]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: Reduce kthread priority
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
b445bfcb 1// SPDX-License-Identifier: GPL-2.0-or-later
787f4889
MB
2// SPI init/core code
3//
4// Copyright (C) 2005 David Brownell
5// Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d 6
8ae12a0d
DB
7#include <linux/kernel.h>
8#include <linux/device.h>
9#include <linux/init.h>
10#include <linux/cache.h>
99adef31
MB
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
94040828 13#include <linux/mutex.h>
2b7a32f7 14#include <linux/of_device.h>
d57a4282 15#include <linux/of_irq.h>
86be408b 16#include <linux/clk/clk-conf.h>
5a0e3ad6 17#include <linux/slab.h>
e0626e38 18#include <linux/mod_devicetable.h>
8ae12a0d 19#include <linux/spi/spi.h>
b5932f5c 20#include <linux/spi/spi-mem.h>
74317984 21#include <linux/of_gpio.h>
f3186dd8 22#include <linux/gpio/consumer.h>
3ae22e8c 23#include <linux/pm_runtime.h>
f48c767c 24#include <linux/pm_domain.h>
826cf175 25#include <linux/property.h>
025ed130 26#include <linux/export.h>
8bd75c77 27#include <linux/sched/rt.h>
ae7e81c0 28#include <uapi/linux/sched/types.h>
ffbbdd21
LW
29#include <linux/delay.h>
30#include <linux/kthread.h>
64bee4d2
MW
31#include <linux/ioport.h>
32#include <linux/acpi.h>
b1b8153c 33#include <linux/highmem.h>
9b61e302 34#include <linux/idr.h>
8a2e487e 35#include <linux/platform_data/x86/apple.h>
8ae12a0d 36
56ec1978
MB
37#define CREATE_TRACE_POINTS
38#include <trace/events/spi.h>
ca1438dc
AB
39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
9b61e302 41
46336966
BB
42#include "internals.h"
43
9b61e302 44static DEFINE_IDR(spi_master_idr);
56ec1978 45
8ae12a0d
DB
46static void spidev_release(struct device *dev)
47{
0ffa0285 48 struct spi_device *spi = to_spi_device(dev);
8ae12a0d 49
8caab75f
GU
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
8ae12a0d 53
8caab75f 54 spi_controller_put(spi->controller);
5039563e 55 kfree(spi->driver_override);
07a389fe 56 kfree(spi);
8ae12a0d
DB
57}
58
59static ssize_t
60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61{
62 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
8ae12a0d 68
d8e328b3 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 70}
aa7da564 71static DEVICE_ATTR_RO(modalias);
8ae12a0d 72
5039563e
TP
73static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76{
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103}
104
105static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107{
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115}
116static DEVICE_ATTR_RW(driver_override);
117
eca2ebc7 118#define SPI_STATISTICS_ATTRS(field, file) \
8caab75f
GU
119static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
eca2ebc7 122{ \
8caab75f
GU
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
eca2ebc7 126} \
8caab75f 127static struct device_attribute dev_attr_spi_controller_##field = { \
ad25c92e 128 .attr = { .name = file, .mode = 0444 }, \
8caab75f 129 .show = spi_controller_##field##_show, \
eca2ebc7
MS
130}; \
131static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134{ \
d1eba93b 135 struct spi_device *spi = to_spi_device(dev); \
eca2ebc7
MS
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137} \
138static struct device_attribute dev_attr_spi_device_##field = { \
ad25c92e 139 .attr = { .name = file, .mode = 0444 }, \
eca2ebc7
MS
140 .show = spi_device_##field##_show, \
141}
142
143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146{ \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153} \
154SPI_STATISTICS_ATTRS(name, file)
155
156#define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160SPI_STATISTICS_SHOW(messages, "%lu");
161SPI_STATISTICS_SHOW(transfers, "%lu");
162SPI_STATISTICS_SHOW(errors, "%lu");
163SPI_STATISTICS_SHOW(timedout, "%lu");
164
165SPI_STATISTICS_SHOW(spi_sync, "%lu");
166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169SPI_STATISTICS_SHOW(bytes, "%llu");
170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
6b7bc061
MS
173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
d9f12122
MS
195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
aa7da564
GKH
197static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
5039563e 199 &dev_attr_driver_override.attr,
aa7da564 200 NULL,
8ae12a0d 201};
eca2ebc7
MS
202
203static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205};
206
207static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
d9f12122 235 &dev_attr_spi_device_transfers_split_maxsize.attr,
eca2ebc7
MS
236 NULL,
237};
238
239static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242};
243
244static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248};
249
8caab75f
GU
250static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
eca2ebc7
MS
279 NULL,
280};
281
8caab75f 282static const struct attribute_group spi_controller_statistics_group = {
eca2ebc7 283 .name = "statistics",
8caab75f 284 .attrs = spi_controller_statistics_attrs,
eca2ebc7
MS
285};
286
287static const struct attribute_group *spi_master_groups[] = {
8caab75f 288 &spi_controller_statistics_group,
eca2ebc7
MS
289 NULL,
290};
291
292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
8caab75f 294 struct spi_controller *ctlr)
eca2ebc7
MS
295{
296 unsigned long flags;
6b7bc061
MS
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
eca2ebc7
MS
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
6b7bc061 305 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
8caab75f 309 (xfer->tx_buf != ctlr->dummy_tx))
eca2ebc7
MS
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
8caab75f 312 (xfer->rx_buf != ctlr->dummy_rx))
eca2ebc7
MS
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316}
317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
318
319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
75368bf6
AV
323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325{
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332}
333
334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335{
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339}
340EXPORT_SYMBOL_GPL(spi_get_device_id);
341
8ae12a0d
DB
342static int spi_match_device(struct device *dev, struct device_driver *drv)
343{
344 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
5039563e
TP
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
2b7a32f7
SA
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
64bee4d2
MW
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
75368bf6
AV
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 361
35f74fca 362 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
363}
364
7eff2e7a 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
366{
367 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
8ae12a0d 373
2856670f 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
375}
376
8ae12a0d
DB
377struct bus_type spi_bus_type = {
378 .name = "spi",
aa7da564 379 .dev_groups = spi_dev_groups,
8ae12a0d
DB
380 .match = spi_match_device,
381 .uevent = spi_uevent,
8ae12a0d
DB
382};
383EXPORT_SYMBOL_GPL(spi_bus_type);
384
b885244e
DB
385
386static int spi_drv_probe(struct device *dev)
387{
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 389 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
390 int ret;
391
86be408b
SN
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
44af7927
JH
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
676e7c25 404 ret = dev_pm_domain_attach(dev, true);
71f277a7
UH
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
b885244e 411
33cf00e5 412 return ret;
b885244e
DB
413}
414
415static int spi_drv_remove(struct device *dev)
416{
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
418 int ret;
419
aec35f4e 420 ret = sdrv->remove(to_spi_device(dev));
676e7c25 421 dev_pm_domain_detach(dev, true);
b885244e 422
33cf00e5 423 return ret;
b885244e
DB
424}
425
426static void spi_drv_shutdown(struct device *dev)
427{
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431}
432
33e34dc6 433/**
ca5d2485 434 * __spi_register_driver - register a SPI driver
88c9321d 435 * @owner: owner module of the driver to register
33e34dc6
DB
436 * @sdrv: the driver to register
437 * Context: can sleep
97d56dc6
JMC
438 *
439 * Return: zero on success, else a negative error code.
33e34dc6 440 */
ca5d2485 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 442{
ca5d2485 443 sdrv->driver.owner = owner;
b885244e
DB
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452}
ca5d2485 453EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 454
8ae12a0d
DB
455/*-------------------------------------------------------------------------*/
456
457/* SPI devices should normally not be created by SPI device drivers; that
8caab75f 458 * would make them board-specific. Similarly with SPI controller drivers.
