]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/spi/spi-stm32.c
spi: imx: Improve driver description
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-stm32.c
CommitLineData
d57a984f
CG
1// SPDX-License-Identifier: GPL-2.0
2//
3// STMicroelectronics STM32 SPI Controller driver (master mode only)
4//
5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
5a380b83 8#include <linux/bitfield.h>
dcbe0d84
AD
9#include <linux/debugfs.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
dcbe0d84
AD
13#include <linux/interrupt.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/of_platform.h>
db96bf97 17#include <linux/pinctrl/consumer.h>
038ac869 18#include <linux/pm_runtime.h>
dcbe0d84
AD
19#include <linux/reset.h>
20#include <linux/spi/spi.h>
21
22#define DRIVER_NAME "spi_stm32"
23
00505edf
CG
24/* STM32F4 SPI registers */
25#define STM32F4_SPI_CR1 0x00
26#define STM32F4_SPI_CR2 0x04
27#define STM32F4_SPI_SR 0x08
28#define STM32F4_SPI_DR 0x0C
29#define STM32F4_SPI_I2SCFGR 0x1C
30
31/* STM32F4_SPI_CR1 bit fields */
32#define STM32F4_SPI_CR1_CPHA BIT(0)
33#define STM32F4_SPI_CR1_CPOL BIT(1)
34#define STM32F4_SPI_CR1_MSTR BIT(2)
35#define STM32F4_SPI_CR1_BR_SHIFT 3
36#define STM32F4_SPI_CR1_BR GENMASK(5, 3)
37#define STM32F4_SPI_CR1_SPE BIT(6)
38#define STM32F4_SPI_CR1_LSBFRST BIT(7)
39#define STM32F4_SPI_CR1_SSI BIT(8)
40#define STM32F4_SPI_CR1_SSM BIT(9)
41#define STM32F4_SPI_CR1_RXONLY BIT(10)
42#define STM32F4_SPI_CR1_DFF BIT(11)
43#define STM32F4_SPI_CR1_CRCNEXT BIT(12)
44#define STM32F4_SPI_CR1_CRCEN BIT(13)
45#define STM32F4_SPI_CR1_BIDIOE BIT(14)
46#define STM32F4_SPI_CR1_BIDIMODE BIT(15)
47#define STM32F4_SPI_CR1_BR_MIN 0
48#define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
49
50/* STM32F4_SPI_CR2 bit fields */
51#define STM32F4_SPI_CR2_RXDMAEN BIT(0)
52#define STM32F4_SPI_CR2_TXDMAEN BIT(1)
53#define STM32F4_SPI_CR2_SSOE BIT(2)
54#define STM32F4_SPI_CR2_FRF BIT(4)
55#define STM32F4_SPI_CR2_ERRIE BIT(5)
56#define STM32F4_SPI_CR2_RXNEIE BIT(6)
57#define STM32F4_SPI_CR2_TXEIE BIT(7)
58
59/* STM32F4_SPI_SR bit fields */
60#define STM32F4_SPI_SR_RXNE BIT(0)
61#define STM32F4_SPI_SR_TXE BIT(1)
62#define STM32F4_SPI_SR_CHSIDE BIT(2)
63#define STM32F4_SPI_SR_UDR BIT(3)
64#define STM32F4_SPI_SR_CRCERR BIT(4)
65#define STM32F4_SPI_SR_MODF BIT(5)
66#define STM32F4_SPI_SR_OVR BIT(6)
67#define STM32F4_SPI_SR_BSY BIT(7)
68#define STM32F4_SPI_SR_FRE BIT(8)
69
70/* STM32F4_SPI_I2SCFGR bit fields */
71#define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
72
73/* STM32F4 SPI Baud Rate min/max divisor */
74#define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
75#define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
76
86026630
CG
77/* STM32H7 SPI registers */
78#define STM32H7_SPI_CR1 0x00
79#define STM32H7_SPI_CR2 0x04
80#define STM32H7_SPI_CFG1 0x08
81#define STM32H7_SPI_CFG2 0x0C
82#define STM32H7_SPI_IER 0x10
83#define STM32H7_SPI_SR 0x14
84#define STM32H7_SPI_IFCR 0x18
85#define STM32H7_SPI_TXDR 0x20
86#define STM32H7_SPI_RXDR 0x30
87#define STM32H7_SPI_I2SCFGR 0x50
88
89/* STM32H7_SPI_CR1 bit fields */
90#define STM32H7_SPI_CR1_SPE BIT(0)
91#define STM32H7_SPI_CR1_MASRX BIT(8)
92#define STM32H7_SPI_CR1_CSTART BIT(9)
93#define STM32H7_SPI_CR1_CSUSP BIT(10)
94#define STM32H7_SPI_CR1_HDDIR BIT(11)
95#define STM32H7_SPI_CR1_SSI BIT(12)
96
97/* STM32H7_SPI_CR2 bit fields */
86026630 98#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
5a380b83 99#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
86026630
CG
100
101/* STM32H7_SPI_CFG1 bit fields */
86026630 102#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
86026630
CG
103#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
104#define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
105#define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
86026630 106#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
5a380b83 107#define STM32H7_SPI_CFG1_MBR_SHIFT 28
86026630
CG
108#define STM32H7_SPI_CFG1_MBR_MIN 0
109#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
110
111/* STM32H7_SPI_CFG2 bit fields */
86026630 112#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
86026630 113#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
86026630
CG
114#define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
115#define STM32H7_SPI_CFG2_MASTER BIT(22)
116#define STM32H7_SPI_CFG2_LSBFRST BIT(23)
117#define STM32H7_SPI_CFG2_CPHA BIT(24)
118#define STM32H7_SPI_CFG2_CPOL BIT(25)
119#define STM32H7_SPI_CFG2_SSM BIT(26)
120#define STM32H7_SPI_CFG2_AFCNTR BIT(31)
121
122/* STM32H7_SPI_IER bit fields */
123#define STM32H7_SPI_IER_RXPIE BIT(0)
124#define STM32H7_SPI_IER_TXPIE BIT(1)
125#define STM32H7_SPI_IER_DXPIE BIT(2)
126#define STM32H7_SPI_IER_EOTIE BIT(3)
127#define STM32H7_SPI_IER_TXTFIE BIT(4)
128#define STM32H7_SPI_IER_OVRIE BIT(6)
129#define STM32H7_SPI_IER_MODFIE BIT(9)
130#define STM32H7_SPI_IER_ALL GENMASK(10, 0)
131
132/* STM32H7_SPI_SR bit fields */
133#define STM32H7_SPI_SR_RXP BIT(0)
134#define STM32H7_SPI_SR_TXP BIT(1)
135#define STM32H7_SPI_SR_EOT BIT(3)
136#define STM32H7_SPI_SR_OVR BIT(6)
137#define STM32H7_SPI_SR_MODF BIT(9)
138#define STM32H7_SPI_SR_SUSP BIT(11)
86026630
CG
139#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
140#define STM32H7_SPI_SR_RXWNE BIT(15)
141
142/* STM32H7_SPI_IFCR bit fields */
143#define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
144
145/* STM32H7_SPI_I2SCFGR bit fields */
146#define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
147
148/* STM32H7 SPI Master Baud Rate min/max divisor */
149#define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
150#define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
dcbe0d84 151
9d5fce16
CG
152/* STM32H7 SPI Communication mode */
153#define STM32H7_SPI_FULL_DUPLEX 0
154#define STM32H7_SPI_SIMPLEX_TX 1
155#define STM32H7_SPI_SIMPLEX_RX 2
156#define STM32H7_SPI_HALF_DUPLEX 3
157
158/* SPI Communication type */
dcbe0d84
AD
159#define SPI_FULL_DUPLEX 0
160#define SPI_SIMPLEX_TX 1
161#define SPI_SIMPLEX_RX 2
9d5fce16
CG
162#define SPI_3WIRE_TX 3
163#define SPI_3WIRE_RX 4
dcbe0d84 164
00505edf
CG
165/*
166 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
167 * without fifo buffers.
