]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/spi/spi-pl022.c
Linus 3.14-rc1
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-pl022.c
CommitLineData
b43d65f7 1/*
b43d65f7
LW
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
aeef9915 4 * Copyright (C) 2008-2012 ST-Ericsson AB
b43d65f7
LW
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
b43d65f7
LW
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
b43d65f7
LW
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
5a0e3ad6 38#include <linux/slab.h>
b1b6b9aa
LW
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
bcda6ff8 42#include <linux/pm_runtime.h>
f6f46de1 43#include <linux/gpio.h>
6d3952a7 44#include <linux/of_gpio.h>
4f5e1b37 45#include <linux/pinctrl/consumer.h>
b43d65f7
LW
46
47/*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52#define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55/*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60#define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63#define DRIVE_TX 0
64#define DO_NOT_DRIVE_TX 1
65
66#define DO_NOT_QUEUE_DMA 0
67#define QUEUE_DMA 1
68
69#define RX_TRANSFER 1
70#define TX_TRANSFER 2
71
72/*
73 * Macros to access SSP Registers with their offsets
74 */
75#define SSP_CR0(r) (r + 0x000)
76#define SSP_CR1(r) (r + 0x004)
77#define SSP_DR(r) (r + 0x008)
78#define SSP_SR(r) (r + 0x00C)
79#define SSP_CPSR(r) (r + 0x010)
80#define SSP_IMSC(r) (r + 0x014)
81#define SSP_RIS(r) (r + 0x018)
82#define SSP_MIS(r) (r + 0x01C)
83#define SSP_ICR(r) (r + 0x020)
84#define SSP_DMACR(r) (r + 0x024)
85#define SSP_ITCR(r) (r + 0x080)
86#define SSP_ITIP(r) (r + 0x084)
87#define SSP_ITOP(r) (r + 0x088)
88#define SSP_TDR(r) (r + 0x08C)
89
90#define SSP_PID0(r) (r + 0xFE0)
91#define SSP_PID1(r) (r + 0xFE4)
92#define SSP_PID2(r) (r + 0xFE8)
93#define SSP_PID3(r) (r + 0xFEC)
94
95#define SSP_CID0(r) (r + 0xFF0)
96#define SSP_CID1(r) (r + 0xFF4)
97#define SSP_CID2(r) (r + 0xFF8)
98#define SSP_CID3(r) (r + 0xFFC)
99
100/*
101 * SSP Control Register 0 - SSP_CR0
102 */
556f4aeb
LW
103#define SSP_CR0_MASK_DSS (0x0FUL << 0)
104#define SSP_CR0_MASK_FRF (0x3UL << 4)
b43d65f7
LW
105#define SSP_CR0_MASK_SPO (0x1UL << 6)
106#define SSP_CR0_MASK_SPH (0x1UL << 7)
107#define SSP_CR0_MASK_SCR (0xFFUL << 8)
556f4aeb
LW
108
109/*
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
112 */
113#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117
b43d65f7
LW
118/*
119 * SSP Control Register 0 - SSP_CR1
120 */
121#define SSP_CR1_MASK_LBM (0x1UL << 0)
122#define SSP_CR1_MASK_SSE (0x1UL << 1)
123#define SSP_CR1_MASK_MS (0x1UL << 2)
124#define SSP_CR1_MASK_SOD (0x1UL << 3)
b43d65f7
LW
125
126/*
556f4aeb
LW
127 * The ST version of this block adds some bits
128 * in SSP_CR1
b43d65f7 129 */
556f4aeb
LW
130#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
781c7b12
LW
135/* This one is only in the PL023 variant */
136#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
b43d65f7
LW
137
138/*
139 * SSP Status Register - SSP_SR
140 */
141#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
556f4aeb 144#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
b43d65f7
LW
145#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146
147/*
148 * SSP Clock Prescale Register - SSP_CPSR
149 */
150#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151
152/*
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 */
155#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159
160/*
161 * SSP Raw Interrupt Status Register - SSP_RIS
162 */
163/* Receive Overrun Raw Interrupt status */
164#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165/* Receive Timeout Raw Interrupt status */
166#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167/* Receive FIFO Raw Interrupt status */
168#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169/* Transmit FIFO Raw Interrupt status */
170#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171
172/*
173 * SSP Masked Interrupt Status Register - SSP_MIS
174 */
175/* Receive Overrun Masked Interrupt status */
176#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177/* Receive Timeout Masked Interrupt status */
178#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179/* Receive FIFO Masked Interrupt status */
180#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181/* Transmit FIFO Masked Interrupt status */
182#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183
184/*
185 * SSP Interrupt Clear Register - SSP_ICR
186 */
187/* Receive Overrun Raw Clear Interrupt bit */
188#define SSP_ICR_MASK_RORIC (0x1UL << 0)
189/* Receive Timeout Clear Interrupt bit */
190#define SSP_ICR_MASK_RTIC (0x1UL << 1)
191
192/*
193 * SSP DMA Control Register - SSP_DMACR
194 */
195/* Receive DMA Enable bit */
196#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197/* Transmit DMA Enable bit */
198#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199
200/*
201 * SSP Integration Test control Register - SSP_ITCR
202 */
203#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205
206/*
207 * SSP Integration Test Input Register - SSP_ITIP
208 */
209#define ITIP_MASK_SSPRXD (0x1UL << 0)
210#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212#define ITIP_MASK_RXDMAC (0x1UL << 3)
213#define ITIP_MASK_TXDMAC (0x1UL << 4)
214#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215
216/*
217 * SSP Integration Test output Register - SSP_ITOP
218 */
219#define ITOP_MASK_SSPTXD (0x1UL << 0)
220#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222#define ITOP_MASK_SSPOEn (0x1UL << 3)
223#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224#define ITOP_MASK_RORINTR (0x1UL << 5)
225#define ITOP_MASK_RTINTR (0x1UL << 6)
226#define ITOP_MASK_RXINTR (0x1UL << 7)
227#define ITOP_MASK_TXINTR (0x1UL << 8)
228#define ITOP_MASK_INTR (0x1UL << 9)
229#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233
234/*
235 * SSP Test Data Register - SSP_TDR
236 */
556f4aeb 237#define TDR_MASK_TESTDATA (0xFFFFFFFF)
b43d65f7
LW
238
239/*
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
244 */
556f4aeb
LW
245#define STATE_START ((void *) 0)
246#define STATE_RUNNING ((void *) 1)
247#define STATE_DONE ((void *) 2)
248#define STATE_ERROR ((void *) -1)
b43d65f7 249
b43d65f7
LW
250/*
251 * SSP State - Whether Enabled or Disabled
252 */
556f4aeb
LW
253#define SSP_DISABLED (0)
254#define SSP_ENABLED (1)
b43d65f7
LW
255
256/*
257 * SSP DMA State - Whether DMA Enabled or Disabled
258 */
556f4aeb
LW
259#define SSP_DMA_DISABLED (0)
260#define SSP_DMA_ENABLED (1)
b43d65f7
LW
261
262/*
263 * SSP Clock Defaults
264 */
556f4aeb
LW
265#define SSP_DEFAULT_CLKRATE 0x2
266#define SSP_DEFAULT_PRESCALE 0x40
b43d65f7
LW
267
268/*
269 * SSP Clock Parameter ranges
270 */
271#define CPSDVR_MIN 0x02
272#define CPSDVR_MAX 0xFE
273#define SCR_MIN 0x00
274#define SCR_MAX 0xFF
275
276/*
277 * SSP Interrupt related Macros
278 */
279#define DEFAULT_SSP_REG_IMSC 0x0UL
280#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282
283#define CLEAR_ALL_INTERRUPTS 0x3
284
a18c266f
MT
285#define SPI_POLLING_TIMEOUT 1000
286
b43d65f7
LW
287/*
288 * The type of reading going on on this chip
289 */
290enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
295};
296
297/**
298 * The type of writing going on on this chip
299 */
300enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
305};
306
307/**
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
556f4aeb
LW
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
781c7b12 315 * @pl023: supports a subset of the ST extensions called "PL023"
b43d65f7
LW
316 */
317struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
556f4aeb 321 bool extended_cr;
781c7b12 322 bool pl023;
06fb01fd 323 bool loopback;
b43d65f7
LW
324};
325
326/**
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
12e8b325
LW
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
b43d65f7
LW
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
14af60b6
CB
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
12e8b325
LW
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
14af60b6
CB
340 * @busy: message pump is busy
341 * @running: message pump is running
b43d65f7
LW
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
8b8d7191
VS
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
b43d65f7
LW
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
12e8b325
LW
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
f6f46de1
RS
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
b43d65f7
LW
364 */
365struct pl022 {
366 struct amba_device *adev;
367 struct vendor_data *vendor;
368 resource_size_t phybase;
369 void __iomem *virtbase;
370 struct clk *clk;
371 struct spi_master *master;
372 struct pl022_ssp_controller *master_info;
ffbbdd21 373 /* Message per-transfer pump */
b43d65f7
LW
374 struct tasklet_struct pump_transfers;
375 struct spi_message *cur_msg;
376 struct spi_transfer *cur_transfer;
377 struct chip_data *cur_chip;
8b8d7191 378 bool next_msg_cs_active;
b43d65f7
LW
379 void *tx;
380 void *tx_end;
381 void *rx;
382 void *rx_end;
383 enum ssp_reading read;
384 enum ssp_writing write;
fc05475f 385 u32 exp_fifo_level;
083be3f0
LW
386 enum ssp_rx_level_trig rx_lev_trig;
387 enum ssp_tx_level_trig tx_lev_trig;
b1b6b9aa
LW
388 /* DMA settings */
389#ifdef CONFIG_DMA_ENGINE
390 struct dma_chan *dma_rx_channel;
391 struct dma_chan *dma_tx_channel;
392 struct sg_table sgt_rx;
393 struct sg_table sgt_tx;
394 char *dummypage;
ffbbdd21 395 bool dma_running;
b1b6b9aa 396#endif
f6f46de1
RS
397 int cur_cs;
398 int *chipselects;
b43d65f7
LW
399};
400
401/**
402 * struct chip_data - To maintain runtime state of SSP for each client chip
556f4aeb
LW
403 * @cr0: Value of control register CR0 of SSP - on later ST variants this
404 * register is 32 bits wide rather than just 16
b43d65f7
LW
405 * @cr1: Value of control register CR1 of SSP
406 * @dmacr: Value of DMA control Register of SSP
407 * @cpsr: Value of Clock prescale register
408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
409 * @enable_dma: Whether to enable DMA or not
b43d65f7 410 * @read: function ptr to be used to read when doing xfer for this chip
12e8b325 411 * @write: function ptr to be used to write when doing xfer for this chip
b43d65f7
LW
412 * @cs_control: chip select callback provided by chip
413 * @xfer_type: polling/interrupt/DMA
414 *
415 * Runtime state of the SSP controller, maintained per chip,
416 * This would be set according to the current message that would be served
417 */
418struct chip_data {
556f4aeb 419 u32 cr0;
b43d65f7
LW
420 u16 cr1;
421 u16 dmacr;
422 u16 cpsr;
423 u8 n_bytes;
b1b6b9aa 424 bool enable_dma;
b43d65f7
LW
425 enum ssp_reading read;
426 enum ssp_writing write;
427 void (*cs_control) (u32 command);
428 int xfer_type;
429};
430
431/**
432 * null_cs_control - Dummy chip select function
433 * @command: select/delect the chip
434 *
435 * If no chip select function is provided by client this is used as dummy
436 * chip select
437 */
438static void null_cs_control(u32 command)
439{
440 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
441}
442
f6f46de1
RS
443static void pl022_cs_control(struct pl022 *pl022, u32 command)
444{
445 if (gpio_is_valid(pl022->cur_cs))
446 gpio_set_value(pl022->cur_cs, command);
447 else
448 pl022->cur_chip->cs_control(command);
449}
450
b43d65f7
LW
451/**
452 * giveback - current spi_message is over, schedule next message and call
453 * callback of this message. Assumes that caller already
454 * set message->status; dma and pio irqs are blocked
455 * @pl022: SSP driver private data structure
456 */
457static void giveback(struct pl022 *pl022)
458{
459 struct spi_transfer *last_transfer;
8b8d7191 460 pl022->next_msg_cs_active = false;
b43d65f7 461
8b8d7191 462 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
b43d65f7
LW
463 struct spi_transfer,
464 transfer_list);
465
466 /* Delay if requested before any change in chip select */
467 if (last_transfer->delay_usecs)
468 /*
469 * FIXME: This runs in interrupt context.
