]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: core: allow defining time that cs is deasserted
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
b445bfcb 1// SPDX-License-Identifier: GPL-2.0-or-later
787f4889
MB
2// SPI init/core code
3//
4// Copyright (C) 2005 David Brownell
5// Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d 6
8ae12a0d
DB
7#include <linux/kernel.h>
8#include <linux/device.h>
9#include <linux/init.h>
10#include <linux/cache.h>
99adef31
MB
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
94040828 13#include <linux/mutex.h>
2b7a32f7 14#include <linux/of_device.h>
d57a4282 15#include <linux/of_irq.h>
86be408b 16#include <linux/clk/clk-conf.h>
5a0e3ad6 17#include <linux/slab.h>
e0626e38 18#include <linux/mod_devicetable.h>
8ae12a0d 19#include <linux/spi/spi.h>
b5932f5c 20#include <linux/spi/spi-mem.h>
74317984 21#include <linux/of_gpio.h>
f3186dd8 22#include <linux/gpio/consumer.h>
3ae22e8c 23#include <linux/pm_runtime.h>
f48c767c 24#include <linux/pm_domain.h>
826cf175 25#include <linux/property.h>
025ed130 26#include <linux/export.h>
8bd75c77 27#include <linux/sched/rt.h>
ae7e81c0 28#include <uapi/linux/sched/types.h>
ffbbdd21
LW
29#include <linux/delay.h>
30#include <linux/kthread.h>
64bee4d2
MW
31#include <linux/ioport.h>
32#include <linux/acpi.h>
b1b8153c 33#include <linux/highmem.h>
9b61e302 34#include <linux/idr.h>
8a2e487e 35#include <linux/platform_data/x86/apple.h>
8ae12a0d 36
56ec1978
MB
37#define CREATE_TRACE_POINTS
38#include <trace/events/spi.h>
ca1438dc
AB
39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
9b61e302 41
46336966
BB
42#include "internals.h"
43
9b61e302 44static DEFINE_IDR(spi_master_idr);
56ec1978 45
8ae12a0d
DB
46static void spidev_release(struct device *dev)
47{
0ffa0285 48 struct spi_device *spi = to_spi_device(dev);
8ae12a0d 49
8caab75f
GU
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
8ae12a0d 53
8caab75f 54 spi_controller_put(spi->controller);
5039563e 55 kfree(spi->driver_override);
07a389fe 56 kfree(spi);
8ae12a0d
DB
57}
58
59static ssize_t
60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61{
62 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
8ae12a0d 68
d8e328b3 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 70}
aa7da564 71static DEVICE_ATTR_RO(modalias);
8ae12a0d 72
5039563e
TP
73static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76{
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103}
104
105static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107{
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115}
116static DEVICE_ATTR_RW(driver_override);
117
eca2ebc7 118#define SPI_STATISTICS_ATTRS(field, file) \
8caab75f
GU
119static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
eca2ebc7 122{ \
8caab75f
GU
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
eca2ebc7 126} \
8caab75f 127static struct device_attribute dev_attr_spi_controller_##field = { \
ad25c92e 128 .attr = { .name = file, .mode = 0444 }, \
8caab75f 129 .show = spi_controller_##field##_show, \
eca2ebc7
MS
130}; \
131static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134{ \
d1eba93b 135 struct spi_device *spi = to_spi_device(dev); \
eca2ebc7
MS
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137} \
138static struct device_attribute dev_attr_spi_device_##field = { \
ad25c92e 139 .attr = { .name = file, .mode = 0444 }, \
eca2ebc7
MS
140 .show = spi_device_##field##_show, \
141}
142
143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146{ \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153} \
154SPI_STATISTICS_ATTRS(name, file)
155
156#define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160SPI_STATISTICS_SHOW(messages, "%lu");
161SPI_STATISTICS_SHOW(transfers, "%lu");
162SPI_STATISTICS_SHOW(errors, "%lu");
163SPI_STATISTICS_SHOW(timedout, "%lu");
164
165SPI_STATISTICS_SHOW(spi_sync, "%lu");
166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169SPI_STATISTICS_SHOW(bytes, "%llu");
170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
6b7bc061
MS
173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
d9f12122
MS
195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
aa7da564
GKH
197static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
5039563e 199 &dev_attr_driver_override.attr,
aa7da564 200 NULL,
8ae12a0d 201};
eca2ebc7
MS
202
203static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205};
206
207static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
d9f12122 235 &dev_attr_spi_device_transfers_split_maxsize.attr,
eca2ebc7
MS
236 NULL,
237};
238
239static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242};
243
244static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248};
249
8caab75f
GU
250static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
eca2ebc7
MS
279 NULL,
280};
281
8caab75f 282static const struct attribute_group spi_controller_statistics_group = {
eca2ebc7 283 .name = "statistics",
8caab75f 284 .attrs = spi_controller_statistics_attrs,
eca2ebc7
MS
285};
286
287static const struct attribute_group *spi_master_groups[] = {
8caab75f 288 &spi_controller_statistics_group,
eca2ebc7
MS
289 NULL,
290};
291
292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
8caab75f 294 struct spi_controller *ctlr)
eca2ebc7
MS
295{
296 unsigned long flags;
6b7bc061
MS
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
eca2ebc7
MS
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
6b7bc061 305 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
8caab75f 309 (xfer->tx_buf != ctlr->dummy_tx))
eca2ebc7
MS
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
8caab75f 312 (xfer->rx_buf != ctlr->dummy_rx))
eca2ebc7
MS
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316}
317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
318
319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
75368bf6
AV
323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325{
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332}
333
334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335{
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339}
340EXPORT_SYMBOL_GPL(spi_get_device_id);
341
8ae12a0d
DB
342static int spi_match_device(struct device *dev, struct device_driver *drv)
343{
344 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
5039563e
TP
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
2b7a32f7
SA
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
64bee4d2
MW
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
75368bf6
AV
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 361
35f74fca 362 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
363}
364
7eff2e7a 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
366{
367 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
8ae12a0d 373
2856670f 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
375}
376
8ae12a0d
DB
377struct bus_type spi_bus_type = {
378 .name = "spi",
aa7da564 379 .dev_groups = spi_dev_groups,
8ae12a0d
DB
380 .match = spi_match_device,
381 .uevent = spi_uevent,
8ae12a0d
DB
382};
383EXPORT_SYMBOL_GPL(spi_bus_type);
384
b885244e
DB
385
386static int spi_drv_probe(struct device *dev)
387{
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 389 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
390 int ret;
391
86be408b
SN
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
44af7927
JH
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
676e7c25 404 ret = dev_pm_domain_attach(dev, true);
71f277a7
UH
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
b885244e 411
33cf00e5 412 return ret;
b885244e
DB
413}
414
415static int spi_drv_remove(struct device *dev)
416{
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
418 int ret;
419
aec35f4e 420 ret = sdrv->remove(to_spi_device(dev));
676e7c25 421 dev_pm_domain_detach(dev, true);
b885244e 422
33cf00e5 423 return ret;
b885244e
DB
424}
425
426static void spi_drv_shutdown(struct device *dev)
427{
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431}
432
33e34dc6 433/**
ca5d2485 434 * __spi_register_driver - register a SPI driver
88c9321d 435 * @owner: owner module of the driver to register
33e34dc6
DB
436 * @sdrv: the driver to register
437 * Context: can sleep
97d56dc6
JMC
438 *
439 * Return: zero on success, else a negative error code.
33e34dc6 440 */
ca5d2485 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 442{
ca5d2485 443 sdrv->driver.owner = owner;
b885244e
DB
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452}
ca5d2485 453EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 454
8ae12a0d
DB
455/*-------------------------------------------------------------------------*/
456
457/* SPI devices should normally not be created by SPI device drivers; that
8caab75f 458 * would make them board-specific. Similarly with SPI controller drivers.
8ae12a0d
DB
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463struct boardinfo {
464 struct list_head list;
2b9603a0 465 struct spi_board_info board_info;
8ae12a0d
DB
466};
467
468static LIST_HEAD(board_list);
8caab75f 469static LIST_HEAD(spi_controller_list);
2b9603a0
FT
470
471/*
472 * Used to protect add/del opertion for board_info list and
8caab75f 473 * spi_controller list, and their matching process
9a9a047a 474 * also used to protect object of type struct idr
2b9603a0 475 */
94040828 476static DEFINE_MUTEX(board_lock);
8ae12a0d 477
dc87c98e
GL
478/**
479 * spi_alloc_device - Allocate a new SPI device
8caab75f 480 * @ctlr: Controller to which device is connected
dc87c98e
GL
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
8caab75f 489 * spi_device structure to add it to the SPI controller. If the caller
dc87c98e
GL
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
97d56dc6 493 * Return: a pointer to the new device, or NULL.
dc87c98e 494 */
8caab75f 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
dc87c98e
GL
496{
497 struct spi_device *spi;
dc87c98e 498
8caab75f 499 if (!spi_controller_get(ctlr))
dc87c98e
GL
500 return NULL;
501
5fe5f05e 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 503 if (!spi) {
8caab75f 504 spi_controller_put(ctlr);
dc87c98e
GL
505 return NULL;
506 }
507
8caab75f
GU
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
dc87c98e
GL
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
446411e1 512 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
513
514 spin_lock_init(&spi->statistics.lock);
515
dc87c98e
GL
516 device_initialize(&spi->dev);
517 return spi;
518}
519EXPORT_SYMBOL_GPL(spi_alloc_device);
520
e13ac47b
JN
521static void spi_dev_set_name(struct spi_device *spi)
522{
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
8caab75f 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
e13ac47b
JN
531 spi->chip_select);
532}
533
b6fb8d3a
MW
534static int spi_dev_check(struct device *dev, void *data)
535{
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
8caab75f 539 if (spi->controller == new_spi->controller &&
b6fb8d3a
MW
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543}
544
dc87c98e
GL
545/**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
97d56dc6 552 * Return: 0 on success; negative errno on failure
dc87c98e
GL
553 */
554int spi_add_device(struct spi_device *spi)
555{
e48880e0 556 static DEFINE_MUTEX(spi_add_lock);
8caab75f
GU
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
dc87c98e
GL
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
8caab75f
GU
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
dc87c98e
GL
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
e13ac47b 569 spi_dev_set_name(spi);
e48880e0
DB
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
b6fb8d3a
MW
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
e48880e0
DB
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
e48880e0
DB
581 goto done;
582 }
583
f3186dd8
LW
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
8caab75f 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
74317984 589
e48880e0
DB
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
7d077197 594 status = spi_setup(spi);
dc87c98e 595 if (status < 0) {
eb288a1f
LW
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
e48880e0 598 goto done;
dc87c98e
GL
599 }
600
e48880e0 601 /* Device may be bound to an active driver when this returns */
dc87c98e 602 status = device_add(&spi->dev);
e48880e0 603 if (status < 0)
eb288a1f
LW
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
e48880e0 606 else
35f74fca 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 608
e48880e0
DB
609done:
610 mutex_unlock(&spi_add_lock);
611 return status;
dc87c98e
GL
612}
613EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 614
33e34dc6
DB
615/**
616 * spi_new_device - instantiate one new SPI device
8caab75f 617 * @ctlr: Controller to which device is connected
33e34dc6
DB
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
082c8cb4 626 *
97d56dc6 627 * Return: the new device, or NULL.
8ae12a0d 628 */
8caab75f 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
e9d5a461 630 struct spi_board_info *chip)
8ae12a0d
DB
631{
632 struct spi_device *proxy;
8ae12a0d
DB
633 int status;
634
082c8cb4
DB
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
8caab75f 642 proxy = spi_alloc_device(ctlr);
dc87c98e 643 if (!proxy)
8ae12a0d
DB
644 return NULL;
645
102eb975
GL
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
8ae12a0d
DB
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 650 proxy->mode = chip->mode;
8ae12a0d 651 proxy->irq = chip->irq;
102eb975 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
8ae12a0d 656
826cf175
DT
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
8caab75f 660 dev_err(&ctlr->dev,
826cf175
DT
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
8ae12a0d
DB
665 }
666
826cf175
DT
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
8ae12a0d 671 return proxy;
826cf175
DT
672
673err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
8ae12a0d
DB
679}
680EXPORT_SYMBOL_GPL(spi_new_device);
681
3b1884c2
GU
682/**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
8caab75f 687 * by spi_unregister_controller().
3b1884c2
GU
688 */
689void spi_unregister_device(struct spi_device *spi)
690{
bd6c1644
GU
691 if (!spi)
692 return;
693
8324147f 694 if (spi->dev.of_node) {
bd6c1644 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
8324147f
JH
696 of_node_put(spi->dev.of_node);
697 }
7f24467f
OP
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
bd6c1644 700 device_unregister(&spi->dev);
3b1884c2
GU
701}
702EXPORT_SYMBOL_GPL(spi_unregister_device);
703
8caab75f
GU
704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
2b9603a0
FT
706{
707 struct spi_device *dev;
708
8caab75f 709 if (ctlr->bus_num != bi->bus_num)
2b9603a0
FT
710 return;
711
8caab75f 712 dev = spi_new_device(ctlr, bi);
2b9603a0 713 if (!dev)
8caab75f 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
2b9603a0
FT
715 bi->modalias);
716}
717
33e34dc6
DB
718/**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
8ae12a0d
DB
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
826cf175 736 * Device properties are deep-copied though.
97d56dc6
JMC
737 *
738 * Return: zero on success, else a negative error code.
