define FSPI_AHBCR_PAR_EN BIT(0)
107
108#define FSPI_INTEN 0x10
109#define FSPI_INTEN_SCLKSBWR BIT(9)
110#define FSPI_INTEN_SCLKSBRD BIT(8)
111#define FSPI_INTEN_DATALRNFL BIT(7)
112#define FSPI_INTEN_IPTXWE BIT(6)
113#define FSPI_INTEN_IPRXWA BIT(5)
114#define FSPI_INTEN_AHBCMDERR BIT(4)
115#define FSPI_INTEN_IPCMDERR BIT(3)
116#define FSPI_INTEN_AHBCMDGE BIT(2)
117#define FSPI_INTEN_IPCMDGE BIT(1)
118#define FSPI_INTEN_IPCMDDONE BIT(0)
119
120#define FSPI_INTR 0x14
121#define FSPI_INTR_SCLKSBWR BIT(9)
122#define FSPI_INTR_SCLKSBRD BIT(8)
123#define FSPI_INTR_DATALRNFL BIT(7)
124#define FSPI_INTR_IPTXWE BIT(6)
125#define FSPI_INTR_IPRXWA BIT(5)
126#define FSPI_INTR_AHBCMDERR BIT(4)
127#define FSPI_INTR_IPCMDERR BIT(3)
128#define FSPI_INTR_AHBCMDGE BIT(2)
129#define FSPI_INTR_IPCMDGE BIT(1)
130#define FSPI_INTR_IPCMDDONE BIT(0)
131
132#define FSPI_LUTKEY 0x18
133#define FSPI_LUTKEY_VALUE 0x5AF05AF0
134
135#define FSPI_LCKCR 0x1C
136
137#define FSPI_LCKER_LOCK 0x1
138#define FSPI_LCKER_UNLOCK 0x2
139
140#define FSPI_BUFXCR_INVALID_MSTRID 0xE
141#define FSPI_AHBRX_BUF0CR0 0x20
142#define FSPI_AHBRX_BUF1CR0 0x24
143#define FSPI_AHBRX_BUF2CR0 0x28
144#define FSPI_AHBRX_BUF3CR0 0x2C
145#define FSPI_AHBRX_BUF4CR0 0x30
146#define FSPI_AHBRX_BUF5CR0 0x34
147#define FSPI_AHBRX_BUF6CR0 0x38
148#define FSPI_AHBRX_BUF7CR0 0x3C
149#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
150
151#define FSPI_AHBRX_BUF0CR1 0x40
152#define FSPI_AHBRX_BUF1CR1 0x44
153#define FSPI_AHBRX_BUF2CR1 0x48
154#define FSPI_AHBRX_BUF3CR1 0x4C
155#define FSPI_AHBRX_BUF4CR1 0x50
156#define FSPI_AHBRX_BUF5CR1 0x54
157#define FSPI_AHBRX_BUF6CR1 0x58
158#define FSPI_AHBRX_BUF7CR1 0x5C
159
160#define FSPI_FLSHA1CR0 0x60
161#define FSPI_FLSHA2CR0 0x64
162#define FSPI_FLSHB1CR0 0x68
163#define FSPI_FLSHB2CR0 0x6C
164#define FSPI_FLSHXCR0_SZ_KB 10
165#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
166
167#define FSPI_FLSHA1CR1 0x70
168#define FSPI_FLSHA2CR1 0x74
169#define FSPI_FLSHB1CR1 0x78
170#define FSPI_FLSHB2CR1 0x7C
171#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
172#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
173#define FSPI_FLSHXCR1_WA BIT(10)
174#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
175#define FSPI_FLSHXCR1_TCSS(x) (x)
176
177#define FSPI_FLSHA1CR2 0x80
178#define FSPI_FLSHA2CR2 0x84
179#define FSPI_FLSHB1CR2 0x88
180#define FSPI_FLSHB2CR2 0x8C
181#define FSPI_FLSHXCR2_CLRINSP BIT(24)
182#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
183#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
184#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
185#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
186#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
187
188#define FSPI_IPCR0 0xA0
189
190#define FSPI_IPCR1 0xA4
191#define FSPI_IPCR1_IPAREN BIT(31)
192#define FSPI_IPCR1_SEQNUM_SHIFT 24
193#define FSPI_IPCR1_SEQID_SHIFT 16
194#define FSPI_IPCR1_IDATSZ(x) (x)