8ae12a0d
DB
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463struct boardinfo {
464 struct list_head list;
2b9603a0 465 struct spi_board_info board_info;
8ae12a0d
DB
466};
467
468static LIST_HEAD(board_list);
8caab75f 469static LIST_HEAD(spi_controller_list);
2b9603a0
FT
470
471/*
472 * Used to protect add/del opertion for board_info list and
8caab75f 473 * spi_controller list, and their matching process
9a9a047a 474 * also used to protect object of type struct idr
2b9603a0 475 */
94040828 476static DEFINE_MUTEX(board_lock);
8ae12a0d 477
dc87c98e
GL
478/**
479 * spi_alloc_device - Allocate a new SPI device
8caab75f 480 * @ctlr: Controller to which device is connected
dc87c98e
GL
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
8caab75f 489 * spi_device structure to add it to the SPI controller. If the caller
dc87c98e
GL
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
97d56dc6 493 * Return: a pointer to the new device, or NULL.
dc87c98e 494 */
8caab75f 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
dc87c98e
GL
496{
497 struct spi_device *spi;
dc87c98e 498
8caab75f 499 if (!spi_controller_get(ctlr))
dc87c98e
GL
500 return NULL;
501
5fe5f05e 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 503 if (!spi) {
8caab75f 504 spi_controller_put(ctlr);
dc87c98e
GL
505 return NULL;
506 }
507
8caab75f
GU
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
dc87c98e
GL
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
446411e1 512 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
513
514 spin_lock_init(&spi->statistics.lock);
515
dc87c98e
GL
516 device_initialize(&spi->dev);
517 return spi;
518}
519EXPORT_SYMBOL_GPL(spi_alloc_device);
520
e13ac47b
JN
521static void spi_dev_set_name(struct spi_device *spi)
522{
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
8caab75f 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
e13ac47b
JN
531 spi->chip_select);
532}
533
b6fb8d3a
MW
534static int spi_dev_check(struct device *dev, void *data)
535{
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
8caab75f 539 if (spi->controller == new_spi->controller &&
b6fb8d3a
MW
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543}
544
dc87c98e
GL
545/**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
97d56dc6 552 * Return: 0 on success; negative errno on failure
dc87c98e
GL
553 */
554int spi_add_device(struct spi_device *spi)
555{
e48880e0 556 static DEFINE_MUTEX(spi_add_lock);
8caab75f
GU
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
dc87c98e
GL
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
8caab75f
GU
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
dc87c98e
GL
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
e13ac47b 569 spi_dev_set_name(spi);
e48880e0
DB
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
b6fb8d3a
MW
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
e48880e0
DB
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
e48880e0
DB
581 goto done;
582 }
583
f3186dd8
LW
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
8caab75f 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
74317984 589
e48880e0
DB
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
7d077197 594 status = spi_setup(spi);
dc87c98e 595 if (status < 0) {
eb288a1f
LW
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
e48880e0 598 goto done;
dc87c98e
GL
599 }
600
e48880e0 601 /* Device may be bound to an active driver when this returns */
dc87c98e 602 status = device_add(&spi->dev);
e48880e0 603 if (status < 0)
eb288a1f
LW
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
e48880e0 606 else
35f74fca 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 608
e48880e0
DB
609done:
610 mutex_unlock(&spi_add_lock);
611 return status;
dc87c98e
GL
612}
613EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 614
33e34dc6
DB
615/**
616 * spi_new_device - instantiate one new SPI device
8caab75f 617 * @ctlr: Controller to which device is connected
33e34dc6
DB
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
082c8cb4 626 *
97d56dc6 627 * Return: the new device, or NULL.
8ae12a0d 628 */
8caab75f 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
e9d5a461 630 struct spi_board_info *chip)
8ae12a0d
DB
631{
632 struct spi_device *proxy;
8ae12a0d
DB
633 int status;
634
082c8cb4
DB
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
8caab75f 642 proxy = spi_alloc_device(ctlr);
dc87c98e 643 if (!proxy)
8ae12a0d
DB
644 return NULL;
645
102eb975
GL
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
8ae12a0d
DB
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 650 proxy->mode = chip->mode;
8ae12a0d 651 proxy->irq = chip->irq;
102eb975 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
8ae12a0d 656
826cf175
DT
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
8caab75f 660 dev_err(&ctlr->dev,
826cf175
DT
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
8ae12a0d
DB
665 }
666
826cf175
DT
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
8ae12a0d 671 return proxy;
826cf175
DT
672
673err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
8ae12a0d
DB
679}
680EXPORT_SYMBOL_GPL(spi_new_device);
681
3b1884c2
GU
682/**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
8caab75f 687 * by spi_unregister_controller().
3b1884c2
GU
688 */
689void spi_unregister_device(struct spi_device *spi)
690{
bd6c1644
GU
691 if (!spi)
692 return;
693
8324147f 694 if (spi->dev.of_node) {
bd6c1644 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
8324147f
JH
696 of_node_put(spi->dev.of_node);
697 }
7f24467f
OP
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
bd6c1644 700 device_unregister(&spi->dev);
3b1884c2
GU
701}
702EXPORT_SYMBOL_GPL(spi_unregister_device);
703
8caab75f
GU
704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
2b9603a0
FT
706{
707 struct spi_device *dev;
708
8caab75f 709 if (ctlr->bus_num != bi->bus_num)
2b9603a0
FT
710 return;
711
8caab75f 712 dev = spi_new_device(ctlr, bi);
2b9603a0 713 if (!dev)
8caab75f 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
2b9603a0
FT
715 bi->modalias);
716}
717
33e34dc6
DB
718/**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
8ae12a0d
DB
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
826cf175 736 * Device properties are deep-copied though.
97d56dc6
JMC
737 *
738 * Return: zero on success, else a negative error code.
8ae12a0d 739 */
fd4a319b 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 741{
2b9603a0
FT
742 struct boardinfo *bi;
743 int i;
8ae12a0d 744
c7908a37 745 if (!n)
f974cf57 746 return 0;
c7908a37 747
f9bdb7fd 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
749 if (!bi)
750 return -ENOMEM;
8ae12a0d 751
2b9603a0 752 for (i = 0; i < n; i++, bi++, info++) {
8caab75f 753 struct spi_controller *ctlr;
8ae12a0d 754
2b9603a0 755 memcpy(&bi->board_info, info, sizeof(*info));
826cf175
DT
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
2b9603a0
FT
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
8caab75f
GU
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
2b9603a0 768 mutex_unlock(&board_lock);
8ae12a0d 769 }
2b9603a0
FT
770
771 return 0;
8ae12a0d
DB
772}
773
774/*-------------------------------------------------------------------------*/
775
b158935f
MB
776static void spi_set_cs(struct spi_device *spi, bool enable)
777{
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
f3186dd8
LW
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
28f7604f
FF
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
f3186dd8 793 else
28f7604f 794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
f3186dd8 795 }
8eee6b9d 796 /* Some SPI masters need both GPIO CS & slave_select */
8caab75f
GU
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
8eee6b9d 802 }
b158935f
MB
803}
804
2de440f5 805#ifdef CONFIG_HAS_DMA
46336966
BB
806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
6ad45a27
MB
809{
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
df88e91b 811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
b1b8153c
V
812#ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816#else
817 const bool kmap_buf = false;
818#endif
65598c13
AG
819 int desc_len;
820 int sgs;
6ad45a27 821 struct page *vm_page;
8dd4a016 822 struct scatterlist *sg;
6ad45a27
MB
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
b1b8153c 827 if (vmalloced_buf || kmap_buf) {
df88e91b 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
65598c13 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
0569a88f 830 } else if (virt_addr_valid(buf)) {
8caab75f 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
65598c13 832 sgs = DIV_ROUND_UP(len, desc_len);
0569a88f
V
833 } else {
834 return -EINVAL;
65598c13
AG
835 }
836
6ad45a27
MB
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
8dd4a016 841 sg = &sgt->sgl[0];
6ad45a27 842 for (i = 0; i < sgs; i++) {
6ad45a27 843
b1b8153c 844 if (vmalloced_buf || kmap_buf) {
ce99319a
MC
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
b1b8153c
V
