]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/spi/spi-sh-msiof.c
UBUNTU: [Config] CONFIG_MMC_SDHCI_XENON=m
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
8051effc
MD
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
cf9e4784
HN
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8051effc
MD
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
e2dbf5eb
GL
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
8051effc 17#include <linux/delay.h>
b0d0ce8b
GU
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
e2dbf5eb
GL
20#include <linux/err.h>
21#include <linux/gpio.h>
8051effc 22#include <linux/interrupt.h>
e2dbf5eb
GL
23#include <linux/io.h>
24#include <linux/kernel.h>
d7614de4 25#include <linux/module.h>
cf9c86ef 26#include <linux/of.h>
50a7e23f 27#include <linux/of_device.h>
8051effc 28#include <linux/platform_device.h>
8051effc 29#include <linux/pm_runtime.h>
b0d0ce8b 30#include <linux/sh_dma.h>
8051effc 31
e2dbf5eb 32#include <linux/spi/sh_msiof.h>
8051effc 33#include <linux/spi/spi.h>
8051effc 34
8051effc
MD
35#include <asm/unaligned.h>
36
50a7e23f
GU
37struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
beb74bb0 40 u16 master_flags;
50a7e23f
GU
41};
42
8051effc 43struct sh_msiof_spi_priv {
b0d0ce8b 44 struct spi_master *master;
8051effc
MD
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
fe78d0b7
KM
50 unsigned int tx_fifo_size;
51 unsigned int rx_fifo_size;
b0d0ce8b
GU
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
cf9e4784 56 bool slave_aborted;
8051effc
MD
57};
58
01cfef57
GU
59#define TMDR1 0x00 /* Transmit Mode Register 1 */
60#define TMDR2 0x04 /* Transmit Mode Register 2 */
61#define TMDR3 0x08 /* Transmit Mode Register 3 */
62#define RMDR1 0x10 /* Receive Mode Register 1 */
63#define RMDR2 0x14 /* Receive Mode Register 2 */
64#define RMDR3 0x18 /* Receive Mode Register 3 */
65#define TSCR 0x20 /* Transmit Clock Select Register */
66#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67#define CTR 0x28 /* Control Register */
68#define FCTR 0x30 /* FIFO Control Register */
69#define STR 0x40 /* Status Register */
70#define IER 0x44 /* Interrupt Enable Register */
71#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73#define TFDR 0x50 /* Transmit FIFO Data Register */
74#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76#define RFDR 0x60 /* Receive FIFO Data Register */
77
78/* TMDR1 and RMDR1 */
79#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
3110628d
YS
85#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
6d40530e 87#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
01cfef57
GU
88#define MDR1_FLD_SHIFT 2
89#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
90/* TMDR1 */
91#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
92
93/* TMDR2 and RMDR2 */
94#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
95#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
97
98/* TSCR and RSCR */
99#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
100#define SCR_BRPS(i) (((i) - 1) << 8)
101#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
102#define SCR_BRDV_DIV_2 0x0000
103#define SCR_BRDV_DIV_4 0x0001
104#define SCR_BRDV_DIV_8 0x0002
105#define SCR_BRDV_DIV_16 0x0003
106#define SCR_BRDV_DIV_32 0x0004
107#define SCR_BRDV_DIV_1 0x0007
108
109/* CTR */
110#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
112#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
113#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
115#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
116#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
117#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
118#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
119#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
120#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
121#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
122#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
123#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
124#define CTR_TXE 0x00000200 /* Transmit Enable */
125#define CTR_RXE 0x00000100 /* Receive Enable */
126
2e2b3687
GU
127/* FCTR */
128#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
129#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
130#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
131#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
132#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
133#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
134#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
135#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
136#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
137#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
138#define FCTR_TFUA_SHIFT 20
139#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
140#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
141#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
142#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
143#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
144#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
145#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
146#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
147#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