168 */
169#define SPI_DMA_MIN_BYTES 16
170
55166853 171/**
1c52be8b 172 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
55166853
CG
173 * @reg: register offset
174 * @mask: bitfield mask
175 * @shift: left shift
176 */
177struct stm32_spi_reg {
178 int reg;
179 int mask;
180 int shift;
181};
182
183/**
1c52be8b
AV
184 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
185 * @en: enable register and SPI enable bit
186 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
187 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
188 * @cpol: clock polarity register and polarity bit
189 * @cpha: clock phase register and phase bit
190 * @lsb_first: LSB transmitted first register and bit
191 * @br: baud rate register and bitfields
192 * @rx: SPI RX data register
193 * @tx: SPI TX data register
55166853
CG
194 */
195struct stm32_spi_regspec {
196 const struct stm32_spi_reg en;
197 const struct stm32_spi_reg dma_rx_en;
198 const struct stm32_spi_reg dma_tx_en;
199 const struct stm32_spi_reg cpol;
200 const struct stm32_spi_reg cpha;
201 const struct stm32_spi_reg lsb_first;
202 const struct stm32_spi_reg br;
203 const struct stm32_spi_reg rx;
204 const struct stm32_spi_reg tx;
205};
206
207struct stm32_spi;
208
209/**
1c52be8b 210 * struct stm32_spi_cfg - stm32 compatible configuration data
55166853
CG
211 * @regs: registers descriptions
212 * @get_fifo_size: routine to get fifo size
213 * @get_bpw_mask: routine to get bits per word mask
214 * @disable: routine to disable controller
215 * @config: routine to configure controller as SPI Master
216 * @set_bpw: routine to configure registers to for bits per word
217 * @set_mode: routine to configure registers to desired mode
218 * @set_data_idleness: optional routine to configure registers to desired idle
219 * time between frames (if driver has this functionality)
1c52be8b 220 * @set_number_of_data: optional routine to configure registers to desired
55166853
CG
221 * number of data (if driver has this functionality)
222 * @can_dma: routine to determine if the transfer is eligible for DMA use
223 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
224 * using DMA
1c52be8b
AV
225 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
226 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
55166853
CG
227 * @transfer_one_irq: routine to configure interrupts for driver
228 * @irq_handler_event: Interrupt handler for SPI controller events
229 * @irq_handler_thread: thread of interrupt handler for SPI controller
230 * @baud_rate_div_min: minimum baud rate divisor
231 * @baud_rate_div_max: maximum baud rate divisor
232 * @has_fifo: boolean to know if fifo is used for driver
233 * @has_startbit: boolean to know if start bit is used to start transfer
234 */
235struct stm32_spi_cfg {
236 const struct stm32_spi_regspec *regs;
237 int (*get_fifo_size)(struct stm32_spi *spi);
238 int (*get_bpw_mask)(struct stm32_spi *spi);
239 void (*disable)(struct stm32_spi *spi);
240 int (*config)(struct stm32_spi *spi);
241 void (*set_bpw)(struct stm32_spi *spi);
242 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
243 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
244 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
245 void (*transfer_one_dma_start)(struct stm32_spi *spi);
246 void (*dma_rx_cb)(void *data);
247 void (*dma_tx_cb)(void *data);
248 int (*transfer_one_irq)(struct stm32_spi *spi);
249 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
250 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
251 unsigned int baud_rate_div_min;
252 unsigned int baud_rate_div_max;
253 bool has_fifo;
254};
255
dcbe0d84
AD
256/**
257 * struct stm32_spi - private data of the SPI controller
258 * @dev: driver model representation of the controller
259 * @master: controller master interface
55166853 260 * @cfg: compatible configuration data
dcbe0d84
AD
261 * @base: virtual memory area
262 * @clk: hw kernel clock feeding the SPI clock generator
263 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
dcbe0d84
AD
264 * @lock: prevent I/O concurrent access
265 * @irq: SPI controller interrupt line
266 * @fifo_size: size of the embedded fifo in bytes
267 * @cur_midi: master inter-data idleness in ns
268 * @cur_speed: speed configured in Hz
269 * @cur_bpw: number of bits in a single SPI data frame
270 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
271 * @cur_comm: SPI communication mode
272 * @cur_xferlen: current transfer length in bytes
273 * @cur_usedma: boolean to know if dma is used in current transfer
274 * @tx_buf: data to be written, or NULL
275 * @rx_buf: data to be read, or NULL
276 * @tx_len: number of data to be written in bytes
277 * @rx_len: number of data to be read in bytes
278 * @dma_tx: dma channel for TX transfer
279 * @dma_rx: dma channel for RX transfer
280 * @phys_addr: SPI registers physical base address
281 */
282struct stm32_spi {
283 struct device *dev;
284 struct spi_master *master;
55166853 285 const struct stm32_spi_cfg *cfg;
dcbe0d84
AD
286 void __iomem *base;
287 struct clk *clk;
288 u32 clk_rate;
dcbe0d84
AD
289 spinlock_t lock; /* prevent I/O concurrent access */
290 int irq;
291 unsigned int fifo_size;
292
293 unsigned int cur_midi;
294 unsigned int cur_speed;
295 unsigned int cur_bpw;
296 unsigned int cur_fthlv;
297 unsigned int cur_comm;
298 unsigned int cur_xferlen;
299 bool cur_usedma;
300
301 const void *tx_buf;
302 void *rx_buf;
303 int tx_len;
304 int rx_len;
305 struct dma_chan *dma_tx;
306 struct dma_chan *dma_rx;
307 dma_addr_t phys_addr;
308};
309
00505edf
CG
310static const struct stm32_spi_regspec stm32f4_spi_regspec = {
311 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
312
313 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
314 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
315
316 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
317 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
318 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
319 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
320
321 .rx = { STM32F4_SPI_DR },
322 .tx = { STM32F4_SPI_DR },
323};
324
55166853
CG
325static const struct stm32_spi_regspec stm32h7_spi_regspec = {
326 /* SPI data transfer is enabled but spi_ker_ck is idle.
327 * CFG1 and CFG2 registers are write protected when SPE is enabled.
328 */
329 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
330
331 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
332 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
333
334 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
335 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
336 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
337 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
338 STM32H7_SPI_CFG1_MBR_SHIFT },
339
340 .rx = { STM32H7_SPI_RXDR },
341 .tx = { STM32H7_SPI_TXDR },
342};
343
dcbe0d84
AD
344static inline void stm32_spi_set_bits(struct stm32_spi *spi,
345 u32 offset, u32 bits)
346{
347 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
348 spi->base + offset);
349}
350
351static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
352 u32 offset, u32 bits)
353{
354 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
355 spi->base + offset);
356}
357
358/**
55166853 359 * stm32h7_spi_get_fifo_size - Return fifo size
dcbe0d84
AD
360 * @spi: pointer to the spi controller data structure
361 */
55166853 362static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
dcbe0d84
AD
363{
364 unsigned long flags;
365 u32 count = 0;
366
367 spin_lock_irqsave(&spi->lock, flags);
368
86026630 369 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
dcbe0d84 370
86026630
CG
371 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
372 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
dcbe0d84 373
86026630 374 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
dcbe0d84
AD
375
376 spin_unlock_irqrestore(&spi->lock, flags);
377
378 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
379
380 return count;
381}
382
00505edf
CG
383/**
384 * stm32f4_spi_get_bpw_mask - Return bits per word mask
385 * @spi: pointer to the spi controller data structure
386 */
387static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
388{
389 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
390 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
391}
392
dcbe0d84 393/**
55166853 394 * stm32h7_spi_get_bpw_mask - Return bits per word mask
dcbe0d84
AD
395 * @spi: pointer to the spi controller data structure
396 */
55166853 397static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
dcbe0d84
AD
398{
399 unsigned long flags;
400 u32 cfg1, max_bpw;
401
402 spin_lock_irqsave(&spi->lock, flags);
403
404 /*
405 * The most significant bit at DSIZE bit field is reserved when the
406 * maximum data size of periperal instances is limited to 16-bit
407 */
86026630 408 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
dcbe0d84 409
86026630 410 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
5a380b83 411 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
dcbe0d84
AD
412
413 spin_unlock_irqrestore(&spi->lock, flags);
414
415 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
416
417 return SPI_BPW_RANGE_MASK(4, max_bpw);
418}
419
420/**
9d5fce16 421 * stm32_spi_prepare_mbr - Determine baud rate divisor value
dcbe0d84
AD
422 * @spi: pointer to the spi controller data structure
423 * @speed_hz: requested speed
9d5fce16
CG
424 * @min_div: minimum baud rate divisor
425 * @max_div: maximum baud rate divisor
dcbe0d84 426 *
9d5fce16 427 * Return baud rate divisor value in case of success or -EINVAL
dcbe0d84 428 */
9d5fce16
CG
429static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
430 u32 min_div, u32 max_div)
dcbe0d84
AD
431{
432 u32 div, mbrdiv;
433
9cc61973
AD
434 /* Ensure spi->clk_rate is even */
435 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
dcbe0d84
AD
436
437 /*
438 * SPI framework set xfer->speed_hz to master->max_speed_hz if
439 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
440 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
441 * no need to check it there.
442 * However, we need to ensure the following calculations.
443 */
9d5fce16 444 if ((div < min_div) || (div > max_div))
dcbe0d84
AD
445 return -EINVAL;
446
447 /* Determine the first power of 2 greater than or equal to div */
128ebb89
AD
448 if (div & (div - 1))
449 mbrdiv = fls(div);
450 else
451 mbrdiv = fls(div) - 1;
dcbe0d84
AD
452
453 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
454
455 return mbrdiv - 1;
456}
457
458/**
55166853 459 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
dcbe0d84 460 * @spi: pointer to the spi controller data structure
3373e900 461 * @xfer_len: length of the message to be transferred
dcbe0d84 462 */
3373e900 463static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
dcbe0d84 464{
970e8eaa 465 u32 packet, bpw;
dcbe0d84
AD
466
467 /* data packet should not exceed 1/2 of fifo space */
970e8eaa 468 packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
dcbe0d84
AD
469
470 /* align packet size with data registers access */
970e8eaa
MV
471 bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
472 return DIV_ROUND_UP(packet, bpw);
dcbe0d84
AD
473}
474
00505edf
CG
475/**
476 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
477 * @spi: pointer to the spi controller data structure
478 *
479 * Read from tx_buf depends on remaining bytes to avoid to read beyond
480 * tx_buf end.
