]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/spi/spi-pxa2xx.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-pxa2xx.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
e0c9905e
SS
2/*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
8083d6b8 4 * Copyright (C) 2013, 2021 Intel Corporation
e0c9905e
SS
5 */
6
5ce25705 7#include <linux/acpi.h>
8b136baa 8#include <linux/bitops.h>
5ce25705
AS
9#include <linux/clk.h>
10#include <linux/delay.h>
e0c9905e 11#include <linux/device.h>
0e476871 12#include <linux/dmaengine.h>
cbfd6a21 13#include <linux/err.h>
5ce25705
AS
14#include <linux/errno.h>
15#include <linux/gpio/consumer.h>
16#include <linux/gpio.h>
17#include <linux/init.h>
e0c9905e 18#include <linux/interrupt.h>
5ce25705 19#include <linux/ioport.h>
9df461ec 20#include <linux/kernel.h>
5ce25705 21#include <linux/module.h>
ae8fbf1d
AS
22#include <linux/mod_devicetable.h>
23#include <linux/of.h>
34cadd9c 24#include <linux/pci.h>
e0c9905e 25#include <linux/platform_device.h>
5ce25705 26#include <linux/pm_runtime.h>
f2faa3ec 27#include <linux/property.h>
5ce25705 28#include <linux/slab.h>
0e476871 29
8348c259 30#include <linux/spi/pxa2xx_spi.h>
e0c9905e 31#include <linux/spi/spi.h>
e0c9905e 32
cd7bed00 33#include "spi-pxa2xx.h"
e0c9905e
SS
34
35MODULE_AUTHOR("Stephen Street");
037cdafe 36MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
e0c9905e 37MODULE_LICENSE("GPL");
7e38c3c4 38MODULE_ALIAS("platform:pxa2xx-spi");
e0c9905e 39
f1f640a9
VS
40#define TIMOUT_DFLT 1000
41
b97c74bd 42/*
8083d6b8
AS
43 * For testing SSCR1 changes that require SSP restart, basically
44 * everything except the service and interrupt enables, the PXA270 developer
b97c74bd 45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
8083d6b8
AS
46 * list, but the PXA255 developer manual says all bits without really meaning
47 * the service and interrupt enables.
b97c74bd
NF
48 */
49#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
8d94cc50 50 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
b97c74bd
NF
51 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
8d94cc50 55
e5262d05
WC
56#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
57 | QUARK_X1000_SSCR1_EFWR \
58 | QUARK_X1000_SSCR1_RFT \
59 | QUARK_X1000_SSCR1_TFT \
60 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61
7c7289a4
AS
62#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68
624ea72e
JN
69#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
70#define LPSS_CS_CONTROL_SW_MODE BIT(0)
71#define LPSS_CS_CONTROL_CS_HIGH BIT(1)
8b136baa
JN
72#define LPSS_CAPS_CS_EN_SHIFT 9
73#define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
a0d2642e 74
683f65de
EG
75#define LPSS_PRIV_CLOCK_GATE 0x38
76#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78
dccf7369
JN
79struct lpss_config {
80 /* LPSS offset from drv_data->ioaddr */
81 unsigned offset;
82 /* Register offsets from drv_data->lpss_base or -1 */
83 int reg_general;
84 int reg_ssp;
85 int reg_cs_ctrl;
8b136baa 86 int reg_capabilities;
dccf7369
JN
87 /* FIFO thresholds */
88 u32 rx_threshold;
89 u32 tx_threshold_lo;
90 u32 tx_threshold_hi;
c1e4a53c
MW
91 /* Chip select control */
92 unsigned cs_sel_shift;
93 unsigned cs_sel_mask;
30f3a6ab 94 unsigned cs_num;
683f65de
EG
95 /* Quirks */
96 unsigned cs_clk_stays_gated : 1;
dccf7369
JN
97};
98
99/* Keep these sorted with enum pxa_ssp_type */
100static const struct lpss_config lpss_platforms[] = {
101 { /* LPSS_LPT_SSP */
102 .offset = 0x800,
103 .reg_general = 0x08,
104 .reg_ssp = 0x0c,
105 .reg_cs_ctrl = 0x18,
8b136baa 106 .reg_capabilities = -1,
dccf7369
JN
107 .rx_threshold = 64,
108 .tx_threshold_lo = 160,
109 .tx_threshold_hi = 224,
110 },
111 { /* LPSS_BYT_SSP */
112 .offset = 0x400,
113 .reg_general = 0x08,
114 .reg_ssp = 0x0c,
115 .reg_cs_ctrl = 0x18,
8b136baa 116 .reg_capabilities = -1,
dccf7369
JN
117 .rx_threshold = 64,
118 .tx_threshold_lo = 160,
119 .tx_threshold_hi = 224,
120 },
30f3a6ab
MW
121 { /* LPSS_BSW_SSP */
122 .offset = 0x400,
123 .reg_general = 0x08,
124 .reg_ssp = 0x0c,
125 .reg_cs_ctrl = 0x18,
126 .reg_capabilities = -1,
127 .rx_threshold = 64,
128 .tx_threshold_lo = 160,
129 .tx_threshold_hi = 224,
130 .cs_sel_shift = 2,
131 .cs_sel_mask = 1 << 2,
132 .cs_num = 2,
133 },
34cadd9c
JN
134 { /* LPSS_SPT_SSP */
135 .offset = 0x200,
136 .reg_general = -1,
137 .reg_ssp = 0x20,
138 .reg_cs_ctrl = 0x24,
66ec246e 139 .reg_capabilities = -1,
34cadd9c
JN
140 .rx_threshold = 1,
141 .tx_threshold_lo = 32,
142 .tx_threshold_hi = 56,
143 },
b7c08cf8
JN
144 { /* LPSS_BXT_SSP */
145 .offset = 0x200,
146 .reg_general = -1,
147 .reg_ssp = 0x20,
148 .reg_cs_ctrl = 0x24,
149 .reg_capabilities = 0xfc,
150 .rx_threshold = 1,
151 .tx_threshold_lo = 16,
152 .tx_threshold_hi = 48,
c1e4a53c
MW
153 .cs_sel_shift = 8,
154 .cs_sel_mask = 3 << 8,
6eefaee4 155 .cs_clk_stays_gated = true,
b7c08cf8 156 },
fc0b2acc
JN
157 { /* LPSS_CNL_SSP */
158 .offset = 0x200,
159 .reg_general = -1,
160 .reg_ssp = 0x20,
161 .reg_cs_ctrl = 0x24,
162 .reg_capabilities = 0xfc,
163 .rx_threshold = 1,
164 .tx_threshold_lo = 32,
165 .tx_threshold_hi = 56,
166 .cs_sel_shift = 8,
167 .cs_sel_mask = 3 << 8,
683f65de 168 .cs_clk_stays_gated = true,
fc0b2acc 169 },
dccf7369
JN
170};
171
172static inline const struct lpss_config
173*lpss_get_config(const struct driver_data *drv_data)
174{
175 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
176}
177
a0d2642e
MW
178static bool is_lpss_ssp(const struct driver_data *drv_data)
179{
03fbf488
JN
180 switch (drv_data->ssp_type) {
181 case LPSS_LPT_SSP:
182 case LPSS_BYT_SSP:
30f3a6ab 183 case LPSS_BSW_SSP:
34cadd9c 184 case LPSS_SPT_SSP:
b7c08cf8 185 case LPSS_BXT_SSP:
fc0b2acc 186 case LPSS_CNL_SSP:
03fbf488
JN
187 return true;
188 default:
189 return false;
190 }
a0d2642e
MW
191}
192
e5262d05
WC
193static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
194{
195 return drv_data->ssp_type == QUARK_X1000_SSP;
196}
197
41c98841
AS
198static bool is_mmp2_ssp(const struct driver_data *drv_data)
199{
200 return drv_data->ssp_type == MMP2_SSP;
201}
202
3fdb59cf
AS
203static bool is_mrfld_ssp(const struct driver_data *drv_data)
204{
205 return drv_data->ssp_type == MRFLD_SSP;
206}
207
1bed378c
AS
208static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
209{
210 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
211 pxa2xx_spi_write(drv_data, reg, value & mask);
212}
213
4fdb2424
WC
214static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
215{
216 switch (drv_data->ssp_type) {
e5262d05
WC
217 case QUARK_X1000_SSP:
218 return QUARK_X1000_SSCR1_CHANGE_MASK;
7c7289a4
AS
219 case CE4100_SSP:
220 return CE4100_SSCR1_CHANGE_MASK;
4fdb2424
WC
221 default:
222 return SSCR1_CHANGE_MASK;
223 }
224}
225
226static u32
227pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
228{
229 switch (drv_data->ssp_type) {
e5262d05
WC
230 case QUARK_X1000_SSP:
231 return RX_THRESH_QUARK_X1000_DFLT;
7c7289a4
AS
232 case CE4100_SSP:
233 return RX_THRESH_CE4100_DFLT;
4fdb2424
WC
234 default:
235 return RX_THRESH_DFLT;
236 }
237}
238
239static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
240{
4fdb2424
WC
241 u32 mask;
242
243 switch (drv_data->ssp_type) {
e5262d05
WC
244 case QUARK_X1000_SSP:
245 mask = QUARK_X1000_SSSR_TFL_MASK;
246 break;
7c7289a4
AS
247 case CE4100_SSP:
248 mask = CE4100_SSSR_TFL_MASK;
249 break;
4fdb2424
WC
250 default:
251 mask = SSSR_TFL_MASK;
252 break;
253 }
254
6d380132 255 return read_SSSR_bits(drv_data, mask) == mask;
4fdb2424
WC
256}
257
258static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
259 u32 *sccr1_reg)
260{
261 u32 mask;
262
263 switch (drv_data->ssp_type) {
e5262d05
WC
264 case QUARK_X1000_SSP:
265 mask = QUARK_X1000_SSCR1_RFT;
266 break;
7c7289a4
AS
267 case CE4100_SSP:
268 mask = CE4100_SSCR1_RFT;
269 break;
4fdb2424
WC
270 default:
271 mask = SSCR1_RFT;
272 break;
273 }
274 *sccr1_reg &= ~mask;
275}
276
277static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
278 u32 *sccr1_reg, u32 threshold)
279{
280 switch (drv_data->ssp_type) {
e5262d05
WC
281 case QUARK_X1000_SSP:
282 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
283 break;
7c7289a4
AS
284 case CE4100_SSP:
285 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
286 break;
4fdb2424
WC
287 default:
288 *sccr1_reg |= SSCR1_RxTresh(threshold);
289 break;
290 }
291}
292
293static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
294 u32 clk_div, u8 bits)
295{
296 switch (drv_data->ssp_type) {
e5262d05
WC
297 case QUARK_X1000_SSP:
298 return clk_div
299 | QUARK_X1000_SSCR0_Motorola
0c8ccd8b 300 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
4fdb2424
WC
301 default:
302 return clk_div
303 | SSCR0_Motorola
304 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
4fdb2424
WC
305 | (bits > 16 ? SSCR0_EDSS : 0);
306 }
307}
308
a0d2642e
MW
309/*
310 * Read and write LPSS SSP private registers. Caller must first check that
311 * is_lpss_ssp() returns true before these can be called.
