]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: gpio: Don't request CS GPIO in DT use-case
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
b445bfcb 1// SPDX-License-Identifier: GPL-2.0-or-later
787f4889
MB
2// SPI init/core code
3//
4// Copyright (C) 2005 David Brownell
5// Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d 6
8ae12a0d
DB
7#include <linux/kernel.h>
8#include <linux/device.h>
9#include <linux/init.h>
10#include <linux/cache.h>
99adef31
MB
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
94040828 13#include <linux/mutex.h>
2b7a32f7 14#include <linux/of_device.h>
d57a4282 15#include <linux/of_irq.h>
86be408b 16#include <linux/clk/clk-conf.h>
5a0e3ad6 17#include <linux/slab.h>
e0626e38 18#include <linux/mod_devicetable.h>
8ae12a0d 19#include <linux/spi/spi.h>
b5932f5c 20#include <linux/spi/spi-mem.h>
74317984 21#include <linux/of_gpio.h>
f3186dd8 22#include <linux/gpio/consumer.h>
3ae22e8c 23#include <linux/pm_runtime.h>
f48c767c 24#include <linux/pm_domain.h>
826cf175 25#include <linux/property.h>
025ed130 26#include <linux/export.h>
8bd75c77 27#include <linux/sched/rt.h>
ae7e81c0 28#include <uapi/linux/sched/types.h>
ffbbdd21
LW
29#include <linux/delay.h>
30#include <linux/kthread.h>
64bee4d2
MW
31#include <linux/ioport.h>
32#include <linux/acpi.h>
b1b8153c 33#include <linux/highmem.h>
9b61e302 34#include <linux/idr.h>
8a2e487e 35#include <linux/platform_data/x86/apple.h>
8ae12a0d 36
56ec1978
MB
37#define CREATE_TRACE_POINTS
38#include <trace/events/spi.h>
ca1438dc
AB
39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
9b61e302 41
46336966
BB
42#include "internals.h"
43
9b61e302 44static DEFINE_IDR(spi_master_idr);
56ec1978 45
8ae12a0d
DB
46static void spidev_release(struct device *dev)
47{
0ffa0285 48 struct spi_device *spi = to_spi_device(dev);
8ae12a0d 49
8caab75f
GU
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
8ae12a0d 53
8caab75f 54 spi_controller_put(spi->controller);
5039563e 55 kfree(spi->driver_override);
07a389fe 56 kfree(spi);
8ae12a0d
DB
57}
58
59static ssize_t
60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61{
62 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
8ae12a0d 68
d8e328b3 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 70}
aa7da564 71static DEVICE_ATTR_RO(modalias);
8ae12a0d 72
5039563e
TP
73static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76{
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103}
104
105static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107{
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115}
116static DEVICE_ATTR_RW(driver_override);
117
eca2ebc7 118#define SPI_STATISTICS_ATTRS(field, file) \
8caab75f
GU
119static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
eca2ebc7 122{ \
8caab75f
GU
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
eca2ebc7 126} \
8caab75f 127static struct device_attribute dev_attr_spi_controller_##field = { \
ad25c92e 128 .attr = { .name = file, .mode = 0444 }, \
8caab75f 129 .show = spi_controller_##field##_show, \
eca2ebc7
MS
130}; \
131static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134{ \
d1eba93b 135 struct spi_device *spi = to_spi_device(dev); \
eca2ebc7
MS
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137} \
138static struct device_attribute dev_attr_spi_device_##field = { \
ad25c92e 139 .attr = { .name = file, .mode = 0444 }, \
eca2ebc7
MS
140 .show = spi_device_##field##_show, \
141}
142
143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146{ \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153} \
154SPI_STATISTICS_ATTRS(name, file)
155
156#define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160SPI_STATISTICS_SHOW(messages, "%lu");
161SPI_STATISTICS_SHOW(transfers, "%lu");
162SPI_STATISTICS_SHOW(errors, "%lu");
163SPI_STATISTICS_SHOW(timedout, "%lu");
164
165SPI_STATISTICS_SHOW(spi_sync, "%lu");
166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169SPI_STATISTICS_SHOW(bytes, "%llu");
170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
6b7bc061
MS
173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
d9f12122
MS
195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
aa7da564
GKH
197static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
5039563e 199 &dev_attr_driver_override.attr,
aa7da564 200 NULL,
8ae12a0d 201};
eca2ebc7
MS
202
203static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205};
206
207static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
d9f12122 235 &dev_attr_spi_device_transfers_split_maxsize.attr,
eca2ebc7
MS
236 NULL,
237};
238
239static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242};
243
244static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248};
249
8caab75f
GU
250static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
eca2ebc7
MS
279 NULL,
280};
281
8caab75f 282static const struct attribute_group spi_controller_statistics_group = {
eca2ebc7 283 .name = "statistics",
8caab75f 284 .attrs = spi_controller_statistics_attrs,
eca2ebc7
MS
285};
286
287static const struct attribute_group *spi_master_groups[] = {
8caab75f 288 &spi_controller_statistics_group,
eca2ebc7
MS
289 NULL,
290};
291
292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
8caab75f 294 struct spi_controller *ctlr)
eca2ebc7
MS
295{
296 unsigned long flags;
6b7bc061
MS
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
eca2ebc7
MS
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
6b7bc061 305 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
8caab75f 309 (xfer->tx_buf != ctlr->dummy_tx))
eca2ebc7
MS
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
8caab75f 312 (xfer->rx_buf != ctlr->dummy_rx))
eca2ebc7
MS
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316}
317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
318
319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
75368bf6
AV
323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325{
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332}
333
334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335{
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339}
340EXPORT_SYMBOL_GPL(spi_get_device_id);
341
8ae12a0d
DB
342static int spi_match_device(struct device *dev, struct device_driver *drv)
343{
344 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
5039563e
TP
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
2b7a32f7
SA
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
64bee4d2
MW
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
75368bf6
AV
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 361
35f74fca 362 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
363}
364
7eff2e7a 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
366{
367 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
8ae12a0d 373
2856670f 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
375}
376
8ae12a0d
DB
377struct bus_type spi_bus_type = {
378 .name = "spi",
aa7da564 379 .dev_groups = spi_dev_groups,
8ae12a0d
DB
380 .match = spi_match_device,
381 .uevent = spi_uevent,
8ae12a0d
DB
382};
383EXPORT_SYMBOL_GPL(spi_bus_type);
384
b885244e
DB
385
386static int spi_drv_probe(struct device *dev)
387{
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 389 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
390 int ret;
391
86be408b
SN
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
44af7927
JH
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
676e7c25 404 ret = dev_pm_domain_attach(dev, true);
71f277a7
UH
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
b885244e 411
33cf00e5 412 return ret;
b885244e
DB
413}
414
415static int spi_drv_remove(struct device *dev)
416{
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
418 int ret;
419
aec35f4e 420 ret = sdrv->remove(to_spi_device(dev));
676e7c25 421 dev_pm_domain_detach(dev, true);
b885244e 422
33cf00e5 423 return ret;
b885244e
DB
424}
425
426static void spi_drv_shutdown(struct device *dev)
427{
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431}
432
33e34dc6 433/**
ca5d2485 434 * __spi_register_driver - register a SPI driver
88c9321d 435 * @owner: owner module of the driver to register
33e34dc6
DB
436 * @sdrv: the driver to register
437 * Context: can sleep
97d56dc6
JMC
438 *
439 * Return: zero on success, else a negative error code.
33e34dc6 440 */
ca5d2485 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 442{
ca5d2485 443 sdrv->driver.owner = owner;
b885244e
DB
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452}
ca5d2485 453EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 454
8ae12a0d
DB
455/*-------------------------------------------------------------------------*/
456
457/* SPI devices should normally not be created by SPI device drivers; that
8caab75f 458 * would make them board-specific. Similarly with SPI controller drivers.
8ae12a0d
DB
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463struct boardinfo {
464 struct list_head list;
2b9603a0 465 struct spi_board_info board_info;
8ae12a0d
DB
466};
467
468static LIST_HEAD(board_list);
8caab75f 469static LIST_HEAD(spi_controller_list);
2b9603a0
FT
470
471/*
472 * Used to protect add/del opertion for board_info list and
8caab75f 473 * spi_controller list, and their matching process
9a9a047a 474 * also used to protect object of type struct idr
2b9603a0 475 */
94040828 476static DEFINE_MUTEX(board_lock);
8ae12a0d 477
dc87c98e
GL
478/**
479 * spi_alloc_device - Allocate a new SPI device
8caab75f 480 * @ctlr: Controller to which device is connected
dc87c98e
GL
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
8caab75f 489 * spi_device structure to add it to the SPI controller. If the caller
dc87c98e
GL
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
97d56dc6 493 * Return: a pointer to the new device, or NULL.
dc87c98e 494 */
8caab75f 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
dc87c98e
GL
496{
497 struct spi_device *spi;
dc87c98e 498
8caab75f 499 if (!spi_controller_get(ctlr))
dc87c98e
GL
500 return NULL;
501
5fe5f05e 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 503 if (!spi) {
8caab75f 504 spi_controller_put(ctlr);
dc87c98e
GL
505 return NULL;
506 }
507
8caab75f
GU
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
dc87c98e
GL
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
446411e1 512 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
513
514 spin_lock_init(&spi->statistics.lock);
515
dc87c98e
GL
516 device_initialize(&spi->dev);
517 return spi;
518}
519EXPORT_SYMBOL_GPL(spi_alloc_device);
520
e13ac47b
JN
521static void spi_dev_set_name(struct spi_device *spi)
522{
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
8caab75f 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
e13ac47b
JN
531 spi->chip_select);
532}
533
b6fb8d3a
MW
534static int spi_dev_check(struct device *dev, void *data)
535{
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
8caab75f 539 if (spi->controller == new_spi->controller &&
b6fb8d3a
MW
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543}
544
dc87c98e
GL
545/**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
97d56dc6 552 * Return: 0 on success; negative errno on failure
dc87c98e
GL
553 */
554int spi_add_device(struct spi_device *spi)
555{
e48880e0 556 static DEFINE_MUTEX(spi_add_lock);
8caab75f
GU
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
dc87c98e
GL
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
8caab75f
GU
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
dc87c98e
GL
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
e13ac47b 569 spi_dev_set_name(spi);
e48880e0
DB
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
b6fb8d3a
MW
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
e48880e0
DB
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
e48880e0
DB
581 goto done;
582 }
583
f3186dd8
LW
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
8caab75f 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
74317984 589
e48880e0
DB
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
7d077197 594 status = spi_setup(spi);
dc87c98e 595 if (status < 0) {
eb288a1f
LW
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
e48880e0 598 goto done;
dc87c98e
GL
599 }
600
e48880e0 601 /* Device may be bound to an active driver when this returns */
dc87c98e 602 status = device_add(&spi->dev);
e48880e0 603 if (status < 0)
eb288a1f
LW
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
e48880e0 606 else
35f74fca 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 608
e48880e0
DB
609done:
610 mutex_unlock(&spi_add_lock);
611 return status;
dc87c98e
GL
612}
613EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 614
33e34dc6
DB
615/**
616 * spi_new_device - instantiate one new SPI device
8caab75f 617 * @ctlr: Controller to which device is connected
33e34dc6
DB
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
082c8cb4 626 *
97d56dc6 627 * Return: the new device, or NULL.
8ae12a0d 628 */
8caab75f 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
e9d5a461 630 struct spi_board_info *chip)
8ae12a0d
DB
631{
632 struct spi_device *proxy;
8ae12a0d
DB
633 int status;
634
082c8cb4
DB
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
8caab75f 642 proxy = spi_alloc_device(ctlr);
dc87c98e 643 if (!proxy)
8ae12a0d
DB
644 return NULL;
645
102eb975
GL
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
8ae12a0d
DB
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 650 proxy->mode = chip->mode;
8ae12a0d 651 proxy->irq = chip->irq;
102eb975 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
8ae12a0d 656
826cf175
DT
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
8caab75f 660 dev_err(&ctlr->dev,
826cf175
DT
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
8ae12a0d
DB
665 }
666
826cf175
DT
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
8ae12a0d 671 return proxy;
826cf175
DT
672
673err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
8ae12a0d
DB
679}
680EXPORT_SYMBOL_GPL(spi_new_device);
681
3b1884c2
GU
682/**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
8caab75f 687 * by spi_unregister_controller().
3b1884c2
GU
688 */
689void spi_unregister_device(struct spi_device *spi)
690{
bd6c1644
GU
691 if (!spi)
692 return;
693
8324147f 694 if (spi->dev.of_node) {
bd6c1644 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
8324147f
JH
696 of_node_put(spi->dev.of_node);
697 }
7f24467f
OP
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
bd6c1644 700 device_unregister(&spi->dev);
3b1884c2
GU
701}
702EXPORT_SYMBOL_GPL(spi_unregister_device);
703
8caab75f
GU
704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
2b9603a0
FT
706{
707 struct spi_device *dev;
708
8caab75f 709 if (ctlr->bus_num != bi->bus_num)
2b9603a0
FT
710 return;
711
8caab75f 712 dev = spi_new_device(ctlr, bi);
2b9603a0 713 if (!dev)
8caab75f 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
2b9603a0
FT
715 bi->modalias);
716}
717
33e34dc6
DB
718/**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
8ae12a0d
DB
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
826cf175 736 * Device properties are deep-copied though.
97d56dc6
JMC
737 *
738 * Return: zero on success, else a negative error code.