470 * Is this really smart?
471 */
472 udelay(last_transfer->delay_usecs);
473
8b8d7191 474 if (!last_transfer->cs_change) {
b43d65f7
LW
475 struct spi_message *next_msg;
476
8b8d7191
VS
477 /*
478 * cs_change was not set. We can keep the chip select
479 * enabled if there is message in the queue and it is
480 * for the same spi device.
b43d65f7
LW
481 *
482 * We cannot postpone this until pump_messages, because
483 * after calling msg->complete (below) the driver that
484 * sent the current message could be unloaded, which
485 * could invalidate the cs_control() callback...
486 */
b43d65f7 487 /* get a pointer to the next message, if any */
ffbbdd21 488 next_msg = spi_get_next_queued_message(pl022->master);
b43d65f7 489
8b8d7191
VS
490 /*
491 * see if the next and current messages point
492 * to the same spi device.
b43d65f7 493 */
8b8d7191 494 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
b43d65f7 495 next_msg = NULL;
8b8d7191 496 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
f6f46de1 497 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
8b8d7191
VS
498 else
499 pl022->next_msg_cs_active = true;
ffbbdd21 500
b43d65f7 501 }
8b8d7191 502
8b8d7191
VS
503 pl022->cur_msg = NULL;
504 pl022->cur_transfer = NULL;
505 pl022->cur_chip = NULL;
ffbbdd21 506 spi_finalize_current_message(pl022->master);
fd316941
VS
507
508 /* disable the SPI/SSP operation */
509 writew((readw(SSP_CR1(pl022->virtbase)) &
510 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
511
b43d65f7
LW
512}
513
514/**
515 * flush - flush the FIFO to reach a clean state
516 * @pl022: SSP driver private data structure
517 */
518static int flush(struct pl022 *pl022)
519{
520 unsigned long limit = loops_per_jiffy << 1;
521
522 dev_dbg(&pl022->adev->dev, "flush\n");
523 do {
524 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
525 readw(SSP_DR(pl022->virtbase));
526 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
fc05475f
LW
527
528 pl022->exp_fifo_level = 0;
529
b43d65f7
LW
530 return limit;
531}
532
533/**
534 * restore_state - Load configuration of current chip
535 * @pl022: SSP driver private data structure
536 */
537static void restore_state(struct pl022 *pl022)
538{
539 struct chip_data *chip = pl022->cur_chip;
540
556f4aeb
LW
541 if (pl022->vendor->extended_cr)
542 writel(chip->cr0, SSP_CR0(pl022->virtbase));
543 else
544 writew(chip->cr0, SSP_CR0(pl022->virtbase));
b43d65f7
LW
545 writew(chip->cr1, SSP_CR1(pl022->virtbase));
546 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
547 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
548 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
549 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
550}
551
b43d65f7
LW
552/*
553 * Default SSP Register Values
554 */
555#define DEFAULT_SSP_REG_CR0 ( \
556 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
556f4aeb
LW
557 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
558 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
559 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
560 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
561)
562
563/* ST versions have slightly different bit layout */
564#define DEFAULT_SSP_REG_CR0_ST ( \
565 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
566 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
b43d65f7 567 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
ee2b805c 568 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
556f4aeb
LW
569 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
570 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
571 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
b43d65f7
LW
572)
573
781c7b12
LW
574/* The PL023 version is slightly different again */
575#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
576 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
580)
581
b43d65f7
LW
582#define DEFAULT_SSP_REG_CR1 ( \
583 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
584 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
585 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
556f4aeb 586 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
b43d65f7
LW
587)
588
556f4aeb
LW
589/* ST versions extend this register to use all 16 bits */
590#define DEFAULT_SSP_REG_CR1_ST ( \
591 DEFAULT_SSP_REG_CR1 | \
592 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
595 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
596 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
597)
598
781c7b12
LW
599/*
600 * The PL023 variant has further differences: no loopback mode, no microwire
601 * support, and a new clock feedback delay setting.
602 */
603#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
604 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
605 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
606 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
607 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
610 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
611 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
612)
556f4aeb 613
b43d65f7 614#define DEFAULT_SSP_REG_CPSR ( \
556f4aeb 615 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
b43d65f7
LW
616)
617
618#define DEFAULT_SSP_REG_DMACR (\
619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
620 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
621)
622
781c7b12
LW
623/**
624 * load_ssp_default_config - Load default configuration for SSP
625 * @pl022: SSP driver private data structure
626 */
b43d65f7
LW
627static void load_ssp_default_config(struct pl022 *pl022)
628{
781c7b12
LW
629 if (pl022->vendor->pl023) {
630 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
631 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
632 } else if (pl022->vendor->extended_cr) {
556f4aeb
LW
633 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
634 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
635 } else {
636 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
637 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
638 }
b43d65f7
LW
639 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
640 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
641 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
642 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
643}
644
645/**
646 * This will write to TX and read from RX according to the parameters
647 * set in pl022.
648 */
649static void readwriter(struct pl022 *pl022)
650{
651
652 /*
25985edc 653 * The FIFO depth is different between primecell variants.
b43d65f7
LW
654 * I believe filling in too much in the FIFO might cause
655 * errons in 8bit wide transfers on ARM variants (just 8 words
656 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
657 *
fc05475f
LW
658 * To prevent this issue, the TX FIFO is only filled to the
659 * unused RX FIFO fill length, regardless of what the TX
660 * FIFO status flag indicates.
b43d65f7
LW
661 */
662 dev_dbg(&pl022->adev->dev,
663 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
664 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
665
666 /* Read as much as you can */
667 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
668 && (pl022->rx < pl022->rx_end)) {
669 switch (pl022->read) {
670 case READING_NULL:
671 readw(SSP_DR(pl022->virtbase));
672 break;
673 case READING_U8:
674 *(u8 *) (pl022->rx) =
675 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
676 break;
677 case READING_U16:
678 *(u16 *) (pl022->rx) =
679 (u16) readw(SSP_DR(pl022->virtbase));
680 break;
681 case READING_U32:
682 *(u32 *) (pl022->rx) =
683 readl(SSP_DR(pl022->virtbase));
684 break;
685 }
686 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 687 pl022->exp_fifo_level--;
b43d65f7
LW
688 }
689 /*
fc05475f 690 * Write as much as possible up to the RX FIFO size
b43d65f7 691 */
fc05475f 692 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
b43d65f7
LW
693 && (pl022->tx < pl022->tx_end)) {
694 switch (pl022->write) {
695 case WRITING_NULL:
696 writew(0x0, SSP_DR(pl022->virtbase));
697 break;
698 case WRITING_U8:
699 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
700 break;
701 case WRITING_U16:
702 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
703 break;
704 case WRITING_U32:
705 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
706 break;
707 }
708 pl022->tx += (pl022->cur_chip->n_bytes);
fc05475f 709 pl022->exp_fifo_level++;
b43d65f7
LW
710 /*
711 * This inner reader takes care of things appearing in the RX
712 * FIFO as we're transmitting. This will happen a lot since the
713 * clock starts running when you put things into the TX FIFO,
25985edc 714 * and then things are continuously clocked into the RX FIFO.
b43d65f7
LW
715 */
716 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
717 && (pl022->rx < pl022->rx_end)) {
718 switch (pl022->read) {
719 case READING_NULL:
720 readw(SSP_DR(pl022->virtbase));
721 break;
722 case READING_U8:
723 *(u8 *) (pl022->rx) =
724 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
725 break;
726 case READING_U16:
727 *(u16 *) (pl022->rx) =
728 (u16) readw(SSP_DR(pl022->virtbase));
729 break;
730 case READING_U32:
731 *(u32 *) (pl022->rx) =
732 readl(SSP_DR(pl022->virtbase));
733 break;
734 }
735 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 736 pl022->exp_fifo_level--;
b43d65f7
LW
737 }
738 }
739 /*
740 * When we exit here the TX FIFO should be full and the RX FIFO
741 * should be empty
742 */
743}
744
b43d65f7
LW
745/**
746 * next_transfer - Move to the Next transfer in the current spi message
747 * @pl022: SSP driver private data structure
748 *
749 * This function moves though the linked list of spi transfers in the
750 * current spi message and returns with the state of current spi
751 * message i.e whether its last transfer is done(STATE_DONE) or
752 * Next transfer is ready(STATE_RUNNING)
753 */
754static void *next_transfer(struct pl022 *pl022)
755{
756 struct spi_message *msg = pl022->cur_msg;
757 struct spi_transfer *trans = pl022->cur_transfer;
758
759 /* Move to next transfer */
760 if (trans->transfer_list.next != &msg->transfers) {
761 pl022->cur_transfer =
762 list_entry(trans->transfer_list.next,
763 struct spi_transfer, transfer_list);
764 return STATE_RUNNING;
765 }
766 return STATE_DONE;
767}
b1b6b9aa
LW
768
769/*
770 * This DMA functionality is only compiled in if we have
771 * access to the generic DMA devices/DMA engine.