8ae12a0d 739 */
fd4a319b 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 741{
2b9603a0
FT
742 struct boardinfo *bi;
743 int i;
8ae12a0d 744
c7908a37 745 if (!n)
f974cf57 746 return 0;
c7908a37 747
f9bdb7fd 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
749 if (!bi)
750 return -ENOMEM;
8ae12a0d 751
2b9603a0 752 for (i = 0; i < n; i++, bi++, info++) {
8caab75f 753 struct spi_controller *ctlr;
8ae12a0d 754
2b9603a0 755 memcpy(&bi->board_info, info, sizeof(*info));
826cf175
DT
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
2b9603a0
FT
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
8caab75f
GU
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
2b9603a0 768 mutex_unlock(&board_lock);
8ae12a0d 769 }
2b9603a0
FT
770
771 return 0;
8ae12a0d
DB
772}
773
774/*-------------------------------------------------------------------------*/
775
b158935f
MB
776static void spi_set_cs(struct spi_device *spi, bool enable)
777{
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
f3186dd8
LW
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
28f7604f
FF
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
f3186dd8 793 else
28f7604f 794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
f3186dd8 795 }
8eee6b9d 796 /* Some SPI masters need both GPIO CS & slave_select */
8caab75f
GU
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
8eee6b9d 802 }
b158935f
MB
803}
804
2de440f5 805#ifdef CONFIG_HAS_DMA
46336966
BB
806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
6ad45a27
MB
809{
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
df88e91b 811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
b1b8153c
V
812#ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816#else
817 const bool kmap_buf = false;
818#endif
65598c13
AG
819 int desc_len;
820 int sgs;
6ad45a27 821 struct page *vm_page;
8dd4a016 822 struct scatterlist *sg;
6ad45a27
MB
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
b1b8153c 827 if (vmalloced_buf || kmap_buf) {
df88e91b 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
65598c13 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
0569a88f 830 } else if (virt_addr_valid(buf)) {
8caab75f 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
65598c13 832 sgs = DIV_ROUND_UP(len, desc_len);
0569a88f
V
833 } else {
834 return -EINVAL;
65598c13
AG
835 }
836
6ad45a27
MB
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
8dd4a016 841 sg = &sgt->sgl[0];
6ad45a27 842 for (i = 0; i < sgs; i++) {
6ad45a27 843
b1b8153c 844 if (vmalloced_buf || kmap_buf) {
ce99319a
MC
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
b1b8153c
V
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
6ad45a27
MB
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
8dd4a016 861 sg_set_page(sg, vm_page,
c1aefbdd 862 min, offset_in_page(buf));
6ad45a27 863 } else {
65598c13 864 min = min_t(size_t, len, desc_len);
6ad45a27 865 sg_buf = buf;
8dd4a016 866 sg_set_buf(sg, sg_buf, min);
6ad45a27
MB
867 }
868
6ad45a27
MB
869 buf += min;
870 len -= min;
8dd4a016 871 sg = sg_next(sg);
6ad45a27
MB
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
875 if (!ret)
876 ret = -ENOMEM;
6ad45a27
MB
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885}
886
46336966
BB
887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
6ad45a27
MB
889{
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894}
895
8caab75f 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31 897{
99adef31
MB
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
6ad45a27 900 int ret;
3a2eba9b 901
8caab75f 902 if (!ctlr->can_dma)
99adef31
MB
903 return 0;
904
8caab75f
GU
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 907 else
8caab75f 908 tx_dev = ctlr->dev.parent;
c37f45b5 909
8caab75f
GU
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 912 else
8caab75f 913 rx_dev = ctlr->dev.parent;
99adef31
MB
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
917 continue;
918
919 if (xfer->tx_buf != NULL) {
8caab75f 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
99adef31
MB
925 }
926
927 if (xfer->rx_buf != NULL) {
8caab75f 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
6ad45a27
MB
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
8caab75f 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
933 DMA_TO_DEVICE);
934 return ret;
99adef31
MB
935 }
936 }
937 }
938
8caab75f 939 ctlr->cur_msg_mapped = true;
99adef31
MB
940
941 return 0;
942}
943
8caab75f 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31
MB
945{
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
8caab75f 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
99adef31
MB
950 return 0;
951
8caab75f
GU
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 954 else
8caab75f 955 tx_dev = ctlr->dev.parent;
c37f45b5 956
8caab75f
GU
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 959 else
8caab75f 960 rx_dev = ctlr->dev.parent;
99adef31
MB
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
964 continue;
965
8caab75f
GU
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
968 }
969
970 return 0;
971}
2de440f5 972#else /* !CONFIG_HAS_DMA */
8caab75f 973static inline int __spi_map_msg(struct spi_controller *ctlr,
2de440f5
GU
974 struct spi_message *msg)
975{
976 return 0;
977}
978
8caab75f 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
4b786458 980 struct spi_message *msg)
2de440f5
GU
981{
982 return 0;
983}
984#endif /* !CONFIG_HAS_DMA */
985
8caab75f 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
4b786458
MS
987 struct spi_message *msg)
988{
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
8caab75f 996 if (xfer->tx_buf == ctlr->dummy_tx)
4b786458 997 xfer->tx_buf = NULL;
8caab75f 998 if (xfer->rx_buf == ctlr->dummy_rx)
4b786458
MS
999 xfer->rx_buf = NULL;
1000 }
1001
8caab75f 1002 return __spi_unmap_msg(ctlr, msg);
4b786458
MS
1003}
1004
8caab75f 1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
2de440f5
GU
1006{
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
8caab75f 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
2de440f5
GU
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
2de440f5
GU
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
8caab75f 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
2de440f5
GU
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
8caab75f 1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
2de440f5
GU
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
8caab75f 1029 ctlr->dummy_tx = tmp;
2de440f5
GU
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
8caab75f 1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
2de440f5
GU
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
8caab75f 1038 ctlr->dummy_rx = tmp;
2de440f5
GU
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
5442dcaa
CL
1044 if (!xfer->len)
1045 continue;
2de440f5 1046 if (!xfer->tx_buf)
8caab75f 1047 xfer->tx_buf = ctlr->dummy_tx;
2de440f5 1048 if (!xfer->rx_buf)
8caab75f 1049 xfer->rx_buf = ctlr->dummy_rx;
2de440f5
GU
1050 }
1051 }
1052 }
1053
8caab75f 1054 return __spi_map_msg(ctlr, msg);
2de440f5 1055}
99adef31 1056
810923f3
LR
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060{
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091}
1092
0ff2de8b
MS
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095 if (!ns)
1096 return;
1097 if (ns <= 1000) {
1098 ndelay(ns);
1099 } else {
1100 u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102 if (us <= 10)
1103 udelay(us);
1104 else
1105 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 }
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 struct spi_transfer *xfer)
1111{
1112 u32 delay = xfer->cs_change_delay;
1113 u32 unit = xfer->cs_change_delay_unit;
1114
1115 /* return early on "fast" mode - for everything but USECS */
1116 if (!delay && unit != SPI_DELAY_UNIT_USECS)
1117 return;
1118
1119 switch (unit) {
1120 case SPI_DELAY_UNIT_USECS:
1121 /* for compatibility use default of 10us */
1122 if (!delay)
1123 delay = 10000;
1124 else
1125 delay *= 1000;
1126 break;
1127 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1128 break;
1129 default:
1130 dev_err_once(&msg->spi->dev,
1131 "Use of unsupported delay unit %i, using default of 10us\n",
1132 xfer->cs_change_delay_unit);
1133 delay = 10000;
1134 }
1135 /* now sleep for the requested amount of time */
1136 _spi_transfer_delay_ns(delay);
1137}
1138
b158935f
MB
1139/*
1140 * spi_transfer_one_message - Default implementation of transfer_one_message()
1141 *
1142 * This is a standard implementation of transfer_one_message() for
8ba811a7 1143 * drivers which implement a transfer_one() operation. It provides
b158935f
MB
1144 * standard handling of delays and chip select management.
1145 */
8caab75f 1146static int spi_transfer_one_message(struct spi_controller *ctlr,
b158935f
MB
1147 struct spi_message *msg)
1148{
1149 struct spi_transfer *xfer;
b158935f
MB
1150 bool keep_cs = false;
1151 int ret = 0;
8caab75f 1152 struct spi_statistics *statm = &ctlr->statistics;
eca2ebc7 1153 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
1154
1155 spi_set_cs(msg->spi, true);
1156
eca2ebc7
MS
1157 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1158 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1159
b158935f
MB
1160 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1161 trace_spi_transfer_start(msg, xfer);
1162
8caab75f
GU
1163 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1164 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
eca2ebc7 1165
38ec10f6 1166 if (xfer->tx_buf || xfer->rx_buf) {
8caab75f 1167 reinit_completion(&ctlr->xfer_completion);
b158935f 1168
8caab75f 1169 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
38ec10f6 1170 if (ret < 0) {
eca2ebc7
MS
1171 SPI_STATISTICS_INCREMENT_FIELD(statm,
1172 errors);
1173 SPI_STATISTICS_INCREMENT_FIELD(stats,
1174 errors);
38ec10f6
MB
1175 dev_err(&msg->spi->dev,
1176 "SPI transfer failed: %d\n", ret);
1177 goto out;
1178 }
b158935f 1179
d57e7960
MB
1180 if (ret > 0) {
1181 ret = spi_transfer_wait(ctlr, msg, xfer);
1182 if (ret < 0)
1183 msg->status = ret;
1184 }
38ec10f6
MB
1185 } else {
1186 if (xfer->len)
1187 dev_err(&msg->spi->dev,
1188 "Bufferless transfer has length %u\n",
1189 xfer->len);
13a42798 1190 }
b158935f
MB
1191
1192 trace_spi_transfer_stop(msg, xfer);
1193
1194 if (msg->status != -EINPROGRESS)
1195 goto out;
1196
0ff2de8b
MS
1197 if (xfer->delay_usecs)
1198 _spi_transfer_delay_ns(xfer->delay_usecs * 1000);
b158935f
MB
1199
1200 if (xfer->cs_change) {
1201 if (list_is_last(&xfer->transfer_list,
1202 &msg->transfers)) {
1203 keep_cs = true;
1204 } else {
0b73aa63 1205 spi_set_cs(msg->spi, false);
0ff2de8b 1206 _spi_transfer_cs_change_delay(msg, xfer);
0b73aa63 1207 spi_set_cs(msg->spi, true);
b158935f
MB
1208 }
1209 }
1210
1211 msg->actual_length += xfer->len;
1212 }
1213
1214out:
1215 if (ret != 0 || !keep_cs)
1216 spi_set_cs(msg->spi, false);
1217
1218 if (msg->status == -EINPROGRESS)
1219 msg->status = ret;
1220
8caab75f
GU
1221 if (msg->status && ctlr->handle_err)
1222 ctlr->handle_err(ctlr, msg);
b716c4ff 1223
8caab75f 1224 spi_finalize_current_message(ctlr);
b158935f 1225
c9ba7a16
NT
1226 spi_res_release(ctlr, msg);
1227
b158935f
MB
1228 return ret;
1229}
1230
1231/**
1232 * spi_finalize_current_transfer - report completion of a transfer
8caab75f 1233 * @ctlr: the controller reporting completion
b158935f
MB
1234 *
1235 * Called by SPI drivers using the core transfer_one_message()
1236 * implementation to notify it that the current interrupt driven
9e8f4882 1237 * transfer has finished and the next one may be scheduled.
b158935f 1238 */
8caab75f 1239void spi_finalize_current_transfer(struct spi_controller *ctlr)
b158935f 1240{
8caab75f 1241 complete(&ctlr->xfer_completion);
b158935f
MB
1242}
1243EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1244
ffbbdd21 1245/**
fc9e0f71 1246 * __spi_pump_messages - function which processes spi message queue
8caab75f 1247 * @ctlr: controller to process queue for
fc9e0f71 1248 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1249 *
1250 * This function checks if there is any spi message in the queue that
1251 * needs processing and if so call out to the driver to initialize hardware
1252 * and transfer each message.
1253 *
0461a414
MB
1254 * Note that it is called both from the kthread itself and also from
1255 * inside spi_sync(); the queue extraction handling at the top of the
1256 * function should deal with this safely.
ffbbdd21 1257 */
8caab75f 1258static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
ffbbdd21 1259{
ffbbdd21
LW
1260 unsigned long flags;
1261 bool was_busy = false;
1262 int ret;
1263
983aee5d 1264 /* Lock queue */
8caab75f 1265 spin_lock_irqsave(&ctlr->queue_lock, flags);
983aee5d
MB
1266
1267 /* Make sure we are not already running a message */
8caab75f
GU
1268 if (ctlr->cur_msg) {
1269 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
983aee5d
MB
1270 return;
1271 }
1272
f0125f1a 1273 /* If another context is idling the device then defer */
8caab75f
GU
1274 if (ctlr->idling) {
1275 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1276 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
0461a414
MB
1277 return;
1278 }
1279
983aee5d 1280 /* Check if the queue is idle */
8caab75f
GU
1281 if (list_empty(&ctlr->queue) || !ctlr->running) {
1282 if (!ctlr->busy) {
1283 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
b0b36b86 1284 return;
ffbbdd21 1285 }
fc9e0f71 1286
f0125f1a
MB
1287 /* Only do teardown in the thread */
1288 if (!in_kthread) {
1289 kthread_queue_work(&ctlr->kworker,
1290 &ctlr->pump_messages);
1291 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1292 return;
1293 }
1294
1295 ctlr->busy = false;
1296 ctlr->idling = true;
1297 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1298
1299 kfree(ctlr->dummy_rx);
1300 ctlr->dummy_rx = NULL;
1301 kfree(ctlr->dummy_tx);
1302 ctlr->dummy_tx = NULL;
1303 if (ctlr->unprepare_transfer_hardware &&
1304 ctlr->unprepare_transfer_hardware(ctlr))
1305 dev_err(&ctlr->dev,
1306 "failed to unprepare transfer hardware\n");
1307 if (ctlr->auto_runtime_pm) {
1308 pm_runtime_mark_last_busy(ctlr->dev.parent);
1309 pm_runtime_put_autosuspend(ctlr->dev.parent);
1310 }
1311 trace_spi_controller_idle(ctlr);
1312
1313 spin_lock_irqsave(&ctlr->queue_lock, flags);
1314 ctlr->idling = false;
8caab75f 1315 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1316 return;
1317 }
ffbbdd21 1318
ffbbdd21 1319 /* Extract head of queue */
8caab75f
GU
1320 ctlr->cur_msg =
1321 list_first_entry(&ctlr->queue, struct spi_message, queue);
ffbbdd21 1322
8caab75f
GU
1323 list_del_init(&ctlr->cur_msg->queue);
1324 if (ctlr->busy)
ffbbdd21
LW
1325 was_busy = true;
1326 else
8caab75f
GU
1327 ctlr->busy = true;
1328 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1329
8caab75f 1330 mutex_lock(&ctlr->io_mutex);
ef4d96ec 1331
8caab75f
GU
1332 if (!was_busy && ctlr->auto_runtime_pm) {
1333 ret = pm_runtime_get_sync(ctlr->dev.parent);
49834de2 1334 if (ret < 0) {
7e48e23a 1335 pm_runtime_put_noidle(ctlr->dev.parent);
8caab75f 1336 dev_err(&ctlr->dev, "Failed to power device: %d\n",
49834de2 1337 ret);
8caab75f 1338 mutex_unlock(&ctlr->io_mutex);
49834de2
MB
1339 return;
1340 }
1341 }
1342
56ec1978 1343 if (!was_busy)
8caab75f 1344 trace_spi_controller_busy(ctlr);
56ec1978 1345
8caab75f
GU
1346 if (!was_busy && ctlr->prepare_transfer_hardware) {
1347 ret = ctlr->prepare_transfer_hardware(ctlr);
ffbbdd21 1348 if (ret) {
8caab75f 1349 dev_err(&ctlr->dev,
ffbbdd21 1350 "failed to prepare transfer hardware\n");
49834de2 1351
8caab75f
GU
1352 if (ctlr->auto_runtime_pm)
1353 pm_runtime_put(ctlr->dev.parent);
1354 mutex_unlock(&ctlr->io_mutex);
ffbbdd21
LW
1355 return;
1356 }
1357 }
1358
8caab75f 1359 trace_spi_message_start(ctlr->cur_msg);
56ec1978 1360
8caab75f
GU
1361 if (ctlr->prepare_message) {
1362 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
2841a5fc 1363 if (ret) {
8caab75f
GU
1364 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1365 ret);
1366 ctlr->cur_msg->status = ret;
1367 spi_finalize_current_message(ctlr);
49023d2e 1368 goto out;
2841a5fc 1369 }
8caab75f 1370 ctlr->cur_msg_prepared = true;
2841a5fc
MB
1371 }
1372
8caab75f 1373 ret = spi_map_msg(ctlr, ctlr->cur_msg);
99adef31 1374 if (ret) {
8caab75f
GU
1375 ctlr->cur_msg->status = ret;
1376 spi_finalize_current_message(ctlr);
49023d2e 1377 goto out;
99adef31
MB
1378 }
1379
8caab75f 1380 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
ffbbdd21 1381 if (ret) {
8caab75f 1382 dev_err(&ctlr->dev,
1f802f82 1383 "failed to transfer one message from queue\n");
49023d2e 1384 goto out;
ffbbdd21 1385 }
49023d2e
JH
1386
1387out:
8caab75f 1388 mutex_unlock(&ctlr->io_mutex);
62826970
MB
1389
1390 /* Prod the scheduler in case transfer_one() was busy waiting */
49023d2e
JH
1391 if (!ret)
1392 cond_resched();
ffbbdd21
LW
1393}
1394
fc9e0f71
MB
1395/**
1396 * spi_pump_messages - kthread work function which processes spi message queue
8caab75f 1397 * @work: pointer to kthread work struct contained in the controller struct
fc9e0f71
MB
1398 */
1399static void spi_pump_messages(struct kthread_work *work)
1400{
8caab75f
GU
1401 struct spi_controller *ctlr =
1402 container_of(work, struct spi_controller, pump_messages);
fc9e0f71 1403
8caab75f 1404 __spi_pump_messages(ctlr, true);
fc9e0f71
MB
1405}
1406
8caab75f 1407static int spi_init_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1408{
1409 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1410
8caab75f
GU
1411 ctlr->running = false;
1412 ctlr->busy = false;
ffbbdd21 1413
8caab75f
GU
1414 kthread_init_worker(&ctlr->kworker);
1415 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1416 "%s", dev_name(&ctlr->dev));
1417 if (IS_ERR(ctlr->kworker_task)) {
1418 dev_err(&ctlr->dev, "failed to create message pump task\n");
1419 return PTR_ERR(ctlr->kworker_task);
ffbbdd21 1420 }
8caab75f 1421 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
f0125f1a 1422
ffbbdd21 1423 /*
8caab75f 1424 * Controller config will indicate if this controller should run the
ffbbdd21
LW
1425 * message pump with high (realtime) priority to reduce the transfer
1426 * latency on the bus by minimising the delay between a transfer
1427 * request and the scheduling of the message pump thread. Without this
1428 * setting the message pump thread will remain at default priority.