148#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
149#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150#define FCTR_RFUA_SHIFT 4
151#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
152
153/* STR */
154#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
155#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
01cfef57 156#define STR_TEOF 0x00800000 /* Frame Transmission End */
2e2b3687
GU
157#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
158#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
159#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
160#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
161#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
01cfef57 162#define STR_REOF 0x00000080 /* Frame Reception End */
2e2b3687
GU
163#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
164#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
165#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
166
167/* IER */
168#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
170#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
171#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
172#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
173#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
174#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
175#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
176#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
177#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
178#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
179#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
180#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
181#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
01cfef57 182
8051effc 183
e2dbf5eb 184static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
185{
186 switch (reg_offs) {
187 case TSCR:
188 case RSCR:
189 return ioread16(p->mapbase + reg_offs);
190 default:
191 return ioread32(p->mapbase + reg_offs);
192 }
193}
194
195static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 196 u32 value)
8051effc
MD
197{
198 switch (reg_offs) {
199 case TSCR:
200 case RSCR:
201 iowrite16(value, p->mapbase + reg_offs);
202 break;
203 default:
204 iowrite32(value, p->mapbase + reg_offs);
205 break;
206 }
207}
208
209static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 210 u32 clr, u32 set)
8051effc 211{
e2dbf5eb
GL
212 u32 mask = clr | set;
213 u32 data;
8051effc
MD
214 int k;
215
216 data = sh_msiof_read(p, CTR);
217 data &= ~clr;
218 data |= set;
219 sh_msiof_write(p, CTR, data);
220
221 for (k = 100; k > 0; k--) {
222 if ((sh_msiof_read(p, CTR) & mask) == set)
223 break;
224
225 udelay(10);
226 }
227
228 return k > 0 ? 0 : -ETIMEDOUT;
229}
230
231static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232{
233 struct sh_msiof_spi_priv *p = data;
234
235 /* just disable the interrupt and wake up */
236 sh_msiof_write(p, IER, 0);
237 complete(&p->done);
238
239 return IRQ_HANDLED;
240}
241
242static struct {
243 unsigned short div;
65d5665b
NI
244 unsigned short brdv;
245} const sh_msiof_spi_div_table[] = {
246 { 1, SCR_BRDV_DIV_1 },
247 { 2, SCR_BRDV_DIV_2 },
248 { 4, SCR_BRDV_DIV_4 },
249 { 8, SCR_BRDV_DIV_8 },
250 { 16, SCR_BRDV_DIV_16 },
251 { 32, SCR_BRDV_DIV_32 },
8051effc
MD
252};
253
254static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
6a85fc5a 255 unsigned long parent_rate, u32 spi_hz)
8051effc
MD
256{
257 unsigned long div = 1024;
65d5665b 258 u32 brps, scr;
8051effc
MD
259 size_t k;
260
261 if (!WARN_ON(!spi_hz || !parent_rate))
e4d313ff 262 div = DIV_ROUND_UP(parent_rate, spi_hz);
8051effc 263
65d5665b
NI
264 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
265 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
c3ccf357
GU
266 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
267 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
268 continue;
65d5665b 269 if (brps <= 32) /* max of brdv is 32 */
8051effc
MD
270 break;
271 }
272
65d5665b 273 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
8051effc 274
65d5665b
NI
275 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
276 sh_msiof_write(p, TSCR, scr);
a6802cc0 277 if (!(p->master->flags & SPI_MASTER_MUST_TX))
65d5665b 278 sh_msiof_write(p, RSCR, scr);
8051effc
MD
279}
280
3110628d
YS
281static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
282{
283 /*
284 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
285 * b'000 : 0
286 * b'001 : 100
287 * b'010 : 200
288 * b'011 (SYNCDL only) : 300
289 * b'101 : 50
290 * b'110 : 150
291 */
292 if (dtdl_or_syncdl % 100)
293 return dtdl_or_syncdl / 100 + 5;
294 else
295 return dtdl_or_syncdl / 100;
296}
297
298static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
299{
300 u32 val;
301
302 if (!p->info)
303 return 0;
304
305 /* check if DTDL and SYNCDL is allowed value */
306 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
307 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
308 return 0;
309 }
310
311 /* check if the sum of DTDL and SYNCDL becomes an integer value */
312 if ((p->info->dtdl + p->info->syncdl) % 100) {
313 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
314 return 0;
315 }
316
317 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