772 */
773#ifdef CONFIG_DMA_ENGINE
774static void unmap_free_dma_scatter(struct pl022 *pl022)
775{
776 /* Unmap and free the SG tables */
b7298896 777 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 778 pl022->sgt_tx.nents, DMA_TO_DEVICE);
b7298896 779 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
780 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
781 sg_free_table(&pl022->sgt_rx);
782 sg_free_table(&pl022->sgt_tx);
783}
784
785static void dma_callback(void *data)
786{
787 struct pl022 *pl022 = data;
788 struct spi_message *msg = pl022->cur_msg;
789
790 BUG_ON(!pl022->sgt_rx.sgl);
791
792#ifdef VERBOSE_DEBUG
793 /*
794 * Optionally dump out buffers to inspect contents, this is
795 * good if you want to convince yourself that the loopback
796 * read/write contents are the same, when adopting to a new
797 * DMA engine.
798 */
799 {
800 struct scatterlist *sg;
801 unsigned int i;
802
803 dma_sync_sg_for_cpu(&pl022->adev->dev,
804 pl022->sgt_rx.sgl,
805 pl022->sgt_rx.nents,
806 DMA_FROM_DEVICE);
807
808 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
809 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
810 print_hex_dump(KERN_ERR, "SPI RX: ",
811 DUMP_PREFIX_OFFSET,
812 16,
813 1,
814 sg_virt(sg),
815 sg_dma_len(sg),
816 1);
817 }
818 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
819 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
820 print_hex_dump(KERN_ERR, "SPI TX: ",
821 DUMP_PREFIX_OFFSET,
822 16,
823 1,
824 sg_virt(sg),
825 sg_dma_len(sg),
826 1);
827 }
828 }
829#endif
830
831 unmap_free_dma_scatter(pl022);
832
25985edc 833 /* Update total bytes transferred */
b1b6b9aa
LW
834 msg->actual_length += pl022->cur_transfer->len;
835 if (pl022->cur_transfer->cs_change)
f6f46de1 836 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b1b6b9aa
LW
837
838 /* Move to next transfer */
839 msg->state = next_transfer(pl022);
840 tasklet_schedule(&pl022->pump_transfers);
841}
842
843static void setup_dma_scatter(struct pl022 *pl022,
844 void *buffer,
845 unsigned int length,
846 struct sg_table *sgtab)
847{
848 struct scatterlist *sg;
849 int bytesleft = length;
850 void *bufp = buffer;
851 int mapbytes;
852 int i;
853
854 if (buffer) {
855 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
856 /*
857 * If there are less bytes left than what fits
858 * in the current page (plus page alignment offset)
859 * we just feed in this, else we stuff in as much
860 * as we can.
861 */
862 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
863 mapbytes = bytesleft;
864 else
865 mapbytes = PAGE_SIZE - offset_in_page(bufp);
866 sg_set_page(sg, virt_to_page(bufp),
867 mapbytes, offset_in_page(bufp));
868 bufp += mapbytes;
869 bytesleft -= mapbytes;
870 dev_dbg(&pl022->adev->dev,
871 "set RX/TX target page @ %p, %d bytes, %d left\n",
872 bufp, mapbytes, bytesleft);
873 }
874 } else {
875 /* Map the dummy buffer on every page */
876 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
877 if (bytesleft < PAGE_SIZE)
878 mapbytes = bytesleft;
879 else
880 mapbytes = PAGE_SIZE;
881 sg_set_page(sg, virt_to_page(pl022->dummypage),
882 mapbytes, 0);
883 bytesleft -= mapbytes;
884 dev_dbg(&pl022->adev->dev,
885 "set RX/TX to dummy page %d bytes, %d left\n",
886 mapbytes, bytesleft);
887
888 }
889 }
890 BUG_ON(bytesleft);
891}
892
893/**
894 * configure_dma - configures the channels for the next transfer
895 * @pl022: SSP driver's private data structure
896 */
897static int configure_dma(struct pl022 *pl022)
898{
899 struct dma_slave_config rx_conf = {
900 .src_addr = SSP_DR(pl022->phybase),
a485df4b 901 .direction = DMA_DEV_TO_MEM,
258aea76 902 .device_fc = false,
b1b6b9aa
LW
903 };
904 struct dma_slave_config tx_conf = {
905 .dst_addr = SSP_DR(pl022->phybase),
a485df4b 906 .direction = DMA_MEM_TO_DEV,
258aea76 907 .device_fc = false,
b1b6b9aa
LW
908 };
909 unsigned int pages;
910 int ret;
082086f2 911 int rx_sglen, tx_sglen;
b1b6b9aa
LW
912 struct dma_chan *rxchan = pl022->dma_rx_channel;
913 struct dma_chan *txchan = pl022->dma_tx_channel;
914 struct dma_async_tx_descriptor *rxdesc;
915 struct dma_async_tx_descriptor *txdesc;
b1b6b9aa
LW
916
917 /* Check that the channels are available */
918 if (!rxchan || !txchan)
919 return -ENODEV;
920
083be3f0
LW
921 /*
922 * If supplied, the DMA burstsize should equal the FIFO trigger level.
923 * Notice that the DMA engine uses one-to-one mapping. Since we can
924 * not trigger on 2 elements this needs explicit mapping rather than
925 * calculation.
926 */
927 switch (pl022->rx_lev_trig) {
928 case SSP_RX_1_OR_MORE_ELEM:
929 rx_conf.src_maxburst = 1;
930 break;
931 case SSP_RX_4_OR_MORE_ELEM:
932 rx_conf.src_maxburst = 4;
933 break;
934 case SSP_RX_8_OR_MORE_ELEM:
935 rx_conf.src_maxburst = 8;
936 break;
937 case SSP_RX_16_OR_MORE_ELEM:
938 rx_conf.src_maxburst = 16;
939 break;
940 case SSP_RX_32_OR_MORE_ELEM:
941 rx_conf.src_maxburst = 32;
942 break;
943 default:
944 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
945 break;
946 }
947
948 switch (pl022->tx_lev_trig) {
949 case SSP_TX_1_OR_MORE_EMPTY_LOC:
950 tx_conf.dst_maxburst = 1;
951 break;
952 case SSP_TX_4_OR_MORE_EMPTY_LOC:
953 tx_conf.dst_maxburst = 4;
954 break;
955 case SSP_TX_8_OR_MORE_EMPTY_LOC:
956 tx_conf.dst_maxburst = 8;
957 break;
958 case SSP_TX_16_OR_MORE_EMPTY_LOC:
959 tx_conf.dst_maxburst = 16;
960 break;
961 case SSP_TX_32_OR_MORE_EMPTY_LOC:
962 tx_conf.dst_maxburst = 32;
963 break;
964 default:
965 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
966 break;
967 }
968
b1b6b9aa
LW
969 switch (pl022->read) {
970 case READING_NULL:
971 /* Use the same as for writing */
972 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
973 break;
974 case READING_U8:
975 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
976 break;
977 case READING_U16:
978 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
979 break;
980 case READING_U32:
981 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
982 break;
983 }
984
985 switch (pl022->write) {
986 case WRITING_NULL:
987 /* Use the same as for reading */
988 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
989 break;
990 case WRITING_U8:
991 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
992 break;
993 case WRITING_U16:
994 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
995 break;
996 case WRITING_U32:
bc3f67a3 997 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
b1b6b9aa
LW
998 break;
999 }
1000
1001 /* SPI pecularity: we need to read and write the same width */
1002 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1003 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1004 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1005 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1006 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1007
ecd442fd
LW
1008 dmaengine_slave_config(rxchan, &rx_conf);
1009 dmaengine_slave_config(txchan, &tx_conf);
b1b6b9aa
LW
1010
1011 /* Create sglists for the transfers */
b181565e 1012 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
b1b6b9aa
LW
1013 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1014
538a18dc 1015 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1016 if (ret)
1017 goto err_alloc_rx_sg;
1018
538a18dc 1019 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1020 if (ret)
1021 goto err_alloc_tx_sg;
1022
1023 /* Fill in the scatterlists for the RX+TX buffers */
1024 setup_dma_scatter(pl022, pl022->rx,
1025 pl022->cur_transfer->len, &pl022->sgt_rx);
1026 setup_dma_scatter(pl022, pl022->tx,
1027 pl022->cur_transfer->len, &pl022->sgt_tx);
1028
1029 /* Map DMA buffers */
082086f2 1030 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa 1031 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
082086f2 1032 if (!rx_sglen)
b1b6b9aa
LW
1033 goto err_rx_sgmap;
1034
082086f2 1035 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 1036 pl022->sgt_tx.nents, DMA_TO_DEVICE);
082086f2 1037 if (!tx_sglen)
b1b6b9aa
LW
1038 goto err_tx_sgmap;
1039
1040 /* Send both scatterlists */
16052827 1041 rxdesc = dmaengine_prep_slave_sg(rxchan,
b1b6b9aa 1042 pl022->sgt_rx.sgl,
082086f2 1043 rx_sglen,
a485df4b 1044 DMA_DEV_TO_MEM,
b1b6b9aa
LW
1045 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1046 if (!rxdesc)
1047 goto err_rxdesc;
1048
16052827 1049 txdesc = dmaengine_prep_slave_sg(txchan,
b1b6b9aa 1050 pl022->sgt_tx.sgl,
082086f2 1051 tx_sglen,
a485df4b 1052 DMA_MEM_TO_DEV,
b1b6b9aa
LW
1053 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1054 if (!txdesc)
1055 goto err_txdesc;
1056
1057 /* Put the callback on the RX transfer only, that should finish last */
1058 rxdesc->callback = dma_callback;
1059 rxdesc->callback_param = pl022;
1060
1061 /* Submit and fire RX and TX with TX last so we're ready to read! */
ecd442fd
LW
1062 dmaengine_submit(rxdesc);
1063 dmaengine_submit(txdesc);
1064 dma_async_issue_pending(rxchan);
1065 dma_async_issue_pending(txchan);
ffbbdd21 1066 pl022->dma_running = true;
b1b6b9aa
LW
1067
1068 return 0;
1069
b1b6b9aa 1070err_txdesc:
ecd442fd 1071 dmaengine_terminate_all(txchan);
b1b6b9aa 1072err_rxdesc:
ecd442fd 1073 dmaengine_terminate_all(rxchan);
b7298896 1074 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa
LW
1075 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1076err_tx_sgmap:
b7298896 1077 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
1078 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1079err_rx_sgmap:
1080 sg_free_table(&pl022->sgt_tx);
1081err_alloc_tx_sg:
1082 sg_free_table(&pl022->sgt_rx);
1083err_alloc_rx_sg:
1084 return -ENOMEM;
1085}
1086
fd4a319b 1087static int pl022_dma_probe(struct pl022 *pl022)
b1b6b9aa
LW
1088{
1089 dma_cap_mask_t mask;
1090
1091 /* Try to acquire a generic DMA engine slave channel */
1092 dma_cap_zero(mask);
1093 dma_cap_set(DMA_SLAVE, mask);
1094 /*
1095 * We need both RX and TX channels to do DMA, else do none
1096 * of them.