1429 */
8caab75f
GU
1430 if (ctlr->rt) {
1431 dev_info(&ctlr->dev,
ffbbdd21 1432 "will run message pump with realtime priority\n");
8caab75f 1433 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
ffbbdd21
LW
1434 }
1435
1436 return 0;
1437}
1438
1439/**
1440 * spi_get_next_queued_message() - called by driver to check for queued
1441 * messages
8caab75f 1442 * @ctlr: the controller to check for queued messages
ffbbdd21
LW
1443 *
1444 * If there are more messages in the queue, the next message is returned from
1445 * this call.
97d56dc6
JMC
1446 *
1447 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21 1448 */
8caab75f 1449struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
ffbbdd21
LW
1450{
1451 struct spi_message *next;
1452 unsigned long flags;
1453
1454 /* get a pointer to the next message, if any */
8caab75f
GU
1455 spin_lock_irqsave(&ctlr->queue_lock, flags);
1456 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1cfd97f9 1457 queue);
8caab75f 1458 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1459
1460 return next;
1461}
1462EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1463
1464/**
1465 * spi_finalize_current_message() - the current message is complete
8caab75f 1466 * @ctlr: the controller to return the message to
ffbbdd21
LW
1467 *
1468 * Called by the driver to notify the core that the message in the front of the
1469 * queue is complete and can be removed from the queue.
1470 */
8caab75f 1471void spi_finalize_current_message(struct spi_controller *ctlr)
ffbbdd21
LW
1472{
1473 struct spi_message *mesg;
1474 unsigned long flags;
2841a5fc 1475 int ret;
ffbbdd21 1476
8caab75f
GU
1477 spin_lock_irqsave(&ctlr->queue_lock, flags);
1478 mesg = ctlr->cur_msg;
1479 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1480
8caab75f 1481 spi_unmap_msg(ctlr, mesg);
99adef31 1482
8caab75f
GU
1483 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1484 ret = ctlr->unprepare_message(ctlr, mesg);
2841a5fc 1485 if (ret) {
8caab75f
GU
1486 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1487 ret);
2841a5fc
MB
1488 }
1489 }
391949b6 1490
8caab75f
GU
1491 spin_lock_irqsave(&ctlr->queue_lock, flags);
1492 ctlr->cur_msg = NULL;
1493 ctlr->cur_msg_prepared = false;
f0125f1a 1494 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
8caab75f 1495 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
8e76ef88
MS
1496
1497 trace_spi_message_done(mesg);
2841a5fc 1498
ffbbdd21
LW
1499 mesg->state = NULL;
1500 if (mesg->complete)
1501 mesg->complete(mesg->context);
1502}
1503EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1504
8caab75f 1505static int spi_start_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1506{
1507 unsigned long flags;
1508
8caab75f 1509 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1510
8caab75f
GU
1511 if (ctlr->running || ctlr->busy) {
1512 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1513 return -EBUSY;
1514 }
1515
8caab75f
GU
1516 ctlr->running = true;
1517 ctlr->cur_msg = NULL;
1518 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1519
8caab75f 1520 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21
LW
1521
1522 return 0;
1523}
1524
8caab75f 1525static int spi_stop_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1526{
1527 unsigned long flags;
1528 unsigned limit = 500;
1529 int ret = 0;
1530
8caab75f 1531 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1532
1533 /*
1534 * This is a bit lame, but is optimized for the common execution path.
8caab75f 1535 * A wait_queue on the ctlr->busy could be used, but then the common
ffbbdd21
LW
1536 * execution path (pump_messages) would be required to call wake_up or
1537 * friends on every SPI message. Do this instead.
1538 */
8caab75f
GU
1539 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1540 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
f97b26b0 1541 usleep_range(10000, 11000);
8caab75f 1542 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1543 }
1544
8caab75f 1545 if (!list_empty(&ctlr->queue) || ctlr->busy)
ffbbdd21
LW
1546 ret = -EBUSY;
1547 else
8caab75f 1548 ctlr->running = false;
ffbbdd21 1549
8caab75f 1550 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1551
1552 if (ret) {
8caab75f 1553 dev_warn(&ctlr->dev, "could not stop message queue\n");
ffbbdd21
LW
1554 return ret;
1555 }
1556 return ret;
1557}
1558
8caab75f 1559static int spi_destroy_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1560{
1561 int ret;
1562
8caab75f 1563 ret = spi_stop_queue(ctlr);
ffbbdd21
LW
1564
1565 /*
3989144f 1566 * kthread_flush_worker will block until all work is done.
ffbbdd21
LW
1567 * If the reason that stop_queue timed out is that the work will never
1568 * finish, then it does no good to call flush/stop thread, so
1569 * return anyway.
1570 */
1571 if (ret) {
8caab75f 1572 dev_err(&ctlr->dev, "problem destroying queue\n");
ffbbdd21
LW
1573 return ret;
1574 }
1575
8caab75f
GU
1576 kthread_flush_worker(&ctlr->kworker);
1577 kthread_stop(ctlr->kworker_task);
ffbbdd21
LW
1578
1579 return 0;
1580}
1581
0461a414
MB
1582static int __spi_queued_transfer(struct spi_device *spi,
1583 struct spi_message *msg,
1584 bool need_pump)
ffbbdd21 1585{
8caab75f 1586 struct spi_controller *ctlr = spi->controller;
ffbbdd21
LW
1587 unsigned long flags;
1588
8caab75f 1589 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1590
8caab75f
GU
1591 if (!ctlr->running) {
1592 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1593 return -ESHUTDOWN;
1594 }
1595 msg->actual_length = 0;
1596 msg->status = -EINPROGRESS;
1597
8caab75f 1598 list_add_tail(&msg->queue, &ctlr->queue);
f0125f1a 1599 if (!ctlr->busy && need_pump)
8caab75f 1600 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21 1601
8caab75f 1602 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1603 return 0;
1604}
1605
0461a414
MB
1606/**
1607 * spi_queued_transfer - transfer function for queued transfers
1608 * @spi: spi device which is requesting transfer
1609 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1610 *
1611 * Return: zero on success, else a negative error code.
0461a414
MB
1612 */
1613static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1614{
1615 return __spi_queued_transfer(spi, msg, true);
1616}
1617
8caab75f 1618static int spi_controller_initialize_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1619{
1620 int ret;
1621
8caab75f
GU
1622 ctlr->transfer = spi_queued_transfer;
1623 if (!ctlr->transfer_one_message)
1624 ctlr->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1625
1626 /* Initialize and start queue */
8caab75f 1627 ret = spi_init_queue(ctlr);
ffbbdd21 1628 if (ret) {
8caab75f 1629 dev_err(&ctlr->dev, "problem initializing queue\n");
ffbbdd21
LW
1630 goto err_init_queue;
1631 }
8caab75f
GU
1632 ctlr->queued = true;
1633 ret = spi_start_queue(ctlr);
ffbbdd21 1634 if (ret) {
8caab75f 1635 dev_err(&ctlr->dev, "problem starting queue\n");
ffbbdd21
LW
1636 goto err_start_queue;
1637 }
1638
1639 return 0;
1640
1641err_start_queue:
8caab75f 1642 spi_destroy_queue(ctlr);
c3676d5c 1643err_init_queue:
ffbbdd21
LW
1644 return ret;
1645}
1646
988f259b
BB
1647/**
1648 * spi_flush_queue - Send all pending messages in the queue from the callers'
1649 * context
1650 * @ctlr: controller to process queue for
1651 *
1652 * This should be used when one wants to ensure all pending messages have been
1653 * sent before doing something. Is used by the spi-mem code to make sure SPI
1654 * memory operations do not preempt regular SPI transfers that have been queued
1655 * before the spi-mem operation.
1656 */
1657void spi_flush_queue(struct spi_controller *ctlr)
1658{
1659 if (ctlr->transfer == spi_queued_transfer)
1660 __spi_pump_messages(ctlr, false);
1661}
1662
ffbbdd21
LW
1663/*-------------------------------------------------------------------------*/
1664
7cb94361 1665#if defined(CONFIG_OF)
8caab75f 1666static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
c2e51ac3 1667 struct device_node *nc)
aff5e3f8 1668{
aff5e3f8 1669 u32 value;
c2e51ac3 1670 int rc;
aff5e3f8 1671
aff5e3f8 1672 /* Mode (clock phase/polarity/etc.) */
e0bcb680 1673 if (of_property_read_bool(nc, "spi-cpha"))
aff5e3f8 1674 spi->mode |= SPI_CPHA;
e0bcb680 1675 if (of_property_read_bool(nc, "spi-cpol"))
aff5e3f8 1676 spi->mode |= SPI_CPOL;
e0bcb680 1677 if (of_property_read_bool(nc, "spi-3wire"))
aff5e3f8 1678 spi->mode |= SPI_3WIRE;
e0bcb680 1679 if (of_property_read_bool(nc, "spi-lsb-first"))
aff5e3f8
PA
1680 spi->mode |= SPI_LSB_FIRST;
1681
f3186dd8
LW
1682 /*
1683 * For descriptors associated with the device, polarity inversion is
1684 * handled in the gpiolib, so all chip selects are "active high" in
1685 * the logical sense, the gpiolib will invert the line if need be.
1686 */
1687 if (ctlr->use_gpio_descriptors)
1688 spi->mode |= SPI_CS_HIGH;
1689 else if (of_property_read_bool(nc, "spi-cs-high"))
1690 spi->mode |= SPI_CS_HIGH;
1691
aff5e3f8
PA
1692 /* Device DUAL/QUAD mode */
1693 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1694 switch (value) {
1695 case 1:
1696 break;
1697 case 2:
1698 spi->mode |= SPI_TX_DUAL;
1699 break;
1700 case 4:
1701 spi->mode |= SPI_TX_QUAD;
1702 break;
6b03061f
YNG
1703 case 8:
1704 spi->mode |= SPI_TX_OCTAL;
1705 break;
aff5e3f8 1706 default:
8caab75f 1707 dev_warn(&ctlr->dev,
aff5e3f8
PA
1708 "spi-tx-bus-width %d not supported\n",
1709 value);
1710 break;
1711 }
1712 }
1713
1714 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1715 switch (value) {
1716 case 1:
1717 break;
1718 case 2:
1719 spi->mode |= SPI_RX_DUAL;
1720 break;
1721 case 4:
1722 spi->mode |= SPI_RX_QUAD;
1723 break;
6b03061f
YNG
1724 case 8:
1725 spi->mode |= SPI_RX_OCTAL;
1726 break;
aff5e3f8 1727 default:
8caab75f 1728 dev_warn(&ctlr->dev,
aff5e3f8
PA
1729 "spi-rx-bus-width %d not supported\n",
1730 value);
1731 break;
1732 }
1733 }
1734
8caab75f 1735 if (spi_controller_is_slave(ctlr)) {
194276b0 1736 if (!of_node_name_eq(nc, "slave")) {
25c56c88
RH
1737 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1738 nc);
6c364062
GU
1739 return -EINVAL;
1740 }
1741 return 0;
1742 }
1743
1744 /* Device address */
1745 rc = of_property_read_u32(nc, "reg", &value);
1746 if (rc) {
25c56c88
RH
1747 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1748 nc, rc);
6c364062
GU
1749 return rc;
1750 }
1751 spi->chip_select = value;
1752
aff5e3f8
PA
1753 /* Device speed */
1754 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1755 if (rc) {
8caab75f 1756 dev_err(&ctlr->dev,
25c56c88 1757 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
c2e51ac3 1758 return rc;
aff5e3f8
PA
1759 }
1760 spi->max_speed_hz = value;
1761
c2e51ac3
GU
1762 return 0;
1763}
1764
1765static struct spi_device *
8caab75f 1766of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
c2e51ac3
GU
1767{
1768 struct spi_device *spi;
1769 int rc;
1770
1771 /* Alloc an spi_device */
8caab75f 1772 spi = spi_alloc_device(ctlr);
c2e51ac3 1773 if (!spi) {
25c56c88 1774 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
c2e51ac3
GU
1775 rc = -ENOMEM;
1776 goto err_out;
1777 }
1778
1779 /* Select device driver */
1780 rc = of_modalias_node(nc, spi->modalias,
1781 sizeof(spi->modalias));
1782 if (rc < 0) {
25c56c88 1783 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
c2e51ac3
GU
1784 goto err_out;
1785 }
1786
8caab75f 1787 rc = of_spi_parse_dt(ctlr, spi, nc);
c2e51ac3
GU
1788 if (rc)
1789 goto err_out;
1790
aff5e3f8
PA
1791 /* Store a pointer to the node in the device structure */
1792 of_node_get(nc);
1793 spi->dev.of_node = nc;
1794
1795 /* Register the new device */
aff5e3f8
PA
1796 rc = spi_add_device(spi);
1797 if (rc) {
25c56c88 1798 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
8324147f 1799 goto err_of_node_put;
aff5e3f8
PA
1800 }
1801
1802 return spi;
1803
8324147f
JH
1804err_of_node_put:
1805 of_node_put(nc);
aff5e3f8
PA
1806err_out:
1807 spi_dev_put(spi);
1808 return ERR_PTR(rc);
1809}
1810
d57a4282
GL
1811/**
1812 * of_register_spi_devices() - Register child devices onto the SPI bus
8caab75f 1813 * @ctlr: Pointer to spi_controller device
d57a4282 1814 *
6c364062
GU
1815 * Registers an spi_device for each child node of controller node which
1816 * represents a valid SPI slave.