318 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
319
320 return val;
321}
322
8051effc 323static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
e2dbf5eb 324 u32 cpol, u32 cpha,
50a77998 325 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 326{
e2dbf5eb 327 u32 tmp;
8051effc
MD
328 int edge;
329
330 /*
e8708ef7
MP
331 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
332 * 0 0 10 10 1 1
333 * 0 1 10 10 0 0
334 * 1 0 11 11 0 0
335 * 1 1 11 11 1 1
8051effc 336 */
01cfef57
GU
337 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
338 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
339 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
3110628d 340 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
cf9e4784
HN
341 if (spi_controller_is_slave(p->master))
342 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
343 else
344 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
a6802cc0 345 if (p->master->flags & SPI_MASTER_MUST_TX) {
beb74bb0
GU
346 /* These bits are reserved if RX needs TX */
347 tmp &= ~0x0000ffff;
348 }
01cfef57 349 sh_msiof_write(p, RMDR1, tmp);
8051effc 350
01cfef57
GU
351 tmp = 0;
352 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
353 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
8051effc 354
e2dbf5eb 355 edge = cpol ^ !cpha;
8051effc 356
01cfef57
GU
357 tmp |= edge << CTR_TEDG_SHIFT;
358 tmp |= edge << CTR_REDG_SHIFT;
359 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
8051effc
MD
360 sh_msiof_write(p, CTR, tmp);
361}
362
363static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
364 const void *tx_buf, void *rx_buf,
e2dbf5eb 365 u32 bits, u32 words)
8051effc 366{
01cfef57 367 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
8051effc 368
a6802cc0 369 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
8051effc
MD
370 sh_msiof_write(p, TMDR2, dr2);
371 else
01cfef57 372 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
8051effc
MD
373
374 if (rx_buf)
375 sh_msiof_write(p, RMDR2, dr2);
8051effc
MD
376}
377
378static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
379{
380 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
381}
382
383static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
384 const void *tx_buf, int words, int fs)
385{
e2dbf5eb 386 const u8 *buf_8 = tx_buf;
8051effc
MD
387 int k;
388
389 for (k = 0; k < words; k++)
390 sh_msiof_write(p, TFDR, buf_8[k] << fs);
391}
392
393static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
394 const void *tx_buf, int words, int fs)
395{
e2dbf5eb 396 const u16 *buf_16 = tx_buf;
8051effc
MD
397 int k;
398
399 for (k = 0; k < words; k++)
400 sh_msiof_write(p, TFDR, buf_16[k] << fs);
401}
402
403static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
404 const void *tx_buf, int words, int fs)
405{
e2dbf5eb 406 const u16 *buf_16 = tx_buf;
8051effc
MD
407 int k;
408
409 for (k = 0; k < words; k++)
410 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
411}
412
413static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415{
e2dbf5eb 416 const u32 *buf_32 = tx_buf;
8051effc
MD
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, TFDR, buf_32[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425{
e2dbf5eb 426 const u32 *buf_32 = tx_buf;
8051effc
MD
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
431}
432
9dabb3f3
GL
433static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435{
436 const u32 *buf_32 = tx_buf;
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
441}
442
443static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445{
446 const u32 *buf_32 = tx_buf;
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
451}
452
8051effc
MD
453static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
454 void *rx_buf, int words, int fs)
455{
e2dbf5eb 456 u8 *buf_8 = rx_buf;
8051effc
MD
457 int k;
458
459 for (k = 0; k < words; k++)
460 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
461}
462
463static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
464 void *rx_buf, int words, int fs)
465{
e2dbf5eb 466 u16 *buf_16 = rx_buf;
8051effc
MD
467 int k;
468
469 for (k = 0; k < words; k++)
470 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
471}
472
473static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
474 void *rx_buf, int words, int fs)
475{
e2dbf5eb 476 u16 *buf_16 = rx_buf;
8051effc
MD
477 int k;
478
479 for (k = 0; k < words; k++)
480 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
481}
482
483static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485{
e2dbf5eb 486 u32 *buf_32 = rx_buf;
8051effc
MD
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495{
e2dbf5eb 496 u32 *buf_32 = rx_buf;
8051effc
MD
497 int k;
498
499 for (k = 0; k < words; k++)
500 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
501}
502
9dabb3f3
GL
503static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505{
506 u32 *buf_32 = rx_buf;
507 int k;
508
509 for (k = 0; k < words; k++)
510 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
511}
512
513static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515{
516 u32 *buf_32 = rx_buf;
517 int k;
518
519 for (k = 0; k < words; k++)
520 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
521}
522