1097 */
1098 pl022->dma_rx_channel = dma_request_channel(mask,
1099 pl022->master_info->dma_filter,
1100 pl022->master_info->dma_rx_param);
1101 if (!pl022->dma_rx_channel) {
43c64015 1102 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
b1b6b9aa
LW
1103 goto err_no_rxchan;
1104 }
1105
1106 pl022->dma_tx_channel = dma_request_channel(mask,
1107 pl022->master_info->dma_filter,
1108 pl022->master_info->dma_tx_param);
1109 if (!pl022->dma_tx_channel) {
43c64015 1110 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
b1b6b9aa
LW
1111 goto err_no_txchan;
1112 }
1113
1114 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1115 if (!pl022->dummypage) {
43c64015 1116 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
b1b6b9aa
LW
1117 goto err_no_dummypage;
1118 }
1119
1120 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1121 dma_chan_name(pl022->dma_rx_channel),
1122 dma_chan_name(pl022->dma_tx_channel));
1123
1124 return 0;
1125
1126err_no_dummypage:
1127 dma_release_channel(pl022->dma_tx_channel);
1128err_no_txchan:
1129 dma_release_channel(pl022->dma_rx_channel);
1130 pl022->dma_rx_channel = NULL;
1131err_no_rxchan:
43c64015
VK
1132 dev_err(&pl022->adev->dev,
1133 "Failed to work in dma mode, work without dma!\n");
b1b6b9aa
LW
1134 return -ENODEV;
1135}
1136
dc715452
AB
1137static int pl022_dma_autoprobe(struct pl022 *pl022)
1138{
1139 struct device *dev = &pl022->adev->dev;
1140
1141 /* automatically configure DMA channels from platform, normally using DT */
1142 pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
1143 if (!pl022->dma_rx_channel)
1144 goto err_no_rxchan;
1145
1146 pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
1147 if (!pl022->dma_tx_channel)
1148 goto err_no_txchan;
1149
1150 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1151 if (!pl022->dummypage)
1152 goto err_no_dummypage;
1153
1154 return 0;
1155
1156err_no_dummypage:
1157 dma_release_channel(pl022->dma_tx_channel);
1158 pl022->dma_tx_channel = NULL;
1159err_no_txchan:
1160 dma_release_channel(pl022->dma_rx_channel);
1161 pl022->dma_rx_channel = NULL;
1162err_no_rxchan:
1163 return -ENODEV;
1164}
1165
b1b6b9aa
LW
1166static void terminate_dma(struct pl022 *pl022)
1167{
1168 struct dma_chan *rxchan = pl022->dma_rx_channel;
1169 struct dma_chan *txchan = pl022->dma_tx_channel;
1170
ecd442fd
LW
1171 dmaengine_terminate_all(rxchan);
1172 dmaengine_terminate_all(txchan);
b1b6b9aa 1173 unmap_free_dma_scatter(pl022);
ffbbdd21 1174 pl022->dma_running = false;
b1b6b9aa
LW
1175}
1176
1177static void pl022_dma_remove(struct pl022 *pl022)
1178{
ffbbdd21 1179 if (pl022->dma_running)
b1b6b9aa
LW
1180 terminate_dma(pl022);
1181 if (pl022->dma_tx_channel)
1182 dma_release_channel(pl022->dma_tx_channel);
1183 if (pl022->dma_rx_channel)
1184 dma_release_channel(pl022->dma_rx_channel);
1185 kfree(pl022->dummypage);
1186}
1187
1188#else
1189static inline int configure_dma(struct pl022 *pl022)
1190{
1191 return -ENODEV;
1192}
1193
dc715452
AB
1194static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1195{
1196 return 0;
1197}
1198
b1b6b9aa
LW
1199static inline int pl022_dma_probe(struct pl022 *pl022)
1200{
1201 return 0;
1202}
1203
1204static inline void pl022_dma_remove(struct pl022 *pl022)
1205{
1206}
1207#endif
1208
b43d65f7
LW
1209/**
1210 * pl022_interrupt_handler - Interrupt handler for SSP controller
1211 *
1212 * This function handles interrupts generated for an interrupt based transfer.
1213 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1214 * current message's state as STATE_ERROR and schedule the tasklet
1215 * pump_transfers which will do the postprocessing of the current message by
1216 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1217 * more data, and writes data in TX FIFO till it is not full. If we complete
1218 * the transfer we move to the next transfer and schedule the tasklet.
1219 */
1220static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1221{
1222 struct pl022 *pl022 = dev_id;
1223 struct spi_message *msg = pl022->cur_msg;
1224 u16 irq_status = 0;
1225 u16 flag = 0;
1226
1227 if (unlikely(!msg)) {
1228 dev_err(&pl022->adev->dev,
1229 "bad message state in interrupt handler");
1230 /* Never fail */
1231 return IRQ_HANDLED;
1232 }
1233
1234 /* Read the Interrupt Status Register */
1235 irq_status = readw(SSP_MIS(pl022->virtbase));
1236
1237 if (unlikely(!irq_status))
1238 return IRQ_NONE;
1239
b1b6b9aa
LW
1240 /*
1241 * This handles the FIFO interrupts, the timeout
1242 * interrupts are flatly ignored, they cannot be
1243 * trusted.
1244 */
b43d65f7
LW
1245 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1246 /*
1247 * Overrun interrupt - bail out since our Data has been
1248 * corrupted
1249 */
b1b6b9aa 1250 dev_err(&pl022->adev->dev, "FIFO overrun\n");
b43d65f7
LW
1251 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1252 dev_err(&pl022->adev->dev,
1253 "RXFIFO is full\n");
1254 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1255 dev_err(&pl022->adev->dev,
1256 "TXFIFO is full\n");
1257
1258 /*
1259 * Disable and clear interrupts, disable SSP,
1260 * mark message with bad status so it can be
1261 * retried.
1262 */
1263 writew(DISABLE_ALL_INTERRUPTS,
1264 SSP_IMSC(pl022->virtbase));
1265 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1266 writew((readw(SSP_CR1(pl022->virtbase)) &
1267 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1268 msg->state = STATE_ERROR;
1269
1270 /* Schedule message queue handler */
1271 tasklet_schedule(&pl022->pump_transfers);
1272 return IRQ_HANDLED;
1273 }
1274
1275 readwriter(pl022);
1276
1277 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1278 flag = 1;
172289df
CB
1279 /* Disable Transmit interrupt, enable receive interrupt */
1280 writew((readw(SSP_IMSC(pl022->virtbase)) &
1281 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
b43d65f7
LW
1282 SSP_IMSC(pl022->virtbase));
1283 }
1284
1285 /*
1286 * Since all transactions must write as much as shall be read,
1287 * we can conclude the entire transaction once RX is complete.
1288 * At this point, all TX will always be finished.
1289 */
1290 if (pl022->rx >= pl022->rx_end) {
1291 writew(DISABLE_ALL_INTERRUPTS,
1292 SSP_IMSC(pl022->virtbase));
1293 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1294 if (unlikely(pl022->rx > pl022->rx_end)) {
1295 dev_warn(&pl022->adev->dev, "read %u surplus "
1296 "bytes (did you request an odd "
1297 "number of bytes on a 16bit bus?)\n",
1298 (u32) (pl022->rx - pl022->rx_end));
1299 }
25985edc 1300 /* Update total bytes transferred */
b43d65f7
LW
1301 msg->actual_length += pl022->cur_transfer->len;
1302 if (pl022->cur_transfer->cs_change)
f6f46de1 1303 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b43d65f7
LW
1304 /* Move to next transfer */
1305 msg->state = next_transfer(pl022);
1306 tasklet_schedule(&pl022->pump_transfers);
1307 return IRQ_HANDLED;
1308 }
1309
1310 return IRQ_HANDLED;
1311}
1312
1313/**
1314 * This sets up the pointers to memory for the next message to
1315 * send out on the SPI bus.
1316 */
1317static int set_up_next_transfer(struct pl022 *pl022,
1318 struct spi_transfer *transfer)
1319{
1320 int residue;
1321
1322 /* Sanity check the message for this bus width */
1323 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1324 if (unlikely(residue != 0)) {
1325 dev_err(&pl022->adev->dev,
1326 "message of %u bytes to transmit but the current "
1327 "chip bus has a data width of %u bytes!\n",
1328 pl022->cur_transfer->len,
1329 pl022->cur_chip->n_bytes);
1330 dev_err(&pl022->adev->dev, "skipping this message\n");
1331 return -EIO;
1332 }
1333 pl022->tx = (void *)transfer->tx_buf;
1334 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1335 pl022->rx = (void *)transfer->rx_buf;
1336 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1337 pl022->write =
1338 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1339 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1340 return 0;
1341}
1342
1343/**
b1b6b9aa
LW
1344 * pump_transfers - Tasklet function which schedules next transfer
1345 * when running in interrupt or DMA transfer mode.
b43d65f7
LW
1346 * @data: SSP driver private data structure
1347 *
1348 */
1349static void pump_transfers(unsigned long data)
1350{
1351 struct pl022 *pl022 = (struct pl022 *) data;
1352 struct spi_message *message = NULL;
1353 struct spi_transfer *transfer = NULL;
1354 struct spi_transfer *previous = NULL;
1355
1356 /* Get current state information */
1357 message = pl022->cur_msg;
1358 transfer = pl022->cur_transfer;
1359
1360 /* Handle for abort */
1361 if (message->state == STATE_ERROR) {
1362 message->status = -EIO;
1363 giveback(pl022);
1364 return;
1365 }
1366
1367 /* Handle end of message */
1368 if (message->state == STATE_DONE) {
1369 message->status = 0;
1370 giveback(pl022);
1371 return;
1372 }
1373
1374 /* Delay if requested at end of transfer before CS change */
1375 if (message->state == STATE_RUNNING) {
1376 previous = list_entry(transfer->transfer_list.prev,
1377 struct spi_transfer,
1378 transfer_list);
1379 if (previous->delay_usecs)
1380 /*
1381 * FIXME: This runs in interrupt context.