312 */
313static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
314{
315 WARN_ON(!drv_data->lpss_base);
316 return readl(drv_data->lpss_base + offset);
317}
318
319static void __lpss_ssp_write_priv(struct driver_data *drv_data,
320 unsigned offset, u32 value)
321{
322 WARN_ON(!drv_data->lpss_base);
323 writel(value, drv_data->lpss_base + offset);
324}
325
326/*
327 * lpss_ssp_setup - perform LPSS SSP specific setup
328 * @drv_data: pointer to the driver private data
329 *
330 * Perform LPSS SSP specific setup. This function must be called first if
331 * one is going to use LPSS SSP private registers.
332 */
333static void lpss_ssp_setup(struct driver_data *drv_data)
334{
dccf7369
JN
335 const struct lpss_config *config;
336 u32 value;
a0d2642e 337
dccf7369 338 config = lpss_get_config(drv_data);
9e43c9a8 339 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
a0d2642e
MW
340
341 /* Enable software chip select control */
0e897218 342 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
624ea72e
JN
343 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
344 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
dccf7369 345 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
0054e28d
MW
346
347 /* Enable multiblock DMA transfers */
51eea52d 348 if (drv_data->controller_info->enable_dma) {
dccf7369 349 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
1de70612 350
82ba2c2a
JN
351 if (config->reg_general >= 0) {
352 value = __lpss_ssp_read_priv(drv_data,
353 config->reg_general);
624ea72e 354 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
82ba2c2a
JN
355 __lpss_ssp_write_priv(drv_data,
356 config->reg_general, value);
357 }
1de70612 358 }
a0d2642e
MW
359}
360
d5898e19 361static void lpss_ssp_select_cs(struct spi_device *spi,
c1e4a53c
MW
362 const struct lpss_config *config)
363{
d5898e19
JN
364 struct driver_data *drv_data =
365 spi_controller_get_devdata(spi->controller);
c1e4a53c
MW
366 u32 value, cs;
367
368 if (!config->cs_sel_mask)
369 return;
370
371 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
372
d5898e19 373 cs = spi->chip_select;
c1e4a53c
MW
374 cs <<= config->cs_sel_shift;
375 if (cs != (value & config->cs_sel_mask)) {
376 /*
377 * When switching another chip select output active the
378 * output must be selected first and wait 2 ssp_clk cycles
379 * before changing state to active. Otherwise a short
380 * glitch will occur on the previous chip select since
381 * output select is latched but state control is not.
382 */
383 value &= ~config->cs_sel_mask;
384 value |= cs;
385 __lpss_ssp_write_priv(drv_data,
386 config->reg_cs_ctrl, value);
387 ndelay(1000000000 /
51eea52d 388 (drv_data->controller->max_speed_hz / 2));
c1e4a53c
MW
389 }
390}
391
d5898e19 392static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
a0d2642e 393{
d5898e19
JN
394 struct driver_data *drv_data =
395 spi_controller_get_devdata(spi->controller);
dccf7369 396 const struct lpss_config *config;
c1e4a53c 397 u32 value;
a0d2642e 398
dccf7369
JN
399 config = lpss_get_config(drv_data);
400
c1e4a53c 401 if (enable)
d5898e19 402 lpss_ssp_select_cs(spi, config);
c1e4a53c 403
dccf7369 404 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
c1e4a53c 405 if (enable)
624ea72e 406 value &= ~LPSS_CS_CONTROL_CS_HIGH;
c1e4a53c 407 else
624ea72e 408 value |= LPSS_CS_CONTROL_CS_HIGH;
dccf7369 409 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
683f65de
EG
410 if (config->cs_clk_stays_gated) {
411 u32 clkgate;
412
413 /*
414 * Changing CS alone when dynamic clock gating is on won't
415 * actually flip CS at that time. This ruins SPI transfers
416 * that specify delays, or have no data. Toggle the clock mode
417 * to force on briefly to poke the CS pin to move.
418 */
419 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
420 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
421 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
422
423 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
424 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
425 }
a0d2642e
MW
426}
427
d5898e19 428static void cs_assert(struct spi_device *spi)
a7bb3909 429{
d5898e19
JN
430 struct chip_data *chip = spi_get_ctldata(spi);
431 struct driver_data *drv_data =
432 spi_controller_get_devdata(spi->controller);
a7bb3909 433
2a8626a9 434 if (drv_data->ssp_type == CE4100_SSP) {
ccd60b20 435 pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
2a8626a9
SAS
436 return;
437 }
438
a7bb3909
EM
439 if (chip->cs_control) {
440 chip->cs_control(PXA2XX_CS_ASSERT);
441 return;
442 }
443
7566bcc7 444 if (is_lpss_ssp(drv_data))
d5898e19 445 lpss_ssp_cs_control(spi, true);
a7bb3909
EM
446}
447
d5898e19 448static void cs_deassert(struct spi_device *spi)
a7bb3909 449{
d5898e19
JN
450 struct chip_data *chip = spi_get_ctldata(spi);
451 struct driver_data *drv_data =
452 spi_controller_get_devdata(spi->controller);
104e51af 453 unsigned long timeout;
a7bb3909 454
2a8626a9
SAS
455 if (drv_data->ssp_type == CE4100_SSP)
456 return;
457
104e51af
JN
458 /* Wait until SSP becomes idle before deasserting the CS */
459 timeout = jiffies + msecs_to_jiffies(10);
460 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
461 !time_after(jiffies, timeout))
462 cpu_relax();
463
a7bb3909 464 if (chip->cs_control) {
2b2562d3 465 chip->cs_control(PXA2XX_CS_DEASSERT);
a7bb3909
EM
466 return;
467 }
468
7566bcc7 469 if (is_lpss_ssp(drv_data))
d5898e19
JN
470 lpss_ssp_cs_control(spi, false);
471}
472
473static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
474{
475 if (level)
476 cs_deassert(spi);
477 else
478 cs_assert(spi);
a7bb3909
EM
479}
480
cd7bed00 481int pxa2xx_spi_flush(struct driver_data *drv_data)
e0c9905e
SS
482{
483 unsigned long limit = loops_per_jiffy << 1;
484
e0c9905e 485 do {
6d380132 486 while (read_SSSR_bits(drv_data, SSSR_RNE))
c039dd27
JN
487 pxa2xx_spi_read(drv_data, SSDR);
488 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
2a8626a9 489 write_SSSR_CS(drv_data, SSSR_ROR);
e0c9905e
SS
490
491 return limit;
492}
493
29d7e05c
LR
494static void pxa2xx_spi_off(struct driver_data *drv_data)
495{
41c98841
AS
496 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
497 if (is_mmp2_ssp(drv_data))
29d7e05c
LR
498 return;
499
0c8ccd8b 500 pxa_ssp_disable(drv_data->ssp);
29d7e05c
LR
501}
502
8d94cc50 503static int null_writer(struct driver_data *drv_data)
e0c9905e 504{
9708c121 505 u8 n_bytes = drv_data->n_bytes;
e0c9905e 506
4fdb2424 507 if (pxa2xx_spi_txfifo_full(drv_data)
8d94cc50
SS
508 || (drv_data->tx == drv_data->tx_end))
509 return 0;
510
c039dd27 511 pxa2xx_spi_write(drv_data, SSDR, 0);
8d94cc50
SS
512 drv_data->tx += n_bytes;
513
514 return 1;
e0c9905e
SS
515}
516
8d94cc50 517static int null_reader(struct driver_data *drv_data)
e0c9905e 518{
9708c121 519 u8 n_bytes = drv_data->n_bytes;
e0c9905e 520
6d380132 521 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
c039dd27 522 pxa2xx_spi_read(drv_data, SSDR);
e0c9905e
SS
523 drv_data->rx += n_bytes;
524 }
8d94cc50
SS
525
526 return drv_data->rx == drv_data->rx_end;
e0c9905e
SS
527}
528
8d94cc50 529static int u8_writer(struct driver_data *drv_data)
e0c9905e 530{
4fdb2424 531 if (pxa2xx_spi_txfifo_full(drv_data)
8d94cc50
SS
532 || (drv_data->tx == drv_data->tx_end))
533 return 0;
534
c039dd27 535 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
8d94cc50
SS
536 ++drv_data->tx;
537
538 return 1;
e0c9905e
SS
539}
540
8d94cc50 541static int u8_reader(struct driver_data *drv_data)
e0c9905e 542{
6d380132 543 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
c039dd27 544 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
e0c9905e
SS
545 ++drv_data->rx;
546 }
8d94cc50
SS
547
548 return drv_data->rx == drv_data->rx_end;
