]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/spi/spi-sh-msiof.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
8051effc
MD
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
cf9e4784
HN
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8051effc
MD
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
e2dbf5eb
GL
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
8051effc 17#include <linux/delay.h>
b0d0ce8b
GU
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
e2dbf5eb
GL
20#include <linux/err.h>
21#include <linux/gpio.h>
8051effc 22#include <linux/interrupt.h>
e2dbf5eb
GL
23#include <linux/io.h>
24#include <linux/kernel.h>
d7614de4 25#include <linux/module.h>
cf9c86ef 26#include <linux/of.h>
50a7e23f 27#include <linux/of_device.h>
8051effc 28#include <linux/platform_device.h>
8051effc 29#include <linux/pm_runtime.h>
b0d0ce8b 30#include <linux/sh_dma.h>
8051effc 31
e2dbf5eb 32#include <linux/spi/sh_msiof.h>
8051effc 33#include <linux/spi/spi.h>
8051effc 34
8051effc
MD
35#include <asm/unaligned.h>
36
50a7e23f
GU
37struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
beb74bb0 40 u16 master_flags;
61a8dec5 41 u16 min_div;
50a7e23f
GU
42};
43
8051effc 44struct sh_msiof_spi_priv {
b0d0ce8b 45 struct spi_master *master;
8051effc
MD
46 void __iomem *mapbase;
47 struct clk *clk;
48 struct platform_device *pdev;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
fe78d0b7
KM
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
61a8dec5 53 unsigned int min_div;
b0d0ce8b
GU
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
8950792b
GU
58 bool native_cs_inited;
59 bool native_cs_high;
cf9e4784 60 bool slave_aborted;
8051effc
MD
61};
62
01cfef57
GU
63#define TMDR1 0x00 /* Transmit Mode Register 1 */
64#define TMDR2 0x04 /* Transmit Mode Register 2 */
65#define TMDR3 0x08 /* Transmit Mode Register 3 */
66#define RMDR1 0x10 /* Receive Mode Register 1 */
67#define RMDR2 0x14 /* Receive Mode Register 2 */
68#define RMDR3 0x18 /* Receive Mode Register 3 */
69#define TSCR 0x20 /* Transmit Clock Select Register */
70#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
71#define CTR 0x28 /* Control Register */
72#define FCTR 0x30 /* FIFO Control Register */
73#define STR 0x40 /* Status Register */
74#define IER 0x44 /* Interrupt Enable Register */
75#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
76#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
77#define TFDR 0x50 /* Transmit FIFO Data Register */
78#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
79#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
80#define RFDR 0x60 /* Receive FIFO Data Register */
81
82/* TMDR1 and RMDR1 */
83#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
84#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
85#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
86#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
87#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
88#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
3110628d
YS
89#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
90#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
6d40530e 91#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
01cfef57
GU
92#define MDR1_FLD_SHIFT 2
93#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
94/* TMDR1 */
95#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
96
97/* TMDR2 and RMDR2 */
98#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
99#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
100#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
101
102/* TSCR and RSCR */
103#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
104#define SCR_BRPS(i) (((i) - 1) << 8)
105#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
106#define SCR_BRDV_DIV_2 0x0000
107#define SCR_BRDV_DIV_4 0x0001
108#define SCR_BRDV_DIV_8 0x0002
109#define SCR_BRDV_DIV_16 0x0003
110#define SCR_BRDV_DIV_32 0x0004
111#define SCR_BRDV_DIV_1 0x0007
112
113/* CTR */
114#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
115#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
116#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
117#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
118#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
119#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
120#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
121#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
122#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
123#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
124#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
125#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
126#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
127#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
128#define CTR_TXE 0x00000200 /* Transmit Enable */
129#define CTR_RXE 0x00000100 /* Receive Enable */
130
2e2b3687
GU
131/* FCTR */
132#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
133#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
134#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
135#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
136#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
137#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
138#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
139#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
140#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
141#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
142#define FCTR_TFUA_SHIFT 20
143#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
144#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
145#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
146#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
