]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/spi/spi-sh-msiof.c
spi: sh-msiof: Add r8a774[35] to the compatible list
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
8051effc
MD
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
cf9e4784
HN
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8051effc
MD
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
e2dbf5eb
GL
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
8051effc 17#include <linux/delay.h>
b0d0ce8b
GU
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
e2dbf5eb
GL
20#include <linux/err.h>
21#include <linux/gpio.h>
8051effc 22#include <linux/interrupt.h>
e2dbf5eb
GL
23#include <linux/io.h>
24#include <linux/kernel.h>
d7614de4 25#include <linux/module.h>
cf9c86ef 26#include <linux/of.h>
50a7e23f 27#include <linux/of_device.h>
8051effc 28#include <linux/platform_device.h>
8051effc 29#include <linux/pm_runtime.h>
b0d0ce8b 30#include <linux/sh_dma.h>
8051effc 31
e2dbf5eb 32#include <linux/spi/sh_msiof.h>
8051effc 33#include <linux/spi/spi.h>
8051effc 34
8051effc
MD
35#include <asm/unaligned.h>
36
50a7e23f
GU
37struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
beb74bb0 40 u16 master_flags;
61a8dec5 41 u16 min_div;
50a7e23f
GU
42};
43
8051effc 44struct sh_msiof_spi_priv {
b0d0ce8b 45 struct spi_master *master;
8051effc
MD
46 void __iomem *mapbase;
47 struct clk *clk;
48 struct platform_device *pdev;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
fe78d0b7
KM
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
61a8dec5 53 unsigned int min_div;
b0d0ce8b
GU
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
cf9e4784 58 bool slave_aborted;
8051effc
MD
59};
60
01cfef57
GU
61#define TMDR1 0x00 /* Transmit Mode Register 1 */
62#define TMDR2 0x04 /* Transmit Mode Register 2 */
63#define TMDR3 0x08 /* Transmit Mode Register 3 */
64#define RMDR1 0x10 /* Receive Mode Register 1 */
65#define RMDR2 0x14 /* Receive Mode Register 2 */
66#define RMDR3 0x18 /* Receive Mode Register 3 */
67#define TSCR 0x20 /* Transmit Clock Select Register */
68#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
69#define CTR 0x28 /* Control Register */
70#define FCTR 0x30 /* FIFO Control Register */
71#define STR 0x40 /* Status Register */
72#define IER 0x44 /* Interrupt Enable Register */
73#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
74#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
75#define TFDR 0x50 /* Transmit FIFO Data Register */
76#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
77#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
78#define RFDR 0x60 /* Receive FIFO Data Register */
79
80/* TMDR1 and RMDR1 */
81#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
82#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
83#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
84#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
85#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
86#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
3110628d
YS
87#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
88#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
6d40530e 89#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
01cfef57
GU
90#define MDR1_FLD_SHIFT 2
91#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
92/* TMDR1 */
93#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
94
95/* TMDR2 and RMDR2 */
96#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
97#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
98#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
99
100/* TSCR and RSCR */
101#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
102#define SCR_BRPS(i) (((i) - 1) << 8)
103#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
104#define SCR_BRDV_DIV_2 0x0000
105#define SCR_BRDV_DIV_4 0x0001
106#define SCR_BRDV_DIV_8 0x0002
107#define SCR_BRDV_DIV_16 0x0003
108#define SCR_BRDV_DIV_32 0x0004
109#define SCR_BRDV_DIV_1 0x0007
110
111/* CTR */
112#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
113#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
114#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
115#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
116#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
117#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
118#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
119#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
120#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
121#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
122#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
123#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
124#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
125#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
126#define CTR_TXE 0x00000200 /* Transmit Enable */
127#define CTR_RXE 0x00000100 /* Receive Enable */
128
2e2b3687
GU
129/* FCTR */
130#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
131#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
132#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
133#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
134#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
135#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
136#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
137#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
138#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
139#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
140#define FCTR_TFUA_SHIFT 20
141#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