481 */
482static void stm32f4_spi_write_tx(struct stm32_spi *spi)
483{
484 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
485 STM32F4_SPI_SR_TXE)) {
486 u32 offs = spi->cur_xferlen - spi->tx_len;
487
488 if (spi->cur_bpw == 16) {
489 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
490
491 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
492 spi->tx_len -= sizeof(u16);
493 } else {
494 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
495
496 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
497 spi->tx_len -= sizeof(u8);
498 }
499 }
500
501 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
502}
503
dcbe0d84 504/**
55166853 505 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
dcbe0d84
AD
506 * @spi: pointer to the spi controller data structure
507 *
508 * Read from tx_buf depends on remaining bytes to avoid to read beyond
509 * tx_buf end.
510 */
55166853 511static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
dcbe0d84
AD
512{
513 while ((spi->tx_len > 0) &&
86026630
CG
514 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
515 STM32H7_SPI_SR_TXP)) {
dcbe0d84
AD
516 u32 offs = spi->cur_xferlen - spi->tx_len;
517
518 if (spi->tx_len >= sizeof(u32)) {
519 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
520
86026630 521 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
dcbe0d84
AD
522 spi->tx_len -= sizeof(u32);
523 } else if (spi->tx_len >= sizeof(u16)) {
524 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
525
86026630 526 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
dcbe0d84
AD
527 spi->tx_len -= sizeof(u16);
528 } else {
529 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
530
86026630 531 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
dcbe0d84
AD
532 spi->tx_len -= sizeof(u8);
533 }
534 }
535
536 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
537}
538
00505edf
CG
539/**
540 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
541 * @spi: pointer to the spi controller data structure
542 *
543 * Write in rx_buf depends on remaining bytes to avoid to write beyond
544 * rx_buf end.
545 */
546static void stm32f4_spi_read_rx(struct stm32_spi *spi)
547{
548 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
549 STM32F4_SPI_SR_RXNE)) {
550 u32 offs = spi->cur_xferlen - spi->rx_len;
551
552 if (spi->cur_bpw == 16) {
553 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
554
555 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
556 spi->rx_len -= sizeof(u16);
557 } else {
558 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
559
560 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
561 spi->rx_len -= sizeof(u8);
562 }
563 }
564
565 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
566}
567
dcbe0d84 568/**
55166853 569 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
dcbe0d84 570 * @spi: pointer to the spi controller data structure
1c52be8b 571 * @flush: boolean indicating that FIFO should be flushed
dcbe0d84
AD
572 *
573 * Write in rx_buf depends on remaining bytes to avoid to write beyond
574 * rx_buf end.
575 */
55166853 576static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
dcbe0d84 577{
86026630 578 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
5a380b83 579 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
dcbe0d84
AD
580
581 while ((spi->rx_len > 0) &&
86026630
CG
582 ((sr & STM32H7_SPI_SR_RXP) ||
583 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
dcbe0d84
AD
584 u32 offs = spi->cur_xferlen - spi->rx_len;
585
586 if ((spi->rx_len >= sizeof(u32)) ||
86026630 587 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
dcbe0d84
AD
588 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
589
86026630 590 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
dcbe0d84
AD
591 spi->rx_len -= sizeof(u32);
592 } else if ((spi->rx_len >= sizeof(u16)) ||
593 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
594 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
595
86026630 596 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
dcbe0d84
AD
597 spi->rx_len -= sizeof(u16);
598 } else {
599 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
600
86026630 601 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
dcbe0d84
AD
602 spi->rx_len -= sizeof(u8);
603 }
604
86026630 605 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
5a380b83 606 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
dcbe0d84
AD
607 }
608
609 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
610 flush ? "(flush)" : "", spi->rx_len);
611}
612
613/**
614 * stm32_spi_enable - Enable SPI controller
615 * @spi: pointer to the spi controller data structure
dcbe0d84
AD
616 */
617static void stm32_spi_enable(struct stm32_spi *spi)
618{
619 dev_dbg(spi->dev, "enable controller\n");
620
55166853
CG
621 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
622 spi->cfg->regs->en.mask);
dcbe0d84
AD
623}
624
00505edf
CG
625/**
626 * stm32f4_spi_disable - Disable SPI controller
627 * @spi: pointer to the spi controller data structure
628 */
629static void stm32f4_spi_disable(struct stm32_spi *spi)
630{
631 unsigned long flags;
632 u32 sr;
633
634 dev_dbg(spi->dev, "disable controller\n");
635
636 spin_lock_irqsave(&spi->lock, flags);
637
638 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
639 STM32F4_SPI_CR1_SPE)) {
640 spin_unlock_irqrestore(&spi->lock, flags);
641 return;
642 }
643
644 /* Disable interrupts */
645 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
646 STM32F4_SPI_CR2_RXNEIE |
647 STM32F4_SPI_CR2_ERRIE);
648
649 /* Wait until BSY = 0 */
650 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
651 sr, !(sr & STM32F4_SPI_SR_BSY),
652 10, 100000) < 0) {
653 dev_warn(spi->dev, "disabling condition timeout\n");
654 }
655
656 if (spi->cur_usedma && spi->dma_tx)
657 dmaengine_terminate_all(spi->dma_tx);
658 if (spi->cur_usedma && spi->dma_rx)
659 dmaengine_terminate_all(spi->dma_rx);
660
661 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
662
663 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
664 STM32F4_SPI_CR2_RXDMAEN);
665
666 /* Sequence to clear OVR flag */
667 readl_relaxed(spi->base + STM32F4_SPI_DR);
668 readl_relaxed(spi->base + STM32F4_SPI_SR);
669
670 spin_unlock_irqrestore(&spi->lock, flags);
671}
672
dcbe0d84 673/**
55166853 674 * stm32h7_spi_disable - Disable SPI controller
dcbe0d84
AD
675 * @spi: pointer to the spi controller data structure
676 *
677 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
55166853 678 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
dcbe0d84 679 * RX-Fifo.
55166853
CG
680 * Normally, if TSIZE has been configured, we should relax the hardware at the
681 * reception of the EOT interrupt. But in case of error, EOT will not be
682 * raised. So the subsystem unprepare_message call allows us to properly
683 * complete the transfer from an hardware point of view.
dcbe0d84 684 */
55166853 685static void stm32h7_spi_disable(struct stm32_spi *spi)
dcbe0d84
AD
686{
687 unsigned long flags;
688 u32 cr1, sr;
689
690 dev_dbg(spi->dev, "disable controller\n");
691
692 spin_lock_irqsave(&spi->lock, flags);
693
86026630 694 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
dcbe0d84 695
86026630 696 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
dcbe0d84
AD
697 spin_unlock_irqrestore(&spi->lock, flags);
698 return;
699 }
700
701 /* Wait on EOT or suspend the flow */
86026630
CG
702 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
703 sr, !(sr & STM32H7_SPI_SR_EOT),
dcbe0d84 704 10, 100000) < 0) {
86026630
CG
705 if (cr1 & STM32H7_SPI_CR1_CSTART) {
706 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
707 spi->base + STM32H7_SPI_CR1);
dcbe0d84 708 if (readl_relaxed_poll_timeout_atomic(
86026630
CG
709 spi->base + STM32H7_SPI_SR,
710 sr, !(sr & STM32H7_SPI_SR_SUSP),
dcbe0d84
AD
711 10, 100000) < 0)
712 dev_warn(spi->dev,
713 "Suspend request timeout\n");
714 }
715 }
716
717 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
55166853 718 stm32h7_spi_read_rxfifo(spi, true);
dcbe0d84 719
2cbee7f8 720 if (spi->cur_usedma && spi->dma_tx)
dcbe0d84 721 dmaengine_terminate_all(spi->dma_tx);
2cbee7f8 722 if (spi->cur_usedma && spi->dma_rx)
dcbe0d84
AD
723 dmaengine_terminate_all(spi->dma_rx);
724
86026630 725 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
dcbe0d84 726
86026630
CG
727 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728 STM32H7_SPI_CFG1_RXDMAEN);
dcbe0d84
AD
729
730 /* Disable interrupts and clear status flags */
86026630
CG
731 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
dcbe0d84
AD
733
734 spin_unlock_irqrestore(&spi->lock, flags);
735}
736
737/**
738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
1c52be8b
AV
739 * @master: controller master interface
740 * @spi_dev: pointer to the spi device
741 * @transfer: pointer to spi transfer
dcbe0d84 742 *
00505edf
CG
743 * If driver has fifo and the current transfer size is greater than fifo size,
744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
dcbe0d84
AD
745 */
746static bool stm32_spi_can_dma(struct spi_master *master,
747 struct spi_device *spi_dev,
748 struct spi_transfer *transfer)
749{
00505edf 750 unsigned int dma_size;
dcbe0d84
AD
751 struct stm32_spi *spi = spi_master_get_devdata(master);
752
00505edf
CG
753 if (spi->cfg->has_fifo)
754 dma_size = spi->fifo_size;
755 else
756 dma_size = SPI_DMA_MIN_BYTES;
757
dcbe0d84 758 dev_dbg(spi->dev, "%s: %s\n", __func__,
00505edf 759 (transfer->len > dma_size) ? "true" : "false");
dcbe0d84 760
00505edf
CG
761 return (transfer->len > dma_size);
762}
763
764/**
765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766 * @irq: interrupt line
767 * @dev_id: SPI controller master interface
768 */
769static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770{
771 struct spi_master *master = dev_id;
772 struct stm32_spi *spi = spi_master_get_devdata(master);
773 u32 sr, mask = 0;
00505edf
CG
774 bool end = false;
775
e2368933 776 spin_lock(&spi->lock);
00505edf
CG
777
778 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779 /*
780 * BSY flag is not handled in interrupt but it is normal behavior when
781 * this flag is set.