147#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
148#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
149#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
150#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
151#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
152#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
153#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
154#define FCTR_RFUA_SHIFT 4
155#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
156
157/* STR */
158#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
159#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
01cfef57 160#define STR_TEOF 0x00800000 /* Frame Transmission End */
2e2b3687
GU
161#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
162#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
163#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
164#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
165#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
01cfef57 166#define STR_REOF 0x00000080 /* Frame Reception End */
2e2b3687
GU
167#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
168#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
169#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
170
171/* IER */
172#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
173#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
174#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
175#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
176#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
177#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
178#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
179#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
180#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
181#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
182#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
183#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
184#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
185#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
01cfef57 186
8051effc 187
e2dbf5eb 188static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
189{
190 switch (reg_offs) {
191 case TSCR:
192 case RSCR:
193 return ioread16(p->mapbase + reg_offs);
194 default:
195 return ioread32(p->mapbase + reg_offs);
196 }
197}
198
199static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 200 u32 value)
8051effc
MD
201{
202 switch (reg_offs) {
203 case TSCR:
204 case RSCR:
205 iowrite16(value, p->mapbase + reg_offs);
206 break;
207 default:
208 iowrite32(value, p->mapbase + reg_offs);
209 break;
210 }
211}
212
213static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 214 u32 clr, u32 set)
8051effc 215{
e2dbf5eb
GL
216 u32 mask = clr | set;
217 u32 data;
8051effc
MD
218 int k;
219
220 data = sh_msiof_read(p, CTR);
221 data &= ~clr;
222 data |= set;
223 sh_msiof_write(p, CTR, data);
224
225 for (k = 100; k > 0; k--) {
226 if ((sh_msiof_read(p, CTR) & mask) == set)
227 break;
228
229 udelay(10);
230 }
231
232 return k > 0 ? 0 : -ETIMEDOUT;
233}
234
235static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
236{
237 struct sh_msiof_spi_priv *p = data;
238
239 /* just disable the interrupt and wake up */
240 sh_msiof_write(p, IER, 0);
241 complete(&p->done);
242
243 return IRQ_HANDLED;
244}
245
246static struct {
247 unsigned short div;
65d5665b
NI
248 unsigned short brdv;
249} const sh_msiof_spi_div_table[] = {
250 { 1, SCR_BRDV_DIV_1 },
251 { 2, SCR_BRDV_DIV_2 },
252 { 4, SCR_BRDV_DIV_4 },
253 { 8, SCR_BRDV_DIV_8 },
254 { 16, SCR_BRDV_DIV_16 },
255 { 32, SCR_BRDV_DIV_32 },
8051effc
MD
256};
257
258static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
6a85fc5a 259 unsigned long parent_rate, u32 spi_hz)
8051effc
MD
260{
261 unsigned long div = 1024;
65d5665b 262 u32 brps, scr;
8051effc
MD
263 size_t k;
264
265 if (!WARN_ON(!spi_hz || !parent_rate))
e4d313ff 266 div = DIV_ROUND_UP(parent_rate, spi_hz);
8051effc 267
61a8dec5
GU
268 div = max_t(unsigned long, div, p->min_div);
269
65d5665b
NI
270 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
271 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
c3ccf357
GU
272 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
273 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
274 continue;
65d5665b 275 if (brps <= 32) /* max of brdv is 32 */
8051effc
MD
276 break;
277 }
278
65d5665b 279 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
30b3f52b 280 brps = min_t(int, brps, 32);
8051effc 281
65d5665b
NI
282 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
283 sh_msiof_write(p, TSCR, scr);
a6802cc0 284 if (!(p->master->flags & SPI_MASTER_MUST_TX))
65d5665b 285 sh_msiof_write(p, RSCR, scr);
8051effc
MD
286}
287
3110628d
YS
288static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
289{
290 /*
291 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
292 * b'000 : 0
293 * b'001 : 100
294 * b'010 : 200
295 * b'011 (SYNCDL only) : 300
296 * b'101 : 50
297 * b'110 : 150
298 */
299 if (dtdl_or_syncdl % 100)
300 return dtdl_or_syncdl / 100 + 5;
301 else
302 return dtdl_or_syncdl / 100;
303}
304
305static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
306{
307 u32 val;
308
309 if (!p->info)
310 return 0;
311
312 /* check if DTDL and SYNCDL is allowed value */
313 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
314 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
315 return 0;
316 }
317
318 /* check if the sum of DTDL and SYNCDL becomes an integer value */
319 if ((p->info->dtdl + p->info->syncdl) % 100) {
320 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
321 return 0;
322 }
323
324 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