8d19534a 523static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 524{
8d19534a 525 struct device_node *np = spi->master->dev.of_node;
c833ff73 526 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
8051effc 527
01576056
HN
528 pm_runtime_get_sync(&p->pdev->dev);
529
8d19534a
GU
530 if (!np) {
531 /*
532 * Use spi->controller_data for CS (same strategy as spi_gpio),
533 * if any. otherwise let HW control CS
534 */
535 spi->cs_gpio = (uintptr_t)spi->controller_data;
536 }
8051effc 537
c833ff73
GU
538 /* Configure pins before deasserting CS */
539 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
540 !!(spi->mode & SPI_CPHA),
541 !!(spi->mode & SPI_3WIRE),
542 !!(spi->mode & SPI_LSB_FIRST),
543 !!(spi->mode & SPI_CS_HIGH));
8051effc 544
1bd6363b
GU
545 if (spi->cs_gpio >= 0)
546 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
8051effc 547
01576056 548
c8935ef0 549 pm_runtime_put(&p->pdev->dev);
01576056 550
1bd6363b 551 return 0;
8051effc
MD
552}
553
c833ff73
GU
554static int sh_msiof_prepare_message(struct spi_master *master,
555 struct spi_message *msg)
8051effc 556{
c833ff73
GU
557 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
558 const struct spi_device *spi = msg->spi;
8051effc 559
c833ff73
GU
560 /* Configure pins before asserting CS */
561 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
562 !!(spi->mode & SPI_CPHA),
563 !!(spi->mode & SPI_3WIRE),
564 !!(spi->mode & SPI_LSB_FIRST),
565 !!(spi->mode & SPI_CS_HIGH));
566 return 0;
8051effc
MD
567}
568
76c02e71
GU
569static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
570{
cf9e4784
HN
571 bool slave = spi_controller_is_slave(p->master);
572 int ret = 0;
76c02e71
GU
573
574 /* setup clock and rx/tx signals */
cf9e4784
HN
575 if (!slave)
576 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
76c02e71
GU
577 if (rx_buf && !ret)
578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
579 if (!ret)
580 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
581
582 /* start by setting frame bit */
cf9e4784 583 if (!ret && !slave)
76c02e71
GU
584 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
585
586 return ret;
587}
588
589static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
590{
cf9e4784
HN
591 bool slave = spi_controller_is_slave(p->master);
592 int ret = 0;
76c02e71
GU
593
594 /* shut down frame, rx/tx and clock signals */
cf9e4784
HN
595 if (!slave)
596 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
76c02e71
GU
597 if (!ret)
598 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
599 if (rx_buf && !ret)
600 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
cf9e4784 601 if (!ret && !slave)
76c02e71
GU
602 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
603
604 return ret;
605}
606
cf9e4784
HN
607static int sh_msiof_slave_abort(struct spi_master *master)
608{
609 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
610
611 p->slave_aborted = true;
612 complete(&p->done);
613 return 0;
614}
615
616static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
617{
618 if (spi_controller_is_slave(p->master)) {
619 if (wait_for_completion_interruptible(&p->done) ||
620 p->slave_aborted) {
621 dev_dbg(&p->pdev->dev, "interrupted\n");
622 return -EINTR;
623 }
624 } else {
625 if (!wait_for_completion_timeout(&p->done, HZ)) {
626 dev_err(&p->pdev->dev, "timeout\n");
627 return -ETIMEDOUT;
628 }
629 }
630
631 return 0;
632}
633
8051effc
MD
634static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
635 void (*tx_fifo)(struct sh_msiof_spi_priv *,
636 const void *, int, int),
637 void (*rx_fifo)(struct sh_msiof_spi_priv *,
638 void *, int, int),
639 const void *tx_buf, void *rx_buf,
640 int words, int bits)
641{
642 int fifo_shift;
643 int ret;
644
645 /* limit maximum word transfer to rx/tx fifo size */
646 if (tx_buf)
647 words = min_t(int, words, p->tx_fifo_size);
648 if (rx_buf)
649 words = min_t(int, words, p->rx_fifo_size);
650
651 /* the fifo contents need shifting */
652 fifo_shift = 32 - bits;
653
b0d0ce8b
GU
654 /* default FIFO watermarks for PIO */
655 sh_msiof_write(p, FCTR, 0);
656
8051effc
MD
657 /* setup msiof transfer mode registers */
658 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
b0d0ce8b 659 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
8051effc
MD
660
661 /* write tx fifo */
662 if (tx_buf)
663 tx_fifo(p, tx_buf, words, fifo_shift);
664
16735d02 665 reinit_completion(&p->done);
cf9e4784 666 p->slave_aborted = false;
76c02e71
GU
667
668 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
669 if (ret) {
670 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 671 goto stop_ier;
8051effc
MD
672 }
673
674 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
675 ret = sh_msiof_wait_for_completion(p);
676 if (ret)
75b82e23 677 goto stop_reset;
8051effc
MD
678
679 /* read rx fifo */
680 if (rx_buf)
681 rx_fifo(p, rx_buf, words, fifo_shift);
682
683 /* clear status bits */
684 sh_msiof_reset_str(p);
685
76c02e71 686 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
687 if (ret) {
688 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 689 return ret;
8051effc
MD
690 }
691
692 return words;
693
75b82e23
GU
694stop_reset:
695 sh_msiof_reset_str(p);
696 sh_msiof_spi_stop(p, rx_buf);
697stop_ier:
8051effc
MD
698 sh_msiof_write(p, IER, 0);