1382 * Is this really smart?
1383 */
1384 udelay(previous->delay_usecs);
1385
8b8d7191 1386 /* Reselect chip select only if cs_change was requested */
b43d65f7 1387 if (previous->cs_change)
f6f46de1 1388 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1389 } else {
1390 /* STATE_START */
1391 message->state = STATE_RUNNING;
1392 }
1393
1394 if (set_up_next_transfer(pl022, transfer)) {
1395 message->state = STATE_ERROR;
1396 message->status = -EIO;
1397 giveback(pl022);
1398 return;
1399 }
1400 /* Flush the FIFOs and let's go! */
1401 flush(pl022);
b43d65f7 1402
b1b6b9aa
LW
1403 if (pl022->cur_chip->enable_dma) {
1404 if (configure_dma(pl022)) {
1405 dev_dbg(&pl022->adev->dev,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma;
1408 }
b43d65f7
LW
1409 return;
1410 }
b43d65f7 1411
b1b6b9aa 1412err_config_dma:
172289df
CB
1413 /* enable all interrupts except RX */
1414 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1415}
1416
b1b6b9aa 1417static void do_interrupt_dma_transfer(struct pl022 *pl022)
b43d65f7 1418{
172289df
CB
1419 /*
1420 * Default is to enable all interrupts except RX -
1421 * this will be enabled once TX is complete
1422 */
1423 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
b43d65f7 1424
8b8d7191
VS
1425 /* Enable target chip, if not already active */
1426 if (!pl022->next_msg_cs_active)
f6f46de1 1427 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7 1428
b43d65f7
LW
1429 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1430 /* Error path */
1431 pl022->cur_msg->state = STATE_ERROR;
1432 pl022->cur_msg->status = -EIO;
1433 giveback(pl022);
1434 return;
1435 }
b1b6b9aa
LW
1436 /* If we're using DMA, set up DMA here */
1437 if (pl022->cur_chip->enable_dma) {
1438 /* Configure DMA transfer */
1439 if (configure_dma(pl022)) {
1440 dev_dbg(&pl022->adev->dev,
1441 "configuration of DMA failed, fall back to interrupt mode\n");
1442 goto err_config_dma;
1443 }
1444 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1445 irqflags = DISABLE_ALL_INTERRUPTS;
1446 }
1447err_config_dma:
b43d65f7
LW
1448 /* Enable SSP, turn on interrupts */
1449 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1450 SSP_CR1(pl022->virtbase));
b1b6b9aa 1451 writew(irqflags, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1452}
1453
b1b6b9aa 1454static void do_polling_transfer(struct pl022 *pl022)
b43d65f7 1455{
b43d65f7
LW
1456 struct spi_message *message = NULL;
1457 struct spi_transfer *transfer = NULL;
1458 struct spi_transfer *previous = NULL;
1459 struct chip_data *chip;
a18c266f 1460 unsigned long time, timeout;
b43d65f7
LW
1461
1462 chip = pl022->cur_chip;
1463 message = pl022->cur_msg;
1464
1465 while (message->state != STATE_DONE) {
1466 /* Handle for abort */
1467 if (message->state == STATE_ERROR)
1468 break;
1469 transfer = pl022->cur_transfer;
1470
1471 /* Delay if requested at end of transfer */
1472 if (message->state == STATE_RUNNING) {
1473 previous =
1474 list_entry(transfer->transfer_list.prev,
1475 struct spi_transfer, transfer_list);
1476 if (previous->delay_usecs)
1477 udelay(previous->delay_usecs);
1478 if (previous->cs_change)
f6f46de1 1479 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1480 } else {
1481 /* STATE_START */
1482 message->state = STATE_RUNNING;
8b8d7191 1483 if (!pl022->next_msg_cs_active)
f6f46de1 1484 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1485 }
1486
1487 /* Configuration Changing Per Transfer */
1488 if (set_up_next_transfer(pl022, transfer)) {
1489 /* Error path */
1490 message->state = STATE_ERROR;
1491 break;
1492 }
1493 /* Flush FIFOs and enable SSP */
1494 flush(pl022);
1495 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1496 SSP_CR1(pl022->virtbase));
1497
556f4aeb 1498 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
a18c266f
MT
1499
1500 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1501 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1502 time = jiffies;
b43d65f7 1503 readwriter(pl022);
a18c266f
MT
1504 if (time_after(time, timeout)) {
1505 dev_warn(&pl022->adev->dev,
1506 "%s: timeout!\n", __func__);
1507 message->state = STATE_ERROR;
1508 goto out;
1509 }
521999bd 1510 cpu_relax();
a18c266f 1511 }
b43d65f7 1512
25985edc 1513 /* Update total byte transferred */
b43d65f7
LW
1514 message->actual_length += pl022->cur_transfer->len;
1515 if (pl022->cur_transfer->cs_change)
f6f46de1 1516 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b43d65f7
LW
1517 /* Move to next transfer */
1518 message->state = next_transfer(pl022);
1519 }
a18c266f 1520out:
b43d65f7
LW
1521 /* Handle end of message */
1522 if (message->state == STATE_DONE)
1523 message->status = 0;
1524 else
1525 message->status = -EIO;
1526
1527 giveback(pl022);
1528 return;
1529}
1530
ffbbdd21
LW
1531static int pl022_transfer_one_message(struct spi_master *master,
1532 struct spi_message *msg)
b43d65f7 1533{
ffbbdd21 1534 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7
LW
1535
1536 /* Initial message state */
ffbbdd21
LW
1537 pl022->cur_msg = msg;
1538 msg->state = STATE_START;
1539
1540 pl022->cur_transfer = list_entry(msg->transfers.next,
1541 struct spi_transfer, transfer_list);
b43d65f7
LW
1542
1543 /* Setup the SPI using the per chip configuration */
ffbbdd21 1544 pl022->cur_chip = spi_get_ctldata(msg->spi);
f6f46de1 1545 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
d4b6af2e 1546
b43d65f7
LW
1547 restore_state(pl022);
1548 flush(pl022);
1549
1550 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1551 do_polling_transfer(pl022);
b43d65f7 1552 else
b1b6b9aa 1553 do_interrupt_dma_transfer(pl022);
b43d65f7
LW
1554
1555 return 0;
1556}
1557
ffbbdd21 1558static int pl022_unprepare_transfer_hardware(struct spi_master *master)
b43d65f7 1559{
ffbbdd21 1560 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7 1561
ffbbdd21
LW
1562 /* nothing more to do - disable spi/ssp and power off */
1563 writew((readw(SSP_CR1(pl022->virtbase)) &
1564 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
b43d65f7 1565
b43d65f7
LW
1566 return 0;
1567}
1568
1569static int verify_controller_parameters(struct pl022 *pl022,
f9d629c7 1570 struct pl022_config_chip const *chip_info)
b43d65f7 1571{
b43d65f7
LW
1572 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1573 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
5a1c98be 1574 dev_err(&pl022->adev->dev,
b43d65f7
LW
1575 "interface is configured incorrectly\n");
1576 return -EINVAL;
1577 }
1578 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1579 (!pl022->vendor->unidir)) {
5a1c98be 1580 dev_err(&pl022->adev->dev,
b43d65f7
LW
1581 "unidirectional mode not supported in this "
1582 "hardware version\n");
1583 return -EINVAL;
1584 }
1585 if ((chip_info->hierarchy != SSP_MASTER)
1586 && (chip_info->hierarchy != SSP_SLAVE)) {
5a1c98be 1587 dev_err(&pl022->adev->dev,
b43d65f7
LW
1588 "hierarchy is configured incorrectly\n");
1589 return -EINVAL;
1590 }
b43d65f7
LW
1591 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1592 && (chip_info->com_mode != DMA_TRANSFER)
1593 && (chip_info->com_mode != POLLING_TRANSFER)) {
5a1c98be 1594 dev_err(&pl022->adev->dev,
b43d65f7
LW
1595 "Communication mode is configured incorrectly\n");
1596 return -EINVAL;
1597 }
78b2b911
LW
1598 switch (chip_info->rx_lev_trig) {
1599 case SSP_RX_1_OR_MORE_ELEM:
1600 case SSP_RX_4_OR_MORE_ELEM:
1601 case SSP_RX_8_OR_MORE_ELEM:
1602 /* These are always OK, all variants can handle this */
1603 break;
1604 case SSP_RX_16_OR_MORE_ELEM:
1605 if (pl022->vendor->fifodepth < 16) {
1606 dev_err(&pl022->adev->dev,
1607 "RX FIFO Trigger Level is configured incorrectly\n");
1608 return -EINVAL;
1609 }
1610 break;
1611 case SSP_RX_32_OR_MORE_ELEM:
1612 if (pl022->vendor->fifodepth < 32) {
1613 dev_err(&pl022->adev->dev,
1614 "RX FIFO Trigger Level is configured incorrectly\n");
1615 return -EINVAL;
1616 }
1617 break;
1618 default:
5a1c98be 1619 dev_err(&pl022->adev->dev,
b43d65f7
LW
1620 "RX FIFO Trigger Level is configured incorrectly\n");
1621 return -EINVAL;
1622 }
78b2b911
LW
1623 switch (chip_info->tx_lev_trig) {
1624 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1625 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1626 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1627 /* These are always OK, all variants can handle this */
1628 break;
1629 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1630 if (pl022->vendor->fifodepth < 16) {
1631 dev_err(&pl022->adev->dev,
1632 "TX FIFO Trigger Level is configured incorrectly\n");
1633 return -EINVAL;
1634 }
1635 break;
1636 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1637 if (pl022->vendor->fifodepth < 32) {
1638 dev_err(&pl022->adev->dev,
1639 "TX FIFO Trigger Level is configured incorrectly\n");
1640 return -EINVAL;
1641 }
1642 break;
1643 default:
5a1c98be 1644 dev_err(&pl022->adev->dev,
b43d65f7
LW
1645 "TX FIFO Trigger Level is configured incorrectly\n");
1646 return -EINVAL;
1647 }
b43d65f7
LW
1648 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1649 if ((chip_info->ctrl_len < SSP_BITS_4)
1650 || (chip_info->ctrl_len > SSP_BITS_32)) {
5a1c98be 1651 dev_err(&pl022->adev->dev,
b43d65f7
LW
1652 "CTRL LEN is configured incorrectly\n");
1653 return -EINVAL;
1654 }
1655 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1656 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
5a1c98be 1657 dev_err(&pl022->adev->dev,
b43d65f7
LW
1658 "Wait State is configured incorrectly\n");
1659 return -EINVAL;
1660 }
556f4aeb
LW
1661 /* Half duplex is only available in the ST Micro version */
1662 if (pl022->vendor->extended_cr) {
1663 if ((chip_info->duplex !=
1664 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1665 && (chip_info->duplex !=
4a4fd471 1666 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
5a1c98be 1667 dev_err(&pl022->adev->dev,
556f4aeb
LW
1668 "Microwire duplex mode is configured incorrectly\n");
1669 return -EINVAL;
4a4fd471 1670 }
556f4aeb
LW
1671 } else {
1672 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
5a1c98be 1673 dev_err(&pl022->adev->dev,
556f4aeb
LW
1674 "Microwire half duplex mode requested,"
1675 " but this is only available in the"
1676 " ST version of PL022\n");
b43d65f7
LW
1677 return -EINVAL;
1678 }
1679 }
b43d65f7
LW
1680 return 0;
1681}
1682
0379b2a3
VK
1683static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1684{
1685 return rate / (cpsdvsr * (1 + scr));
1686}
1687
1688static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1689 ssp_clock_params * clk_freq)
b43d65f7
LW
1690{
1691 /* Lets calculate the frequency parameters */
0379b2a3
VK
1692 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1693 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1694 best_scr = 0, tmp, found = 0;
b43d65f7
LW
1695
1696 rate = clk_get_rate(pl022->clk);
1697 /* cpsdvscr = 2 & scr 0 */
0379b2a3 1698 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
b43d65f7 1699 /* cpsdvsr = 254 & scr = 255 */
0379b2a3
VK
1700 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1701
ea505bc9
VK
1702 if (freq > max_tclk)
1703 dev_warn(&pl022->adev->dev,
1704 "Max speed that can be programmed is %d Hz, you requested %d\n",
1705 max_tclk, freq);
1706
1707 if (freq < min_tclk) {
b43d65f7 1708 dev_err(&pl022->adev->dev,
ea505bc9
VK
1709 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1710 freq, min_tclk);
b43d65f7
LW
1711 return -EINVAL;
1712 }
0379b2a3
VK
1713
1714 /*
1715 * best_freq will give closest possible available rate (<= requested
1716 * freq) for all values of scr & cpsdvsr.