195
196#define FSPI_IPCMD 0xB0
197#define FSPI_IPCMD_TRG BIT(0)
198
199#define FSPI_DLPR 0xB4
200
201#define FSPI_IPRXFCR 0xB8
202#define FSPI_IPRXFCR_CLR BIT(0)
203#define FSPI_IPRXFCR_DMA_EN BIT(1)
204#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
205
206#define FSPI_IPTXFCR 0xBC
207#define FSPI_IPTXFCR_CLR BIT(0)
208#define FSPI_IPTXFCR_DMA_EN BIT(1)
209#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
210
211#define FSPI_DLLACR 0xC0
212#define FSPI_DLLACR_OVRDEN BIT(8)
213
214#define FSPI_DLLBCR 0xC4
215#define FSPI_DLLBCR_OVRDEN BIT(8)
216
217#define FSPI_STS0 0xE0
218#define FSPI_STS0_DLPHB(x) ((x) << 8)
219#define FSPI_STS0_DLPHA(x) ((x) << 4)
220#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
221#define FSPI_STS0_ARB_IDLE BIT(1)
222#define FSPI_STS0_SEQ_IDLE BIT(0)
223
224#define FSPI_STS1 0xE4
225#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
226#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
227#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
228#define FSPI_STS1_AHB_ERRID(x) (x)
229
230#define FSPI_AHBSPNST 0xEC
231#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
232#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
233#define FSPI_AHBSPNST_ACTIVE BIT(0)
234
235#define FSPI_IPRXFSTS 0xF0
236#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
237#define FSPI_IPRXFSTS_FILL(x) (x)
238
239#define FSPI_IPTXFSTS 0xF4
240#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
241#define FSPI_IPTXFSTS_FILL(x) (x)
242
243#define FSPI_RFDR 0x100
244#define FSPI_TFDR 0x180
245
246#define FSPI_LUT_BASE 0x200
247#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
248#define FSPI_LUT_REG(idx) \
249 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
250
251/* register map end */
252
253/* Instruction set for the LUT register. */
254#define LUT_STOP 0x00
255#define LUT_CMD 0x01
256#define LUT_ADDR 0x02
257#define LUT_CADDR_SDR 0x03
258#define LUT_MODE 0x04
259#define LUT_MODE2 0x05
260#define LUT_MODE4 0x06
261#define LUT_MODE8 0x07
262#define LUT_NXP_WRITE 0x08
263#define LUT_NXP_READ 0x09
264#define LUT_LEARN_SDR 0x0A
265#define LUT_DATSZ_SDR 0x0B
266#define LUT_DUMMY 0x0C
267#define LUT_DUMMY_RWDS_SDR 0x0D
268#define LUT_JMP_ON_CS 0x1F
269#define LUT_CMD_DDR 0x21
270#define LUT_ADDR_DDR 0x22
271#define LUT_CADDR_DDR 0x23
272#define LUT_MODE_DDR 0x24
273#define LUT_MODE2_DDR 0x25
274#define LUT_MODE4_DDR 0x26
275#define LUT_MODE8_DDR 0x27
276#define LUT_WRITE_DDR 0x28
277#define LUT_READ_DDR 0x29
278#define LUT_LEARN_DDR 0x2A
279#define LUT_DATSZ_DDR 0x2B
280#define LUT_DUMMY_DDR 0x2C
281#define LUT_DUMMY_RWDS_DDR 0x2D
282
283/*
284 * Calculate number of required PAD bits for LUT register.
285 *
286 * The pad stands for the number of IO lines [0:7].
287 * For example, the octal read needs eight IO lines,
288 * so you should use LUT_PAD(8). This macro
289 * returns 3 i.e. use eight (2^3) IP lines for read.