e0c9905e
SS
549}
550
8d94cc50 551static int u16_writer(struct driver_data *drv_data)
e0c9905e 552{
4fdb2424 553 if (pxa2xx_spi_txfifo_full(drv_data)
8d94cc50
SS
554 || (drv_data->tx == drv_data->tx_end))
555 return 0;
556
c039dd27 557 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
8d94cc50
SS
558 drv_data->tx += 2;
559
560 return 1;
e0c9905e
SS
561}
562
8d94cc50 563static int u16_reader(struct driver_data *drv_data)
e0c9905e 564{
6d380132 565 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
c039dd27 566 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
e0c9905e
SS
567 drv_data->rx += 2;
568 }
8d94cc50
SS
569
570 return drv_data->rx == drv_data->rx_end;
e0c9905e 571}
8d94cc50
SS
572
573static int u32_writer(struct driver_data *drv_data)
e0c9905e 574{
4fdb2424 575 if (pxa2xx_spi_txfifo_full(drv_data)
8d94cc50
SS
576 || (drv_data->tx == drv_data->tx_end))
577 return 0;
578
c039dd27 579 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
8d94cc50
SS
580 drv_data->tx += 4;
581
582 return 1;
e0c9905e
SS
583}
584
8d94cc50 585static int u32_reader(struct driver_data *drv_data)
e0c9905e 586{
6d380132 587 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
c039dd27 588 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
e0c9905e
SS
589 drv_data->rx += 4;
590 }
8d94cc50
SS
591
592 return drv_data->rx == drv_data->rx_end;
e0c9905e
SS
593}
594
579d3bb2
SAS
595static void reset_sccr1(struct driver_data *drv_data)
596{
e3aa9acc
AS
597 u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
598 struct chip_data *chip;
599
600 if (drv_data->controller->cur_msg) {
601 chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
602 threshold = chip->threshold;
603 } else {
604 threshold = 0;
605 }
579d3bb2 606
152bc19e
AS
607 switch (drv_data->ssp_type) {
608 case QUARK_X1000_SSP:
e0a6512d 609 mask |= QUARK_X1000_SSCR1_RFT;
152bc19e 610 break;
7c7289a4 611 case CE4100_SSP:
e0a6512d 612 mask |= CE4100_SSCR1_RFT;
7c7289a4 613 break;
152bc19e 614 default:
e0a6512d 615 mask |= SSCR1_RFT;
152bc19e
AS
616 break;
617 }
e0a6512d 618
e3aa9acc 619 pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
579d3bb2
SAS
620}
621
ab77fe89 622static void int_stop_and_reset(struct driver_data *drv_data)
e0c9905e 623{
ab77fe89 624 /* Clear and disable interrupts */
2a8626a9 625 write_SSSR_CS(drv_data, drv_data->clear_sr);
579d3bb2 626 reset_sccr1(drv_data);
ab77fe89
AS
627 if (pxa25x_ssp_comp(drv_data))
628 return;
629
630 pxa2xx_spi_write(drv_data, SSTO, 0);
631}
632
4761d2e7 633static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
ab77fe89
AS
634{
635 int_stop_and_reset(drv_data);
cd7bed00 636 pxa2xx_spi_flush(drv_data);
29d7e05c 637 pxa2xx_spi_off(drv_data);
e0c9905e 638
c3dce24c 639 dev_err(drv_data->ssp->dev, "%s\n", msg);
e0c9905e 640
4761d2e7 641 drv_data->controller->cur_msg->status = err;
51eea52d 642 spi_finalize_current_transfer(drv_data->controller);
8d94cc50 643}
5daa3ba0 644
8d94cc50
SS
645static void int_transfer_complete(struct driver_data *drv_data)
646{
ab77fe89 647 int_stop_and_reset(drv_data);
e0c9905e 648
51eea52d 649 spi_finalize_current_transfer(drv_data->controller);
8d94cc50 650}
e0c9905e 651
8d94cc50
SS
652static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
653{
6d380132 654 u32 irq_status;
e0c9905e 655
6d380132
AS
656 irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
657 if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
658 irq_status &= ~SSSR_TFS;
e0c9905e 659
8d94cc50 660 if (irq_status & SSSR_ROR) {
8083d6b8 661 int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
8d94cc50
SS
662 return IRQ_HANDLED;
663 }
e0c9905e 664
ec93cb6f 665 if (irq_status & SSSR_TUR) {
8083d6b8 666 int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
ec93cb6f
LR
667 return IRQ_HANDLED;
668 }
669
8d94cc50 670 if (irq_status & SSSR_TINT) {
c039dd27 671 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
8d94cc50
SS
672 if (drv_data->read(drv_data)) {
673 int_transfer_complete(drv_data);
674 return IRQ_HANDLED;
675 }
676 }
e0c9905e 677
8083d6b8 678 /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
8d94cc50
SS
679 do {
680 if (drv_data->read(drv_data)) {
681 int_transfer_complete(drv_data);
682 return IRQ_HANDLED;
683 }
684 } while (drv_data->write(drv_data));
e0c9905e 685
8d94cc50
SS
686 if (drv_data->read(drv_data)) {
687 int_transfer_complete(drv_data);
688 return IRQ_HANDLED;
689 }
e0c9905e 690
8d94cc50 691 if (drv_data->tx == drv_data->tx_end) {
579d3bb2
SAS
692 u32 bytes_left;
693 u32 sccr1_reg;
694
c039dd27 695 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
579d3bb2
SAS
696 sccr1_reg &= ~SSCR1_TIE;
697
698 /*
8083d6b8
AS
699 * PXA25x_SSP has no timeout, set up Rx threshold for
700 * the remaining Rx bytes.
579d3bb2 701 */
2a8626a9 702 if (pxa25x_ssp_comp(drv_data)) {
4fdb2424 703 u32 rx_thre;
579d3bb2 704
4fdb2424 705 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
579d3bb2
SAS
706
707 bytes_left = drv_data->rx_end - drv_data->rx;
708 switch (drv_data->n_bytes) {
709 case 4:
2c183376
GS
710 bytes_left >>= 2;
711 break;
579d3bb2
SAS
712 case 2:
713 bytes_left >>= 1;
2c183376 714 break;
8d94cc50 715 }
579d3bb2 716
4fdb2424
WC
717 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
718 if (rx_thre > bytes_left)
719 rx_thre = bytes_left;
579d3bb2 720
4fdb2424 721 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
e0c9905e 722 }
c039dd27 723 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
e0c9905e
SS
724 }
725
5daa3ba0
SS
726 /* We did something */
727 return IRQ_HANDLED;
e0c9905e
SS
728}
729
b0312482
JK
730static void handle_bad_msg(struct driver_data *drv_data)
731{
3bbdc083 732 int_stop_and_reset(drv_data);
29d7e05c 733 pxa2xx_spi_off(drv_data);
b0312482 734
c3dce24c 735 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
b0312482
JK
736}
737
7d12e780 738static irqreturn_t ssp_int(int irq, void *dev_id)
e0c9905e 739{
c7bec5ab 740 struct driver_data *drv_data = dev_id;
7d94a505 741 u32 sccr1_reg;
49cbb1e0
SAS
742 u32 mask = drv_data->mask_sr;
743 u32 status;
744
7d94a505
MW
745 /*
746 * The IRQ might be shared with other peripherals so we must first
747 * check that are we RPM suspended or not. If we are we assume that
748 * the IRQ was not for us (we shouldn't be RPM suspended when the
749 * interrupt is enabled).
750 */
c3dce24c 751 if (pm_runtime_suspended(drv_data->ssp->dev))
7d94a505
MW
752 return IRQ_NONE;
753
269e4a41
MW
754 /*
755 * If the device is not yet in RPM suspended state and we get an
756 * interrupt that is meant for another device, check if status bits
757 * are all set to one. That means that the device is already
758 * powered off.
759 */
c039dd27 760 status = pxa2xx_spi_read(drv_data, SSSR);
269e4a41
MW
761 if (status == ~0)
762 return IRQ_NONE;
763
c039dd27 764 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
49cbb1e0
SAS
765
766 /* Ignore possible writes if we don't need to write */
767 if (!(sccr1_reg & SSCR1_TIE))
768 mask &= ~SSSR_TFS;
769
02bc933e
TJN
770 /* Ignore RX timeout interrupt if it is disabled */
771 if (!(sccr1_reg & SSCR1_TINTE))
772 mask &= ~SSSR_TINT;
773
49cbb1e0
SAS
774 if (!(status & mask))
775 return IRQ_NONE;
e0c9905e 776
e51e9b93
JK
777 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
778 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
5daa3ba0 779
51eea52d 780 if (!drv_data->controller->cur_msg) {
b0312482 781 handle_bad_msg(drv_data);
e0c9905e
SS
782 /* Never fail */
783 return IRQ_HANDLED;
784 }
785
786 return drv_data->transfer_handler(drv_data);
787}
788
e5262d05 789/*
9df461ec
AS
790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
791 * input frequency by fractions of 2^24. It also has a divider by 5.
