]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: Provide core support for full duplex devices
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
99adef31
MB
27#include <linux/dma-mapping.h>
28#include <linux/dmaengine.h>
94040828 29#include <linux/mutex.h>
2b7a32f7 30#include <linux/of_device.h>
d57a4282 31#include <linux/of_irq.h>
5a0e3ad6 32#include <linux/slab.h>
e0626e38 33#include <linux/mod_devicetable.h>
8ae12a0d 34#include <linux/spi/spi.h>
74317984 35#include <linux/of_gpio.h>
3ae22e8c 36#include <linux/pm_runtime.h>
025ed130 37#include <linux/export.h>
8bd75c77 38#include <linux/sched/rt.h>
ffbbdd21
LW
39#include <linux/delay.h>
40#include <linux/kthread.h>
64bee4d2
MW
41#include <linux/ioport.h>
42#include <linux/acpi.h>
8ae12a0d 43
56ec1978
MB
44#define CREATE_TRACE_POINTS
45#include <trace/events/spi.h>
46
8ae12a0d
DB
47static void spidev_release(struct device *dev)
48{
0ffa0285 49 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
50
51 /* spi masters may cleanup for released devices */
52 if (spi->master->cleanup)
53 spi->master->cleanup(spi);
54
0c868461 55 spi_master_put(spi->master);
07a389fe 56 kfree(spi);
8ae12a0d
DB
57}
58
59static ssize_t
60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61{
62 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
8ae12a0d 68
d8e328b3 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 70}
aa7da564 71static DEVICE_ATTR_RO(modalias);
8ae12a0d 72
aa7da564
GKH
73static struct attribute *spi_dev_attrs[] = {
74 &dev_attr_modalias.attr,
75 NULL,
8ae12a0d 76};
aa7da564 77ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
78
79/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80 * and the sysfs version makes coldplug work too.
81 */
82
75368bf6
AV
83static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
84 const struct spi_device *sdev)
85{
86 while (id->name[0]) {
87 if (!strcmp(sdev->modalias, id->name))
88 return id;
89 id++;
90 }
91 return NULL;
92}
93
94const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
95{
96 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
97
98 return spi_match_id(sdrv->id_table, sdev);
99}
100EXPORT_SYMBOL_GPL(spi_get_device_id);
101
8ae12a0d
DB
102static int spi_match_device(struct device *dev, struct device_driver *drv)
103{
104 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
105 const struct spi_driver *sdrv = to_spi_driver(drv);
106
2b7a32f7
SA
107 /* Attempt an OF style match */
108 if (of_driver_match_device(dev, drv))
109 return 1;
110
64bee4d2
MW
111 /* Then try ACPI */
112 if (acpi_driver_match_device(dev, drv))
113 return 1;
114
75368bf6
AV
115 if (sdrv->id_table)
116 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 117
35f74fca 118 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
119}
120
7eff2e7a 121static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
122{
123 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
124 int rc;
125
126 rc = acpi_device_uevent_modalias(dev, env);
127 if (rc != -ENODEV)
128 return rc;
8ae12a0d 129
e0626e38 130 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
131 return 0;
132}
133
3ae22e8c
MB
134#ifdef CONFIG_PM_SLEEP
135static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 136{
3c72426f 137 int value = 0;
b885244e 138 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 139
8ae12a0d 140 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
141 if (drv) {
142 if (drv->suspend)
143 value = drv->suspend(to_spi_device(dev), message);
144 else
145 dev_dbg(dev, "... can't suspend\n");
146 }
8ae12a0d
DB
147 return value;
148}
149
3ae22e8c 150static int spi_legacy_resume(struct device *dev)
8ae12a0d 151{
3c72426f 152 int value = 0;
b885244e 153 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 154
8ae12a0d 155 /* resume may restart the i/o queue */
3c72426f
DB
156 if (drv) {
157 if (drv->resume)
158 value = drv->resume(to_spi_device(dev));
159 else
160 dev_dbg(dev, "... can't resume\n");
161 }
8ae12a0d
DB
162 return value;
163}
164
3ae22e8c
MB
165static int spi_pm_suspend(struct device *dev)
166{
167 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168
169 if (pm)
170 return pm_generic_suspend(dev);
171 else
172 return spi_legacy_suspend(dev, PMSG_SUSPEND);
173}
174
175static int spi_pm_resume(struct device *dev)
176{
177 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178
179 if (pm)
180 return pm_generic_resume(dev);
181 else
182 return spi_legacy_resume(dev);
183}
184
185static int spi_pm_freeze(struct device *dev)
186{
187 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188
189 if (pm)
190 return pm_generic_freeze(dev);
191 else
192 return spi_legacy_suspend(dev, PMSG_FREEZE);
193}
194
195static int spi_pm_thaw(struct device *dev)
196{
197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198
199 if (pm)
200 return pm_generic_thaw(dev);
201 else
202 return spi_legacy_resume(dev);
203}
204
205static int spi_pm_poweroff(struct device *dev)
206{
207 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208
209 if (pm)
210 return pm_generic_poweroff(dev);
211 else
212 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
213}
214
215static int spi_pm_restore(struct device *dev)
216{
217 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218
219 if (pm)
220 return pm_generic_restore(dev);
221 else
222 return spi_legacy_resume(dev);
223}
8ae12a0d 224#else
3ae22e8c
MB
225#define spi_pm_suspend NULL
226#define spi_pm_resume NULL
227#define spi_pm_freeze NULL
228#define spi_pm_thaw NULL
229#define spi_pm_poweroff NULL
230#define spi_pm_restore NULL
8ae12a0d
DB
231#endif
232
3ae22e8c
MB
233static const struct dev_pm_ops spi_pm = {
234 .suspend = spi_pm_suspend,
235 .resume = spi_pm_resume,
236 .freeze = spi_pm_freeze,
237 .thaw = spi_pm_thaw,
238 .poweroff = spi_pm_poweroff,
239 .restore = spi_pm_restore,
240 SET_RUNTIME_PM_OPS(
241 pm_generic_runtime_suspend,
242 pm_generic_runtime_resume,
45f0a85c 243 NULL
3ae22e8c
MB
244 )
245};
246
8ae12a0d
DB
247struct bus_type spi_bus_type = {
248 .name = "spi",
aa7da564 249 .dev_groups = spi_dev_groups,
8ae12a0d
DB
250 .match = spi_match_device,
251 .uevent = spi_uevent,
3ae22e8c 252 .pm = &spi_pm,
8ae12a0d
DB
253};
254EXPORT_SYMBOL_GPL(spi_bus_type);
255
b885244e
DB
256
257static int spi_drv_probe(struct device *dev)
258{
259 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
260 struct spi_device *spi = to_spi_device(dev);
261 int ret;
262
263 acpi_dev_pm_attach(&spi->dev, true);
264 ret = sdrv->probe(spi);
265 if (ret)
266 acpi_dev_pm_detach(&spi->dev, true);
b885244e 267
33cf00e5 268 return ret;
b885244e
DB
269}
270
271static int spi_drv_remove(struct device *dev)
272{
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
274 struct spi_device *spi = to_spi_device(dev);
275 int ret;
276
277 ret = sdrv->remove(spi);
278 acpi_dev_pm_detach(&spi->dev, true);
b885244e 279
33cf00e5 280 return ret;
b885244e
DB
281}
282
283static void spi_drv_shutdown(struct device *dev)
284{
285 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
286
287 sdrv->shutdown(to_spi_device(dev));
288}
289
33e34dc6
DB
290/**
291 * spi_register_driver - register a SPI driver
292 * @sdrv: the driver to register
293 * Context: can sleep
294 */
b885244e
DB
295int spi_register_driver(struct spi_driver *sdrv)
296{
297 sdrv->driver.bus = &spi_bus_type;
298 if (sdrv->probe)
299 sdrv->driver.probe = spi_drv_probe;
300 if (sdrv->remove)
301 sdrv->driver.remove = spi_drv_remove;
302 if (sdrv->shutdown)
303 sdrv->driver.shutdown = spi_drv_shutdown;
304 return driver_register(&sdrv->driver);
305}
306EXPORT_SYMBOL_GPL(spi_register_driver);
307
8ae12a0d
DB
308/*-------------------------------------------------------------------------*/
309
310/* SPI devices should normally not be created by SPI device drivers; that
311 * would make them board-specific. Similarly with SPI master drivers.
312 * Device registration normally goes into like arch/.../mach.../board-YYY.c
313 * with other readonly (flashable) information about mainboard devices.
314 */
315
316struct boardinfo {
317 struct list_head list;
2b9603a0 318 struct spi_board_info board_info;
8ae12a0d
DB
319};
320
321static LIST_HEAD(board_list);
2b9603a0
FT
322static LIST_HEAD(spi_master_list);
323
324/*
325 * Used to protect add/del opertion for board_info list and
326 * spi_master list, and their matching process
327 */
94040828 328static DEFINE_MUTEX(board_lock);
8ae12a0d 329
dc87c98e
GL
330/**
331 * spi_alloc_device - Allocate a new SPI device
332 * @master: Controller to which device is connected
333 * Context: can sleep
334 *
335 * Allows a driver to allocate and initialize a spi_device without
336 * registering it immediately. This allows a driver to directly
337 * fill the spi_device with device parameters before calling
338 * spi_add_device() on it.