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
6ad45a27
MB
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
8dd4a016 861 sg_set_page(sg, vm_page,
c1aefbdd 862 min, offset_in_page(buf));
6ad45a27 863 } else {
65598c13 864 min = min_t(size_t, len, desc_len);
6ad45a27 865 sg_buf = buf;
8dd4a016 866 sg_set_buf(sg, sg_buf, min);
6ad45a27
MB
867 }
868
6ad45a27
MB
869 buf += min;
870 len -= min;
8dd4a016 871 sg = sg_next(sg);
6ad45a27
MB
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
875 if (!ret)
876 ret = -ENOMEM;
6ad45a27
MB
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885}
886
46336966
BB
887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
6ad45a27
MB
889{
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894}
895
8caab75f 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31 897{
99adef31
MB
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
6ad45a27 900 int ret;
3a2eba9b 901
8caab75f 902 if (!ctlr->can_dma)
99adef31
MB
903 return 0;
904
8caab75f
GU
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 907 else
8caab75f 908 tx_dev = ctlr->dev.parent;
c37f45b5 909
8caab75f
GU
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 912 else
8caab75f 913 rx_dev = ctlr->dev.parent;
99adef31
MB
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
917 continue;
918
919 if (xfer->tx_buf != NULL) {
8caab75f 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
99adef31
MB
925 }
926
927 if (xfer->rx_buf != NULL) {
8caab75f 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
6ad45a27
MB
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
8caab75f 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
933 DMA_TO_DEVICE);
934 return ret;
99adef31
MB
935 }
936 }
937 }
938
8caab75f 939 ctlr->cur_msg_mapped = true;
99adef31
MB
940
941 return 0;
942}
943
8caab75f 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31
MB
945{
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
8caab75f 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
99adef31
MB
950 return 0;
951
8caab75f
GU
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 954 else
8caab75f 955 tx_dev = ctlr->dev.parent;
c37f45b5 956
8caab75f
GU
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 959 else
8caab75f 960 rx_dev = ctlr->dev.parent;
99adef31
MB
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
964 continue;
965
8caab75f
GU
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
968 }
969
970 return 0;
971}
2de440f5 972#else /* !CONFIG_HAS_DMA */
8caab75f 973static inline int __spi_map_msg(struct spi_controller *ctlr,
2de440f5
GU
974 struct spi_message *msg)
975{
976 return 0;
977}
978
8caab75f 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
4b786458 980 struct spi_message *msg)
2de440f5
GU
981{
982 return 0;
983}
984#endif /* !CONFIG_HAS_DMA */
985
8caab75f 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
4b786458
MS
987 struct spi_message *msg)
988{
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
8caab75f 996 if (xfer->tx_buf == ctlr->dummy_tx)
4b786458 997 xfer->tx_buf = NULL;
8caab75f 998 if (xfer->rx_buf == ctlr->dummy_rx)
4b786458
MS
999 xfer->rx_buf = NULL;
1000 }
1001
8caab75f 1002 return __spi_unmap_msg(ctlr, msg);
4b786458
MS
1003}
1004
8caab75f 1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
2de440f5
GU
1006{
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
8caab75f 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
2de440f5
GU
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
2de440f5
GU
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
8caab75f 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
2de440f5
GU
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
8caab75f 1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
2de440f5
GU
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
8caab75f 1029 ctlr->dummy_tx = tmp;
2de440f5
GU
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
8caab75f 1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
2de440f5
GU
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
8caab75f 1038 ctlr->dummy_rx = tmp;
2de440f5
GU
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
5442dcaa
CL
1044 if (!xfer->len)
1045 continue;
2de440f5 1046 if (!xfer->tx_buf)
8caab75f 1047 xfer->tx_buf = ctlr->dummy_tx;
2de440f5 1048 if (!xfer->rx_buf)
8caab75f 1049 xfer->rx_buf = ctlr->dummy_rx;
2de440f5
GU
1050 }
1051 }
1052 }
1053
8caab75f 1054 return __spi_map_msg(ctlr, msg);
2de440f5 1055}
99adef31 1056
810923f3
LR
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060{
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091}
1092
0ff2de8b
MS
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095 if (!ns)
1096 return;
1097 if (ns <= 1000) {
1098 ndelay(ns);
1099 } else {
1100 u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102 if (us <= 10)
1103 udelay(us);
1104 else
1105 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 }
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 struct spi_transfer *xfer)
1111{
1112 u32 delay = xfer->cs_change_delay;
1113 u32 unit = xfer->cs_change_delay_unit;
d5864e5b 1114 u32 hz;
0ff2de8b
MS
1115
1116 /* return early on "fast" mode - for everything but USECS */
1117 if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118 return;
1119
1120 switch (unit) {
1121 case SPI_DELAY_UNIT_USECS:
1122 /* for compatibility use default of 10us */
1123 if (!delay)
1124 delay = 10000;
1125 else
1126 delay *= 1000;
1127 break;
1128 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129 break;
d5864e5b
MS
1130 case SPI_DELAY_UNIT_SCK:
1131 /* if there is no effective speed know, then approximate
1132 * by underestimating with half the requested hz
1133 */
1134 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 delay *= DIV_ROUND_UP(1000000000, hz);
1136 break;
0ff2de8b
MS
1137 default:
1138 dev_err_once(&msg->spi->dev,
1139 "Use of unsupported delay unit %i, using default of 10us\n",
1140 xfer->cs_change_delay_unit);
1141 delay = 10000;
1142 }
1143 /* now sleep for the requested amount of time */
1144 _spi_transfer_delay_ns(delay);
1145}
1146
b158935f
MB
1147/*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
8ba811a7 1151 * drivers which implement a transfer_one() operation. It provides
b158935f
MB
1152 * standard handling of delays and chip select management.
1153 */
8caab75f 1154static int spi_transfer_one_message(struct spi_controller *ctlr,
b158935f
MB
1155 struct spi_message *msg)
1156{
1157 struct spi_transfer *xfer;
b158935f
MB
1158 bool keep_cs = false;
1159 int ret = 0;
8caab75f 1160 struct spi_statistics *statm = &ctlr->statistics;
eca2ebc7 1161 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
1162
1163 spi_set_cs(msg->spi, true);
1164
eca2ebc7
MS
1165 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
b158935f
MB
1168 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 trace_spi_transfer_start(msg, xfer);
1170
8caab75f
GU
1171 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
eca2ebc7 1173
38ec10f6 1174 if (xfer->tx_buf || xfer->rx_buf) {
8caab75f 1175 reinit_completion(&ctlr->xfer_completion);
b158935f 1176
8caab75f 1177 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
38ec10f6 1178 if (ret < 0) {
eca2ebc7
MS
1179 SPI_STATISTICS_INCREMENT_FIELD(statm,
1180 errors);
1181 SPI_STATISTICS_INCREMENT_FIELD(stats,
1182 errors);
38ec10f6
MB
1183 dev_err(&msg->spi->dev,
1184 "SPI transfer failed: %d\n", ret);
1185 goto out;
1186 }
b158935f 1187
d57e7960
MB
1188 if (ret > 0) {
1189 ret = spi_transfer_wait(ctlr, msg, xfer);
1190 if (ret < 0)
1191 msg->status = ret;
1192 }
38ec10f6
MB
1193 } else {
1194 if (xfer->len)
1195 dev_err(&msg->spi->dev,
1196 "Bufferless transfer has length %u\n",
1197 xfer->len);
13a42798 1198 }
b158935f
MB
1199
1200 trace_spi_transfer_stop(msg, xfer);
1201
1202 if (msg->status != -EINPROGRESS)
1203 goto out;
1204
0ff2de8b
MS
1205 if (xfer->delay_usecs)
1206 _spi_transfer_delay_ns(xfer->delay_usecs * 1000);
b158935f
MB
1207
1208 if (xfer->cs_change) {
1209 if (list_is_last(&xfer->transfer_list,
1210 &msg->transfers)) {
1211 keep_cs = true;
1212 } else {
0b73aa63 1213 spi_set_cs(msg->spi, false);
0ff2de8b 1214 _spi_transfer_cs_change_delay(msg, xfer);
0b73aa63 1215 spi_set_cs(msg->spi, true);
b158935f
MB
1216 }
1217 }
1218
1219 msg->actual_length += xfer->len;
1220 }
1221
1222out:
1223 if (ret != 0 || !keep_cs)
1224 spi_set_cs(msg->spi, false);
1225
1226 if (msg->status == -EINPROGRESS)
1227 msg->status = ret;
1228
8caab75f
GU
1229 if (msg->status && ctlr->handle_err)
1230 ctlr->handle_err(ctlr, msg);
b716c4ff 1231
c9ba7a16
NT
1232 spi_res_release(ctlr, msg);
1233
0ed56252
MB
1234 spi_finalize_current_message(ctlr);
1235
b158935f
MB
1236 return ret;
1237}
1238
1239/**
1240 * spi_finalize_current_transfer - report completion of a transfer
8caab75f 1241 * @ctlr: the controller reporting completion
b158935f
MB
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
9e8f4882 1245 * transfer has finished and the next one may be scheduled.