d57a4282 1817 */
8caab75f 1818static void of_register_spi_devices(struct spi_controller *ctlr)
d57a4282
GL
1819{
1820 struct spi_device *spi;
1821 struct device_node *nc;
d57a4282 1822
8caab75f 1823 if (!ctlr->dev.of_node)
d57a4282
GL
1824 return;
1825
8caab75f 1826 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
bd6c1644
GU
1827 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1828 continue;
8caab75f 1829 spi = of_register_spi_device(ctlr, nc);
e0af98a7 1830 if (IS_ERR(spi)) {
8caab75f 1831 dev_warn(&ctlr->dev,
25c56c88 1832 "Failed to create SPI device for %pOF\n", nc);
e0af98a7
RR
1833 of_node_clear_flag(nc, OF_POPULATED);
1834 }
d57a4282
GL
1835 }
1836}
1837#else
8caab75f 1838static void of_register_spi_devices(struct spi_controller *ctlr) { }
d57a4282
GL
1839#endif
1840
64bee4d2 1841#ifdef CONFIG_ACPI
8a2e487e
LW
1842static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1843{
1844 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1845 const union acpi_object *obj;
1846
1847 if (!x86_apple_machine)
1848 return;
1849
1850 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1851 && obj->buffer.length >= 4)
1852 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1853
1854 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1855 && obj->buffer.length == 8)
1856 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1857
1858 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1859 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1860 spi->mode |= SPI_LSB_FIRST;
1861
1862 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1863 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1864 spi->mode |= SPI_CPOL;
1865
1866 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1867 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1868 spi->mode |= SPI_CPHA;
1869}
1870
64bee4d2
MW
1871static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1872{
1873 struct spi_device *spi = data;
8caab75f 1874 struct spi_controller *ctlr = spi->controller;
64bee4d2
MW
1875
1876 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1877 struct acpi_resource_spi_serialbus *sb;
1878
1879 sb = &ares->data.spi_serial_bus;
1880 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
a0a90718
MW
1881 /*
1882 * ACPI DeviceSelection numbering is handled by the
1883 * host controller driver in Windows and can vary
1884 * from driver to driver. In Linux we always expect
1885 * 0 .. max - 1 so we need to ask the driver to
1886 * translate between the two schemes.
1887 */
8caab75f
GU
1888 if (ctlr->fw_translate_cs) {
1889 int cs = ctlr->fw_translate_cs(ctlr,
a0a90718
MW
1890 sb->device_selection);
1891 if (cs < 0)
1892 return cs;
1893 spi->chip_select = cs;
1894 } else {
1895 spi->chip_select = sb->device_selection;
1896 }
1897
64bee4d2
MW
1898 spi->max_speed_hz = sb->connection_speed;
1899
1900 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1901 spi->mode |= SPI_CPHA;
1902 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1903 spi->mode |= SPI_CPOL;
1904 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1905 spi->mode |= SPI_CS_HIGH;
1906 }
1907 } else if (spi->irq < 0) {
1908 struct resource r;
1909
1910 if (acpi_dev_resource_interrupt(ares, 0, &r))
1911 spi->irq = r.start;
1912 }
1913
1914 /* Always tell the ACPI core to skip this resource */
1915 return 1;
1916}
1917
8caab75f 1918static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
7f24467f 1919 struct acpi_device *adev)
64bee4d2 1920{
64bee4d2 1921 struct list_head resource_list;
64bee4d2
MW
1922 struct spi_device *spi;
1923 int ret;
1924
7f24467f
OP
1925 if (acpi_bus_get_status(adev) || !adev->status.present ||
1926 acpi_device_enumerated(adev))
64bee4d2
MW
1927 return AE_OK;
1928
8caab75f 1929 spi = spi_alloc_device(ctlr);
64bee4d2 1930 if (!spi) {
8caab75f 1931 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
64bee4d2
MW
1932 dev_name(&adev->dev));
1933 return AE_NO_MEMORY;
1934 }
1935
7b199811 1936 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1937 spi->irq = -1;
1938
1939 INIT_LIST_HEAD(&resource_list);
1940 ret = acpi_dev_get_resources(adev, &resource_list,
1941 acpi_spi_add_resource, spi);
1942 acpi_dev_free_resource_list(&resource_list);
1943
8a2e487e
LW
1944 acpi_spi_parse_apple_properties(spi);
1945
64bee4d2
MW
1946 if (ret < 0 || !spi->max_speed_hz) {
1947 spi_dev_put(spi);
1948 return AE_OK;
1949 }
1950
0c6543f6
DD
1951 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1952 sizeof(spi->modalias));
1953
33ada67d
CR
1954 if (spi->irq < 0)
1955 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1956
7f24467f
OP
1957 acpi_device_set_enumerated(adev);
1958
33cf00e5 1959 adev->power.flags.ignore_parent = true;
64bee4d2 1960 if (spi_add_device(spi)) {
33cf00e5 1961 adev->power.flags.ignore_parent = false;
8caab75f 1962 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
64bee4d2
MW
1963 dev_name(&adev->dev));
1964 spi_dev_put(spi);
1965 }
1966
1967 return AE_OK;
1968}
1969
7f24467f
OP
1970static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1971 void *data, void **return_value)
1972{
8caab75f 1973 struct spi_controller *ctlr = data;
7f24467f
OP
1974 struct acpi_device *adev;
1975
1976 if (acpi_bus_get_device(handle, &adev))
1977 return AE_OK;
1978
8caab75f 1979 return acpi_register_spi_device(ctlr, adev);
7f24467f
OP
1980}
1981
8caab75f 1982static void acpi_register_spi_devices(struct spi_controller *ctlr)
64bee4d2
MW
1983{
1984 acpi_status status;
1985 acpi_handle handle;
1986
8caab75f 1987 handle = ACPI_HANDLE(ctlr->dev.parent);
64bee4d2
MW
1988 if (!handle)
1989 return;
1990
1991 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
8caab75f 1992 acpi_spi_add_device, NULL, ctlr, NULL);
64bee4d2 1993 if (ACPI_FAILURE(status))
8caab75f 1994 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
64bee4d2
MW
1995}
1996#else
8caab75f 1997static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
64bee4d2
MW
1998#endif /* CONFIG_ACPI */
1999
8caab75f 2000static void spi_controller_release(struct device *dev)
8ae12a0d 2001{
8caab75f 2002 struct spi_controller *ctlr;
8ae12a0d 2003
8caab75f
GU
2004 ctlr = container_of(dev, struct spi_controller, dev);
2005 kfree(ctlr);
8ae12a0d
DB
2006}
2007
2008static struct class spi_master_class = {
2009 .name = "spi_master",
2010 .owner = THIS_MODULE,
8caab75f 2011 .dev_release = spi_controller_release,
eca2ebc7 2012 .dev_groups = spi_master_groups,
8ae12a0d
DB
2013};
2014
6c364062
GU
2015#ifdef CONFIG_SPI_SLAVE
2016/**
2017 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2018 * controller
2019 * @spi: device used for the current transfer
2020 */
2021int spi_slave_abort(struct spi_device *spi)
2022{
8caab75f 2023 struct spi_controller *ctlr = spi->controller;
6c364062 2024
8caab75f
GU
2025 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2026 return ctlr->slave_abort(ctlr);
6c364062
GU
2027
2028 return -ENOTSUPP;
2029}
2030EXPORT_SYMBOL_GPL(spi_slave_abort);
2031
2032static int match_true(struct device *dev, void *data)
2033{
2034 return 1;
2035}
2036
2037static ssize_t spi_slave_show(struct device *dev,
2038 struct device_attribute *attr, char *buf)
2039{
8caab75f
GU
2040 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2041 dev);
6c364062
GU
2042 struct device *child;
2043
2044 child = device_find_child(&ctlr->dev, NULL, match_true);
2045 return sprintf(buf, "%s\n",
2046 child ? to_spi_device(child)->modalias : NULL);
2047}
2048
2049static ssize_t spi_slave_store(struct device *dev,
2050 struct device_attribute *attr, const char *buf,
2051 size_t count)
2052{
8caab75f
GU
2053 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2054 dev);
6c364062
GU
2055 struct spi_device *spi;
2056 struct device *child;
2057 char name[32];
2058 int rc;
2059
2060 rc = sscanf(buf, "%31s", name);
2061 if (rc != 1 || !name[0])
2062 return -EINVAL;
2063
2064 child = device_find_child(&ctlr->dev, NULL, match_true);
2065 if (child) {
2066 /* Remove registered slave */
2067 device_unregister(child);
2068 put_device(child);
2069 }
2070
2071 if (strcmp(name, "(null)")) {
2072 /* Register new slave */
2073 spi = spi_alloc_device(ctlr);
2074 if (!spi)
2075 return -ENOMEM;
2076
2077 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2078
2079 rc = spi_add_device(spi);
2080 if (rc) {
2081 spi_dev_put(spi);
2082 return rc;
2083 }
2084 }
2085
2086 return count;
2087}
2088
2089static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2090
2091static struct attribute *spi_slave_attrs[] = {
2092 &dev_attr_slave.attr,
2093 NULL,
2094};
2095
2096static const struct attribute_group spi_slave_group = {
2097 .attrs = spi_slave_attrs,
2098};
2099
2100static const struct attribute_group *spi_slave_groups[] = {
8caab75f 2101 &spi_controller_statistics_group,
6c364062
GU
2102 &spi_slave_group,
2103 NULL,
2104};
2105
2106static struct class spi_slave_class = {
2107 .name = "spi_slave",
2108 .owner = THIS_MODULE,
8caab75f 2109 .dev_release = spi_controller_release,
6c364062
GU
2110 .dev_groups = spi_slave_groups,
2111};
2112#else
2113extern struct class spi_slave_class; /* dummy */
2114#endif
8ae12a0d
DB
2115
2116/**
6c364062 2117 * __spi_alloc_controller - allocate an SPI master or slave controller
8ae12a0d 2118 * @dev: the controller, possibly using the platform_bus
33e34dc6 2119 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 2120 * memory is in the driver_data field of the returned device,
8caab75f 2121 * accessible with spi_controller_get_devdata().
6c364062
GU
2122 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2123 * slave (true) controller
33e34dc6 2124 * Context: can sleep
8ae12a0d 2125 *
6c364062 2126 * This call is used only by SPI controller drivers, which are the
8ae12a0d 2127 * only ones directly touching chip registers. It's how they allocate
8caab75f 2128 * an spi_controller structure, prior to calling spi_register_controller().
8ae12a0d 2129 *
97d56dc6 2130 * This must be called from context that can sleep.
8ae12a0d 2131 *
6c364062 2132 * The caller is responsible for assigning the bus number and initializing the
8caab75f
GU
2133 * controller's methods before calling spi_register_controller(); and (after
2134 * errors adding the device) calling spi_controller_put() to prevent a memory
2135 * leak.
97d56dc6 2136 *
6c364062 2137 * Return: the SPI controller structure on success, else NULL.
8ae12a0d 2138 */
8caab75f
GU
2139struct spi_controller *__spi_alloc_controller(struct device *dev,
2140 unsigned int size, bool slave)
8ae12a0d 2141{
8caab75f 2142 struct spi_controller *ctlr;
8ae12a0d 2143
0c868461
DB
2144 if (!dev)
2145 return NULL;
2146
8caab75f
GU
2147 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2148 if (!ctlr)
8ae12a0d
DB
2149 return NULL;
2150
8caab75f
GU
2151 device_initialize(&ctlr->dev);
2152 ctlr->bus_num = -1;
2153 ctlr->num_chipselect = 1;
2154 ctlr->slave = slave;
6c364062 2155 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
8caab75f 2156 ctlr->dev.class = &spi_slave_class;
6c364062 2157 else
8caab75f
GU
2158 ctlr->dev.class = &spi_master_class;
2159 ctlr->dev.parent = dev;
2160 pm_suspend_ignore_children(&ctlr->dev, true);
2161 spi_controller_set_devdata(ctlr, &ctlr[1]);
8ae12a0d 2162
8caab75f 2163 return ctlr;
8ae12a0d 2164}
6c364062 2165EXPORT_SYMBOL_GPL(__spi_alloc_controller);
8ae12a0d 2166
74317984 2167#ifdef CONFIG_OF
8caab75f 2168static int of_spi_register_master(struct spi_controller *ctlr)
74317984 2169{
e80beb27 2170 int nb, i, *cs;
8caab75f 2171 struct device_node *np = ctlr->dev.of_node;
74317984
JCPV
2172
2173 if (!np)
2174 return 0;
2175
2176 nb = of_gpio_named_count(np, "cs-gpios");
8caab75f 2177 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
74317984 2178
8ec5d84e
AL
2179 /* Return error only for an incorrectly formed cs-gpios property */
2180 if (nb == 0 || nb == -ENOENT)
74317984 2181 return 0;
8ec5d84e
AL
2182 else if (nb < 0)
2183 return nb;
74317984 2184
a86854d0 2185 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
74317984 2186 GFP_KERNEL);
8caab75f 2187 ctlr->cs_gpios = cs;
74317984 2188
8caab75f 2189 if (!ctlr->cs_gpios)
74317984
JCPV
2190 return -ENOMEM;
2191
8caab75f 2192 for (i = 0; i < ctlr->num_chipselect; i++)
446411e1 2193 cs[i] = -ENOENT;
74317984
JCPV
2194
2195 for (i = 0; i < nb; i++)
2196 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2197
2198 return 0;
2199}
2200#else
8caab75f 2201static int of_spi_register_master(struct spi_controller *ctlr)
74317984
JCPV
2202{
2203 return 0;
2204}
2205#endif
2206
f3186dd8
LW
2207/**
2208 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2209 * @ctlr: The SPI master to grab GPIO descriptors for
2210 */
2211static int spi_get_gpio_descs(struct spi_controller *ctlr)
2212{
2213 int nb, i;
2214 struct gpio_desc **cs;
2215 struct device *dev = &ctlr->dev;
2216
2217 nb = gpiod_count(dev, "cs");
2218 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2219
2220 /* No GPIOs at all is fine, else return the error */
2221 if (nb == 0 || nb == -ENOENT)
2222 return 0;
2223 else if (nb < 0)
2224 return nb;
2225
2226 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2227 GFP_KERNEL);
2228 if (!cs)
2229 return -ENOMEM;
2230 ctlr->cs_gpiods = cs;
2231
2232 for (i = 0; i < nb; i++) {
2233 /*
2234 * Most chipselects are active low, the inverted
2235 * semantics are handled by special quirks in gpiolib,
2236 * so initializing them GPIOD_OUT_LOW here means
2237 * "unasserted", in most cases this will drive the physical
2238 * line high.