792 *
793 * There are formulas to get baud rate value for given input frequency and
794 * divider parameters, such as DDS_CLK_RATE and SCR:
795 *
796 * Fsys = 200MHz
797 *
798 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
800 *
801 * DDS_CLK_RATE either 2^n or 2^n / 5.
802 * SCR is in range 0 .. 255
803 *
804 * Divisor = 5^i * 2^j * 2 * k
805 * i = [0, 1] i = 1 iff j = 0 or j > 3
806 * j = [0, 23] j = 0 iff i = 1
807 * k = [1, 256]
808 * Special case: j = 0, i = 1: Divisor = 2 / 5
809 *
810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
811 * are:
812 * Case 1: 2^n, n = [0, 23]
813 * Case 2: 2^24 * 2 / 5 (0x666666)
814 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
815 *
816 * In all cases the lowest possible value is better.
817 *
818 * The function calculates parameters for all cases and chooses the one closest
819 * to the asked baud rate.
e5262d05 820 */
9df461ec
AS
821static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
822{
823 unsigned long xtal = 200000000;
824 unsigned long fref = xtal / 2; /* mandatory division by 2,
825 see (2) */
826 /* case 3 */
827 unsigned long fref1 = fref / 2; /* case 1 */
828 unsigned long fref2 = fref * 2 / 5; /* case 2 */
829 unsigned long scale;
830 unsigned long q, q1, q2;
831 long r, r1, r2;
832 u32 mul;
833
834 /* Case 1 */
835
836 /* Set initial value for DDS_CLK_RATE */
837 mul = (1 << 24) >> 1;
838
839 /* Calculate initial quot */
3ad48062 840 q1 = DIV_ROUND_UP(fref1, rate);
9df461ec
AS
841
842 /* Scale q1 if it's too big */
843 if (q1 > 256) {
844 /* Scale q1 to range [1, 512] */
845 scale = fls_long(q1 - 1);
846 if (scale > 9) {
847 q1 >>= scale - 9;
848 mul >>= scale - 9;
e5262d05 849 }
9df461ec
AS
850
851 /* Round the result if we have a remainder */
852 q1 += q1 & 1;
853 }
854
855 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
856 scale = __ffs(q1);
857 q1 >>= scale;
858 mul >>= scale;
859
860 /* Get the remainder */
861 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
862
863 /* Case 2 */
864
3ad48062 865 q2 = DIV_ROUND_UP(fref2, rate);
9df461ec
AS
866 r2 = abs(fref2 / q2 - rate);
867
868 /*
869 * Choose the best between two: less remainder we have the better. We
870 * can't go case 2 if q2 is greater than 256 since SCR register can
871 * hold only values 0 .. 255.
872 */
873 if (r2 >= r1 || q2 > 256) {
874 /* case 1 is better */
875 r = r1;
876 q = q1;
877 } else {
878 /* case 2 is better */
879 r = r2;
880 q = q2;
881 mul = (1 << 24) * 2 / 5;
e5262d05
WC
882 }
883
3ad48062 884 /* Check case 3 only if the divisor is big enough */
9df461ec
AS
885 if (fref / rate >= 80) {
886 u64 fssp;
887 u32 m;
888
889 /* Calculate initial quot */
3ad48062 890 q1 = DIV_ROUND_UP(fref, rate);
9df461ec
AS
891 m = (1 << 24) / q1;
892
893 /* Get the remainder */
894 fssp = (u64)fref * m;
895 do_div(fssp, 1 << 24);
896 r1 = abs(fssp - rate);
897
898 /* Choose this one if it suits better */
899 if (r1 < r) {
900 /* case 3 is better */
901 q = 1;
902 mul = m;
903 }
904 }
e5262d05 905
9df461ec
AS
906 *dds = mul;
907 return q - 1;
e5262d05
WC
908}
909
3343b7a6 910static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
2f1a74e5 911{
51eea52d 912 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
3343b7a6
MW
913 const struct ssp_device *ssp = drv_data->ssp;
914
915 rate = min_t(int, ssp_clk, rate);
2f1a74e5 916
29f21337
FS
917 /*
918 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
8083d6b8 919 * that the SSP transmission rate can be greater than the device rate.
29f21337 920 */
2a8626a9 921 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
29f21337 922 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
2f1a74e5 923 else
29f21337 924 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
2f1a74e5 925}
926
e5262d05 927static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
d2c2f6a4 928 int rate)
e5262d05 929{
96579a4e 930 struct chip_data *chip =
51eea52d 931 spi_get_ctldata(drv_data->controller->cur_msg->spi);
025ffe88 932 unsigned int clk_div;
e5262d05
WC
933
934 switch (drv_data->ssp_type) {
935 case QUARK_X1000_SSP:
9df461ec 936 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
eecacf73 937 break;
e5262d05 938 default:
025ffe88 939 clk_div = ssp_get_clk_div(drv_data, rate);
eecacf73 940 break;
e5262d05 941 }
025ffe88 942 return clk_div << 8;
e5262d05
WC
943}
944
51eea52d 945static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
b6ced294
JN
946 struct spi_device *spi,
947 struct spi_transfer *xfer)
948{
949 struct chip_data *chip = spi_get_ctldata(spi);
950
951 return chip->enable_dma &&
952 xfer->len <= MAX_DMA_LEN &&
953 xfer->len >= chip->dma_burst_size;
954}
955
51eea52d 956static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
71293a60 957 struct spi_device *spi,
958 struct spi_transfer *transfer)
e0c9905e 959{
51eea52d
LR
960 struct driver_data *drv_data = spi_controller_get_devdata(controller);
961 struct spi_message *message = controller->cur_msg;
20f4c379 962 struct chip_data *chip = spi_get_ctldata(spi);
96579a4e
JN
963 u32 dma_thresh = chip->dma_threshold;
964 u32 dma_burst = chip->dma_burst_size;
965 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
bffc967e
JN
966 u32 clk_div;
967 u8 bits;
968 u32 speed;
9708c121 969 u32 cr0;
8d94cc50 970 u32 cr1;
7d1f1bf6 971 int err;
b6ced294 972 int dma_mapped;
e0c9905e 973
cd7bed00 974 /* Check if we can DMA this transfer */
b6ced294 975 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
7e964455 976
8083d6b8 977 /* Reject already-mapped transfers; PIO won't always work */
7e964455
NF
978 if (message->is_dma_mapped
979 || transfer->rx_dma || transfer->tx_dma) {
748fbadf 980 dev_err(&spi->dev,
8ae55af3 981 "Mapped transfer length of %u is greater than %d\n",
7e964455 982 transfer->len, MAX_DMA_LEN);
d5898e19 983 return -EINVAL;
7e964455
NF
984 }
985
8083d6b8 986 /* Warn ... we force this to PIO mode */
20f4c379 987 dev_warn_ratelimited(&spi->dev,
684a3ac7
AS
988 "DMA disabled for transfer length %u greater than %d\n",
989 transfer->len, MAX_DMA_LEN);
8d94cc50
SS
990 }
991
e0c9905e 992 /* Setup the transfer state based on the type of transfer */
cd7bed00 993 if (pxa2xx_spi_flush(drv_data) == 0) {
748fbadf 994 dev_err(&spi->dev, "Flush failed\n");
d5898e19 995 return -EIO;
e0c9905e 996 }
9708c121 997 drv_data->n_bytes = chip->n_bytes;
e0c9905e
SS
998 drv_data->tx = (void *)transfer->tx_buf;
999 drv_data->tx_end = drv_data->tx + transfer->len;
1000 drv_data->rx = transfer->rx_buf;
1001 drv_data->rx_end = drv_data->rx + transfer->len;
e0c9905e
SS
1002 drv_data->write = drv_data->tx ? chip->write : null_writer;
1003 drv_data->read = drv_data->rx ? chip->read : null_reader;
9708c121
SS
1004
1005 /* Change speed and bit per word on a per transfer */
196b0e2c
JN
1006 bits = transfer->bits_per_word;
1007 speed = transfer->speed_hz;
1008
d2c2f6a4 1009 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
196b0e2c
JN
1010
1011 if (bits <= 8) {
1012 drv_data->n_bytes = 1;
1013 drv_data->read = drv_data->read != null_reader ?
1014 u8_reader : null_reader;
1015 drv_data->write = drv_data->write != null_writer ?
1016 u8_writer : null_writer;
1017 } else if (bits <= 16) {
1018 drv_data->n_bytes = 2;
1019 drv_data->read = drv_data->read != null_reader ?
1020 u16_reader : null_reader;
1021 drv_data->write = drv_data->write != null_writer ?
1022 u16_writer : null_writer;
1023 } else if (bits <= 32) {
1024 drv_data->n_bytes = 4;
1025 drv_data->read = drv_data->read != null_reader ?
1026 u32_reader : null_reader;
1027 drv_data->write = drv_data->write != null_writer ?
1028 u32_writer : null_writer;
9708c121 1029 }
196b0e2c 1030 /*
8083d6b8
AS
1031 * If bits per word is changed in DMA mode, then must check
1032 * the thresholds and burst also.