325 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
326
327 return val;
328}
329
8051effc 330static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
e2dbf5eb 331 u32 cpol, u32 cpha,
50a77998 332 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 333{
e2dbf5eb 334 u32 tmp;
8051effc
MD
335 int edge;
336
337 /*
e8708ef7
MP
338 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
339 * 0 0 10 10 1 1
340 * 0 1 10 10 0 0
341 * 1 0 11 11 0 0
342 * 1 1 11 11 1 1
8051effc 343 */
01cfef57
GU
344 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
345 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
346 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
3110628d 347 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
cf9e4784
HN
348 if (spi_controller_is_slave(p->master))
349 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
350 else
351 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
a6802cc0 352 if (p->master->flags & SPI_MASTER_MUST_TX) {
beb74bb0
GU
353 /* These bits are reserved if RX needs TX */
354 tmp &= ~0x0000ffff;
355 }
01cfef57 356 sh_msiof_write(p, RMDR1, tmp);
8051effc 357
01cfef57
GU
358 tmp = 0;
359 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
360 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
8051effc 361
e2dbf5eb 362 edge = cpol ^ !cpha;
8051effc 363
01cfef57
GU
364 tmp |= edge << CTR_TEDG_SHIFT;
365 tmp |= edge << CTR_REDG_SHIFT;
366 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
8051effc
MD
367 sh_msiof_write(p, CTR, tmp);
368}
369
370static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
371 const void *tx_buf, void *rx_buf,
e2dbf5eb 372 u32 bits, u32 words)
8051effc 373{
01cfef57 374 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
8051effc 375
a6802cc0 376 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
8051effc
MD
377 sh_msiof_write(p, TMDR2, dr2);
378 else
01cfef57 379 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
8051effc
MD
380
381 if (rx_buf)
382 sh_msiof_write(p, RMDR2, dr2);
8051effc
MD
383}
384
385static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
386{
ce49664c
HY
387 sh_msiof_write(p, STR,
388 sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
8051effc
MD
389}
390
391static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
392 const void *tx_buf, int words, int fs)
393{
e2dbf5eb 394 const u8 *buf_8 = tx_buf;
8051effc
MD
395 int k;
396
397 for (k = 0; k < words; k++)
398 sh_msiof_write(p, TFDR, buf_8[k] << fs);
399}
400
401static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
402 const void *tx_buf, int words, int fs)
403{
e2dbf5eb 404 const u16 *buf_16 = tx_buf;
8051effc
MD
405 int k;
406
407 for (k = 0; k < words; k++)
408 sh_msiof_write(p, TFDR, buf_16[k] << fs);
409}
410
411static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
412 const void *tx_buf, int words, int fs)
413{
e2dbf5eb 414 const u16 *buf_16 = tx_buf;
8051effc
MD
415 int k;
416
417 for (k = 0; k < words; k++)
418 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
419}
420
421static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
422 const void *tx_buf, int words, int fs)
423{
e2dbf5eb 424 const u32 *buf_32 = tx_buf;
8051effc
MD
425 int k;
426
427 for (k = 0; k < words; k++)
428 sh_msiof_write(p, TFDR, buf_32[k] << fs);
429}
430
431static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
432 const void *tx_buf, int words, int fs)
433{
e2dbf5eb 434 const u32 *buf_32 = tx_buf;
8051effc
MD
435 int k;
436
437 for (k = 0; k < words; k++)
438 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
439}
440
9dabb3f3
GL
441static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
442 const void *tx_buf, int words, int fs)
443{
444 const u32 *buf_32 = tx_buf;
445 int k;
446
447 for (k = 0; k < words; k++)
448 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
449}
450
451static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
452 const void *tx_buf, int words, int fs)
453{
454 const u32 *buf_32 = tx_buf;
455 int k;
456
457 for (k = 0; k < words; k++)
458 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
459}
460
8051effc
MD
461static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
462 void *rx_buf, int words, int fs)
463{
e2dbf5eb 464 u8 *buf_8 = rx_buf;
8051effc
MD
465 int k;
466
467 for (k = 0; k < words; k++)
468 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
469}
470
471static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
472 void *rx_buf, int words, int fs)
473{
e2dbf5eb 474 u16 *buf_16 = rx_buf;
8051effc
MD
475 int k;
476
477 for (k = 0; k < words; k++)
478 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
479}
480
481static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
482 void *rx_buf, int words, int fs)
483{
e2dbf5eb 484 u16 *buf_16 = rx_buf;
8051effc
MD
485 int k;
486
487 for (k = 0; k < words; k++)
488 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
489}
490
491static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
492 void *rx_buf, int words, int fs)
493{
e2dbf5eb 494 u32 *buf_32 = rx_buf;
8051effc
MD
495 int k;
496
497 for (k = 0; k < words; k++)
498 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
499}
500
501static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
502 void *rx_buf, int words, int fs)
503{
e2dbf5eb 504 u32 *buf_32 = rx_buf;
8051effc
MD
505 int k;
506
507 for (k = 0; k < words; k++)
508 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
509}
510
9dabb3f3
GL
511static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
512 void *rx_buf, int words, int fs)
513{
514 u32 *buf_32 = rx_buf;
515 int k;
516
517 for (k = 0; k < words; k++)
518 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
519}
520
521static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