2239 */
2240 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2241 GPIOD_OUT_LOW);
1723fdec
GU
2242 if (IS_ERR(cs[i]))
2243 return PTR_ERR(cs[i]);
f3186dd8
LW
2244
2245 if (cs[i]) {
2246 /*
2247 * If we find a CS GPIO, name it after the device and
2248 * chip select line.
2249 */
2250 char *gpioname;
2251
2252 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2253 dev_name(dev), i);
2254 if (!gpioname)
2255 return -ENOMEM;
2256 gpiod_set_consumer_name(cs[i], gpioname);
2257 }
2258 }
2259
2260 return 0;
2261}
2262
bdf3a3b5
BB
2263static int spi_controller_check_ops(struct spi_controller *ctlr)
2264{
2265 /*
b5932f5c
BB
2266 * The controller may implement only the high-level SPI-memory like
2267 * operations if it does not support regular SPI transfers, and this is
2268 * valid use case.
2269 * If ->mem_ops is NULL, we request that at least one of the
2270 * ->transfer_xxx() method be implemented.
bdf3a3b5 2271 */
b5932f5c
BB
2272 if (ctlr->mem_ops) {
2273 if (!ctlr->mem_ops->exec_op)
2274 return -EINVAL;
2275 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2276 !ctlr->transfer_one_message) {
bdf3a3b5 2277 return -EINVAL;
b5932f5c 2278 }
bdf3a3b5
BB
2279
2280 return 0;
2281}
2282
8ae12a0d 2283/**
8caab75f
GU
2284 * spi_register_controller - register SPI master or slave controller
2285 * @ctlr: initialized master, originally from spi_alloc_master() or
2286 * spi_alloc_slave()
33e34dc6 2287 * Context: can sleep
8ae12a0d 2288 *
8caab75f 2289 * SPI controllers connect to their drivers using some non-SPI bus,
8ae12a0d 2290 * such as the platform bus. The final stage of probe() in that code
8caab75f 2291 * includes calling spi_register_controller() to hook up to this SPI bus glue.
8ae12a0d
DB
2292 *
2293 * SPI controllers use board specific (often SOC specific) bus numbers,
2294 * and board-specific addressing for SPI devices combines those numbers
2295 * with chip select numbers. Since SPI does not directly support dynamic
2296 * device identification, boards need configuration tables telling which
2297 * chip is at which address.
2298 *
2299 * This must be called from context that can sleep. It returns zero on
8caab75f 2300 * success, else a negative error code (dropping the controller's refcount).
0c868461 2301 * After a successful return, the caller is responsible for calling
8caab75f 2302 * spi_unregister_controller().
97d56dc6
JMC
2303 *
2304 * Return: zero on success, else a negative error code.
8ae12a0d 2305 */
8caab75f 2306int spi_register_controller(struct spi_controller *ctlr)
8ae12a0d 2307{
8caab75f 2308 struct device *dev = ctlr->dev.parent;
2b9603a0 2309 struct boardinfo *bi;
b93318a2 2310 int status;
42bdd706 2311 int id, first_dynamic;
8ae12a0d 2312
0c868461
DB
2313 if (!dev)
2314 return -ENODEV;
2315
bdf3a3b5
BB
2316 /*
2317 * Make sure all necessary hooks are implemented before registering
2318 * the SPI controller.
2319 */
2320 status = spi_controller_check_ops(ctlr);
2321 if (status)
2322 return status;
2323
082c8cb4
DB
2324 /* even if it's just one always-selected device, there must
2325 * be at least one chipselect
2326 */
8caab75f 2327 if (ctlr->num_chipselect == 0)
082c8cb4 2328 return -EINVAL;
04b2d03a
GU
2329 if (ctlr->bus_num >= 0) {
2330 /* devices with a fixed bus num must check-in with the num */
2331 mutex_lock(&board_lock);
2332 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2333 ctlr->bus_num + 1, GFP_KERNEL);
2334 mutex_unlock(&board_lock);
2335 if (WARN(id < 0, "couldn't get idr"))
2336 return id == -ENOSPC ? -EBUSY : id;
2337 ctlr->bus_num = id;
2338 } else if (ctlr->dev.of_node) {
2339 /* allocate dynamic bus number using Linux idr */
9b61e302
SM
2340 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2341 if (id >= 0) {
2342 ctlr->bus_num = id;
2343 mutex_lock(&board_lock);
2344 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2345 ctlr->bus_num + 1, GFP_KERNEL);
2346 mutex_unlock(&board_lock);
2347 if (WARN(id < 0, "couldn't get idr"))
2348 return id == -ENOSPC ? -EBUSY : id;
2349 }
2350 }
8caab75f 2351 if (ctlr->bus_num < 0) {
42bdd706
LS
2352 first_dynamic = of_alias_get_highest_id("spi");
2353 if (first_dynamic < 0)
2354 first_dynamic = 0;
2355 else
2356 first_dynamic++;
2357
9a9a047a 2358 mutex_lock(&board_lock);
42bdd706
LS
2359 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2360 0, GFP_KERNEL);
9a9a047a
SM
2361 mutex_unlock(&board_lock);
2362 if (WARN(id < 0, "couldn't get idr"))
2363 return id;
2364 ctlr->bus_num = id;
8ae12a0d 2365 }
8caab75f
GU
2366 INIT_LIST_HEAD(&ctlr->queue);
2367 spin_lock_init(&ctlr->queue_lock);
2368 spin_lock_init(&ctlr->bus_lock_spinlock);
2369 mutex_init(&ctlr->bus_lock_mutex);
2370 mutex_init(&ctlr->io_mutex);
2371 ctlr->bus_lock_flag = 0;
2372 init_completion(&ctlr->xfer_completion);
2373 if (!ctlr->max_dma_len)
2374 ctlr->max_dma_len = INT_MAX;
cf32b71e 2375
8ae12a0d
DB
2376 /* register the device, then userspace will see it.
2377 * registration fails if the bus ID is in use.
2378 */
8caab75f 2379 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
0a919ae4
AS
2380
2381 if (!spi_controller_is_slave(ctlr)) {
2382 if (ctlr->use_gpio_descriptors) {
2383 status = spi_get_gpio_descs(ctlr);
2384 if (status)
2385 return status;
2386 /*
2387 * A controller using GPIO descriptors always
2388 * supports SPI_CS_HIGH if need be.
2389 */
2390 ctlr->mode_bits |= SPI_CS_HIGH;
2391 } else {
2392 /* Legacy code path for GPIOs from DT */
2393 status = of_spi_register_master(ctlr);
2394 if (status)
2395 return status;
2396 }
2397 }
2398
8caab75f 2399 status = device_add(&ctlr->dev);
9b61e302
SM
2400 if (status < 0) {
2401 /* free bus id */
2402 mutex_lock(&board_lock);
2403 idr_remove(&spi_master_idr, ctlr->bus_num);
2404 mutex_unlock(&board_lock);
8ae12a0d 2405 goto done;
9b61e302
SM
2406 }
2407 dev_dbg(dev, "registered %s %s\n",
8caab75f 2408 spi_controller_is_slave(ctlr) ? "slave" : "master",
9b61e302 2409 dev_name(&ctlr->dev));
8ae12a0d 2410
b5932f5c
BB
2411 /*
2412 * If we're using a queued driver, start the queue. Note that we don't
2413 * need the queueing logic if the driver is only supporting high-level
2414 * memory operations.
2415 */
2416 if (ctlr->transfer) {
8caab75f 2417 dev_info(dev, "controller is unqueued, this is deprecated\n");
b5932f5c 2418 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
8caab75f 2419 status = spi_controller_initialize_queue(ctlr);
ffbbdd21 2420 if (status) {
8caab75f 2421 device_del(&ctlr->dev);
9b61e302
SM
2422 /* free bus id */
2423 mutex_lock(&board_lock);
2424 idr_remove(&spi_master_idr, ctlr->bus_num);
2425 mutex_unlock(&board_lock);
ffbbdd21
LW
2426 goto done;
2427 }
2428 }
eca2ebc7 2429 /* add statistics */
8caab75f 2430 spin_lock_init(&ctlr->statistics.lock);
ffbbdd21 2431
2b9603a0 2432 mutex_lock(&board_lock);
8caab75f 2433 list_add_tail(&ctlr->list, &spi_controller_list);
2b9603a0 2434 list_for_each_entry(bi, &board_list, list)
8caab75f 2435 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2b9603a0
FT
2436 mutex_unlock(&board_lock);
2437
64bee4d2 2438 /* Register devices from the device tree and ACPI */
8caab75f
GU
2439 of_register_spi_devices(ctlr);
2440 acpi_register_spi_devices(ctlr);
8ae12a0d
DB
2441done:
2442 return status;
2443}
8caab75f 2444EXPORT_SYMBOL_GPL(spi_register_controller);
8ae12a0d 2445
666d5b4c
MB
2446static void devm_spi_unregister(struct device *dev, void *res)
2447{
8caab75f 2448 spi_unregister_controller(*(struct spi_controller **)res);
666d5b4c
MB
2449}
2450
2451/**
8caab75f
GU
2452 * devm_spi_register_controller - register managed SPI master or slave
2453 * controller
2454 * @dev: device managing SPI controller
2455 * @ctlr: initialized controller, originally from spi_alloc_master() or
2456 * spi_alloc_slave()
666d5b4c
MB
2457 * Context: can sleep
2458 *
8caab75f 2459 * Register a SPI device as with spi_register_controller() which will
68b892f1 2460 * automatically be unregistered and freed.
97d56dc6
JMC
2461 *
2462 * Return: zero on success, else a negative error code.
666d5b4c 2463 */
8caab75f
GU
2464int devm_spi_register_controller(struct device *dev,
2465 struct spi_controller *ctlr)
666d5b4c 2466{
8caab75f 2467 struct spi_controller **ptr;
666d5b4c
MB
2468 int ret;
2469
2470 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2471 if (!ptr)
2472 return -ENOMEM;
2473
8caab75f 2474 ret = spi_register_controller(ctlr);
4b92894e 2475 if (!ret) {
8caab75f 2476 *ptr = ctlr;
666d5b4c
MB
2477 devres_add(dev, ptr);
2478 } else {
2479 devres_free(ptr);
2480 }
2481
2482 return ret;
2483}
8caab75f 2484EXPORT_SYMBOL_GPL(devm_spi_register_controller);
666d5b4c 2485
34860089 2486static int __unregister(struct device *dev, void *null)
8ae12a0d 2487{
34860089 2488 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
2489 return 0;
2490}
2491
2492/**
8caab75f
GU
2493 * spi_unregister_controller - unregister SPI master or slave controller
2494 * @ctlr: the controller being unregistered
33e34dc6 2495 * Context: can sleep
8ae12a0d 2496 *
8caab75f 2497 * This call is used only by SPI controller drivers, which are the
8ae12a0d
DB
2498 * only ones directly touching chip registers.
2499 *
2500 * This must be called from context that can sleep.
68b892f1
JH
2501 *
2502 * Note that this function also drops a reference to the controller.
8ae12a0d 2503 */
8caab75f 2504void spi_unregister_controller(struct spi_controller *ctlr)
8ae12a0d 2505{
9b61e302 2506 struct spi_controller *found;
67f7b278 2507 int id = ctlr->bus_num;
89fc9a1a
JG
2508 int dummy;
2509
9b61e302
SM
2510 /* First make sure that this controller was ever added */
2511 mutex_lock(&board_lock);
67f7b278 2512 found = idr_find(&spi_master_idr, id);
9b61e302 2513 mutex_unlock(&board_lock);
8caab75f
GU
2514 if (ctlr->queued) {
2515 if (spi_destroy_queue(ctlr))
2516 dev_err(&ctlr->dev, "queue remove failed\n");
ffbbdd21 2517 }
2b9603a0 2518 mutex_lock(&board_lock);
8caab75f 2519 list_del(&ctlr->list);
2b9603a0
FT
2520 mutex_unlock(&board_lock);
2521
8caab75f
GU
2522 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2523 device_unregister(&ctlr->dev);
9b61e302
SM
2524 /* free bus id */
2525 mutex_lock(&board_lock);
613bd1ea
JN
2526 if (found == ctlr)
2527 idr_remove(&spi_master_idr, id);
9b61e302 2528 mutex_unlock(&board_lock);
8ae12a0d 2529}
8caab75f 2530EXPORT_SYMBOL_GPL(spi_unregister_controller);
8ae12a0d 2531
8caab75f 2532int spi_controller_suspend(struct spi_controller *ctlr)
ffbbdd21
LW
2533{
2534 int ret;
2535
8caab75f
GU
2536 /* Basically no-ops for non-queued controllers */
2537 if (!ctlr->queued)
ffbbdd21
LW
2538 return 0;
2539
8caab75f 2540 ret = spi_stop_queue(ctlr);
ffbbdd21 2541 if (ret)
8caab75f 2542 dev_err(&ctlr->dev, "queue stop failed\n");
ffbbdd21
LW
2543
2544 return ret;
2545}
8caab75f 2546EXPORT_SYMBOL_GPL(spi_controller_suspend);
ffbbdd21 2547
8caab75f 2548int spi_controller_resume(struct spi_controller *ctlr)
ffbbdd21
LW
2549{
2550 int ret;
2551
8caab75f 2552 if (!ctlr->queued)
ffbbdd21
LW
2553 return 0;
2554
8caab75f 2555 ret = spi_start_queue(ctlr);
ffbbdd21 2556 if (ret)
8caab75f 2557 dev_err(&ctlr->dev, "queue restart failed\n");
ffbbdd21
LW
2558
2559 return ret;
2560}
8caab75f 2561EXPORT_SYMBOL_GPL(spi_controller_resume);
ffbbdd21 2562
8caab75f 2563static int __spi_controller_match(struct device *dev, const void *data)
5ed2c832 2564{
8caab75f 2565 struct spi_controller *ctlr;
9f3b795a 2566 const u16 *bus_num = data;
5ed2c832 2567
8caab75f
GU
2568 ctlr = container_of(dev, struct spi_controller, dev);
2569 return ctlr->bus_num == *bus_num;
5ed2c832
DY
2570}
2571
8ae12a0d
DB
2572/**
2573 * spi_busnum_to_master - look up master associated with bus_num
2574 * @bus_num: the master's bus number
33e34dc6 2575 * Context: can sleep
8ae12a0d
DB
2576 *
2577 * This call may be used with devices that are registered after
2578 * arch init time. It returns a refcounted pointer to the relevant
8caab75f 2579 * spi_controller (which the caller must release), or NULL if there is
8ae12a0d 2580 * no such master registered.