699 return ret;
700}
701
b0d0ce8b
GU
702static void sh_msiof_dma_complete(void *arg)
703{
704 struct sh_msiof_spi_priv *p = arg;
705
706 sh_msiof_write(p, IER, 0);
707 complete(&p->done);
708}
709
710static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
711 void *rx, unsigned int len)
712{
713 u32 ier_bits = 0;
714 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
715 dma_cookie_t cookie;
716 int ret;
717
3e81b592 718 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b
GU
719 if (rx) {
720 ier_bits |= IER_RDREQE | IER_RDMAE;
721 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
722 p->rx_dma_addr, len, DMA_FROM_DEVICE,
723 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
724 if (!desc_rx)
725 return -EAGAIN;
b0d0ce8b 726
b0d0ce8b
GU
727 desc_rx->callback = sh_msiof_dma_complete;
728 desc_rx->callback_param = p;
729 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
730 if (dma_submit_error(cookie))
731 return cookie;
b0d0ce8b
GU
732 }
733
734 if (tx) {
3e81b592
GU
735 ier_bits |= IER_TDREQE | IER_TDMAE;
736 dma_sync_single_for_device(p->master->dma_tx->device->dev,
737 p->tx_dma_addr, len, DMA_TO_DEVICE);
738 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
739 p->tx_dma_addr, len, DMA_TO_DEVICE,
740 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
741 if (!desc_tx) {
742 ret = -EAGAIN;
743 goto no_dma_tx;
744 }
745
b0d0ce8b
GU
746 if (rx) {
747 /* No callback */
748 desc_tx->callback = NULL;
749 } else {
750 desc_tx->callback = sh_msiof_dma_complete;
751 desc_tx->callback_param = p;
752 }
753 cookie = dmaengine_submit(desc_tx);
754 if (dma_submit_error(cookie)) {
755 ret = cookie;
3e81b592 756 goto no_dma_tx;
b0d0ce8b 757 }
b0d0ce8b
GU
758 }
759
3e81b592
GU
760 /* 1 stage FIFO watermarks for DMA */
761 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
762
763 /* setup msiof transfer mode registers (32-bit words) */
764 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
765
766 sh_msiof_write(p, IER, ier_bits);
767
768 reinit_completion(&p->done);
cf9e4784 769 p->slave_aborted = false;
3e81b592
GU
770
771 /* Now start DMA */
3e81b592 772 if (rx)
7a9f957b
GU
773 dma_async_issue_pending(p->master->dma_rx);
774 if (tx)
3e81b592
GU
775 dma_async_issue_pending(p->master->dma_tx);
776
b0d0ce8b
GU
777 ret = sh_msiof_spi_start(p, rx);
778 if (ret) {
779 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 780 goto stop_dma;
b0d0ce8b
GU
781 }
782
783 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
784 ret = sh_msiof_wait_for_completion(p);
785 if (ret)
b0d0ce8b 786 goto stop_reset;
b0d0ce8b
GU
787
788 /* clear status bits */
789 sh_msiof_reset_str(p);
790
791 ret = sh_msiof_spi_stop(p, rx);
792 if (ret) {
793 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
794 return ret;
795 }
796
797 if (rx)
5dabcf2f
GU
798 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
799 p->rx_dma_addr, len,
b0d0ce8b
GU
800 DMA_FROM_DEVICE);
801
802 return 0;
803
804stop_reset:
805 sh_msiof_reset_str(p);
806 sh_msiof_spi_stop(p, rx);
3e81b592 807stop_dma:
b0d0ce8b
GU
808 if (tx)
809 dmaengine_terminate_all(p->master->dma_tx);
3e81b592 810no_dma_tx:
b0d0ce8b
GU
811 if (rx)
812 dmaengine_terminate_all(p->master->dma_rx);
b0d0ce8b
GU
813 sh_msiof_write(p, IER, 0);
814 return ret;
815}
816
817static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
818{
819 /* src or dst can be unaligned, but not both */
820 if ((unsigned long)src & 3) {
821 while (words--) {
822 *dst++ = swab32(get_unaligned(src));
823 src++;
824 }
825 } else if ((unsigned long)dst & 3) {
826 while (words--) {
827 put_unaligned(swab32(*src++), dst);
828 dst++;
829 }
830 } else {
831 while (words--)
832 *dst++ = swab32(*src++);
833 }
834}
835
836static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
837{
838 /* src or dst can be unaligned, but not both */
839 if ((unsigned long)src & 3) {
840 while (words--) {
841 *dst++ = swahw32(get_unaligned(src));
842 src++;
843 }
844 } else if ((unsigned long)dst & 3) {
845 while (words--) {
846 put_unaligned(swahw32(*src++), dst);
847 dst++;
848 }
849 } else {
850 while (words--)
851 *dst++ = swahw32(*src++);
852 }
853}
854
855static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
856{
857 memcpy(dst, src, words * 4);
858}
859
1bd6363b
GU
860static int sh_msiof_transfer_one(struct spi_master *master,
861 struct spi_device *spi,
862 struct spi_transfer *t)
8051effc 863{
1bd6363b 864 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
b0d0ce8b 865 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
866 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
867 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
868 const void *tx_buf = t->tx_buf;
869 void *rx_buf = t->rx_buf;
870 unsigned int len = t->len;
871 unsigned int bits = t->bits_per_word;
872 unsigned int bytes_per_word;
873 unsigned int words;
8051effc 874 int n;
9dabb3f3 875 bool swab;
b0d0ce8b
GU
876 int ret;
877
878 /* setup clocks (clock already enabled in chipselect()) */
cf9e4784
HN
879 if (!spi_controller_is_slave(p->master))
880 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
b0d0ce8b
GU
881
882 while (master->dma_tx && len > 15) {
883 /*
884 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
885 * words, with byte resp. word swapping.