8ae12a0d 739 */
fd4a319b 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 741{
2b9603a0
FT
742 struct boardinfo *bi;
743 int i;
8ae12a0d 744
c7908a37 745 if (!n)
f974cf57 746 return 0;
c7908a37 747
f9bdb7fd 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
749 if (!bi)
750 return -ENOMEM;
8ae12a0d 751
2b9603a0 752 for (i = 0; i < n; i++, bi++, info++) {
8caab75f 753 struct spi_controller *ctlr;
8ae12a0d 754
2b9603a0 755 memcpy(&bi->board_info, info, sizeof(*info));
826cf175
DT
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
2b9603a0
FT
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
8caab75f
GU
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
2b9603a0 768 mutex_unlock(&board_lock);
8ae12a0d 769 }
2b9603a0
FT
770
771 return 0;
8ae12a0d
DB
772}
773
774/*-------------------------------------------------------------------------*/
775
b158935f
MB
776static void spi_set_cs(struct spi_device *spi, bool enable)
777{
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
f3186dd8
LW
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
28f7604f
FF
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
f3186dd8 793 else
28f7604f 794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
f3186dd8 795 }
8eee6b9d 796 /* Some SPI masters need both GPIO CS & slave_select */
8caab75f
GU
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
8eee6b9d 802 }
b158935f
MB
803}
804
2de440f5 805#ifdef CONFIG_HAS_DMA
46336966
BB
806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
6ad45a27
MB
809{
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
df88e91b 811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
b1b8153c
V
812#ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816#else
817 const bool kmap_buf = false;
818#endif
65598c13
AG
819 int desc_len;
820 int sgs;
6ad45a27 821 struct page *vm_page;
8dd4a016 822 struct scatterlist *sg;
6ad45a27
MB
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
b1b8153c 827 if (vmalloced_buf || kmap_buf) {
df88e91b 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
65598c13 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
0569a88f 830 } else if (virt_addr_valid(buf)) {
8caab75f 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
65598c13 832 sgs = DIV_ROUND_UP(len, desc_len);
0569a88f
V
833 } else {
834 return -EINVAL;
65598c13
AG
835 }
836
6ad45a27
MB
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
8dd4a016 841 sg = &sgt->sgl[0];
6ad45a27 842 for (i = 0; i < sgs; i++) {
6ad45a27 843
b1b8153c 844 if (vmalloced_buf || kmap_buf) {
ce99319a
MC
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
b1b8153c
V
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
6ad45a27
MB
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
8dd4a016 861 sg_set_page(sg, vm_page,
c1aefbdd 862 min, offset_in_page(buf));
6ad45a27 863 } else {
65598c13 864 min = min_t(size_t, len, desc_len);
6ad45a27 865 sg_buf = buf;
8dd4a016 866 sg_set_buf(sg, sg_buf, min);
6ad45a27
MB
867 }
868
6ad45a27
MB
869 buf += min;
870 len -= min;
8dd4a016 871 sg = sg_next(sg);
6ad45a27
MB
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
875 if (!ret)
876 ret = -ENOMEM;
6ad45a27
MB
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885}
886
46336966
BB
887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
6ad45a27
MB
889{
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894}
895
8caab75f 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31 897{
99adef31
MB
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
6ad45a27 900 int ret;
3a2eba9b 901
8caab75f 902 if (!ctlr->can_dma)
99adef31
MB
903 return 0;
904
8caab75f
GU
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 907 else
8caab75f 908 tx_dev = ctlr->dev.parent;
c37f45b5 909
8caab75f
GU
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 912 else
8caab75f 913 rx_dev = ctlr->dev.parent;
99adef31
MB
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
917 continue;
918
919 if (xfer->tx_buf != NULL) {
8caab75f 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
99adef31
MB
925 }
926
927 if (xfer->rx_buf != NULL) {
8caab75f 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
6ad45a27
MB
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
8caab75f 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
933 DMA_TO_DEVICE);
934 return ret;
99adef31
MB
935 }
936 }
937 }
938
8caab75f 939 ctlr->cur_msg_mapped = true;
99adef31
MB
940
941 return 0;
942}
943
8caab75f 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31
MB
945{
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
8caab75f 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
99adef31
MB
950 return 0;
951
8caab75f
GU
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 954 else
8caab75f 955 tx_dev = ctlr->dev.parent;
c37f45b5 956
8caab75f
GU
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 959 else
8caab75f 960 rx_dev = ctlr->dev.parent;
99adef31
MB
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
964 continue;
965
8caab75f
GU
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
968 }
969
970 return 0;
971}
2de440f5 972#else /* !CONFIG_HAS_DMA */
8caab75f 973static inline int __spi_map_msg(struct spi_controller *ctlr,
2de440f5
GU
974 struct spi_message *msg)
975{
976 return 0;
977}
978
8caab75f 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
4b786458 980 struct spi_message *msg)
2de440f5
GU
981{
982 return 0;
983}
984#endif /* !CONFIG_HAS_DMA */
985
8caab75f 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
4b786458
MS
987 struct spi_message *msg)
988{
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
8caab75f 996 if (xfer->tx_buf == ctlr->dummy_tx)
4b786458 997 xfer->tx_buf = NULL;
8caab75f 998 if (xfer->rx_buf == ctlr->dummy_rx)
4b786458
MS
999 xfer->rx_buf = NULL;
1000 }
1001
8caab75f 1002 return __spi_unmap_msg(ctlr, msg);
4b786458
MS
1003}
1004
8caab75f 1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
2de440f5
GU
1006{
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
8caab75f 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
2de440f5
GU
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
2de440f5
GU
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
8caab75f 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
2de440f5
GU
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
8caab75f 1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
2de440f5
GU
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
8caab75f 1029 ctlr->dummy_tx = tmp;
2de440f5
GU
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
8caab75f 1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
2de440f5
GU
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
8caab75f 1038 ctlr->dummy_rx = tmp;
2de440f5
GU
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
5442dcaa
CL
1044 if (!xfer->len)
1045 continue;
2de440f5 1046 if (!xfer->tx_buf)
8caab75f 1047 xfer->tx_buf = ctlr->dummy_tx;
2de440f5 1048 if (!xfer->rx_buf)
8caab75f 1049 xfer->rx_buf = ctlr->dummy_rx;
2de440f5
GU
1050 }
1051 }
1052 }
1053
8caab75f 1054 return __spi_map_msg(ctlr, msg);
2de440f5 1055}
99adef31 1056
810923f3
LR
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060{
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091}
1092
b158935f
MB
1093/*
1094 * spi_transfer_one_message - Default implementation of transfer_one_message()
1095 *
1096 * This is a standard implementation of transfer_one_message() for
8ba811a7 1097 * drivers which implement a transfer_one() operation. It provides
b158935f
MB
1098 * standard handling of delays and chip select management.
1099 */
8caab75f 1100static int spi_transfer_one_message(struct spi_controller *ctlr,
b158935f
MB
1101 struct spi_message *msg)
1102{
1103 struct spi_transfer *xfer;
b158935f
MB
1104 bool keep_cs = false;
1105 int ret = 0;
8caab75f 1106 struct spi_statistics *statm = &ctlr->statistics;
eca2ebc7 1107 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
1108
1109 spi_set_cs(msg->spi, true);
1110
eca2ebc7
MS
1111 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1112 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1113
b158935f
MB
1114 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1115 trace_spi_transfer_start(msg, xfer);
1116
8caab75f
GU
1117 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1118 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
eca2ebc7 1119
38ec10f6 1120 if (xfer->tx_buf || xfer->rx_buf) {
8caab75f 1121 reinit_completion(&ctlr->xfer_completion);
b158935f 1122
8caab75f 1123 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
38ec10f6 1124 if (ret < 0) {
eca2ebc7
MS
1125 SPI_STATISTICS_INCREMENT_FIELD(statm,
1126 errors);
1127 SPI_STATISTICS_INCREMENT_FIELD(stats,
1128 errors);
38ec10f6
MB
1129 dev_err(&msg->spi->dev,
1130 "SPI transfer failed: %d\n", ret);
1131 goto out;
1132 }
b158935f 1133
d57e7960
MB
1134 if (ret > 0) {
1135 ret = spi_transfer_wait(ctlr, msg, xfer);
1136 if (ret < 0)
1137 msg->status = ret;
1138 }
38ec10f6
MB
1139 } else {
1140 if (xfer->len)
1141 dev_err(&msg->spi->dev,
1142 "Bufferless transfer has length %u\n",
1143 xfer->len);
13a42798 1144 }
b158935f
MB
1145
1146 trace_spi_transfer_stop(msg, xfer);
1147
1148 if (msg->status != -EINPROGRESS)
1149 goto out;
1150
8244bd3a
DK
1151 if (xfer->delay_usecs) {
1152 u16 us = xfer->delay_usecs;
1153
1154 if (us <= 10)
1155 udelay(us);
1156 else
1157 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1158 }
b158935f
MB
1159
1160 if (xfer->cs_change) {
1161 if (list_is_last(&xfer->transfer_list,
1162 &msg->transfers)) {
1163 keep_cs = true;
1164 } else {
0b73aa63
MB
1165 spi_set_cs(msg->spi, false);
1166 udelay(10);
1167 spi_set_cs(msg->spi, true);
b158935f
MB
1168 }
1169 }
1170
1171 msg->actual_length += xfer->len;
1172 }
1173
1174out:
1175 if (ret != 0 || !keep_cs)
1176 spi_set_cs(msg->spi, false);
1177
1178 if (msg->status == -EINPROGRESS)
1179 msg->status = ret;
1180
8caab75f
GU
1181 if (msg->status && ctlr->handle_err)
1182 ctlr->handle_err(ctlr, msg);
b716c4ff 1183
8caab75f 1184 spi_res_release(ctlr, msg);
d780c371 1185
8caab75f 1186 spi_finalize_current_message(ctlr);
b158935f
MB
1187
1188 return ret;
1189}
1190
1191/**
1192 * spi_finalize_current_transfer - report completion of a transfer
8caab75f 1193 * @ctlr: the controller reporting completion
b158935f
MB
1194 *
1195 * Called by SPI drivers using the core transfer_one_message()
1196 * implementation to notify it that the current interrupt driven
9e8f4882 1197 * transfer has finished and the next one may be scheduled.
b158935f 1198 */
8caab75f 1199void spi_finalize_current_transfer(struct spi_controller *ctlr)
b158935f 1200{
8caab75f 1201 complete(&ctlr->xfer_completion);
b158935f
MB
1202}
1203EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1204
ffbbdd21 1205/**
fc9e0f71 1206 * __spi_pump_messages - function which processes spi message queue
8caab75f 1207 * @ctlr: controller to process queue for
fc9e0f71 1208 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1209 *
1210 * This function checks if there is any spi message in the queue that
1211 * needs processing and if so call out to the driver to initialize hardware
1212 * and transfer each message.
1213 *
0461a414
MB
1214 * Note that it is called both from the kthread itself and also from
1215 * inside spi_sync(); the queue extraction handling at the top of the
1216 * function should deal with this safely.
ffbbdd21 1217 */
8caab75f 1218static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
ffbbdd21 1219{
ffbbdd21
LW
1220 unsigned long flags;
1221 bool was_busy = false;
1222 int ret;
1223
983aee5d 1224 /* Lock queue */
8caab75f 1225 spin_lock_irqsave(&ctlr->queue_lock, flags);
983aee5d
MB
1226
1227 /* Make sure we are not already running a message */
8caab75f
GU
1228 if (ctlr->cur_msg) {
1229 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
983aee5d
MB
1230 return;
1231 }
1232
f0125f1a 1233 /* If another context is idling the device then defer */
8caab75f
GU
1234 if (ctlr->idling) {
1235 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1236 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
0461a414
MB
1237 return;
1238 }
1239
983aee5d 1240 /* Check if the queue is idle */
8caab75f
GU
1241 if (list_empty(&ctlr->queue) || !ctlr->running) {
1242 if (!ctlr->busy) {
1243 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
b0b36b86 1244 return;
ffbbdd21 1245 }
fc9e0f71 1246
f0125f1a
MB
1247 /* Only do teardown in the thread */
1248 if (!in_kthread) {
1249 kthread_queue_work(&ctlr->kworker,
1250 &ctlr->pump_messages);
1251 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 return;
1253 }
1254
1255 ctlr->busy = false;
1256 ctlr->idling = true;
1257 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1258
1259 kfree(ctlr->dummy_rx);
1260 ctlr->dummy_rx = NULL;
1261 kfree(ctlr->dummy_tx);
1262 ctlr->dummy_tx = NULL;
1263 if (ctlr->unprepare_transfer_hardware &&
1264 ctlr->unprepare_transfer_hardware(ctlr))
1265 dev_err(&ctlr->dev,
1266 "failed to unprepare transfer hardware\n");
1267 if (ctlr->auto_runtime_pm) {
1268 pm_runtime_mark_last_busy(ctlr->dev.parent);
1269 pm_runtime_put_autosuspend(ctlr->dev.parent);
1270 }
1271 trace_spi_controller_idle(ctlr);
1272
1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 ctlr->idling = false;
8caab75f 1275 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1276 return;
1277 }
ffbbdd21 1278
ffbbdd21 1279 /* Extract head of queue */
8caab75f
GU
1280 ctlr->cur_msg =
1281 list_first_entry(&ctlr->queue, struct spi_message, queue);
ffbbdd21 1282
8caab75f
GU
1283 list_del_init(&ctlr->cur_msg->queue);
1284 if (ctlr->busy)
ffbbdd21
LW
1285 was_busy = true;
1286 else
8caab75f
GU
1287 ctlr->busy = true;
1288 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1289
8caab75f 1290 mutex_lock(&ctlr->io_mutex);
ef4d96ec 1291
8caab75f
GU
1292 if (!was_busy && ctlr->auto_runtime_pm) {
1293 ret = pm_runtime_get_sync(ctlr->dev.parent);
49834de2 1294 if (ret < 0) {
7e48e23a 1295 pm_runtime_put_noidle(ctlr->dev.parent);
8caab75f 1296 dev_err(&ctlr->dev, "Failed to power device: %d\n",
49834de2 1297 ret);
8caab75f 1298 mutex_unlock(&ctlr->io_mutex);
49834de2
MB
1299 return;
1300 }
1301 }
1302
56ec1978 1303 if (!was_busy)
8caab75f 1304 trace_spi_controller_busy(ctlr);
56ec1978 1305
8caab75f
GU
1306 if (!was_busy && ctlr->prepare_transfer_hardware) {
1307 ret = ctlr->prepare_transfer_hardware(ctlr);
ffbbdd21 1308 if (ret) {
8caab75f 1309 dev_err(&ctlr->dev,
ffbbdd21 1310 "failed to prepare transfer hardware\n");
49834de2 1311
8caab75f
GU
1312 if (ctlr->auto_runtime_pm)
1313 pm_runtime_put(ctlr->dev.parent);
1314 mutex_unlock(&ctlr->io_mutex);
ffbbdd21
LW
1315 return;
1316 }
1317 }
1318
8caab75f 1319 trace_spi_message_start(ctlr->cur_msg);
56ec1978 1320
8caab75f
GU
1321 if (ctlr->prepare_message) {
1322 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
2841a5fc 1323 if (ret) {
8caab75f
GU
1324 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1325 ret);
1326 ctlr->cur_msg->status = ret;
1327 spi_finalize_current_message(ctlr);
49023d2e 1328 goto out;
2841a5fc 1329 }
8caab75f 1330 ctlr->cur_msg_prepared = true;
2841a5fc
MB
1331 }
1332
8caab75f 1333 ret = spi_map_msg(ctlr, ctlr->cur_msg);
99adef31 1334 if (ret) {
8caab75f
GU
1335 ctlr->cur_msg->status = ret;
1336 spi_finalize_current_message(ctlr);
49023d2e 1337 goto out;
99adef31
MB
1338 }
1339
8caab75f 1340 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
ffbbdd21 1341 if (ret) {
8caab75f 1342 dev_err(&ctlr->dev,
1f802f82 1343 "failed to transfer one message from queue\n");
49023d2e 1344 goto out;
ffbbdd21 1345 }
49023d2e
JH
1346
1347out:
8caab75f 1348 mutex_unlock(&ctlr->io_mutex);
62826970
MB
1349
1350 /* Prod the scheduler in case transfer_one() was busy waiting */
49023d2e
JH
1351 if (!ret)
1352 cond_resched();
ffbbdd21
LW
1353}
1354
fc9e0f71
MB
1355/**
1356 * spi_pump_messages - kthread work function which processes spi message queue
8caab75f 1357 * @work: pointer to kthread work struct contained in the controller struct
fc9e0f71
MB
1358 */
1359static void spi_pump_messages(struct kthread_work *work)
1360{
8caab75f
GU
1361 struct spi_controller *ctlr =
1362 container_of(work, struct spi_controller, pump_messages);
fc9e0f71 1363
8caab75f 1364 __spi_pump_messages(ctlr, true);
fc9e0f71
MB
1365}
1366
8caab75f 1367static int spi_init_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1368{
1369 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1370
8caab75f
GU
1371 ctlr->running = false;
1372 ctlr->busy = false;
ffbbdd21 1373
8caab75f
GU
1374 kthread_init_worker(&ctlr->kworker);
1375 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1376 "%s", dev_name(&ctlr->dev));
1377 if (IS_ERR(ctlr->kworker_task)) {
1378 dev_err(&ctlr->dev, "failed to create message pump task\n");
1379 return PTR_ERR(ctlr->kworker_task);
ffbbdd21 1380 }
8caab75f 1381 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
f0125f1a 1382
ffbbdd21 1383 /*
8caab75f 1384 * Controller config will indicate if this controller should run the
ffbbdd21
LW
1385 * message pump with high (realtime) priority to reduce the transfer
1386 * latency on the bus by minimising the delay between a transfer
1387 * request and the scheduling of the message pump thread. Without this
1388 * setting the message pump thread will remain at default priority.