339 *
340 * Caller is responsible to call spi_add_device() on the returned
341 * spi_device structure to add it to the SPI master. If the caller
342 * needs to discard the spi_device without adding it, then it should
343 * call spi_dev_put() on it.
344 *
345 * Returns a pointer to the new device, or NULL.
346 */
347struct spi_device *spi_alloc_device(struct spi_master *master)
348{
349 struct spi_device *spi;
350 struct device *dev = master->dev.parent;
351
352 if (!spi_master_get(master))
353 return NULL;
354
5fe5f05e 355 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
356 if (!spi) {
357 dev_err(dev, "cannot alloc spi_device\n");
358 spi_master_put(master);
359 return NULL;
360 }
361
362 spi->master = master;
178db7d3 363 spi->dev.parent = &master->dev;
dc87c98e
GL
364 spi->dev.bus = &spi_bus_type;
365 spi->dev.release = spidev_release;
446411e1 366 spi->cs_gpio = -ENOENT;
dc87c98e
GL
367 device_initialize(&spi->dev);
368 return spi;
369}
370EXPORT_SYMBOL_GPL(spi_alloc_device);
371
e13ac47b
JN
372static void spi_dev_set_name(struct spi_device *spi)
373{
374 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
375
376 if (adev) {
377 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
378 return;
379 }
380
381 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
382 spi->chip_select);
383}
384
b6fb8d3a
MW
385static int spi_dev_check(struct device *dev, void *data)
386{
387 struct spi_device *spi = to_spi_device(dev);
388 struct spi_device *new_spi = data;
389
390 if (spi->master == new_spi->master &&
391 spi->chip_select == new_spi->chip_select)
392 return -EBUSY;
393 return 0;
394}
395
dc87c98e
GL
396/**
397 * spi_add_device - Add spi_device allocated with spi_alloc_device
398 * @spi: spi_device to register
399 *
400 * Companion function to spi_alloc_device. Devices allocated with
401 * spi_alloc_device can be added onto the spi bus with this function.
402 *
e48880e0 403 * Returns 0 on success; negative errno on failure
dc87c98e
GL
404 */
405int spi_add_device(struct spi_device *spi)
406{
e48880e0 407 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
408 struct spi_master *master = spi->master;
409 struct device *dev = master->dev.parent;
dc87c98e
GL
410 int status;
411
412 /* Chipselects are numbered 0..max; validate. */
74317984 413 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
414 dev_err(dev, "cs%d >= max %d\n",
415 spi->chip_select,
74317984 416 master->num_chipselect);
dc87c98e
GL
417 return -EINVAL;
418 }
419
420 /* Set the bus ID string */
e13ac47b 421 spi_dev_set_name(spi);
e48880e0
DB
422
423 /* We need to make sure there's no other device with this
424 * chipselect **BEFORE** we call setup(), else we'll trash
425 * its configuration. Lock against concurrent add() calls.
426 */
427 mutex_lock(&spi_add_lock);
428
b6fb8d3a
MW
429 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
430 if (status) {
e48880e0
DB
431 dev_err(dev, "chipselect %d already in use\n",
432 spi->chip_select);
e48880e0
DB
433 goto done;
434 }
435
74317984
JCPV
436 if (master->cs_gpios)
437 spi->cs_gpio = master->cs_gpios[spi->chip_select];
438
e48880e0
DB
439 /* Drivers may modify this initial i/o setup, but will
440 * normally rely on the device being setup. Devices
441 * using SPI_CS_HIGH can't coexist well otherwise...
442 */
7d077197 443 status = spi_setup(spi);
dc87c98e 444 if (status < 0) {
eb288a1f
LW
445 dev_err(dev, "can't setup %s, status %d\n",
446 dev_name(&spi->dev), status);
e48880e0 447 goto done;
dc87c98e
GL
448 }
449
e48880e0 450 /* Device may be bound to an active driver when this returns */
dc87c98e 451 status = device_add(&spi->dev);
e48880e0 452 if (status < 0)
eb288a1f
LW
453 dev_err(dev, "can't add %s, status %d\n",
454 dev_name(&spi->dev), status);
e48880e0 455 else
35f74fca 456 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 457
e48880e0
DB
458done:
459 mutex_unlock(&spi_add_lock);
460 return status;
dc87c98e
GL
461}
462EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 463
33e34dc6
DB
464/**
465 * spi_new_device - instantiate one new SPI device
466 * @master: Controller to which device is connected
467 * @chip: Describes the SPI device
468 * Context: can sleep
469 *
470 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
471 * after board init creates the hard-wired devices. Some development
472 * platforms may not be able to use spi_register_board_info though, and
473 * this is exported so that for example a USB or parport based adapter
474 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
475 *
476 * Returns the new device, or NULL.
8ae12a0d 477 */
e9d5a461
AB
478struct spi_device *spi_new_device(struct spi_master *master,
479 struct spi_board_info *chip)
8ae12a0d
DB
480{
481 struct spi_device *proxy;
8ae12a0d
DB
482 int status;
483
082c8cb4
DB
484 /* NOTE: caller did any chip->bus_num checks necessary.
485 *
486 * Also, unless we change the return value convention to use
487 * error-or-pointer (not NULL-or-pointer), troubleshootability
488 * suggests syslogged diagnostics are best here (ugh).
489 */
490
dc87c98e
GL
491 proxy = spi_alloc_device(master);
492 if (!proxy)
8ae12a0d
DB
493 return NULL;
494
102eb975
GL
495 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
496
8ae12a0d
DB
497 proxy->chip_select = chip->chip_select;
498 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 499 proxy->mode = chip->mode;
8ae12a0d 500 proxy->irq = chip->irq;
102eb975 501 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
502 proxy->dev.platform_data = (void *) chip->platform_data;
503 proxy->controller_data = chip->controller_data;
504 proxy->controller_state = NULL;
8ae12a0d 505
dc87c98e 506 status = spi_add_device(proxy);
8ae12a0d 507 if (status < 0) {
dc87c98e
GL
508 spi_dev_put(proxy);
509 return NULL;
8ae12a0d
DB
510 }
511
8ae12a0d
DB
512 return proxy;
513}
514EXPORT_SYMBOL_GPL(spi_new_device);
515
2b9603a0
FT
516static void spi_match_master_to_boardinfo(struct spi_master *master,
517 struct spi_board_info *bi)
518{
519 struct spi_device *dev;
520
521 if (master->bus_num != bi->bus_num)
522 return;
523
524 dev = spi_new_device(master, bi);
525 if (!dev)
526 dev_err(master->dev.parent, "can't create new device for %s\n",
527 bi->modalias);
528}
529
33e34dc6
DB
530/**
531 * spi_register_board_info - register SPI devices for a given board
532 * @info: array of chip descriptors
533 * @n: how many descriptors are provided
534 * Context: can sleep
535 *
8ae12a0d
DB
536 * Board-specific early init code calls this (probably during arch_initcall)
537 * with segments of the SPI device table. Any device nodes are created later,
538 * after the relevant parent SPI controller (bus_num) is defined. We keep
539 * this table of devices forever, so that reloading a controller driver will
540 * not make Linux forget about these hard-wired devices.
541 *
542 * Other code can also call this, e.g. a particular add-on board might provide
543 * SPI devices through its expansion connector, so code initializing that board
544 * would naturally declare its SPI devices.
545 *
546 * The board info passed can safely be __initdata ... but be careful of
547 * any embedded pointers (platform_data, etc), they're copied as-is.