97d56dc6
JMC
2581 *
2582 * Return: the SPI master structure on success, else NULL.
8ae12a0d 2583 */
8caab75f 2584struct spi_controller *spi_busnum_to_master(u16 bus_num)
8ae12a0d 2585{
49dce689 2586 struct device *dev;
8caab75f 2587 struct spi_controller *ctlr = NULL;
5ed2c832 2588
695794ae 2589 dev = class_find_device(&spi_master_class, NULL, &bus_num,
8caab75f 2590 __spi_controller_match);
5ed2c832 2591 if (dev)
8caab75f 2592 ctlr = container_of(dev, struct spi_controller, dev);
5ed2c832 2593 /* reference got in class_find_device */
8caab75f 2594 return ctlr;
8ae12a0d
DB
2595}
2596EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2597
d780c371
MS
2598/*-------------------------------------------------------------------------*/
2599
2600/* Core methods for SPI resource management */
2601
2602/**
2603 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2604 * during the processing of a spi_message while using
2605 * spi_transfer_one
2606 * @spi: the spi device for which we allocate memory
2607 * @release: the release code to execute for this resource
2608 * @size: size to alloc and return
2609 * @gfp: GFP allocation flags
2610 *
2611 * Return: the pointer to the allocated data
2612 *
2613 * This may get enhanced in the future to allocate from a memory pool
8caab75f 2614 * of the @spi_device or @spi_controller to avoid repeated allocations.
d780c371
MS
2615 */
2616void *spi_res_alloc(struct spi_device *spi,
2617 spi_res_release_t release,
2618 size_t size, gfp_t gfp)
2619{
2620 struct spi_res *sres;
2621
2622 sres = kzalloc(sizeof(*sres) + size, gfp);
2623 if (!sres)
2624 return NULL;
2625
2626 INIT_LIST_HEAD(&sres->entry);
2627 sres->release = release;
2628
2629 return sres->data;
2630}
2631EXPORT_SYMBOL_GPL(spi_res_alloc);
2632
2633/**
2634 * spi_res_free - free an spi resource
2635 * @res: pointer to the custom data of a resource
2636 *
2637 */
2638void spi_res_free(void *res)
2639{
2640 struct spi_res *sres = container_of(res, struct spi_res, data);
2641
2642 if (!res)
2643 return;
2644
2645 WARN_ON(!list_empty(&sres->entry));
2646 kfree(sres);
2647}
2648EXPORT_SYMBOL_GPL(spi_res_free);
2649
2650/**
2651 * spi_res_add - add a spi_res to the spi_message
2652 * @message: the spi message
2653 * @res: the spi_resource
2654 */
2655void spi_res_add(struct spi_message *message, void *res)
2656{
2657 struct spi_res *sres = container_of(res, struct spi_res, data);
2658
2659 WARN_ON(!list_empty(&sres->entry));
2660 list_add_tail(&sres->entry, &message->resources);
2661}
2662EXPORT_SYMBOL_GPL(spi_res_add);
2663
2664/**
2665 * spi_res_release - release all spi resources for this message
8caab75f 2666 * @ctlr: the @spi_controller
d780c371
MS
2667 * @message: the @spi_message
2668 */
8caab75f 2669void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
d780c371
MS
2670{
2671 struct spi_res *res;
2672
2673 while (!list_empty(&message->resources)) {
2674 res = list_last_entry(&message->resources,
2675 struct spi_res, entry);
2676
2677 if (res->release)
8caab75f 2678 res->release(ctlr, message, res->data);
d780c371
MS
2679
2680 list_del(&res->entry);
2681
2682 kfree(res);
2683 }
2684}
2685EXPORT_SYMBOL_GPL(spi_res_release);
8ae12a0d
DB
2686
2687/*-------------------------------------------------------------------------*/
2688
523baf5a
MS
2689/* Core methods for spi_message alterations */
2690
8caab75f 2691static void __spi_replace_transfers_release(struct spi_controller *ctlr,
523baf5a
MS
2692 struct spi_message *msg,
2693 void *res)
2694{
2695 struct spi_replaced_transfers *rxfer = res;
2696 size_t i;
2697
2698 /* call extra callback if requested */
2699 if (rxfer->release)
8caab75f 2700 rxfer->release(ctlr, msg, res);
523baf5a
MS
2701
2702 /* insert replaced transfers back into the message */
2703 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2704
2705 /* remove the formerly inserted entries */
2706 for (i = 0; i < rxfer->inserted; i++)
2707 list_del(&rxfer->inserted_transfers[i].transfer_list);
2708}
2709
2710/**
2711 * spi_replace_transfers - replace transfers with several transfers
2712 * and register change with spi_message.resources
2713 * @msg: the spi_message we work upon
2714 * @xfer_first: the first spi_transfer we want to replace
2715 * @remove: number of transfers to remove
2716 * @insert: the number of transfers we want to insert instead
2717 * @release: extra release code necessary in some circumstances
2718 * @extradatasize: extra data to allocate (with alignment guarantees
2719 * of struct @spi_transfer)
05885397 2720 * @gfp: gfp flags
523baf5a
MS
2721 *
2722 * Returns: pointer to @spi_replaced_transfers,
2723 * PTR_ERR(...) in case of errors.
2724 */
2725struct spi_replaced_transfers *spi_replace_transfers(
2726 struct spi_message *msg,
2727 struct spi_transfer *xfer_first,
2728 size_t remove,
2729 size_t insert,
2730 spi_replaced_release_t release,
2731 size_t extradatasize,
2732 gfp_t gfp)
2733{
2734 struct spi_replaced_transfers *rxfer;
2735 struct spi_transfer *xfer;
2736 size_t i;
2737
2738 /* allocate the structure using spi_res */
2739 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2740 insert * sizeof(struct spi_transfer)
2741 + sizeof(struct spi_replaced_transfers)
2742 + extradatasize,
2743 gfp);
2744 if (!rxfer)
2745 return ERR_PTR(-ENOMEM);
2746
2747 /* the release code to invoke before running the generic release */
2748 rxfer->release = release;
2749
2750 /* assign extradata */
2751 if (extradatasize)
2752 rxfer->extradata =
2753 &rxfer->inserted_transfers[insert];
2754
2755 /* init the replaced_transfers list */
2756 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2757
2758 /* assign the list_entry after which we should reinsert
2759 * the @replaced_transfers - it may be spi_message.messages!
2760 */
2761 rxfer->replaced_after = xfer_first->transfer_list.prev;
2762
2763 /* remove the requested number of transfers */
2764 for (i = 0; i < remove; i++) {
2765 /* if the entry after replaced_after it is msg->transfers
2766 * then we have been requested to remove more transfers
2767 * than are in the list
2768 */
2769 if (rxfer->replaced_after->next == &msg->transfers) {
2770 dev_err(&msg->spi->dev,
2771 "requested to remove more spi_transfers than are available\n");
2772 /* insert replaced transfers back into the message */
2773 list_splice(&rxfer->replaced_transfers,
2774 rxfer->replaced_after);
2775
2776 /* free the spi_replace_transfer structure */
2777 spi_res_free(rxfer);
2778
2779 /* and return with an error */
2780 return ERR_PTR(-EINVAL);
2781 }
2782
2783 /* remove the entry after replaced_after from list of
2784 * transfers and add it to list of replaced_transfers
2785 */
2786 list_move_tail(rxfer->replaced_after->next,
2787 &rxfer->replaced_transfers);
2788 }
2789
2790 /* create copy of the given xfer with identical settings
2791 * based on the first transfer to get removed
2792 */
2793 for (i = 0; i < insert; i++) {
2794 /* we need to run in reverse order */
2795 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2796
2797 /* copy all spi_transfer data */
2798 memcpy(xfer, xfer_first, sizeof(*xfer));
2799
2800 /* add to list */
2801 list_add(&xfer->transfer_list, rxfer->replaced_after);
2802
2803 /* clear cs_change and delay_usecs for all but the last */
2804 if (i) {
2805 xfer->cs_change = false;
2806 xfer->delay_usecs = 0;
2807 }
2808 }
2809
2810 /* set up inserted */
2811 rxfer->inserted = insert;
2812
2813 /* and register it with spi_res/spi_message */
2814 spi_res_add(msg, rxfer);
2815
2816 return rxfer;
2817}
2818EXPORT_SYMBOL_GPL(spi_replace_transfers);
2819
8caab75f 2820static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
08933418
FE
2821 struct spi_message *msg,
2822 struct spi_transfer **xferp,
2823 size_t maxsize,
2824 gfp_t gfp)
d9f12122
MS
2825{
2826 struct spi_transfer *xfer = *xferp, *xfers;
2827 struct spi_replaced_transfers *srt;
2828 size_t offset;
2829 size_t count, i;
2830
d9f12122
MS
2831 /* calculate how many we have to replace */
2832 count = DIV_ROUND_UP(xfer->len, maxsize);
2833
2834 /* create replacement */
2835 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
657d32ef
DC
2836 if (IS_ERR(srt))
2837 return PTR_ERR(srt);
d9f12122
MS
2838 xfers = srt->inserted_transfers;
2839
2840 /* now handle each of those newly inserted spi_transfers
2841 * note that the replacements spi_transfers all are preset
2842 * to the same values as *xferp, so tx_buf, rx_buf and len
2843 * are all identical (as well as most others)
2844 * so we just have to fix up len and the pointers.
2845 *
2846 * this also includes support for the depreciated
2847 * spi_message.is_dma_mapped interface
2848 */
2849
2850 /* the first transfer just needs the length modified, so we
2851 * run it outside the loop
2852 */
c8dab77a 2853 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
d9f12122
MS
2854
2855 /* all the others need rx_buf/tx_buf also set */
2856 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2857 /* update rx_buf, tx_buf and dma */
2858 if (xfers[i].rx_buf)
2859 xfers[i].rx_buf += offset;
2860 if (xfers[i].rx_dma)
2861 xfers[i].rx_dma += offset;
2862 if (xfers[i].tx_buf)
2863 xfers[i].tx_buf += offset;
2864 if (xfers[i].tx_dma)
2865 xfers[i].tx_dma += offset;
2866
2867 /* update length */
2868 xfers[i].len = min(maxsize, xfers[i].len - offset);
2869 }
2870
2871 /* we set up xferp to the last entry we have inserted,
2872 * so that we skip those already split transfers
2873 */
2874 *xferp = &xfers[count - 1];
2875
2876 /* increment statistics counters */
8caab75f 2877 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
d9f12122
MS
2878 transfers_split_maxsize);
2879 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2880 transfers_split_maxsize);
2881
2882 return 0;
2883}
2884
2885/**
2886 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2887 * when an individual transfer exceeds a
2888 * certain size
8caab75f 2889 * @ctlr: the @spi_controller for this transfer
3700ce95
MI
2890 * @msg: the @spi_message to transform
2891 * @maxsize: the maximum when to apply this
10f11a22 2892 * @gfp: GFP allocation flags
d9f12122
MS
2893 *
2894 * Return: status of transformation
2895 */
8caab75f 2896int spi_split_transfers_maxsize(struct spi_controller *ctlr,
d9f12122
MS
2897 struct spi_message *msg,
2898 size_t maxsize,
2899 gfp_t gfp)
2900{
2901 struct spi_transfer *xfer;
2902 int ret;
2903
2904 /* iterate over the transfer_list,
2905 * but note that xfer is advanced to the last transfer inserted
2906 * to avoid checking sizes again unnecessarily (also xfer does
2907 * potentiall belong to a different list by the time the
2908 * replacement has happened
2909 */
2910 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2911 if (xfer->len > maxsize) {
8caab75f
GU
2912 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2913 maxsize, gfp);
d9f12122
MS
2914 if (ret)
2915 return ret;
2916 }
2917 }
2918
2919 return 0;
2920}
2921EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
8ae12a0d
DB
2922
2923/*-------------------------------------------------------------------------*/
2924
8caab75f 2925/* Core methods for SPI controller protocol drivers. Some of the
7d077197
DB
2926 * other core methods are currently defined as inline functions.
2927 */
2928
8caab75f
GU
2929static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2930 u8 bits_per_word)
63ab645f 2931{
8caab75f 2932 if (ctlr->bits_per_word_mask) {
63ab645f
SB
2933 /* Only 32 bits fit in the mask */
2934 if (bits_per_word > 32)
2935 return -EINVAL;
8caab75f 2936 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
63ab645f
SB
2937 return -EINVAL;
2938 }
2939
2940 return 0;
2941}
2942
7d077197
DB
2943/**
2944 * spi_setup - setup SPI mode and clock rate
2945 * @spi: the device whose settings are being modified
2946 * Context: can sleep, and no requests are queued to the device
2947 *
2948 * SPI protocol drivers may need to update the transfer mode if the
2949 * device doesn't work with its default. They may likewise need
2950 * to update clock rates or word sizes from initial values. This function
2951 * changes those settings, and must be called from a context that can sleep.
2952 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2953 * effect the next time the device is selected and data is transferred to
2954 * or from it. When this function returns, the spi device is deselected.
2955 *
2956 * Note that this call will fail if the protocol driver specifies an option
2957 * that the underlying controller or its driver does not support. For
2958 * example, not all hardware supports wire transfers using nine bit words,
2959 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
2960 *
2961 * Return: zero on success, else a negative error code.