142#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
143#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
144#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
145#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
146#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
147#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
148#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
149#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
150#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
151#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
152#define FCTR_RFUA_SHIFT 4
153#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
154
155/* STR */
156#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
157#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
01cfef57 158#define STR_TEOF 0x00800000 /* Frame Transmission End */
2e2b3687
GU
159#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
160#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
161#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
162#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
163#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
01cfef57 164#define STR_REOF 0x00000080 /* Frame Reception End */
2e2b3687
GU
165#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
166#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
167#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
168
169/* IER */
170#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
171#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
172#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
173#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
174#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
175#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
176#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
177#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
178#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
179#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
180#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
181#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
182#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
183#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
01cfef57 184
8051effc 185
e2dbf5eb 186static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
187{
188 switch (reg_offs) {
189 case TSCR:
190 case RSCR:
191 return ioread16(p->mapbase + reg_offs);
192 default:
193 return ioread32(p->mapbase + reg_offs);
194 }
195}
196
197static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 198 u32 value)
8051effc
MD
199{
200 switch (reg_offs) {
201 case TSCR:
202 case RSCR:
203 iowrite16(value, p->mapbase + reg_offs);
204 break;
205 default:
206 iowrite32(value, p->mapbase + reg_offs);
207 break;
208 }
209}
210
211static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 212 u32 clr, u32 set)
8051effc 213{
e2dbf5eb
GL
214 u32 mask = clr | set;
215 u32 data;
8051effc
MD
216 int k;
217
218 data = sh_msiof_read(p, CTR);
219 data &= ~clr;
220 data |= set;
221 sh_msiof_write(p, CTR, data);
222
223 for (k = 100; k > 0; k--) {
224 if ((sh_msiof_read(p, CTR) & mask) == set)
225 break;
226
227 udelay(10);
228 }
229
230 return k > 0 ? 0 : -ETIMEDOUT;
231}
232
233static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
234{
235 struct sh_msiof_spi_priv *p = data;
236
237 /* just disable the interrupt and wake up */
238 sh_msiof_write(p, IER, 0);
239 complete(&p->done);
240
241 return IRQ_HANDLED;
242}
243
244static struct {
245 unsigned short div;
65d5665b
NI
246 unsigned short brdv;
247} const sh_msiof_spi_div_table[] = {
248 { 1, SCR_BRDV_DIV_1 },
249 { 2, SCR_BRDV_DIV_2 },
250 { 4, SCR_BRDV_DIV_4 },
251 { 8, SCR_BRDV_DIV_8 },
252 { 16, SCR_BRDV_DIV_16 },
253 { 32, SCR_BRDV_DIV_32 },
8051effc
MD
254};
255
256static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
6a85fc5a 257 unsigned long parent_rate, u32 spi_hz)
8051effc
MD
258{
259 unsigned long div = 1024;
65d5665b 260 u32 brps, scr;
8051effc
MD
261 size_t k;
262
263 if (!WARN_ON(!spi_hz || !parent_rate))
e4d313ff 264 div = DIV_ROUND_UP(parent_rate, spi_hz);
8051effc 265
61a8dec5
GU
266 div = max_t(unsigned long, div, p->min_div);
267
65d5665b
NI
268 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
269 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
c3ccf357
GU
270 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
271 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
272 continue;
65d5665b 273 if (brps <= 32) /* max of brdv is 32 */
8051effc
MD
274 break;
275 }
276
65d5665b 277 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
8051effc 278
65d5665b
NI
279 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
280 sh_msiof_write(p, TSCR, scr);
a6802cc0 281 if (!(p->master->flags & SPI_MASTER_MUST_TX))
65d5665b 282 sh_msiof_write(p, RSCR, scr);
8051effc
MD
283}
284
3110628d
YS
285static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
286{
287 /*
288 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
289 * b'000 : 0
290 * b'001 : 100
291 * b'010 : 200
292 * b'011 (SYNCDL only) : 300
293 * b'101 : 50
294 * b'110 : 150
295 */
296 if (dtdl_or_syncdl % 100)
297 return dtdl_or_syncdl / 100 + 5;
298 else
299 return dtdl_or_syncdl / 100;
300}
301
302static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
303{
304 u32 val;
305
306 if (!p->info)
307 return 0;
308
309 /* check if DTDL and SYNCDL is allowed value */
310 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
311 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
