]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/spi/spi-sun4i.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-sun4i.c
CommitLineData
b5f65179
MR
1/*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
4 *
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/device.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/module.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
b5f65179
MR
22
23#include <linux/spi/spi.h>
24
25#define SUN4I_FIFO_DEPTH 64
26
27#define SUN4I_RXDATA_REG 0x00
28
29#define SUN4I_TXDATA_REG 0x04
30
31#define SUN4I_CTL_REG 0x08
32#define SUN4I_CTL_ENABLE BIT(0)
33#define SUN4I_CTL_MASTER BIT(1)
34#define SUN4I_CTL_CPHA BIT(2)
35#define SUN4I_CTL_CPOL BIT(3)
36#define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
37#define SUN4I_CTL_LMTF BIT(6)
38#define SUN4I_CTL_TF_RST BIT(8)
39#define SUN4I_CTL_RF_RST BIT(9)
40#define SUN4I_CTL_XCH BIT(10)
41#define SUN4I_CTL_CS_MASK 0x3000
42#define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
43#define SUN4I_CTL_DHB BIT(15)
44#define SUN4I_CTL_CS_MANUAL BIT(16)
45#define SUN4I_CTL_CS_LEVEL BIT(17)
46#define SUN4I_CTL_TP BIT(18)
47
48#define SUN4I_INT_CTL_REG 0x0c
19673791
AG
49#define SUN4I_INT_CTL_RF_F34 BIT(4)
50#define SUN4I_INT_CTL_TF_E34 BIT(12)
b5f65179
MR
51#define SUN4I_INT_CTL_TC BIT(16)
52
53#define SUN4I_INT_STA_REG 0x10
54
55#define SUN4I_DMA_CTL_REG 0x14
56
57#define SUN4I_WAIT_REG 0x18
58
59#define SUN4I_CLK_CTL_REG 0x1c
60#define SUN4I_CLK_CTL_CDR2_MASK 0xff
61#define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
62#define SUN4I_CLK_CTL_CDR1_MASK 0xf
63#define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
64#define SUN4I_CLK_CTL_DRS BIT(12)
65
19673791
AG
66#define SUN4I_MAX_XFER_SIZE 0xffffff
67
b5f65179 68#define SUN4I_BURST_CNT_REG 0x20
19673791 69#define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
b5f65179
MR
70
71#define SUN4I_XMIT_CNT_REG 0x24
19673791
AG
72#define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
73
b5f65179
MR
74
75#define SUN4I_FIFO_STA_REG 0x28
76#define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
77#define SUN4I_FIFO_STA_RF_CNT_BITS 0
78#define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
79#define SUN4I_FIFO_STA_TF_CNT_BITS 16
80
81struct sun4i_spi {
82 struct spi_master *master;
83 void __iomem *base_addr;
84 struct clk *hclk;
85 struct clk *mclk;
86
87 struct completion done;
88
89 const u8 *tx_buf;
90 u8 *rx_buf;
91 int len;
92};
93
94static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
95{
96 return readl(sspi->base_addr + reg);
97}
98
99static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
100{
101 writel(value, sspi->base_addr + reg);
102}
103
19673791
AG
104static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
105{
106 u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
107
108 reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
109
110 return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
111}
112
113static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
114{
115 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
116
117 reg |= mask;
118 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
119}
120
121static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
122{
123 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
124
125 reg &= ~mask;
126 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
127}
128
b5f65179
MR
129static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
130{
131 u32 reg, cnt;
132 u8 byte;
133
134 /* See how much data is available */
135 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
136 reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
137 cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
138
139 if (len > cnt)
140 len = cnt;
141
142 while (len--) {
143 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
144 if (sspi->rx_buf)
145 *sspi->rx_buf++ = byte;
146 }
147}
148
149static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
150{
19673791 151 u32 cnt;
b5f65179
MR
152 u8 byte;
153
19673791
AG
154 /* See how much data we can fit */
155 cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
156
157 len = min3(len, (int)cnt, sspi->len);
b5f65179
MR
158
159 while (len--) {
160 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
161 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
162 sspi->len--;
163 }
164}
165
166static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
167{
168 struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
169 u32 reg;
170
171 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
172
173 reg &= ~SUN4I_CTL_CS_MASK;
174 reg |= SUN4I_CTL_CS(spi->chip_select);
175
218e0b57
MW
176 /* We want to control the chip select manually */
177 reg |= SUN4I_CTL_CS_MANUAL;
178
b5f65179
MR
179 if (enable)
180 reg |= SUN4I_CTL_CS_LEVEL;
181 else
182 reg &= ~SUN4I_CTL_CS_LEVEL;
183
184 /*
185 * Even though this looks irrelevant since we are supposed to
186 * be controlling the chip select manually, this bit also
187 * controls the levels of the chip select for inactive
188 * devices.