782 */
783 sr &= ~STM32F4_SPI_SR_BSY;
784
785 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786 spi->cur_comm == SPI_3WIRE_TX)) {
787 /* OVR flag shouldn't be handled for TX only mode */
788 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
789 mask |= STM32F4_SPI_SR_TXE;
790 }
791
61367d0b 792 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793 spi->cur_comm == SPI_SIMPLEX_RX ||
794 spi->cur_comm == SPI_3WIRE_RX)) {
00505edf
CG
795 /* TXE flag is set and is handled when RXNE flag occurs */
796 sr &= ~STM32F4_SPI_SR_TXE;
797 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798 }
799
800 if (!(sr & mask)) {
801 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
e2368933 802 spin_unlock(&spi->lock);
00505edf
CG
803 return IRQ_NONE;
804 }
805
806 if (sr & STM32F4_SPI_SR_OVR) {
807 dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809 /* Sequence to clear OVR flag */
810 readl_relaxed(spi->base + STM32F4_SPI_DR);
811 readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813 /*
814 * If overrun is detected, it means that something went wrong,
815 * so stop the current transfer. Transfer can wait for next
816 * RXNE but DR is already read and end never happens.
817 */
818 end = true;
819 goto end_irq;
820 }
821
822 if (sr & STM32F4_SPI_SR_TXE) {
823 if (spi->tx_buf)
824 stm32f4_spi_write_tx(spi);
825 if (spi->tx_len == 0)
826 end = true;
827 }
828
829 if (sr & STM32F4_SPI_SR_RXNE) {
830 stm32f4_spi_read_rx(spi);
831 if (spi->rx_len == 0)
832 end = true;
61367d0b 833 else if (spi->tx_buf)/* Load data for discontinuous mode */
00505edf
CG
834 stm32f4_spi_write_tx(spi);
835 }
836
837end_irq:
838 if (end) {
839 /* Immediately disable interrupts to do not generate new one */
840 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841 STM32F4_SPI_CR2_TXEIE |
842 STM32F4_SPI_CR2_RXNEIE |
843 STM32F4_SPI_CR2_ERRIE);
e2368933 844 spin_unlock(&spi->lock);
00505edf
CG
845 return IRQ_WAKE_THREAD;
846 }
847
e2368933 848 spin_unlock(&spi->lock);
00505edf
CG
849 return IRQ_HANDLED;
850}
851
852/**
853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854 * @irq: interrupt line
855 * @dev_id: SPI controller master interface
856 */
857static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858{
859 struct spi_master *master = dev_id;
860 struct stm32_spi *spi = spi_master_get_devdata(master);
861
862 spi_finalize_current_transfer(master);
863 stm32f4_spi_disable(spi);
864
865 return IRQ_HANDLED;
dcbe0d84
AD
866}
867
868/**
55166853 869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
dcbe0d84
AD
870 * @irq: interrupt line
871 * @dev_id: SPI controller master interface
872 */
55166853 873static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
dcbe0d84
AD
874{
875 struct spi_master *master = dev_id;
876 struct stm32_spi *spi = spi_master_get_devdata(master);
877 u32 sr, ier, mask;
878 unsigned long flags;
879 bool end = false;
880
881 spin_lock_irqsave(&spi->lock, flags);
882
86026630
CG
883 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
dcbe0d84
AD
885
886 mask = ier;
887 /* EOTIE is triggered on EOT, SUSP and TXC events. */
86026630 888 mask |= STM32H7_SPI_SR_SUSP;
dcbe0d84
AD
889 /*
890 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
891 * Full-Duplex, need to poll RXP event to know if there are remaining
892 * data, before disabling SPI.
893 */
128ebb89 894 if (spi->rx_buf && !spi->cur_usedma)
86026630 895 mask |= STM32H7_SPI_SR_RXP;
dcbe0d84
AD
896
897 if (!(sr & mask)) {
c64e7efe
AV
898 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
899 sr, ier);
dcbe0d84
AD
900 spin_unlock_irqrestore(&spi->lock, flags);
901 return IRQ_NONE;
902 }
903
86026630 904 if (sr & STM32H7_SPI_SR_SUSP) {
ea8be08c
MV
905 static DEFINE_RATELIMIT_STATE(rs,
906 DEFAULT_RATELIMIT_INTERVAL * 10,
907 1);
908 if (__ratelimit(&rs))
909 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
dcbe0d84 910 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 911 stm32h7_spi_read_rxfifo(spi, false);
c67ad368
AD
912 /*
913 * If communication is suspended while using DMA, it means
914 * that something went wrong, so stop the current transfer
915 */
916 if (spi->cur_usedma)
917 end = true;
dcbe0d84
AD
918 }
919
86026630 920 if (sr & STM32H7_SPI_SR_MODF) {
dcbe0d84
AD
921 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
922 end = true;
923 }
924
86026630 925 if (sr & STM32H7_SPI_SR_OVR) {
c64e7efe
AV
926 dev_err(spi->dev, "Overrun: RX data lost\n");
927 end = true;
dcbe0d84
AD
928 }
929
86026630 930 if (sr & STM32H7_SPI_SR_EOT) {
dcbe0d84 931 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 932 stm32h7_spi_read_rxfifo(spi, true);
dcbe0d84
AD
933 end = true;
934 }
935
86026630 936 if (sr & STM32H7_SPI_SR_TXP)
dcbe0d84 937 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
55166853 938 stm32h7_spi_write_txfifo(spi);
dcbe0d84 939
86026630 940 if (sr & STM32H7_SPI_SR_RXP)
dcbe0d84 941 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 942 stm32h7_spi_read_rxfifo(spi, false);
dcbe0d84 943
ae1ba50f 944 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
dcbe0d84
AD
945
946 spin_unlock_irqrestore(&spi->lock, flags);
947
948 if (end) {
55166853 949 stm32h7_spi_disable(spi);
135dd873 950 spi_finalize_current_transfer(master);
dcbe0d84
AD
951 }
952
953 return IRQ_HANDLED;
954}
955
dcbe0d84
AD
956/**
957 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1c52be8b
AV
958 * @master: controller master interface
959 * @msg: pointer to spi message
dcbe0d84
AD
960 */
961static int stm32_spi_prepare_msg(struct spi_master *master,
962 struct spi_message *msg)
963{
964 struct stm32_spi *spi = spi_master_get_devdata(master);
965 struct spi_device *spi_dev = msg->spi;
966 struct device_node *np = spi_dev->dev.of_node;
967 unsigned long flags;
55166853 968 u32 clrb = 0, setb = 0;
dcbe0d84
AD
969
970 /* SPI slave device may need time between data frames */
971 spi->cur_midi = 0;
042c1c60 972 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
dcbe0d84
AD
973 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
974
975 if (spi_dev->mode & SPI_CPOL)
55166853 976 setb |= spi->cfg->regs->cpol.mask;
dcbe0d84 977 else
55166853 978 clrb |= spi->cfg->regs->cpol.mask;
dcbe0d84
AD
979
980 if (spi_dev->mode & SPI_CPHA)
55166853 981 setb |= spi->cfg->regs->cpha.mask;
dcbe0d84 982 else
55166853 983 clrb |= spi->cfg->regs->cpha.mask;
dcbe0d84
AD
984
985 if (spi_dev->mode & SPI_LSB_FIRST)
55166853 986 setb |= spi->cfg->regs->lsb_first.mask;
dcbe0d84 987 else
55166853 988 clrb |= spi->cfg->regs->lsb_first.mask;
dcbe0d84
AD
989
990 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
8b835da6
AA
991 !!(spi_dev->mode & SPI_CPOL),
992 !!(spi_dev->mode & SPI_CPHA),
993 !!(spi_dev->mode & SPI_LSB_FIRST),
994 !!(spi_dev->mode & SPI_CS_HIGH));
dcbe0d84 995
084de523
AV
996 /* On STM32H7, messages should not exceed a maximum size setted
997 * afterward via the set_number_of_data function. In order to
998 * ensure that, split large messages into several messages
999 */
1000 if (spi->cfg->set_number_of_data) {
1001 int ret;
1002
1003 ret = spi_split_transfers_maxsize(master, msg,
1004 STM32H7_SPI_TSIZE_MAX,
1005 GFP_KERNEL | GFP_DMA);
1006 if (ret)
1007 return ret;
1008 }
1009
dcbe0d84
AD
1010 spin_lock_irqsave(&spi->lock, flags);
1011
55166853
CG
1012 /* CPOL, CPHA and LSB FIRST bits have common register */
1013 if (clrb || setb)
dcbe0d84 1014 writel_relaxed(
55166853
CG
1015 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1016 ~clrb) | setb,
1017 spi->base + spi->cfg->regs->cpol.reg);
dcbe0d84
AD
1018
1019 spin_unlock_irqrestore(&spi->lock, flags);
1020
1021 return 0;
1022}
1023
00505edf
CG
1024/**
1025 * stm32f4_spi_dma_tx_cb - dma callback
1c52be8b 1026 * @data: pointer to the spi controller data structure
00505edf
CG
1027 *
1028 * DMA callback is called when the transfer is complete for DMA TX channel.