312 return 0;
313 }
314
315 /* check if the sum of DTDL and SYNCDL becomes an integer value */
316 if ((p->info->dtdl + p->info->syncdl) % 100) {
317 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
318 return 0;
319 }
320
321 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
322 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
323
324 return val;
325}
326
8051effc 327static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
e2dbf5eb 328 u32 cpol, u32 cpha,
50a77998 329 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 330{
e2dbf5eb 331 u32 tmp;
8051effc
MD
332 int edge;
333
334 /*
e8708ef7
MP
335 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
336 * 0 0 10 10 1 1
337 * 0 1 10 10 0 0
338 * 1 0 11 11 0 0
339 * 1 1 11 11 1 1
8051effc 340 */
01cfef57
GU
341 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
342 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
343 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
3110628d 344 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
cf9e4784
HN
345 if (spi_controller_is_slave(p->master))
346 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
347 else
348 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
a6802cc0 349 if (p->master->flags & SPI_MASTER_MUST_TX) {
beb74bb0
GU
350 /* These bits are reserved if RX needs TX */
351 tmp &= ~0x0000ffff;
352 }
01cfef57 353 sh_msiof_write(p, RMDR1, tmp);
8051effc 354
01cfef57
GU
355 tmp = 0;
356 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
357 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
8051effc 358
e2dbf5eb 359 edge = cpol ^ !cpha;
8051effc 360
01cfef57
GU
361 tmp |= edge << CTR_TEDG_SHIFT;
362 tmp |= edge << CTR_REDG_SHIFT;
363 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
8051effc
MD
364 sh_msiof_write(p, CTR, tmp);
365}
366
367static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
368 const void *tx_buf, void *rx_buf,
e2dbf5eb 369 u32 bits, u32 words)
8051effc 370{
01cfef57 371 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
8051effc 372
a6802cc0 373 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
8051effc
MD
374 sh_msiof_write(p, TMDR2, dr2);
375 else
01cfef57 376 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
8051effc
MD
377
378 if (rx_buf)
379 sh_msiof_write(p, RMDR2, dr2);
8051effc
MD
380}
381
382static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
383{
384 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
385}
386
387static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
388 const void *tx_buf, int words, int fs)
389{
e2dbf5eb 390 const u8 *buf_8 = tx_buf;
8051effc
MD
391 int k;
392
393 for (k = 0; k < words; k++)
394 sh_msiof_write(p, TFDR, buf_8[k] << fs);
395}
396
397static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
398 const void *tx_buf, int words, int fs)
399{
e2dbf5eb 400 const u16 *buf_16 = tx_buf;
8051effc
MD
401 int k;
402
403 for (k = 0; k < words; k++)
404 sh_msiof_write(p, TFDR, buf_16[k] << fs);
405}
406
407static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
408 const void *tx_buf, int words, int fs)
409{
e2dbf5eb 410 const u16 *buf_16 = tx_buf;
8051effc
MD
411 int k;
412
413 for (k = 0; k < words; k++)
414 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
415}
416
417static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
418 const void *tx_buf, int words, int fs)
419{
e2dbf5eb 420 const u32 *buf_32 = tx_buf;
8051effc
MD
421 int k;
422
423 for (k = 0; k < words; k++)
424 sh_msiof_write(p, TFDR, buf_32[k] << fs);
425}
426
427static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
428 const void *tx_buf, int words, int fs)
429{
e2dbf5eb 430 const u32 *buf_32 = tx_buf;
8051effc
MD
431 int k;
432
433 for (k = 0; k < words; k++)
434 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
435}
436
9dabb3f3
GL
437static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
438 const void *tx_buf, int words, int fs)
439{
440 const u32 *buf_32 = tx_buf;
441 int k;
442
443 for (k = 0; k < words; k++)
444 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
445}
446
447static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
448 const void *tx_buf, int words, int fs)
449{
450 const u32 *buf_32 = tx_buf;
451 int k;
452
453 for (k = 0; k < words; k++)
454 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
455}
456
8051effc
MD
457static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
458 void *rx_buf, int words, int fs)
459{
e2dbf5eb 460 u8 *buf_8 = rx_buf;
8051effc
MD
461 int k;
462
463 for (k = 0; k < words; k++)
464 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
465}
466
467static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
468 void *rx_buf, int words, int fs)
469{
e2dbf5eb 470 u16 *buf_16 = rx_buf;
8051effc
MD
471 int k;
472
473 for (k = 0; k < words; k++)
474 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
475}
476
477static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
478 void *rx_buf, int words, int fs)
479{
e2dbf5eb 480 u16 *buf_16 = rx_buf;
8051effc
MD
481 int k;
482
483 for (k = 0; k < words; k++)
484 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
485}
486
487static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
488 void *rx_buf, int words, int fs)
489{
e2dbf5eb 490 u32 *buf_32 = rx_buf;
8051effc
MD
491 int k;
492
493 for (k = 0; k < words; k++)
494 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
495}
496
497static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
498 void *rx_buf, int words, int fs)
499{
e2dbf5eb 500 u32 *buf_32 = rx_buf;
8051effc
MD
501 int k;
502