189 *
190 * If we don't set it, the chip select level will go low by
191 * default when the device is idle, which is not really
192 * expected in the common case where the chip select is active
193 * low.
194 */
195 if (spi->mode & SPI_CS_HIGH)
196 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
197 else
198 reg |= SUN4I_CTL_CS_ACTIVE_LOW;
199
200 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
201}
202
794912cf
MS
203static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
204{
205 return SUN4I_FIFO_DEPTH - 1;
206}
207
b5f65179
MR
208static int sun4i_spi_transfer_one(struct spi_master *master,
209 struct spi_device *spi,
210 struct spi_transfer *tfr)
211{
212 struct sun4i_spi *sspi = spi_master_get_devdata(master);
213 unsigned int mclk_rate, div, timeout;
719bd654 214 unsigned int start, end, tx_time;
b5f65179
MR
215 unsigned int tx_len = 0;
216 int ret = 0;
217 u32 reg;
218
219 /* We don't support transfer larger than the FIFO */
19673791 220 if (tfr->len > SUN4I_MAX_XFER_SIZE)
6d9fe44b
MS
221 return -EMSGSIZE;
222
19673791 223 if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
6d9fe44b 224 return -EMSGSIZE;
b5f65179
MR
225
226 reinit_completion(&sspi->done);
227 sspi->tx_buf = tfr->tx_buf;
228 sspi->rx_buf = tfr->rx_buf;
229 sspi->len = tfr->len;
230
231 /* Clear pending interrupts */
232 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
233
234
235 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
236
237 /* Reset FIFOs */
238 sun4i_spi_write(sspi, SUN4I_CTL_REG,
239 reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
240
241 /*
242 * Setup the transfer control register: Chip Select,
243 * polarities, etc.
244 */
245 if (spi->mode & SPI_CPOL)
246 reg |= SUN4I_CTL_CPOL;
247 else
248 reg &= ~SUN4I_CTL_CPOL;
249
250 if (spi->mode & SPI_CPHA)
251 reg |= SUN4I_CTL_CPHA;
252 else
253 reg &= ~SUN4I_CTL_CPHA;
254
255 if (spi->mode & SPI_LSB_FIRST)
256 reg |= SUN4I_CTL_LMTF;
257 else
258 reg &= ~SUN4I_CTL_LMTF;
259
260
261 /*
262 * If it's a TX only transfer, we don't want to fill the RX
263 * FIFO with bogus data
264 */
265 if (sspi->rx_buf)
266 reg &= ~SUN4I_CTL_DHB;
267 else
268 reg |= SUN4I_CTL_DHB;
269
b5f65179
MR
270 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
271
272 /* Ensure that we have a parent clock fast enough */
273 mclk_rate = clk_get_rate(sspi->mclk);
47284e3e
MW
274 if (mclk_rate < (2 * tfr->speed_hz)) {
275 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
b5f65179
MR
276 mclk_rate = clk_get_rate(sspi->mclk);
277 }
278
279 /*
280 * Setup clock divider.
281 *
282 * We have two choices there. Either we can use the clock
283 * divide rate 1, which is calculated thanks to this formula:
284 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
285 * Or we can use CDR2, which is calculated with the formula:
286 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
287 * Wether we use the former or the latter is set through the
288 * DRS bit.