1029 */
1030static void stm32f4_spi_dma_tx_cb(void *data)
1031{
1032 struct stm32_spi *spi = data;
1033
1034 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1035 spi_finalize_current_transfer(spi->master);
1036 stm32f4_spi_disable(spi);
1037 }
1038}
1039
1040/**
1041 * stm32f4_spi_dma_rx_cb - dma callback
1c52be8b 1042 * @data: pointer to the spi controller data structure
00505edf
CG
1043 *
1044 * DMA callback is called when the transfer is complete for DMA RX channel.
1045 */
1046static void stm32f4_spi_dma_rx_cb(void *data)
1047{
1048 struct stm32_spi *spi = data;
1049
1050 spi_finalize_current_transfer(spi->master);
1051 stm32f4_spi_disable(spi);
1052}
1053
dcbe0d84 1054/**
55166853 1055 * stm32h7_spi_dma_cb - dma callback
1c52be8b 1056 * @data: pointer to the spi controller data structure
dcbe0d84
AD
1057 *
1058 * DMA callback is called when the transfer is complete or when an error
1059 * occurs. If the transfer is complete, EOT flag is raised.
1060 */
55166853 1061static void stm32h7_spi_dma_cb(void *data)
dcbe0d84
AD
1062{
1063 struct stm32_spi *spi = data;
1064 unsigned long flags;
1065 u32 sr;
1066
1067 spin_lock_irqsave(&spi->lock, flags);
1068
86026630 1069 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
dcbe0d84
AD
1070
1071 spin_unlock_irqrestore(&spi->lock, flags);
1072
86026630 1073 if (!(sr & STM32H7_SPI_SR_EOT))
c67ad368 1074 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
dcbe0d84 1075
c67ad368 1076 /* Now wait for EOT, or SUSP or OVR in case of error */
dcbe0d84
AD
1077}
1078
1079/**
1080 * stm32_spi_dma_config - configure dma slave channel depending on current
1081 * transfer bits_per_word.
1c52be8b
AV
1082 * @spi: pointer to the spi controller data structure
1083 * @dma_conf: pointer to the dma_slave_config structure
1084 * @dir: direction of the dma transfer
dcbe0d84
AD
1085 */
1086static void stm32_spi_dma_config(struct stm32_spi *spi,
1087 struct dma_slave_config *dma_conf,
1088 enum dma_transfer_direction dir)
1089{
1090 enum dma_slave_buswidth buswidth;
1091 u32 maxburst;
1092
128ebb89
AD
1093 if (spi->cur_bpw <= 8)
1094 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1095 else if (spi->cur_bpw <= 16)
1096 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1097 else
1098 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
dcbe0d84 1099
00505edf
CG
1100 if (spi->cfg->has_fifo) {
1101 /* Valid for DMA Half or Full Fifo threshold */
1102 if (spi->cur_fthlv == 2)
1103 maxburst = 1;
1104 else
1105 maxburst = spi->cur_fthlv;
1106 } else {
128ebb89 1107 maxburst = 1;
00505edf 1108 }
dcbe0d84
AD
1109
1110 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1111 dma_conf->direction = dir;
1112 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
55166853 1113 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
dcbe0d84
AD
1114 dma_conf->src_addr_width = buswidth;
1115 dma_conf->src_maxburst = maxburst;
1116
1117 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1118 buswidth, maxburst);
1119 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
55166853 1120 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
dcbe0d84
AD
1121 dma_conf->dst_addr_width = buswidth;
1122 dma_conf->dst_maxburst = maxburst;
1123
1124 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1125 buswidth, maxburst);
1126 }
1127}
1128
00505edf
CG
1129/**
1130 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1131 * interrupts
1c52be8b 1132 * @spi: pointer to the spi controller data structure
00505edf
CG
1133 *
1134 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1135 * in progress.
1136 */
1137static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1138{
1139 unsigned long flags;
1140 u32 cr2 = 0;
1141
1142 /* Enable the interrupts relative to the current communication mode */
1143 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1144 cr2 |= STM32F4_SPI_CR2_TXEIE;
61367d0b 1145 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1146 spi->cur_comm == SPI_SIMPLEX_RX ||
1147 spi->cur_comm == SPI_3WIRE_RX) {
00505edf
CG
1148 /* In transmit-only mode, the OVR flag is set in the SR register
1149 * since the received data are never read. Therefore set OVR
1150 * interrupt only when rx buffer is available.
1151 */
1152 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1153 } else {
1154 return -EINVAL;
1155 }
1156
1157 spin_lock_irqsave(&spi->lock, flags);
1158
1159 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1160
1161 stm32_spi_enable(spi);
1162
1163 /* starting data transfer when buffer is loaded */
1164 if (spi->tx_buf)
1165 stm32f4_spi_write_tx(spi);
1166
1167 spin_unlock_irqrestore(&spi->lock, flags);
1168
1169 return 1;
1170}
1171
dcbe0d84 1172/**
55166853
CG
1173 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1174 * interrupts
1c52be8b 1175 * @spi: pointer to the spi controller data structure
dcbe0d84
AD
1176 *
1177 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1178 * in progress.
1179 */
55166853 1180static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
dcbe0d84
AD
1181{
1182 unsigned long flags;
1183 u32 ier = 0;
1184
1185 /* Enable the interrupts relative to the current communication mode */
1186 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
86026630 1187 ier |= STM32H7_SPI_IER_DXPIE;
dcbe0d84 1188 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
86026630 1189 ier |= STM32H7_SPI_IER_TXPIE;
dcbe0d84 1190 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
86026630 1191 ier |= STM32H7_SPI_IER_RXPIE;
dcbe0d84
AD
1192
1193 /* Enable the interrupts relative to the end of transfer */
86026630
CG
1194 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1195 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
dcbe0d84
AD
1196
1197 spin_lock_irqsave(&spi->lock, flags);
1198
1199 stm32_spi_enable(spi);
1200
1201 /* Be sure to have data in fifo before starting data transfer */
1202 if (spi->tx_buf)
55166853 1203 stm32h7_spi_write_txfifo(spi);
dcbe0d84 1204
86026630 1205 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
dcbe0d84 1206
86026630 1207 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
dcbe0d84
AD
1208
1209 spin_unlock_irqrestore(&spi->lock, flags);
1210
1211 return 1;
1212}
1213
00505edf
CG
1214/**
1215 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1216 * transfer using DMA
1c52be8b 1217 * @spi: pointer to the spi controller data structure
00505edf
CG
1218 */
1219static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1220{
1221 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1222 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1223 spi->cur_comm == SPI_FULL_DUPLEX) {
1224 /*
1225 * In transmit-only mode, the OVR flag is set in the SR register
1226 * since the received data are never read. Therefore set OVR
1227 * interrupt only when rx buffer is available.
1228 */
1229 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1230 }
1231
1232 stm32_spi_enable(spi);
1233}
1234
f8bb12f2 1235/**
55166853
CG
1236 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1237 * transfer using DMA
1c52be8b 1238 * @spi: pointer to the spi controller data structure
f8bb12f2 1239 */
55166853 1240static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
f8bb12f2
CG
1241{
1242 /* Enable the interrupts relative to the end of transfer */
1243 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1244 STM32H7_SPI_IER_TXTFIE |
1245 STM32H7_SPI_IER_OVRIE |
1246 STM32H7_SPI_IER_MODFIE);
1247
1248 stm32_spi_enable(spi);
1249
1250 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1251}
1252
dcbe0d84
AD
1253/**
1254 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1c52be8b
AV
1255 * @spi: pointer to the spi controller data structure
1256 * @xfer: pointer to the spi_transfer structure
dcbe0d84
AD
1257 *
1258 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1259 * in progress.