522 void *rx_buf, int words, int fs)
523{
524 u32 *buf_32 = rx_buf;
525 int k;
526
527 for (k = 0; k < words; k++)
528 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
529}
530
8d19534a 531static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 532{
8d19534a 533 struct device_node *np = spi->master->dev.of_node;
c833ff73 534 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
8950792b 535 u32 clr, set, tmp;
01576056 536
8d19534a
GU
537 if (!np) {
538 /*
539 * Use spi->controller_data for CS (same strategy as spi_gpio),
540 * if any. otherwise let HW control CS
541 */
542 spi->cs_gpio = (uintptr_t)spi->controller_data;
543 }
8051effc 544
8950792b 545 if (spi->cs_gpio >= 0) {
1bd6363b 546 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
8950792b
GU
547 return 0;
548 }
8051effc 549
8950792b
GU
550 if (spi_controller_is_slave(p->master))
551 return 0;
01576056 552
8950792b
GU
553 if (p->native_cs_inited &&
554 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
555 return 0;
01576056 556
8950792b
GU
557 /* Configure native chip select mode/polarity early */
558 clr = MDR1_SYNCMD_MASK;
e6059969 559 set = MDR1_SYNCMD_SPI;
8950792b
GU
560 if (spi->mode & SPI_CS_HIGH)
561 clr |= BIT(MDR1_SYNCAC_SHIFT);
562 else
563 set |= BIT(MDR1_SYNCAC_SHIFT);
564 pm_runtime_get_sync(&p->pdev->dev);
565 tmp = sh_msiof_read(p, TMDR1) & ~clr;
e6059969
GU
566 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
567 tmp = sh_msiof_read(p, RMDR1) & ~clr;
568 sh_msiof_write(p, RMDR1, tmp | set);
8950792b
GU
569 pm_runtime_put(&p->pdev->dev);
570 p->native_cs_high = spi->mode & SPI_CS_HIGH;
571 p->native_cs_inited = true;
1bd6363b 572 return 0;
8051effc
MD
573}
574
c833ff73
GU
575static int sh_msiof_prepare_message(struct spi_master *master,
576 struct spi_message *msg)
8051effc 577{
c833ff73
GU
578 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
579 const struct spi_device *spi = msg->spi;
8051effc 580
c833ff73
GU
581 /* Configure pins before asserting CS */
582 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
583 !!(spi->mode & SPI_CPHA),
584 !!(spi->mode & SPI_3WIRE),
585 !!(spi->mode & SPI_LSB_FIRST),
586 !!(spi->mode & SPI_CS_HIGH));
587 return 0;
8051effc
MD
588}
589
76c02e71
GU
590static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
591{
cf9e4784
HN
592 bool slave = spi_controller_is_slave(p->master);
593 int ret = 0;
76c02e71
GU
594
595 /* setup clock and rx/tx signals */
cf9e4784
HN
596 if (!slave)
597 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
76c02e71
GU
598 if (rx_buf && !ret)
599 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
600 if (!ret)
601 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
602
603 /* start by setting frame bit */
cf9e4784 604 if (!ret && !slave)
76c02e71
GU
605 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
606
607 return ret;
608}
609
610static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
611{
cf9e4784
HN
612 bool slave = spi_controller_is_slave(p->master);
613 int ret = 0;
76c02e71
GU
614
615 /* shut down frame, rx/tx and clock signals */
cf9e4784
HN
616 if (!slave)
617 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
76c02e71
GU
618 if (!ret)
619 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
620 if (rx_buf && !ret)
621 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
cf9e4784 622 if (!ret && !slave)
76c02e71
GU
623 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
624
625 return ret;
626}
627
cf9e4784
HN
628static int sh_msiof_slave_abort(struct spi_master *master)
629{
630 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
631
632 p->slave_aborted = true;
633 complete(&p->done);
634 return 0;
635}
636
637static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
638{
639 if (spi_controller_is_slave(p->master)) {
640 if (wait_for_completion_interruptible(&p->done) ||
641 p->slave_aborted) {
642 dev_dbg(&p->pdev->dev, "interrupted\n");
643 return -EINTR;
644 }
645 } else {
646 if (!wait_for_completion_timeout(&p->done, HZ)) {
647 dev_err(&p->pdev->dev, "timeout\n");
648 return -ETIMEDOUT;
649 }
650 }
651
652 return 0;
653}
654
8051effc
MD
655static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
656 void (*tx_fifo)(struct sh_msiof_spi_priv *,
657 const void *, int, int),
658 void (*rx_fifo)(struct sh_msiof_spi_priv *,
659 void *, int, int),
660 const void *tx_buf, void *rx_buf,
661 int words, int bits)
662{
663 int fifo_shift;
664 int ret;
665
666 /* limit maximum word transfer to rx/tx fifo size */
667 if (tx_buf)
668 words = min_t(int, words, p->tx_fifo_size);
669 if (rx_buf)
670 words = min_t(int, words, p->rx_fifo_size);
671
672 /* the fifo contents need shifting */
673 fifo_shift = 32 - bits;
674
b0d0ce8b
GU
675 /* default FIFO watermarks for PIO */
676 sh_msiof_write(p, FCTR, 0);
677
8051effc
MD
678 /* setup msiof transfer mode registers */
679 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
b0d0ce8b 680 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
8051effc
MD
681
682 /* write tx fifo */
683 if (tx_buf)
684 tx_fifo(p, tx_buf, words, fifo_shift);
685
16735d02 686 reinit_completion(&p->done);
cf9e4784 687 p->slave_aborted = false;
76c02e71
GU
688
689 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
690 if (ret) {
691 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 692 goto stop_ier;
8051effc
MD
693 }
694
695 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
696 ret = sh_msiof_wait_for_completion(p);
697 if (ret)
75b82e23 698 goto stop_reset;
8051effc
MD
699
700 /* read rx fifo */
701 if (rx_buf)
702 rx_fifo(p, rx_buf, words, fifo_shift);
703
704 /* clear status bits */
705 sh_msiof_reset_str(p);
706
76c02e71 707 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
708 if (ret) {