503 for (k = 0; k < words; k++)
504 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
505}
506
9dabb3f3
GL
507static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
508 void *rx_buf, int words, int fs)
509{
510 u32 *buf_32 = rx_buf;
511 int k;
512
513 for (k = 0; k < words; k++)
514 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
515}
516
517static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
518 void *rx_buf, int words, int fs)
519{
520 u32 *buf_32 = rx_buf;
521 int k;
522
523 for (k = 0; k < words; k++)
524 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
525}
526
8d19534a 527static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 528{
8d19534a 529 struct device_node *np = spi->master->dev.of_node;
c833ff73 530 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
8051effc 531
01576056
HN
532 pm_runtime_get_sync(&p->pdev->dev);
533
8d19534a
GU
534 if (!np) {
535 /*
536 * Use spi->controller_data for CS (same strategy as spi_gpio),
537 * if any. otherwise let HW control CS
538 */
539 spi->cs_gpio = (uintptr_t)spi->controller_data;
540 }
8051effc 541
c833ff73
GU
542 /* Configure pins before deasserting CS */
543 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
544 !!(spi->mode & SPI_CPHA),
545 !!(spi->mode & SPI_3WIRE),
546 !!(spi->mode & SPI_LSB_FIRST),
547 !!(spi->mode & SPI_CS_HIGH));
8051effc 548
1bd6363b
GU
549 if (spi->cs_gpio >= 0)
550 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
8051effc 551
01576056 552
c8935ef0 553 pm_runtime_put(&p->pdev->dev);
01576056 554
1bd6363b 555 return 0;
8051effc
MD
556}
557
c833ff73
GU
558static int sh_msiof_prepare_message(struct spi_master *master,
559 struct spi_message *msg)
8051effc 560{
c833ff73
GU
561 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
562 const struct spi_device *spi = msg->spi;
8051effc 563
c833ff73
GU
564 /* Configure pins before asserting CS */
565 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
566 !!(spi->mode & SPI_CPHA),
567 !!(spi->mode & SPI_3WIRE),
568 !!(spi->mode & SPI_LSB_FIRST),
569 !!(spi->mode & SPI_CS_HIGH));
570 return 0;
8051effc
MD
571}
572
76c02e71
GU
573static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
574{
cf9e4784
HN
575 bool slave = spi_controller_is_slave(p->master);
576 int ret = 0;
76c02e71
GU
577
578 /* setup clock and rx/tx signals */
cf9e4784
HN
579 if (!slave)
580 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
76c02e71
GU
581 if (rx_buf && !ret)
582 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
583 if (!ret)
584 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
585
586 /* start by setting frame bit */
cf9e4784 587 if (!ret && !slave)
76c02e71
GU
588 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
589
590 return ret;
591}
592
593static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
594{
cf9e4784
HN
595 bool slave = spi_controller_is_slave(p->master);
596 int ret = 0;
76c02e71
GU
597
598 /* shut down frame, rx/tx and clock signals */
cf9e4784
HN
599 if (!slave)
600 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
76c02e71
GU
601 if (!ret)
602 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
603 if (rx_buf && !ret)
604 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
cf9e4784 605 if (!ret && !slave)
76c02e71
GU
606 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
607
608 return ret;
609}
610
cf9e4784
HN
611static int sh_msiof_slave_abort(struct spi_master *master)
612{
613 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
614
615 p->slave_aborted = true;
616 complete(&p->done);
617 return 0;
618}
619
620static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
621{
622 if (spi_controller_is_slave(p->master)) {
623 if (wait_for_completion_interruptible(&p->done) ||
624 p->slave_aborted) {
625 dev_dbg(&p->pdev->dev, "interrupted\n");
626 return -EINTR;
627 }
628 } else {
629 if (!wait_for_completion_timeout(&p->done, HZ)) {
630 dev_err(&p->pdev->dev, "timeout\n");
631 return -ETIMEDOUT;
632 }
633 }
634
635 return 0;
636}
637
8051effc
MD
638static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
639 void (*tx_fifo)(struct sh_msiof_spi_priv *,
640 const void *, int, int),
641 void (*rx_fifo)(struct sh_msiof_spi_priv *,
642 void *, int, int),
643 const void *tx_buf, void *rx_buf,
644 int words, int bits)
645{
646 int fifo_shift;
647 int ret;
648
649 /* limit maximum word transfer to rx/tx fifo size */
650 if (tx_buf)
651 words = min_t(int, words, p->tx_fifo_size);
652 if (rx_buf)
653 words = min_t(int, words, p->rx_fifo_size);
654
655 /* the fifo contents need shifting */
656 fifo_shift = 32 - bits;
657
b0d0ce8b
GU
658 /* default FIFO watermarks for PIO */
659 sh_msiof_write(p, FCTR, 0);
660
8051effc
MD
661 /* setup msiof transfer mode registers */
662 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
b0d0ce8b 663 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
8051effc
MD
664
665 /* write tx fifo */
666 if (tx_buf)
667 tx_fifo(p, tx_buf, words, fifo_shift);
668
16735d02 669 reinit_completion(&p->done);
cf9e4784 670 p->slave_aborted = false;
76c02e71
GU
671
672 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
673 if (ret) {
674 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 675 goto stop_ier;
8051effc
MD
676 }
677
678 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
679 ret = sh_msiof_wait_for_completion(p);
680 if (ret)
75b82e23 681 goto stop_reset;
8051effc
MD
682
683 /* read rx fifo */
684 if (rx_buf)
685 rx_fifo(p, rx_buf, words, fifo_shift);
686
687 /* clear status bits */
688 sh_msiof_reset_str(p);
689