886 */
fe78d0b7
KM
887 unsigned int l = 0;
888
889 if (tx_buf)
890 l = min(len, p->tx_fifo_size * 4);
891 if (rx_buf)
892 l = min(len, p->rx_fifo_size * 4);
b0d0ce8b
GU
893
894 if (bits <= 8) {
895 if (l & 3)
896 break;
897 copy32 = copy_bswap32;
898 } else if (bits <= 16) {
899 if (l & 1)
900 break;
901 copy32 = copy_wswap32;
902 } else {
903 copy32 = copy_plain32;
904 }
905
906 if (tx_buf)
907 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 908
b0d0ce8b 909 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378
GU
910 if (ret == -EAGAIN) {
911 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
912 dev_driver_string(&p->pdev->dev),
913 dev_name(&p->pdev->dev));
914 break;
915 }
b0d0ce8b
GU
916 if (ret)
917 return ret;
918
919 if (rx_buf) {
920 copy32(rx_buf, p->rx_dma_page, l / 4);
921 rx_buf += l;
922 }
923 if (tx_buf)
924 tx_buf += l;
925
926 len -= l;
927 if (!len)
928 return 0;
929 }
8051effc 930
0312d591 931 if (bits <= 8 && len > 15 && !(len & 3)) {
9dabb3f3
GL
932 bits = 32;
933 swab = true;
934 } else {
935 swab = false;
936 }
937
8051effc
MD
938 /* setup bytes per word and fifo read/write functions */
939 if (bits <= 8) {
940 bytes_per_word = 1;
941 tx_fifo = sh_msiof_spi_write_fifo_8;
942 rx_fifo = sh_msiof_spi_read_fifo_8;
943 } else if (bits <= 16) {
944 bytes_per_word = 2;
0312d591 945 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
946 tx_fifo = sh_msiof_spi_write_fifo_16u;
947 else
948 tx_fifo = sh_msiof_spi_write_fifo_16;
949
0312d591 950 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
951 rx_fifo = sh_msiof_spi_read_fifo_16u;
952 else
953 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
954 } else if (swab) {
955 bytes_per_word = 4;
0312d591 956 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
957 tx_fifo = sh_msiof_spi_write_fifo_s32u;
958 else
959 tx_fifo = sh_msiof_spi_write_fifo_s32;
960
0312d591 961 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
962 rx_fifo = sh_msiof_spi_read_fifo_s32u;
963 else
964 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
965 } else {
966 bytes_per_word = 4;
0312d591 967 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
968 tx_fifo = sh_msiof_spi_write_fifo_32u;
969 else
970 tx_fifo = sh_msiof_spi_write_fifo_32;
971
0312d591 972 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
973 rx_fifo = sh_msiof_spi_read_fifo_32u;
974 else
975 rx_fifo = sh_msiof_spi_read_fifo_32;
976 }
977
8051effc 978 /* transfer in fifo sized chunks */
0312d591
GU
979 words = len / bytes_per_word;
980
981 while (words > 0) {
982 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
983 words, bits);
984 if (n < 0)
75b82e23 985 return n;
8051effc 986
0312d591
GU
987 if (tx_buf)
988 tx_buf += n * bytes_per_word;
989 if (rx_buf)
990 rx_buf += n * bytes_per_word;
8051effc
MD
991 words -= n;
992 }
993
8051effc
MD
994 return 0;
995}
996
50a7e23f
GU
997static const struct sh_msiof_chipdata sh_data = {
998 .tx_fifo_size = 64,
999 .rx_fifo_size = 64,
beb74bb0
GU
1000 .master_flags = 0,
1001};
1002
1003static const struct sh_msiof_chipdata r8a779x_data = {
1004 .tx_fifo_size = 64,
fe78d0b7 1005 .rx_fifo_size = 64,
beb74bb0 1006 .master_flags = SPI_MASTER_MUST_TX,
50a7e23f
GU
1007};
1008
1009static const struct of_device_id sh_msiof_match[] = {
50a7e23f 1010 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
beb74bb0
GU
1011 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
1012 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
e221cc99
GU
1013 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
1014 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
1015 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
4286db84 1016 { .compatible = "renesas,rcar-gen2-msiof", .data = &r8a779x_data },
eb51cffa 1017 { .compatible = "renesas,msiof-r8a7796", .data = &r8a779x_data },
4286db84 1018 { .compatible = "renesas,rcar-gen3-msiof", .data = &r8a779x_data },
264c3e8d 1019 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
50a7e23f
GU
1020 {},
1021};
1022MODULE_DEVICE_TABLE(of, sh_msiof_match);
1023
cf9c86ef
BH
1024#ifdef CONFIG_OF
1025static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1026{
1027 struct sh_msiof_spi_info *info;
1028 struct device_node *np = dev->of_node;
32d3b2d1 1029 u32 num_cs = 1;
cf9c86ef
BH
1030
1031 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 1032 if (!info)
cf9c86ef 1033 return NULL;
cf9c86ef 1034
cf9e4784
HN
1035 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1036 : MSIOF_SPI_MASTER;
1037
cf9c86ef 1038 /* Parse the MSIOF properties */
cf9e4784
HN
1039 if (info->mode == MSIOF_SPI_MASTER)
1040 of_property_read_u32(np, "num-cs", &num_cs);
cf9c86ef
BH
1041 of_property_read_u32(np, "renesas,tx-fifo-size",
1042 &info->tx_fifo_override);
1043 of_property_read_u32(np, "renesas,rx-fifo-size",
1044 &info->rx_fifo_override);