709 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 710 return ret;
8051effc
MD
711 }
712
713 return words;
714
75b82e23
GU
715stop_reset:
716 sh_msiof_reset_str(p);
717 sh_msiof_spi_stop(p, rx_buf);
718stop_ier:
8051effc
MD
719 sh_msiof_write(p, IER, 0);
720 return ret;
721}
722
b0d0ce8b
GU
723static void sh_msiof_dma_complete(void *arg)
724{
725 struct sh_msiof_spi_priv *p = arg;
726
727 sh_msiof_write(p, IER, 0);
728 complete(&p->done);
729}
730
731static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
732 void *rx, unsigned int len)
733{
734 u32 ier_bits = 0;
735 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
736 dma_cookie_t cookie;
737 int ret;
738
3e81b592 739 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b
GU
740 if (rx) {
741 ier_bits |= IER_RDREQE | IER_RDMAE;
742 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
743 p->rx_dma_addr, len, DMA_FROM_DEVICE,
744 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
745 if (!desc_rx)
746 return -EAGAIN;
b0d0ce8b 747
b0d0ce8b
GU
748 desc_rx->callback = sh_msiof_dma_complete;
749 desc_rx->callback_param = p;
750 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
751 if (dma_submit_error(cookie))
752 return cookie;
b0d0ce8b
GU
753 }
754
755 if (tx) {
3e81b592
GU
756 ier_bits |= IER_TDREQE | IER_TDMAE;
757 dma_sync_single_for_device(p->master->dma_tx->device->dev,
758 p->tx_dma_addr, len, DMA_TO_DEVICE);
759 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
760 p->tx_dma_addr, len, DMA_TO_DEVICE,
761 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
762 if (!desc_tx) {
763 ret = -EAGAIN;
764 goto no_dma_tx;
765 }
766
b0d0ce8b
GU
767 if (rx) {
768 /* No callback */
769 desc_tx->callback = NULL;
770 } else {
771 desc_tx->callback = sh_msiof_dma_complete;
772 desc_tx->callback_param = p;
773 }
774 cookie = dmaengine_submit(desc_tx);
775 if (dma_submit_error(cookie)) {
776 ret = cookie;
3e81b592 777 goto no_dma_tx;
b0d0ce8b 778 }
b0d0ce8b
GU
779 }
780
3e81b592
GU
781 /* 1 stage FIFO watermarks for DMA */
782 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
783
784 /* setup msiof transfer mode registers (32-bit words) */
785 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
786
787 sh_msiof_write(p, IER, ier_bits);
788
789 reinit_completion(&p->done);
cf9e4784 790 p->slave_aborted = false;
3e81b592
GU
791
792 /* Now start DMA */
3e81b592 793 if (rx)
7a9f957b
GU
794 dma_async_issue_pending(p->master->dma_rx);
795 if (tx)
3e81b592
GU
796 dma_async_issue_pending(p->master->dma_tx);
797
b0d0ce8b
GU
798 ret = sh_msiof_spi_start(p, rx);
799 if (ret) {
800 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 801 goto stop_dma;
b0d0ce8b
GU
802 }
803
ab2f094c 804 /* wait for tx/rx DMA completion */
cf9e4784
HN
805 ret = sh_msiof_wait_for_completion(p);
806 if (ret)
b0d0ce8b 807 goto stop_reset;
b0d0ce8b 808
ab2f094c
GU
809 if (!rx) {
810 reinit_completion(&p->done);
811 sh_msiof_write(p, IER, IER_TEOFE);
812
813 /* wait for tx fifo to be emptied */
814 ret = sh_msiof_wait_for_completion(p);
815 if (ret)
816 goto stop_reset;
817 }
818
b0d0ce8b
GU
819 /* clear status bits */
820 sh_msiof_reset_str(p);
821
822 ret = sh_msiof_spi_stop(p, rx);
823 if (ret) {
824 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
825 return ret;
826 }
827
828 if (rx)
5dabcf2f
GU
829 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
830 p->rx_dma_addr, len,
b0d0ce8b
GU
831 DMA_FROM_DEVICE);
832
833 return 0;
834
835stop_reset:
836 sh_msiof_reset_str(p);
837 sh_msiof_spi_stop(p, rx);
3e81b592 838stop_dma:
b0d0ce8b
GU
839 if (tx)
840 dmaengine_terminate_all(p->master->dma_tx);
3e81b592 841no_dma_tx:
b0d0ce8b
GU
842 if (rx)
843 dmaengine_terminate_all(p->master->dma_rx);
b0d0ce8b
GU
844 sh_msiof_write(p, IER, 0);
845 return ret;
846}
847
848static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
849{
850 /* src or dst can be unaligned, but not both */
851 if ((unsigned long)src & 3) {
852 while (words--) {
853 *dst++ = swab32(get_unaligned(src));
854 src++;
855 }
856 } else if ((unsigned long)dst & 3) {
857 while (words--) {
858 put_unaligned(swab32(*src++), dst);
859 dst++;
860 }
861 } else {
862 while (words--)
863 *dst++ = swab32(*src++);
864 }
865}
866
867static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
868{
869 /* src or dst can be unaligned, but not both */
870 if ((unsigned long)src & 3) {
871 while (words--) {
872 *dst++ = swahw32(get_unaligned(src));
873 src++;
874 }
875 } else if ((unsigned long)dst & 3) {
876 while (words--) {
877 put_unaligned(swahw32(*src++), dst);
878 dst++;
879 }
880 } else {
881 while (words--)
882 *dst++ = swahw32(*src++);
883 }
884}
885
886static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
887{
888 memcpy(dst, src, words * 4);
889}
890
1bd6363b
GU
891static int sh_msiof_transfer_one(struct spi_master *master,
892 struct spi_device *spi,
893 struct spi_transfer *t)
8051effc 894{
1bd6363b 895 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
b0d0ce8b 896 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
897 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
898 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
899 const void *tx_buf = t->tx_buf;
900 void *rx_buf = t->rx_buf;
901 unsigned int len = t->len;
902 unsigned int bits = t->bits_per_word;
903 unsigned int bytes_per_word;
904 unsigned int words;
8051effc 905 int n;
9dabb3f3 906 bool swab;
b0d0ce8b
GU
907 int ret;
908
909 /* setup clocks (clock already enabled in chipselect()) */
cf9e4784
HN
910 if (!spi_controller_is_slave(p->master))
911 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
b0d0ce8b
GU
912
913 while (master->dma_tx && len > 15) {
914 /*
915 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
916 * words, with byte resp. word swapping.