196b0e2c
JN
1033 */
1034 if (chip->enable_dma) {
1035 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
20f4c379 1036 spi,
196b0e2c
JN
1037 bits, &dma_burst,
1038 &dma_thresh))
20f4c379 1039 dev_warn_ratelimited(&spi->dev,
8ae55af3 1040 "DMA burst size reduced to match bits_per_word\n");
9708c121
SS
1041 }
1042
51eea52d 1043 dma_mapped = controller->can_dma &&
20f4c379 1044 controller->can_dma(controller, spi, transfer) &&
51eea52d 1045 controller->cur_msg_mapped;
b6ced294 1046 if (dma_mapped) {
e0c9905e
SS
1047
1048 /* Ensure we have the correct interrupt handler */
cd7bed00
MW
1049 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
d5898e19
JN
1051 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052 if (err)
1053 return err;
e0c9905e 1054
8d94cc50
SS
1055 /* Clear status and start DMA engine */
1056 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
c039dd27 1057 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
cd7bed00
MW
1058
1059 pxa2xx_spi_dma_start(drv_data);
e0c9905e
SS
1060 } else {
1061 /* Ensure we have the correct interrupt handler */
1062 drv_data->transfer_handler = interrupt_transfer;
1063
8d94cc50
SS
1064 /* Clear status */
1065 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
2a8626a9 1066 write_SSSR_CS(drv_data, drv_data->clear_sr);
8d94cc50
SS
1067 }
1068
ee03672d
JN
1069 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1070 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071 if (!pxa25x_ssp_comp(drv_data))
20f4c379 1072 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
51eea52d 1073 controller->max_speed_hz
ee03672d 1074 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
b6ced294 1075 dma_mapped ? "DMA" : "PIO");
ee03672d 1076 else
20f4c379 1077 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
51eea52d 1078 controller->max_speed_hz / 2
ee03672d 1079 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
b6ced294 1080 dma_mapped ? "DMA" : "PIO");
ee03672d 1081
a0d2642e 1082 if (is_lpss_ssp(drv_data)) {
1bed378c
AS
1083 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1084 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
a0d2642e
MW
1085 }
1086
3fdb59cf 1087 if (is_mrfld_ssp(drv_data)) {
70252440 1088 u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
3fdb59cf
AS
1089 u32 thresh = 0;
1090
1091 thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1092 thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1093
70252440 1094 pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
3fdb59cf
AS
1095 }
1096
1bed378c
AS
1097 if (is_quark_x1000_ssp(drv_data))
1098 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
e5262d05 1099
0c8ccd8b
AS
1100 /* Stop the SSP */
1101 if (!is_mmp2_ssp(drv_data))
1102 pxa_ssp_disable(drv_data->ssp);
1103
1104 if (!pxa25x_ssp_comp(drv_data))
1105 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106
8083d6b8 1107 /* First set CR1 without interrupt and service enables */
1bed378c
AS
1108 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1109
8083d6b8 1110 /* See if we need to reload the configuration registers */
1bed378c 1111 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
b97c74bd 1112
0c8ccd8b
AS
1113 /* Restart the SSP */
1114 pxa_ssp_enable(drv_data->ssp);
1115
41c98841 1116 if (is_mmp2_ssp(drv_data)) {
6d380132 1117 u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
82391856
LR
1118
1119 if (tx_level) {
8083d6b8 1120 /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
684a3ac7 1121 dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
82391856
LR
1122 if (tx_level > transfer->len)
1123 tx_level = transfer->len;
1124 drv_data->tx += tx_level;
1125 }
1126 }
1127
51eea52d 1128 if (spi_controller_is_slave(controller)) {
ec93cb6f
LR
1129 while (drv_data->write(drv_data))
1130 ;
77d33897
LR
1131 if (drv_data->gpiod_ready) {
1132 gpiod_set_value(drv_data->gpiod_ready, 1);
1133 udelay(1);
1134 gpiod_set_value(drv_data->gpiod_ready, 0);
1135 }
ec93cb6f
LR
1136 }
1137
d5898e19
JN
1138 /*
1139 * Release the data by enabling service requests and interrupts,
8083d6b8 1140 * without changing any mode bits.
d5898e19 1141 */
c039dd27 1142 pxa2xx_spi_write(drv_data, SSCR1, cr1);
d5898e19
JN
1143
1144 return 1;
e0c9905e
SS
1145}
1146
51eea52d 1147static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
ec93cb6f 1148{
51eea52d 1149 struct driver_data *drv_data = spi_controller_get_devdata(controller);
ec93cb6f 1150
4761d2e7 1151 int_error_stop(drv_data, "transfer aborted", -EINTR);
ec93cb6f
LR
1152
1153 return 0;
1154}
1155
51eea52d 1156static void pxa2xx_spi_handle_err(struct spi_controller *controller,
d5898e19 1157 struct spi_message *msg)
e0c9905e 1158{
51eea52d 1159 struct driver_data *drv_data = spi_controller_get_devdata(controller);
e0c9905e 1160
3bbdc083
AS
1161 int_stop_and_reset(drv_data);
1162
d5898e19 1163 /* Disable the SSP */
29d7e05c 1164 pxa2xx_spi_off(drv_data);
e0c9905e 1165
d5898e19
JN
1166 /*
1167 * Stop the DMA if running. Note DMA callback handler may have unset
1168 * the dma_running already, which is fine as stopping is not needed
1169 * then but we shouldn't rely this flag for anything else than
1170 * stopping. For instance to differentiate between PIO and DMA
1171 * transfers.
1172 */
1173 if (atomic_read(&drv_data->dma_running))
1174 pxa2xx_spi_dma_stop(drv_data);
e0c9905e
SS
1175}
1176
51eea52d 1177static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
7d94a505 1178{
51eea52d 1179 struct driver_data *drv_data = spi_controller_get_devdata(controller);
7d94a505
MW
1180
1181 /* Disable the SSP now */
29d7e05c 1182 pxa2xx_spi_off(drv_data);
7d94a505 1183
7d94a505
MW
1184 return 0;
1185}
1186
de6926f3
AS
1187static void cleanup_cs(struct spi_device *spi)
1188{
1189 if (!gpio_is_valid(spi->cs_gpio))
1190 return;
1191
1192 gpio_free(spi->cs_gpio);
1193 spi->cs_gpio = -ENOENT;
1194}
1195
a7bb3909
EM
1196static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1197 struct pxa2xx_spi_chip *chip_info)
1198{
de6926f3 1199 struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
a7bb3909 1200
99f499cd
MW
1201 if (chip == NULL)
1202 return 0;
1203
99f499cd 1204 if (chip_info == NULL)
a7bb3909
EM
1205 return 0;
1206
de6926f3
AS
1207 if (drv_data->ssp_type == CE4100_SSP)
1208 return 0;
1209
8083d6b8
AS
1210 /*
1211 * NOTE: setup() can be called multiple times, possibly with
1212 * different chip_info, release previously requested GPIO.
a7bb3909 1213 */
de6926f3 1214 cleanup_cs(spi);
a7bb3909 1215
8083d6b8 1216 /* If ->cs_control() is provided, ignore GPIO chip select */
a7bb3909
EM
1217 if (chip_info->cs_control) {
1218 chip->cs_control = chip_info->cs_control;
1219 return 0;
1220 }
1221
1222 if (gpio_is_valid(chip_info->gpio_cs)) {
de6926f3
AS
1223 int gpio = chip_info->gpio_cs;
1224 int err;
1225
1226 err = gpio_request(gpio, "SPI_CS");
a7bb3909 1227 if (err) {
de6926f3 1228 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
a7bb3909
EM
1229 return err;
1230 }
1231
de6926f3
AS
1232 err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1233 if (err) {
1234 gpio_free(gpio);
1235 return err;
1236 }
a7bb3909 1237
de6926f3 1238 spi->cs_gpio = gpio;
a7bb3909
EM
1239 }
1240
de6926f3 1241 return 0;
a7bb3909
EM
1242}
1243
e0c9905e
SS
1244static int setup(struct spi_device *spi)
1245{
bffc967e 1246 struct pxa2xx_spi_chip *chip_info;
e0c9905e 1247 struct chip_data *chip;
dccf7369 1248 const struct lpss_config *config;
3cc7b0e3
JN
1249 struct driver_data *drv_data =
1250 spi_controller_get_devdata(spi->controller);
a0d2642e 1251 uint tx_thres, tx_hi_thres, rx_thres;
2ec6f20b 1252 int err;
a0d2642e 1253
e5262d05
WC
1254 switch (drv_data->ssp_type) {
1255 case QUARK_X1000_SSP:
1256 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1257 tx_hi_thres = 0;
1258 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1259 break;
3fdb59cf
AS
1260 case MRFLD_SSP:
1261 tx_thres = TX_THRESH_MRFLD_DFLT;
1262 tx_hi_thres = 0;
1263 rx_thres = RX_THRESH_MRFLD_DFLT;
1264 break;
7c7289a4
AS
1265 case CE4100_SSP:
1266 tx_thres = TX_THRESH_CE4100_DFLT;
1267 tx_hi_thres = 0;
1268 rx_thres = RX_THRESH_CE4100_DFLT;
1269 break;
03fbf488
JN
1270 case LPSS_LPT_SSP:
1271 case LPSS_BYT_SSP:
30f3a6ab 1272 case LPSS_BSW_SSP:
34cadd9c 1273 case LPSS_SPT_SSP:
b7c08cf8 1274 case LPSS_BXT_SSP:
fc0b2acc 1275 case LPSS_CNL_SSP:
dccf7369
JN
1276 config = lpss_get_config(drv_data);
1277 tx_thres = config->tx_threshold_lo;
1278 tx_hi_thres = config->tx_threshold_hi;
1279 rx_thres = config->rx_threshold;
e5262d05
WC
1280 break;
1281 default:
a0d2642e 1282 tx_hi_thres = 0;
51eea52d 1283 if (spi_controller_is_slave(drv_data->controller)) {
ec93cb6f
LR
1284 tx_thres = 1;
1285 rx_thres = 2;
1286 } else {
1287 tx_thres = TX_THRESH_DFLT;
1288 rx_thres = RX_THRESH_DFLT;
1289 }
e5262d05 1290 break;
a0d2642e 1291 }
e0c9905e 1292
8083d6b8 1293 /* Only allocate on the first setup */
e0c9905e 1294 chip = spi_get_ctldata(spi);
8d94cc50 1295 if (!chip) {
e0c9905e 1296 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
9deae459 1297 if (!chip)
e0c9905e
SS
1298 return -ENOMEM;
1299
2a8626a9
SAS
1300 if (drv_data->ssp_type == CE4100_SSP) {
1301 if (spi->chip_select > 4) {
f6bd03a7
JN
1302 dev_err(&spi->dev,
1303 "failed setup: cs number must not be > 4.\n");
2a8626a9
SAS
1304 kfree(chip);
1305 return -EINVAL;
1306 }
c18d925f 1307 }
51eea52d 1308 chip->enable_dma = drv_data->controller_info->enable_dma;
f1f640a9 1309 chip->timeout = TIMOUT_DFLT;
e0c9905e
SS
1310 }
1311
8083d6b8
AS
1312 /*
1313 * Protocol drivers may change the chip settings, so...