76c02e71 690 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
691 if (ret) {
692 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 693 return ret;
8051effc
MD
694 }
695
696 return words;
697
75b82e23
GU
698stop_reset:
699 sh_msiof_reset_str(p);
700 sh_msiof_spi_stop(p, rx_buf);
701stop_ier:
8051effc
MD
702 sh_msiof_write(p, IER, 0);
703 return ret;
704}
705
b0d0ce8b
GU
706static void sh_msiof_dma_complete(void *arg)
707{
708 struct sh_msiof_spi_priv *p = arg;
709
710 sh_msiof_write(p, IER, 0);
711 complete(&p->done);
712}
713
714static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
715 void *rx, unsigned int len)
716{
717 u32 ier_bits = 0;
718 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
719 dma_cookie_t cookie;
720 int ret;
721
3e81b592 722 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b
GU
723 if (rx) {
724 ier_bits |= IER_RDREQE | IER_RDMAE;
725 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
726 p->rx_dma_addr, len, DMA_FROM_DEVICE,
727 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
728 if (!desc_rx)
729 return -EAGAIN;
b0d0ce8b 730
b0d0ce8b
GU
731 desc_rx->callback = sh_msiof_dma_complete;
732 desc_rx->callback_param = p;
733 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
734 if (dma_submit_error(cookie))
735 return cookie;
b0d0ce8b
GU
736 }
737
738 if (tx) {
3e81b592
GU
739 ier_bits |= IER_TDREQE | IER_TDMAE;
740 dma_sync_single_for_device(p->master->dma_tx->device->dev,
741 p->tx_dma_addr, len, DMA_TO_DEVICE);
742 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
743 p->tx_dma_addr, len, DMA_TO_DEVICE,
744 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
745 if (!desc_tx) {
746 ret = -EAGAIN;
747 goto no_dma_tx;
748 }
749
b0d0ce8b
GU
750 if (rx) {
751 /* No callback */
752 desc_tx->callback = NULL;
753 } else {
754 desc_tx->callback = sh_msiof_dma_complete;
755 desc_tx->callback_param = p;
756 }
757 cookie = dmaengine_submit(desc_tx);
758 if (dma_submit_error(cookie)) {
759 ret = cookie;
3e81b592 760 goto no_dma_tx;
b0d0ce8b 761 }
b0d0ce8b
GU
762 }
763
3e81b592
GU
764 /* 1 stage FIFO watermarks for DMA */
765 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
766
767 /* setup msiof transfer mode registers (32-bit words) */
768 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
769
770 sh_msiof_write(p, IER, ier_bits);
771
772 reinit_completion(&p->done);
cf9e4784 773 p->slave_aborted = false;
3e81b592
GU
774
775 /* Now start DMA */
3e81b592 776 if (rx)
7a9f957b
GU
777 dma_async_issue_pending(p->master->dma_rx);
778 if (tx)
3e81b592
GU
779 dma_async_issue_pending(p->master->dma_tx);
780
b0d0ce8b
GU
781 ret = sh_msiof_spi_start(p, rx);
782 if (ret) {
783 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 784 goto stop_dma;
b0d0ce8b
GU
785 }
786
787 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
788 ret = sh_msiof_wait_for_completion(p);
789 if (ret)
b0d0ce8b 790 goto stop_reset;
b0d0ce8b
GU
791
792 /* clear status bits */
793 sh_msiof_reset_str(p);
794
795 ret = sh_msiof_spi_stop(p, rx);
796 if (ret) {
797 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
798 return ret;
799 }
800
801 if (rx)
5dabcf2f
GU
802 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
803 p->rx_dma_addr, len,
b0d0ce8b
GU
804 DMA_FROM_DEVICE);
805
806 return 0;
807
808stop_reset:
809 sh_msiof_reset_str(p);
810 sh_msiof_spi_stop(p, rx);
3e81b592 811stop_dma:
b0d0ce8b
GU
812 if (tx)
813 dmaengine_terminate_all(p->master->dma_tx);
3e81b592 814no_dma_tx:
b0d0ce8b
GU
815 if (rx)
816 dmaengine_terminate_all(p->master->dma_rx);
b0d0ce8b
GU
817 sh_msiof_write(p, IER, 0);
818 return ret;
819}
820
821static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
822{
823 /* src or dst can be unaligned, but not both */
824 if ((unsigned long)src & 3) {
825 while (words--) {
826 *dst++ = swab32(get_unaligned(src));
827 src++;
828 }
829 } else if ((unsigned long)dst & 3) {
830 while (words--) {
831 put_unaligned(swab32(*src++), dst);
832 dst++;
833 }
834 } else {
835 while (words--)
836 *dst++ = swab32(*src++);
837 }
838}
839
840static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
841{
842 /* src or dst can be unaligned, but not both */
843 if ((unsigned long)src & 3) {
844 while (words--) {
845 *dst++ = swahw32(get_unaligned(src));
846 src++;
847 }
848 } else if ((unsigned long)dst & 3) {
849 while (words--) {
850 put_unaligned(swahw32(*src++), dst);
851 dst++;
852 }
853 } else {
854 while (words--)
855 *dst++ = swahw32(*src++);
856 }
857}
858
859static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
860{
861 memcpy(dst, src, words * 4);
862}
863
1bd6363b
GU
864static int sh_msiof_transfer_one(struct spi_master *master,
865 struct spi_device *spi,
866 struct spi_transfer *t)
8051effc 867{
1bd6363b 868 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
b0d0ce8b 869 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
870 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
871 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
872 const void *tx_buf = t->tx_buf;
873 void *rx_buf = t->rx_buf;
874 unsigned int len = t->len;
875 unsigned int bits = t->bits_per_word;
876 unsigned int bytes_per_word;
877 unsigned int words;
8051effc 878 int n;
9dabb3f3 879 bool swab;
b0d0ce8b
GU
880 int ret;
881
882 /* setup clocks (clock already enabled in chipselect()) */
cf9e4784
HN
883 if (!spi_controller_is_slave(p->master))
884 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
b0d0ce8b
GU
885
886 while (master->dma_tx && len > 15) {
887 /*
888 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
889 * words, with byte resp. word swapping.