917 */
fe78d0b7
KM
918 unsigned int l = 0;
919
920 if (tx_buf)
921 l = min(len, p->tx_fifo_size * 4);
922 if (rx_buf)
923 l = min(len, p->rx_fifo_size * 4);
b0d0ce8b
GU
924
925 if (bits <= 8) {
926 if (l & 3)
927 break;
928 copy32 = copy_bswap32;
929 } else if (bits <= 16) {
36735783 930 if (l & 3)
b0d0ce8b
GU
931 break;
932 copy32 = copy_wswap32;
933 } else {
934 copy32 = copy_plain32;
935 }
936
937 if (tx_buf)
938 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 939
b0d0ce8b 940 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378
GU
941 if (ret == -EAGAIN) {
942 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
943 dev_driver_string(&p->pdev->dev),
944 dev_name(&p->pdev->dev));
945 break;
946 }
b0d0ce8b
GU
947 if (ret)
948 return ret;
949
950 if (rx_buf) {
951 copy32(rx_buf, p->rx_dma_page, l / 4);
952 rx_buf += l;
953 }
954 if (tx_buf)
955 tx_buf += l;
956
957 len -= l;
958 if (!len)
959 return 0;
960 }
8051effc 961
0312d591 962 if (bits <= 8 && len > 15 && !(len & 3)) {
9dabb3f3
GL
963 bits = 32;
964 swab = true;
965 } else {
966 swab = false;
967 }
968
8051effc
MD
969 /* setup bytes per word and fifo read/write functions */
970 if (bits <= 8) {
971 bytes_per_word = 1;
972 tx_fifo = sh_msiof_spi_write_fifo_8;
973 rx_fifo = sh_msiof_spi_read_fifo_8;
974 } else if (bits <= 16) {
975 bytes_per_word = 2;
0312d591 976 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
977 tx_fifo = sh_msiof_spi_write_fifo_16u;
978 else
979 tx_fifo = sh_msiof_spi_write_fifo_16;
980
0312d591 981 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
982 rx_fifo = sh_msiof_spi_read_fifo_16u;
983 else
984 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
985 } else if (swab) {
986 bytes_per_word = 4;
0312d591 987 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
988 tx_fifo = sh_msiof_spi_write_fifo_s32u;
989 else
990 tx_fifo = sh_msiof_spi_write_fifo_s32;
991
0312d591 992 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
993 rx_fifo = sh_msiof_spi_read_fifo_s32u;
994 else
995 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
996 } else {
997 bytes_per_word = 4;
0312d591 998 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
999 tx_fifo = sh_msiof_spi_write_fifo_32u;
1000 else
1001 tx_fifo = sh_msiof_spi_write_fifo_32;
1002
0312d591 1003 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
1004 rx_fifo = sh_msiof_spi_read_fifo_32u;
1005 else
1006 rx_fifo = sh_msiof_spi_read_fifo_32;
1007 }
1008
8051effc 1009 /* transfer in fifo sized chunks */
0312d591
GU
1010 words = len / bytes_per_word;
1011
1012 while (words > 0) {
1013 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
1014 words, bits);
1015 if (n < 0)
75b82e23 1016 return n;
8051effc 1017
0312d591
GU
1018 if (tx_buf)
1019 tx_buf += n * bytes_per_word;
1020 if (rx_buf)
1021 rx_buf += n * bytes_per_word;
8051effc
MD
1022 words -= n;
1023 }
1024
8051effc
MD
1025 return 0;
1026}
1027
50a7e23f
GU
1028static const struct sh_msiof_chipdata sh_data = {
1029 .tx_fifo_size = 64,
1030 .rx_fifo_size = 64,
beb74bb0 1031 .master_flags = 0,
61a8dec5
GU
1032 .min_div = 1,
1033};
1034
1035static const struct sh_msiof_chipdata rcar_gen2_data = {
1036 .tx_fifo_size = 64,
1037 .rx_fifo_size = 64,
1038 .master_flags = SPI_MASTER_MUST_TX,
1039 .min_div = 1,
beb74bb0
GU
1040};
1041
61a8dec5 1042static const struct sh_msiof_chipdata rcar_gen3_data = {
beb74bb0 1043 .tx_fifo_size = 64,
fe78d0b7 1044 .rx_fifo_size = 64,
beb74bb0 1045 .master_flags = SPI_MASTER_MUST_TX,
61a8dec5 1046 .min_div = 2,
50a7e23f
GU
1047};
1048
1049static const struct of_device_id sh_msiof_match[] = {
50a7e23f 1050 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
bdacfc7b
FC
1051 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1052 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
61a8dec5
GU
1053 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1054 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1055 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1056 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1057 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1058 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1059 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1060 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
264c3e8d 1061 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
50a7e23f
GU
1062 {},
1063};
1064MODULE_DEVICE_TABLE(of, sh_msiof_match);
1065
cf9c86ef
BH
1066#ifdef CONFIG_OF
1067static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1068{
1069 struct sh_msiof_spi_info *info;
1070 struct device_node *np = dev->of_node;
32d3b2d1 1071 u32 num_cs = 1;
cf9c86ef
BH
1072
1073 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 1074 if (!info)
cf9c86ef 1075 return NULL;
cf9c86ef 1076
cf9e4784
HN
1077 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1078 : MSIOF_SPI_MASTER;
1079
cf9c86ef 1080 /* Parse the MSIOF properties */
cf9e4784
HN
1081 if (info->mode == MSIOF_SPI_MASTER)
1082 of_property_read_u32(np, "num-cs", &num_cs);
cf9c86ef
BH
1083 of_property_read_u32(np, "renesas,tx-fifo-size",
1084 &info->tx_fifo_override);
1085 of_property_read_u32(np, "renesas,rx-fifo-size",