290 */
291#define LUT_PAD(x) (fls(x) - 1)
292
293/*
294 * Macro for constructing the LUT entries with the following
295 * register layout:
296 *
297 * ---------------------------------------------------
298 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
299 * ---------------------------------------------------
300 */
301#define PAD_SHIFT 8
302#define INSTR_SHIFT 10
303#define OPRND_SHIFT 16
304
305/* Macros for constructing the LUT register. */
306#define LUT_DEF(idx, ins, pad, opr) \
307 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
308 (opr)) << (((idx) % 2) * OPRND_SHIFT))
309
310#define POLL_TOUT 5000
311#define NXP_FSPI_MAX_CHIPSELECT 4
d166a735 312#define NXP_FSPI_MIN_IOMAP SZ_4M
a5356aef 313
31e92cbf
KS
314/* Access flash memory using IP bus only */
315#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
316
a5356aef
YNG
317struct nxp_fspi_devtype_data {
318 unsigned int rxfifo;
319 unsigned int txfifo;
320 unsigned int ahb_buf_size;
321 unsigned int quirks;
322 bool little_endian;
323};
324
325static const struct nxp_fspi_devtype_data lx2160a_data = {
326 .rxfifo = SZ_512, /* (64 * 64 bits) */
327 .txfifo = SZ_1K, /* (128 * 64 bits) */
328 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
329 .quirks = 0,
330 .little_endian = true, /* little-endian */
331};
332
941be8a7
HX
333static const struct nxp_fspi_devtype_data imx8mm_data = {
334 .rxfifo = SZ_512, /* (64 * 64 bits) */
335 .txfifo = SZ_1K, /* (128 * 64 bits) */
336 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
337 .quirks = 0,
338 .little_endian = true, /* little-endian */
339};
340
341static const struct nxp_fspi_devtype_data imx8qxp_data = {
342 .rxfifo = SZ_512, /* (64 * 64 bits) */
343 .txfifo = SZ_1K, /* (128 * 64 bits) */
344 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
345 .quirks = 0,
346 .little_endian = true, /* little-endian */
347};
348
c791e3c3
HX
349static const struct nxp_fspi_devtype_data imx8dxl_data = {
350 .rxfifo = SZ_512, /* (64 * 64 bits) */
351 .txfifo = SZ_1K, /* (128 * 64 bits) */
352 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
353 .quirks = FSPI_QUIRK_USE_IP_ONLY,
354 .little_endian = true, /* little-endian */
355};
356
a5356aef
YNG
357struct nxp_fspi {
358 void __iomem *iobase;
359 void __iomem *ahb_addr;
360 u32 memmap_phy;
361 u32 memmap_phy_size;
d166a735
HX
362 u32 memmap_start;
363 u32 memmap_len;
a5356aef
YNG
364 struct clk *clk, *clk_en;
365 struct device *dev;
366 struct completion c;
367 const struct nxp_fspi_devtype_data *devtype_data;
368 struct mutex lock;
369 struct pm_qos_request pm_qos_req;
370 int selected;
371};
372
31e92cbf
KS
373static inline int needs_ip_only(struct nxp_fspi *f)
374{
375 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
376}
377
a5356aef
YNG
378/*
379 * R/W functions for big- or little-endian registers:
380 * The FSPI controller's endianness is independent of
381 * the CPU core's endianness. So far, although the CPU
382 * core is little-endian the FSPI controller can use
383 * big-endian or little-endian.
384 */
385static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
386{
387 if (f->devtype_data->little_endian)
388 iowrite32(val, addr);
389 else
390 iowrite32be(val, addr);
391}
392
393static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
394{
395 if (f->devtype_data->little_endian)
396 return ioread32(addr);
397 else
398 return ioread32be(addr);
399}
400
401static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
402{
403 struct nxp_fspi *f = dev_id;
404 u32 reg;
405
406 /* clear interrupt */
407 reg = fspi_readl(f, f->iobase + FSPI_INTR);
408 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
409
410 if (reg & FSPI_INTR_IPCMDDONE)
411 complete(&f->c);
412
413 return IRQ_HANDLED;
414}
415
416static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
417{
418 switch (width) {
419 case 1:
420 case 2:
421 case 4:
422 case 8:
423 return 0;
424 }
425
426 return -ENOTSUPP;
427}
428
429static bool nxp_fspi_supports_op(struct spi_mem *mem,
430 const struct spi_mem_op *op)
431{
432 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
433 int ret;
434
435 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
436
437 if (op->addr.nbytes)
438 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
439
440 if (op->dummy.nbytes)
441 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
442
443 if (op->data.nbytes)
444 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
445
446 if (ret)
447 return false;
448
449 /*
450 * The number of address bytes should be equal to or less than 4 bytes.
451 */
452 if (op->addr.nbytes > 4)
453 return false;
454
455 /*
456 * If requested address value is greater than controller assigned
457 * memory mapped space, return error as it didn't fit in the range
458 * of assigned address space.