548 */
fd4a319b 549int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 550{
2b9603a0
FT
551 struct boardinfo *bi;
552 int i;
8ae12a0d 553
2b9603a0 554 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
555 if (!bi)
556 return -ENOMEM;
8ae12a0d 557
2b9603a0
FT
558 for (i = 0; i < n; i++, bi++, info++) {
559 struct spi_master *master;
8ae12a0d 560
2b9603a0
FT
561 memcpy(&bi->board_info, info, sizeof(*info));
562 mutex_lock(&board_lock);
563 list_add_tail(&bi->list, &board_list);
564 list_for_each_entry(master, &spi_master_list, list)
565 spi_match_master_to_boardinfo(master, &bi->board_info);
566 mutex_unlock(&board_lock);
8ae12a0d 567 }
2b9603a0
FT
568
569 return 0;
8ae12a0d
DB
570}
571
572/*-------------------------------------------------------------------------*/
573
b158935f
MB
574static void spi_set_cs(struct spi_device *spi, bool enable)
575{
576 if (spi->mode & SPI_CS_HIGH)
577 enable = !enable;
578
579 if (spi->cs_gpio >= 0)
580 gpio_set_value(spi->cs_gpio, !enable);
581 else if (spi->master->set_cs)
582 spi->master->set_cs(spi, !enable);
583}
584
99adef31
MB
585static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
586{
587 struct device *dev = master->dev.parent;
588 struct device *tx_dev, *rx_dev;
589 struct spi_transfer *xfer;
3a2eba9b
MB
590 void *tmp;
591 size_t max_tx, max_rx;
592
593 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
594 max_tx = 0;
595 max_rx = 0;
596
597 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
598 if ((master->flags & SPI_MASTER_MUST_TX) &&
599 !xfer->tx_buf)
600 max_tx = max(xfer->len, max_tx);
601 if ((master->flags & SPI_MASTER_MUST_RX) &&
602 !xfer->rx_buf)
603 max_rx = max(xfer->len, max_rx);
604 }
605
606 if (max_tx) {
607 tmp = krealloc(master->dummy_tx, max_tx,
608 GFP_KERNEL | GFP_DMA);
609 if (!tmp)
610 return -ENOMEM;
611 master->dummy_tx = tmp;
612 memset(tmp, 0, max_tx);
613 }
614
615 if (max_rx) {
616 tmp = krealloc(master->dummy_rx, max_rx,
617 GFP_KERNEL | GFP_DMA);
618 if (!tmp)
619 return -ENOMEM;
620 master->dummy_rx = tmp;
621 }
622
623 if (max_tx || max_rx) {
624 list_for_each_entry(xfer, &msg->transfers,
625 transfer_list) {
626 if (!xfer->tx_buf)
627 xfer->tx_buf = master->dummy_tx;
628 if (!xfer->rx_buf)
629 xfer->rx_buf = master->dummy_rx;
630 }
631 }
632 }
99adef31
MB
633
634 if (msg->is_dma_mapped || !master->can_dma)
635 return 0;
636
637 tx_dev = &master->dma_tx->dev->device;
638 rx_dev = &master->dma_rx->dev->device;
639
640 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
641 if (!master->can_dma(master, msg->spi, xfer))
642 continue;
643
644 if (xfer->tx_buf != NULL) {
645 xfer->tx_dma = dma_map_single(tx_dev,
646 (void *)xfer->tx_buf,
647 xfer->len,
648 DMA_TO_DEVICE);
649 if (dma_mapping_error(dev, xfer->tx_dma)) {
650 dev_err(dev, "dma_map_single Tx failed\n");
651 return -ENOMEM;
652 }
653 }
654
655 if (xfer->rx_buf != NULL) {
656 xfer->rx_dma = dma_map_single(rx_dev,
657 xfer->rx_buf, xfer->len,
658 DMA_FROM_DEVICE);
659 if (dma_mapping_error(dev, xfer->rx_dma)) {
660 dev_err(dev, "dma_map_single Rx failed\n");
661 dma_unmap_single(tx_dev, xfer->tx_dma,
662 xfer->len, DMA_TO_DEVICE);
663 return -ENOMEM;
664 }
665 }
666 }
667
668 master->cur_msg_mapped = true;
669
670 return 0;
671}
672
673static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
674{
675 struct spi_transfer *xfer;
676 struct device *tx_dev, *rx_dev;
677
678 if (!master->cur_msg_mapped || msg->is_dma_mapped || !master->can_dma)
679 return 0;
680
681 tx_dev = &master->dma_tx->dev->device;
682 rx_dev = &master->dma_rx->dev->device;
683
684 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
685 if (!master->can_dma(master, msg->spi, xfer))
686 continue;
687
688 if (xfer->rx_buf)
689 dma_unmap_single(rx_dev, xfer->rx_dma, xfer->len,
690 DMA_FROM_DEVICE);
691 if (xfer->tx_buf)
692 dma_unmap_single(tx_dev, xfer->tx_dma, xfer->len,
693 DMA_TO_DEVICE);
694 }
695
696 return 0;
697}
698
b158935f
MB
699/*
700 * spi_transfer_one_message - Default implementation of transfer_one_message()
701 *
702 * This is a standard implementation of transfer_one_message() for
703 * drivers which impelment a transfer_one() operation. It provides
704 * standard handling of delays and chip select management.
705 */
706static int spi_transfer_one_message(struct spi_master *master,
707 struct spi_message *msg)
708{
709 struct spi_transfer *xfer;
710 bool cur_cs = true;
711 bool keep_cs = false;
712 int ret = 0;
713
714 spi_set_cs(msg->spi, true);
715
716 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
717 trace_spi_transfer_start(msg, xfer);
718
16735d02 719 reinit_completion(&master->xfer_completion);
b158935f
MB
720
721 ret = master->transfer_one(master, msg->spi, xfer);
722 if (ret < 0) {
723 dev_err(&msg->spi->dev,
724 "SPI transfer failed: %d\n", ret);
725 goto out;
726 }
727
13a42798
AL
728 if (ret > 0) {
729 ret = 0;
b158935f 730 wait_for_completion(&master->xfer_completion);
13a42798 731 }
b158935f
MB
732
733 trace_spi_transfer_stop(msg, xfer);
734
735 if (msg->status != -EINPROGRESS)
736 goto out;
737
738 if (xfer->delay_usecs)
739 udelay(xfer->delay_usecs);
740
741 if (xfer->cs_change) {
742 if (list_is_last(&xfer->transfer_list,
743 &msg->transfers)) {
744 keep_cs = true;
745 } else {
746 cur_cs = !cur_cs;
747 spi_set_cs(msg->spi, cur_cs);
748 }
749 }
750
751 msg->actual_length += xfer->len;
752 }
753
754out:
755 if (ret != 0 || !keep_cs)
756 spi_set_cs(msg->spi, false);
757
758 if (msg->status == -EINPROGRESS)
759 msg->status = ret;
760
761 spi_finalize_current_message(master);
762
763 return ret;
764}
765
766/**
767 * spi_finalize_current_transfer - report completion of a transfer
768 *
769 * Called by SPI drivers using the core transfer_one_message()
770 * implementation to notify it that the current interrupt driven
9e8f4882 771 * transfer has finished and the next one may be scheduled.
b158935f
MB
772 */
773void spi_finalize_current_transfer(struct spi_master *master)
774{
775 complete(&master->xfer_completion);
776}
777EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
778
ffbbdd21
LW
779/**
780 * spi_pump_messages - kthread work function which processes spi message queue
781 * @work: pointer to kthread work struct contained in the master struct
782 *
783 * This function checks if there is any spi message in the queue that
784 * needs processing and if so call out to the driver to initialize hardware
785 * and transfer each message.
786 *
787 */
788static void spi_pump_messages(struct kthread_work *work)
789{
790 struct spi_master *master =
791 container_of(work, struct spi_master, pump_messages);
792 unsigned long flags;
793 bool was_busy = false;
794 int ret;
795
796 /* Lock queue and check for queue work */
797 spin_lock_irqsave(&master->queue_lock, flags);
798 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
799 if (!master->busy) {
800 spin_unlock_irqrestore(&master->queue_lock, flags);
801 return;
ffbbdd21
LW
802 }
803 master->busy = false;
804 spin_unlock_irqrestore(&master->queue_lock, flags);
3a2eba9b
MB
805 kfree(master->dummy_rx);
806 master->dummy_rx = NULL;
807 kfree(master->dummy_tx);
808 master->dummy_tx = NULL;
b0b36b86
BF
809 if (master->unprepare_transfer_hardware &&
810 master->unprepare_transfer_hardware(master))
811 dev_err(&master->dev,
812 "failed to unprepare transfer hardware\n");
49834de2
MB
813 if (master->auto_runtime_pm) {
814 pm_runtime_mark_last_busy(master->dev.parent);
815 pm_runtime_put_autosuspend(master->dev.parent);
816 }
56ec1978 817 trace_spi_master_idle(master);
ffbbdd21
LW
818 return;
819 }
820
821 /* Make sure we are not already running a message */
822 if (master->cur_msg) {
823 spin_unlock_irqrestore(&master->queue_lock, flags);
824 return;
825 }
826 /* Extract head of queue */
827 master->cur_msg =
a89e2d27 828 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
829
830 list_del_init(&master->cur_msg->queue);
831 if (master->busy)
832 was_busy = true;
833 else
834 master->busy = true;
835 spin_unlock_irqrestore(&master->queue_lock, flags);
836
49834de2
MB
837 if (!was_busy && master->auto_runtime_pm) {
838 ret = pm_runtime_get_sync(master->dev.parent);
839 if (ret < 0) {
840 dev_err(&master->dev, "Failed to power device: %d\n",
841 ret);
842 return;
843 }
844 }
845
56ec1978
MB
846 if (!was_busy)
847 trace_spi_master_busy(master);
848
7dfd2bd7 849 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
850 ret = master->prepare_transfer_hardware(master);
851 if (ret) {
852 dev_err(&master->dev,
853 "failed to prepare transfer hardware\n");
49834de2
MB
854
855 if (master->auto_runtime_pm)
856 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
857 return;
858 }
859 }
860
56ec1978
MB
861 trace_spi_message_start(master->cur_msg);
862
2841a5fc
MB
863 if (master->prepare_message) {
864 ret = master->prepare_message(master, master->cur_msg);
865 if (ret) {
866 dev_err(&master->dev,
867 "failed to prepare message: %d\n", ret);
868 master->cur_msg->status = ret;
869 spi_finalize_current_message(master);
870 return;
871 }
872 master->cur_msg_prepared = true;
873 }
874
99adef31
MB
875 ret = spi_map_msg(master, master->cur_msg);
876 if (ret) {
877 master->cur_msg->status = ret;
878 spi_finalize_current_message(master);
879 return;
880 }
881
ffbbdd21
LW
882 ret = master->transfer_one_message(master, master->cur_msg);
883 if (ret) {
884 dev_err(&master->dev,
e120cc0d
DS
885 "failed to transfer one message from queue: %d\n", ret);
886 master->cur_msg->status = ret;
887 spi_finalize_current_message(master);
ffbbdd21
LW
888 return;
889 }
890}
891
892static int spi_init_queue(struct spi_master *master)
893{
894 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
895
896 INIT_LIST_HEAD(&master->queue);
897 spin_lock_init(&master->queue_lock);
898
899 master->running = false;
900 master->busy = false;
901
902 init_kthread_worker(&master->kworker);
903 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 904 &master->kworker, "%s",
ffbbdd21
LW
905 dev_name(&master->dev));
906 if (IS_ERR(master->kworker_task)) {
907 dev_err(&master->dev, "failed to create message pump task\n");
908 return -ENOMEM;
909 }
910 init_kthread_work(&master->pump_messages, spi_pump_messages);
911
912 /*
913 * Master config will indicate if this controller should run the
914 * message pump with high (realtime) priority to reduce the transfer
915 * latency on the bus by minimising the delay between a transfer
916 * request and the scheduling of the message pump thread. Without this
917 * setting the message pump thread will remain at default priority.