1260 */
1261static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1262 struct spi_transfer *xfer)
1263{
1264 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1265 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1266 unsigned long flags;
dcbe0d84
AD
1267
1268 spin_lock_irqsave(&spi->lock, flags);
1269
1270 rx_dma_desc = NULL;
2cbee7f8 1271 if (spi->rx_buf && spi->dma_rx) {
dcbe0d84
AD
1272 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1273 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1274
1275 /* Enable Rx DMA request */
55166853
CG
1276 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1277 spi->cfg->regs->dma_rx_en.mask);
dcbe0d84
AD
1278
1279 rx_dma_desc = dmaengine_prep_slave_sg(
1280 spi->dma_rx, xfer->rx_sg.sgl,
1281 xfer->rx_sg.nents,
1282 rx_dma_conf.direction,
1283 DMA_PREP_INTERRUPT);
dcbe0d84
AD
1284 }
1285
1286 tx_dma_desc = NULL;
2cbee7f8 1287 if (spi->tx_buf && spi->dma_tx) {
dcbe0d84
AD
1288 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1289 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1290
1291 tx_dma_desc = dmaengine_prep_slave_sg(
1292 spi->dma_tx, xfer->tx_sg.sgl,
1293 xfer->tx_sg.nents,
1294 tx_dma_conf.direction,
1295 DMA_PREP_INTERRUPT);
dcbe0d84
AD
1296 }
1297
2cbee7f8
CG
1298 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1299 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1300 goto dma_desc_error;
1301
1302 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
dcbe0d84
AD
1303 goto dma_desc_error;
1304
1305 if (rx_dma_desc) {
55166853 1306 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
7b821a64
AD
1307 rx_dma_desc->callback_param = spi;
1308
dcbe0d84
AD
1309 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1310 dev_err(spi->dev, "Rx DMA submit failed\n");
1311 goto dma_desc_error;
1312 }
1313 /* Enable Rx DMA channel */
1314 dma_async_issue_pending(spi->dma_rx);
1315 }
1316
1317 if (tx_dma_desc) {
9d5fce16
CG
1318 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1319 spi->cur_comm == SPI_3WIRE_TX) {
55166853 1320 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
7b821a64
AD
1321 tx_dma_desc->callback_param = spi;
1322 }
1323
dcbe0d84
AD
1324 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1325 dev_err(spi->dev, "Tx DMA submit failed\n");
1326 goto dma_submit_error;
1327 }
1328 /* Enable Tx DMA channel */
1329 dma_async_issue_pending(spi->dma_tx);
1330
1331 /* Enable Tx DMA request */
55166853
CG
1332 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1333 spi->cfg->regs->dma_tx_en.mask);
dcbe0d84
AD
1334 }
1335
55166853 1336 spi->cfg->transfer_one_dma_start(spi);
dcbe0d84
AD
1337
1338 spin_unlock_irqrestore(&spi->lock, flags);
1339
1340 return 1;
1341
1342dma_submit_error:
2cbee7f8 1343 if (spi->dma_rx)
dcbe0d84
AD
1344 dmaengine_terminate_all(spi->dma_rx);
1345
1346dma_desc_error:
55166853
CG
1347 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1348 spi->cfg->regs->dma_rx_en.mask);
dcbe0d84
AD
1349
1350 spin_unlock_irqrestore(&spi->lock, flags);
1351
1352 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1353
2cbee7f8 1354 spi->cur_usedma = false;
55166853 1355 return spi->cfg->transfer_one_irq(spi);
dcbe0d84
AD
1356}
1357
00505edf
CG
1358/**
1359 * stm32f4_spi_set_bpw - Configure bits per word
1360 * @spi: pointer to the spi controller data structure
1361 */
1362static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1363{
1364 if (spi->cur_bpw == 16)
1365 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1366 else
1367 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1368}
1369
dcbe0d84 1370/**
55166853 1371 * stm32h7_spi_set_bpw - configure bits per word
9d5fce16 1372 * @spi: pointer to the spi controller data structure
dcbe0d84 1373 */
55166853 1374static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
dcbe0d84 1375{
9d5fce16
CG
1376 u32 bpw, fthlv;
1377 u32 cfg1_clrb = 0, cfg1_setb = 0;
dcbe0d84 1378
9d5fce16 1379 bpw = spi->cur_bpw - 1;
dcbe0d84 1380
9d5fce16 1381 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
5a380b83 1382 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
dcbe0d84 1383
3373e900 1384 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
9d5fce16 1385 fthlv = spi->cur_fthlv - 1;
dcbe0d84 1386
9d5fce16 1387 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
5a380b83 1388 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
dcbe0d84 1389
9d5fce16
CG
1390 writel_relaxed(
1391 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1392 ~cfg1_clrb) | cfg1_setb,
1393 spi->base + STM32H7_SPI_CFG1);
1394}
dcbe0d84 1395
9d5fce16
CG
1396/**
1397 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1398 * @spi: pointer to the spi controller data structure
1399 * @mbrdiv: baud rate divisor value
1400 */
1401static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1402{
55166853 1403 u32 clrb = 0, setb = 0;
dcbe0d84 1404
55166853 1405 clrb |= spi->cfg->regs->br.mask;
5a380b83 1406 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
dcbe0d84 1407
55166853
CG
1408 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1409 ~clrb) | setb,
1410 spi->base + spi->cfg->regs->br.reg);
9d5fce16 1411}
dcbe0d84 1412
9d5fce16
CG
1413/**
1414 * stm32_spi_communication_type - return transfer communication type
1415 * @spi_dev: pointer to the spi device
1c52be8b 1416 * @transfer: pointer to spi transfer
9d5fce16
CG
1417 */
1418static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1419 struct spi_transfer *transfer)
1420{
1421 unsigned int type = SPI_FULL_DUPLEX;
dcbe0d84 1422
dcbe0d84
AD
1423 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1424 /*
1425 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
9d5fce16 1426 * is forbidden and unvalidated by SPI subsystem so depending
dcbe0d84
AD
1427 * on the valid buffer, we can determine the direction of the
1428 * transfer.
1429 */
dcbe0d84 1430 if (!transfer->tx_buf)
9d5fce16
CG
1431 type = SPI_3WIRE_RX;
1432 else
1433 type = SPI_3WIRE_TX;
dcbe0d84
AD
1434 } else {
1435 if (!transfer->tx_buf)
9d5fce16 1436 type = SPI_SIMPLEX_RX;
dcbe0d84 1437 else if (!transfer->rx_buf)
9d5fce16 1438 type = SPI_SIMPLEX_TX;
dcbe0d84 1439 }
dcbe0d84 1440
9d5fce16
CG
1441 return type;
1442}
1443
00505edf
CG
1444/**
1445 * stm32f4_spi_set_mode - configure communication mode
1446 * @spi: pointer to the spi controller data structure
1447 * @comm_type: type of communication to configure
1448 */
1449static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1450{
1451 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1452 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1453 STM32F4_SPI_CR1_BIDIMODE |
1454 STM32F4_SPI_CR1_BIDIOE);
61367d0b 1455 } else if (comm_type == SPI_FULL_DUPLEX ||
1456 comm_type == SPI_SIMPLEX_RX) {
00505edf
CG
1457 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1458 STM32F4_SPI_CR1_BIDIMODE |
1459 STM32F4_SPI_CR1_BIDIOE);
61367d0b 1460 } else if (comm_type == SPI_3WIRE_RX) {
1461 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1462 STM32F4_SPI_CR1_BIDIMODE);
1463 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1464 STM32F4_SPI_CR1_BIDIOE);
00505edf
CG
1465 } else {
1466 return -EINVAL;
1467 }
1468
1469 return 0;
1470}
1471
9d5fce16 1472/**
55166853 1473 * stm32h7_spi_set_mode - configure communication mode
9d5fce16
CG
1474 * @spi: pointer to the spi controller data structure
1475 * @comm_type: type of communication to configure
1476 */
55166853 1477static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
9d5fce16
CG
1478{
1479 u32 mode;
1480 u32 cfg2_clrb = 0, cfg2_setb = 0;
1481
1482 if (comm_type == SPI_3WIRE_RX) {
1483 mode = STM32H7_SPI_HALF_DUPLEX;
1484 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1485 } else if (comm_type == SPI_3WIRE_TX) {
1486 mode = STM32H7_SPI_HALF_DUPLEX;
1487 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1488 } else if (comm_type == SPI_SIMPLEX_RX) {
1489 mode = STM32H7_SPI_SIMPLEX_RX;
1490 } else if (comm_type == SPI_SIMPLEX_TX) {
1491 mode = STM32H7_SPI_SIMPLEX_TX;
1492 } else {
1493 mode = STM32H7_SPI_FULL_DUPLEX;
dcbe0d84
AD
1494 }
1495
9d5fce16 1496 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
5a380b83 1497 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
9d5fce16
CG
1498
1499 writel_relaxed(
1500 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1501 ~cfg2_clrb) | cfg2_setb,
1502 spi->base + STM32H7_SPI_CFG2);
1503
1504 return 0;
1505}
1506
1507/**
55166853
CG
1508 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1509 * consecutive data frames in master mode
9d5fce16
CG
1510 * @spi: pointer to the spi controller data structure
1511 * @len: transfer len
1512 */
55166853 1513static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
9d5fce16
CG
1514{
1515 u32 cfg2_clrb = 0, cfg2_setb = 0;
1516
86026630 1517 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
9d5fce16 1518 if ((len > 1) && (spi->cur_midi > 0)) {
e1e2093b 1519 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
5a380b83
AD
1520 u32 midi = min_t(u32,
1521 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1522 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1523 STM32H7_SPI_CFG2_MIDI));
1524
dcbe0d84
AD
1525
1526 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1527 sck_period_ns, midi, midi * sck_period_ns);
5a380b83 1528 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
dcbe0d84
AD
1529 }
1530
9d5fce16
CG
1531 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1532 ~cfg2_clrb) | cfg2_setb,
1533 spi->base + STM32H7_SPI_CFG2);
1534}
1535
1536/**
55166853 1537 * stm32h7_spi_number_of_data - configure number of data at current transfer
9d5fce16 1538 * @spi: pointer to the spi controller data structure
1c52be8b 1539 * @nb_words: transfer length (in words)
9d5fce16 1540 */
55166853 1541static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
9d5fce16 1542{
5a380b83
AD
1543 if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1544 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
9d5fce16
CG
1545 spi->base + STM32H7_SPI_CR2);
1546 } else {
1547 return -EMSGSIZE;
1548 }
1549
1550 return 0;
1551}
1552
1553/**
1554 * stm32_spi_transfer_one_setup - common setup to transfer a single
1555 * spi_transfer either using DMA or
1556 * interrupts.