459 */
460 if (op->addr.val >= f->memmap_phy_size)
461 return false;
462
463 /* Max 64 dummy clock cycles supported */
464 if (op->dummy.buswidth &&
465 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
466 return false;
467
468 /* Max data length, check controller limits and alignment */
469 if (op->data.dir == SPI_MEM_DATA_IN &&
470 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
471 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
472 !IS_ALIGNED(op->data.nbytes, 8))))
473 return false;
474
475 if (op->data.dir == SPI_MEM_DATA_OUT &&
476 op->data.nbytes > f->devtype_data->txfifo)
477 return false;
478
007773e1 479 return spi_mem_default_supports_op(mem, op);
a5356aef
YNG
480}
481
482/* Instead of busy looping invoke readl_poll_timeout functionality. */
483static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
484 u32 mask, u32 delay_us,
485 u32 timeout_us, bool c)
486{
487 u32 reg;
488
489 if (!f->devtype_data->little_endian)
490 mask = (u32)cpu_to_be32(mask);
491
492 if (c)
493 return readl_poll_timeout(base, reg, (reg & mask),
494 delay_us, timeout_us);
495 else
496 return readl_poll_timeout(base, reg, !(reg & mask),
497 delay_us, timeout_us);
498}
499
500/*
501 * If the slave device content being changed by Write/Erase, need to
502 * invalidate the AHB buffer. This can be achieved by doing the reset
503 * of controller after setting MCR0[SWRESET] bit.
504 */
505static inline void nxp_fspi_invalid(struct nxp_fspi *f)
506{
507 u32 reg;
508 int ret;
509
510 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
511 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
512
513 /* w1c register, wait unit clear */
514 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
515 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
516 WARN_ON(ret);
517}
518
519static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
520 const struct spi_mem_op *op)
521{
522 void __iomem *base = f->iobase;
523 u32 lutval[4] = {};
524 int lutidx = 1, i;
525
526 /* cmd */
527 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
528 op->cmd.opcode);
529
530 /* addr bytes */
531 if (op->addr.nbytes) {
532 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
533 LUT_PAD(op->addr.buswidth),
534 op->addr.nbytes * 8);
535 lutidx++;
536 }
537
538 /* dummy bytes, if needed */
539 if (op->dummy.nbytes) {
540 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
541 /*
542 * Due to FlexSPI controller limitation number of PAD for dummy
543 * buswidth needs to be programmed as equal to data buswidth.
544 */
545 LUT_PAD(op->data.buswidth),
546 op->dummy.nbytes * 8 /
547 op->dummy.buswidth);
548 lutidx++;
549 }
550
551 /* read/write data bytes */
552 if (op->data.nbytes) {
553 lutval[lutidx / 2] |= LUT_DEF(lutidx,
554 op->data.dir == SPI_MEM_DATA_IN ?
555 LUT_NXP_READ : LUT_NXP_WRITE,
556 LUT_PAD(op->data.buswidth),
557 0);
558 lutidx++;
559 }
560
561 /* stop condition. */
562 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
563
564 /* unlock LUT */
565 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
566 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
567
568 /* fill LUT */
569 for (i = 0; i < ARRAY_SIZE(lutval); i++)
570 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
571
31e92cbf
KS
572 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
573 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
a5356aef
YNG
574
575 /* lock LUT */
576 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
577 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
578}
579
580static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
581{
582 int ret;
583
55ab8487 584 if (is_acpi_node(f->dev->fwnode))
585 return 0;
586
a5356aef
YNG
587 ret = clk_prepare_enable(f->clk_en);
588 if (ret)
589 return ret;
590
591 ret = clk_prepare_enable(f->clk);
592 if (ret) {
593 clk_disable_unprepare(f->clk_en);
594 return ret;
595 }
596
597 return 0;
598}
599
55ab8487 600static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
a5356aef 601{
55ab8487 602 if (is_acpi_node(f->dev->fwnode))
603 return 0;
604
a5356aef
YNG
605 clk_disable_unprepare(f->clk);
606 clk_disable_unprepare(f->clk_en);
55ab8487 607
608 return 0;
a5356aef
YNG
609}
610
611/*
612 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
613 * register and start base address of the slave device.