918 */
919 if (master->rt) {
920 dev_info(&master->dev,
921 "will run message pump with realtime priority\n");
922 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
923 }
924
925 return 0;
926}
927
928/**
929 * spi_get_next_queued_message() - called by driver to check for queued
930 * messages
931 * @master: the master to check for queued messages
932 *
933 * If there are more messages in the queue, the next message is returned from
934 * this call.
935 */
936struct spi_message *spi_get_next_queued_message(struct spi_master *master)
937{
938 struct spi_message *next;
939 unsigned long flags;
940
941 /* get a pointer to the next message, if any */
942 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
943 next = list_first_entry_or_null(&master->queue, struct spi_message,
944 queue);
ffbbdd21
LW
945 spin_unlock_irqrestore(&master->queue_lock, flags);
946
947 return next;
948}
949EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
950
951/**
952 * spi_finalize_current_message() - the current message is complete
953 * @master: the master to return the message to
954 *
955 * Called by the driver to notify the core that the message in the front of the
956 * queue is complete and can be removed from the queue.
957 */
958void spi_finalize_current_message(struct spi_master *master)
959{
960 struct spi_message *mesg;
961 unsigned long flags;
2841a5fc 962 int ret;
ffbbdd21
LW
963
964 spin_lock_irqsave(&master->queue_lock, flags);
965 mesg = master->cur_msg;
966 master->cur_msg = NULL;
967
968 queue_kthread_work(&master->kworker, &master->pump_messages);
969 spin_unlock_irqrestore(&master->queue_lock, flags);
970
99adef31
MB
971 spi_unmap_msg(master, mesg);
972
2841a5fc
MB
973 if (master->cur_msg_prepared && master->unprepare_message) {
974 ret = master->unprepare_message(master, mesg);
975 if (ret) {
976 dev_err(&master->dev,
977 "failed to unprepare message: %d\n", ret);
978 }
979 }
980 master->cur_msg_prepared = false;
981
ffbbdd21
LW
982 mesg->state = NULL;
983 if (mesg->complete)
984 mesg->complete(mesg->context);
56ec1978
MB
985
986 trace_spi_message_done(mesg);
ffbbdd21
LW
987}
988EXPORT_SYMBOL_GPL(spi_finalize_current_message);
989
990static int spi_start_queue(struct spi_master *master)
991{
992 unsigned long flags;
993
994 spin_lock_irqsave(&master->queue_lock, flags);
995
996 if (master->running || master->busy) {
997 spin_unlock_irqrestore(&master->queue_lock, flags);
998 return -EBUSY;
999 }
1000
1001 master->running = true;
1002 master->cur_msg = NULL;
1003 spin_unlock_irqrestore(&master->queue_lock, flags);
1004
1005 queue_kthread_work(&master->kworker, &master->pump_messages);
1006
1007 return 0;
1008}
1009
1010static int spi_stop_queue(struct spi_master *master)
1011{
1012 unsigned long flags;
1013 unsigned limit = 500;
1014 int ret = 0;
1015
1016 spin_lock_irqsave(&master->queue_lock, flags);
1017
1018 /*
1019 * This is a bit lame, but is optimized for the common execution path.
1020 * A wait_queue on the master->busy could be used, but then the common
1021 * execution path (pump_messages) would be required to call wake_up or
1022 * friends on every SPI message. Do this instead.
1023 */
1024 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1025 spin_unlock_irqrestore(&master->queue_lock, flags);
1026 msleep(10);
1027 spin_lock_irqsave(&master->queue_lock, flags);
1028 }
1029
1030 if (!list_empty(&master->queue) || master->busy)
1031 ret = -EBUSY;
1032 else
1033 master->running = false;
1034
1035 spin_unlock_irqrestore(&master->queue_lock, flags);
1036
1037 if (ret) {
1038 dev_warn(&master->dev,
1039 "could not stop message queue\n");
1040 return ret;
1041 }
1042 return ret;
1043}
1044
1045static int spi_destroy_queue(struct spi_master *master)
1046{
1047 int ret;
1048
1049 ret = spi_stop_queue(master);
1050
1051 /*
1052 * flush_kthread_worker will block until all work is done.
1053 * If the reason that stop_queue timed out is that the work will never
1054 * finish, then it does no good to call flush/stop thread, so
1055 * return anyway.
1056 */
1057 if (ret) {
1058 dev_err(&master->dev, "problem destroying queue\n");
1059 return ret;
1060 }
1061
1062 flush_kthread_worker(&master->kworker);
1063 kthread_stop(master->kworker_task);
1064
1065 return 0;
1066}
1067
1068/**
1069 * spi_queued_transfer - transfer function for queued transfers
1070 * @spi: spi device which is requesting transfer
1071 * @msg: spi message which is to handled is queued to driver queue
1072 */
1073static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1074{
1075 struct spi_master *master = spi->master;
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&master->queue_lock, flags);
1079
1080 if (!master->running) {
1081 spin_unlock_irqrestore(&master->queue_lock, flags);
1082 return -ESHUTDOWN;
1083 }
1084 msg->actual_length = 0;
1085 msg->status = -EINPROGRESS;
1086
1087 list_add_tail(&msg->queue, &master->queue);
96b3eace 1088 if (!master->busy)
ffbbdd21
LW
1089 queue_kthread_work(&master->kworker, &master->pump_messages);
1090
1091 spin_unlock_irqrestore(&master->queue_lock, flags);
1092 return 0;
1093}
1094
1095static int spi_master_initialize_queue(struct spi_master *master)
1096{
1097 int ret;
1098
1099 master->queued = true;
1100 master->transfer = spi_queued_transfer;
b158935f
MB
1101 if (!master->transfer_one_message)
1102 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1103
1104 /* Initialize and start queue */
1105 ret = spi_init_queue(master);
1106 if (ret) {
1107 dev_err(&master->dev, "problem initializing queue\n");
1108 goto err_init_queue;
1109 }
1110 ret = spi_start_queue(master);
1111 if (ret) {
1112 dev_err(&master->dev, "problem starting queue\n");
1113 goto err_start_queue;
1114 }
1115
1116 return 0;
1117
1118err_start_queue:
1119err_init_queue:
1120 spi_destroy_queue(master);
1121 return ret;
1122}
1123
1124/*-------------------------------------------------------------------------*/
1125
7cb94361 1126#if defined(CONFIG_OF)
d57a4282
GL
1127/**
1128 * of_register_spi_devices() - Register child devices onto the SPI bus
1129 * @master: Pointer to spi_master device
1130 *
1131 * Registers an spi_device for each child node of master node which has a 'reg'
1132 * property.