b158935f 1246 */
8caab75f 1247void spi_finalize_current_transfer(struct spi_controller *ctlr)
b158935f 1248{
8caab75f 1249 complete(&ctlr->xfer_completion);
b158935f
MB
1250}
1251EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
ffbbdd21 1253/**
fc9e0f71 1254 * __spi_pump_messages - function which processes spi message queue
8caab75f 1255 * @ctlr: controller to process queue for
fc9e0f71 1256 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
0461a414
MB
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
ffbbdd21 1265 */
8caab75f 1266static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
ffbbdd21 1267{
ffbbdd21
LW
1268 unsigned long flags;
1269 bool was_busy = false;
1270 int ret;
1271
983aee5d 1272 /* Lock queue */
8caab75f 1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
983aee5d
MB
1274
1275 /* Make sure we are not already running a message */
8caab75f
GU
1276 if (ctlr->cur_msg) {
1277 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
983aee5d
MB
1278 return;
1279 }
1280
f0125f1a 1281 /* If another context is idling the device then defer */
8caab75f
GU
1282 if (ctlr->idling) {
1283 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1284 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
0461a414
MB
1285 return;
1286 }
1287
983aee5d 1288 /* Check if the queue is idle */
8caab75f
GU
1289 if (list_empty(&ctlr->queue) || !ctlr->running) {
1290 if (!ctlr->busy) {
1291 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
b0b36b86 1292 return;
ffbbdd21 1293 }
fc9e0f71 1294
f0125f1a
MB
1295 /* Only do teardown in the thread */
1296 if (!in_kthread) {
1297 kthread_queue_work(&ctlr->kworker,
1298 &ctlr->pump_messages);
1299 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1300 return;
1301 }
1302
1303 ctlr->busy = false;
1304 ctlr->idling = true;
1305 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1306
1307 kfree(ctlr->dummy_rx);
1308 ctlr->dummy_rx = NULL;
1309 kfree(ctlr->dummy_tx);
1310 ctlr->dummy_tx = NULL;
1311 if (ctlr->unprepare_transfer_hardware &&
1312 ctlr->unprepare_transfer_hardware(ctlr))
1313 dev_err(&ctlr->dev,
1314 "failed to unprepare transfer hardware\n");
1315 if (ctlr->auto_runtime_pm) {
1316 pm_runtime_mark_last_busy(ctlr->dev.parent);
1317 pm_runtime_put_autosuspend(ctlr->dev.parent);
1318 }
1319 trace_spi_controller_idle(ctlr);
1320
1321 spin_lock_irqsave(&ctlr->queue_lock, flags);
1322 ctlr->idling = false;
8caab75f 1323 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1324 return;
1325 }
ffbbdd21 1326
ffbbdd21 1327 /* Extract head of queue */
8caab75f
GU
1328 ctlr->cur_msg =
1329 list_first_entry(&ctlr->queue, struct spi_message, queue);
ffbbdd21 1330
8caab75f
GU
1331 list_del_init(&ctlr->cur_msg->queue);
1332 if (ctlr->busy)
ffbbdd21
LW
1333 was_busy = true;
1334 else
8caab75f
GU
1335 ctlr->busy = true;
1336 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1337
8caab75f 1338 mutex_lock(&ctlr->io_mutex);
ef4d96ec 1339
8caab75f
GU
1340 if (!was_busy && ctlr->auto_runtime_pm) {
1341 ret = pm_runtime_get_sync(ctlr->dev.parent);
49834de2 1342 if (ret < 0) {
7e48e23a 1343 pm_runtime_put_noidle(ctlr->dev.parent);
8caab75f 1344 dev_err(&ctlr->dev, "Failed to power device: %d\n",
49834de2 1345 ret);
8caab75f 1346 mutex_unlock(&ctlr->io_mutex);
49834de2
MB
1347 return;
1348 }
1349 }
1350
56ec1978 1351 if (!was_busy)
8caab75f 1352 trace_spi_controller_busy(ctlr);
56ec1978 1353
8caab75f
GU
1354 if (!was_busy && ctlr->prepare_transfer_hardware) {
1355 ret = ctlr->prepare_transfer_hardware(ctlr);
ffbbdd21 1356 if (ret) {
8caab75f 1357 dev_err(&ctlr->dev,
f3440d9a
SL
1358 "failed to prepare transfer hardware: %d\n",
1359 ret);
49834de2 1360
8caab75f
GU
1361 if (ctlr->auto_runtime_pm)
1362 pm_runtime_put(ctlr->dev.parent);
f3440d9a
SL
1363
1364 ctlr->cur_msg->status = ret;
1365 spi_finalize_current_message(ctlr);
1366
8caab75f 1367 mutex_unlock(&ctlr->io_mutex);
ffbbdd21
LW
1368 return;
1369 }
1370 }
1371
8caab75f 1372 trace_spi_message_start(ctlr->cur_msg);
56ec1978 1373
8caab75f
GU
1374 if (ctlr->prepare_message) {
1375 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
2841a5fc 1376 if (ret) {
8caab75f
GU
1377 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1378 ret);
1379 ctlr->cur_msg->status = ret;
1380 spi_finalize_current_message(ctlr);
49023d2e 1381 goto out;
2841a5fc 1382 }
8caab75f 1383 ctlr->cur_msg_prepared = true;
2841a5fc
MB
1384 }
1385
8caab75f 1386 ret = spi_map_msg(ctlr, ctlr->cur_msg);
99adef31 1387 if (ret) {
8caab75f
GU
1388 ctlr->cur_msg->status = ret;
1389 spi_finalize_current_message(ctlr);
49023d2e 1390 goto out;
99adef31
MB
1391 }
1392
8caab75f 1393 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
ffbbdd21 1394 if (ret) {
8caab75f 1395 dev_err(&ctlr->dev,
1f802f82 1396 "failed to transfer one message from queue\n");
49023d2e 1397 goto out;
ffbbdd21 1398 }
49023d2e
JH
1399
1400out:
8caab75f 1401 mutex_unlock(&ctlr->io_mutex);
62826970
MB
1402
1403 /* Prod the scheduler in case transfer_one() was busy waiting */
49023d2e
JH
1404 if (!ret)
1405 cond_resched();
ffbbdd21
LW
1406}
1407
fc9e0f71
MB
1408/**
1409 * spi_pump_messages - kthread work function which processes spi message queue
8caab75f 1410 * @work: pointer to kthread work struct contained in the controller struct
fc9e0f71
MB
1411 */
1412static void spi_pump_messages(struct kthread_work *work)
1413{
8caab75f
GU
1414 struct spi_controller *ctlr =
1415 container_of(work, struct spi_controller, pump_messages);
fc9e0f71 1416
8caab75f 1417 __spi_pump_messages(ctlr, true);
fc9e0f71
MB
1418}
1419
924b5867
DA
1420/**
1421 * spi_set_thread_rt - set the controller to pump at realtime priority
1422 * @ctlr: controller to boost priority of
1423 *
1424 * This can be called because the controller requested realtime priority
1425 * (by setting the ->rt value before calling spi_register_controller()) or
1426 * because a device on the bus said that its transfers needed realtime
1427 * priority.
1428 *
1429 * NOTE: at the moment if any device on a bus says it needs realtime then
1430 * the thread will be at realtime priority for all transfers on that
1431 * controller. If this eventually becomes a problem we may see if we can
1432 * find a way to boost the priority only temporarily during relevant
1433 * transfers.
1434 */
1435static void spi_set_thread_rt(struct spi_controller *ctlr)
ffbbdd21 1436{
4ff13d00 1437 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
ffbbdd21 1438
924b5867
DA
1439 dev_info(&ctlr->dev,
1440 "will run message pump with realtime priority\n");
1441 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1442}
1443
1444static int spi_init_queue(struct spi_controller *ctlr)
1445{
8caab75f
GU
1446 ctlr->running = false;
1447 ctlr->busy = false;
ffbbdd21 1448
8caab75f
GU
1449 kthread_init_worker(&ctlr->kworker);
1450 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1451 "%s", dev_name(&ctlr->dev));
1452 if (IS_ERR(ctlr->kworker_task)) {
1453 dev_err(&ctlr->dev, "failed to create message pump task\n");
1454 return PTR_ERR(ctlr->kworker_task);
ffbbdd21 1455 }
8caab75f 1456 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
f0125f1a 1457
ffbbdd21 1458 /*
8caab75f 1459 * Controller config will indicate if this controller should run the
ffbbdd21
LW
1460 * message pump with high (realtime) priority to reduce the transfer
1461 * latency on the bus by minimising the delay between a transfer
1462 * request and the scheduling of the message pump thread. Without this
1463 * setting the message pump thread will remain at default priority.
1464 */
924b5867
DA
1465 if (ctlr->rt)
1466 spi_set_thread_rt(ctlr);
ffbbdd21
LW
1467
1468 return 0;
1469}
1470
1471/**
1472 * spi_get_next_queued_message() - called by driver to check for queued
1473 * messages
8caab75f 1474 * @ctlr: the controller to check for queued messages
ffbbdd21
LW
1475 *
1476 * If there are more messages in the queue, the next message is returned from
1477 * this call.
97d56dc6
JMC
1478 *
1479 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21 1480 */
8caab75f 1481struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
ffbbdd21
LW
1482{
1483 struct spi_message *next;
1484 unsigned long flags;
1485
1486 /* get a pointer to the next message, if any */
8caab75f
GU
1487 spin_lock_irqsave(&ctlr->queue_lock, flags);
1488 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1cfd97f9 1489 queue);
8caab75f 1490 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1491
1492 return next;
1493}
1494EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1495
1496/**
1497 * spi_finalize_current_message() - the current message is complete
8caab75f 1498 * @ctlr: the controller to return the message to
ffbbdd21
LW
1499 *
1500 * Called by the driver to notify the core that the message in the front of the
1501 * queue is complete and can be removed from the queue.