1314 * if chip_info exists, use it.
1315 */
8d94cc50
SS
1316 chip_info = spi->controller_data;
1317
e0c9905e 1318 /* chip_info isn't always needed */
8d94cc50 1319 chip->cr1 = 0;
e0c9905e 1320 if (chip_info) {
f1f640a9
VS
1321 if (chip_info->timeout)
1322 chip->timeout = chip_info->timeout;
1323 if (chip_info->tx_threshold)
1324 tx_thres = chip_info->tx_threshold;
a0d2642e
MW
1325 if (chip_info->tx_hi_threshold)
1326 tx_hi_thres = chip_info->tx_hi_threshold;
f1f640a9
VS
1327 if (chip_info->rx_threshold)
1328 rx_thres = chip_info->rx_threshold;
e0c9905e 1329 chip->dma_threshold = 0;
e0c9905e
SS
1330 if (chip_info->enable_loopback)
1331 chip->cr1 = SSCR1_LBM;
1332 }
51eea52d 1333 if (spi_controller_is_slave(drv_data->controller)) {
ec93cb6f
LR
1334 chip->cr1 |= SSCR1_SCFR;
1335 chip->cr1 |= SSCR1_SCLKDIR;
1336 chip->cr1 |= SSCR1_SFRMDIR;
1337 chip->cr1 |= SSCR1_SPH;
1338 }
e0c9905e 1339
3fdb59cf
AS
1340 if (is_lpss_ssp(drv_data)) {
1341 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1342 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1343 SSITF_TxHiThresh(tx_hi_thres);
1344 }
1345
1346 if (is_mrfld_ssp(drv_data)) {
1347 chip->lpss_rx_threshold = rx_thres;
1348 chip->lpss_tx_threshold = tx_thres;
1349 }
a0d2642e 1350
8083d6b8
AS
1351 /*
1352 * Set DMA burst and threshold outside of chip_info path so that if
1353 * chip_info goes away after setting chip->enable_dma, the burst and
1354 * threshold can still respond to changes in bits_per_word.
1355 */
8d94cc50 1356 if (chip->enable_dma) {
8083d6b8 1357 /* Set up legal burst and threshold for DMA */
cd7bed00
MW
1358 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1359 spi->bits_per_word,
8d94cc50
SS
1360 &chip->dma_burst_size,
1361 &chip->dma_threshold)) {
f6bd03a7
JN
1362 dev_warn(&spi->dev,
1363 "in setup: DMA burst size reduced to match bits_per_word\n");
8d94cc50 1364 }
000c6af4
AS
1365 dev_dbg(&spi->dev,
1366 "in setup: DMA burst size set to %u\n",
1367 chip->dma_burst_size);
8d94cc50
SS
1368 }
1369
e5262d05
WC
1370 switch (drv_data->ssp_type) {
1371 case QUARK_X1000_SSP:
1372 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1373 & QUARK_X1000_SSCR1_RFT)
1374 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1375 & QUARK_X1000_SSCR1_TFT);
1376 break;
7c7289a4
AS
1377 case CE4100_SSP:
1378 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1379 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1380 break;
e5262d05
WC
1381 default:
1382 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1383 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1384 break;
1385 }
1386
7f6ee1ad 1387 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
eb743ec6
AS
1388 chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1389 ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
e0c9905e 1390
b833172f
MW
1391 if (spi->mode & SPI_LOOP)
1392 chip->cr1 |= SSCR1_LBM;
1393
e0c9905e
SS
1394 if (spi->bits_per_word <= 8) {
1395 chip->n_bytes = 1;
e0c9905e
SS
1396 chip->read = u8_reader;
1397 chip->write = u8_writer;
1398 } else if (spi->bits_per_word <= 16) {
1399 chip->n_bytes = 2;
e0c9905e
SS
1400 chip->read = u16_reader;
1401 chip->write = u16_writer;
1402 } else if (spi->bits_per_word <= 32) {
e0c9905e 1403 chip->n_bytes = 4;
e0c9905e
SS
1404 chip->read = u32_reader;
1405 chip->write = u32_writer;
e0c9905e
SS
1406 }
1407
1408 spi_set_ctldata(spi, chip);
1409
2a8626a9
SAS
1410 if (drv_data->ssp_type == CE4100_SSP)
1411 return 0;
1412
2ec6f20b
LW
1413 err = setup_cs(spi, chip, chip_info);
1414 if (err)
1415 kfree(chip);
1416
1417 return err;
e0c9905e
SS
1418}
1419
0ffa0285 1420static void cleanup(struct spi_device *spi)
e0c9905e 1421{
0ffa0285 1422 struct chip_data *chip = spi_get_ctldata(spi);
a7bb3909 1423
de6926f3 1424 cleanup_cs(spi);
e0c9905e
SS
1425 kfree(chip);
1426}
1427
9b2d6119 1428#ifdef CONFIG_ACPI
8422ddf7 1429static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
03fbf488
JN
1430 { "INT33C0", LPSS_LPT_SSP },
1431 { "INT33C1", LPSS_LPT_SSP },
1432 { "INT3430", LPSS_LPT_SSP },
1433 { "INT3431", LPSS_LPT_SSP },
1434 { "80860F0E", LPSS_BYT_SSP },
30f3a6ab 1435 { "8086228E", LPSS_BSW_SSP },
03fbf488
JN
1436 { },
1437};
1438MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
9b2d6119 1439#endif
03fbf488 1440
34cadd9c
JN
1441/*
1442 * PCI IDs of compound devices that integrate both host controller and private
1443 * integrated DMA engine. Please note these are not used in module
1444 * autoloading and probing in this module but matching the LPSS SSP type.