614 *
615 * (Higher address)
616 * -------- <-- FLSHB2CR0
617 * | B2 |
618 * | |
619 * B2 start address --> -------- <-- FLSHB1CR0
620 * | B1 |
621 * | |
622 * B1 start address --> -------- <-- FLSHA2CR0
623 * | A2 |
624 * | |
625 * A2 start address --> -------- <-- FLSHA1CR0
626 * | A1 |
627 * | |
628 * A1 start address --> -------- (Lower address)
629 *
630 *
631 * Start base address defines the starting address range for given CS and
632 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
633 *
634 * But, different targets are having different combinations of number of CS,
635 * some targets only have single CS or two CS covering controller's full
636 * memory mapped space area.
637 * Thus, implementation is being done as independent of the size and number
638 * of the connected slave device.
639 * Assign controller memory mapped space size as the size to the connected
640 * slave device.
641 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
642 * chip-select Flash configuration register.
643 *
644 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
645 * memory mapped size of the controller.
646 * Value for rest of the CS FLSHxxCR0 register would be zero.
647 *
648 */
649static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
650{
651 unsigned long rate = spi->max_speed_hz;
652 int ret;
653 uint64_t size_kb;
654
655 /*
656 * Return, if previously selected slave device is same as current
657 * requested slave device.
658 */
659 if (f->selected == spi->chip_select)
660 return;
661
662 /* Reset FLSHxxCR0 registers */
663 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
664 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
665 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
666 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
667
668 /* Assign controller memory mapped space as size, KBytes, of flash. */
669 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
670
671 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
672 4 * spi->chip_select);
673
674 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
675
676 nxp_fspi_clk_disable_unprep(f);
677
678 ret = clk_set_rate(f->clk, rate);
679 if (ret)
680 return;
681
682 ret = nxp_fspi_clk_prep_enable(f);
683 if (ret)
684 return;
685
686 f->selected = spi->chip_select;
687}
688
d166a735 689static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
a5356aef 690{
d166a735 691 u32 start = op->addr.val;
a5356aef
YNG
692 u32 len = op->data.nbytes;
693
d166a735
HX
694 /* if necessary, ioremap before AHB read */
695 if ((!f->ahb_addr) || start < f->memmap_start ||
696 start + len > f->memmap_start + f->memmap_len) {
697 if (f->ahb_addr)
698 iounmap(f->ahb_addr);
699
700 f->memmap_start = start;
701 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
702 len : NXP_FSPI_MIN_IOMAP;
703
704 f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
705 f->memmap_len);
706
707 if (!f->ahb_addr) {
708 dev_err(f->dev, "failed to alloc memory\n");
709 return -ENOMEM;
710 }
711 }
712
a5356aef 713 /* Read out the data directly from the AHB buffer. */
d166a735
HX
714 memcpy_fromio(op->data.buf.in,
715 f->ahb_addr + start - f->memmap_start, len);
716
717 return 0;
a5356aef
YNG
718}
719
720static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
721 const struct spi_mem_op *op)
722{
723 void __iomem *base = f->iobase;
724 int i, ret;
725 u8 *buf = (u8 *) op->data.buf.out;
726
727 /* clear the TX FIFO. */
728 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
729
730 /*
731 * Default value of water mark level is 8 bytes, hence in single
732 * write request controller can write max 8 bytes of data.
733 */
734
735 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
736 /* Wait for TXFIFO empty */
737 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
738 FSPI_INTR_IPTXWE, 0,
739 POLL_TOUT, true);
740 WARN_ON(ret);
741
742 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
743 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
744 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
745 }
746
747 if (i < op->data.nbytes) {
748 u32 data = 0;
749 int j;
750 /* Wait for TXFIFO empty */
751 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
752 FSPI_INTR_IPTXWE, 0,
753 POLL_TOUT, true);
754 WARN_ON(ret);
755
756 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
757 memcpy(&data, buf + i + j, 4);
758 fspi_writel(f, data, base + FSPI_TFDR + j);
759 }
760 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
761 }
762}
763
764static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
765 const struct spi_mem_op *op)
766{
767 void __iomem *base = f->iobase;
768 int i, ret;
769 int len = op->data.nbytes;
770 u8 *buf = (u8 *) op->data.buf.in;
771
772 /*
773 * Default value of water mark level is 8 bytes, hence in single
774 * read request controller can read max 8 bytes of data.