1389 */
8caab75f
GU
1390 if (ctlr->rt) {
1391 dev_info(&ctlr->dev,
ffbbdd21 1392 "will run message pump with realtime priority\n");
8caab75f 1393 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
ffbbdd21
LW
1394 }
1395
1396 return 0;
1397}
1398
1399/**
1400 * spi_get_next_queued_message() - called by driver to check for queued
1401 * messages
8caab75f 1402 * @ctlr: the controller to check for queued messages
ffbbdd21
LW
1403 *
1404 * If there are more messages in the queue, the next message is returned from
1405 * this call.
97d56dc6
JMC
1406 *
1407 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21 1408 */
8caab75f 1409struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
ffbbdd21
LW
1410{
1411 struct spi_message *next;
1412 unsigned long flags;
1413
1414 /* get a pointer to the next message, if any */
8caab75f
GU
1415 spin_lock_irqsave(&ctlr->queue_lock, flags);
1416 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1cfd97f9 1417 queue);
8caab75f 1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1419
1420 return next;
1421}
1422EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1423
1424/**
1425 * spi_finalize_current_message() - the current message is complete
8caab75f 1426 * @ctlr: the controller to return the message to
ffbbdd21
LW
1427 *
1428 * Called by the driver to notify the core that the message in the front of the
1429 * queue is complete and can be removed from the queue.
1430 */
8caab75f 1431void spi_finalize_current_message(struct spi_controller *ctlr)
ffbbdd21
LW
1432{
1433 struct spi_message *mesg;
1434 unsigned long flags;
2841a5fc 1435 int ret;
ffbbdd21 1436
8caab75f
GU
1437 spin_lock_irqsave(&ctlr->queue_lock, flags);
1438 mesg = ctlr->cur_msg;
1439 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1440
8caab75f 1441 spi_unmap_msg(ctlr, mesg);
99adef31 1442
8caab75f
GU
1443 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1444 ret = ctlr->unprepare_message(ctlr, mesg);
2841a5fc 1445 if (ret) {
8caab75f
GU
1446 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1447 ret);
2841a5fc
MB
1448 }
1449 }
391949b6 1450
8caab75f
GU
1451 spin_lock_irqsave(&ctlr->queue_lock, flags);
1452 ctlr->cur_msg = NULL;
1453 ctlr->cur_msg_prepared = false;
f0125f1a 1454 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
8caab75f 1455 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
8e76ef88
MS
1456
1457 trace_spi_message_done(mesg);
2841a5fc 1458
ffbbdd21
LW
1459 mesg->state = NULL;
1460 if (mesg->complete)
1461 mesg->complete(mesg->context);
1462}
1463EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1464
8caab75f 1465static int spi_start_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1466{
1467 unsigned long flags;
1468
8caab75f 1469 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1470
8caab75f
GU
1471 if (ctlr->running || ctlr->busy) {
1472 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1473 return -EBUSY;
1474 }
1475
8caab75f
GU
1476 ctlr->running = true;
1477 ctlr->cur_msg = NULL;
1478 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1479
8caab75f 1480 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21
LW
1481
1482 return 0;
1483}
1484
8caab75f 1485static int spi_stop_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1486{
1487 unsigned long flags;
1488 unsigned limit = 500;
1489 int ret = 0;
1490
8caab75f 1491 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1492
1493 /*
1494 * This is a bit lame, but is optimized for the common execution path.
8caab75f 1495 * A wait_queue on the ctlr->busy could be used, but then the common
ffbbdd21
LW
1496 * execution path (pump_messages) would be required to call wake_up or
1497 * friends on every SPI message. Do this instead.
1498 */
8caab75f
GU
1499 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1500 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
f97b26b0 1501 usleep_range(10000, 11000);
8caab75f 1502 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1503 }
1504
8caab75f 1505 if (!list_empty(&ctlr->queue) || ctlr->busy)
ffbbdd21
LW
1506 ret = -EBUSY;
1507 else
8caab75f 1508 ctlr->running = false;
ffbbdd21 1509
8caab75f 1510 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1511
1512 if (ret) {
8caab75f 1513 dev_warn(&ctlr->dev, "could not stop message queue\n");
ffbbdd21
LW
1514 return ret;
1515 }
1516 return ret;
1517}
1518
8caab75f 1519static int spi_destroy_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1520{
1521 int ret;
1522
8caab75f 1523 ret = spi_stop_queue(ctlr);
ffbbdd21
LW
1524
1525 /*
3989144f 1526 * kthread_flush_worker will block until all work is done.
ffbbdd21
LW
1527 * If the reason that stop_queue timed out is that the work will never
1528 * finish, then it does no good to call flush/stop thread, so
1529 * return anyway.
1530 */
1531 if (ret) {
8caab75f 1532 dev_err(&ctlr->dev, "problem destroying queue\n");
ffbbdd21
LW
1533 return ret;
1534 }
1535
8caab75f
GU
1536 kthread_flush_worker(&ctlr->kworker);
1537 kthread_stop(ctlr->kworker_task);
ffbbdd21
LW
1538
1539 return 0;
1540}
1541
0461a414
MB
1542static int __spi_queued_transfer(struct spi_device *spi,
1543 struct spi_message *msg,
1544 bool need_pump)
ffbbdd21 1545{
8caab75f 1546 struct spi_controller *ctlr = spi->controller;
ffbbdd21
LW
1547 unsigned long flags;
1548
8caab75f 1549 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1550
8caab75f
GU
1551 if (!ctlr->running) {
1552 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1553 return -ESHUTDOWN;
1554 }
1555 msg->actual_length = 0;
1556 msg->status = -EINPROGRESS;
1557
8caab75f 1558 list_add_tail(&msg->queue, &ctlr->queue);
f0125f1a 1559 if (!ctlr->busy && need_pump)
8caab75f 1560 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21 1561
8caab75f 1562 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1563 return 0;
1564}
1565
0461a414
MB
1566/**
1567 * spi_queued_transfer - transfer function for queued transfers
1568 * @spi: spi device which is requesting transfer
1569 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1570 *
1571 * Return: zero on success, else a negative error code.
0461a414
MB
1572 */
1573static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1574{
1575 return __spi_queued_transfer(spi, msg, true);
1576}
1577
8caab75f 1578static int spi_controller_initialize_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1579{
1580 int ret;
1581
8caab75f
GU
1582 ctlr->transfer = spi_queued_transfer;
1583 if (!ctlr->transfer_one_message)
1584 ctlr->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1585
1586 /* Initialize and start queue */
8caab75f 1587 ret = spi_init_queue(ctlr);
ffbbdd21 1588 if (ret) {
8caab75f 1589 dev_err(&ctlr->dev, "problem initializing queue\n");
ffbbdd21
LW
1590 goto err_init_queue;
1591 }
8caab75f
GU
1592 ctlr->queued = true;
1593 ret = spi_start_queue(ctlr);
ffbbdd21 1594 if (ret) {
8caab75f 1595 dev_err(&ctlr->dev, "problem starting queue\n");
ffbbdd21
LW
1596 goto err_start_queue;
1597 }
1598
1599 return 0;
1600
1601err_start_queue:
8caab75f 1602 spi_destroy_queue(ctlr);
c3676d5c 1603err_init_queue:
ffbbdd21
LW
1604 return ret;
1605}
1606
988f259b
BB
1607/**
1608 * spi_flush_queue - Send all pending messages in the queue from the callers'
1609 * context
1610 * @ctlr: controller to process queue for
1611 *
1612 * This should be used when one wants to ensure all pending messages have been
1613 * sent before doing something. Is used by the spi-mem code to make sure SPI
1614 * memory operations do not preempt regular SPI transfers that have been queued
1615 * before the spi-mem operation.
1616 */
1617void spi_flush_queue(struct spi_controller *ctlr)
1618{
1619 if (ctlr->transfer == spi_queued_transfer)
1620 __spi_pump_messages(ctlr, false);
1621}
1622
ffbbdd21
LW
1623/*-------------------------------------------------------------------------*/
1624
7cb94361 1625#if defined(CONFIG_OF)
8caab75f 1626static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
c2e51ac3 1627 struct device_node *nc)
aff5e3f8 1628{
aff5e3f8 1629 u32 value;
c2e51ac3 1630 int rc;
aff5e3f8 1631
aff5e3f8 1632 /* Mode (clock phase/polarity/etc.) */
e0bcb680 1633 if (of_property_read_bool(nc, "spi-cpha"))
aff5e3f8 1634 spi->mode |= SPI_CPHA;
e0bcb680 1635 if (of_property_read_bool(nc, "spi-cpol"))
aff5e3f8 1636 spi->mode |= SPI_CPOL;
e0bcb680 1637 if (of_property_read_bool(nc, "spi-3wire"))
aff5e3f8 1638 spi->mode |= SPI_3WIRE;
e0bcb680 1639 if (of_property_read_bool(nc, "spi-lsb-first"))
aff5e3f8
PA
1640 spi->mode |= SPI_LSB_FIRST;
1641
f3186dd8
LW
1642 /*
1643 * For descriptors associated with the device, polarity inversion is
1644 * handled in the gpiolib, so all chip selects are "active high" in
1645 * the logical sense, the gpiolib will invert the line if need be.
1646 */
1647 if (ctlr->use_gpio_descriptors)
1648 spi->mode |= SPI_CS_HIGH;
1649 else if (of_property_read_bool(nc, "spi-cs-high"))
1650 spi->mode |= SPI_CS_HIGH;
1651
aff5e3f8
PA
1652 /* Device DUAL/QUAD mode */
1653 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1654 switch (value) {
1655 case 1:
1656 break;
1657 case 2:
1658 spi->mode |= SPI_TX_DUAL;
1659 break;
1660 case 4:
1661 spi->mode |= SPI_TX_QUAD;
1662 break;
6b03061f
YNG
1663 case 8:
1664 spi->mode |= SPI_TX_OCTAL;
1665 break;
aff5e3f8 1666 default:
8caab75f 1667 dev_warn(&ctlr->dev,
aff5e3f8
PA
1668 "spi-tx-bus-width %d not supported\n",
1669 value);
1670 break;
1671 }
1672 }
1673
1674 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1675 switch (value) {
1676 case 1:
1677 break;
1678 case 2:
1679 spi->mode |= SPI_RX_DUAL;
1680 break;
1681 case 4:
1682 spi->mode |= SPI_RX_QUAD;
1683 break;
6b03061f
YNG
1684 case 8:
1685 spi->mode |= SPI_RX_OCTAL;
1686 break;
aff5e3f8 1687 default:
8caab75f 1688 dev_warn(&ctlr->dev,
aff5e3f8
PA
1689 "spi-rx-bus-width %d not supported\n",
1690 value);
1691 break;
1692 }
1693 }
1694
8caab75f 1695 if (spi_controller_is_slave(ctlr)) {
194276b0 1696 if (!of_node_name_eq(nc, "slave")) {
25c56c88
RH
1697 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1698 nc);
6c364062
GU
1699 return -EINVAL;
1700 }
1701 return 0;
1702 }
1703
1704 /* Device address */
1705 rc = of_property_read_u32(nc, "reg", &value);
1706 if (rc) {
25c56c88
RH
1707 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1708 nc, rc);
6c364062
GU
1709 return rc;
1710 }
1711 spi->chip_select = value;
1712
aff5e3f8
PA
1713 /* Device speed */
1714 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1715 if (rc) {
8caab75f 1716 dev_err(&ctlr->dev,
25c56c88 1717 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
c2e51ac3 1718 return rc;
aff5e3f8
PA
1719 }
1720 spi->max_speed_hz = value;
1721
c2e51ac3
GU
1722 return 0;
1723}
1724
1725static struct spi_device *
8caab75f 1726of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
c2e51ac3
GU
1727{
1728 struct spi_device *spi;
1729 int rc;
1730
1731 /* Alloc an spi_device */
8caab75f 1732 spi = spi_alloc_device(ctlr);
c2e51ac3 1733 if (!spi) {
25c56c88 1734 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
c2e51ac3
GU
1735 rc = -ENOMEM;
1736 goto err_out;
1737 }
1738
1739 /* Select device driver */
1740 rc = of_modalias_node(nc, spi->modalias,
1741 sizeof(spi->modalias));
1742 if (rc < 0) {
25c56c88 1743 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
c2e51ac3
GU
1744 goto err_out;
1745 }
1746
8caab75f 1747 rc = of_spi_parse_dt(ctlr, spi, nc);
c2e51ac3
GU
1748 if (rc)
1749 goto err_out;
1750
aff5e3f8
PA
1751 /* Store a pointer to the node in the device structure */
1752 of_node_get(nc);
1753 spi->dev.of_node = nc;
1754
1755 /* Register the new device */
aff5e3f8
PA
1756 rc = spi_add_device(spi);
1757 if (rc) {
25c56c88 1758 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
8324147f 1759 goto err_of_node_put;
aff5e3f8
PA
1760 }
1761
1762 return spi;
1763
8324147f
JH
1764err_of_node_put:
1765 of_node_put(nc);
aff5e3f8
PA
1766err_out:
1767 spi_dev_put(spi);
1768 return ERR_PTR(rc);
1769}
1770
d57a4282
GL
1771/**
1772 * of_register_spi_devices() - Register child devices onto the SPI bus
8caab75f 1773 * @ctlr: Pointer to spi_controller device
d57a4282 1774 *
6c364062
GU
1775 * Registers an spi_device for each child node of controller node which
1776 * represents a valid SPI slave.