1c52be8b
AV
1557 * @spi: pointer to the spi controller data structure
1558 * @spi_dev: pointer to the spi device
1559 * @transfer: pointer to spi transfer
9d5fce16
CG
1560 */
1561static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1562 struct spi_device *spi_dev,
1563 struct spi_transfer *transfer)
1564{
1565 unsigned long flags;
1566 unsigned int comm_type;
1567 int nb_words, ret = 0;
60ccb351 1568 int mbr;
9d5fce16
CG
1569
1570 spin_lock_irqsave(&spi->lock, flags);
1571
3373e900
AD
1572 spi->cur_xferlen = transfer->len;
1573
60ccb351
AV
1574 spi->cur_bpw = transfer->bits_per_word;
1575 spi->cfg->set_bpw(spi);
9d5fce16 1576
60ccb351
AV
1577 /* Update spi->cur_speed with real clock speed */
1578 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1579 spi->cfg->baud_rate_div_min,
1580 spi->cfg->baud_rate_div_max);
1581 if (mbr < 0) {
1582 ret = mbr;
1583 goto out;
9d5fce16
CG
1584 }
1585
60ccb351
AV
1586 transfer->speed_hz = spi->cur_speed;
1587 stm32_spi_set_mbr(spi, mbr);
9d5fce16 1588
60ccb351
AV
1589 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1590 ret = spi->cfg->set_mode(spi, comm_type);
1591 if (ret < 0)
1592 goto out;
9d5fce16 1593
60ccb351 1594 spi->cur_comm = comm_type;
9d5fce16 1595
55166853
CG
1596 if (spi->cfg->set_data_idleness)
1597 spi->cfg->set_data_idleness(spi, transfer->len);
dcbe0d84 1598
128ebb89
AD
1599 if (spi->cur_bpw <= 8)
1600 nb_words = transfer->len;
1601 else if (spi->cur_bpw <= 16)
1602 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1603 else
1604 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
dcbe0d84 1605
55166853
CG
1606 if (spi->cfg->set_number_of_data) {
1607 ret = spi->cfg->set_number_of_data(spi, nb_words);
1608 if (ret < 0)
1609 goto out;
1610 }
dcbe0d84 1611
dcbe0d84
AD
1612 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1613 spi->cur_comm);
1614 dev_dbg(spi->dev,
1615 "data frame of %d-bit, data packet of %d data frames\n",
1616 spi->cur_bpw, spi->cur_fthlv);
1617 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1618 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1619 spi->cur_xferlen, nb_words);
1620 dev_dbg(spi->dev, "dma %s\n",
1621 (spi->cur_usedma) ? "enabled" : "disabled");
1622
1623out:
1624 spin_unlock_irqrestore(&spi->lock, flags);
1625
1626 return ret;
1627}
1628
1629/**
1630 * stm32_spi_transfer_one - transfer a single spi_transfer
1c52be8b
AV
1631 * @master: controller master interface
1632 * @spi_dev: pointer to the spi device
1633 * @transfer: pointer to spi transfer
dcbe0d84
AD
1634 *
1635 * It must return 0 if the transfer is finished or 1 if the transfer is still
1636 * in progress.
1637 */
1638static int stm32_spi_transfer_one(struct spi_master *master,
1639 struct spi_device *spi_dev,
1640 struct spi_transfer *transfer)
1641{
1642 struct stm32_spi *spi = spi_master_get_devdata(master);
1643 int ret;
1644
2269f5a8
AV
1645 /* Don't do anything on 0 bytes transfers */
1646 if (transfer->len == 0)
1647 return 0;
1648
dcbe0d84
AD
1649 spi->tx_buf = transfer->tx_buf;
1650 spi->rx_buf = transfer->rx_buf;
1651 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1652 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1653
c67ad368 1654 spi->cur_usedma = (master->can_dma &&
2cbee7f8 1655 master->can_dma(master, spi_dev, transfer));
dcbe0d84
AD
1656
1657 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1658 if (ret) {
1659 dev_err(spi->dev, "SPI transfer setup failed\n");
1660 return ret;
1661 }
1662
1663 if (spi->cur_usedma)
1664 return stm32_spi_transfer_one_dma(spi, transfer);
1665 else
55166853 1666 return spi->cfg->transfer_one_irq(spi);
dcbe0d84
AD
1667}
1668
1669/**
1670 * stm32_spi_unprepare_msg - relax the hardware
1c52be8b
AV
1671 * @master: controller master interface
1672 * @msg: pointer to the spi message
dcbe0d84
AD
1673 */
1674static int stm32_spi_unprepare_msg(struct spi_master *master,
1675 struct spi_message *msg)
1676{
1677 struct stm32_spi *spi = spi_master_get_devdata(master);
1678
55166853 1679 spi->cfg->disable(spi);
dcbe0d84
AD
1680
1681 return 0;
1682}
1683
00505edf
CG
1684/**
1685 * stm32f4_spi_config - Configure SPI controller as SPI master
1c52be8b 1686 * @spi: pointer to the spi controller data structure
00505edf
CG
1687 */
1688static int stm32f4_spi_config(struct stm32_spi *spi)
1689{
1690 unsigned long flags;
1691
1692 spin_lock_irqsave(&spi->lock, flags);
1693
1694 /* Ensure I2SMOD bit is kept cleared */
1695 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1696 STM32F4_SPI_I2SCFGR_I2SMOD);
1697
1698 /*
1699 * - SS input value high
1700 * - transmitter half duplex direction
1701 * - Set the master mode (default Motorola mode)
1702 * - Consider 1 master/n slaves configuration and
1703 * SS input value is determined by the SSI bit
1704 */
1705 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1706 STM32F4_SPI_CR1_BIDIOE |
1707 STM32F4_SPI_CR1_MSTR |
1708 STM32F4_SPI_CR1_SSM);
1709
1710 spin_unlock_irqrestore(&spi->lock, flags);
1711
1712 return 0;
1713}
1714
dcbe0d84 1715/**
55166853 1716 * stm32h7_spi_config - Configure SPI controller as SPI master
1c52be8b 1717 * @spi: pointer to the spi controller data structure
dcbe0d84 1718 */
55166853 1719static int stm32h7_spi_config(struct stm32_spi *spi)
dcbe0d84
AD
1720{
1721 unsigned long flags;
1722
1723 spin_lock_irqsave(&spi->lock, flags);
1724
1725 /* Ensure I2SMOD bit is kept cleared */
86026630
CG
1726 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1727 STM32H7_SPI_I2SCFGR_I2SMOD);
dcbe0d84
AD
1728
1729 /*
1730 * - SS input value high
1731 * - transmitter half duplex direction
1732 * - automatic communication suspend when RX-Fifo is full
1733 */
86026630
CG
1734 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1735 STM32H7_SPI_CR1_HDDIR |
1736 STM32H7_SPI_CR1_MASRX);
dcbe0d84
AD
1737
1738 /*
1739 * - Set the master mode (default Motorola mode)
1740 * - Consider 1 master/n slaves configuration and
1741 * SS input value is determined by the SSI bit
1742 * - keep control of all associated GPIOs
1743 */
86026630
CG
1744 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1745 STM32H7_SPI_CFG2_SSM |
1746 STM32H7_SPI_CFG2_AFCNTR);
dcbe0d84
AD
1747
1748 spin_unlock_irqrestore(&spi->lock, flags);
1749
1750 return 0;
1751}
1752
00505edf
CG
1753static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1754 .regs = &stm32f4_spi_regspec,
1755 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1756 .disable = stm32f4_spi_disable,
1757 .config = stm32f4_spi_config,
1758 .set_bpw = stm32f4_spi_set_bpw,
1759 .set_mode = stm32f4_spi_set_mode,
1760 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1761 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1762 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1763 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1764 .irq_handler_event = stm32f4_spi_irq_event,
1765 .irq_handler_thread = stm32f4_spi_irq_thread,
1766 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1767 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1768 .has_fifo = false,
1769};
1770
55166853
CG
1771static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1772 .regs = &stm32h7_spi_regspec,
1773 .get_fifo_size = stm32h7_spi_get_fifo_size,
1774 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1775 .disable = stm32h7_spi_disable,
1776 .config = stm32h7_spi_config,
1777 .set_bpw = stm32h7_spi_set_bpw,
1778 .set_mode = stm32h7_spi_set_mode,
1779 .set_data_idleness = stm32h7_spi_data_idleness,
1780 .set_number_of_data = stm32h7_spi_number_of_data,
1781 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1782 .dma_rx_cb = stm32h7_spi_dma_cb,
1783 .dma_tx_cb = stm32h7_spi_dma_cb,
1784 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1785 .irq_handler_thread = stm32h7_spi_irq_thread,
1786 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1787 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1788 .has_fifo = true,
1789};
1790
dcbe0d84 1791static const struct of_device_id stm32_spi_of_match[] = {
55166853 1792 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
00505edf 1793 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
dcbe0d84
AD
1794 {},
1795};
1796MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797
1798static int stm32_spi_probe(struct platform_device *pdev)