1502 */
8caab75f 1503void spi_finalize_current_message(struct spi_controller *ctlr)
ffbbdd21
LW
1504{
1505 struct spi_message *mesg;
1506 unsigned long flags;
2841a5fc 1507 int ret;
ffbbdd21 1508
8caab75f
GU
1509 spin_lock_irqsave(&ctlr->queue_lock, flags);
1510 mesg = ctlr->cur_msg;
1511 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1512
8caab75f 1513 spi_unmap_msg(ctlr, mesg);
99adef31 1514
8caab75f
GU
1515 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1516 ret = ctlr->unprepare_message(ctlr, mesg);
2841a5fc 1517 if (ret) {
8caab75f
GU
1518 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1519 ret);
2841a5fc
MB
1520 }
1521 }
391949b6 1522
8caab75f
GU
1523 spin_lock_irqsave(&ctlr->queue_lock, flags);
1524 ctlr->cur_msg = NULL;
1525 ctlr->cur_msg_prepared = false;
f0125f1a 1526 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
8caab75f 1527 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
8e76ef88
MS
1528
1529 trace_spi_message_done(mesg);
2841a5fc 1530
ffbbdd21
LW
1531 mesg->state = NULL;
1532 if (mesg->complete)
1533 mesg->complete(mesg->context);
1534}
1535EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1536
8caab75f 1537static int spi_start_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1538{
1539 unsigned long flags;
1540
8caab75f 1541 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1542
8caab75f
GU
1543 if (ctlr->running || ctlr->busy) {
1544 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1545 return -EBUSY;
1546 }
1547
8caab75f
GU
1548 ctlr->running = true;
1549 ctlr->cur_msg = NULL;
1550 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1551
8caab75f 1552 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21
LW
1553
1554 return 0;
1555}
1556
8caab75f 1557static int spi_stop_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1558{
1559 unsigned long flags;
1560 unsigned limit = 500;
1561 int ret = 0;
1562
8caab75f 1563 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1564
1565 /*
1566 * This is a bit lame, but is optimized for the common execution path.
8caab75f 1567 * A wait_queue on the ctlr->busy could be used, but then the common
ffbbdd21
LW
1568 * execution path (pump_messages) would be required to call wake_up or
1569 * friends on every SPI message. Do this instead.
1570 */
8caab75f
GU
1571 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1572 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
f97b26b0 1573 usleep_range(10000, 11000);
8caab75f 1574 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1575 }
1576
8caab75f 1577 if (!list_empty(&ctlr->queue) || ctlr->busy)
ffbbdd21
LW
1578 ret = -EBUSY;
1579 else
8caab75f 1580 ctlr->running = false;
ffbbdd21 1581
8caab75f 1582 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1583
1584 if (ret) {
8caab75f 1585 dev_warn(&ctlr->dev, "could not stop message queue\n");
ffbbdd21
LW
1586 return ret;
1587 }
1588 return ret;
1589}
1590
8caab75f 1591static int spi_destroy_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1592{
1593 int ret;
1594
8caab75f 1595 ret = spi_stop_queue(ctlr);
ffbbdd21
LW
1596
1597 /*
3989144f 1598 * kthread_flush_worker will block until all work is done.
ffbbdd21
LW
1599 * If the reason that stop_queue timed out is that the work will never
1600 * finish, then it does no good to call flush/stop thread, so
1601 * return anyway.
1602 */
1603 if (ret) {
8caab75f 1604 dev_err(&ctlr->dev, "problem destroying queue\n");
ffbbdd21
LW
1605 return ret;
1606 }
1607
8caab75f
GU
1608 kthread_flush_worker(&ctlr->kworker);
1609 kthread_stop(ctlr->kworker_task);
ffbbdd21
LW
1610
1611 return 0;
1612}
1613
0461a414
MB
1614static int __spi_queued_transfer(struct spi_device *spi,
1615 struct spi_message *msg,
1616 bool need_pump)
ffbbdd21 1617{
8caab75f 1618 struct spi_controller *ctlr = spi->controller;
ffbbdd21
LW
1619 unsigned long flags;
1620
8caab75f 1621 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1622
8caab75f
GU
1623 if (!ctlr->running) {
1624 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1625 return -ESHUTDOWN;
1626 }
1627 msg->actual_length = 0;
1628 msg->status = -EINPROGRESS;
1629
8caab75f 1630 list_add_tail(&msg->queue, &ctlr->queue);
f0125f1a 1631 if (!ctlr->busy && need_pump)
8caab75f 1632 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21 1633
8caab75f 1634 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1635 return 0;
1636}
1637
0461a414
MB
1638/**
1639 * spi_queued_transfer - transfer function for queued transfers
1640 * @spi: spi device which is requesting transfer
1641 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1642 *
1643 * Return: zero on success, else a negative error code.
0461a414
MB
1644 */
1645static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1646{
1647 return __spi_queued_transfer(spi, msg, true);
1648}
1649
8caab75f 1650static int spi_controller_initialize_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1651{
1652 int ret;
1653
8caab75f
GU
1654 ctlr->transfer = spi_queued_transfer;
1655 if (!ctlr->transfer_one_message)
1656 ctlr->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1657
1658 /* Initialize and start queue */
8caab75f 1659 ret = spi_init_queue(ctlr);
ffbbdd21 1660 if (ret) {
8caab75f 1661 dev_err(&ctlr->dev, "problem initializing queue\n");
ffbbdd21
LW
1662 goto err_init_queue;
1663 }
8caab75f
GU
1664 ctlr->queued = true;
1665 ret = spi_start_queue(ctlr);
ffbbdd21 1666 if (ret) {
8caab75f 1667 dev_err(&ctlr->dev, "problem starting queue\n");
ffbbdd21
LW
1668 goto err_start_queue;
1669 }
1670
1671 return 0;
1672
1673err_start_queue:
8caab75f 1674 spi_destroy_queue(ctlr);
c3676d5c 1675err_init_queue:
ffbbdd21
LW
1676 return ret;
1677}
1678
988f259b
BB
1679/**
1680 * spi_flush_queue - Send all pending messages in the queue from the callers'
1681 * context
1682 * @ctlr: controller to process queue for
1683 *
1684 * This should be used when one wants to ensure all pending messages have been
1685 * sent before doing something. Is used by the spi-mem code to make sure SPI
1686 * memory operations do not preempt regular SPI transfers that have been queued
1687 * before the spi-mem operation.
1688 */
1689void spi_flush_queue(struct spi_controller *ctlr)
1690{
1691 if (ctlr->transfer == spi_queued_transfer)
1692 __spi_pump_messages(ctlr, false);
1693}
1694
ffbbdd21
LW
1695/*-------------------------------------------------------------------------*/
1696
7cb94361 1697#if defined(CONFIG_OF)
8caab75f 1698static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
c2e51ac3 1699 struct device_node *nc)
aff5e3f8 1700{
aff5e3f8 1701 u32 value;
c2e51ac3 1702 int rc;
aff5e3f8 1703
aff5e3f8 1704 /* Mode (clock phase/polarity/etc.) */
e0bcb680 1705 if (of_property_read_bool(nc, "spi-cpha"))
aff5e3f8 1706 spi->mode |= SPI_CPHA;
e0bcb680 1707 if (of_property_read_bool(nc, "spi-cpol"))
aff5e3f8 1708 spi->mode |= SPI_CPOL;
e0bcb680 1709 if (of_property_read_bool(nc, "spi-3wire"))
aff5e3f8 1710 spi->mode |= SPI_3WIRE;
e0bcb680 1711 if (of_property_read_bool(nc, "spi-lsb-first"))
aff5e3f8
PA
1712 spi->mode |= SPI_LSB_FIRST;
1713
f3186dd8
LW
1714 /*
1715 * For descriptors associated with the device, polarity inversion is
1716 * handled in the gpiolib, so all chip selects are "active high" in
1717 * the logical sense, the gpiolib will invert the line if need be.