3110628d
YS
1045 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1046 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1047
1048 info->num_chipselect = num_cs;
1049
1050 return info;
1051}
1052#else
1053static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1054{
1055 return NULL;
1056}
1057#endif
1058
b0d0ce8b
GU
1059static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1060 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1061{
1062 dma_cap_mask_t mask;
1063 struct dma_chan *chan;
1064 struct dma_slave_config cfg;
1065 int ret;
1066
1067 dma_cap_zero(mask);
1068 dma_cap_set(DMA_SLAVE, mask);
1069
a6be4de6
GU
1070 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1071 (void *)(unsigned long)id, dev,
1072 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1073 if (!chan) {
a6be4de6 1074 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1075 return NULL;
1076 }
1077
1078 memset(&cfg, 0, sizeof(cfg));
b0d0ce8b 1079 cfg.direction = dir;
52fba2b8 1080 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1081 cfg.dst_addr = port_addr;
52fba2b8
GU
1082 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1083 } else {
b0d0ce8b 1084 cfg.src_addr = port_addr;
52fba2b8
GU
1085 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1086 }
b0d0ce8b
GU
1087
1088 ret = dmaengine_slave_config(chan, &cfg);
1089 if (ret) {
1090 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1091 dma_release_channel(chan);
1092 return NULL;
1093 }
1094
1095 return chan;
1096}
1097
1098static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1099{
1100 struct platform_device *pdev = p->pdev;
1101 struct device *dev = &pdev->dev;
1102 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
a6be4de6 1103 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b
GU
1104 const struct resource *res;
1105 struct spi_master *master;
5dabcf2f 1106 struct device *tx_dev, *rx_dev;
b0d0ce8b 1107
a6be4de6
GU
1108 if (dev->of_node) {
1109 /* In the OF case we will get the slave IDs from the DT */
1110 dma_tx_id = 0;
1111 dma_rx_id = 0;
1112 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1113 dma_tx_id = info->dma_tx_id;
1114 dma_rx_id = info->dma_rx_id;
1115 } else {
1116 /* The driver assumes no error */
1117 return 0;
1118 }
b0d0ce8b
GU
1119
1120 /* The DMA engine uses the second register set, if present */
1121 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1122 if (!res)
1123 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1124
1125 master = p->master;
1126 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
a6be4de6 1127 dma_tx_id,
b0d0ce8b
GU
1128 res->start + TFDR);
1129 if (!master->dma_tx)
1130 return -ENODEV;
1131
1132 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
a6be4de6 1133 dma_rx_id,
b0d0ce8b
GU
1134 res->start + RFDR);
1135 if (!master->dma_rx)
1136 goto free_tx_chan;
1137
1138 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1139 if (!p->tx_dma_page)
1140 goto free_rx_chan;
1141
1142 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1143 if (!p->rx_dma_page)
1144 goto free_tx_page;
1145
5dabcf2f
GU
1146 tx_dev = master->dma_tx->device->dev;
1147 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1148 DMA_TO_DEVICE);
5dabcf2f 1149 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1150 goto free_rx_page;
1151
5dabcf2f
GU
1152 rx_dev = master->dma_rx->device->dev;
1153 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1154 DMA_FROM_DEVICE);
5dabcf2f 1155 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1156 goto unmap_tx_page;
1157
1158 dev_info(dev, "DMA available");
1159 return 0;
1160
1161unmap_tx_page:
5dabcf2f 1162 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1163free_rx_page:
1164 free_page((unsigned long)p->rx_dma_page);
1165free_tx_page:
1166 free_page((unsigned long)p->tx_dma_page);
1167free_rx_chan:
1168 dma_release_channel(master->dma_rx);
1169free_tx_chan:
1170 dma_release_channel(master->dma_tx);
1171 master->dma_tx = NULL;
1172 return -ENODEV;
1173}
1174
1175static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1176{
1177 struct spi_master *master = p->master;
1178 struct device *dev;
1179
1180 if (!master->dma_tx)
1181 return;
1182
1183 dev = &p->pdev->dev;
5dabcf2f
GU
1184 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1185 PAGE_SIZE, DMA_FROM_DEVICE);
1186 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1187 PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1188 free_page((unsigned long)p->rx_dma_page);
1189 free_page((unsigned long)p->tx_dma_page);
1190 dma_release_channel(master->dma_rx);
1191 dma_release_channel(master->dma_tx);
1192}
1193
8051effc
MD
1194static int sh_msiof_spi_probe(struct platform_device *pdev)
1195{
1196 struct resource *r;
1197 struct spi_master *master;
a6802cc0 1198 const struct sh_msiof_chipdata *chipdata;