289 *
290 * First try CDR2, and if we can't reach the expected
291 * frequency, fall back to CDR1.
292 */
47284e3e 293 div = mclk_rate / (2 * tfr->speed_hz);
b5f65179
MR
294 if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
295 if (div > 0)
296 div--;
297
298 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
299 } else {
47284e3e 300 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
b5f65179
MR
301 reg = SUN4I_CLK_CTL_CDR1(div);
302 }
303
304 sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
305
306 /* Setup the transfer now... */
307 if (sspi->tx_buf)
308 tx_len = tfr->len;
309
310 /* Setup the counters */
311 sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
312 sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
313
6d9fe44b
MS
314 /*
315 * Fill the TX FIFO
316 * Filling the FIFO fully causes timeout for some reason
317 * at least on spi2 on A10s
318 */
319 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
b5f65179
MR
320
321 /* Enable the interrupts */
19673791
AG
322 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
323 SUN4I_INT_CTL_RF_F34);
324 /* Only enable Tx FIFO interrupt if we really need it */
325 if (tx_len > SUN4I_FIFO_DEPTH)
326 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
b5f65179
MR
327
328 /* Start the transfer */
329 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
330 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
331
719bd654
MS
332 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
333 start = jiffies;
b5f65179 334 timeout = wait_for_completion_timeout(&sspi->done,
719bd654
MS
335 msecs_to_jiffies(tx_time));
336 end = jiffies;
b5f65179 337 if (!timeout) {
719bd654
MS
338 dev_warn(&master->dev,
339 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
340 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
341 jiffies_to_msecs(end - start), tx_time);
b5f65179
MR
342 ret = -ETIMEDOUT;
343 goto out;
344 }
345
b5f65179
MR
346
347out:
348 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
349
350 return ret;
351}
352
353static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
354{
355 struct sun4i_spi *sspi = dev_id;
356 u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
357
358 /* Transfer complete */
359 if (status & SUN4I_INT_CTL_TC) {
360 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
19673791 361 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
b5f65179
MR
362 complete(&sspi->done);
363 return IRQ_HANDLED;
364 }
365
19673791
AG
366 /* Receive FIFO 3/4 full */
367 if (status & SUN4I_INT_CTL_RF_F34) {
368 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
369 /* Only clear the interrupt _after_ draining the FIFO */
370 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
371 return IRQ_HANDLED;
372 }
373
374 /* Transmit FIFO 3/4 empty */
375 if (status & SUN4I_INT_CTL_TF_E34) {
376 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
377
378 if (!sspi->len)
379 /* nothing left to transmit */
380 sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
381
382 /* Only clear the interrupt _after_ re-seeding the FIFO */
383 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
384
385 return IRQ_HANDLED;
386 }
387
b5f65179
MR
388 return IRQ_NONE;
389}
390
391static int sun4i_spi_runtime_resume(struct device *dev)
392{
393 struct spi_master *master = dev_get_drvdata(dev);
394 struct sun4i_spi *sspi = spi_master_get_devdata(master);
395 int ret;
396
397 ret = clk_prepare_enable(sspi->hclk);
398 if (ret) {
399 dev_err(dev, "Couldn't enable AHB clock\n");
400 goto out;
401 }
402
403 ret = clk_prepare_enable(sspi->mclk);
404 if (ret) {
405 dev_err(dev, "Couldn't enable module clock\n");
406 goto err;
407 }
408
409 sun4i_spi_write(sspi, SUN4I_CTL_REG,
410 SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
411
412 return 0;
413
414err:
415 clk_disable_unprepare(sspi->hclk);
416out:
417 return ret;
418}
419
420static int sun4i_spi_runtime_suspend(struct device *dev)
421{