1718 */
1719 if (ctlr->use_gpio_descriptors)
1720 spi->mode |= SPI_CS_HIGH;
1721 else if (of_property_read_bool(nc, "spi-cs-high"))
1722 spi->mode |= SPI_CS_HIGH;
1723
aff5e3f8
PA
1724 /* Device DUAL/QUAD mode */
1725 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1726 switch (value) {
1727 case 1:
1728 break;
1729 case 2:
1730 spi->mode |= SPI_TX_DUAL;
1731 break;
1732 case 4:
1733 spi->mode |= SPI_TX_QUAD;
1734 break;
6b03061f
YNG
1735 case 8:
1736 spi->mode |= SPI_TX_OCTAL;
1737 break;
aff5e3f8 1738 default:
8caab75f 1739 dev_warn(&ctlr->dev,
aff5e3f8
PA
1740 "spi-tx-bus-width %d not supported\n",
1741 value);
1742 break;
1743 }
1744 }
1745
1746 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1747 switch (value) {
1748 case 1:
1749 break;
1750 case 2:
1751 spi->mode |= SPI_RX_DUAL;
1752 break;
1753 case 4:
1754 spi->mode |= SPI_RX_QUAD;
1755 break;
6b03061f
YNG
1756 case 8:
1757 spi->mode |= SPI_RX_OCTAL;
1758 break;
aff5e3f8 1759 default:
8caab75f 1760 dev_warn(&ctlr->dev,
aff5e3f8
PA
1761 "spi-rx-bus-width %d not supported\n",
1762 value);
1763 break;
1764 }
1765 }
1766
8caab75f 1767 if (spi_controller_is_slave(ctlr)) {
194276b0 1768 if (!of_node_name_eq(nc, "slave")) {
25c56c88
RH
1769 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1770 nc);
6c364062
GU
1771 return -EINVAL;
1772 }
1773 return 0;
1774 }
1775
1776 /* Device address */
1777 rc = of_property_read_u32(nc, "reg", &value);
1778 if (rc) {
25c56c88
RH
1779 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1780 nc, rc);
6c364062
GU
1781 return rc;
1782 }
1783 spi->chip_select = value;
1784
aff5e3f8
PA
1785 /* Device speed */
1786 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1787 if (rc) {
8caab75f 1788 dev_err(&ctlr->dev,
25c56c88 1789 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
c2e51ac3 1790 return rc;
aff5e3f8
PA
1791 }
1792 spi->max_speed_hz = value;
1793
c2e51ac3
GU
1794 return 0;
1795}
1796
1797static struct spi_device *
8caab75f 1798of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
c2e51ac3
GU
1799{
1800 struct spi_device *spi;
1801 int rc;
1802
1803 /* Alloc an spi_device */
8caab75f 1804 spi = spi_alloc_device(ctlr);
c2e51ac3 1805 if (!spi) {
25c56c88 1806 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
c2e51ac3
GU
1807 rc = -ENOMEM;
1808 goto err_out;
1809 }
1810
1811 /* Select device driver */
1812 rc = of_modalias_node(nc, spi->modalias,
1813 sizeof(spi->modalias));
1814 if (rc < 0) {
25c56c88 1815 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
c2e51ac3
GU
1816 goto err_out;
1817 }
1818
8caab75f 1819 rc = of_spi_parse_dt(ctlr, spi, nc);
c2e51ac3
GU
1820 if (rc)
1821 goto err_out;
1822
aff5e3f8
PA
1823 /* Store a pointer to the node in the device structure */
1824 of_node_get(nc);
1825 spi->dev.of_node = nc;
1826
1827 /* Register the new device */
aff5e3f8
PA
1828 rc = spi_add_device(spi);
1829 if (rc) {
25c56c88 1830 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
8324147f 1831 goto err_of_node_put;
aff5e3f8
PA
1832 }
1833
1834 return spi;
1835
8324147f
JH
1836err_of_node_put:
1837 of_node_put(nc);
aff5e3f8
PA
1838err_out:
1839 spi_dev_put(spi);
1840 return ERR_PTR(rc);
1841}
1842
d57a4282
GL
1843/**
1844 * of_register_spi_devices() - Register child devices onto the SPI bus
8caab75f 1845 * @ctlr: Pointer to spi_controller device
d57a4282 1846 *
6c364062
GU
1847 * Registers an spi_device for each child node of controller node which
1848 * represents a valid SPI slave.
d57a4282 1849 */
8caab75f 1850static void of_register_spi_devices(struct spi_controller *ctlr)
d57a4282
GL
1851{
1852 struct spi_device *spi;
1853 struct device_node *nc;
d57a4282 1854
8caab75f 1855 if (!ctlr->dev.of_node)
d57a4282
GL
1856 return;
1857
8caab75f 1858 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
bd6c1644
GU
1859 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1860 continue;
8caab75f 1861 spi = of_register_spi_device(ctlr, nc);
e0af98a7 1862 if (IS_ERR(spi)) {
8caab75f 1863 dev_warn(&ctlr->dev,
25c56c88 1864 "Failed to create SPI device for %pOF\n", nc);
e0af98a7
RR
1865 of_node_clear_flag(nc, OF_POPULATED);
1866 }
d57a4282
GL
1867 }
1868}
1869#else
8caab75f 1870static void of_register_spi_devices(struct spi_controller *ctlr) { }
d57a4282
GL
1871#endif
1872
64bee4d2 1873#ifdef CONFIG_ACPI
4c3c5954
AB
1874struct acpi_spi_lookup {
1875 struct spi_controller *ctlr;
1876 u32 max_speed_hz;
1877 u32 mode;
1878 int irq;
1879 u8 bits_per_word;
1880 u8 chip_select;
1881};
1882
1883static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1884 struct acpi_spi_lookup *lookup)
8a2e487e 1885{
8a2e487e
LW
1886 const union acpi_object *obj;
1887
1888 if (!x86_apple_machine)
1889 return;
1890
1891 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1892 && obj->buffer.length >= 4)
4c3c5954 1893 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
8a2e487e
LW
1894
1895 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1896 && obj->buffer.length == 8)
4c3c5954 1897 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
8a2e487e
LW
1898
1899 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1900 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
4c3c5954 1901 lookup->mode |= SPI_LSB_FIRST;
8a2e487e
LW
1902
1903 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1904 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
4c3c5954 1905 lookup->mode |= SPI_CPOL;
8a2e487e
LW
1906
1907 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1908 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
4c3c5954 1909 lookup->mode |= SPI_CPHA;
8a2e487e
LW
1910}
1911
64bee4d2
MW
1912static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1913{
4c3c5954
AB
1914 struct acpi_spi_lookup *lookup = data;
1915 struct spi_controller *ctlr = lookup->ctlr;
64bee4d2
MW
1916
1917 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1918 struct acpi_resource_spi_serialbus *sb;
4c3c5954
AB
1919 acpi_handle parent_handle;
1920 acpi_status status;
64bee4d2
MW
1921
1922 sb = &ares->data.spi_serial_bus;
1923 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
4c3c5954
AB
1924
1925 status = acpi_get_handle(NULL,
1926 sb->resource_source.string_ptr,
1927 &parent_handle);
1928
b5e3cf41 1929 if (ACPI_FAILURE(status) ||
4c3c5954
AB
1930 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1931 return -ENODEV;
1932
a0a90718
MW
1933 /*
1934 * ACPI DeviceSelection numbering is handled by the
1935 * host controller driver in Windows and can vary
1936 * from driver to driver. In Linux we always expect
1937 * 0 .. max - 1 so we need to ask the driver to
1938 * translate between the two schemes.
1939 */
8caab75f
GU
1940 if (ctlr->fw_translate_cs) {
1941 int cs = ctlr->fw_translate_cs(ctlr,
a0a90718
MW
1942 sb->device_selection);
1943 if (cs < 0)
1944 return cs;
4c3c5954 1945 lookup->chip_select = cs;
a0a90718 1946 } else {
4c3c5954 1947 lookup->chip_select = sb->device_selection;
a0a90718
MW
1948 }
1949
4c3c5954 1950 lookup->max_speed_hz = sb->connection_speed;
64bee4d2
MW
1951
1952 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
4c3c5954 1953 lookup->mode |= SPI_CPHA;
64bee4d2 1954 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
4c3c5954 1955 lookup->mode |= SPI_CPOL;
64bee4d2 1956 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
4c3c5954 1957 lookup->mode |= SPI_CS_HIGH;
64bee4d2 1958 }
4c3c5954 1959 } else if (lookup->irq < 0) {
64bee4d2
MW
1960 struct resource r;
1961
1962 if (acpi_dev_resource_interrupt(ares, 0, &r))
4c3c5954 1963 lookup->irq = r.start;
64bee4d2
MW
1964 }
1965
1966 /* Always tell the ACPI core to skip this resource */
1967 return 1;
1968}
1969
8caab75f 1970static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