1086 &info->rx_fifo_override);
3110628d
YS
1087 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1088 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1089
1090 info->num_chipselect = num_cs;
1091
1092 return info;
1093}
1094#else
1095static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1096{
1097 return NULL;
1098}
1099#endif
1100
b0d0ce8b
GU
1101static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1102 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1103{
1104 dma_cap_mask_t mask;
1105 struct dma_chan *chan;
1106 struct dma_slave_config cfg;
1107 int ret;
1108
1109 dma_cap_zero(mask);
1110 dma_cap_set(DMA_SLAVE, mask);
1111
a6be4de6
GU
1112 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1113 (void *)(unsigned long)id, dev,
1114 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1115 if (!chan) {
a6be4de6 1116 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1117 return NULL;
1118 }
1119
1120 memset(&cfg, 0, sizeof(cfg));
b0d0ce8b 1121 cfg.direction = dir;
52fba2b8 1122 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1123 cfg.dst_addr = port_addr;
52fba2b8
GU
1124 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1125 } else {
b0d0ce8b 1126 cfg.src_addr = port_addr;
52fba2b8
GU
1127 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1128 }
b0d0ce8b
GU
1129
1130 ret = dmaengine_slave_config(chan, &cfg);
1131 if (ret) {
1132 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1133 dma_release_channel(chan);
1134 return NULL;
1135 }
1136
1137 return chan;
1138}
1139
1140static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1141{
1142 struct platform_device *pdev = p->pdev;
1143 struct device *dev = &pdev->dev;
1144 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
a6be4de6 1145 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b
GU
1146 const struct resource *res;
1147 struct spi_master *master;
5dabcf2f 1148 struct device *tx_dev, *rx_dev;
b0d0ce8b 1149
a6be4de6
GU
1150 if (dev->of_node) {
1151 /* In the OF case we will get the slave IDs from the DT */
1152 dma_tx_id = 0;
1153 dma_rx_id = 0;
1154 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1155 dma_tx_id = info->dma_tx_id;
1156 dma_rx_id = info->dma_rx_id;
1157 } else {
1158 /* The driver assumes no error */
1159 return 0;
1160 }
b0d0ce8b
GU
1161
1162 /* The DMA engine uses the second register set, if present */
1163 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1164 if (!res)
1165 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1166
1167 master = p->master;
1168 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
a6be4de6 1169 dma_tx_id,
b0d0ce8b
GU
1170 res->start + TFDR);
1171 if (!master->dma_tx)
1172 return -ENODEV;
1173
1174 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
a6be4de6 1175 dma_rx_id,
b0d0ce8b
GU
1176 res->start + RFDR);
1177 if (!master->dma_rx)
1178 goto free_tx_chan;
1179
1180 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1181 if (!p->tx_dma_page)
1182 goto free_rx_chan;
1183
1184 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1185 if (!p->rx_dma_page)
1186 goto free_tx_page;
1187
5dabcf2f
GU
1188 tx_dev = master->dma_tx->device->dev;
1189 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1190 DMA_TO_DEVICE);
5dabcf2f 1191 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1192 goto free_rx_page;
1193
5dabcf2f
GU
1194 rx_dev = master->dma_rx->device->dev;
1195 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1196 DMA_FROM_DEVICE);
5dabcf2f 1197 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1198 goto unmap_tx_page;
1199
1200 dev_info(dev, "DMA available");
1201 return 0;
1202
1203unmap_tx_page:
5dabcf2f 1204 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1205free_rx_page:
1206 free_page((unsigned long)p->rx_dma_page);
1207free_tx_page:
1208 free_page((unsigned long)p->tx_dma_page);
1209free_rx_chan:
1210 dma_release_channel(master->dma_rx);
1211free_tx_chan:
1212 dma_release_channel(master->dma_tx);
1213 master->dma_tx = NULL;
1214 return -ENODEV;
1215}
1216
1217static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1218{
1219 struct spi_master *master = p->master;
b0d0ce8b
GU
1220
1221 if (!master->dma_tx)
1222 return;
1223
5dabcf2f
GU
1224 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1225 PAGE_SIZE, DMA_FROM_DEVICE);
1226 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1227 PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1228 free_page((unsigned long)p->rx_dma_page);
1229 free_page((unsigned long)p->tx_dma_page);
1230 dma_release_channel(master->dma_rx);
1231 dma_release_channel(master->dma_tx);
1232}
1233
8051effc
MD
1234static int sh_msiof_spi_probe(struct platform_device *pdev)
1235{
1236 struct resource *r;
1237 struct spi_master *master;
a6802cc0 1238 const struct sh_msiof_chipdata *chipdata;
cf9e4784 1239 struct sh_msiof_spi_info *info;
8051effc 1240 struct sh_msiof_spi_priv *p;
8051effc
MD
1241 int i;
1242 int ret;
1243
ecb1596a
GU
1244 chipdata = of_device_get_match_data(&pdev->dev);
1245 if (chipdata) {
cf9e4784 1246 info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f 1247 } else {
a6802cc0 1248 chipdata = (const void *)pdev->id_entry->driver_data;