1133 */
1134static void of_register_spi_devices(struct spi_master *master)
1135{
1136 struct spi_device *spi;
1137 struct device_node *nc;
d57a4282 1138 int rc;
89da4293 1139 u32 value;
d57a4282
GL
1140
1141 if (!master->dev.of_node)
1142 return;
1143
f3b6159e 1144 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
1145 /* Alloc an spi_device */
1146 spi = spi_alloc_device(master);
1147 if (!spi) {
1148 dev_err(&master->dev, "spi_device alloc error for %s\n",
1149 nc->full_name);
1150 spi_dev_put(spi);
1151 continue;
1152 }
1153
1154 /* Select device driver */
1155 if (of_modalias_node(nc, spi->modalias,
1156 sizeof(spi->modalias)) < 0) {
1157 dev_err(&master->dev, "cannot find modalias for %s\n",
1158 nc->full_name);
1159 spi_dev_put(spi);
1160 continue;
1161 }
1162
1163 /* Device address */
89da4293
TP
1164 rc = of_property_read_u32(nc, "reg", &value);
1165 if (rc) {
1166 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1167 nc->full_name, rc);
d57a4282
GL
1168 spi_dev_put(spi);
1169 continue;
1170 }
89da4293 1171 spi->chip_select = value;
d57a4282
GL
1172
1173 /* Mode (clock phase/polarity/etc.) */
1174 if (of_find_property(nc, "spi-cpha", NULL))
1175 spi->mode |= SPI_CPHA;
1176 if (of_find_property(nc, "spi-cpol", NULL))
1177 spi->mode |= SPI_CPOL;
1178 if (of_find_property(nc, "spi-cs-high", NULL))
1179 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1180 if (of_find_property(nc, "spi-3wire", NULL))
1181 spi->mode |= SPI_3WIRE;
d57a4282 1182
f477b7fb 1183 /* Device DUAL/QUAD mode */
89da4293
TP
1184 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1185 switch (value) {
1186 case 1:
a822e99c 1187 break;
89da4293 1188 case 2:
a822e99c
MB
1189 spi->mode |= SPI_TX_DUAL;
1190 break;
89da4293 1191 case 4:
a822e99c
MB
1192 spi->mode |= SPI_TX_QUAD;
1193 break;
1194 default:
1195 dev_err(&master->dev,
a110f93d 1196 "spi-tx-bus-width %d not supported\n",
89da4293 1197 value);
a822e99c
MB
1198 spi_dev_put(spi);
1199 continue;
1200 }
f477b7fb 1201 }
1202
89da4293
TP
1203 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1204 switch (value) {
1205 case 1:
a822e99c 1206 break;
89da4293 1207 case 2:
a822e99c
MB
1208 spi->mode |= SPI_RX_DUAL;
1209 break;
89da4293 1210 case 4:
a822e99c
MB
1211 spi->mode |= SPI_RX_QUAD;
1212 break;
1213 default:
1214 dev_err(&master->dev,
a110f93d 1215 "spi-rx-bus-width %d not supported\n",
89da4293 1216 value);
a822e99c
MB
1217 spi_dev_put(spi);
1218 continue;
1219 }
f477b7fb 1220 }
1221
d57a4282 1222 /* Device speed */
89da4293
TP
1223 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1224 if (rc) {
1225 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1226 nc->full_name, rc);
d57a4282
GL
1227 spi_dev_put(spi);
1228 continue;
1229 }
89da4293 1230 spi->max_speed_hz = value;
d57a4282
GL
1231
1232 /* IRQ */
1233 spi->irq = irq_of_parse_and_map(nc, 0);
1234
1235 /* Store a pointer to the node in the device structure */
1236 of_node_get(nc);
1237 spi->dev.of_node = nc;
1238
1239 /* Register the new device */
70fac17c 1240 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1241 rc = spi_add_device(spi);
1242 if (rc) {
1243 dev_err(&master->dev, "spi_device register error %s\n",
1244 nc->full_name);
1245 spi_dev_put(spi);
1246 }
1247
1248 }
1249}
1250#else
1251static void of_register_spi_devices(struct spi_master *master) { }
1252#endif
1253
64bee4d2
MW
1254#ifdef CONFIG_ACPI
1255static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1256{
1257 struct spi_device *spi = data;
1258
1259 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1260 struct acpi_resource_spi_serialbus *sb;
1261
1262 sb = &ares->data.spi_serial_bus;
1263 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1264 spi->chip_select = sb->device_selection;
1265 spi->max_speed_hz = sb->connection_speed;
1266
1267 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1268 spi->mode |= SPI_CPHA;
1269 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1270 spi->mode |= SPI_CPOL;
1271 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1272 spi->mode |= SPI_CS_HIGH;
1273 }
1274 } else if (spi->irq < 0) {
1275 struct resource r;
1276
1277 if (acpi_dev_resource_interrupt(ares, 0, &r))
1278 spi->irq = r.start;
1279 }
1280
1281 /* Always tell the ACPI core to skip this resource */
1282 return 1;
1283}
1284
1285static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1286 void *data, void **return_value)
1287{
1288 struct spi_master *master = data;
1289 struct list_head resource_list;
1290 struct acpi_device *adev;
1291 struct spi_device *spi;
1292 int ret;
1293
1294 if (acpi_bus_get_device(handle, &adev))
1295 return AE_OK;
1296 if (acpi_bus_get_status(adev) || !adev->status.present)
1297 return AE_OK;
1298
1299 spi = spi_alloc_device(master);
1300 if (!spi) {
1301 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1302 dev_name(&adev->dev));
1303 return AE_NO_MEMORY;
1304 }
1305
7b199811 1306 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1307 spi->irq = -1;
1308
1309 INIT_LIST_HEAD(&resource_list);
1310 ret = acpi_dev_get_resources(adev, &resource_list,
1311 acpi_spi_add_resource, spi);
1312 acpi_dev_free_resource_list(&resource_list);
1313
1314 if (ret < 0 || !spi->max_speed_hz) {
1315 spi_dev_put(spi);
1316 return AE_OK;
1317 }
1318
33cf00e5 1319 adev->power.flags.ignore_parent = true;
cf9eb39c 1320 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1321 if (spi_add_device(spi)) {
33cf00e5 1322 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1323 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1324 dev_name(&adev->dev));
1325 spi_dev_put(spi);
1326 }
1327
1328 return AE_OK;
1329}
1330
1331static void acpi_register_spi_devices(struct spi_master *master)
1332{
1333 acpi_status status;
1334 acpi_handle handle;
1335
29896178 1336 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1337 if (!handle)
1338 return;
1339
1340 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1341 acpi_spi_add_device, NULL,
1342 master, NULL);
1343 if (ACPI_FAILURE(status))
1344 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1345}
1346#else
1347static inline void acpi_register_spi_devices(struct spi_master *master) {}
1348#endif /* CONFIG_ACPI */
1349
49dce689 1350static void spi_master_release(struct device *dev)
8ae12a0d
DB
1351{
1352 struct spi_master *master;
1353
49dce689 1354 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1355 kfree(master);
1356}
1357
1358static struct class spi_master_class = {
1359 .name = "spi_master",
1360 .owner = THIS_MODULE,
49dce689 1361 .dev_release = spi_master_release,
8ae12a0d
DB
1362};
1363
1364
ffbbdd21 1365
8ae12a0d
DB
1366/**
1367 * spi_alloc_master - allocate SPI master controller
1368 * @dev: the controller, possibly using the platform_bus
33e34dc6 1369 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1370 * memory is in the driver_data field of the returned device,
0c868461 1371 * accessible with spi_master_get_devdata().
33e34dc6 1372 * Context: can sleep
8ae12a0d
DB
1373 *
1374 * This call is used only by SPI master controller drivers, which are the
1375 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1376 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1377 *
1378 * This must be called from context that can sleep. It returns the SPI
1379 * master structure on success, else NULL.
1380 *
1381 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1382 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1383 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1384 * leak.
8ae12a0d 1385 */
e9d5a461 1386struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1387{
1388 struct spi_master *master;
1389
0c868461
DB
1390 if (!dev)
1391 return NULL;
1392
5fe5f05e 1393 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1394 if (!master)
1395 return NULL;
1396
49dce689 1397 device_initialize(&master->dev);
1e8a52e1
GL
1398 master->bus_num = -1;
1399 master->num_chipselect = 1;
49dce689
TJ
1400 master->dev.class = &spi_master_class;
1401 master->dev.parent = get_device(dev);
0c868461 1402 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1403
1404 return master;
1405}
1406EXPORT_SYMBOL_GPL(spi_alloc_master);
1407
74317984
JCPV
1408#ifdef CONFIG_OF
1409static int of_spi_register_master(struct spi_master *master)
1410{
e80beb27 1411 int nb, i, *cs;
74317984
JCPV
1412 struct device_node *np = master->dev.of_node;
1413
1414 if (!np)
1415 return 0;
1416
1417 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1418 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1419
8ec5d84e
AL
1420 /* Return error only for an incorrectly formed cs-gpios property */
1421 if (nb == 0 || nb == -ENOENT)
74317984 1422 return 0;
8ec5d84e
AL
1423 else if (nb < 0)
1424 return nb;
74317984
JCPV
1425
1426 cs = devm_kzalloc(&master->dev,
1427 sizeof(int) * master->num_chipselect,
1428 GFP_KERNEL);
1429 master->cs_gpios = cs;
1430
1431 if (!master->cs_gpios)
1432 return -ENOMEM;
1433
0da83bb1 1434 for (i = 0; i < master->num_chipselect; i++)
446411e1 1435 cs[i] = -ENOENT;
74317984
JCPV
1436
1437 for (i = 0; i < nb; i++)
1438 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1439
1440 return 0;
1441}
1442#else
1443static int of_spi_register_master(struct spi_master *master)
1444{
1445 return 0;
1446}
1447#endif
1448
8ae12a0d
DB
1449/**
1450 * spi_register_master - register SPI master controller
1451 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1452 * Context: can sleep
8ae12a0d
DB
1453 *
1454 * SPI master controllers connect to their drivers using some non-SPI bus,
1455 * such as the platform bus. The final stage of probe() in that code
1456 * includes calling spi_register_master() to hook up to this SPI bus glue.