1717 */
1718 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1719 while (scr <= SCR_MAX) {
1720 tmp = spi_rate(rate, cpsdvsr, scr);
1721
5eb806a3
VK
1722 if (tmp > freq) {
1723 /* we need lower freq */
0379b2a3 1724 scr++;
5eb806a3
VK
1725 continue;
1726 }
1727
0379b2a3 1728 /*
5eb806a3
VK
1729 * If found exact value, mark found and break.
1730 * If found more closer value, update and break.
0379b2a3 1731 */
5eb806a3 1732 if (tmp > best_freq) {
0379b2a3
VK
1733 best_freq = tmp;
1734 best_cpsdvsr = cpsdvsr;
1735 best_scr = scr;
1736
1737 if (tmp == freq)
5eb806a3 1738 found = 1;
0379b2a3 1739 }
5eb806a3
VK
1740 /*
1741 * increased scr will give lower rates, which are not
1742 * required
1743 */
1744 break;
0379b2a3
VK
1745 }
1746 cpsdvsr += 2;
1747 scr = SCR_MIN;
1748 }
1749
5eb806a3
VK
1750 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1751 freq);
1752
0379b2a3
VK
1753 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1754 clk_freq->scr = (u8) (best_scr & 0xFF);
1755 dev_dbg(&pl022->adev->dev,
1756 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1757 freq, best_freq);
1758 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1759 clk_freq->cpsdvsr, clk_freq->scr);
1760
b43d65f7
LW
1761 return 0;
1762}
1763
f9d629c7
LW
1764/*
1765 * A piece of default chip info unless the platform
1766 * supplies it.
1767 */
1768static const struct pl022_config_chip pl022_default_chip_info = {
1769 .com_mode = POLLING_TRANSFER,
1770 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1771 .hierarchy = SSP_SLAVE,
1772 .slave_tx_disable = DO_NOT_DRIVE_TX,
1773 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1774 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1775 .ctrl_len = SSP_BITS_8,
1776 .wait_state = SSP_MWIRE_WAIT_ZERO,
1777 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1778 .cs_control = null_cs_control,
1779};
1780
b43d65f7
LW
1781/**
1782 * pl022_setup - setup function registered to SPI master framework
1783 * @spi: spi device which is requesting setup
1784 *
1785 * This function is registered to the SPI framework for this SPI master
1786 * controller. If it is the first time when setup is called by this device,
1787 * this function will initialize the runtime state for this chip and save
1788 * the same in the device structure. Else it will update the runtime info
1789 * with the updated chip info. Nothing is really being written to the
1790 * controller hardware here, that is not done until the actual transfer
1791 * commence.
1792 */
b43d65f7
LW
1793static int pl022_setup(struct spi_device *spi)
1794{
f9d629c7 1795 struct pl022_config_chip const *chip_info;
6d3952a7 1796 struct pl022_config_chip chip_info_dt;
b43d65f7 1797 struct chip_data *chip;
c4a47843 1798 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
b43d65f7
LW
1799 int status = 0;
1800 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
bde435a9
KW
1801 unsigned int bits = spi->bits_per_word;
1802 u32 tmp;
6d3952a7 1803 struct device_node *np = spi->dev.of_node;
b43d65f7
LW
1804
1805 if (!spi->max_speed_hz)
1806 return -EINVAL;
1807
1808 /* Get controller_state if one is supplied */
1809 chip = spi_get_ctldata(spi);
1810
1811 if (chip == NULL) {
1812 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1813 if (!chip) {
1814 dev_err(&spi->dev,
1815 "cannot allocate controller state\n");
1816 return -ENOMEM;
1817 }
1818 dev_dbg(&spi->dev,
1819 "allocated memory for controller's runtime state\n");
1820 }
1821
1822 /* Get controller data if one is supplied */
1823 chip_info = spi->controller_data;
1824
1825 if (chip_info == NULL) {
6d3952a7
RS
1826 if (np) {
1827 chip_info_dt = pl022_default_chip_info;
1828
1829 chip_info_dt.hierarchy = SSP_MASTER;
1830 of_property_read_u32(np, "pl022,interface",
1831 &chip_info_dt.iface);
1832 of_property_read_u32(np, "pl022,com-mode",
1833 &chip_info_dt.com_mode);
1834 of_property_read_u32(np, "pl022,rx-level-trig",
1835 &chip_info_dt.rx_lev_trig);
1836 of_property_read_u32(np, "pl022,tx-level-trig",
1837 &chip_info_dt.tx_lev_trig);
1838 of_property_read_u32(np, "pl022,ctrl-len",
1839 &chip_info_dt.ctrl_len);
1840 of_property_read_u32(np, "pl022,wait-state",
1841 &chip_info_dt.wait_state);
1842 of_property_read_u32(np, "pl022,duplex",
1843 &chip_info_dt.duplex);
1844
1845 chip_info = &chip_info_dt;
1846 } else {
1847 chip_info = &pl022_default_chip_info;
1848 /* spi_board_info.controller_data not is supplied */
1849 dev_dbg(&spi->dev,
1850 "using default controller_data settings\n");
1851 }
f9d629c7 1852 } else
b43d65f7
LW
1853 dev_dbg(&spi->dev,
1854 "using user supplied controller_data settings\n");
b43d65f7
LW
1855
1856 /*
1857 * We can override with custom divisors, else we use the board
1858 * frequency setting
1859 */
1860 if ((0 == chip_info->clk_freq.cpsdvsr)
1861 && (0 == chip_info->clk_freq.scr)) {
1862 status = calculate_effective_freq(pl022,
1863 spi->max_speed_hz,
f9d629c7 1864 &clk_freq);
b43d65f7
LW
1865 if (status < 0)
1866 goto err_config_params;
1867 } else {
f9d629c7
LW
1868 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1869 if ((clk_freq.cpsdvsr % 2) != 0)
1870 clk_freq.cpsdvsr =
1871 clk_freq.cpsdvsr - 1;
b43d65f7 1872 }
f9d629c7
LW
1873 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1874 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
e3f88ae9 1875 status = -EINVAL;
f9d629c7
LW
1876 dev_err(&spi->dev,
1877 "cpsdvsr is configured incorrectly\n");
1878 goto err_config_params;
1879 }
1880
b43d65f7
LW
1881 status = verify_controller_parameters(pl022, chip_info);
1882 if (status) {
1883 dev_err(&spi->dev, "controller data is incorrect");
1884 goto err_config_params;
1885 }
f9d629c7 1886
083be3f0
LW
1887 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1888 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1889
b43d65f7
LW
1890 /* Now set controller state based on controller data */
1891 chip->xfer_type = chip_info->com_mode;
f9d629c7
LW
1892 if (!chip_info->cs_control) {
1893 chip->cs_control = null_cs_control;
f6f46de1
RS
1894 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1895 dev_warn(&spi->dev,
1896 "invalid chip select\n");
f9d629c7
LW
1897 } else
1898 chip->cs_control = chip_info->cs_control;
b43d65f7 1899
eb798c64
VS
1900 /* Check bits per word with vendor specific range */
1901 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
bde435a9 1902 status = -ENOTSUPP;
eb798c64
VS
1903 dev_err(&spi->dev, "illegal data size for this controller!\n");
1904 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1905 pl022->vendor->max_bpw);
bde435a9
KW
1906 goto err_config_params;
1907 } else if (bits <= 8) {
1908 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
b43d65f7
LW
1909 chip->n_bytes = 1;
1910 chip->read = READING_U8;
1911 chip->write = WRITING_U8;
bde435a9 1912 } else if (bits <= 16) {
b43d65f7
LW
1913 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1914 chip->n_bytes = 2;
1915 chip->read = READING_U16;
1916 chip->write = WRITING_U16;
1917 } else {
eb798c64
VS
1918 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1919 chip->n_bytes = 4;
1920 chip->read = READING_U32;
1921 chip->write = WRITING_U32;
b43d65f7
LW
1922 }
1923
1924 /* Now Initialize all register settings required for this chip */
1925 chip->cr0 = 0;
1926 chip->cr1 = 0;
1927 chip->dmacr = 0;
1928 chip->cpsr = 0;
1929 if ((chip_info->com_mode == DMA_TRANSFER)
1930 && ((pl022->master_info)->enable_dma)) {
b1b6b9aa 1931 chip->enable_dma = true;
b43d65f7 1932 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
b43d65f7
LW
1933 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1934 SSP_DMACR_MASK_RXDMAE, 0);
1935 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1936 SSP_DMACR_MASK_TXDMAE, 1);