cf9e4784 1249 info = dev_get_platdata(&pdev->dev);
50a7e23f 1250 }
cf9c86ef 1251
cf9e4784 1252 if (!info) {
cf9c86ef 1253 dev_err(&pdev->dev, "failed to obtain device info\n");
cf9e4784 1254 return -ENXIO;
cf9c86ef
BH
1255 }
1256
cf9e4784
HN
1257 if (info->mode == MSIOF_SPI_SLAVE)
1258 master = spi_alloc_slave(&pdev->dev,
1259 sizeof(struct sh_msiof_spi_priv));
1260 else
1261 master = spi_alloc_master(&pdev->dev,
1262 sizeof(struct sh_msiof_spi_priv));
1263 if (master == NULL)
1264 return -ENOMEM;
1265
1266 p = spi_master_get_devdata(master);
1267
1268 platform_set_drvdata(pdev, p);
1269 p->master = master;
1270 p->info = info;
61a8dec5 1271 p->min_div = chipdata->min_div;
cf9e4784 1272
8051effc
MD
1273 init_completion(&p->done);
1274
b4dd05de 1275 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1276 if (IS_ERR(p->clk)) {
078b6ead 1277 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1278 ret = PTR_ERR(p->clk);
1279 goto err1;
1280 }
1281
8051effc 1282 i = platform_get_irq(pdev, 0);
b4dd05de 1283 if (i < 0) {
3b788b1c
SS
1284 dev_err(&pdev->dev, "cannot get IRQ\n");
1285 ret = i;
b4dd05de 1286 goto err1;
8051effc 1287 }
b4dd05de
LP
1288
1289 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1290 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1291 if (IS_ERR(p->mapbase)) {
1292 ret = PTR_ERR(p->mapbase);
1293 goto err1;
8051effc
MD
1294 }
1295
b4dd05de
LP
1296 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1297 dev_name(&pdev->dev), p);
8051effc
MD
1298 if (ret) {
1299 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1300 goto err1;
8051effc
MD
1301 }
1302
1303 p->pdev = pdev;
1304 pm_runtime_enable(&pdev->dev);
1305
8051effc 1306 /* Platform data may override FIFO sizes */
a6802cc0
GU
1307 p->tx_fifo_size = chipdata->tx_fifo_size;
1308 p->rx_fifo_size = chipdata->rx_fifo_size;
8051effc
MD
1309 if (p->info->tx_fifo_override)
1310 p->tx_fifo_size = p->info->tx_fifo_override;
1311 if (p->info->rx_fifo_override)
1312 p->rx_fifo_size = p->info->rx_fifo_override;
1313
1bd6363b 1314 /* init master code */
8051effc
MD
1315 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1316 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
a6802cc0 1317 master->flags = chipdata->master_flags;
8051effc 1318 master->bus_num = pdev->id;
f7c05e83 1319 master->dev.of_node = pdev->dev.of_node;
8051effc 1320 master->num_chipselect = p->info->num_chipselect;
8d19534a 1321 master->setup = sh_msiof_spi_setup;
c833ff73 1322 master->prepare_message = sh_msiof_prepare_message;
cf9e4784 1323 master->slave_abort = sh_msiof_slave_abort;
2416289c 1324 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
e2a0ba54 1325 master->auto_runtime_pm = true;
1bd6363b 1326 master->transfer_one = sh_msiof_transfer_one;
8051effc 1327
b0d0ce8b
GU
1328 ret = sh_msiof_request_dma(p);
1329 if (ret < 0)
1330 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1331
1bd6363b
GU
1332 ret = devm_spi_register_master(&pdev->dev, master);
1333 if (ret < 0) {
1334 dev_err(&pdev->dev, "spi_register_master error.\n");
1335 goto err2;
1336 }
8051effc 1337
1bd6363b 1338 return 0;
8051effc 1339
1bd6363b 1340 err2:
b0d0ce8b 1341 sh_msiof_release_dma(p);
8051effc 1342 pm_runtime_disable(&pdev->dev);
8051effc
MD
1343 err1:
1344 spi_master_put(master);
8051effc
MD
1345 return ret;
1346}
1347
1348static int sh_msiof_spi_remove(struct platform_device *pdev)
1349{
b0d0ce8b
GU
1350 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1351
1352 sh_msiof_release_dma(p);
1bd6363b 1353 pm_runtime_disable(&pdev->dev);
1bd6363b 1354 return 0;
8051effc
MD
1355}
1356
3789c852 1357static const struct platform_device_id spi_driver_ids[] = {
50a7e23f 1358 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
cf9c86ef
BH
1359 {},
1360};
50a7e23f 1361MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1362
9e4219ff
GI
1363#ifdef CONFIG_PM_SLEEP
1364static int sh_msiof_spi_suspend(struct device *dev)
1365{
1366 struct platform_device *pdev = to_platform_device(dev);
1367 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1368
1369 return spi_master_suspend(p->master);
1370}
1371
1372static int sh_msiof_spi_resume(struct device *dev)
1373{
1374 struct platform_device *pdev = to_platform_device(dev);
1375 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1376
1377 return spi_master_resume(p->master);
1378}
1379
1380static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1381 sh_msiof_spi_resume);
1382#define DEV_PM_OPS &sh_msiof_spi_pm_ops
1383#else
1384#define DEV_PM_OPS NULL
1385#endif /* CONFIG_PM_SLEEP */
1386
8051effc
MD
1387static struct platform_driver sh_msiof_spi_drv = {
1388 .probe = sh_msiof_spi_probe,
1389 .remove = sh_msiof_spi_remove,
50a7e23f 1390 .id_table = spi_driver_ids,
8051effc
MD
1391 .driver = {
1392 .name = "spi_sh_msiof",
9e4219ff 1393 .pm = DEV_PM_OPS,
691ee4ed 1394 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1395 },
1396};
940ab889 1397module_platform_driver(sh_msiof_spi_drv);
8051effc
MD
1398
1399MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1400MODULE_AUTHOR("Magnus Damm");
1401MODULE_LICENSE("GPL v2");
1402MODULE_ALIAS("platform:spi_sh_msiof");