890 */
fe78d0b7
KM
891 unsigned int l = 0;
892
893 if (tx_buf)
894 l = min(len, p->tx_fifo_size * 4);
895 if (rx_buf)
896 l = min(len, p->rx_fifo_size * 4);
b0d0ce8b
GU
897
898 if (bits <= 8) {
899 if (l & 3)
900 break;
901 copy32 = copy_bswap32;
902 } else if (bits <= 16) {
903 if (l & 1)
904 break;
905 copy32 = copy_wswap32;
906 } else {
907 copy32 = copy_plain32;
908 }
909
910 if (tx_buf)
911 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 912
b0d0ce8b 913 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378
GU
914 if (ret == -EAGAIN) {
915 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
916 dev_driver_string(&p->pdev->dev),
917 dev_name(&p->pdev->dev));
918 break;
919 }
b0d0ce8b
GU
920 if (ret)
921 return ret;
922
923 if (rx_buf) {
924 copy32(rx_buf, p->rx_dma_page, l / 4);
925 rx_buf += l;
926 }
927 if (tx_buf)
928 tx_buf += l;
929
930 len -= l;
931 if (!len)
932 return 0;
933 }
8051effc 934
0312d591 935 if (bits <= 8 && len > 15 && !(len & 3)) {
9dabb3f3
GL
936 bits = 32;
937 swab = true;
938 } else {
939 swab = false;
940 }
941
8051effc
MD
942 /* setup bytes per word and fifo read/write functions */
943 if (bits <= 8) {
944 bytes_per_word = 1;
945 tx_fifo = sh_msiof_spi_write_fifo_8;
946 rx_fifo = sh_msiof_spi_read_fifo_8;
947 } else if (bits <= 16) {
948 bytes_per_word = 2;
0312d591 949 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
950 tx_fifo = sh_msiof_spi_write_fifo_16u;
951 else
952 tx_fifo = sh_msiof_spi_write_fifo_16;
953
0312d591 954 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
955 rx_fifo = sh_msiof_spi_read_fifo_16u;
956 else
957 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
958 } else if (swab) {
959 bytes_per_word = 4;
0312d591 960 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
961 tx_fifo = sh_msiof_spi_write_fifo_s32u;
962 else
963 tx_fifo = sh_msiof_spi_write_fifo_s32;
964
0312d591 965 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
966 rx_fifo = sh_msiof_spi_read_fifo_s32u;
967 else
968 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
969 } else {
970 bytes_per_word = 4;
0312d591 971 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
972 tx_fifo = sh_msiof_spi_write_fifo_32u;
973 else
974 tx_fifo = sh_msiof_spi_write_fifo_32;
975
0312d591 976 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
977 rx_fifo = sh_msiof_spi_read_fifo_32u;
978 else
979 rx_fifo = sh_msiof_spi_read_fifo_32;
980 }
981
8051effc 982 /* transfer in fifo sized chunks */
0312d591
GU
983 words = len / bytes_per_word;
984
985 while (words > 0) {
986 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
987 words, bits);
988 if (n < 0)
75b82e23 989 return n;
8051effc 990
0312d591
GU
991 if (tx_buf)
992 tx_buf += n * bytes_per_word;
993 if (rx_buf)
994 rx_buf += n * bytes_per_word;
8051effc
MD
995 words -= n;
996 }
997
8051effc
MD
998 return 0;
999}
1000
50a7e23f
GU
1001static const struct sh_msiof_chipdata sh_data = {
1002 .tx_fifo_size = 64,
1003 .rx_fifo_size = 64,
beb74bb0 1004 .master_flags = 0,
61a8dec5
GU
1005 .min_div = 1,
1006};
1007
1008static const struct sh_msiof_chipdata rcar_gen2_data = {
1009 .tx_fifo_size = 64,
1010 .rx_fifo_size = 64,
1011 .master_flags = SPI_MASTER_MUST_TX,
1012 .min_div = 1,
beb74bb0
GU
1013};
1014
61a8dec5 1015static const struct sh_msiof_chipdata rcar_gen3_data = {
beb74bb0 1016 .tx_fifo_size = 64,
fe78d0b7 1017 .rx_fifo_size = 64,
beb74bb0 1018 .master_flags = SPI_MASTER_MUST_TX,
61a8dec5 1019 .min_div = 2,
50a7e23f
GU
1020};
1021
1022static const struct of_device_id sh_msiof_match[] = {
50a7e23f 1023 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
bdacfc7b
FC
1024 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1025 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
61a8dec5
GU
1026 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1027 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1028 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1029 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1030 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1031 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1032 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1033 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
264c3e8d 1034 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
50a7e23f
GU
1035 {},
1036};
1037MODULE_DEVICE_TABLE(of, sh_msiof_match);
1038
cf9c86ef
BH
1039#ifdef CONFIG_OF
1040static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1041{
1042 struct sh_msiof_spi_info *info;
1043 struct device_node *np = dev->of_node;
32d3b2d1 1044 u32 num_cs = 1;
cf9c86ef
BH
1045
1046 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 1047 if (!info)
cf9c86ef 1048 return NULL;
cf9c86ef 1049
cf9e4784
HN
1050 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1051 : MSIOF_SPI_MASTER;
1052
cf9c86ef 1053 /* Parse the MSIOF properties */
cf9e4784
HN
1054 if (info->mode == MSIOF_SPI_MASTER)
1055 of_property_read_u32(np, "num-cs", &num_cs);