1445 */
1446static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1447 /* SPT-LP */
1448 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1449 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1450 /* SPT-H */
1451 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1452 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
704d2b07
MW
1453 /* KBL-H */
1454 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1455 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
6157d4c2
JN
1456 /* CML-V */
1457 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1458 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
c1b03f11 1459 /* BXT A-Step */
b7c08cf8
JN
1460 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1461 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1462 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
c1b03f11
JN
1463 /* BXT B-Step */
1464 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1465 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1466 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
e18a80ac
DB
1467 /* GLK */
1468 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1469 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1470 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
22d71a50
MW
1471 /* ICL-LP */
1472 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1473 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1474 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
8cc77204
JN
1475 /* EHL */
1476 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1477 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1478 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
9c7315c9
JN
1479 /* JSL */
1480 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1481 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1482 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
cf961fce
JN
1483 /* TGL-H */
1484 { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1485 { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1486 { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1487 { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
a402e397
JN
1488 /* ADL-P */
1489 { PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1490 { PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1491 { PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
8c4ffe4d
JN
1492 /* ADL-M */
1493 { PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1494 { PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1495 { PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
b7c08cf8
JN
1496 /* APL */
1497 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1498 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1499 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
b8450e01
JN
1500 /* ADL-S */
1501 { PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1502 { PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1503 { PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1504 { PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
fc0b2acc
JN
1505 /* CNL-LP */
1506 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1507 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1508 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1509 /* CNL-H */
1510 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1511 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1512 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
41a91802
EG
1513 /* CML-LP */
1514 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1515 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1516 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
f0cf17ed
JN
1517 /* CML-H */
1518 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1519 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1520 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
a4127952
JN
1521 /* TGL-LP */
1522 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1523 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1524 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1525 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1526 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1527 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1528 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
94e5c23d 1529 { },
34cadd9c
JN
1530};
1531
87ae1d2d
LR
1532static const struct of_device_id pxa2xx_spi_of_match[] = {
1533 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1534 {},
1535};
1536MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1537
1538#ifdef CONFIG_ACPI
1539
365e856e 1540static int pxa2xx_spi_get_port_id(struct device *dev)
87ae1d2d 1541{
365e856e 1542 struct acpi_device *adev;
87ae1d2d
LR
1543 unsigned int devid;
1544 int port_id = -1;
1545
365e856e 1546 adev = ACPI_COMPANION(dev);
87ae1d2d
LR
1547 if (adev && adev->pnp.unique_id &&
1548 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1549 port_id = devid;
1550 return port_id;
1551}
1552
1553#else /* !CONFIG_ACPI */
1554
365e856e 1555static int pxa2xx_spi_get_port_id(struct device *dev)
87ae1d2d
LR
1556{
1557 return -1;
1558}
1559
1560#endif /* CONFIG_ACPI */
1561
1562
1563#ifdef CONFIG_PCI
1564
34cadd9c
JN
1565static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1566{
5ba846b1 1567 return param == chan->device->dev;
34cadd9c
JN
1568}
1569
87ae1d2d
LR
1570#endif /* CONFIG_PCI */
1571
51eea52d 1572static struct pxa2xx_spi_controller *
0db64215 1573pxa2xx_spi_init_pdata(struct platform_device *pdev)
a3496855 1574{
51eea52d 1575 struct pxa2xx_spi_controller *pdata;
a3496855
MW
1576 struct ssp_device *ssp;
1577 struct resource *res;
6fb7427d
AS
1578 struct device *parent = pdev->dev.parent;
1579 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
34cadd9c 1580 const struct pci_device_id *pcidev_id = NULL;
55ef8262 1581 enum pxa_ssp_type type;
f2faa3ec 1582 const void *match;
a3496855 1583
6fb7427d
AS
1584 if (pcidev)
1585 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
34cadd9c 1586
f2faa3ec
AS
1587 match = device_get_match_data(&pdev->dev);
1588 if (match)
1589 type = (enum pxa_ssp_type)match;
34cadd9c 1590 else if (pcidev_id)
55ef8262 1591 type = (enum pxa_ssp_type)pcidev_id->driver_data;
03fbf488 1592 else
14af1df3 1593 return ERR_PTR(-EINVAL);
03fbf488 1594
cc0ee987 1595 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
9deae459 1596 if (!pdata)
14af1df3 1597 return ERR_PTR(-ENOMEM);
a3496855 1598
a3496855
MW
1599 ssp = &pdata->ssp;
1600
77c544d2 1601 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cbfd6a21
SK
1602 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1603 if (IS_ERR(ssp->mmio_base))
14af1df3 1604 return ERR_CAST(ssp->mmio_base);
a3496855 1605
77c544d2
AS
1606 ssp->phys_base = res->start;
1607
87ae1d2d 1608#ifdef CONFIG_PCI
34cadd9c 1609 if (pcidev_id) {
6fb7427d
AS
1610 pdata->tx_param = parent;
1611 pdata->rx_param = parent;
34cadd9c
JN
1612 pdata->dma_filter = pxa2xx_spi_idma_filter;
1613 }
87ae1d2d 1614#endif
34cadd9c 1615
a3496855 1616 ssp->clk = devm_clk_get(&pdev->dev, NULL);
5eb263ef 1617 if (IS_ERR(ssp->clk))
14af1df3 1618 return ERR_CAST(ssp->clk);
5eb263ef 1619
a3496855 1620 ssp->irq = platform_get_irq(pdev, 0);
5eb263ef 1621 if (ssp->irq < 0)
14af1df3 1622 return ERR_PTR(ssp->irq);
5eb263ef 1623
03fbf488 1624 ssp->type = type;
4f3d9577 1625 ssp->dev = &pdev->dev;
365e856e 1626 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
a3496855 1627
f2faa3ec 1628 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
a3496855 1629 pdata->num_chipselect = 1;
cddb339b 1630 pdata->enable_dma = true;
37821a82 1631 pdata->dma_burst_size = 1;
a3496855
MW
1632
1633 return pdata;
1634}
1635
51eea52d 1636static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
3cc7b0e3 1637 unsigned int cs)
0c27d9cf 1638{
51eea52d 1639 struct driver_data *drv_data = spi_controller_get_devdata(controller);
0c27d9cf 1640
c3dce24c 1641 if (has_acpi_companion(drv_data->ssp->dev)) {
0c27d9cf
MW
1642 switch (drv_data->ssp_type) {
1643 /*
1644 * For Atoms the ACPI DeviceSelection used by the Windows
1645 * driver starts from 1 instead of 0 so translate it here
1646 * to match what Linux expects.
1647 */
1648 case LPSS_BYT_SSP:
30f3a6ab 1649 case LPSS_BSW_SSP:
0c27d9cf
MW
1650 return cs - 1;
1651
1652 default:
1653 break;
1654 }
1655 }
1656
1657 return cs;
1658}
1659
b2662a16
DV
1660static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1661{
1662 return MAX_DMA_LEN;
1663}
1664
fd4a319b 1665static int pxa2xx_spi_probe(struct platform_device *pdev)
e0c9905e
SS
1666{
1667 struct device *dev = &pdev->dev;
51eea52d
LR
1668 struct pxa2xx_spi_controller *platform_info;
1669 struct spi_controller *controller;
65a00a20 1670 struct driver_data *drv_data;
2f1a74e5 1671 struct ssp_device *ssp;
8b136baa 1672 const struct lpss_config *config;
778c12e6 1673 int status;
c039dd27 1674 u32 tmp;
e0c9905e 1675
851bacf5
MW
1676 platform_info = dev_get_platdata(dev);
1677 if (!platform_info) {
0db64215 1678 platform_info = pxa2xx_spi_init_pdata(pdev);
14af1df3 1679 if (IS_ERR(platform_info)) {
a3496855 1680 dev_err(&pdev->dev, "missing platform data\n");
14af1df3 1681 return PTR_ERR(platform_info);
a3496855 1682 }
851bacf5 1683 }
e0c9905e 1684
baffe169 1685 ssp = pxa_ssp_request(pdev->id, pdev->name);
851bacf5
MW
1686 if (!ssp)
1687 ssp = &platform_info->ssp;
1688
1689 if (!ssp->mmio_base) {
8083d6b8 1690 dev_err(&pdev->dev, "failed to get SSP\n");
e0c9905e
SS
1691 return -ENODEV;
1692 }
1693
ec93cb6f 1694 if (platform_info->is_slave)
5626308b 1695 controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
ec93cb6f 1696 else
5626308b 1697 controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
ec93cb6f 1698
51eea52d
LR
1699 if (!controller) {
1700 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
f2eed8ca
AS
1701 status = -ENOMEM;
1702 goto out_error_controller_alloc;
e0c9905e 1703 }
51eea52d
LR
1704 drv_data = spi_controller_get_devdata(controller);
1705 drv_data->controller = controller;
1706 drv_data->controller_info = platform_info;
2f1a74e5 1707 drv_data->ssp = ssp;
e0c9905e 1708
94acf807
AS
1709 controller->dev.of_node = dev->of_node;
1710 controller->dev.fwnode = dev->fwnode;
1711
8083d6b8 1712 /* The spi->mode bits understood by this driver: */
51eea52d
LR
1713 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1714
1715 controller->bus_num = ssp->port_id;
1716 controller->dma_alignment = DMA_ALIGNMENT;
1717 controller->cleanup = cleanup;
1718 controller->setup = setup;
1719 controller->set_cs = pxa2xx_spi_set_cs;
1720 controller->transfer_one = pxa2xx_spi_transfer_one;
1721 controller->slave_abort = pxa2xx_spi_slave_abort;
1722 controller->handle_err = pxa2xx_spi_handle_err;
1723 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1724 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1725 controller->auto_runtime_pm = true;
1726 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
e0c9905e 1727
2f1a74e5 1728 drv_data->ssp_type = ssp->type;
e0c9905e 1729
2a8626a9 1730 if (pxa25x_ssp_comp(drv_data)) {
e5262d05
WC
1731 switch (drv_data->ssp_type) {
1732 case QUARK_X1000_SSP:
51eea52d 1733 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
e5262d05
WC
1734 break;
1735 default:
51eea52d 1736 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
e5262d05
WC
1737 break;
1738 }
1739
e0c9905e
SS
1740 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1741 drv_data->dma_cr1 = 0;
1742 drv_data->clear_sr = SSSR_ROR;
1743 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1744 } else {
51eea52d 1745 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
e0c9905e 1746 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
5928808e 1747 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
e0c9905e 1748 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
ec93cb6f
LR
1749 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1750 | SSSR_ROR | SSSR_TUR;
e0c9905e
SS
1751 }
1752
49cbb1e0
SAS
1753 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1754 drv_data);
e0c9905e 1755 if (status < 0) {
65a00a20 1756 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
51eea52d 1757 goto out_error_controller_alloc;
e0c9905e
SS
1758 }
1759
1760 /* Setup DMA if requested */
e0c9905e 1761 if (platform_info->enable_dma) {
cd7bed00
MW
1762 status = pxa2xx_spi_dma_setup(drv_data);
1763 if (status) {
8b57b11b 1764 dev_warn(dev, "no DMA channels available, using PIO\n");
cd7bed00 1765 platform_info->enable_dma = false;
b6ced294 1766 } else {
51eea52d 1767 controller->can_dma = pxa2xx_spi_can_dma;
bf9f742c 1768 controller->max_dma_len = MAX_DMA_LEN;
b2662a16
DV
1769 controller->max_transfer_size =
1770 pxa2xx_spi_max_dma_transfer_size;
e0c9905e 1771 }
e0c9905e
SS
1772 }
1773
1774 /* Enable SOC clock */
62bbc864
TJ
1775 status = clk_prepare_enable(ssp->clk);
1776 if (status)
1777 goto out_error_dma_irq_alloc;
3343b7a6 1778
51eea52d 1779 controller->max_speed_hz = clk_get_rate(ssp->clk);
23cdddb2
JN
1780 /*
1781 * Set minimum speed for all other platforms than Intel Quark which is
1782 * able do under 1 Hz transfers.