7f24467f 1971 struct acpi_device *adev)
64bee4d2 1972{
4c3c5954 1973 acpi_handle parent_handle = NULL;
64bee4d2 1974 struct list_head resource_list;
b28944c6 1975 struct acpi_spi_lookup lookup = {};
64bee4d2
MW
1976 struct spi_device *spi;
1977 int ret;
1978
7f24467f
OP
1979 if (acpi_bus_get_status(adev) || !adev->status.present ||
1980 acpi_device_enumerated(adev))
64bee4d2
MW
1981 return AE_OK;
1982
4c3c5954 1983 lookup.ctlr = ctlr;
4c3c5954 1984 lookup.irq = -1;
64bee4d2
MW
1985
1986 INIT_LIST_HEAD(&resource_list);
1987 ret = acpi_dev_get_resources(adev, &resource_list,
4c3c5954 1988 acpi_spi_add_resource, &lookup);
64bee4d2
MW
1989 acpi_dev_free_resource_list(&resource_list);
1990
4c3c5954
AB
1991 if (ret < 0)
1992 /* found SPI in _CRS but it points to another controller */
1993 return AE_OK;
8a2e487e 1994
4c3c5954
AB
1995 if (!lookup.max_speed_hz &&
1996 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1997 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1998 /* Apple does not use _CRS but nested devices for SPI slaves */
1999 acpi_spi_parse_apple_properties(adev, &lookup);
2000 }
2001
2002 if (!lookup.max_speed_hz)
64bee4d2 2003 return AE_OK;
4c3c5954
AB
2004
2005 spi = spi_alloc_device(ctlr);
2006 if (!spi) {
2007 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2008 dev_name(&adev->dev));
2009 return AE_NO_MEMORY;
64bee4d2
MW
2010 }
2011
4c3c5954
AB
2012 ACPI_COMPANION_SET(&spi->dev, adev);
2013 spi->max_speed_hz = lookup.max_speed_hz;
2014 spi->mode = lookup.mode;
2015 spi->irq = lookup.irq;
2016 spi->bits_per_word = lookup.bits_per_word;
2017 spi->chip_select = lookup.chip_select;
2018
0c6543f6
DD
2019 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2020 sizeof(spi->modalias));
2021
33ada67d
CR
2022 if (spi->irq < 0)
2023 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2024
7f24467f
OP
2025 acpi_device_set_enumerated(adev);
2026
33cf00e5 2027 adev->power.flags.ignore_parent = true;
64bee4d2 2028 if (spi_add_device(spi)) {
33cf00e5 2029 adev->power.flags.ignore_parent = false;
8caab75f 2030 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
64bee4d2
MW
2031 dev_name(&adev->dev));
2032 spi_dev_put(spi);
2033 }
2034
2035 return AE_OK;
2036}
2037
7f24467f
OP
2038static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2039 void *data, void **return_value)
2040{
8caab75f 2041 struct spi_controller *ctlr = data;
7f24467f
OP
2042 struct acpi_device *adev;
2043
2044 if (acpi_bus_get_device(handle, &adev))
2045 return AE_OK;
2046
8caab75f 2047 return acpi_register_spi_device(ctlr, adev);
7f24467f
OP
2048}
2049
4c3c5954
AB
2050#define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2051
8caab75f 2052static void acpi_register_spi_devices(struct spi_controller *ctlr)
64bee4d2
MW
2053{
2054 acpi_status status;
2055 acpi_handle handle;
2056
8caab75f 2057 handle = ACPI_HANDLE(ctlr->dev.parent);
64bee4d2
MW
2058 if (!handle)
2059 return;
2060
4c3c5954
AB
2061 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2062 SPI_ACPI_ENUMERATE_MAX_DEPTH,
8caab75f 2063 acpi_spi_add_device, NULL, ctlr, NULL);
64bee4d2 2064 if (ACPI_FAILURE(status))
8caab75f 2065 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
64bee4d2
MW
2066}
2067#else
8caab75f 2068static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
64bee4d2
MW
2069#endif /* CONFIG_ACPI */
2070
8caab75f 2071static void spi_controller_release(struct device *dev)
8ae12a0d 2072{
8caab75f 2073 struct spi_controller *ctlr;
8ae12a0d 2074
8caab75f
GU
2075 ctlr = container_of(dev, struct spi_controller, dev);
2076 kfree(ctlr);
8ae12a0d
DB
2077}
2078
2079static struct class spi_master_class = {
2080 .name = "spi_master",
2081 .owner = THIS_MODULE,
8caab75f 2082 .dev_release = spi_controller_release,
eca2ebc7 2083 .dev_groups = spi_master_groups,
8ae12a0d
DB
2084};
2085
6c364062
GU
2086#ifdef CONFIG_SPI_SLAVE
2087/**
2088 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2089 * controller
2090 * @spi: device used for the current transfer
2091 */
2092int spi_slave_abort(struct spi_device *spi)
2093{
8caab75f 2094 struct spi_controller *ctlr = spi->controller;
6c364062 2095
8caab75f
GU
2096 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2097 return ctlr->slave_abort(ctlr);
6c364062
GU
2098
2099 return -ENOTSUPP;
2100}
2101EXPORT_SYMBOL_GPL(spi_slave_abort);
2102
2103static int match_true(struct device *dev, void *data)
2104{
2105 return 1;
2106}
2107
cc8b4659
GU
2108static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2109 char *buf)
6c364062 2110{
8caab75f
GU
2111 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2112 dev);
6c364062
GU
2113 struct device *child;
2114
2115 child = device_find_child(&ctlr->dev, NULL, match_true);
2116 return sprintf(buf, "%s\n",
2117 child ? to_spi_device(child)->modalias : NULL);
2118}
2119
cc8b4659
GU
2120static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2121 const char *buf, size_t count)
6c364062 2122{
8caab75f
GU
2123 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2124 dev);
6c364062
GU
2125 struct spi_device *spi;
2126 struct device *child;
2127 char name[32];
2128 int rc;
2129
2130 rc = sscanf(buf, "%31s", name);
2131 if (rc != 1 || !name[0])
2132 return -EINVAL;
2133
2134 child = device_find_child(&ctlr->dev, NULL, match_true);
2135 if (child) {
2136 /* Remove registered slave */
2137 device_unregister(child);
2138 put_device(child);
2139 }
2140
2141 if (strcmp(name, "(null)")) {
2142 /* Register new slave */
2143 spi = spi_alloc_device(ctlr);
2144 if (!spi)
2145 return -ENOMEM;
2146
2147 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2148
2149 rc = spi_add_device(spi);
2150 if (rc) {
2151 spi_dev_put(spi);
2152 return rc;
2153 }
2154 }
2155
2156 return count;
2157}
2158
cc8b4659 2159static DEVICE_ATTR_RW(slave);
6c364062
GU
2160
2161static struct attribute *spi_slave_attrs[] = {
2162 &dev_attr_slave.attr,
2163 NULL,
2164};
2165
2166static const struct attribute_group spi_slave_group = {
2167 .attrs = spi_slave_attrs,
2168};
2169
2170static const struct attribute_group *spi_slave_groups[] = {
8caab75f 2171 &spi_controller_statistics_group,
6c364062
GU
2172 &spi_slave_group,
2173 NULL,
2174};
2175
2176static struct class spi_slave_class = {
2177 .name = "spi_slave",
2178 .owner = THIS_MODULE,
8caab75f 2179 .dev_release = spi_controller_release,
6c364062
GU
2180 .dev_groups = spi_slave_groups,
2181};
2182#else
2183extern struct class spi_slave_class; /* dummy */
2184#endif
8ae12a0d
DB
2185
2186/**
6c364062 2187 * __spi_alloc_controller - allocate an SPI master or slave controller
8ae12a0d 2188 * @dev: the controller, possibly using the platform_bus
33e34dc6 2189 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 2190 * memory is in the driver_data field of the returned device,
8caab75f 2191 * accessible with spi_controller_get_devdata().
6c364062
GU
2192 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2193 * slave (true) controller
33e34dc6 2194 * Context: can sleep
8ae12a0d 2195 *
6c364062 2196 * This call is used only by SPI controller drivers, which are the
8ae12a0d 2197 * only ones directly touching chip registers. It's how they allocate
8caab75f 2198 * an spi_controller structure, prior to calling spi_register_controller().
8ae12a0d 2199 *
97d56dc6 2200 * This must be called from context that can sleep.
8ae12a0d 2201 *
6c364062 2202 * The caller is responsible for assigning the bus number and initializing the
8caab75f
GU
2203 * controller's methods before calling spi_register_controller(); and (after
2204 * errors adding the device) calling spi_controller_put() to prevent a memory
2205 * leak.
97d56dc6 2206 *
6c364062 2207 * Return: the SPI controller structure on success, else NULL.