1937 } else {
b1b6b9aa 1938 chip->enable_dma = false;
b43d65f7
LW
1939 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1940 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1941 SSP_DMACR_MASK_RXDMAE, 0);
1942 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1943 SSP_DMACR_MASK_TXDMAE, 1);
1944 }
1945
f9d629c7 1946 chip->cpsr = clk_freq.cpsdvsr;
b43d65f7 1947
556f4aeb
LW
1948 /* Special setup for the ST micro extended control registers */
1949 if (pl022->vendor->extended_cr) {
bde435a9
KW
1950 u32 etx;
1951
781c7b12
LW
1952 if (pl022->vendor->pl023) {
1953 /* These bits are only in the PL023 */
1954 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1955 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1956 } else {
1957 /* These bits are in the PL022 but not PL023 */
1958 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1959 SSP_CR0_MASK_HALFDUP_ST, 5);
1960 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1961 SSP_CR0_MASK_CSS_ST, 16);
1962 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1963 SSP_CR0_MASK_FRF_ST, 21);
1964 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1965 SSP_CR1_MASK_MWAIT_ST, 6);
1966 }
bde435a9 1967 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb 1968 SSP_CR0_MASK_DSS_ST, 0);
bde435a9
KW
1969
1970 if (spi->mode & SPI_LSB_FIRST) {
1971 tmp = SSP_RX_LSB;
1972 etx = SSP_TX_LSB;
1973 } else {
1974 tmp = SSP_RX_MSB;
1975 etx = SSP_TX_MSB;
1976 }
1977 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1978 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
556f4aeb
LW
1979 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1980 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1981 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1982 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1983 } else {
bde435a9 1984 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb
LW
1985 SSP_CR0_MASK_DSS, 0);
1986 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1987 SSP_CR0_MASK_FRF, 4);
1988 }
bde435a9 1989
556f4aeb 1990 /* Stuff that is common for all versions */
bde435a9
KW
1991 if (spi->mode & SPI_CPOL)
1992 tmp = SSP_CLK_POL_IDLE_HIGH;
1993 else
1994 tmp = SSP_CLK_POL_IDLE_LOW;
1995 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1996
1997 if (spi->mode & SPI_CPHA)
1998 tmp = SSP_CLK_SECOND_EDGE;
1999 else
2000 tmp = SSP_CLK_FIRST_EDGE;
2001 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2002
f9d629c7 2003 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
781c7b12 2004 /* Loopback is available on all versions except PL023 */
06fb01fd 2005 if (pl022->vendor->loopback) {
bde435a9
KW
2006 if (spi->mode & SPI_LOOP)
2007 tmp = LOOPBACK_ENABLED;
2008 else
2009 tmp = LOOPBACK_DISABLED;
2010 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2011 }
b43d65f7
LW
2012 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2013 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
f1e45f86
VK
2014 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2015 3);
b43d65f7
LW
2016
2017 /* Save controller_state */
2018 spi_set_ctldata(spi, chip);
2019 return status;
2020 err_config_params:
bde435a9 2021 spi_set_ctldata(spi, NULL);
b43d65f7
LW
2022 kfree(chip);
2023 return status;
2024}
2025
2026/**
2027 * pl022_cleanup - cleanup function registered to SPI master framework
2028 * @spi: spi device which is requesting cleanup
2029 *
2030 * This function is registered to the SPI framework for this SPI master
2031 * controller. It will free the runtime state of chip.
2032 */
2033static void pl022_cleanup(struct spi_device *spi)
2034{
2035 struct chip_data *chip = spi_get_ctldata(spi);
2036
2037 spi_set_ctldata(spi, NULL);
2038 kfree(chip);
2039}
2040
39a6ac11
RS
2041static struct pl022_ssp_controller *
2042pl022_platform_data_dt_get(struct device *dev)
2043{
2044 struct device_node *np = dev->of_node;
2045 struct pl022_ssp_controller *pd;
2046 u32 tmp;
2047
2048 if (!np) {
2049 dev_err(dev, "no dt node defined\n");
2050 return NULL;
2051 }
2052
2053 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2054 if (!pd) {
2055 dev_err(dev, "cannot allocate platform data memory\n");
2056 return NULL;
2057 }
2058
2059 pd->bus_id = -1;
dbd897b9 2060 pd->enable_dma = 1;
39a6ac11
RS
2061 of_property_read_u32(np, "num-cs", &tmp);
2062 pd->num_chipselect = tmp;
2063 of_property_read_u32(np, "pl022,autosuspend-delay",
2064 &pd->autosuspend_delay);
2065 pd->rt = of_property_read_bool(np, "pl022,rt");
2066
2067 return pd;
2068}
2069
fd4a319b 2070static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
b43d65f7
LW
2071{
2072 struct device *dev = &adev->dev;
8074cf06
JH
2073 struct pl022_ssp_controller *platform_info =
2074 dev_get_platdata(&adev->dev);
b43d65f7
LW
2075 struct spi_master *master;
2076 struct pl022 *pl022 = NULL; /*Data for this driver */
6d3952a7
RS
2077 struct device_node *np = adev->dev.of_node;
2078 int status = 0, i, num_cs;
b43d65f7
LW
2079
2080 dev_info(&adev->dev,
2081 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
39a6ac11
RS
2082 if (!platform_info && IS_ENABLED(CONFIG_OF))
2083 platform_info = pl022_platform_data_dt_get(dev);
2084
2085 if (!platform_info) {
2086 dev_err(dev, "probe: no platform data defined\n");
aeef9915 2087 return -ENODEV;
b43d65f7
LW
2088 }
2089
6d3952a7
RS
2090 if (platform_info->num_chipselect) {
2091 num_cs = platform_info->num_chipselect;
6d3952a7 2092 } else {
39a6ac11 2093 dev_err(dev, "probe: no chip select defined\n");
aeef9915 2094 return -ENODEV;
6d3952a7
RS
2095 }
2096
b43d65f7 2097 /* Allocate master with space for data */
b4b84826 2098 master = spi_alloc_master(dev, sizeof(struct pl022));
b43d65f7
LW
2099 if (master == NULL) {
2100 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
aeef9915 2101 return -ENOMEM;
b43d65f7
LW
2102 }
2103
2104 pl022 = spi_master_get_devdata(master);
2105 pl022->master = master;
2106 pl022->master_info = platform_info;
2107 pl022->adev = adev;
2108 pl022->vendor = id->data;
b4b84826
RS
2109 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2110 GFP_KERNEL);
b43d65f7 2111
f1c9cf07 2112 pinctrl_pm_select_default_state(dev);
4f5e1b37 2113
b43d65f7
LW
2114 /*
2115 * Bus Number Which has been Assigned to this SSP controller
2116 * on this board
2117 */
2118 master->bus_num = platform_info->bus_id;
6d3952a7 2119 master->num_chipselect = num_cs;
b43d65f7
LW
2120 master->cleanup = pl022_cleanup;
2121 master->setup = pl022_setup;
29b6e906 2122 master->auto_runtime_pm = true;
ffbbdd21
LW
2123 master->transfer_one_message = pl022_transfer_one_message;
2124 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2125 master->rt = platform_info->rt;
6d3952a7 2126 master->dev.of_node = dev->of_node;
b43d65f7 2127
6d3952a7
RS
2128 if (platform_info->num_chipselect && platform_info->chipselects) {
2129 for (i = 0; i < num_cs; i++)
f6f46de1 2130 pl022->chipselects[i] = platform_info->chipselects[i];
6d3952a7
RS
2131 } else if (IS_ENABLED(CONFIG_OF)) {
2132 for (i = 0; i < num_cs; i++) {
2133 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2134
2135 if (cs_gpio == -EPROBE_DEFER) {
2136 status = -EPROBE_DEFER;
2137 goto err_no_gpio;
2138 }
2139
2140 pl022->chipselects[i] = cs_gpio;
2141
2142 if (gpio_is_valid(cs_gpio)) {
aeef9915 2143 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
6d3952a7
RS
2144 dev_err(&adev->dev,
2145 "could not request %d gpio\n",
2146 cs_gpio);
2147 else if (gpio_direction_output(cs_gpio, 1))
2148 dev_err(&adev->dev,
2149 "could set gpio %d as output\n",
2150 cs_gpio);
2151 }
2152 }
2153 }
f6f46de1 2154
bde435a9
KW
2155 /*
2156 * Supports mode 0-3, loopback, and active low CS. Transfers are
2157 * always MS bit first on the original pl022.