1783 */
1784 if (!pxa25x_ssp_comp(drv_data))
1785 controller->min_speed_hz =
1786 DIV_ROUND_UP(controller->max_speed_hz, 4096);
1787 else if (!is_quark_x1000_ssp(drv_data))
1788 controller->min_speed_hz =
1789 DIV_ROUND_UP(controller->max_speed_hz, 512);
e0c9905e 1790
0c8ccd8b
AS
1791 pxa_ssp_disable(ssp);
1792
e0c9905e 1793 /* Load default SSP configuration */
e5262d05
WC
1794 switch (drv_data->ssp_type) {
1795 case QUARK_X1000_SSP:
7c7289a4
AS
1796 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1797 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
c039dd27 1798 pxa2xx_spi_write(drv_data, SSCR1, tmp);
e5262d05 1799
8083d6b8 1800 /* Using the Motorola SPI protocol and use 8 bit frame */
7c7289a4
AS
1801 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1802 pxa2xx_spi_write(drv_data, SSCR0, tmp);
e5262d05 1803 break;
7c7289a4
AS
1804 case CE4100_SSP:
1805 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1806 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1807 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1808 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1809 pxa2xx_spi_write(drv_data, SSCR0, tmp);
a2dd8af0 1810 break;
e5262d05 1811 default:
ec93cb6f 1812
51eea52d 1813 if (spi_controller_is_slave(controller)) {
ec93cb6f
LR
1814 tmp = SSCR1_SCFR |
1815 SSCR1_SCLKDIR |
1816 SSCR1_SFRMDIR |
1817 SSCR1_RxTresh(2) |
1818 SSCR1_TxTresh(1) |
1819 SSCR1_SPH;
1820 } else {
1821 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1822 SSCR1_TxTresh(TX_THRESH_DFLT);
1823 }
c039dd27 1824 pxa2xx_spi_write(drv_data, SSCR1, tmp);
ec93cb6f 1825 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
51eea52d 1826 if (!spi_controller_is_slave(controller))
ec93cb6f 1827 tmp |= SSCR0_SCR(2);
c039dd27 1828 pxa2xx_spi_write(drv_data, SSCR0, tmp);
e5262d05
WC
1829 break;
1830 }
1831
2a8626a9 1832 if (!pxa25x_ssp_comp(drv_data))
c039dd27 1833 pxa2xx_spi_write(drv_data, SSTO, 0);
e5262d05
WC
1834
1835 if (!is_quark_x1000_ssp(drv_data))
c039dd27 1836 pxa2xx_spi_write(drv_data, SSPSP, 0);
e0c9905e 1837
8b136baa
JN
1838 if (is_lpss_ssp(drv_data)) {
1839 lpss_ssp_setup(drv_data);
1840 config = lpss_get_config(drv_data);
1841 if (config->reg_capabilities >= 0) {
1842 tmp = __lpss_ssp_read_priv(drv_data,
1843 config->reg_capabilities);
1844 tmp &= LPSS_CAPS_CS_EN_MASK;
1845 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1846 platform_info->num_chipselect = ffz(tmp);
30f3a6ab
MW
1847 } else if (config->cs_num) {
1848 platform_info->num_chipselect = config->cs_num;
8b136baa
JN
1849 }
1850 }
51eea52d 1851 controller->num_chipselect = platform_info->num_chipselect;
778c12e6 1852 controller->use_gpio_descriptors = true;
6ac5a435 1853
77d33897
LR
1854 if (platform_info->is_slave) {
1855 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1856 "ready", GPIOD_OUT_LOW);
1857 if (IS_ERR(drv_data->gpiod_ready)) {
1858 status = PTR_ERR(drv_data->gpiod_ready);
1859 goto out_error_clock_enabled;
1860 }
1861 }
1862
836d1a22
AO
1863 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1864 pm_runtime_use_autosuspend(&pdev->dev);
1865 pm_runtime_set_active(&pdev->dev);
1866 pm_runtime_enable(&pdev->dev);
1867
e0c9905e
SS
1868 /* Register with the SPI framework */
1869 platform_set_drvdata(pdev, drv_data);
32e5b572 1870 status = spi_register_controller(controller);
eb743ec6 1871 if (status) {
8083d6b8 1872 dev_err(&pdev->dev, "problem registering SPI controller\n");
12742045 1873 goto out_error_pm_runtime_enabled;
e0c9905e
SS
1874 }
1875
1876 return status;
1877
12742045 1878out_error_pm_runtime_enabled:
e2b714af 1879 pm_runtime_disable(&pdev->dev);
12742045
LR
1880
1881out_error_clock_enabled:
3343b7a6 1882 clk_disable_unprepare(ssp->clk);
62bbc864
TJ
1883
1884out_error_dma_irq_alloc:
cd7bed00 1885 pxa2xx_spi_dma_release(drv_data);
2f1a74e5 1886 free_irq(ssp->irq, drv_data);
e0c9905e 1887
51eea52d 1888out_error_controller_alloc:
baffe169 1889 pxa_ssp_free(ssp);
e0c9905e
SS
1890 return status;
1891}
1892
1893static int pxa2xx_spi_remove(struct platform_device *pdev)
1894{
1895 struct driver_data *drv_data = platform_get_drvdata(pdev);
3d24b2a4 1896 struct ssp_device *ssp = drv_data->ssp;
e0c9905e 1897
7d94a505
MW
1898 pm_runtime_get_sync(&pdev->dev);
1899
32e5b572
LW
1900 spi_unregister_controller(drv_data->controller);
1901
e0c9905e 1902 /* Disable the SSP at the peripheral and SOC level */
0c8ccd8b 1903 pxa_ssp_disable(ssp);
3343b7a6 1904 clk_disable_unprepare(ssp->clk);
e0c9905e
SS
1905
1906 /* Release DMA */
51eea52d 1907 if (drv_data->controller_info->enable_dma)
cd7bed00 1908 pxa2xx_spi_dma_release(drv_data);
e0c9905e 1909
7d94a505
MW
1910 pm_runtime_put_noidle(&pdev->dev);
1911 pm_runtime_disable(&pdev->dev);
1912
e0c9905e 1913 /* Release IRQ */
2f1a74e5 1914 free_irq(ssp->irq, drv_data);
1915
1916 /* Release SSP */
baffe169 1917 pxa_ssp_free(ssp);
e0c9905e 1918
e0c9905e
SS
1919 return 0;
1920}
1921
382cebb0 1922#ifdef CONFIG_PM_SLEEP
86d2593a 1923static int pxa2xx_spi_suspend(struct device *dev)
e0c9905e 1924{
86d2593a 1925 struct driver_data *drv_data = dev_get_drvdata(dev);
2f1a74e5 1926 struct ssp_device *ssp = drv_data->ssp;
bffc967e 1927 int status;
e0c9905e 1928
51eea52d 1929 status = spi_controller_suspend(drv_data->controller);
eb743ec6 1930 if (status)
e0c9905e 1931 return status;
0c8ccd8b
AS
1932
1933 pxa_ssp_disable(ssp);
2b9375b9
DB
1934
1935 if (!pm_runtime_suspended(dev))
1936 clk_disable_unprepare(ssp->clk);
e0c9905e
SS
1937
1938 return 0;
1939}
1940
86d2593a 1941static int pxa2xx_spi_resume(struct device *dev)
e0c9905e 1942{
86d2593a 1943 struct driver_data *drv_data = dev_get_drvdata(dev);
2f1a74e5 1944 struct ssp_device *ssp = drv_data->ssp;
bffc967e 1945 int status;
e0c9905e
SS
1946
1947 /* Enable the SSP clock */
62bbc864
TJ
1948 if (!pm_runtime_suspended(dev)) {
1949 status = clk_prepare_enable(ssp->clk);
1950 if (status)
1951 return status;
1952 }
e0c9905e
SS
1953
1954 /* Start the queue running */
51eea52d 1955 return spi_controller_resume(drv_data->controller);
e0c9905e 1956}
7d94a505
MW
1957#endif
1958
ec833050 1959#ifdef CONFIG_PM
7d94a505
MW
1960static int pxa2xx_spi_runtime_suspend(struct device *dev)
1961{
1962 struct driver_data *drv_data = dev_get_drvdata(dev);
1963
1964 clk_disable_unprepare(drv_data->ssp->clk);
1965 return 0;
1966}
1967
1968static int pxa2xx_spi_runtime_resume(struct device *dev)
1969{
1970 struct driver_data *drv_data = dev_get_drvdata(dev);
62bbc864 1971 int status;
7d94a505 1972
62bbc864
TJ
1973 status = clk_prepare_enable(drv_data->ssp->clk);
1974 return status;
7d94a505
MW
1975}
1976#endif
86d2593a 1977
47145210 1978static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
7d94a505
MW
1979 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1980 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1981 pxa2xx_spi_runtime_resume, NULL)
86d2593a 1982};
e0c9905e
SS
1983
1984static struct platform_driver driver = {
1985 .driver = {
86d2593a 1986 .name = "pxa2xx-spi",
86d2593a 1987 .pm = &pxa2xx_spi_pm_ops,
a3496855 1988 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
87ae1d2d 1989 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
e0c9905e 1990 },
fbd29a14 1991 .probe = pxa2xx_spi_probe,
d1e44d9c 1992 .remove = pxa2xx_spi_remove,
e0c9905e
SS
1993};
1994
1995static int __init pxa2xx_spi_init(void)
1996{
fbd29a14 1997 return platform_driver_register(&driver);
e0c9905e 1998}
5b61a749 1999subsys_initcall(pxa2xx_spi_init);
e0c9905e
SS
2000
2001static void __exit pxa2xx_spi_exit(void)
2002{
2003 platform_driver_unregister(&driver);
2004}
2005module_exit(pxa2xx_spi_exit);
51ebf6ac
FS
2006
2007MODULE_SOFTDEP("pre: dw_dmac");