7d077197
DB
2962 */
2963int spi_setup(struct spi_device *spi)
2964{
83596fbe 2965 unsigned bad_bits, ugly_bits;
5ab8d262 2966 int status;
7d077197 2967
f477b7fb 2968 /* check mode to prevent that DUAL and QUAD set at the same time
2969 */
2970 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2971 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2972 dev_err(&spi->dev,
2973 "setup: can not select dual and quad at the same time\n");
2974 return -EINVAL;
2975 }
2976 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2977 */
2978 if ((spi->mode & SPI_3WIRE) && (spi->mode &
6b03061f
YNG
2979 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2980 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
f477b7fb 2981 return -EINVAL;
e7db06b5 2982 /* help drivers fail *cleanly* when they need options
8caab75f 2983 * that aren't supported with their current controller
cbaa62e0
DL
2984 * SPI_CS_WORD has a fallback software implementation,
2985 * so it is ignored here.
e7db06b5 2986 */
cbaa62e0 2987 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
d61ad23c
SS
2988 /* nothing prevents from working with active-high CS in case if it
2989 * is driven by GPIO.
2990 */
2991 if (gpio_is_valid(spi->cs_gpio))
2992 bad_bits &= ~SPI_CS_HIGH;
83596fbe 2993 ugly_bits = bad_bits &
6b03061f
YNG
2994 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2995 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
83596fbe
GU
2996 if (ugly_bits) {
2997 dev_warn(&spi->dev,
2998 "setup: ignoring unsupported mode bits %x\n",
2999 ugly_bits);
3000 spi->mode &= ~ugly_bits;
3001 bad_bits &= ~ugly_bits;
3002 }
e7db06b5 3003 if (bad_bits) {
eb288a1f 3004 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
3005 bad_bits);
3006 return -EINVAL;
3007 }
3008
7d077197
DB
3009 if (!spi->bits_per_word)
3010 spi->bits_per_word = 8;
3011
8caab75f
GU
3012 status = __spi_validate_bits_per_word(spi->controller,
3013 spi->bits_per_word);
5ab8d262
AS
3014 if (status)
3015 return status;
63ab645f 3016
052eb2d4 3017 if (!spi->max_speed_hz)
8caab75f 3018 spi->max_speed_hz = spi->controller->max_speed_hz;
052eb2d4 3019
8caab75f
GU
3020 if (spi->controller->setup)
3021 status = spi->controller->setup(spi);
7d077197 3022
abeedb01
FCJ
3023 spi_set_cs(spi, false);
3024
5fe5f05e 3025 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
3026 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3027 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3028 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3029 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3030 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3031 spi->bits_per_word, spi->max_speed_hz,
3032 status);
3033
3034 return status;
3035}
3036EXPORT_SYMBOL_GPL(spi_setup);
3037
f1ca9992
SK
3038/**
3039 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3040 * @spi: the device that requires specific CS timing configuration
3041 * @setup: CS setup time in terms of clock count
3042 * @hold: CS hold time in terms of clock count
3043 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3044 */
3045void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3046 u8 inactive_dly)
3047{
3048 if (spi->controller->set_cs_timing)
3049 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3050}
3051EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3052
90808738 3053static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e 3054{
8caab75f 3055 struct spi_controller *ctlr = spi->controller;
e6811d1d 3056 struct spi_transfer *xfer;
6ea31293 3057 int w_size;
cf32b71e 3058
24a0013a
MB
3059 if (list_empty(&message->transfers))
3060 return -EINVAL;
24a0013a 3061
cbaa62e0 3062 /* If an SPI controller does not support toggling the CS line on each
71388b21
DL
3063 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3064 * for the CS line, we can emulate the CS-per-word hardware function by
cbaa62e0
DL
3065 * splitting transfers into one-word transfers and ensuring that
3066 * cs_change is set for each transfer.
3067 */
71388b21 3068 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
f3186dd8 3069 spi->cs_gpiod ||
71388b21 3070 gpio_is_valid(spi->cs_gpio))) {
cbaa62e0
DL
3071 size_t maxsize;
3072 int ret;
3073
3074 maxsize = (spi->bits_per_word + 7) / 8;
3075
3076 /* spi_split_transfers_maxsize() requires message->spi */
3077 message->spi = spi;
3078
3079 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3080 GFP_KERNEL);
3081 if (ret)
3082 return ret;
3083
3084 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3085 /* don't change cs_change on the last entry in the list */
3086 if (list_is_last(&xfer->transfer_list, &message->transfers))
3087 break;
3088 xfer->cs_change = 1;
3089 }
3090 }
3091
cf32b71e
ES
3092 /* Half-duplex links include original MicroWire, and ones with
3093 * only one data pin like SPI_3WIRE (switches direction) or where
3094 * either MOSI or MISO is missing. They can also be caused by
3095 * software limitations.
3096 */
8caab75f
GU
3097 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3098 (spi->mode & SPI_3WIRE)) {
3099 unsigned flags = ctlr->flags;
cf32b71e
ES
3100
3101 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3102 if (xfer->rx_buf && xfer->tx_buf)
3103 return -EINVAL;
8caab75f 3104 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
cf32b71e 3105 return -EINVAL;
8caab75f 3106 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
cf32b71e
ES
3107 return -EINVAL;
3108 }
3109 }
3110
e6811d1d 3111 /**
059b8ffe
LD
3112 * Set transfer bits_per_word and max speed as spi device default if
3113 * it is not set for this transfer.
f477b7fb 3114 * Set transfer tx_nbits and rx_nbits as single transfer default
3115 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
b7bb367a
JB
3116 * Ensure transfer word_delay is at least as long as that required by
3117 * device itself.
e6811d1d 3118 */
77e80588 3119 message->frame_length = 0;
e6811d1d 3120 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 3121 message->frame_length += xfer->len;
e6811d1d
LD
3122 if (!xfer->bits_per_word)
3123 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
3124
3125 if (!xfer->speed_hz)
059b8ffe 3126 xfer->speed_hz = spi->max_speed_hz;
a6f87fad 3127
8caab75f
GU
3128 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3129 xfer->speed_hz = ctlr->max_speed_hz;
56ede94a 3130
8caab75f 3131 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
63ab645f 3132 return -EINVAL;
a2fd4f9f 3133
4d94bd21
II
3134 /*
3135 * SPI transfer length should be multiple of SPI word size
3136 * where SPI word size should be power-of-two multiple
3137 */
3138 if (xfer->bits_per_word <= 8)
3139 w_size = 1;
3140 else if (xfer->bits_per_word <= 16)
3141 w_size = 2;
3142 else
3143 w_size = 4;
3144
4d94bd21 3145 /* No partial transfers accepted */
6ea31293 3146 if (xfer->len % w_size)
4d94bd21
II
3147 return -EINVAL;
3148
8caab75f
GU
3149 if (xfer->speed_hz && ctlr->min_speed_hz &&
3150 xfer->speed_hz < ctlr->min_speed_hz)
a2fd4f9f 3151 return -EINVAL;
f477b7fb 3152
3153 if (xfer->tx_buf && !xfer->tx_nbits)
3154 xfer->tx_nbits = SPI_NBITS_SINGLE;
3155 if (xfer->rx_buf && !xfer->rx_nbits)
3156 xfer->rx_nbits = SPI_NBITS_SINGLE;
3157 /* check transfer tx/rx_nbits:
1afd9989
GU
3158 * 1. check the value matches one of single, dual and quad
3159 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 3160 */
db90a441
SP
3161 if (xfer->tx_buf) {
3162 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3163 xfer->tx_nbits != SPI_NBITS_DUAL &&
3164 xfer->tx_nbits != SPI_NBITS_QUAD)
3165 return -EINVAL;
3166 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3167 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3168 return -EINVAL;
3169 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3170 !(spi->mode & SPI_TX_QUAD))
3171 return -EINVAL;
db90a441 3172 }
f477b7fb 3173 /* check transfer rx_nbits */
db90a441
SP
3174 if (xfer->rx_buf) {
3175 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3176 xfer->rx_nbits != SPI_NBITS_DUAL &&
3177 xfer->rx_nbits != SPI_NBITS_QUAD)
3178 return -EINVAL;
3179 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3180 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3181 return -EINVAL;
3182 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3183 !(spi->mode & SPI_RX_QUAD))
3184 return -EINVAL;
db90a441 3185 }
b7bb367a
JB
3186
3187 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3188 xfer->word_delay_usecs = spi->word_delay_usecs;
e6811d1d
LD
3189 }
3190
cf32b71e 3191 message->status = -EINPROGRESS;
90808738
MB
3192
3193 return 0;
3194}
3195
3196static int __spi_async(struct spi_device *spi, struct spi_message *message)
3197{
8caab75f 3198 struct spi_controller *ctlr = spi->controller;
90808738 3199
b5932f5c
BB
3200 /*
3201 * Some controllers do not support doing regular SPI transfers. Return
3202 * ENOTSUPP when this is the case.
3203 */
3204 if (!ctlr->transfer)
3205 return -ENOTSUPP;
3206
90808738
MB
3207 message->spi = spi;
3208
8caab75f 3209 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
eca2ebc7
MS
3210 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3211
90808738
MB
3212 trace_spi_message_submit(message);
3213
8caab75f 3214 return ctlr->transfer(spi, message);
cf32b71e
ES
3215}
3216
568d0697
DB
3217/**
3218 * spi_async - asynchronous SPI transfer
3219 * @spi: device with which data will be exchanged
3220 * @message: describes the data transfers, including completion callback
3221 * Context: any (irqs may be blocked, etc)
3222 *
3223 * This call may be used in_irq and other contexts which can't sleep,
3224 * as well as from task contexts which can sleep.
3225 *
3226 * The completion callback is invoked in a context which can't sleep.
3227 * Before that invocation, the value of message->status is undefined.
3228 * When the callback is issued, message->status holds either zero (to
3229 * indicate complete success) or a negative error code. After that
3230 * callback returns, the driver which issued the transfer request may
3231 * deallocate the associated memory; it's no longer in use by any SPI
3232 * core or controller driver code.
3233 *
3234 * Note that although all messages to a spi_device are handled in
3235 * FIFO order, messages may go to different devices in other orders.
3236 * Some device might be higher priority, or have various "hard" access
3237 * time requirements, for example.
3238 *
3239 * On detection of any fault during the transfer, processing of
3240 * the entire message is aborted, and the device is deselected.
3241 * Until returning from the associated message completion callback,
3242 * no other spi_message queued to that device will be processed.
3243 * (This rule applies equally to all the synchronous transfer calls,
3244 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3245 *
3246 * Return: zero on success, else a negative error code.
568d0697
DB
3247 */
3248int spi_async(struct spi_device *spi, struct spi_message *message)
3249{
8caab75f 3250 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3251 int ret;
3252 unsigned long flags;
568d0697 3253
90808738
MB
3254 ret = __spi_validate(spi, message);
3255 if (ret != 0)
3256 return ret;
3257
8caab75f 3258 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
568d0697 3259
8caab75f 3260 if (ctlr->bus_lock_flag)
cf32b71e
ES
3261 ret = -EBUSY;
3262 else
3263 ret = __spi_async(spi, message);
568d0697 3264
8caab75f 3265 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3266
3267 return ret;
568d0697
DB
3268}
3269EXPORT_SYMBOL_GPL(spi_async);
3270
cf32b71e
ES
3271/**
3272 * spi_async_locked - version of spi_async with exclusive bus usage
3273 * @spi: device with which data will be exchanged
3274 * @message: describes the data transfers, including completion callback
3275 * Context: any (irqs may be blocked, etc)
3276 *
3277 * This call may be used in_irq and other contexts which can't sleep,
3278 * as well as from task contexts which can sleep.
3279 *
3280 * The completion callback is invoked in a context which can't sleep.
3281 * Before that invocation, the value of message->status is undefined.
3282 * When the callback is issued, message->status holds either zero (to
3283 * indicate complete success) or a negative error code. After that
3284 * callback returns, the driver which issued the transfer request may
3285 * deallocate the associated memory; it's no longer in use by any SPI
3286 * core or controller driver code.
3287 *
3288 * Note that although all messages to a spi_device are handled in
3289 * FIFO order, messages may go to different devices in other orders.
3290 * Some device might be higher priority, or have various "hard" access
3291 * time requirements, for example.
3292 *
3293 * On detection of any fault during the transfer, processing of
3294 * the entire message is aborted, and the device is deselected.
3295 * Until returning from the associated message completion callback,
3296 * no other spi_message queued to that device will be processed.
3297 * (This rule applies equally to all the synchronous transfer calls,
3298 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3299 *
3300 * Return: zero on success, else a negative error code.
cf32b71e
ES
3301 */
3302int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3303{
8caab75f 3304 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3305 int ret;
3306 unsigned long flags;
3307
90808738
MB
3308 ret = __spi_validate(spi, message);
3309 if (ret != 0)
3310 return ret;
3311
8caab75f 3312 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3313
3314 ret = __spi_async(spi, message);
3315
8caab75f 3316 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3317
3318 return ret;
3319
3320}
3321EXPORT_SYMBOL_GPL(spi_async_locked);
3322
7d077197
DB
3323/*-------------------------------------------------------------------------*/
3324
8caab75f 3325/* Utility methods for SPI protocol drivers, layered on
7d077197
DB
3326 * top of the core. Some other utility methods are defined as
3327 * inline functions.
3328 */
3329
5d870c8e
AM
3330static void spi_complete(void *arg)
3331{
3332 complete(arg);
3333}
3334
ef4d96ec 3335static int __spi_sync(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
3336{
3337 DECLARE_COMPLETION_ONSTACK(done);
3338 int status;
8caab75f 3339 struct spi_controller *ctlr = spi->controller;
0461a414
MB
3340 unsigned long flags;
3341
3342 status = __spi_validate(spi, message);
3343 if (status != 0)
3344 return status;
cf32b71e
ES
3345
3346 message->complete = spi_complete;
3347 message->context = &done;
0461a414 3348 message->spi = spi;
cf32b71e 3349
8caab75f 3350 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
eca2ebc7
MS
3351 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3352
0461a414
MB
3353 /* If we're not using the legacy transfer method then we will
3354 * try to transfer in the calling context so special case.
3355 * This code would be less tricky if we could remove the
3356 * support for driver implemented message queues.
3357 */
8caab75f
GU
3358 if (ctlr->transfer == spi_queued_transfer) {
3359 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3360
3361 trace_spi_message_submit(message);
3362
3363 status = __spi_queued_transfer(spi, message, false);
3364
8caab75f 3365 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3366 } else {
3367 status = spi_async_locked(spi, message);
3368 }
cf32b71e 3369
cf32b71e 3370 if (status == 0) {
0461a414
MB
3371 /* Push out the messages in the calling context if we
3372 * can.