cf9c86ef
BH
1056 of_property_read_u32(np, "renesas,tx-fifo-size",
1057 &info->tx_fifo_override);
1058 of_property_read_u32(np, "renesas,rx-fifo-size",
1059 &info->rx_fifo_override);
3110628d
YS
1060 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1061 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1062
1063 info->num_chipselect = num_cs;
1064
1065 return info;
1066}
1067#else
1068static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1069{
1070 return NULL;
1071}
1072#endif
1073
b0d0ce8b
GU
1074static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1075 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1076{
1077 dma_cap_mask_t mask;
1078 struct dma_chan *chan;
1079 struct dma_slave_config cfg;
1080 int ret;
1081
1082 dma_cap_zero(mask);
1083 dma_cap_set(DMA_SLAVE, mask);
1084
a6be4de6
GU
1085 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1086 (void *)(unsigned long)id, dev,
1087 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1088 if (!chan) {
a6be4de6 1089 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1090 return NULL;
1091 }
1092
1093 memset(&cfg, 0, sizeof(cfg));
b0d0ce8b 1094 cfg.direction = dir;
52fba2b8 1095 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1096 cfg.dst_addr = port_addr;
52fba2b8
GU
1097 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1098 } else {
b0d0ce8b 1099 cfg.src_addr = port_addr;
52fba2b8
GU
1100 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1101 }
b0d0ce8b
GU
1102
1103 ret = dmaengine_slave_config(chan, &cfg);
1104 if (ret) {
1105 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1106 dma_release_channel(chan);
1107 return NULL;
1108 }
1109
1110 return chan;
1111}
1112
1113static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1114{
1115 struct platform_device *pdev = p->pdev;
1116 struct device *dev = &pdev->dev;
1117 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
a6be4de6 1118 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b
GU
1119 const struct resource *res;
1120 struct spi_master *master;
5dabcf2f 1121 struct device *tx_dev, *rx_dev;
b0d0ce8b 1122
a6be4de6
GU
1123 if (dev->of_node) {
1124 /* In the OF case we will get the slave IDs from the DT */
1125 dma_tx_id = 0;
1126 dma_rx_id = 0;
1127 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1128 dma_tx_id = info->dma_tx_id;
1129 dma_rx_id = info->dma_rx_id;
1130 } else {
1131 /* The driver assumes no error */
1132 return 0;
1133 }
b0d0ce8b
GU
1134
1135 /* The DMA engine uses the second register set, if present */
1136 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1137 if (!res)
1138 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1139
1140 master = p->master;
1141 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
a6be4de6 1142 dma_tx_id,
b0d0ce8b
GU
1143 res->start + TFDR);
1144 if (!master->dma_tx)
1145 return -ENODEV;
1146
1147 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
a6be4de6 1148 dma_rx_id,
b0d0ce8b
GU
1149 res->start + RFDR);
1150 if (!master->dma_rx)
1151 goto free_tx_chan;
1152
1153 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1154 if (!p->tx_dma_page)
1155 goto free_rx_chan;
1156
1157 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1158 if (!p->rx_dma_page)
1159 goto free_tx_page;
1160
5dabcf2f
GU
1161 tx_dev = master->dma_tx->device->dev;
1162 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1163 DMA_TO_DEVICE);
5dabcf2f 1164 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1165 goto free_rx_page;
1166
5dabcf2f
GU
1167 rx_dev = master->dma_rx->device->dev;
1168 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1169 DMA_FROM_DEVICE);
5dabcf2f 1170 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1171 goto unmap_tx_page;
1172
1173 dev_info(dev, "DMA available");
1174 return 0;
1175
1176unmap_tx_page:
5dabcf2f 1177 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1178free_rx_page:
1179 free_page((unsigned long)p->rx_dma_page);
1180free_tx_page:
1181 free_page((unsigned long)p->tx_dma_page);
1182free_rx_chan:
1183 dma_release_channel(master->dma_rx);
1184free_tx_chan:
1185 dma_release_channel(master->dma_tx);
1186 master->dma_tx = NULL;
1187 return -ENODEV;
1188}
1189
1190static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1191{
1192 struct spi_master *master = p->master;
1193 struct device *dev;
1194
1195 if (!master->dma_tx)
1196 return;
1197
1198 dev = &p->pdev->dev;
5dabcf2f
GU
1199 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1200 PAGE_SIZE, DMA_FROM_DEVICE);
1201 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1202 PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1203 free_page((unsigned long)p->rx_dma_page);
1204 free_page((unsigned long)p->tx_dma_page);
1205 dma_release_channel(master->dma_rx);
1206 dma_release_channel(master->dma_tx);
1207}
1208
8051effc
MD
1209static int sh_msiof_spi_probe(struct platform_device *pdev)
1210{
1211 struct resource *r;