d57a4282 1777 */
8caab75f 1778static void of_register_spi_devices(struct spi_controller *ctlr)
d57a4282
GL
1779{
1780 struct spi_device *spi;
1781 struct device_node *nc;
d57a4282 1782
8caab75f 1783 if (!ctlr->dev.of_node)
d57a4282
GL
1784 return;
1785
8caab75f 1786 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
bd6c1644
GU
1787 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1788 continue;
8caab75f 1789 spi = of_register_spi_device(ctlr, nc);
e0af98a7 1790 if (IS_ERR(spi)) {
8caab75f 1791 dev_warn(&ctlr->dev,
25c56c88 1792 "Failed to create SPI device for %pOF\n", nc);
e0af98a7
RR
1793 of_node_clear_flag(nc, OF_POPULATED);
1794 }
d57a4282
GL
1795 }
1796}
1797#else
8caab75f 1798static void of_register_spi_devices(struct spi_controller *ctlr) { }
d57a4282
GL
1799#endif
1800
64bee4d2 1801#ifdef CONFIG_ACPI
8a2e487e
LW
1802static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1803{
1804 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1805 const union acpi_object *obj;
1806
1807 if (!x86_apple_machine)
1808 return;
1809
1810 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1811 && obj->buffer.length >= 4)
1812 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1813
1814 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1815 && obj->buffer.length == 8)
1816 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1817
1818 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1819 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1820 spi->mode |= SPI_LSB_FIRST;
1821
1822 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1823 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1824 spi->mode |= SPI_CPOL;
1825
1826 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1827 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1828 spi->mode |= SPI_CPHA;
1829}
1830
64bee4d2
MW
1831static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1832{
1833 struct spi_device *spi = data;
8caab75f 1834 struct spi_controller *ctlr = spi->controller;
64bee4d2
MW
1835
1836 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1837 struct acpi_resource_spi_serialbus *sb;
1838
1839 sb = &ares->data.spi_serial_bus;
1840 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
a0a90718
MW
1841 /*
1842 * ACPI DeviceSelection numbering is handled by the
1843 * host controller driver in Windows and can vary
1844 * from driver to driver. In Linux we always expect
1845 * 0 .. max - 1 so we need to ask the driver to
1846 * translate between the two schemes.
1847 */
8caab75f
GU
1848 if (ctlr->fw_translate_cs) {
1849 int cs = ctlr->fw_translate_cs(ctlr,
a0a90718
MW
1850 sb->device_selection);
1851 if (cs < 0)
1852 return cs;
1853 spi->chip_select = cs;
1854 } else {
1855 spi->chip_select = sb->device_selection;
1856 }
1857
64bee4d2
MW
1858 spi->max_speed_hz = sb->connection_speed;
1859
1860 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1861 spi->mode |= SPI_CPHA;
1862 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1863 spi->mode |= SPI_CPOL;
1864 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1865 spi->mode |= SPI_CS_HIGH;
1866 }
1867 } else if (spi->irq < 0) {
1868 struct resource r;
1869
1870 if (acpi_dev_resource_interrupt(ares, 0, &r))
1871 spi->irq = r.start;
1872 }
1873
1874 /* Always tell the ACPI core to skip this resource */
1875 return 1;
1876}
1877
8caab75f 1878static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
7f24467f 1879 struct acpi_device *adev)
64bee4d2 1880{
64bee4d2 1881 struct list_head resource_list;
64bee4d2
MW
1882 struct spi_device *spi;
1883 int ret;
1884
7f24467f
OP
1885 if (acpi_bus_get_status(adev) || !adev->status.present ||
1886 acpi_device_enumerated(adev))
64bee4d2
MW
1887 return AE_OK;
1888
8caab75f 1889 spi = spi_alloc_device(ctlr);
64bee4d2 1890 if (!spi) {
8caab75f 1891 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
64bee4d2
MW
1892 dev_name(&adev->dev));
1893 return AE_NO_MEMORY;
1894 }
1895
7b199811 1896 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1897 spi->irq = -1;
1898
1899 INIT_LIST_HEAD(&resource_list);
1900 ret = acpi_dev_get_resources(adev, &resource_list,
1901 acpi_spi_add_resource, spi);
1902 acpi_dev_free_resource_list(&resource_list);
1903
8a2e487e
LW
1904 acpi_spi_parse_apple_properties(spi);
1905
64bee4d2
MW
1906 if (ret < 0 || !spi->max_speed_hz) {
1907 spi_dev_put(spi);
1908 return AE_OK;
1909 }
1910
0c6543f6
DD
1911 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1912 sizeof(spi->modalias));
1913
33ada67d
CR
1914 if (spi->irq < 0)
1915 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1916
7f24467f
OP
1917 acpi_device_set_enumerated(adev);
1918
33cf00e5 1919 adev->power.flags.ignore_parent = true;
64bee4d2 1920 if (spi_add_device(spi)) {
33cf00e5 1921 adev->power.flags.ignore_parent = false;
8caab75f 1922 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
64bee4d2
MW
1923 dev_name(&adev->dev));
1924 spi_dev_put(spi);
1925 }
1926
1927 return AE_OK;
1928}
1929
7f24467f
OP
1930static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1931 void *data, void **return_value)
1932{
8caab75f 1933 struct spi_controller *ctlr = data;
7f24467f
OP
1934 struct acpi_device *adev;
1935
1936 if (acpi_bus_get_device(handle, &adev))
1937 return AE_OK;
1938
8caab75f 1939 return acpi_register_spi_device(ctlr, adev);
7f24467f
OP
1940}
1941
8caab75f 1942static void acpi_register_spi_devices(struct spi_controller *ctlr)
64bee4d2
MW
1943{
1944 acpi_status status;
1945 acpi_handle handle;
1946
8caab75f 1947 handle = ACPI_HANDLE(ctlr->dev.parent);
64bee4d2
MW
1948 if (!handle)
1949 return;
1950
1951 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
8caab75f 1952 acpi_spi_add_device, NULL, ctlr, NULL);
64bee4d2 1953 if (ACPI_FAILURE(status))
8caab75f 1954 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
64bee4d2
MW
1955}
1956#else
8caab75f 1957static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
64bee4d2
MW
1958#endif /* CONFIG_ACPI */
1959
8caab75f 1960static void spi_controller_release(struct device *dev)
8ae12a0d 1961{
8caab75f 1962 struct spi_controller *ctlr;
8ae12a0d 1963
8caab75f
GU
1964 ctlr = container_of(dev, struct spi_controller, dev);
1965 kfree(ctlr);
8ae12a0d
DB
1966}
1967
1968static struct class spi_master_class = {
1969 .name = "spi_master",
1970 .owner = THIS_MODULE,
8caab75f 1971 .dev_release = spi_controller_release,
eca2ebc7 1972 .dev_groups = spi_master_groups,
8ae12a0d
DB
1973};
1974
6c364062
GU
1975#ifdef CONFIG_SPI_SLAVE
1976/**
1977 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1978 * controller
1979 * @spi: device used for the current transfer
1980 */
1981int spi_slave_abort(struct spi_device *spi)
1982{
8caab75f 1983 struct spi_controller *ctlr = spi->controller;
6c364062 1984
8caab75f
GU
1985 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1986 return ctlr->slave_abort(ctlr);
6c364062
GU
1987
1988 return -ENOTSUPP;
1989}
1990EXPORT_SYMBOL_GPL(spi_slave_abort);
1991
1992static int match_true(struct device *dev, void *data)
1993{
1994 return 1;
1995}
1996
1997static ssize_t spi_slave_show(struct device *dev,
1998 struct device_attribute *attr, char *buf)
1999{
8caab75f
GU
2000 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2001 dev);
6c364062
GU
2002 struct device *child;
2003
2004 child = device_find_child(&ctlr->dev, NULL, match_true);
2005 return sprintf(buf, "%s\n",
2006 child ? to_spi_device(child)->modalias : NULL);
2007}
2008
2009static ssize_t spi_slave_store(struct device *dev,
2010 struct device_attribute *attr, const char *buf,
2011 size_t count)
2012{
8caab75f
GU
2013 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2014 dev);
6c364062
GU
2015 struct spi_device *spi;
2016 struct device *child;
2017 char name[32];
2018 int rc;
2019
2020 rc = sscanf(buf, "%31s", name);
2021 if (rc != 1 || !name[0])
2022 return -EINVAL;
2023
2024 child = device_find_child(&ctlr->dev, NULL, match_true);
2025 if (child) {
2026 /* Remove registered slave */
2027 device_unregister(child);
2028 put_device(child);
2029 }
2030
2031 if (strcmp(name, "(null)")) {
2032 /* Register new slave */
2033 spi = spi_alloc_device(ctlr);
2034 if (!spi)
2035 return -ENOMEM;
2036
2037 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2038
2039 rc = spi_add_device(spi);
2040 if (rc) {
2041 spi_dev_put(spi);
2042 return rc;
2043 }
2044 }
2045
2046 return count;
2047}
2048
2049static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2050
2051static struct attribute *spi_slave_attrs[] = {
2052 &dev_attr_slave.attr,
2053 NULL,
2054};
2055
2056static const struct attribute_group spi_slave_group = {
2057 .attrs = spi_slave_attrs,
2058};
2059
2060static const struct attribute_group *spi_slave_groups[] = {
8caab75f 2061 &spi_controller_statistics_group,
6c364062
GU
2062 &spi_slave_group,
2063 NULL,
2064};
2065
2066static struct class spi_slave_class = {
2067 .name = "spi_slave",
2068 .owner = THIS_MODULE,
8caab75f 2069 .dev_release = spi_controller_release,
6c364062
GU
2070 .dev_groups = spi_slave_groups,
2071};
2072#else
2073extern struct class spi_slave_class; /* dummy */
2074#endif
8ae12a0d
DB
2075
2076/**
6c364062 2077 * __spi_alloc_controller - allocate an SPI master or slave controller
8ae12a0d 2078 * @dev: the controller, possibly using the platform_bus
33e34dc6 2079 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 2080 * memory is in the driver_data field of the returned device,
8caab75f 2081 * accessible with spi_controller_get_devdata().
6c364062
GU
2082 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2083 * slave (true) controller
33e34dc6 2084 * Context: can sleep
8ae12a0d 2085 *
6c364062 2086 * This call is used only by SPI controller drivers, which are the
8ae12a0d 2087 * only ones directly touching chip registers. It's how they allocate
8caab75f 2088 * an spi_controller structure, prior to calling spi_register_controller().
8ae12a0d 2089 *
97d56dc6 2090 * This must be called from context that can sleep.
8ae12a0d 2091 *
6c364062 2092 * The caller is responsible for assigning the bus number and initializing the
8caab75f
GU
2093 * controller's methods before calling spi_register_controller(); and (after
2094 * errors adding the device) calling spi_controller_put() to prevent a memory
2095 * leak.
97d56dc6 2096 *
6c364062 2097 * Return: the SPI controller structure on success, else NULL.
8ae12a0d 2098 */
8caab75f
GU
2099struct spi_controller *__spi_alloc_controller(struct device *dev,
2100 unsigned int size, bool slave)
8ae12a0d 2101{
8caab75f 2102 struct spi_controller *ctlr;
8ae12a0d 2103
0c868461
DB
2104 if (!dev)
2105 return NULL;
2106
8caab75f
GU
2107 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2108 if (!ctlr)
8ae12a0d
DB
2109 return NULL;
2110
8caab75f
GU
2111 device_initialize(&ctlr->dev);
2112 ctlr->bus_num = -1;
2113 ctlr->num_chipselect = 1;
2114 ctlr->slave = slave;
6c364062 2115 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
8caab75f 2116 ctlr->dev.class = &spi_slave_class;
6c364062 2117 else
8caab75f
GU
2118 ctlr->dev.class = &spi_master_class;
2119 ctlr->dev.parent = dev;
2120 pm_suspend_ignore_children(&ctlr->dev, true);
2121 spi_controller_set_devdata(ctlr, &ctlr[1]);
8ae12a0d 2122
8caab75f 2123 return ctlr;
8ae12a0d 2124}
6c364062 2125EXPORT_SYMBOL_GPL(__spi_alloc_controller);
8ae12a0d 2126
74317984 2127#ifdef CONFIG_OF
8caab75f 2128static int of_spi_register_master(struct spi_controller *ctlr)
74317984 2129{
e80beb27 2130 int nb, i, *cs;
8caab75f 2131 struct device_node *np = ctlr->dev.of_node;
74317984
JCPV
2132
2133 if (!np)
2134 return 0;
2135
2136 nb = of_gpio_named_count(np, "cs-gpios");
8caab75f 2137 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
74317984 2138
8ec5d84e
AL
2139 /* Return error only for an incorrectly formed cs-gpios property */
2140 if (nb == 0 || nb == -ENOENT)
74317984 2141 return 0;
8ec5d84e
AL
2142 else if (nb < 0)
2143 return nb;
74317984 2144
a86854d0 2145 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
74317984 2146 GFP_KERNEL);
8caab75f 2147 ctlr->cs_gpios = cs;
74317984 2148
8caab75f 2149 if (!ctlr->cs_gpios)
74317984
JCPV
2150 return -ENOMEM;
2151
8caab75f 2152 for (i = 0; i < ctlr->num_chipselect; i++)
446411e1 2153 cs[i] = -ENOENT;
74317984
JCPV
2154
2155 for (i = 0; i < nb; i++)
2156 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2157
2158 return 0;
2159}
2160#else
8caab75f 2161static int of_spi_register_master(struct spi_controller *ctlr)
74317984
JCPV
2162{
2163 return 0;
2164}
2165#endif
2166
f3186dd8
LW
2167/**
2168 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2169 * @ctlr: The SPI master to grab GPIO descriptors for
2170 */
2171static int spi_get_gpio_descs(struct spi_controller *ctlr)
2172{
2173 int nb, i;
2174 struct gpio_desc **cs;
2175 struct device *dev = &ctlr->dev;
2176
2177 nb = gpiod_count(dev, "cs");
2178 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2179
2180 /* No GPIOs at all is fine, else return the error */
2181 if (nb == 0 || nb == -ENOENT)
2182 return 0;
2183 else if (nb < 0)
2184 return nb;
2185
2186 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2187 GFP_KERNEL);
2188 if (!cs)
2189 return -ENOMEM;
2190 ctlr->cs_gpiods = cs;
2191
2192 for (i = 0; i < nb; i++) {
2193 /*
2194 * Most chipselects are active low, the inverted
2195 * semantics are handled by special quirks in gpiolib,
2196 * so initializing them GPIOD_OUT_LOW here means
2197 * "unasserted", in most cases this will drive the physical
2198 * line high.