1457 *
1458 * SPI controllers use board specific (often SOC specific) bus numbers,
1459 * and board-specific addressing for SPI devices combines those numbers
1460 * with chip select numbers. Since SPI does not directly support dynamic
1461 * device identification, boards need configuration tables telling which
1462 * chip is at which address.
1463 *
1464 * This must be called from context that can sleep. It returns zero on
1465 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1466 * After a successful return, the caller is responsible for calling
1467 * spi_unregister_master().
8ae12a0d 1468 */
e9d5a461 1469int spi_register_master(struct spi_master *master)
8ae12a0d 1470{
e44a45ae 1471 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1472 struct device *dev = master->dev.parent;
2b9603a0 1473 struct boardinfo *bi;
8ae12a0d
DB
1474 int status = -ENODEV;
1475 int dynamic = 0;
1476
0c868461
DB
1477 if (!dev)
1478 return -ENODEV;
1479
74317984
JCPV
1480 status = of_spi_register_master(master);
1481 if (status)
1482 return status;
1483
082c8cb4
DB
1484 /* even if it's just one always-selected device, there must
1485 * be at least one chipselect
1486 */
1487 if (master->num_chipselect == 0)
1488 return -EINVAL;
1489
bb29785e
GL
1490 if ((master->bus_num < 0) && master->dev.of_node)
1491 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1492
8ae12a0d 1493 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1494 if (master->bus_num < 0) {
082c8cb4
DB
1495 /* FIXME switch to an IDR based scheme, something like
1496 * I2C now uses, so we can't run out of "dynamic" IDs
1497 */
8ae12a0d 1498 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1499 dynamic = 1;
8ae12a0d
DB
1500 }
1501
cf32b71e
ES
1502 spin_lock_init(&master->bus_lock_spinlock);
1503 mutex_init(&master->bus_lock_mutex);
1504 master->bus_lock_flag = 0;
b158935f 1505 init_completion(&master->xfer_completion);
cf32b71e 1506
8ae12a0d
DB
1507 /* register the device, then userspace will see it.
1508 * registration fails if the bus ID is in use.
1509 */
35f74fca 1510 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1511 status = device_add(&master->dev);
b885244e 1512 if (status < 0)
8ae12a0d 1513 goto done;
35f74fca 1514 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1515 dynamic ? " (dynamic)" : "");
1516
ffbbdd21
LW
1517 /* If we're using a queued driver, start the queue */
1518 if (master->transfer)
1519 dev_info(dev, "master is unqueued, this is deprecated\n");
1520 else {
1521 status = spi_master_initialize_queue(master);
1522 if (status) {
e93b0724 1523 device_del(&master->dev);
ffbbdd21
LW
1524 goto done;
1525 }
1526 }
1527
2b9603a0
FT
1528 mutex_lock(&board_lock);
1529 list_add_tail(&master->list, &spi_master_list);
1530 list_for_each_entry(bi, &board_list, list)
1531 spi_match_master_to_boardinfo(master, &bi->board_info);
1532 mutex_unlock(&board_lock);
1533
64bee4d2 1534 /* Register devices from the device tree and ACPI */
12b15e83 1535 of_register_spi_devices(master);
64bee4d2 1536 acpi_register_spi_devices(master);
8ae12a0d
DB
1537done:
1538 return status;
1539}
1540EXPORT_SYMBOL_GPL(spi_register_master);
1541
666d5b4c
MB
1542static void devm_spi_unregister(struct device *dev, void *res)
1543{
1544 spi_unregister_master(*(struct spi_master **)res);
1545}
1546
1547/**
1548 * dev_spi_register_master - register managed SPI master controller
1549 * @dev: device managing SPI master
1550 * @master: initialized master, originally from spi_alloc_master()
1551 * Context: can sleep
1552 *
1553 * Register a SPI device as with spi_register_master() which will
1554 * automatically be unregister
1555 */
1556int devm_spi_register_master(struct device *dev, struct spi_master *master)
1557{
1558 struct spi_master **ptr;
1559 int ret;
1560
1561 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1562 if (!ptr)
1563 return -ENOMEM;
1564
1565 ret = spi_register_master(master);
4b92894e 1566 if (!ret) {
666d5b4c
MB
1567 *ptr = master;
1568 devres_add(dev, ptr);
1569 } else {
1570 devres_free(ptr);
1571 }
1572
1573 return ret;
1574}
1575EXPORT_SYMBOL_GPL(devm_spi_register_master);
1576
34860089 1577static int __unregister(struct device *dev, void *null)
8ae12a0d 1578{
34860089 1579 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1580 return 0;
1581}
1582
1583/**
1584 * spi_unregister_master - unregister SPI master controller
1585 * @master: the master being unregistered
33e34dc6 1586 * Context: can sleep
8ae12a0d
DB
1587 *
1588 * This call is used only by SPI master controller drivers, which are the
1589 * only ones directly touching chip registers.
1590 *
1591 * This must be called from context that can sleep.
1592 */
1593void spi_unregister_master(struct spi_master *master)
1594{
89fc9a1a
JG
1595 int dummy;
1596
ffbbdd21
LW
1597 if (master->queued) {
1598 if (spi_destroy_queue(master))
1599 dev_err(&master->dev, "queue remove failed\n");
1600 }
1601
2b9603a0
FT
1602 mutex_lock(&board_lock);
1603 list_del(&master->list);
1604 mutex_unlock(&board_lock);
1605
97dbf37d 1606 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1607 device_unregister(&master->dev);
8ae12a0d
DB
1608}
1609EXPORT_SYMBOL_GPL(spi_unregister_master);
1610
ffbbdd21
LW
1611int spi_master_suspend(struct spi_master *master)
1612{
1613 int ret;
1614
1615 /* Basically no-ops for non-queued masters */
1616 if (!master->queued)
1617 return 0;
1618
1619 ret = spi_stop_queue(master);
1620 if (ret)
1621 dev_err(&master->dev, "queue stop failed\n");
1622
1623 return ret;
1624}
1625EXPORT_SYMBOL_GPL(spi_master_suspend);
1626
1627int spi_master_resume(struct spi_master *master)
1628{
1629 int ret;
1630
1631 if (!master->queued)
1632 return 0;
1633
1634 ret = spi_start_queue(master);
1635 if (ret)
1636 dev_err(&master->dev, "queue restart failed\n");
1637
1638 return ret;
1639}
1640EXPORT_SYMBOL_GPL(spi_master_resume);
1641
9f3b795a 1642static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1643{
1644 struct spi_master *m;
9f3b795a 1645 const u16 *bus_num = data;
5ed2c832
DY
1646
1647 m = container_of(dev, struct spi_master, dev);
1648 return m->bus_num == *bus_num;
1649}
1650
8ae12a0d
DB
1651/**
1652 * spi_busnum_to_master - look up master associated with bus_num
1653 * @bus_num: the master's bus number
33e34dc6 1654 * Context: can sleep
8ae12a0d
DB
1655 *
1656 * This call may be used with devices that are registered after
1657 * arch init time. It returns a refcounted pointer to the relevant
1658 * spi_master (which the caller must release), or NULL if there is
1659 * no such master registered.
1660 */
1661struct spi_master *spi_busnum_to_master(u16 bus_num)
1662{
49dce689 1663 struct device *dev;
1e9a51dc 1664 struct spi_master *master = NULL;
5ed2c832 1665
695794ae 1666 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1667 __spi_master_match);
1668 if (dev)
1669 master = container_of(dev, struct spi_master, dev);
1670 /* reference got in class_find_device */
1e9a51dc 1671 return master;
8ae12a0d
DB
1672}
1673EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1674
1675
1676/*-------------------------------------------------------------------------*/
1677
7d077197
DB
1678/* Core methods for SPI master protocol drivers. Some of the
1679 * other core methods are currently defined as inline functions.
1680 */
1681
1682/**
1683 * spi_setup - setup SPI mode and clock rate
1684 * @spi: the device whose settings are being modified
1685 * Context: can sleep, and no requests are queued to the device
1686 *
1687 * SPI protocol drivers may need to update the transfer mode if the
1688 * device doesn't work with its default. They may likewise need
1689 * to update clock rates or word sizes from initial values. This function
1690 * changes those settings, and must be called from a context that can sleep.
1691 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1692 * effect the next time the device is selected and data is transferred to
1693 * or from it. When this function returns, the spi device is deselected.