775 */
776 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
777 /* Wait for RXFIFO available */
778 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
779 FSPI_INTR_IPRXWA, 0,
780 POLL_TOUT, true);
781 WARN_ON(ret);
782
783 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
784 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
785 /* move the FIFO pointer */
786 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
787 }
788
789 if (i < len) {
790 u32 tmp;
791 int size, j;
792
793 buf = op->data.buf.in + i;
794 /* Wait for RXFIFO available */
795 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
796 FSPI_INTR_IPRXWA, 0,
797 POLL_TOUT, true);
798 WARN_ON(ret);
799
800 len = op->data.nbytes - i;
801 for (j = 0; j < op->data.nbytes - i; j += 4) {
802 tmp = fspi_readl(f, base + FSPI_RFDR + j);
803 size = min(len, 4);
804 memcpy(buf + j, &tmp, size);
805 len -= size;
806 }
807 }
808
809 /* invalid the RXFIFO */
810 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
811 /* move the FIFO pointer */
812 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
813}
814
815static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
816{
817 void __iomem *base = f->iobase;
818 int seqnum = 0;
819 int err = 0;
820 u32 reg;
821
822 reg = fspi_readl(f, base + FSPI_IPRXFCR);
823 /* invalid RXFIFO first */
824 reg &= ~FSPI_IPRXFCR_DMA_EN;
825 reg = reg | FSPI_IPRXFCR_CLR;
826 fspi_writel(f, reg, base + FSPI_IPRXFCR);
827
828 init_completion(&f->c);
829
830 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
831 /*
832 * Always start the sequence at the same index since we update
833 * the LUT at each exec_op() call. And also specify the DATA
834 * length, since it's has not been specified in the LUT.
835 */
836 fspi_writel(f, op->data.nbytes |
837 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
838 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
839 base + FSPI_IPCR1);
840
841 /* Trigger the LUT now. */
842 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
843
844 /* Wait for the interrupt. */
845 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
846 err = -ETIMEDOUT;
847
848 /* Invoke IP data read, if request is of data read. */
849 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
850 nxp_fspi_read_rxfifo(f, op);
851
852 return err;
853}
854
855static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
856{
857 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
858 int err = 0;
859
860 mutex_lock(&f->lock);
861
862 /* Wait for controller being ready. */
863 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
864 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
865 WARN_ON(err);
866
867 nxp_fspi_select_mem(f, mem->spi);
868
869 nxp_fspi_prepare_lut(f, op);
870 /*
31e92cbf
KS
871 * If we have large chunks of data, we read them through the AHB bus by
872 * accessing the mapped memory. In all other cases we use IP commands
873 * to access the flash. Read via AHB bus may be corrupted due to
874 * existence of an errata and therefore discard AHB read in such cases.
a5356aef
YNG
875 */
876 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
31e92cbf
KS
877 op->data.dir == SPI_MEM_DATA_IN &&
878 !needs_ip_only(f)) {
d166a735 879 err = nxp_fspi_read_ahb(f, op);
a5356aef
YNG
880 } else {
881 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
882 nxp_fspi_fill_txfifo(f, op);
883
884 err = nxp_fspi_do_op(f, op);
885 }
886
887 /* Invalidate the data in the AHB buffer. */
888 nxp_fspi_invalid(f);
889
890 mutex_unlock(&f->lock);
891
892 return err;
893}
894
895static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
896{
897 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
898
899 if (op->data.dir == SPI_MEM_DATA_OUT) {
900 if (op->data.nbytes > f->devtype_data->txfifo)
901 op->data.nbytes = f->devtype_data->txfifo;
902 } else {
903 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
904 op->data.nbytes = f->devtype_data->ahb_buf_size;
905 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
906 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
907 }
908
31e92cbf
KS
909 /* Limit data bytes to RX FIFO in case of IP read only */
910 if (op->data.dir == SPI_MEM_DATA_IN &&
911 needs_ip_only(f) &&
912 op->data.nbytes > f->devtype_data->rxfifo)
913 op->data.nbytes = f->devtype_data->rxfifo;
914
a5356aef
YNG
915 return 0;
916}
917
918static int nxp_fspi_default_setup(struct nxp_fspi *f)
919{
920 void __iomem *base = f->iobase;
921 int ret, i;
922 u32 reg;
923
924 /* disable and unprepare clock to avoid glitch pass to controller */
925 nxp_fspi_clk_disable_unprep(f);
926
927 /* the default frequency, we will change it later if necessary. */
928 ret = clk_set_rate(f->clk, 20000000);
929 if (ret)
930 return ret;
931
932 ret = nxp_fspi_clk_prep_enable(f);
933 if (ret)
934 return ret;
935
936 /* Reset the module */
937 /* w1c register, wait unit clear */
938 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
939 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
940 WARN_ON(ret);
941
942 /* Disable the module */
943 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
944
945 /* Reset the DLL register to default value */
946 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
947 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
948
949 /* enable module */
b7461fa5
HX
950 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
951 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
952 base + FSPI_MCR0);
a5356aef
YNG
953
954 /*
955 * Disable same device enable bit and configure all slave devices
956 * independently.