2199 */
2200 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2201 GPIOD_OUT_LOW);
1723fdec
GU
2202 if (IS_ERR(cs[i]))
2203 return PTR_ERR(cs[i]);
f3186dd8
LW
2204
2205 if (cs[i]) {
2206 /*
2207 * If we find a CS GPIO, name it after the device and
2208 * chip select line.
2209 */
2210 char *gpioname;
2211
2212 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2213 dev_name(dev), i);
2214 if (!gpioname)
2215 return -ENOMEM;
2216 gpiod_set_consumer_name(cs[i], gpioname);
2217 }
2218 }
2219
2220 return 0;
2221}
2222
bdf3a3b5
BB
2223static int spi_controller_check_ops(struct spi_controller *ctlr)
2224{
2225 /*
b5932f5c
BB
2226 * The controller may implement only the high-level SPI-memory like
2227 * operations if it does not support regular SPI transfers, and this is
2228 * valid use case.
2229 * If ->mem_ops is NULL, we request that at least one of the
2230 * ->transfer_xxx() method be implemented.
bdf3a3b5 2231 */
b5932f5c
BB
2232 if (ctlr->mem_ops) {
2233 if (!ctlr->mem_ops->exec_op)
2234 return -EINVAL;
2235 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2236 !ctlr->transfer_one_message) {
bdf3a3b5 2237 return -EINVAL;
b5932f5c 2238 }
bdf3a3b5
BB
2239
2240 return 0;
2241}
2242
8ae12a0d 2243/**
8caab75f
GU
2244 * spi_register_controller - register SPI master or slave controller
2245 * @ctlr: initialized master, originally from spi_alloc_master() or
2246 * spi_alloc_slave()
33e34dc6 2247 * Context: can sleep
8ae12a0d 2248 *
8caab75f 2249 * SPI controllers connect to their drivers using some non-SPI bus,
8ae12a0d 2250 * such as the platform bus. The final stage of probe() in that code
8caab75f 2251 * includes calling spi_register_controller() to hook up to this SPI bus glue.
8ae12a0d
DB
2252 *
2253 * SPI controllers use board specific (often SOC specific) bus numbers,
2254 * and board-specific addressing for SPI devices combines those numbers
2255 * with chip select numbers. Since SPI does not directly support dynamic
2256 * device identification, boards need configuration tables telling which
2257 * chip is at which address.
2258 *
2259 * This must be called from context that can sleep. It returns zero on
8caab75f 2260 * success, else a negative error code (dropping the controller's refcount).
0c868461 2261 * After a successful return, the caller is responsible for calling
8caab75f 2262 * spi_unregister_controller().
97d56dc6
JMC
2263 *
2264 * Return: zero on success, else a negative error code.
8ae12a0d 2265 */
8caab75f 2266int spi_register_controller(struct spi_controller *ctlr)
8ae12a0d 2267{
8caab75f 2268 struct device *dev = ctlr->dev.parent;
2b9603a0 2269 struct boardinfo *bi;
8ae12a0d 2270 int status = -ENODEV;
42bdd706 2271 int id, first_dynamic;
8ae12a0d 2272
0c868461
DB
2273 if (!dev)
2274 return -ENODEV;
2275
bdf3a3b5
BB
2276 /*
2277 * Make sure all necessary hooks are implemented before registering
2278 * the SPI controller.
2279 */
2280 status = spi_controller_check_ops(ctlr);
2281 if (status)
2282 return status;
2283
8caab75f 2284 if (!spi_controller_is_slave(ctlr)) {
f3186dd8
LW
2285 if (ctlr->use_gpio_descriptors) {
2286 status = spi_get_gpio_descs(ctlr);
2287 if (status)
2288 return status;
2df201e0
LW
2289 /*
2290 * A controller using GPIO descriptors always
2291 * supports SPI_CS_HIGH if need be.
2292 */
2293 ctlr->mode_bits |= SPI_CS_HIGH;
f3186dd8
LW
2294 } else {
2295 /* Legacy code path for GPIOs from DT */
2296 status = of_spi_register_master(ctlr);
2297 if (status)
2298 return status;
2299 }
6c364062 2300 }
74317984 2301
082c8cb4
DB
2302 /* even if it's just one always-selected device, there must
2303 * be at least one chipselect
2304 */
8caab75f 2305 if (ctlr->num_chipselect == 0)
082c8cb4 2306 return -EINVAL;
04b2d03a
GU
2307 if (ctlr->bus_num >= 0) {
2308 /* devices with a fixed bus num must check-in with the num */
2309 mutex_lock(&board_lock);
2310 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2311 ctlr->bus_num + 1, GFP_KERNEL);
2312 mutex_unlock(&board_lock);
2313 if (WARN(id < 0, "couldn't get idr"))
2314 return id == -ENOSPC ? -EBUSY : id;
2315 ctlr->bus_num = id;
2316 } else if (ctlr->dev.of_node) {
2317 /* allocate dynamic bus number using Linux idr */
9b61e302
SM
2318 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2319 if (id >= 0) {
2320 ctlr->bus_num = id;
2321 mutex_lock(&board_lock);
2322 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2323 ctlr->bus_num + 1, GFP_KERNEL);
2324 mutex_unlock(&board_lock);
2325 if (WARN(id < 0, "couldn't get idr"))
2326 return id == -ENOSPC ? -EBUSY : id;
2327 }
2328 }
8caab75f 2329 if (ctlr->bus_num < 0) {
42bdd706
LS
2330 first_dynamic = of_alias_get_highest_id("spi");
2331 if (first_dynamic < 0)
2332 first_dynamic = 0;
2333 else
2334 first_dynamic++;
2335
9a9a047a 2336 mutex_lock(&board_lock);
42bdd706
LS
2337 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2338 0, GFP_KERNEL);
9a9a047a
SM
2339 mutex_unlock(&board_lock);
2340 if (WARN(id < 0, "couldn't get idr"))
2341 return id;
2342 ctlr->bus_num = id;
8ae12a0d 2343 }
8caab75f
GU
2344 INIT_LIST_HEAD(&ctlr->queue);
2345 spin_lock_init(&ctlr->queue_lock);
2346 spin_lock_init(&ctlr->bus_lock_spinlock);
2347 mutex_init(&ctlr->bus_lock_mutex);
2348 mutex_init(&ctlr->io_mutex);
2349 ctlr->bus_lock_flag = 0;
2350 init_completion(&ctlr->xfer_completion);
2351 if (!ctlr->max_dma_len)
2352 ctlr->max_dma_len = INT_MAX;
cf32b71e 2353
8ae12a0d
DB
2354 /* register the device, then userspace will see it.
2355 * registration fails if the bus ID is in use.
2356 */
8caab75f
GU
2357 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2358 status = device_add(&ctlr->dev);
9b61e302
SM
2359 if (status < 0) {
2360 /* free bus id */
2361 mutex_lock(&board_lock);
2362 idr_remove(&spi_master_idr, ctlr->bus_num);
2363 mutex_unlock(&board_lock);
8ae12a0d 2364 goto done;
9b61e302
SM
2365 }
2366 dev_dbg(dev, "registered %s %s\n",
8caab75f 2367 spi_controller_is_slave(ctlr) ? "slave" : "master",
9b61e302 2368 dev_name(&ctlr->dev));
8ae12a0d 2369
b5932f5c
BB
2370 /*
2371 * If we're using a queued driver, start the queue. Note that we don't
2372 * need the queueing logic if the driver is only supporting high-level
2373 * memory operations.
2374 */
2375 if (ctlr->transfer) {
8caab75f 2376 dev_info(dev, "controller is unqueued, this is deprecated\n");
b5932f5c 2377 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
8caab75f 2378 status = spi_controller_initialize_queue(ctlr);
ffbbdd21 2379 if (status) {
8caab75f 2380 device_del(&ctlr->dev);
9b61e302
SM
2381 /* free bus id */
2382 mutex_lock(&board_lock);
2383 idr_remove(&spi_master_idr, ctlr->bus_num);
2384 mutex_unlock(&board_lock);
ffbbdd21
LW
2385 goto done;
2386 }
2387 }
eca2ebc7 2388 /* add statistics */
8caab75f 2389 spin_lock_init(&ctlr->statistics.lock);
ffbbdd21 2390
2b9603a0 2391 mutex_lock(&board_lock);
8caab75f 2392 list_add_tail(&ctlr->list, &spi_controller_list);
2b9603a0 2393 list_for_each_entry(bi, &board_list, list)
8caab75f 2394 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2b9603a0
FT
2395 mutex_unlock(&board_lock);
2396
64bee4d2 2397 /* Register devices from the device tree and ACPI */
8caab75f
GU
2398 of_register_spi_devices(ctlr);
2399 acpi_register_spi_devices(ctlr);
8ae12a0d
DB
2400done:
2401 return status;
2402}
8caab75f 2403EXPORT_SYMBOL_GPL(spi_register_controller);
8ae12a0d 2404
666d5b4c
MB
2405static void devm_spi_unregister(struct device *dev, void *res)
2406{
8caab75f 2407 spi_unregister_controller(*(struct spi_controller **)res);
666d5b4c
MB
2408}
2409
2410/**
8caab75f
GU
2411 * devm_spi_register_controller - register managed SPI master or slave
2412 * controller
2413 * @dev: device managing SPI controller
2414 * @ctlr: initialized controller, originally from spi_alloc_master() or
2415 * spi_alloc_slave()
666d5b4c
MB
2416 * Context: can sleep
2417 *
8caab75f 2418 * Register a SPI device as with spi_register_controller() which will
68b892f1 2419 * automatically be unregistered and freed.
97d56dc6
JMC
2420 *
2421 * Return: zero on success, else a negative error code.
666d5b4c 2422 */
8caab75f
GU
2423int devm_spi_register_controller(struct device *dev,
2424 struct spi_controller *ctlr)
666d5b4c 2425{
8caab75f 2426 struct spi_controller **ptr;
666d5b4c
MB
2427 int ret;
2428
2429 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2430 if (!ptr)
2431 return -ENOMEM;
2432
8caab75f 2433 ret = spi_register_controller(ctlr);
4b92894e 2434 if (!ret) {
8caab75f 2435 *ptr = ctlr;
666d5b4c
MB
2436 devres_add(dev, ptr);
2437 } else {
2438 devres_free(ptr);
2439 }
2440
2441 return ret;
2442}
8caab75f 2443EXPORT_SYMBOL_GPL(devm_spi_register_controller);
666d5b4c 2444
34860089 2445static int __unregister(struct device *dev, void *null)
8ae12a0d 2446{
34860089 2447 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
2448 return 0;
2449}
2450
2451/**
8caab75f
GU
2452 * spi_unregister_controller - unregister SPI master or slave controller
2453 * @ctlr: the controller being unregistered
33e34dc6 2454 * Context: can sleep
8ae12a0d 2455 *
8caab75f 2456 * This call is used only by SPI controller drivers, which are the
8ae12a0d
DB
2457 * only ones directly touching chip registers.
2458 *
2459 * This must be called from context that can sleep.
68b892f1
JH
2460 *
2461 * Note that this function also drops a reference to the controller.
8ae12a0d 2462 */
8caab75f 2463void spi_unregister_controller(struct spi_controller *ctlr)
8ae12a0d 2464{
9b61e302 2465 struct spi_controller *found;
67f7b278 2466 int id = ctlr->bus_num;
89fc9a1a
JG
2467 int dummy;
2468
9b61e302
SM
2469 /* First make sure that this controller was ever added */
2470 mutex_lock(&board_lock);
67f7b278 2471 found = idr_find(&spi_master_idr, id);
9b61e302 2472 mutex_unlock(&board_lock);
8caab75f
GU
2473 if (ctlr->queued) {
2474 if (spi_destroy_queue(ctlr))
2475 dev_err(&ctlr->dev, "queue remove failed\n");
ffbbdd21 2476 }
2b9603a0 2477 mutex_lock(&board_lock);
8caab75f 2478 list_del(&ctlr->list);
2b9603a0
FT
2479 mutex_unlock(&board_lock);
2480
8caab75f
GU
2481 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2482 device_unregister(&ctlr->dev);
9b61e302
SM
2483 /* free bus id */
2484 mutex_lock(&board_lock);
613bd1ea
JN
2485 if (found == ctlr)
2486 idr_remove(&spi_master_idr, id);
9b61e302 2487 mutex_unlock(&board_lock);
8ae12a0d 2488}
8caab75f 2489EXPORT_SYMBOL_GPL(spi_unregister_controller);
8ae12a0d 2490
8caab75f 2491int spi_controller_suspend(struct spi_controller *ctlr)
ffbbdd21
LW
2492{
2493 int ret;
2494
8caab75f
GU
2495 /* Basically no-ops for non-queued controllers */
2496 if (!ctlr->queued)
ffbbdd21
LW
2497 return 0;
2498
8caab75f 2499 ret = spi_stop_queue(ctlr);
ffbbdd21 2500 if (ret)
8caab75f 2501 dev_err(&ctlr->dev, "queue stop failed\n");
ffbbdd21
LW
2502
2503 return ret;
2504}
8caab75f 2505EXPORT_SYMBOL_GPL(spi_controller_suspend);
ffbbdd21 2506
8caab75f 2507int spi_controller_resume(struct spi_controller *ctlr)
ffbbdd21
LW
2508{
2509 int ret;
2510
8caab75f 2511 if (!ctlr->queued)
ffbbdd21
LW
2512 return 0;
2513
8caab75f 2514 ret = spi_start_queue(ctlr);
ffbbdd21 2515 if (ret)
8caab75f 2516 dev_err(&ctlr->dev, "queue restart failed\n");
ffbbdd21
LW
2517
2518 return ret;
2519}
8caab75f 2520EXPORT_SYMBOL_GPL(spi_controller_resume);
ffbbdd21 2521
8caab75f 2522static int __spi_controller_match(struct device *dev, const void *data)
5ed2c832 2523{
8caab75f 2524 struct spi_controller *ctlr;
9f3b795a 2525 const u16 *bus_num = data;
5ed2c832 2526
8caab75f
GU
2527 ctlr = container_of(dev, struct spi_controller, dev);
2528 return ctlr->bus_num == *bus_num;
5ed2c832
DY
2529}
2530
8ae12a0d
DB
2531/**
2532 * spi_busnum_to_master - look up master associated with bus_num
2533 * @bus_num: the master's bus number
33e34dc6 2534 * Context: can sleep
8ae12a0d
DB
2535 *
2536 * This call may be used with devices that are registered after
2537 * arch init time. It returns a refcounted pointer to the relevant
8caab75f 2538 * spi_controller (which the caller must release), or NULL if there is
8ae12a0d 2539 * no such master registered.