1212 struct spi_master *master;
a6802cc0 1213 const struct sh_msiof_chipdata *chipdata;
50a7e23f 1214 const struct of_device_id *of_id;
cf9e4784 1215 struct sh_msiof_spi_info *info;
8051effc 1216 struct sh_msiof_spi_priv *p;
8051effc
MD
1217 int i;
1218 int ret;
1219
50a7e23f
GU
1220 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1221 if (of_id) {
a6802cc0 1222 chipdata = of_id->data;
cf9e4784 1223 info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f 1224 } else {
a6802cc0 1225 chipdata = (const void *)pdev->id_entry->driver_data;
cf9e4784 1226 info = dev_get_platdata(&pdev->dev);
50a7e23f 1227 }
cf9c86ef 1228
cf9e4784 1229 if (!info) {
cf9c86ef 1230 dev_err(&pdev->dev, "failed to obtain device info\n");
cf9e4784 1231 return -ENXIO;
cf9c86ef
BH
1232 }
1233
cf9e4784
HN
1234 if (info->mode == MSIOF_SPI_SLAVE)
1235 master = spi_alloc_slave(&pdev->dev,
1236 sizeof(struct sh_msiof_spi_priv));
1237 else
1238 master = spi_alloc_master(&pdev->dev,
1239 sizeof(struct sh_msiof_spi_priv));
1240 if (master == NULL)
1241 return -ENOMEM;
1242
1243 p = spi_master_get_devdata(master);
1244
1245 platform_set_drvdata(pdev, p);
1246 p->master = master;
1247 p->info = info;
61a8dec5 1248 p->min_div = chipdata->min_div;
cf9e4784 1249
8051effc
MD
1250 init_completion(&p->done);
1251
b4dd05de 1252 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1253 if (IS_ERR(p->clk)) {
078b6ead 1254 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1255 ret = PTR_ERR(p->clk);
1256 goto err1;
1257 }
1258
8051effc 1259 i = platform_get_irq(pdev, 0);
b4dd05de
LP
1260 if (i < 0) {
1261 dev_err(&pdev->dev, "cannot get platform IRQ\n");
8051effc 1262 ret = -ENOENT;
b4dd05de 1263 goto err1;
8051effc 1264 }
b4dd05de
LP
1265
1266 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1267 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1268 if (IS_ERR(p->mapbase)) {
1269 ret = PTR_ERR(p->mapbase);
1270 goto err1;
8051effc
MD
1271 }
1272
b4dd05de
LP
1273 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1274 dev_name(&pdev->dev), p);
8051effc
MD
1275 if (ret) {
1276 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1277 goto err1;
8051effc
MD
1278 }
1279
1280 p->pdev = pdev;
1281 pm_runtime_enable(&pdev->dev);
1282
8051effc 1283 /* Platform data may override FIFO sizes */
a6802cc0
GU
1284 p->tx_fifo_size = chipdata->tx_fifo_size;
1285 p->rx_fifo_size = chipdata->rx_fifo_size;
8051effc
MD
1286 if (p->info->tx_fifo_override)
1287 p->tx_fifo_size = p->info->tx_fifo_override;
1288 if (p->info->rx_fifo_override)
1289 p->rx_fifo_size = p->info->rx_fifo_override;
1290
1bd6363b 1291 /* init master code */
8051effc
MD
1292 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1293 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
a6802cc0 1294 master->flags = chipdata->master_flags;
8051effc 1295 master->bus_num = pdev->id;
f7c05e83 1296 master->dev.of_node = pdev->dev.of_node;
8051effc 1297 master->num_chipselect = p->info->num_chipselect;
8d19534a 1298 master->setup = sh_msiof_spi_setup;
c833ff73 1299 master->prepare_message = sh_msiof_prepare_message;
cf9e4784 1300 master->slave_abort = sh_msiof_slave_abort;
2416289c 1301 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
e2a0ba54 1302 master->auto_runtime_pm = true;
1bd6363b 1303 master->transfer_one = sh_msiof_transfer_one;
8051effc 1304
b0d0ce8b
GU
1305 ret = sh_msiof_request_dma(p);
1306 if (ret < 0)
1307 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1308
1bd6363b
GU
1309 ret = devm_spi_register_master(&pdev->dev, master);
1310 if (ret < 0) {
1311 dev_err(&pdev->dev, "spi_register_master error.\n");
1312 goto err2;
1313 }
8051effc 1314
1bd6363b 1315 return 0;
8051effc 1316
1bd6363b 1317 err2:
b0d0ce8b 1318 sh_msiof_release_dma(p);
8051effc 1319 pm_runtime_disable(&pdev->dev);
8051effc
MD
1320 err1:
1321 spi_master_put(master);
8051effc
MD
1322 return ret;
1323}
1324
1325static int sh_msiof_spi_remove(struct platform_device *pdev)
1326{
b0d0ce8b
GU
1327 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1328
1329 sh_msiof_release_dma(p);
1bd6363b 1330 pm_runtime_disable(&pdev->dev);
1bd6363b 1331 return 0;
8051effc
MD
1332}
1333
3789c852 1334static const struct platform_device_id spi_driver_ids[] = {
50a7e23f 1335 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
cf9c86ef
BH
1336 {},
1337};
50a7e23f 1338MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1339
8051effc
MD
1340static struct platform_driver sh_msiof_spi_drv = {
1341 .probe = sh_msiof_spi_probe,
1342 .remove = sh_msiof_spi_remove,
50a7e23f 1343 .id_table = spi_driver_ids,
8051effc
MD
1344 .driver = {
1345 .name = "spi_sh_msiof",
691ee4ed 1346 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1347 },
1348};
940ab889 1349module_platform_driver(sh_msiof_spi_drv);
8051effc
MD
1350
1351MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1352MODULE_AUTHOR("Magnus Damm");
1353MODULE_LICENSE("GPL v2");
1354MODULE_ALIAS("platform:spi_sh_msiof");