422 struct spi_master *master = dev_get_drvdata(dev);
423 struct sun4i_spi *sspi = spi_master_get_devdata(master);
424
425 clk_disable_unprepare(sspi->mclk);
426 clk_disable_unprepare(sspi->hclk);
427
428 return 0;
429}
430
431static int sun4i_spi_probe(struct platform_device *pdev)
432{
433 struct spi_master *master;
434 struct sun4i_spi *sspi;
435 struct resource *res;
436 int ret = 0, irq;
437
438 master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
439 if (!master) {
440 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
441 return -ENOMEM;
442 }
443
444 platform_set_drvdata(pdev, master);
445 sspi = spi_master_get_devdata(master);
446
447 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
448 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
449 if (IS_ERR(sspi->base_addr)) {
450 ret = PTR_ERR(sspi->base_addr);
451 goto err_free_master;
452 }
453
454 irq = platform_get_irq(pdev, 0);
455 if (irq < 0) {
456 dev_err(&pdev->dev, "No spi IRQ specified\n");
457 ret = -ENXIO;
458 goto err_free_master;
459 }
460
461 ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
462 0, "sun4i-spi", sspi);
463 if (ret) {
464 dev_err(&pdev->dev, "Cannot request IRQ\n");
465 goto err_free_master;
466 }
467
468 sspi->master = master;
0b06d8cf
MS
469 master->max_speed_hz = 100 * 1000 * 1000;
470 master->min_speed_hz = 3 * 1000;
b5f65179
MR
471 master->set_cs = sun4i_spi_set_cs;
472 master->transfer_one = sun4i_spi_transfer_one;
473 master->num_chipselect = 4;
474 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
ba47644d 475 master->bits_per_word_mask = SPI_BPW_MASK(8);
b5f65179
MR
476 master->dev.of_node = pdev->dev.of_node;
477 master->auto_runtime_pm = true;
794912cf 478 master->max_transfer_size = sun4i_spi_max_transfer_size;
b5f65179
MR
479
480 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
481 if (IS_ERR(sspi->hclk)) {
482 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
483 ret = PTR_ERR(sspi->hclk);
484 goto err_free_master;
485 }
486
487 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
488 if (IS_ERR(sspi->mclk)) {
489 dev_err(&pdev->dev, "Unable to acquire module clock\n");
490 ret = PTR_ERR(sspi->mclk);
491 goto err_free_master;
492 }
493
494 init_completion(&sspi->done);
495
496 /*
497 * This wake-up/shutdown pattern is to be able to have the
498 * device woken up, even if runtime_pm is disabled
499 */
500 ret = sun4i_spi_runtime_resume(&pdev->dev);
501 if (ret) {
502 dev_err(&pdev->dev, "Couldn't resume the device\n");
503 goto err_free_master;
504 }
505
506 pm_runtime_set_active(&pdev->dev);
507 pm_runtime_enable(&pdev->dev);
508 pm_runtime_idle(&pdev->dev);
509
510 ret = devm_spi_register_master(&pdev->dev, master);
511 if (ret) {
512 dev_err(&pdev->dev, "cannot register SPI master\n");
513 goto err_pm_disable;
514 }
515
516 return 0;
517
518err_pm_disable:
519 pm_runtime_disable(&pdev->dev);
520 sun4i_spi_runtime_suspend(&pdev->dev);
521err_free_master:
522 spi_master_put(master);
523 return ret;
524}
525
526static int sun4i_spi_remove(struct platform_device *pdev)
527{
528 pm_runtime_disable(&pdev->dev);
529
530 return 0;
531}
532
533static const struct of_device_id sun4i_spi_match[] = {
534 { .compatible = "allwinner,sun4i-a10-spi", },
535 {}
536};
537MODULE_DEVICE_TABLE(of, sun4i_spi_match);
538
539static const struct dev_pm_ops sun4i_spi_pm_ops = {
540 .runtime_resume = sun4i_spi_runtime_resume,
541 .runtime_suspend = sun4i_spi_runtime_suspend,
542};
543
544static struct platform_driver sun4i_spi_driver = {
545 .probe = sun4i_spi_probe,
546 .remove = sun4i_spi_remove,
547 .driver = {
548 .name = "sun4i-spi",
b5f65179
MR
549 .of_match_table = sun4i_spi_match,
550 .pm = &sun4i_spi_pm_ops,
551 },
552};
553module_platform_driver(sun4i_spi_driver);
554
555MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
556MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
557MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
558MODULE_LICENSE("GPL");