957 */
958 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
959 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
960 fspi_writel(f, reg, base + FSPI_MCR2);
961
962 /* AHB configuration for access buffer 0~7. */
963 for (i = 0; i < 7; i++)
964 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
965
966 /*
967 * Set ADATSZ with the maximum AHB buffer size to improve the read
968 * performance.
969 */
970 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
971 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
972
973 /* prefetch and no start address alignment limitation */
974 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
975 base + FSPI_AHBCR);
976
977 /* AHB Read - Set lut sequence ID for all CS. */
978 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
979 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
980 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
981 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
982
983 f->selected = -1;
984
985 /* enable the interrupt */
986 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
987
988 return 0;
989}
990
991static const char *nxp_fspi_get_name(struct spi_mem *mem)
992{
993 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
994 struct device *dev = &mem->spi->dev;
995 const char *name;
996
997 // Set custom name derived from the platform_device of the controller.
998 if (of_get_available_child_count(f->dev->of_node) == 1)
999 return dev_name(f->dev);
1000
1001 name = devm_kasprintf(dev, GFP_KERNEL,
1002 "%s-%d", dev_name(f->dev),
1003 mem->spi->chip_select);
1004
1005 if (!name) {
1006 dev_err(dev, "failed to get memory for custom flash name\n");
1007 return ERR_PTR(-ENOMEM);
1008 }
1009
1010 return name;
1011}
1012
1013static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1014 .adjust_op_size = nxp_fspi_adjust_op_size,
1015 .supports_op = nxp_fspi_supports_op,
1016 .exec_op = nxp_fspi_exec_op,
1017 .get_name = nxp_fspi_get_name,
1018};
1019
1020static int nxp_fspi_probe(struct platform_device *pdev)
1021{
1022 struct spi_controller *ctlr;
1023 struct device *dev = &pdev->dev;
1024 struct device_node *np = dev->of_node;
1025 struct resource *res;
1026 struct nxp_fspi *f;
1027 int ret;
71d80563 1028 u32 reg;
a5356aef
YNG
1029
1030 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1031 if (!ctlr)
1032 return -ENOMEM;
1033
b3281794
YNG
1034 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1035 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
a5356aef
YNG
1036
1037 f = spi_controller_get_devdata(ctlr);
1038 f->dev = dev;
55ab8487 1039 f->devtype_data = device_get_match_data(dev);
a5356aef
YNG
1040 if (!f->devtype_data) {
1041 ret = -ENODEV;
1042 goto err_put_ctrl;
1043 }
1044
1045 platform_set_drvdata(pdev, f);
1046
1047 /* find the resources - configuration register address space */
55ab8487 1048 if (is_acpi_node(f->dev->fwnode))
1049 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1050 else
1051 res = platform_get_resource_byname(pdev,
1052 IORESOURCE_MEM, "fspi_base");
1053
a5356aef
YNG
1054 f->iobase = devm_ioremap_resource(dev, res);
1055 if (IS_ERR(f->iobase)) {
1056 ret = PTR_ERR(f->iobase);
1057 goto err_put_ctrl;
1058 }
1059
71d80563
RW
1060 /* Clear potential interrupts */
1061 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1062 if (reg)
1063 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1064
1065
a5356aef 1066 /* find the resources - controller memory mapped space */
55ab8487 1067 if (is_acpi_node(f->dev->fwnode))
1068 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1069 else
1070 res = platform_get_resource_byname(pdev,
1071 IORESOURCE_MEM, "fspi_mmap");
1072
1a421eba
DC
1073 if (!res) {
1074 ret = -ENODEV;
a5356aef
YNG
1075 goto err_put_ctrl;
1076 }
1077
1078 /* assign memory mapped starting address and mapped size. */