3373 */
8caab75f
GU
3374 if (ctlr->transfer == spi_queued_transfer) {
3375 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
eca2ebc7
MS
3376 spi_sync_immediate);
3377 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3378 spi_sync_immediate);
8caab75f 3379 __spi_pump_messages(ctlr, false);
eca2ebc7 3380 }
0461a414 3381
cf32b71e
ES
3382 wait_for_completion(&done);
3383 status = message->status;
3384 }
3385 message->context = NULL;
3386 return status;
3387}
3388
8ae12a0d
DB
3389/**
3390 * spi_sync - blocking/synchronous SPI data transfers
3391 * @spi: device with which data will be exchanged
3392 * @message: describes the data transfers
33e34dc6 3393 * Context: can sleep
8ae12a0d
DB
3394 *
3395 * This call may only be used from a context that may sleep. The sleep
3396 * is non-interruptible, and has no timeout. Low-overhead controller
3397 * drivers may DMA directly into and out of the message buffers.
3398 *
3399 * Note that the SPI device's chip select is active during the message,
3400 * and then is normally disabled between messages. Drivers for some
3401 * frequently-used devices may want to minimize costs of selecting a chip,
3402 * by leaving it selected in anticipation that the next message will go
3403 * to the same chip. (That may increase power usage.)
3404 *
0c868461
DB
3405 * Also, the caller is guaranteeing that the memory associated with the
3406 * message will not be freed before this call returns.
3407 *
97d56dc6 3408 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3409 */
3410int spi_sync(struct spi_device *spi, struct spi_message *message)
3411{
ef4d96ec
MB
3412 int ret;
3413
8caab75f 3414 mutex_lock(&spi->controller->bus_lock_mutex);
ef4d96ec 3415 ret = __spi_sync(spi, message);
8caab75f 3416 mutex_unlock(&spi->controller->bus_lock_mutex);
ef4d96ec
MB
3417
3418 return ret;
8ae12a0d
DB
3419}
3420EXPORT_SYMBOL_GPL(spi_sync);
3421
cf32b71e
ES
3422/**
3423 * spi_sync_locked - version of spi_sync with exclusive bus usage
3424 * @spi: device with which data will be exchanged
3425 * @message: describes the data transfers
3426 * Context: can sleep
3427 *
3428 * This call may only be used from a context that may sleep. The sleep
3429 * is non-interruptible, and has no timeout. Low-overhead controller
3430 * drivers may DMA directly into and out of the message buffers.
3431 *
3432 * This call should be used by drivers that require exclusive access to the
25985edc 3433 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
3434 * be released by a spi_bus_unlock call when the exclusive access is over.
3435 *
97d56dc6 3436 * Return: zero on success, else a negative error code.
cf32b71e
ES
3437 */
3438int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3439{
ef4d96ec 3440 return __spi_sync(spi, message);
cf32b71e
ES
3441}
3442EXPORT_SYMBOL_GPL(spi_sync_locked);
3443
3444/**
3445 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
8caab75f 3446 * @ctlr: SPI bus master that should be locked for exclusive bus access
cf32b71e
ES
3447 * Context: can sleep
3448 *
3449 * This call may only be used from a context that may sleep. The sleep
3450 * is non-interruptible, and has no timeout.
3451 *
3452 * This call should be used by drivers that require exclusive access to the
3453 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3454 * exclusive access is over. Data transfer must be done by spi_sync_locked
3455 * and spi_async_locked calls when the SPI bus lock is held.
3456 *
97d56dc6 3457 * Return: always zero.
cf32b71e 3458 */
8caab75f 3459int spi_bus_lock(struct spi_controller *ctlr)
cf32b71e
ES
3460{
3461 unsigned long flags;
3462
8caab75f 3463 mutex_lock(&ctlr->bus_lock_mutex);
cf32b71e 3464
8caab75f
GU
3465 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3466 ctlr->bus_lock_flag = 1;
3467 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3468
3469 /* mutex remains locked until spi_bus_unlock is called */
3470
3471 return 0;
3472}
3473EXPORT_SYMBOL_GPL(spi_bus_lock);
3474
3475/**
3476 * spi_bus_unlock - release the lock for exclusive SPI bus usage
8caab75f 3477 * @ctlr: SPI bus master that was locked for exclusive bus access
cf32b71e
ES
3478 * Context: can sleep
3479 *
3480 * This call may only be used from a context that may sleep. The sleep
3481 * is non-interruptible, and has no timeout.
3482 *
3483 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3484 * call.
3485 *
97d56dc6 3486 * Return: always zero.
cf32b71e 3487 */
8caab75f 3488int spi_bus_unlock(struct spi_controller *ctlr)
cf32b71e 3489{
8caab75f 3490 ctlr->bus_lock_flag = 0;
cf32b71e 3491
8caab75f 3492 mutex_unlock(&ctlr->bus_lock_mutex);
cf32b71e
ES
3493
3494 return 0;
3495}
3496EXPORT_SYMBOL_GPL(spi_bus_unlock);
3497
a9948b61 3498/* portable code must never pass more than 32 bytes */
5fe5f05e 3499#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
3500
3501static u8 *buf;
3502
3503/**
3504 * spi_write_then_read - SPI synchronous write followed by read
3505 * @spi: device with which data will be exchanged
3506 * @txbuf: data to be written (need not be dma-safe)
3507 * @n_tx: size of txbuf, in bytes
27570497
JP
3508 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3509 * @n_rx: size of rxbuf, in bytes
33e34dc6 3510 * Context: can sleep
8ae12a0d
DB
3511 *
3512 * This performs a half duplex MicroWire style transaction with the
3513 * device, sending txbuf and then reading rxbuf. The return value
3514 * is zero for success, else a negative errno status code.
b885244e 3515 * This call may only be used from a context that may sleep.
8ae12a0d 3516 *
0c868461 3517 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
3518 * portable code should never use this for more than 32 bytes.
3519 * Performance-sensitive or bulk transfer code should instead use
0c868461 3520 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
3521 *
3522 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3523 */
3524int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
3525 const void *txbuf, unsigned n_tx,
3526 void *rxbuf, unsigned n_rx)
8ae12a0d 3527{
068f4070 3528 static DEFINE_MUTEX(lock);
8ae12a0d
DB
3529
3530 int status;
3531 struct spi_message message;
bdff549e 3532 struct spi_transfer x[2];
8ae12a0d
DB
3533 u8 *local_buf;
3534
b3a223ee
MB
3535 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3536 * copying here, (as a pure convenience thing), but we can
3537 * keep heap costs out of the hot path unless someone else is
3538 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 3539 */
b3a223ee 3540 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
3541 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3542 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
3543 if (!local_buf)
3544 return -ENOMEM;
3545 } else {
3546 local_buf = buf;
3547 }
8ae12a0d 3548
8275c642 3549 spi_message_init(&message);
5fe5f05e 3550 memset(x, 0, sizeof(x));
bdff549e
DB
3551 if (n_tx) {
3552 x[0].len = n_tx;
3553 spi_message_add_tail(&x[0], &message);
3554 }
3555 if (n_rx) {
3556 x[1].len = n_rx;
3557 spi_message_add_tail(&x[1], &message);
3558 }
8275c642 3559
8ae12a0d 3560 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
3561 x[0].tx_buf = local_buf;
3562 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
3563
3564 /* do the i/o */
8ae12a0d 3565 status = spi_sync(spi, &message);
9b938b74 3566 if (status == 0)
bdff549e 3567 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 3568
bdff549e 3569 if (x[0].tx_buf == buf)
068f4070 3570 mutex_unlock(&lock);
8ae12a0d
DB
3571 else
3572 kfree(local_buf);
3573
3574 return status;
3575}
3576EXPORT_SYMBOL_GPL(spi_write_then_read);
3577
3578/*-------------------------------------------------------------------------*/
3579
5f143af7 3580#if IS_ENABLED(CONFIG_OF)
ce79d54a
PA
3581static int __spi_of_device_match(struct device *dev, void *data)
3582{
3583 return dev->of_node == data;
3584}
3585
3586/* must call put_device() when done with returned spi_device device */
5f143af7 3587struct spi_device *of_find_spi_device_by_node(struct device_node *node)
ce79d54a
PA
3588{
3589 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3590 __spi_of_device_match);
3591 return dev ? to_spi_device(dev) : NULL;
3592}
5f143af7
MF
3593EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3594#endif /* IS_ENABLED(CONFIG_OF) */
ce79d54a 3595
5f143af7 3596#if IS_ENABLED(CONFIG_OF_DYNAMIC)
8caab75f 3597static int __spi_of_controller_match(struct device *dev, const void *data)
ce79d54a
PA
3598{
3599 return dev->of_node == data;
3600}
3601
8caab75f
GU
3602/* the spi controllers are not using spi_bus, so we find it with another way */
3603static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
ce79d54a
PA
3604{
3605 struct device *dev;
3606
3607 dev = class_find_device(&spi_master_class, NULL, node,
8caab75f 3608 __spi_of_controller_match);
6c364062
GU
3609 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3610 dev = class_find_device(&spi_slave_class, NULL, node,
8caab75f 3611 __spi_of_controller_match);
ce79d54a
PA
3612 if (!dev)
3613 return NULL;
3614
3615 /* reference got in class_find_device */
8caab75f 3616 return container_of(dev, struct spi_controller, dev);
ce79d54a
PA
3617}
3618
3619static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3620 void *arg)
3621{
3622 struct of_reconfig_data *rd = arg;
8caab75f 3623 struct spi_controller *ctlr;
ce79d54a
PA
3624 struct spi_device *spi;
3625
3626 switch (of_reconfig_get_state_change(action, arg)) {
3627 case OF_RECONFIG_CHANGE_ADD:
8caab75f
GU
3628 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3629 if (ctlr == NULL)
ce79d54a
PA
3630 return NOTIFY_OK; /* not for us */
3631
bd6c1644 3632 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
8caab75f 3633 put_device(&ctlr->dev);
bd6c1644
GU
3634 return NOTIFY_OK;
3635 }
3636
8caab75f
GU
3637 spi = of_register_spi_device(ctlr, rd->dn);
3638 put_device(&ctlr->dev);
ce79d54a
PA
3639
3640 if (IS_ERR(spi)) {
25c56c88
RH
3641 pr_err("%s: failed to create for '%pOF'\n",
3642 __func__, rd->dn);
e0af98a7 3643 of_node_clear_flag(rd->dn, OF_POPULATED);
ce79d54a
PA
3644 return notifier_from_errno(PTR_ERR(spi));
3645 }
3646 break;
3647
3648 case OF_RECONFIG_CHANGE_REMOVE:
bd6c1644
GU
3649 /* already depopulated? */
3650 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3651 return NOTIFY_OK;
3652
ce79d54a
PA
3653 /* find our device by node */
3654 spi = of_find_spi_device_by_node(rd->dn);
3655 if (spi == NULL)
3656 return NOTIFY_OK; /* no? not meant for us */
3657
3658 /* unregister takes one ref away */
3659 spi_unregister_device(spi);
3660
3661 /* and put the reference of the find */
3662 put_device(&spi->dev);
3663 break;
3664 }
3665
3666 return NOTIFY_OK;
3667}
3668
3669static struct notifier_block spi_of_notifier = {
3670 .notifier_call = of_spi_notify,
3671};
3672#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3673extern struct notifier_block spi_of_notifier;
3674#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3675
7f24467f 3676#if IS_ENABLED(CONFIG_ACPI)
8caab75f 3677static int spi_acpi_controller_match(struct device *dev, const void *data)
7f24467f
OP
3678{
3679 return ACPI_COMPANION(dev->parent) == data;
3680}
3681
3682static int spi_acpi_device_match(struct device *dev, void *data)
3683{
3684 return ACPI_COMPANION(dev) == data;
3685}
3686
8caab75f 3687static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
7f24467f
OP
3688{
3689 struct device *dev;
3690
3691 dev = class_find_device(&spi_master_class, NULL, adev,
8caab75f 3692 spi_acpi_controller_match);
6c364062
GU
3693 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3694 dev = class_find_device(&spi_slave_class, NULL, adev,
8caab75f 3695 spi_acpi_controller_match);
7f24467f
OP
3696 if (!dev)
3697 return NULL;
3698
8caab75f 3699 return container_of(dev, struct spi_controller, dev);
7f24467f
OP
3700}
3701
3702static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3703{
3704 struct device *dev;
3705
3706 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3707
3708 return dev ? to_spi_device(dev) : NULL;
3709}
3710
3711static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3712 void *arg)
3713{
3714 struct acpi_device *adev = arg;
8caab75f 3715 struct spi_controller *ctlr;
7f24467f
OP
3716 struct spi_device *spi;
3717
3718 switch (value) {
3719 case ACPI_RECONFIG_DEVICE_ADD:
8caab75f
GU
3720 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3721 if (!ctlr)
7f24467f
OP
3722 break;
3723
8caab75f
GU
3724 acpi_register_spi_device(ctlr, adev);
3725 put_device(&ctlr->dev);
7f24467f
OP
3726 break;
3727 case ACPI_RECONFIG_DEVICE_REMOVE:
3728 if (!acpi_device_enumerated(adev))
3729 break;
3730
3731 spi = acpi_spi_find_device_by_adev(adev);
3732 if (!spi)
3733 break;
3734
3735 spi_unregister_device(spi);
3736 put_device(&spi->dev);
3737 break;
3738 }
3739
3740 return NOTIFY_OK;
3741}
3742
3743static struct notifier_block spi_acpi_notifier = {
3744 .notifier_call = acpi_spi_notify,
3745};
3746#else
3747extern struct notifier_block spi_acpi_notifier;
3748#endif
3749
8ae12a0d
DB
3750static int __init spi_init(void)
3751{
b885244e
DB
3752 int status;
3753
e94b1766 3754 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
3755 if (!buf) {
3756 status = -ENOMEM;
3757 goto err0;
3758 }
3759
3760 status = bus_register(&spi_bus_type);
3761 if (status < 0)
3762 goto err1;
8ae12a0d 3763
b885244e
DB
3764 status = class_register(&spi_master_class);
3765 if (status < 0)
3766 goto err2;
ce79d54a 3767
6c364062
GU
3768 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3769 status = class_register(&spi_slave_class);
3770 if (status < 0)
3771 goto err3;
3772 }
3773
5267720e 3774 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a 3775 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
7f24467f
OP
3776 if (IS_ENABLED(CONFIG_ACPI))
3777 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
ce79d54a 3778
8ae12a0d 3779 return 0;
b885244e 3780
6c364062
GU
3781err3:
3782 class_unregister(&spi_master_class);
b885244e
DB
3783err2:
3784 bus_unregister(&spi_bus_type);
3785err1:
3786 kfree(buf);
3787 buf = NULL;
3788err0:
3789 return status;
8ae12a0d 3790}
b885244e 3791
8ae12a0d
DB
3792/* board_info is normally registered in arch_initcall(),
3793 * but even essential drivers wait till later
b885244e
DB
3794 *
3795 * REVISIT only boardinfo really needs static linking. the rest (device and
3796 * driver registration) _could_ be dynamically linked (modular) ... costs
3797 * include needing to have boardinfo data structures be much more public.
8ae12a0d 3798 */
673c0c00 3799postcore_initcall(spi_init);