2158 */
2159 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2160 if (pl022->vendor->extended_cr)
2161 master->mode_bits |= SPI_LSB_FIRST;
2162
b43d65f7
LW
2163 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2164
2165 status = amba_request_regions(adev, NULL);
2166 if (status)
2167 goto err_no_ioregion;
2168
b1b6b9aa 2169 pl022->phybase = adev->res.start;
aeef9915
LW
2170 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2171 resource_size(&adev->res));
b43d65f7
LW
2172 if (pl022->virtbase == NULL) {
2173 status = -ENOMEM;
2174 goto err_no_ioremap;
2175 }
2c067509
JH
2176 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2177 &adev->res.start, pl022->virtbase);
b43d65f7 2178
aeef9915 2179 pl022->clk = devm_clk_get(&adev->dev, NULL);
b43d65f7
LW
2180 if (IS_ERR(pl022->clk)) {
2181 status = PTR_ERR(pl022->clk);
2182 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2183 goto err_no_clk;
2184 }
7ff6bcf0
RK
2185
2186 status = clk_prepare(pl022->clk);
2187 if (status) {
2188 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2189 goto err_clk_prep;
2190 }
2191
71e63e74
UH
2192 status = clk_enable(pl022->clk);
2193 if (status) {
2194 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2195 goto err_no_clk_en;
2196 }
2197
ffbbdd21
LW
2198 /* Initialize transfer pump */
2199 tasklet_init(&pl022->pump_transfers, pump_transfers,
2200 (unsigned long)pl022);
2201
b43d65f7 2202 /* Disable SSP */
b43d65f7
LW
2203 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2204 SSP_CR1(pl022->virtbase));
2205 load_ssp_default_config(pl022);
b43d65f7 2206
aeef9915
LW
2207 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2208 0, "pl022", pl022);
b43d65f7
LW
2209 if (status < 0) {
2210 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2211 goto err_no_irq;
2212 }
b1b6b9aa 2213
dc715452
AB
2214 /* Get DMA channels, try autoconfiguration first */
2215 status = pl022_dma_autoprobe(pl022);
2216
2217 /* If that failed, use channels from platform_info */
2218 if (status == 0)
2219 platform_info->enable_dma = 1;
2220 else if (platform_info->enable_dma) {
b1b6b9aa
LW
2221 status = pl022_dma_probe(pl022);
2222 if (status != 0)
43c64015 2223 platform_info->enable_dma = 0;
b1b6b9aa
LW
2224 }
2225
b43d65f7
LW
2226 /* Register with the SPI framework */
2227 amba_set_drvdata(adev, pl022);
35794a77 2228 status = devm_spi_register_master(&adev->dev, master);
b43d65f7
LW
2229 if (status != 0) {
2230 dev_err(&adev->dev,
2231 "probe - problem registering spi master\n");
2232 goto err_spi_register;
2233 }
25985edc 2234 dev_dbg(dev, "probe succeeded\n");
92b97f0a
RK
2235
2236 /* let runtime pm put suspend */
53e4acea
CB
2237 if (platform_info->autosuspend_delay > 0) {
2238 dev_info(&adev->dev,
2239 "will use autosuspend for runtime pm, delay %dms\n",
2240 platform_info->autosuspend_delay);
2241 pm_runtime_set_autosuspend_delay(dev,
2242 platform_info->autosuspend_delay);
2243 pm_runtime_use_autosuspend(dev);
53e4acea 2244 }
0df34994
UH
2245 pm_runtime_put(dev);
2246
b43d65f7
LW
2247 return 0;
2248
2249 err_spi_register:
3e3ea716
VK
2250 if (platform_info->enable_dma)
2251 pl022_dma_remove(pl022);
b43d65f7 2252 err_no_irq:
71e63e74
UH
2253 clk_disable(pl022->clk);
2254 err_no_clk_en:
7ff6bcf0
RK
2255 clk_unprepare(pl022->clk);
2256 err_clk_prep:
b43d65f7 2257 err_no_clk:
b43d65f7
LW
2258 err_no_ioremap:
2259 amba_release_regions(adev);
2260 err_no_ioregion:
6d3952a7 2261 err_no_gpio:
b43d65f7 2262 spi_master_put(master);
b43d65f7
LW
2263 return status;
2264}
2265
fd4a319b 2266static int
b43d65f7
LW
2267pl022_remove(struct amba_device *adev)
2268{
2269 struct pl022 *pl022 = amba_get_drvdata(adev);
50658b66 2270
b43d65f7
LW
2271 if (!pl022)
2272 return 0;
2273
92b97f0a
RK
2274 /*
2275 * undo pm_runtime_put() in probe. I assume that we're not
2276 * accessing the primecell here.
2277 */
2278 pm_runtime_get_noresume(&adev->dev);
2279
b43d65f7 2280 load_ssp_default_config(pl022);
3e3ea716
VK
2281 if (pl022->master_info->enable_dma)
2282 pl022_dma_remove(pl022);
2283
b43d65f7 2284 clk_disable(pl022->clk);
7ff6bcf0 2285 clk_unprepare(pl022->clk);
b43d65f7
LW
2286 amba_release_regions(adev);
2287 tasklet_disable(&pl022->pump_transfers);
b43d65f7
LW
2288 return 0;
2289}
2290
ada7aec7
LW
2291#if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2292/*
2293 * These two functions are used from both suspend/resume and
2294 * the runtime counterparts to handle external resources like
2295 * clocks, pins and regulators when going to sleep.
2296 */
d8f18420 2297static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
ada7aec7 2298{
ada7aec7
LW
2299 clk_disable(pl022->clk);
2300
f1c9cf07
LW
2301 if (runtime)
2302 pinctrl_pm_select_idle_state(&pl022->adev->dev);
2303 else
2304 pinctrl_pm_select_sleep_state(&pl022->adev->dev);
ada7aec7
LW
2305}
2306
d8f18420 2307static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
ada7aec7 2308{
d8f18420 2309 /* First go to the default state */
f1c9cf07
LW
2310 pinctrl_pm_select_default_state(&pl022->adev->dev);
2311 if (!runtime)
d8f18420 2312 /* Then let's idle the pins until the next transfer happens */
f1c9cf07 2313 pinctrl_pm_select_idle_state(&pl022->adev->dev);
d8f18420 2314
ada7aec7
LW
2315 clk_enable(pl022->clk);
2316}
2317#endif
2318
92b97f0a 2319#ifdef CONFIG_SUSPEND
6cfa6279 2320static int pl022_suspend(struct device *dev)
b43d65f7 2321{
92b97f0a 2322 struct pl022 *pl022 = dev_get_drvdata(dev);
ffbbdd21 2323 int ret;
b43d65f7 2324
ffbbdd21
LW
2325 ret = spi_master_suspend(pl022->master);
2326 if (ret) {
2327 dev_warn(dev, "cannot suspend master\n");
2328 return ret;
b43d65f7 2329 }
4964a26d
UH
2330
2331 pm_runtime_get_sync(dev);
d8f18420 2332 pl022_suspend_resources(pl022, false);
b43d65f7 2333
6cfa6279 2334 dev_dbg(dev, "suspended\n");
b43d65f7
LW
2335 return 0;
2336}
2337
92b97f0a 2338static int pl022_resume(struct device *dev)
b43d65f7 2339{
92b97f0a 2340 struct pl022 *pl022 = dev_get_drvdata(dev);
ffbbdd21 2341 int ret;
b43d65f7 2342
d8f18420 2343 pl022_resume_resources(pl022, false);
4964a26d 2344 pm_runtime_put(dev);
ada7aec7 2345
b43d65f7 2346 /* Start the queue running */
ffbbdd21
LW
2347 ret = spi_master_resume(pl022->master);
2348 if (ret)
2349 dev_err(dev, "problem starting queue (%d)\n", ret);
b43d65f7 2350 else
92b97f0a 2351 dev_dbg(dev, "resumed\n");
b43d65f7 2352
ffbbdd21 2353 return ret;
b43d65f7 2354}
b43d65f7
LW
2355#endif /* CONFIG_PM */
2356
92b97f0a
RK
2357#ifdef CONFIG_PM_RUNTIME
2358static int pl022_runtime_suspend(struct device *dev)
2359{
2360 struct pl022 *pl022 = dev_get_drvdata(dev);
4f5e1b37 2361
d8f18420 2362 pl022_suspend_resources(pl022, true);
92b97f0a
RK
2363 return 0;
2364}
2365
2366static int pl022_runtime_resume(struct device *dev)
2367{
2368 struct pl022 *pl022 = dev_get_drvdata(dev);
92b97f0a 2369
d8f18420 2370 pl022_resume_resources(pl022, true);
92b97f0a
RK
2371 return 0;
2372}
2373#endif
2374
2375static const struct dev_pm_ops pl022_dev_pm_ops = {
2376 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2377 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2378};
2379
b43d65f7
LW
2380static struct vendor_data vendor_arm = {
2381 .fifodepth = 8,
2382 .max_bpw = 16,
2383 .unidir = false,
556f4aeb 2384 .extended_cr = false,
781c7b12 2385 .pl023 = false,
06fb01fd 2386 .loopback = true,
b43d65f7
LW
2387};
2388
b43d65f7
LW
2389static struct vendor_data vendor_st = {
2390 .fifodepth = 32,
2391 .max_bpw = 32,
2392 .unidir = false,
556f4aeb 2393 .extended_cr = true,
781c7b12 2394 .pl023 = false,
06fb01fd 2395 .loopback = true,
781c7b12
LW
2396};
2397
2398static struct vendor_data vendor_st_pl023 = {
2399 .fifodepth = 32,
2400 .max_bpw = 32,
2401 .unidir = false,
2402 .extended_cr = true,
2403 .pl023 = true,
06fb01fd
PL
2404 .loopback = false,
2405};
2406
b43d65f7
LW
2407static struct amba_id pl022_ids[] = {
2408 {
2409 /*
2410 * ARM PL022 variant, this has a 16bit wide
2411 * and 8 locations deep TX/RX FIFO
2412 */
2413 .id = 0x00041022,
2414 .mask = 0x000fffff,
2415 .data = &vendor_arm,
2416 },
2417 {
2418 /*
2419 * ST Micro derivative, this has 32bit wide
2420 * and 32 locations deep TX/RX FIFO
2421 */
e89e04fc 2422 .id = 0x01080022,
b43d65f7
LW
2423 .mask = 0xffffffff,
2424 .data = &vendor_st,
2425 },
781c7b12
LW
2426 {
2427 /*
2428 * ST-Ericsson derivative "PL023" (this is not
2429 * an official ARM number), this is a PL022 SSP block
2430 * stripped to SPI mode only, it has 32bit wide
2431 * and 32 locations deep TX/RX FIFO but no extended
2432 * CR0/CR1 register
2433 */
f1e45f86
VK
2434 .id = 0x00080023,
2435 .mask = 0xffffffff,
2436 .data = &vendor_st_pl023,
781c7b12 2437 },
b43d65f7
LW
2438 { 0, 0 },
2439};
2440
7eeac71b
DM
2441MODULE_DEVICE_TABLE(amba, pl022_ids);
2442
b43d65f7
LW
2443static struct amba_driver pl022_driver = {
2444 .drv = {
2445 .name = "ssp-pl022",
92b97f0a 2446 .pm = &pl022_dev_pm_ops,
b43d65f7
LW
2447 },
2448 .id_table = pl022_ids,
2449 .probe = pl022_probe,
fd4a319b 2450 .remove = pl022_remove,
b43d65f7
LW
2451};
2452
b43d65f7
LW
2453static int __init pl022_init(void)
2454{
2455 return amba_driver_register(&pl022_driver);
2456}
25c8e03b 2457subsys_initcall(pl022_init);
b43d65f7
LW
2458
2459static void __exit pl022_exit(void)
2460{
2461 amba_driver_unregister(&pl022_driver);
2462}
b43d65f7
LW
2463module_exit(pl022_exit);
2464
2465MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2466MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2467MODULE_LICENSE("GPL");