1079 f->memmap_phy = res->start;
1080 f->memmap_phy_size = resource_size(res);
1081
1082 /* find the clocks */
55ab8487 1083 if (dev_of_node(&pdev->dev)) {
1084 f->clk_en = devm_clk_get(dev, "fspi_en");
1085 if (IS_ERR(f->clk_en)) {
1086 ret = PTR_ERR(f->clk_en);
1087 goto err_put_ctrl;
1088 }
a5356aef 1089
55ab8487 1090 f->clk = devm_clk_get(dev, "fspi");
1091 if (IS_ERR(f->clk)) {
1092 ret = PTR_ERR(f->clk);
1093 goto err_put_ctrl;
1094 }
a5356aef 1095
55ab8487 1096 ret = nxp_fspi_clk_prep_enable(f);
1097 if (ret) {
1098 dev_err(dev, "can not enable the clock\n");
1099 goto err_put_ctrl;
1100 }
a5356aef
YNG
1101 }
1102
1103 /* find the irq */
1104 ret = platform_get_irq(pdev, 0);
6b8ac10e 1105 if (ret < 0)
a5356aef 1106 goto err_disable_clk;
a5356aef
YNG
1107
1108 ret = devm_request_irq(dev, ret,
1109 nxp_fspi_irq_handler, 0, pdev->name, f);
1110 if (ret) {
1111 dev_err(dev, "failed to request irq: %d\n", ret);
1112 goto err_disable_clk;
1113 }
1114
1115 mutex_init(&f->lock);
1116
1117 ctlr->bus_num = -1;
1118 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1119 ctlr->mem_ops = &nxp_fspi_mem_ops;
1120
1121 nxp_fspi_default_setup(f);
1122
1123 ctlr->dev.of_node = np;
1124
69c23dbf 1125 ret = devm_spi_register_controller(&pdev->dev, ctlr);
a5356aef
YNG
1126 if (ret)
1127 goto err_destroy_mutex;
1128
1129 return 0;
1130
1131err_destroy_mutex:
1132 mutex_destroy(&f->lock);
1133
1134err_disable_clk:
1135 nxp_fspi_clk_disable_unprep(f);
1136
1137err_put_ctrl:
1138 spi_controller_put(ctlr);
1139
1140 dev_err(dev, "NXP FSPI probe failed\n");
1141 return ret;
1142}
1143
1144static int nxp_fspi_remove(struct platform_device *pdev)
1145{
1146 struct nxp_fspi *f = platform_get_drvdata(pdev);
1147
1148 /* disable the hardware */
1149 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1150
1151 nxp_fspi_clk_disable_unprep(f);
1152
1153 mutex_destroy(&f->lock);
1154
d166a735
HX
1155 if (f->ahb_addr)
1156 iounmap(f->ahb_addr);
1157
a5356aef
YNG
1158 return 0;
1159}
1160
1161static int nxp_fspi_suspend(struct device *dev)
1162{
1163 return 0;
1164}
1165
1166static int nxp_fspi_resume(struct device *dev)
1167{
1168 struct nxp_fspi *f = dev_get_drvdata(dev);
1169
1170 nxp_fspi_default_setup(f);
1171
1172 return 0;
1173}
1174
1175static const struct of_device_id nxp_fspi_dt_ids[] = {
1176 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
941be8a7
HX
1177 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1178 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
c791e3c3 1179 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
a5356aef
YNG
1180 { /* sentinel */ }
1181};
1182MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1183
55ab8487 1184#ifdef CONFIG_ACPI
1185static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1186 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1187 {}
1188};
1189MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1190#endif
1191
a5356aef
YNG
1192static const struct dev_pm_ops nxp_fspi_pm_ops = {
1193 .suspend = nxp_fspi_suspend,
1194 .resume = nxp_fspi_resume,
1195};
1196
1197static struct platform_driver nxp_fspi_driver = {
1198 .driver = {
1199 .name = "nxp-fspi",
1200 .of_match_table = nxp_fspi_dt_ids,
55ab8487 1201 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
a5356aef
YNG
1202 .pm = &nxp_fspi_pm_ops,
1203 },
1204 .probe = nxp_fspi_probe,
1205 .remove = nxp_fspi_remove,
1206};
1207module_platform_driver(nxp_fspi_driver);
1208
1209MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1210MODULE_AUTHOR("NXP Semiconductor");
1211MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
ce6f0697 1212MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
a5356aef 1213MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
ce6f0697 1214MODULE_LICENSE("GPL v2");