97d56dc6
JMC
2540 *
2541 * Return: the SPI master structure on success, else NULL.
8ae12a0d 2542 */
8caab75f 2543struct spi_controller *spi_busnum_to_master(u16 bus_num)
8ae12a0d 2544{
49dce689 2545 struct device *dev;
8caab75f 2546 struct spi_controller *ctlr = NULL;
5ed2c832 2547
695794ae 2548 dev = class_find_device(&spi_master_class, NULL, &bus_num,
8caab75f 2549 __spi_controller_match);
5ed2c832 2550 if (dev)
8caab75f 2551 ctlr = container_of(dev, struct spi_controller, dev);
5ed2c832 2552 /* reference got in class_find_device */
8caab75f 2553 return ctlr;
8ae12a0d
DB
2554}
2555EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2556
d780c371
MS
2557/*-------------------------------------------------------------------------*/
2558
2559/* Core methods for SPI resource management */
2560
2561/**
2562 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2563 * during the processing of a spi_message while using
2564 * spi_transfer_one
2565 * @spi: the spi device for which we allocate memory
2566 * @release: the release code to execute for this resource
2567 * @size: size to alloc and return
2568 * @gfp: GFP allocation flags
2569 *
2570 * Return: the pointer to the allocated data
2571 *
2572 * This may get enhanced in the future to allocate from a memory pool
8caab75f 2573 * of the @spi_device or @spi_controller to avoid repeated allocations.
d780c371
MS
2574 */
2575void *spi_res_alloc(struct spi_device *spi,
2576 spi_res_release_t release,
2577 size_t size, gfp_t gfp)
2578{
2579 struct spi_res *sres;
2580
2581 sres = kzalloc(sizeof(*sres) + size, gfp);
2582 if (!sres)
2583 return NULL;
2584
2585 INIT_LIST_HEAD(&sres->entry);
2586 sres->release = release;
2587
2588 return sres->data;
2589}
2590EXPORT_SYMBOL_GPL(spi_res_alloc);
2591
2592/**
2593 * spi_res_free - free an spi resource
2594 * @res: pointer to the custom data of a resource
2595 *
2596 */
2597void spi_res_free(void *res)
2598{
2599 struct spi_res *sres = container_of(res, struct spi_res, data);
2600
2601 if (!res)
2602 return;
2603
2604 WARN_ON(!list_empty(&sres->entry));
2605 kfree(sres);
2606}
2607EXPORT_SYMBOL_GPL(spi_res_free);
2608
2609/**
2610 * spi_res_add - add a spi_res to the spi_message
2611 * @message: the spi message
2612 * @res: the spi_resource
2613 */
2614void spi_res_add(struct spi_message *message, void *res)
2615{
2616 struct spi_res *sres = container_of(res, struct spi_res, data);
2617
2618 WARN_ON(!list_empty(&sres->entry));
2619 list_add_tail(&sres->entry, &message->resources);
2620}
2621EXPORT_SYMBOL_GPL(spi_res_add);
2622
2623/**
2624 * spi_res_release - release all spi resources for this message
8caab75f 2625 * @ctlr: the @spi_controller
d780c371
MS
2626 * @message: the @spi_message
2627 */
8caab75f 2628void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
d780c371
MS
2629{
2630 struct spi_res *res;
2631
2632 while (!list_empty(&message->resources)) {
2633 res = list_last_entry(&message->resources,
2634 struct spi_res, entry);
2635
2636 if (res->release)
8caab75f 2637 res->release(ctlr, message, res->data);
d780c371
MS
2638
2639 list_del(&res->entry);
2640
2641 kfree(res);
2642 }
2643}
2644EXPORT_SYMBOL_GPL(spi_res_release);
8ae12a0d
DB
2645
2646/*-------------------------------------------------------------------------*/
2647
523baf5a
MS
2648/* Core methods for spi_message alterations */
2649
8caab75f 2650static void __spi_replace_transfers_release(struct spi_controller *ctlr,
523baf5a
MS
2651 struct spi_message *msg,
2652 void *res)
2653{
2654 struct spi_replaced_transfers *rxfer = res;
2655 size_t i;
2656
2657 /* call extra callback if requested */
2658 if (rxfer->release)
8caab75f 2659 rxfer->release(ctlr, msg, res);
523baf5a
MS
2660
2661 /* insert replaced transfers back into the message */
2662 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2663
2664 /* remove the formerly inserted entries */
2665 for (i = 0; i < rxfer->inserted; i++)
2666 list_del(&rxfer->inserted_transfers[i].transfer_list);
2667}
2668
2669/**
2670 * spi_replace_transfers - replace transfers with several transfers
2671 * and register change with spi_message.resources
2672 * @msg: the spi_message we work upon
2673 * @xfer_first: the first spi_transfer we want to replace
2674 * @remove: number of transfers to remove
2675 * @insert: the number of transfers we want to insert instead
2676 * @release: extra release code necessary in some circumstances
2677 * @extradatasize: extra data to allocate (with alignment guarantees
2678 * of struct @spi_transfer)
05885397 2679 * @gfp: gfp flags
523baf5a
MS
2680 *
2681 * Returns: pointer to @spi_replaced_transfers,
2682 * PTR_ERR(...) in case of errors.
2683 */
2684struct spi_replaced_transfers *spi_replace_transfers(
2685 struct spi_message *msg,
2686 struct spi_transfer *xfer_first,
2687 size_t remove,
2688 size_t insert,
2689 spi_replaced_release_t release,
2690 size_t extradatasize,
2691 gfp_t gfp)
2692{
2693 struct spi_replaced_transfers *rxfer;
2694 struct spi_transfer *xfer;
2695 size_t i;
2696
2697 /* allocate the structure using spi_res */
2698 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2699 insert * sizeof(struct spi_transfer)
2700 + sizeof(struct spi_replaced_transfers)
2701 + extradatasize,
2702 gfp);
2703 if (!rxfer)
2704 return ERR_PTR(-ENOMEM);
2705
2706 /* the release code to invoke before running the generic release */
2707 rxfer->release = release;
2708
2709 /* assign extradata */
2710 if (extradatasize)
2711 rxfer->extradata =
2712 &rxfer->inserted_transfers[insert];
2713
2714 /* init the replaced_transfers list */
2715 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2716
2717 /* assign the list_entry after which we should reinsert
2718 * the @replaced_transfers - it may be spi_message.messages!
2719 */
2720 rxfer->replaced_after = xfer_first->transfer_list.prev;
2721
2722 /* remove the requested number of transfers */
2723 for (i = 0; i < remove; i++) {
2724 /* if the entry after replaced_after it is msg->transfers
2725 * then we have been requested to remove more transfers
2726 * than are in the list
2727 */
2728 if (rxfer->replaced_after->next == &msg->transfers) {
2729 dev_err(&msg->spi->dev,
2730 "requested to remove more spi_transfers than are available\n");
2731 /* insert replaced transfers back into the message */
2732 list_splice(&rxfer->replaced_transfers,
2733 rxfer->replaced_after);
2734
2735 /* free the spi_replace_transfer structure */
2736 spi_res_free(rxfer);
2737
2738 /* and return with an error */
2739 return ERR_PTR(-EINVAL);
2740 }
2741
2742 /* remove the entry after replaced_after from list of
2743 * transfers and add it to list of replaced_transfers
2744 */
2745 list_move_tail(rxfer->replaced_after->next,
2746 &rxfer->replaced_transfers);
2747 }
2748
2749 /* create copy of the given xfer with identical settings
2750 * based on the first transfer to get removed
2751 */
2752 for (i = 0; i < insert; i++) {
2753 /* we need to run in reverse order */
2754 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2755
2756 /* copy all spi_transfer data */
2757 memcpy(xfer, xfer_first, sizeof(*xfer));
2758
2759 /* add to list */
2760 list_add(&xfer->transfer_list, rxfer->replaced_after);
2761
2762 /* clear cs_change and delay_usecs for all but the last */
2763 if (i) {
2764 xfer->cs_change = false;
2765 xfer->delay_usecs = 0;
2766 }
2767 }
2768
2769 /* set up inserted */
2770 rxfer->inserted = insert;
2771
2772 /* and register it with spi_res/spi_message */
2773 spi_res_add(msg, rxfer);
2774
2775 return rxfer;
2776}
2777EXPORT_SYMBOL_GPL(spi_replace_transfers);
2778
8caab75f 2779static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
08933418
FE
2780 struct spi_message *msg,
2781 struct spi_transfer **xferp,
2782 size_t maxsize,
2783 gfp_t gfp)
d9f12122
MS
2784{
2785 struct spi_transfer *xfer = *xferp, *xfers;
2786 struct spi_replaced_transfers *srt;
2787 size_t offset;
2788 size_t count, i;
2789
2790 /* warn once about this fact that we are splitting a transfer */
2791 dev_warn_once(&msg->spi->dev,
7d62f51e 2792 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
d9f12122
MS
2793 xfer->len, maxsize);
2794
2795 /* calculate how many we have to replace */
2796 count = DIV_ROUND_UP(xfer->len, maxsize);
2797
2798 /* create replacement */
2799 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
657d32ef
DC
2800 if (IS_ERR(srt))
2801 return PTR_ERR(srt);
d9f12122
MS
2802 xfers = srt->inserted_transfers;
2803
2804 /* now handle each of those newly inserted spi_transfers
2805 * note that the replacements spi_transfers all are preset
2806 * to the same values as *xferp, so tx_buf, rx_buf and len
2807 * are all identical (as well as most others)
2808 * so we just have to fix up len and the pointers.
2809 *
2810 * this also includes support for the depreciated
2811 * spi_message.is_dma_mapped interface
2812 */
2813
2814 /* the first transfer just needs the length modified, so we
2815 * run it outside the loop
2816 */
c8dab77a 2817 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
d9f12122
MS
2818
2819 /* all the others need rx_buf/tx_buf also set */
2820 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2821 /* update rx_buf, tx_buf and dma */
2822 if (xfers[i].rx_buf)
2823 xfers[i].rx_buf += offset;
2824 if (xfers[i].rx_dma)
2825 xfers[i].rx_dma += offset;
2826 if (xfers[i].tx_buf)
2827 xfers[i].tx_buf += offset;
2828 if (xfers[i].tx_dma)
2829 xfers[i].tx_dma += offset;
2830
2831 /* update length */
2832 xfers[i].len = min(maxsize, xfers[i].len - offset);
2833 }
2834
2835 /* we set up xferp to the last entry we have inserted,
2836 * so that we skip those already split transfers
2837 */
2838 *xferp = &xfers[count - 1];
2839
2840 /* increment statistics counters */
8caab75f 2841 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
d9f12122
MS
2842 transfers_split_maxsize);
2843 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2844 transfers_split_maxsize);
2845
2846 return 0;
2847}
2848
2849/**
2850 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2851 * when an individual transfer exceeds a
2852 * certain size
8caab75f 2853 * @ctlr: the @spi_controller for this transfer
3700ce95
MI
2854 * @msg: the @spi_message to transform
2855 * @maxsize: the maximum when to apply this
10f11a22 2856 * @gfp: GFP allocation flags
d9f12122
MS
2857 *
2858 * Return: status of transformation
2859 */
8caab75f 2860int spi_split_transfers_maxsize(struct spi_controller *ctlr,
d9f12122
MS
2861 struct spi_message *msg,
2862 size_t maxsize,
2863 gfp_t gfp)
2864{
2865 struct spi_transfer *xfer;
2866 int ret;
2867
2868 /* iterate over the transfer_list,
2869 * but note that xfer is advanced to the last transfer inserted
2870 * to avoid checking sizes again unnecessarily (also xfer does
2871 * potentiall belong to a different list by the time the
2872 * replacement has happened
2873 */
2874 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2875 if (xfer->len > maxsize) {
8caab75f
GU
2876 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2877 maxsize, gfp);
d9f12122
MS
2878 if (ret)
2879 return ret;
2880 }
2881 }
2882
2883 return 0;
2884}
2885EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
8ae12a0d
DB
2886
2887/*-------------------------------------------------------------------------*/
2888
8caab75f 2889/* Core methods for SPI controller protocol drivers. Some of the
7d077197
DB
2890 * other core methods are currently defined as inline functions.
2891 */
2892
8caab75f
GU
2893static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2894 u8 bits_per_word)
63ab645f 2895{
8caab75f 2896 if (ctlr->bits_per_word_mask) {
63ab645f
SB
2897 /* Only 32 bits fit in the mask */
2898 if (bits_per_word > 32)
2899 return -EINVAL;
8caab75f 2900 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
63ab645f
SB
2901 return -EINVAL;
2902 }
2903
2904 return 0;
2905}
2906
7d077197
DB
2907/**
2908 * spi_setup - setup SPI mode and clock rate
2909 * @spi: the device whose settings are being modified
2910 * Context: can sleep, and no requests are queued to the device
2911 *
2912 * SPI protocol drivers may need to update the transfer mode if the
2913 * device doesn't work with its default. They may likewise need
2914 * to update clock rates or word sizes from initial values. This function
2915 * changes those settings, and must be called from a context that can sleep.
2916 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2917 * effect the next time the device is selected and data is transferred to
2918 * or from it. When this function returns, the spi device is deselected.
2919 *
2920 * Note that this call will fail if the protocol driver specifies an option
2921 * that the underlying controller or its driver does not support. For
2922 * example, not all hardware supports wire transfers using nine bit words,
2923 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
2924 *
2925 * Return: zero on success, else a negative error code.