1799{
1800 struct spi_master *master;
1801 struct stm32_spi *spi;
1802 struct resource *res;
1c75cfd5 1803 struct reset_control *rst;
8a6553ec 1804 int ret;
dcbe0d84
AD
1805
1806 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1807 if (!master) {
1808 dev_err(&pdev->dev, "spi master allocation failed\n");
1809 return -ENOMEM;
1810 }
1811 platform_set_drvdata(pdev, master);
1812
1813 spi = spi_master_get_devdata(master);
1814 spi->dev = &pdev->dev;
1815 spi->master = master;
1816 spin_lock_init(&spi->lock);
1817
55166853
CG
1818 spi->cfg = (const struct stm32_spi_cfg *)
1819 of_match_device(pdev->dev.driver->of_match_table,
1820 &pdev->dev)->data;
1821
dcbe0d84
AD
1822 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1823 spi->base = devm_ioremap_resource(&pdev->dev, res);
1824 if (IS_ERR(spi->base)) {
1825 ret = PTR_ERR(spi->base);
1826 goto err_master_put;
1827 }
55166853 1828
dcbe0d84
AD
1829 spi->phys_addr = (dma_addr_t)res->start;
1830
1831 spi->irq = platform_get_irq(pdev, 0);
1832 if (spi->irq <= 0) {
a05cec2d 1833 ret = dev_err_probe(&pdev->dev, spi->irq, "failed to get irq\n");
dcbe0d84
AD
1834 goto err_master_put;
1835 }
55166853
CG
1836 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1837 spi->cfg->irq_handler_event,
1838 spi->cfg->irq_handler_thread,
1839 IRQF_ONESHOT, pdev->name, master);
dcbe0d84
AD
1840 if (ret) {
1841 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1842 ret);
1843 goto err_master_put;
1844 }
1845
d4c9134a 1846 spi->clk = devm_clk_get(&pdev->dev, NULL);
dcbe0d84
AD
1847 if (IS_ERR(spi->clk)) {
1848 ret = PTR_ERR(spi->clk);
1849 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1850 goto err_master_put;
1851 }
1852
1853 ret = clk_prepare_enable(spi->clk);
1854 if (ret) {
1855 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1856 goto err_master_put;
1857 }
1858 spi->clk_rate = clk_get_rate(spi->clk);
1859 if (!spi->clk_rate) {
1860 dev_err(&pdev->dev, "clk rate = 0\n");
1861 ret = -EINVAL;
3dbb3eef 1862 goto err_clk_disable;
dcbe0d84
AD
1863 }
1864
c63b95b7
AV
1865 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1866 if (rst) {
1867 if (IS_ERR(rst)) {
1868 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1869 "failed to get reset\n");
1870 goto err_clk_disable;
1871 }
1872
1c75cfd5 1873 reset_control_assert(rst);
dcbe0d84 1874 udelay(2);
1c75cfd5 1875 reset_control_deassert(rst);
dcbe0d84
AD
1876 }
1877
55166853
CG
1878 if (spi->cfg->has_fifo)
1879 spi->fifo_size = spi->cfg->get_fifo_size(spi);
dcbe0d84 1880
55166853 1881 ret = spi->cfg->config(spi);
dcbe0d84
AD
1882 if (ret) {
1883 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1884 ret);
1885 goto err_clk_disable;
1886 }
1887
1888 master->dev.of_node = pdev->dev.of_node;
1889 master->auto_runtime_pm = true;
1890 master->bus_num = pdev->id;
d6cea11b 1891 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
6962b055 1892 SPI_3WIRE;
55166853
CG
1893 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1894 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1895 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
8a6553ec 1896 master->use_gpio_descriptors = true;
dcbe0d84
AD
1897 master->prepare_message = stm32_spi_prepare_msg;
1898 master->transfer_one = stm32_spi_transfer_one;
1899 master->unprepare_message = stm32_spi_unprepare_msg;
61367d0b 1900 master->flags = SPI_MASTER_MUST_TX;
dcbe0d84 1901
0a454258
PU
1902 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1903 if (IS_ERR(spi->dma_tx)) {
1904 ret = PTR_ERR(spi->dma_tx);
1905 spi->dma_tx = NULL;
1906 if (ret == -EPROBE_DEFER)
1907 goto err_clk_disable;
1908
dcbe0d84 1909 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
0a454258 1910 } else {
dcbe0d84 1911 master->dma_tx = spi->dma_tx;
0a454258
PU
1912 }
1913
1914 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1915 if (IS_ERR(spi->dma_rx)) {
1916 ret = PTR_ERR(spi->dma_rx);
1917 spi->dma_rx = NULL;
1918 if (ret == -EPROBE_DEFER)
1919 goto err_dma_release;
dcbe0d84 1920
dcbe0d84 1921 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
0a454258 1922 } else {
dcbe0d84 1923 master->dma_rx = spi->dma_rx;
0a454258 1924 }
dcbe0d84
AD
1925
1926 if (spi->dma_tx || spi->dma_rx)
1927 master->can_dma = stm32_spi_can_dma;
1928
038ac869
AD
1929 pm_runtime_set_active(&pdev->dev);
1930 pm_runtime_enable(&pdev->dev);
1931
dcbe0d84
AD
1932 ret = devm_spi_register_master(&pdev->dev, master);
1933 if (ret) {
1934 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1935 ret);
0a454258 1936 goto err_pm_disable;
dcbe0d84
AD
1937 }
1938
dcbe0d84
AD
1939 dev_info(&pdev->dev, "driver initialized\n");
1940
1941 return 0;
1942
0a454258
PU
1943err_pm_disable:
1944 pm_runtime_disable(&pdev->dev);
dcbe0d84
AD
1945err_dma_release:
1946 if (spi->dma_tx)
1947 dma_release_channel(spi->dma_tx);
1948 if (spi->dma_rx)
1949 dma_release_channel(spi->dma_rx);
1950err_clk_disable:
1951 clk_disable_unprepare(spi->clk);
1952err_master_put:
1953 spi_master_put(master);
1954
1955 return ret;
1956}
1957
1958static int stm32_spi_remove(struct platform_device *pdev)
1959{
1960 struct spi_master *master = platform_get_drvdata(pdev);
1961 struct stm32_spi *spi = spi_master_get_devdata(master);
1962
55166853 1963 spi->cfg->disable(spi);
dcbe0d84
AD
1964
1965 if (master->dma_tx)
1966 dma_release_channel(master->dma_tx);
1967 if (master->dma_rx)
1968 dma_release_channel(master->dma_rx);
1969
1970 clk_disable_unprepare(spi->clk);
1971
038ac869
AD
1972 pm_runtime_disable(&pdev->dev);
1973
db96bf97
AD
1974 pinctrl_pm_select_sleep_state(&pdev->dev);
1975
dcbe0d84
AD
1976 return 0;
1977}
1978
12ef51b1 1979static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
038ac869
AD
1980{
1981 struct spi_master *master = dev_get_drvdata(dev);
1982 struct stm32_spi *spi = spi_master_get_devdata(master);
1983
1984 clk_disable_unprepare(spi->clk);
1985
db96bf97 1986 return pinctrl_pm_select_sleep_state(dev);
038ac869
AD
1987}
1988
12ef51b1 1989static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
038ac869
AD
1990{
1991 struct spi_master *master = dev_get_drvdata(dev);
1992 struct stm32_spi *spi = spi_master_get_devdata(master);
db96bf97
AD
1993 int ret;
1994
1995 ret = pinctrl_pm_select_default_state(dev);
1996 if (ret)
1997 return ret;
038ac869
AD
1998
1999 return clk_prepare_enable(spi->clk);
2000}
038ac869 2001
12ef51b1 2002static int __maybe_unused stm32_spi_suspend(struct device *dev)
dcbe0d84
AD
2003{
2004 struct spi_master *master = dev_get_drvdata(dev);
dcbe0d84
AD
2005 int ret;
2006
2007 ret = spi_master_suspend(master);
2008 if (ret)
2009 return ret;
2010
038ac869 2011 return pm_runtime_force_suspend(dev);
dcbe0d84
AD
2012}
2013
12ef51b1 2014static int __maybe_unused stm32_spi_resume(struct device *dev)
dcbe0d84
AD
2015{
2016 struct spi_master *master = dev_get_drvdata(dev);
2017 struct stm32_spi *spi = spi_master_get_devdata(master);
2018 int ret;
2019
038ac869 2020 ret = pm_runtime_force_resume(dev);
dcbe0d84
AD
2021 if (ret)
2022 return ret;
038ac869 2023
dcbe0d84 2024 ret = spi_master_resume(master);
db96bf97 2025 if (ret) {
dcbe0d84 2026 clk_disable_unprepare(spi->clk);
db96bf97
AD
2027 return ret;
2028 }
dcbe0d84 2029
db96bf97 2030 ret = pm_runtime_get_sync(dev);
c170a5a3 2031 if (ret < 0) {
900ccdcb 2032 pm_runtime_put_noidle(dev);
db96bf97
AD
2033 dev_err(dev, "Unable to power device:%d\n", ret);
2034 return ret;
2035 }
2036
2037 spi->cfg->config(spi);
2038
2039 pm_runtime_mark_last_busy(dev);
2040 pm_runtime_put_autosuspend(dev);
2041
2042 return 0;
dcbe0d84 2043}
dcbe0d84 2044
038ac869
AD
2045static const struct dev_pm_ops stm32_spi_pm_ops = {
2046 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2047 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2048 stm32_spi_runtime_resume, NULL)
2049};
dcbe0d84
AD
2050
2051static struct platform_driver stm32_spi_driver = {
2052 .probe = stm32_spi_probe,
2053 .remove = stm32_spi_remove,
2054 .driver = {
2055 .name = DRIVER_NAME,
2056 .pm = &stm32_spi_pm_ops,
2057 .of_match_table = stm32_spi_of_match,
2058 },
2059};
2060
2061module_platform_driver(stm32_spi_driver);
2062
2063MODULE_ALIAS("platform:" DRIVER_NAME);
2064MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2065MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2066MODULE_LICENSE("GPL v2");