1694 *
1695 * Note that this call will fail if the protocol driver specifies an option
1696 * that the underlying controller or its driver does not support. For
1697 * example, not all hardware supports wire transfers using nine bit words,
1698 * LSB-first wire encoding, or active-high chipselects.
1699 */
1700int spi_setup(struct spi_device *spi)
1701{
e7db06b5 1702 unsigned bad_bits;
caae070c 1703 int status = 0;
7d077197 1704
f477b7fb 1705 /* check mode to prevent that DUAL and QUAD set at the same time
1706 */
1707 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1708 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1709 dev_err(&spi->dev,
1710 "setup: can not select dual and quad at the same time\n");
1711 return -EINVAL;
1712 }
1713 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1714 */
1715 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1716 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1717 return -EINVAL;
e7db06b5
DB
1718 /* help drivers fail *cleanly* when they need options
1719 * that aren't supported with their current master
1720 */
1721 bad_bits = spi->mode & ~spi->master->mode_bits;
1722 if (bad_bits) {
eb288a1f 1723 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1724 bad_bits);
1725 return -EINVAL;
1726 }
1727
7d077197
DB
1728 if (!spi->bits_per_word)
1729 spi->bits_per_word = 8;
1730
caae070c
LD
1731 if (spi->master->setup)
1732 status = spi->master->setup(spi);
7d077197 1733
5fe5f05e 1734 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1735 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1736 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1737 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1738 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1739 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1740 spi->bits_per_word, spi->max_speed_hz,
1741 status);
1742
1743 return status;
1744}
1745EXPORT_SYMBOL_GPL(spi_setup);
1746
90808738 1747static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
1748{
1749 struct spi_master *master = spi->master;
e6811d1d 1750 struct spi_transfer *xfer;
cf32b71e 1751
24a0013a
MB
1752 if (list_empty(&message->transfers))
1753 return -EINVAL;
1754 if (!message->complete)
1755 return -EINVAL;
1756
cf32b71e
ES
1757 /* Half-duplex links include original MicroWire, and ones with
1758 * only one data pin like SPI_3WIRE (switches direction) or where
1759 * either MOSI or MISO is missing. They can also be caused by
1760 * software limitations.
1761 */
1762 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1763 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1764 unsigned flags = master->flags;
1765
1766 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1767 if (xfer->rx_buf && xfer->tx_buf)
1768 return -EINVAL;
1769 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1770 return -EINVAL;
1771 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1772 return -EINVAL;
1773 }
1774 }
1775
e6811d1d 1776 /**
059b8ffe
LD
1777 * Set transfer bits_per_word and max speed as spi device default if
1778 * it is not set for this transfer.
f477b7fb 1779 * Set transfer tx_nbits and rx_nbits as single transfer default
1780 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1781 */
1782 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1783 message->frame_length += xfer->len;
e6811d1d
LD
1784 if (!xfer->bits_per_word)
1785 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1786 if (!xfer->speed_hz) {
059b8ffe 1787 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1788 if (master->max_speed_hz &&
1789 xfer->speed_hz > master->max_speed_hz)
1790 xfer->speed_hz = master->max_speed_hz;
1791 }
1792
543bb255
SW
1793 if (master->bits_per_word_mask) {
1794 /* Only 32 bits fit in the mask */
1795 if (xfer->bits_per_word > 32)
1796 return -EINVAL;
1797 if (!(master->bits_per_word_mask &
1798 BIT(xfer->bits_per_word - 1)))
1799 return -EINVAL;
1800 }
a2fd4f9f
MB
1801
1802 if (xfer->speed_hz && master->min_speed_hz &&
1803 xfer->speed_hz < master->min_speed_hz)
1804 return -EINVAL;
1805 if (xfer->speed_hz && master->max_speed_hz &&
1806 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1807 return -EINVAL;
f477b7fb 1808
1809 if (xfer->tx_buf && !xfer->tx_nbits)
1810 xfer->tx_nbits = SPI_NBITS_SINGLE;
1811 if (xfer->rx_buf && !xfer->rx_nbits)
1812 xfer->rx_nbits = SPI_NBITS_SINGLE;
1813 /* check transfer tx/rx_nbits:
1afd9989
GU
1814 * 1. check the value matches one of single, dual and quad
1815 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 1816 */
db90a441
SP
1817 if (xfer->tx_buf) {
1818 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1819 xfer->tx_nbits != SPI_NBITS_DUAL &&
1820 xfer->tx_nbits != SPI_NBITS_QUAD)
1821 return -EINVAL;
1822 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1823 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1824 return -EINVAL;
1825 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1826 !(spi->mode & SPI_TX_QUAD))
1827 return -EINVAL;
db90a441 1828 }
f477b7fb 1829 /* check transfer rx_nbits */
db90a441
SP
1830 if (xfer->rx_buf) {
1831 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1832 xfer->rx_nbits != SPI_NBITS_DUAL &&
1833 xfer->rx_nbits != SPI_NBITS_QUAD)
1834 return -EINVAL;
1835 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1836 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1837 return -EINVAL;
1838 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1839 !(spi->mode & SPI_RX_QUAD))
1840 return -EINVAL;
db90a441 1841 }
e6811d1d
LD
1842 }
1843
cf32b71e 1844 message->status = -EINPROGRESS;
90808738
MB
1845
1846 return 0;
1847}
1848
1849static int __spi_async(struct spi_device *spi, struct spi_message *message)
1850{
1851 struct spi_master *master = spi->master;
1852
1853 message->spi = spi;
1854
1855 trace_spi_message_submit(message);
1856
cf32b71e
ES
1857 return master->transfer(spi, message);
1858}
1859
568d0697
DB
1860/**
1861 * spi_async - asynchronous SPI transfer
1862 * @spi: device with which data will be exchanged
1863 * @message: describes the data transfers, including completion callback
1864 * Context: any (irqs may be blocked, etc)
1865 *
1866 * This call may be used in_irq and other contexts which can't sleep,
1867 * as well as from task contexts which can sleep.
1868 *
1869 * The completion callback is invoked in a context which can't sleep.
1870 * Before that invocation, the value of message->status is undefined.
1871 * When the callback is issued, message->status holds either zero (to
1872 * indicate complete success) or a negative error code. After that
1873 * callback returns, the driver which issued the transfer request may
1874 * deallocate the associated memory; it's no longer in use by any SPI
1875 * core or controller driver code.
1876 *
1877 * Note that although all messages to a spi_device are handled in
1878 * FIFO order, messages may go to different devices in other orders.
1879 * Some device might be higher priority, or have various "hard" access
1880 * time requirements, for example.
1881 *
1882 * On detection of any fault during the transfer, processing of
1883 * the entire message is aborted, and the device is deselected.
1884 * Until returning from the associated message completion callback,
1885 * no other spi_message queued to that device will be processed.
1886 * (This rule applies equally to all the synchronous transfer calls,
1887 * which are wrappers around this core asynchronous primitive.)
1888 */
1889int spi_async(struct spi_device *spi, struct spi_message *message)
1890{
1891 struct spi_master *master = spi->master;
cf32b71e
ES
1892 int ret;
1893 unsigned long flags;
568d0697 1894
90808738
MB
1895 ret = __spi_validate(spi, message);
1896 if (ret != 0)
1897 return ret;
1898
cf32b71e 1899 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1900
cf32b71e
ES
1901 if (master->bus_lock_flag)
1902 ret = -EBUSY;
1903 else
1904 ret = __spi_async(spi, message);
568d0697 1905
cf32b71e
ES
1906 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1907
1908 return ret;
568d0697
DB
1909}
1910EXPORT_SYMBOL_GPL(spi_async);
1911
cf32b71e
ES
1912/**
1913 * spi_async_locked - version of spi_async with exclusive bus usage
1914 * @spi: device with which data will be exchanged
1915 * @message: describes the data transfers, including completion callback
1916 * Context: any (irqs may be blocked, etc)
1917 *
1918 * This call may be used in_irq and other contexts which can't sleep,
1919 * as well as from task contexts which can sleep.
1920 *
1921 * The completion callback is invoked in a context which can't sleep.
1922 * Before that invocation, the value of message->status is undefined.
1923 * When the callback is issued, message->status holds either zero (to
1924 * indicate complete success) or a negative error code. After that
1925 * callback returns, the driver which issued the transfer request may
1926 * deallocate the associated memory; it's no longer in use by any SPI
1927 * core or controller driver code.
1928 *
1929 * Note that although all messages to a spi_device are handled in
1930 * FIFO order, messages may go to different devices in other orders.
1931 * Some device might be higher priority, or have various "hard" access
1932 * time requirements, for example.
1933 *
1934 * On detection of any fault during the transfer, processing of
1935 * the entire message is aborted, and the device is deselected.
1936 * Until returning from the associated message completion callback,
1937 * no other spi_message queued to that device will be processed.
1938 * (This rule applies equally to all the synchronous transfer calls,
1939 * which are wrappers around this core asynchronous primitive.)