7d077197
DB
2926 */
2927int spi_setup(struct spi_device *spi)
2928{
83596fbe 2929 unsigned bad_bits, ugly_bits;
5ab8d262 2930 int status;
7d077197 2931
f477b7fb 2932 /* check mode to prevent that DUAL and QUAD set at the same time
2933 */
2934 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2935 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2936 dev_err(&spi->dev,
2937 "setup: can not select dual and quad at the same time\n");
2938 return -EINVAL;
2939 }
2940 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2941 */
2942 if ((spi->mode & SPI_3WIRE) && (spi->mode &
6b03061f
YNG
2943 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2944 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
f477b7fb 2945 return -EINVAL;
e7db06b5 2946 /* help drivers fail *cleanly* when they need options
8caab75f 2947 * that aren't supported with their current controller
cbaa62e0
DL
2948 * SPI_CS_WORD has a fallback software implementation,
2949 * so it is ignored here.
e7db06b5 2950 */
cbaa62e0 2951 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
83596fbe 2952 ugly_bits = bad_bits &
6b03061f
YNG
2953 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2954 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
83596fbe
GU
2955 if (ugly_bits) {
2956 dev_warn(&spi->dev,
2957 "setup: ignoring unsupported mode bits %x\n",
2958 ugly_bits);
2959 spi->mode &= ~ugly_bits;
2960 bad_bits &= ~ugly_bits;
2961 }
e7db06b5 2962 if (bad_bits) {
eb288a1f 2963 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
2964 bad_bits);
2965 return -EINVAL;
2966 }
2967
7d077197
DB
2968 if (!spi->bits_per_word)
2969 spi->bits_per_word = 8;
2970
8caab75f
GU
2971 status = __spi_validate_bits_per_word(spi->controller,
2972 spi->bits_per_word);
5ab8d262
AS
2973 if (status)
2974 return status;
63ab645f 2975
052eb2d4 2976 if (!spi->max_speed_hz)
8caab75f 2977 spi->max_speed_hz = spi->controller->max_speed_hz;
052eb2d4 2978
8caab75f
GU
2979 if (spi->controller->setup)
2980 status = spi->controller->setup(spi);
7d077197 2981
abeedb01
FCJ
2982 spi_set_cs(spi, false);
2983
5fe5f05e 2984 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
2985 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2986 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2987 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2988 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2989 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2990 spi->bits_per_word, spi->max_speed_hz,
2991 status);
2992
2993 return status;
2994}
2995EXPORT_SYMBOL_GPL(spi_setup);
2996
90808738 2997static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e 2998{
8caab75f 2999 struct spi_controller *ctlr = spi->controller;
e6811d1d 3000 struct spi_transfer *xfer;
6ea31293 3001 int w_size;
cf32b71e 3002
24a0013a
MB
3003 if (list_empty(&message->transfers))
3004 return -EINVAL;
24a0013a 3005
cbaa62e0 3006 /* If an SPI controller does not support toggling the CS line on each
71388b21
DL
3007 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3008 * for the CS line, we can emulate the CS-per-word hardware function by
cbaa62e0
DL
3009 * splitting transfers into one-word transfers and ensuring that
3010 * cs_change is set for each transfer.
3011 */
71388b21 3012 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
f3186dd8 3013 spi->cs_gpiod ||
71388b21 3014 gpio_is_valid(spi->cs_gpio))) {
cbaa62e0
DL
3015 size_t maxsize;
3016 int ret;
3017
3018 maxsize = (spi->bits_per_word + 7) / 8;
3019
3020 /* spi_split_transfers_maxsize() requires message->spi */
3021 message->spi = spi;
3022
3023 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3024 GFP_KERNEL);
3025 if (ret)
3026 return ret;
3027
3028 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3029 /* don't change cs_change on the last entry in the list */
3030 if (list_is_last(&xfer->transfer_list, &message->transfers))
3031 break;
3032 xfer->cs_change = 1;
3033 }
3034 }
3035
cf32b71e
ES
3036 /* Half-duplex links include original MicroWire, and ones with
3037 * only one data pin like SPI_3WIRE (switches direction) or where
3038 * either MOSI or MISO is missing. They can also be caused by
3039 * software limitations.
3040 */
8caab75f
GU
3041 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3042 (spi->mode & SPI_3WIRE)) {
3043 unsigned flags = ctlr->flags;
cf32b71e
ES
3044
3045 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3046 if (xfer->rx_buf && xfer->tx_buf)
3047 return -EINVAL;
8caab75f 3048 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
cf32b71e 3049 return -EINVAL;
8caab75f 3050 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
cf32b71e
ES
3051 return -EINVAL;
3052 }
3053 }
3054
e6811d1d 3055 /**
059b8ffe
LD
3056 * Set transfer bits_per_word and max speed as spi device default if
3057 * it is not set for this transfer.
f477b7fb 3058 * Set transfer tx_nbits and rx_nbits as single transfer default
3059 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
b7bb367a
JB
3060 * Ensure transfer word_delay is at least as long as that required by
3061 * device itself.
e6811d1d 3062 */
77e80588 3063 message->frame_length = 0;
e6811d1d 3064 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 3065 message->frame_length += xfer->len;
e6811d1d
LD
3066 if (!xfer->bits_per_word)
3067 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
3068
3069 if (!xfer->speed_hz)
059b8ffe 3070 xfer->speed_hz = spi->max_speed_hz;
7dc9fbc3 3071 if (!xfer->speed_hz)
8caab75f 3072 xfer->speed_hz = ctlr->max_speed_hz;
a6f87fad 3073
8caab75f
GU
3074 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3075 xfer->speed_hz = ctlr->max_speed_hz;
56ede94a 3076
8caab75f 3077 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
63ab645f 3078 return -EINVAL;
a2fd4f9f 3079
4d94bd21
II
3080 /*
3081 * SPI transfer length should be multiple of SPI word size
3082 * where SPI word size should be power-of-two multiple
3083 */
3084 if (xfer->bits_per_word <= 8)
3085 w_size = 1;
3086 else if (xfer->bits_per_word <= 16)
3087 w_size = 2;
3088 else
3089 w_size = 4;
3090
4d94bd21 3091 /* No partial transfers accepted */
6ea31293 3092 if (xfer->len % w_size)
4d94bd21
II
3093 return -EINVAL;
3094
8caab75f
GU
3095 if (xfer->speed_hz && ctlr->min_speed_hz &&
3096 xfer->speed_hz < ctlr->min_speed_hz)
a2fd4f9f 3097 return -EINVAL;
f477b7fb 3098
3099 if (xfer->tx_buf && !xfer->tx_nbits)
3100 xfer->tx_nbits = SPI_NBITS_SINGLE;
3101 if (xfer->rx_buf && !xfer->rx_nbits)
3102 xfer->rx_nbits = SPI_NBITS_SINGLE;
3103 /* check transfer tx/rx_nbits:
1afd9989
GU
3104 * 1. check the value matches one of single, dual and quad
3105 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 3106 */
db90a441
SP
3107 if (xfer->tx_buf) {
3108 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3109 xfer->tx_nbits != SPI_NBITS_DUAL &&
3110 xfer->tx_nbits != SPI_NBITS_QUAD)
3111 return -EINVAL;
3112 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3113 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3114 return -EINVAL;
3115 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3116 !(spi->mode & SPI_TX_QUAD))
3117 return -EINVAL;
db90a441 3118 }
f477b7fb 3119 /* check transfer rx_nbits */
db90a441
SP
3120 if (xfer->rx_buf) {
3121 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3122 xfer->rx_nbits != SPI_NBITS_DUAL &&
3123 xfer->rx_nbits != SPI_NBITS_QUAD)
3124 return -EINVAL;
3125 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3126 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3127 return -EINVAL;
3128 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3129 !(spi->mode & SPI_RX_QUAD))
3130 return -EINVAL;
db90a441 3131 }
b7bb367a
JB
3132
3133 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3134 xfer->word_delay_usecs = spi->word_delay_usecs;
e6811d1d
LD
3135 }
3136
cf32b71e 3137 message->status = -EINPROGRESS;
90808738
MB
3138
3139 return 0;
3140}
3141
3142static int __spi_async(struct spi_device *spi, struct spi_message *message)
3143{
8caab75f 3144 struct spi_controller *ctlr = spi->controller;
90808738 3145
b5932f5c
BB
3146 /*
3147 * Some controllers do not support doing regular SPI transfers. Return
3148 * ENOTSUPP when this is the case.
3149 */
3150 if (!ctlr->transfer)
3151 return -ENOTSUPP;
3152
90808738
MB
3153 message->spi = spi;
3154
8caab75f 3155 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
eca2ebc7
MS
3156 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3157
90808738
MB
3158 trace_spi_message_submit(message);
3159
8caab75f 3160 return ctlr->transfer(spi, message);
cf32b71e
ES
3161}
3162
568d0697
DB
3163/**
3164 * spi_async - asynchronous SPI transfer
3165 * @spi: device with which data will be exchanged
3166 * @message: describes the data transfers, including completion callback
3167 * Context: any (irqs may be blocked, etc)
3168 *
3169 * This call may be used in_irq and other contexts which can't sleep,
3170 * as well as from task contexts which can sleep.
3171 *
3172 * The completion callback is invoked in a context which can't sleep.
3173 * Before that invocation, the value of message->status is undefined.
3174 * When the callback is issued, message->status holds either zero (to
3175 * indicate complete success) or a negative error code. After that
3176 * callback returns, the driver which issued the transfer request may
3177 * deallocate the associated memory; it's no longer in use by any SPI
3178 * core or controller driver code.
3179 *
3180 * Note that although all messages to a spi_device are handled in
3181 * FIFO order, messages may go to different devices in other orders.
3182 * Some device might be higher priority, or have various "hard" access
3183 * time requirements, for example.
3184 *
3185 * On detection of any fault during the transfer, processing of
3186 * the entire message is aborted, and the device is deselected.
3187 * Until returning from the associated message completion callback,
3188 * no other spi_message queued to that device will be processed.
3189 * (This rule applies equally to all the synchronous transfer calls,
3190 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3191 *
3192 * Return: zero on success, else a negative error code.
568d0697
DB
3193 */
3194int spi_async(struct spi_device *spi, struct spi_message *message)
3195{
8caab75f 3196 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3197 int ret;
3198 unsigned long flags;
568d0697 3199
90808738
MB
3200 ret = __spi_validate(spi, message);
3201 if (ret != 0)
3202 return ret;
3203
8caab75f 3204 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
568d0697 3205
8caab75f 3206 if (ctlr->bus_lock_flag)
cf32b71e
ES
3207 ret = -EBUSY;
3208 else
3209 ret = __spi_async(spi, message);
568d0697 3210
8caab75f 3211 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3212
3213 return ret;
568d0697
DB
3214}
3215EXPORT_SYMBOL_GPL(spi_async);
3216
cf32b71e
ES
3217/**
3218 * spi_async_locked - version of spi_async with exclusive bus usage
3219 * @spi: device with which data will be exchanged
3220 * @message: describes the data transfers, including completion callback
3221 * Context: any (irqs may be blocked, etc)
3222 *
3223 * This call may be used in_irq and other contexts which can't sleep,
3224 * as well as from task contexts which can sleep.
3225 *
3226 * The completion callback is invoked in a context which can't sleep.
3227 * Before that invocation, the value of message->status is undefined.
3228 * When the callback is issued, message->status holds either zero (to
3229 * indicate complete success) or a negative error code. After that
3230 * callback returns, the driver which issued the transfer request may
3231 * deallocate the associated memory; it's no longer in use by any SPI
3232 * core or controller driver code.
3233 *
3234 * Note that although all messages to a spi_device are handled in
3235 * FIFO order, messages may go to different devices in other orders.
3236 * Some device might be higher priority, or have various "hard" access
3237 * time requirements, for example.
3238 *
3239 * On detection of any fault during the transfer, processing of
3240 * the entire message is aborted, and the device is deselected.
3241 * Until returning from the associated message completion callback,
3242 * no other spi_message queued to that device will be processed.
3243 * (This rule applies equally to all the synchronous transfer calls,
3244 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3245 *
3246 * Return: zero on success, else a negative error code.
cf32b71e
ES
3247 */
3248int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3249{
8caab75f 3250 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3251 int ret;
3252 unsigned long flags;
3253
90808738
MB
3254 ret = __spi_validate(spi, message);
3255 if (ret != 0)
3256 return ret;
3257
8caab75f 3258 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3259
3260 ret = __spi_async(spi, message);
3261
8caab75f 3262 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3263
3264 return ret;
3265
3266}
3267EXPORT_SYMBOL_GPL(spi_async_locked);
3268
7d077197
DB
3269/*-------------------------------------------------------------------------*/
3270
8caab75f 3271/* Utility methods for SPI protocol drivers, layered on
7d077197
DB
3272 * top of the core. Some other utility methods are defined as
3273 * inline functions.
3274 */
3275
5d870c8e
AM
3276static void spi_complete(void *arg)
3277{
3278 complete(arg);
3279}
3280
ef4d96ec 3281static int __spi_sync(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
3282{
3283 DECLARE_COMPLETION_ONSTACK(done);
3284 int status;
8caab75f 3285 struct spi_controller *ctlr = spi->controller;
0461a414
MB
3286 unsigned long flags;
3287
3288 status = __spi_validate(spi, message);
3289 if (status != 0)
3290 return status;
cf32b71e
ES
3291
3292 message->complete = spi_complete;
3293 message->context = &done;
0461a414 3294 message->spi = spi;
cf32b71e 3295
8caab75f 3296 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
eca2ebc7
MS
3297 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3298
0461a414
MB
3299 /* If we're not using the legacy transfer method then we will
3300 * try to transfer in the calling context so special case.
3301 * This code would be less tricky if we could remove the
3302 * support for driver implemented message queues.
3303 */
8caab75f
GU
3304 if (ctlr->transfer == spi_queued_transfer) {
3305 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3306
3307 trace_spi_message_submit(message);
3308
3309 status = __spi_queued_transfer(spi, message, false);
3310
8caab75f 3311 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3312 } else {
3313 status = spi_async_locked(spi, message);
3314 }
cf32b71e 3315
cf32b71e 3316 if (status == 0) {
0461a414
MB
3317 /* Push out the messages in the calling context if we
3318 * can.
3319 */
8caab75f
GU
3320 if (ctlr->transfer == spi_queued_transfer) {
3321 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
eca2ebc7
MS
3322 spi_sync_immediate);
3323 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3324 spi_sync_immediate);
8caab75f 3325 __spi_pump_messages(ctlr, false);
eca2ebc7 3326 }
0461a414 3327
cf32b71e
ES
3328 wait_for_completion(&done);
3329 status = message->status;
3330 }
3331 message->context = NULL;
3332 return status;
3333}
3334
8ae12a0d
DB
3335/**
3336 * spi_sync - blocking/synchronous SPI data transfers
3337 * @spi: device with which data will be exchanged
3338 * @message: describes the data transfers
33e34dc6 3339 * Context: can sleep
8ae12a0d
DB
3340 *
3341 * This call may only be used from a context that may sleep. The sleep
3342 * is non-interruptible, and has no timeout. Low-overhead controller
3343 * drivers may DMA directly into and out of the message buffers.