50a7e23f 1199 const struct of_device_id *of_id;
cf9e4784 1200 struct sh_msiof_spi_info *info;
8051effc 1201 struct sh_msiof_spi_priv *p;
8051effc
MD
1202 int i;
1203 int ret;
1204
50a7e23f
GU
1205 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1206 if (of_id) {
a6802cc0 1207 chipdata = of_id->data;
cf9e4784 1208 info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f 1209 } else {
a6802cc0 1210 chipdata = (const void *)pdev->id_entry->driver_data;
cf9e4784 1211 info = dev_get_platdata(&pdev->dev);
50a7e23f 1212 }
cf9c86ef 1213
cf9e4784 1214 if (!info) {
cf9c86ef 1215 dev_err(&pdev->dev, "failed to obtain device info\n");
cf9e4784 1216 return -ENXIO;
cf9c86ef
BH
1217 }
1218
cf9e4784
HN
1219 if (info->mode == MSIOF_SPI_SLAVE)
1220 master = spi_alloc_slave(&pdev->dev,
1221 sizeof(struct sh_msiof_spi_priv));
1222 else
1223 master = spi_alloc_master(&pdev->dev,
1224 sizeof(struct sh_msiof_spi_priv));
1225 if (master == NULL)
1226 return -ENOMEM;
1227
1228 p = spi_master_get_devdata(master);
1229
1230 platform_set_drvdata(pdev, p);
1231 p->master = master;
1232 p->info = info;
1233
8051effc
MD
1234 init_completion(&p->done);
1235
b4dd05de 1236 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1237 if (IS_ERR(p->clk)) {
078b6ead 1238 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1239 ret = PTR_ERR(p->clk);
1240 goto err1;
1241 }
1242
8051effc 1243 i = platform_get_irq(pdev, 0);
b4dd05de
LP
1244 if (i < 0) {
1245 dev_err(&pdev->dev, "cannot get platform IRQ\n");
8051effc 1246 ret = -ENOENT;
b4dd05de 1247 goto err1;
8051effc 1248 }
b4dd05de
LP
1249
1250 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1251 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1252 if (IS_ERR(p->mapbase)) {
1253 ret = PTR_ERR(p->mapbase);
1254 goto err1;
8051effc
MD
1255 }
1256
b4dd05de
LP
1257 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1258 dev_name(&pdev->dev), p);
8051effc
MD
1259 if (ret) {
1260 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1261 goto err1;
8051effc
MD
1262 }
1263
1264 p->pdev = pdev;
1265 pm_runtime_enable(&pdev->dev);
1266
8051effc 1267 /* Platform data may override FIFO sizes */
a6802cc0
GU
1268 p->tx_fifo_size = chipdata->tx_fifo_size;
1269 p->rx_fifo_size = chipdata->rx_fifo_size;
8051effc
MD
1270 if (p->info->tx_fifo_override)
1271 p->tx_fifo_size = p->info->tx_fifo_override;
1272 if (p->info->rx_fifo_override)
1273 p->rx_fifo_size = p->info->rx_fifo_override;
1274
1bd6363b 1275 /* init master code */
8051effc
MD
1276 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1277 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
a6802cc0 1278 master->flags = chipdata->master_flags;
8051effc 1279 master->bus_num = pdev->id;
f7c05e83 1280 master->dev.of_node = pdev->dev.of_node;
8051effc 1281 master->num_chipselect = p->info->num_chipselect;
8d19534a 1282 master->setup = sh_msiof_spi_setup;
c833ff73 1283 master->prepare_message = sh_msiof_prepare_message;
cf9e4784 1284 master->slave_abort = sh_msiof_slave_abort;
2416289c 1285 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
e2a0ba54 1286 master->auto_runtime_pm = true;
1bd6363b 1287 master->transfer_one = sh_msiof_transfer_one;
8051effc 1288
b0d0ce8b
GU
1289 ret = sh_msiof_request_dma(p);
1290 if (ret < 0)
1291 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1292
1bd6363b
GU
1293 ret = devm_spi_register_master(&pdev->dev, master);
1294 if (ret < 0) {
1295 dev_err(&pdev->dev, "spi_register_master error.\n");
1296 goto err2;
1297 }
8051effc 1298
1bd6363b 1299 return 0;
8051effc 1300
1bd6363b 1301 err2:
b0d0ce8b 1302 sh_msiof_release_dma(p);
8051effc 1303 pm_runtime_disable(&pdev->dev);
8051effc
MD
1304 err1:
1305 spi_master_put(master);
8051effc
MD
1306 return ret;
1307}
1308
1309static int sh_msiof_spi_remove(struct platform_device *pdev)
1310{
b0d0ce8b
GU
1311 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1312
1313 sh_msiof_release_dma(p);
1bd6363b 1314 pm_runtime_disable(&pdev->dev);
1bd6363b 1315 return 0;
8051effc
MD
1316}
1317
3789c852 1318static const struct platform_device_id spi_driver_ids[] = {
50a7e23f 1319 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
cf9c86ef
BH
1320 {},
1321};
50a7e23f 1322MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1323
8051effc
MD
1324static struct platform_driver sh_msiof_spi_drv = {
1325 .probe = sh_msiof_spi_probe,
1326 .remove = sh_msiof_spi_remove,
50a7e23f 1327 .id_table = spi_driver_ids,
8051effc
MD
1328 .driver = {
1329 .name = "spi_sh_msiof",
691ee4ed 1330 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1331 },
1332};
940ab889 1333module_platform_driver(sh_msiof_spi_drv);
8051effc
MD
1334
1335MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1336MODULE_AUTHOR("Magnus Damm");
1337MODULE_LICENSE("GPL v2");
1338MODULE_ALIAS("platform:spi_sh_msiof");