1940 */
1941int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1942{
1943 struct spi_master *master = spi->master;
1944 int ret;
1945 unsigned long flags;
1946
90808738
MB
1947 ret = __spi_validate(spi, message);
1948 if (ret != 0)
1949 return ret;
1950
cf32b71e
ES
1951 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1952
1953 ret = __spi_async(spi, message);
1954
1955 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1956
1957 return ret;
1958
1959}
1960EXPORT_SYMBOL_GPL(spi_async_locked);
1961
7d077197
DB
1962
1963/*-------------------------------------------------------------------------*/
1964
1965/* Utility methods for SPI master protocol drivers, layered on
1966 * top of the core. Some other utility methods are defined as
1967 * inline functions.
1968 */
1969
5d870c8e
AM
1970static void spi_complete(void *arg)
1971{
1972 complete(arg);
1973}
1974
cf32b71e
ES
1975static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1976 int bus_locked)
1977{
1978 DECLARE_COMPLETION_ONSTACK(done);
1979 int status;
1980 struct spi_master *master = spi->master;
1981
1982 message->complete = spi_complete;
1983 message->context = &done;
1984
1985 if (!bus_locked)
1986 mutex_lock(&master->bus_lock_mutex);
1987
1988 status = spi_async_locked(spi, message);
1989
1990 if (!bus_locked)
1991 mutex_unlock(&master->bus_lock_mutex);
1992
1993 if (status == 0) {
1994 wait_for_completion(&done);
1995 status = message->status;
1996 }
1997 message->context = NULL;
1998 return status;
1999}
2000
8ae12a0d
DB
2001/**
2002 * spi_sync - blocking/synchronous SPI data transfers
2003 * @spi: device with which data will be exchanged
2004 * @message: describes the data transfers
33e34dc6 2005 * Context: can sleep
8ae12a0d
DB
2006 *
2007 * This call may only be used from a context that may sleep. The sleep
2008 * is non-interruptible, and has no timeout. Low-overhead controller
2009 * drivers may DMA directly into and out of the message buffers.
2010 *
2011 * Note that the SPI device's chip select is active during the message,
2012 * and then is normally disabled between messages. Drivers for some
2013 * frequently-used devices may want to minimize costs of selecting a chip,
2014 * by leaving it selected in anticipation that the next message will go
2015 * to the same chip. (That may increase power usage.)
2016 *
0c868461
DB
2017 * Also, the caller is guaranteeing that the memory associated with the
2018 * message will not be freed before this call returns.
2019 *
9b938b74 2020 * It returns zero on success, else a negative error code.
8ae12a0d
DB
2021 */
2022int spi_sync(struct spi_device *spi, struct spi_message *message)
2023{
cf32b71e 2024 return __spi_sync(spi, message, 0);
8ae12a0d
DB
2025}
2026EXPORT_SYMBOL_GPL(spi_sync);
2027
cf32b71e
ES
2028/**
2029 * spi_sync_locked - version of spi_sync with exclusive bus usage
2030 * @spi: device with which data will be exchanged
2031 * @message: describes the data transfers
2032 * Context: can sleep
2033 *
2034 * This call may only be used from a context that may sleep. The sleep
2035 * is non-interruptible, and has no timeout. Low-overhead controller
2036 * drivers may DMA directly into and out of the message buffers.
2037 *
2038 * This call should be used by drivers that require exclusive access to the
25985edc 2039 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
2040 * be released by a spi_bus_unlock call when the exclusive access is over.
2041 *
2042 * It returns zero on success, else a negative error code.
2043 */
2044int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2045{
2046 return __spi_sync(spi, message, 1);
2047}
2048EXPORT_SYMBOL_GPL(spi_sync_locked);
2049
2050/**
2051 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2052 * @master: SPI bus master that should be locked for exclusive bus access
2053 * Context: can sleep
2054 *
2055 * This call may only be used from a context that may sleep. The sleep
2056 * is non-interruptible, and has no timeout.
2057 *
2058 * This call should be used by drivers that require exclusive access to the
2059 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2060 * exclusive access is over. Data transfer must be done by spi_sync_locked
2061 * and spi_async_locked calls when the SPI bus lock is held.
2062 *
2063 * It returns zero on success, else a negative error code.
2064 */
2065int spi_bus_lock(struct spi_master *master)
2066{
2067 unsigned long flags;
2068
2069 mutex_lock(&master->bus_lock_mutex);
2070
2071 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2072 master->bus_lock_flag = 1;
2073 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2074
2075 /* mutex remains locked until spi_bus_unlock is called */
2076
2077 return 0;
2078}
2079EXPORT_SYMBOL_GPL(spi_bus_lock);
2080
2081/**
2082 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2083 * @master: SPI bus master that was locked for exclusive bus access
2084 * Context: can sleep
2085 *
2086 * This call may only be used from a context that may sleep. The sleep
2087 * is non-interruptible, and has no timeout.
2088 *
2089 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2090 * call.
2091 *
2092 * It returns zero on success, else a negative error code.
2093 */
2094int spi_bus_unlock(struct spi_master *master)
2095{
2096 master->bus_lock_flag = 0;
2097
2098 mutex_unlock(&master->bus_lock_mutex);
2099
2100 return 0;
2101}
2102EXPORT_SYMBOL_GPL(spi_bus_unlock);
2103
a9948b61 2104/* portable code must never pass more than 32 bytes */
5fe5f05e 2105#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2106
2107static u8 *buf;
2108
2109/**
2110 * spi_write_then_read - SPI synchronous write followed by read
2111 * @spi: device with which data will be exchanged
2112 * @txbuf: data to be written (need not be dma-safe)
2113 * @n_tx: size of txbuf, in bytes
27570497
JP
2114 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2115 * @n_rx: size of rxbuf, in bytes
33e34dc6 2116 * Context: can sleep
8ae12a0d
DB
2117 *
2118 * This performs a half duplex MicroWire style transaction with the
2119 * device, sending txbuf and then reading rxbuf. The return value
2120 * is zero for success, else a negative errno status code.
b885244e 2121 * This call may only be used from a context that may sleep.
8ae12a0d 2122 *
0c868461 2123 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2124 * portable code should never use this for more than 32 bytes.
2125 * Performance-sensitive or bulk transfer code should instead use
0c868461 2126 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
2127 */
2128int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2129 const void *txbuf, unsigned n_tx,
2130 void *rxbuf, unsigned n_rx)
8ae12a0d 2131{
068f4070 2132 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2133
2134 int status;
2135 struct spi_message message;
bdff549e 2136 struct spi_transfer x[2];
8ae12a0d
DB
2137 u8 *local_buf;
2138
b3a223ee
MB
2139 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2140 * copying here, (as a pure convenience thing), but we can
2141 * keep heap costs out of the hot path unless someone else is
2142 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2143 */
b3a223ee 2144 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2145 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2146 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2147 if (!local_buf)
2148 return -ENOMEM;
2149 } else {
2150 local_buf = buf;
2151 }
8ae12a0d 2152
8275c642 2153 spi_message_init(&message);
5fe5f05e 2154 memset(x, 0, sizeof(x));
bdff549e
DB
2155 if (n_tx) {
2156 x[0].len = n_tx;
2157 spi_message_add_tail(&x[0], &message);
2158 }
2159 if (n_rx) {
2160 x[1].len = n_rx;
2161 spi_message_add_tail(&x[1], &message);
2162 }
8275c642 2163
8ae12a0d 2164 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2165 x[0].tx_buf = local_buf;
2166 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2167
2168 /* do the i/o */
8ae12a0d 2169 status = spi_sync(spi, &message);
9b938b74 2170 if (status == 0)
bdff549e 2171 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2172
bdff549e 2173 if (x[0].tx_buf == buf)
068f4070 2174 mutex_unlock(&lock);
8ae12a0d
DB
2175 else
2176 kfree(local_buf);
2177
2178 return status;
2179}
2180EXPORT_SYMBOL_GPL(spi_write_then_read);
2181
2182/*-------------------------------------------------------------------------*/
2183
2184static int __init spi_init(void)
2185{
b885244e
DB
2186 int status;
2187
e94b1766 2188 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2189 if (!buf) {
2190 status = -ENOMEM;
2191 goto err0;
2192 }
2193
2194 status = bus_register(&spi_bus_type);
2195 if (status < 0)
2196 goto err1;
8ae12a0d 2197
b885244e
DB
2198 status = class_register(&spi_master_class);
2199 if (status < 0)
2200 goto err2;
8ae12a0d 2201 return 0;
b885244e
DB
2202
2203err2:
2204 bus_unregister(&spi_bus_type);
2205err1:
2206 kfree(buf);
2207 buf = NULL;
2208err0:
2209 return status;
8ae12a0d 2210}
b885244e 2211
8ae12a0d
DB
2212/* board_info is normally registered in arch_initcall(),
2213 * but even essential drivers wait till later
b885244e
DB
2214 *
2215 * REVISIT only boardinfo really needs static linking. the rest (device and
2216 * driver registration) _could_ be dynamically linked (modular) ... costs
2217 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2218 */
673c0c00 2219postcore_initcall(spi_init);
8ae12a0d 2220