3344 *
3345 * Note that the SPI device's chip select is active during the message,
3346 * and then is normally disabled between messages. Drivers for some
3347 * frequently-used devices may want to minimize costs of selecting a chip,
3348 * by leaving it selected in anticipation that the next message will go
3349 * to the same chip. (That may increase power usage.)
3350 *
0c868461
DB
3351 * Also, the caller is guaranteeing that the memory associated with the
3352 * message will not be freed before this call returns.
3353 *
97d56dc6 3354 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3355 */
3356int spi_sync(struct spi_device *spi, struct spi_message *message)
3357{
ef4d96ec
MB
3358 int ret;
3359
8caab75f 3360 mutex_lock(&spi->controller->bus_lock_mutex);
ef4d96ec 3361 ret = __spi_sync(spi, message);
8caab75f 3362 mutex_unlock(&spi->controller->bus_lock_mutex);
ef4d96ec
MB
3363
3364 return ret;
8ae12a0d
DB
3365}
3366EXPORT_SYMBOL_GPL(spi_sync);
3367
cf32b71e
ES
3368/**
3369 * spi_sync_locked - version of spi_sync with exclusive bus usage
3370 * @spi: device with which data will be exchanged
3371 * @message: describes the data transfers
3372 * Context: can sleep
3373 *
3374 * This call may only be used from a context that may sleep. The sleep
3375 * is non-interruptible, and has no timeout. Low-overhead controller
3376 * drivers may DMA directly into and out of the message buffers.
3377 *
3378 * This call should be used by drivers that require exclusive access to the
25985edc 3379 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
3380 * be released by a spi_bus_unlock call when the exclusive access is over.
3381 *
97d56dc6 3382 * Return: zero on success, else a negative error code.
cf32b71e
ES
3383 */
3384int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3385{
ef4d96ec 3386 return __spi_sync(spi, message);
cf32b71e
ES
3387}
3388EXPORT_SYMBOL_GPL(spi_sync_locked);
3389
3390/**
3391 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
8caab75f 3392 * @ctlr: SPI bus master that should be locked for exclusive bus access
cf32b71e
ES
3393 * Context: can sleep
3394 *
3395 * This call may only be used from a context that may sleep. The sleep
3396 * is non-interruptible, and has no timeout.
3397 *
3398 * This call should be used by drivers that require exclusive access to the
3399 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3400 * exclusive access is over. Data transfer must be done by spi_sync_locked
3401 * and spi_async_locked calls when the SPI bus lock is held.
3402 *
97d56dc6 3403 * Return: always zero.
cf32b71e 3404 */
8caab75f 3405int spi_bus_lock(struct spi_controller *ctlr)
cf32b71e
ES
3406{
3407 unsigned long flags;
3408
8caab75f 3409 mutex_lock(&ctlr->bus_lock_mutex);
cf32b71e 3410
8caab75f
GU
3411 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3412 ctlr->bus_lock_flag = 1;
3413 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3414
3415 /* mutex remains locked until spi_bus_unlock is called */
3416
3417 return 0;
3418}
3419EXPORT_SYMBOL_GPL(spi_bus_lock);
3420
3421/**
3422 * spi_bus_unlock - release the lock for exclusive SPI bus usage
8caab75f 3423 * @ctlr: SPI bus master that was locked for exclusive bus access
cf32b71e
ES
3424 * Context: can sleep
3425 *
3426 * This call may only be used from a context that may sleep. The sleep
3427 * is non-interruptible, and has no timeout.
3428 *
3429 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3430 * call.
3431 *
97d56dc6 3432 * Return: always zero.
cf32b71e 3433 */
8caab75f 3434int spi_bus_unlock(struct spi_controller *ctlr)
cf32b71e 3435{
8caab75f 3436 ctlr->bus_lock_flag = 0;
cf32b71e 3437
8caab75f 3438 mutex_unlock(&ctlr->bus_lock_mutex);
cf32b71e
ES
3439
3440 return 0;
3441}
3442EXPORT_SYMBOL_GPL(spi_bus_unlock);
3443
a9948b61 3444/* portable code must never pass more than 32 bytes */
5fe5f05e 3445#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
3446
3447static u8 *buf;
3448
3449/**
3450 * spi_write_then_read - SPI synchronous write followed by read
3451 * @spi: device with which data will be exchanged
3452 * @txbuf: data to be written (need not be dma-safe)
3453 * @n_tx: size of txbuf, in bytes
27570497
JP
3454 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3455 * @n_rx: size of rxbuf, in bytes
33e34dc6 3456 * Context: can sleep
8ae12a0d
DB
3457 *
3458 * This performs a half duplex MicroWire style transaction with the
3459 * device, sending txbuf and then reading rxbuf. The return value
3460 * is zero for success, else a negative errno status code.
b885244e 3461 * This call may only be used from a context that may sleep.
8ae12a0d 3462 *
0c868461 3463 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
3464 * portable code should never use this for more than 32 bytes.
3465 * Performance-sensitive or bulk transfer code should instead use
0c868461 3466 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
3467 *
3468 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3469 */
3470int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
3471 const void *txbuf, unsigned n_tx,
3472 void *rxbuf, unsigned n_rx)
8ae12a0d 3473{
068f4070 3474 static DEFINE_MUTEX(lock);
8ae12a0d
DB
3475
3476 int status;
3477 struct spi_message message;
bdff549e 3478 struct spi_transfer x[2];
8ae12a0d
DB
3479 u8 *local_buf;
3480
b3a223ee
MB
3481 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3482 * copying here, (as a pure convenience thing), but we can
3483 * keep heap costs out of the hot path unless someone else is
3484 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 3485 */
b3a223ee 3486 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
3487 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3488 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
3489 if (!local_buf)
3490 return -ENOMEM;
3491 } else {
3492 local_buf = buf;
3493 }
8ae12a0d 3494
8275c642 3495 spi_message_init(&message);
5fe5f05e 3496 memset(x, 0, sizeof(x));
bdff549e
DB
3497 if (n_tx) {
3498 x[0].len = n_tx;
3499 spi_message_add_tail(&x[0], &message);
3500 }
3501 if (n_rx) {
3502 x[1].len = n_rx;
3503 spi_message_add_tail(&x[1], &message);
3504 }
8275c642 3505
8ae12a0d 3506 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
3507 x[0].tx_buf = local_buf;
3508 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
3509
3510 /* do the i/o */
8ae12a0d 3511 status = spi_sync(spi, &message);
9b938b74 3512 if (status == 0)
bdff549e 3513 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 3514
bdff549e 3515 if (x[0].tx_buf == buf)
068f4070 3516 mutex_unlock(&lock);
8ae12a0d
DB
3517 else
3518 kfree(local_buf);
3519
3520 return status;
3521}
3522EXPORT_SYMBOL_GPL(spi_write_then_read);
3523
3524/*-------------------------------------------------------------------------*/
3525
5f143af7 3526#if IS_ENABLED(CONFIG_OF)
ce79d54a
PA
3527static int __spi_of_device_match(struct device *dev, void *data)
3528{
3529 return dev->of_node == data;
3530}
3531
3532/* must call put_device() when done with returned spi_device device */
5f143af7 3533struct spi_device *of_find_spi_device_by_node(struct device_node *node)
ce79d54a
PA
3534{
3535 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3536 __spi_of_device_match);
3537 return dev ? to_spi_device(dev) : NULL;
3538}
5f143af7
MF
3539EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3540#endif /* IS_ENABLED(CONFIG_OF) */
ce79d54a 3541
5f143af7 3542#if IS_ENABLED(CONFIG_OF_DYNAMIC)
8caab75f 3543static int __spi_of_controller_match(struct device *dev, const void *data)
ce79d54a
PA
3544{
3545 return dev->of_node == data;
3546}
3547
8caab75f
GU
3548/* the spi controllers are not using spi_bus, so we find it with another way */
3549static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
ce79d54a
PA
3550{
3551 struct device *dev;
3552
3553 dev = class_find_device(&spi_master_class, NULL, node,
8caab75f 3554 __spi_of_controller_match);
6c364062
GU
3555 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3556 dev = class_find_device(&spi_slave_class, NULL, node,
8caab75f 3557 __spi_of_controller_match);
ce79d54a
PA
3558 if (!dev)
3559 return NULL;
3560
3561 /* reference got in class_find_device */
8caab75f 3562 return container_of(dev, struct spi_controller, dev);
ce79d54a
PA
3563}
3564
3565static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3566 void *arg)
3567{
3568 struct of_reconfig_data *rd = arg;
8caab75f 3569 struct spi_controller *ctlr;
ce79d54a
PA
3570 struct spi_device *spi;
3571
3572 switch (of_reconfig_get_state_change(action, arg)) {
3573 case OF_RECONFIG_CHANGE_ADD:
8caab75f
GU
3574 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3575 if (ctlr == NULL)
ce79d54a
PA
3576 return NOTIFY_OK; /* not for us */
3577
bd6c1644 3578 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
8caab75f 3579 put_device(&ctlr->dev);
bd6c1644
GU
3580 return NOTIFY_OK;
3581 }
3582
8caab75f
GU
3583 spi = of_register_spi_device(ctlr, rd->dn);
3584 put_device(&ctlr->dev);
ce79d54a
PA
3585
3586 if (IS_ERR(spi)) {
25c56c88
RH
3587 pr_err("%s: failed to create for '%pOF'\n",
3588 __func__, rd->dn);
e0af98a7 3589 of_node_clear_flag(rd->dn, OF_POPULATED);
ce79d54a
PA
3590 return notifier_from_errno(PTR_ERR(spi));
3591 }
3592 break;
3593
3594 case OF_RECONFIG_CHANGE_REMOVE:
bd6c1644
GU
3595 /* already depopulated? */
3596 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3597 return NOTIFY_OK;
3598
ce79d54a
PA
3599 /* find our device by node */
3600 spi = of_find_spi_device_by_node(rd->dn);
3601 if (spi == NULL)
3602 return NOTIFY_OK; /* no? not meant for us */
3603
3604 /* unregister takes one ref away */
3605 spi_unregister_device(spi);
3606
3607 /* and put the reference of the find */
3608 put_device(&spi->dev);
3609 break;
3610 }
3611
3612 return NOTIFY_OK;
3613}
3614
3615static struct notifier_block spi_of_notifier = {
3616 .notifier_call = of_spi_notify,
3617};
3618#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3619extern struct notifier_block spi_of_notifier;
3620#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3621
7f24467f 3622#if IS_ENABLED(CONFIG_ACPI)
8caab75f 3623static int spi_acpi_controller_match(struct device *dev, const void *data)
7f24467f
OP
3624{
3625 return ACPI_COMPANION(dev->parent) == data;
3626}
3627
3628static int spi_acpi_device_match(struct device *dev, void *data)
3629{
3630 return ACPI_COMPANION(dev) == data;
3631}
3632
8caab75f 3633static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
7f24467f
OP
3634{
3635 struct device *dev;
3636
3637 dev = class_find_device(&spi_master_class, NULL, adev,
8caab75f 3638 spi_acpi_controller_match);
6c364062
GU
3639 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3640 dev = class_find_device(&spi_slave_class, NULL, adev,
8caab75f 3641 spi_acpi_controller_match);
7f24467f
OP
3642 if (!dev)
3643 return NULL;
3644
8caab75f 3645 return container_of(dev, struct spi_controller, dev);
7f24467f
OP
3646}
3647
3648static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3649{
3650 struct device *dev;
3651
3652 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3653
3654 return dev ? to_spi_device(dev) : NULL;
3655}
3656
3657static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3658 void *arg)
3659{
3660 struct acpi_device *adev = arg;
8caab75f 3661 struct spi_controller *ctlr;
7f24467f
OP
3662 struct spi_device *spi;
3663
3664 switch (value) {
3665 case ACPI_RECONFIG_DEVICE_ADD:
8caab75f
GU
3666 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3667 if (!ctlr)
7f24467f
OP
3668 break;
3669
8caab75f
GU
3670 acpi_register_spi_device(ctlr, adev);
3671 put_device(&ctlr->dev);
7f24467f
OP
3672 break;
3673 case ACPI_RECONFIG_DEVICE_REMOVE:
3674 if (!acpi_device_enumerated(adev))
3675 break;
3676
3677 spi = acpi_spi_find_device_by_adev(adev);
3678 if (!spi)
3679 break;
3680
3681 spi_unregister_device(spi);
3682 put_device(&spi->dev);
3683 break;
3684 }
3685
3686 return NOTIFY_OK;
3687}
3688
3689static struct notifier_block spi_acpi_notifier = {
3690 .notifier_call = acpi_spi_notify,
3691};
3692#else
3693extern struct notifier_block spi_acpi_notifier;
3694#endif
3695
8ae12a0d
DB
3696static int __init spi_init(void)
3697{
b885244e
DB
3698 int status;
3699
e94b1766 3700 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
3701 if (!buf) {
3702 status = -ENOMEM;
3703 goto err0;
3704 }
3705
3706 status = bus_register(&spi_bus_type);
3707 if (status < 0)
3708 goto err1;
8ae12a0d 3709
b885244e
DB
3710 status = class_register(&spi_master_class);
3711 if (status < 0)
3712 goto err2;
ce79d54a 3713
6c364062
GU
3714 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3715 status = class_register(&spi_slave_class);
3716 if (status < 0)
3717 goto err3;
3718 }
3719
5267720e 3720 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a 3721 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
7f24467f
OP
3722 if (IS_ENABLED(CONFIG_ACPI))
3723 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
ce79d54a 3724
8ae12a0d 3725 return 0;
b885244e 3726
6c364062
GU
3727err3:
3728 class_unregister(&spi_master_class);
b885244e
DB
3729err2:
3730 bus_unregister(&spi_bus_type);
3731err1:
3732 kfree(buf);
3733 buf = NULL;
3734err0:
3735 return status;
8ae12a0d 3736}
b885244e 3737
8ae12a0d
DB
3738/* board_info is normally registered in arch_initcall(),
3739 * but even essential drivers wait till later
b885244e
DB
3740 *
3741 * REVISIT only boardinfo really needs static linking. the rest (device and
3742 * driver registration) _could_ be dynamically linked (modular) ... costs
3743 * include needing to have boardinfo data structures be much more public.
8ae12a0d 3744 */
673c0c00 3745postcore_initcall(spi_init);
f0125f1a 3746