8ae12a0d 2208 */
8caab75f
GU
2209struct spi_controller *__spi_alloc_controller(struct device *dev,
2210 unsigned int size, bool slave)
8ae12a0d 2211{
8caab75f 2212 struct spi_controller *ctlr;
8ae12a0d 2213
0c868461
DB
2214 if (!dev)
2215 return NULL;
2216
8caab75f
GU
2217 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2218 if (!ctlr)
8ae12a0d
DB
2219 return NULL;
2220
8caab75f
GU
2221 device_initialize(&ctlr->dev);
2222 ctlr->bus_num = -1;
2223 ctlr->num_chipselect = 1;
2224 ctlr->slave = slave;
6c364062 2225 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
8caab75f 2226 ctlr->dev.class = &spi_slave_class;
6c364062 2227 else
8caab75f
GU
2228 ctlr->dev.class = &spi_master_class;
2229 ctlr->dev.parent = dev;
2230 pm_suspend_ignore_children(&ctlr->dev, true);
2231 spi_controller_set_devdata(ctlr, &ctlr[1]);
8ae12a0d 2232
8caab75f 2233 return ctlr;
8ae12a0d 2234}
6c364062 2235EXPORT_SYMBOL_GPL(__spi_alloc_controller);
8ae12a0d 2236
74317984 2237#ifdef CONFIG_OF
8caab75f 2238static int of_spi_register_master(struct spi_controller *ctlr)
74317984 2239{
e80beb27 2240 int nb, i, *cs;
8caab75f 2241 struct device_node *np = ctlr->dev.of_node;
74317984
JCPV
2242
2243 if (!np)
2244 return 0;
2245
2246 nb = of_gpio_named_count(np, "cs-gpios");
8caab75f 2247 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
74317984 2248
8ec5d84e
AL
2249 /* Return error only for an incorrectly formed cs-gpios property */
2250 if (nb == 0 || nb == -ENOENT)
74317984 2251 return 0;
8ec5d84e
AL
2252 else if (nb < 0)
2253 return nb;
74317984 2254
a86854d0 2255 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
74317984 2256 GFP_KERNEL);
8caab75f 2257 ctlr->cs_gpios = cs;
74317984 2258
8caab75f 2259 if (!ctlr->cs_gpios)
74317984
JCPV
2260 return -ENOMEM;
2261
8caab75f 2262 for (i = 0; i < ctlr->num_chipselect; i++)
446411e1 2263 cs[i] = -ENOENT;
74317984
JCPV
2264
2265 for (i = 0; i < nb; i++)
2266 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2267
2268 return 0;
2269}
2270#else
8caab75f 2271static int of_spi_register_master(struct spi_controller *ctlr)
74317984
JCPV
2272{
2273 return 0;
2274}
2275#endif
2276
f3186dd8
LW
2277/**
2278 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2279 * @ctlr: The SPI master to grab GPIO descriptors for
2280 */
2281static int spi_get_gpio_descs(struct spi_controller *ctlr)
2282{
2283 int nb, i;
2284 struct gpio_desc **cs;
2285 struct device *dev = &ctlr->dev;
2286
2287 nb = gpiod_count(dev, "cs");
2288 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2289
2290 /* No GPIOs at all is fine, else return the error */
2291 if (nb == 0 || nb == -ENOENT)
2292 return 0;
2293 else if (nb < 0)
2294 return nb;
2295
2296 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2297 GFP_KERNEL);
2298 if (!cs)
2299 return -ENOMEM;
2300 ctlr->cs_gpiods = cs;
2301
2302 for (i = 0; i < nb; i++) {
2303 /*
2304 * Most chipselects are active low, the inverted
2305 * semantics are handled by special quirks in gpiolib,
2306 * so initializing them GPIOD_OUT_LOW here means
2307 * "unasserted", in most cases this will drive the physical
2308 * line high.
2309 */
2310 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2311 GPIOD_OUT_LOW);
1723fdec
GU
2312 if (IS_ERR(cs[i]))
2313 return PTR_ERR(cs[i]);
f3186dd8
LW
2314
2315 if (cs[i]) {
2316 /*
2317 * If we find a CS GPIO, name it after the device and
2318 * chip select line.
2319 */
2320 char *gpioname;
2321
2322 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2323 dev_name(dev), i);
2324 if (!gpioname)
2325 return -ENOMEM;
2326 gpiod_set_consumer_name(cs[i], gpioname);
2327 }
2328 }
2329
2330 return 0;
2331}
2332
bdf3a3b5
BB
2333static int spi_controller_check_ops(struct spi_controller *ctlr)
2334{
2335 /*
b5932f5c
BB
2336 * The controller may implement only the high-level SPI-memory like
2337 * operations if it does not support regular SPI transfers, and this is
2338 * valid use case.
2339 * If ->mem_ops is NULL, we request that at least one of the
2340 * ->transfer_xxx() method be implemented.
bdf3a3b5 2341 */
b5932f5c
BB
2342 if (ctlr->mem_ops) {
2343 if (!ctlr->mem_ops->exec_op)
2344 return -EINVAL;
2345 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2346 !ctlr->transfer_one_message) {
bdf3a3b5 2347 return -EINVAL;
b5932f5c 2348 }
bdf3a3b5
BB
2349
2350 return 0;
2351}
2352
8ae12a0d 2353/**
8caab75f
GU
2354 * spi_register_controller - register SPI master or slave controller
2355 * @ctlr: initialized master, originally from spi_alloc_master() or
2356 * spi_alloc_slave()
33e34dc6 2357 * Context: can sleep
8ae12a0d 2358 *
8caab75f 2359 * SPI controllers connect to their drivers using some non-SPI bus,
8ae12a0d 2360 * such as the platform bus. The final stage of probe() in that code
8caab75f 2361 * includes calling spi_register_controller() to hook up to this SPI bus glue.
8ae12a0d
DB
2362 *
2363 * SPI controllers use board specific (often SOC specific) bus numbers,
2364 * and board-specific addressing for SPI devices combines those numbers
2365 * with chip select numbers. Since SPI does not directly support dynamic
2366 * device identification, boards need configuration tables telling which
2367 * chip is at which address.
2368 *
2369 * This must be called from context that can sleep. It returns zero on
8caab75f 2370 * success, else a negative error code (dropping the controller's refcount).
0c868461 2371 * After a successful return, the caller is responsible for calling
8caab75f 2372 * spi_unregister_controller().
97d56dc6
JMC
2373 *
2374 * Return: zero on success, else a negative error code.
8ae12a0d 2375 */
8caab75f 2376int spi_register_controller(struct spi_controller *ctlr)
8ae12a0d 2377{
8caab75f 2378 struct device *dev = ctlr->dev.parent;
2b9603a0 2379 struct boardinfo *bi;
b93318a2 2380 int status;
42bdd706 2381 int id, first_dynamic;
8ae12a0d 2382
0c868461
DB
2383 if (!dev)
2384 return -ENODEV;
2385
bdf3a3b5
BB
2386 /*
2387 * Make sure all necessary hooks are implemented before registering
2388 * the SPI controller.
2389 */
2390 status = spi_controller_check_ops(ctlr);
2391 if (status)
2392 return status;
2393
04b2d03a
GU
2394 if (ctlr->bus_num >= 0) {
2395 /* devices with a fixed bus num must check-in with the num */
2396 mutex_lock(&board_lock);
2397 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2398 ctlr->bus_num + 1, GFP_KERNEL);
2399 mutex_unlock(&board_lock);
2400 if (WARN(id < 0, "couldn't get idr"))
2401 return id == -ENOSPC ? -EBUSY : id;
2402 ctlr->bus_num = id;
2403 } else if (ctlr->dev.of_node) {
2404 /* allocate dynamic bus number using Linux idr */
9b61e302
SM
2405 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2406 if (id >= 0) {
2407 ctlr->bus_num = id;
2408 mutex_lock(&board_lock);
2409 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2410 ctlr->bus_num + 1, GFP_KERNEL);
2411 mutex_unlock(&board_lock);
2412 if (WARN(id < 0, "couldn't get idr"))
2413 return id == -ENOSPC ? -EBUSY : id;
2414 }
2415 }
8caab75f 2416 if (ctlr->bus_num < 0) {
42bdd706
LS
2417 first_dynamic = of_alias_get_highest_id("spi");
2418 if (first_dynamic < 0)
2419 first_dynamic = 0;
2420 else
2421 first_dynamic++;
2422
9a9a047a 2423 mutex_lock(&board_lock);
42bdd706
LS
2424 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2425 0, GFP_KERNEL);
9a9a047a
SM
2426 mutex_unlock(&board_lock);
2427 if (WARN(id < 0, "couldn't get idr"))
2428 return id;
2429 ctlr->bus_num = id;
8ae12a0d 2430 }
8caab75f
GU
2431 INIT_LIST_HEAD(&ctlr->queue);
2432 spin_lock_init(&ctlr->queue_lock);
2433 spin_lock_init(&ctlr->bus_lock_spinlock);
2434 mutex_init(&ctlr->bus_lock_mutex);
2435 mutex_init(&ctlr->io_mutex);
2436 ctlr->bus_lock_flag = 0;
2437 init_completion(&ctlr->xfer_completion);
2438 if (!ctlr->max_dma_len)
2439 ctlr->max_dma_len = INT_MAX;
cf32b71e 2440
8ae12a0d
DB
2441 /* register the device, then userspace will see it.
2442 * registration fails if the bus ID is in use.
2443 */
8caab75f 2444 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
0a919ae4
AS
2445
2446 if (!spi_controller_is_slave(ctlr)) {
2447 if (ctlr->use_gpio_descriptors) {
2448 status = spi_get_gpio_descs(ctlr);
2449 if (status)
2450 return status;
2451 /*
2452 * A controller using GPIO descriptors always
2453 * supports SPI_CS_HIGH if need be.
2454 */
2455 ctlr->mode_bits |= SPI_CS_HIGH;
2456 } else {
2457 /* Legacy code path for GPIOs from DT */
2458 status = of_spi_register_master(ctlr);
2459 if (status)
2460 return status;
2461 }
2462 }
2463
f9481b08
TA
2464 /*
2465 * Even if it's just one always-selected device, there must
2466 * be at least one chipselect.
2467 */
2468 if (!ctlr->num_chipselect)
2469 return -EINVAL;
2470
8caab75f 2471 status = device_add(&ctlr->dev);
9b61e302
SM
2472 if (status < 0) {
2473 /* free bus id */
2474 mutex_lock(&board_lock);
2475 idr_remove(&spi_master_idr, ctlr->bus_num);
2476 mutex_unlock(&board_lock);
8ae12a0d 2477 goto done;
9b61e302
SM
2478 }
2479 dev_dbg(dev, "registered %s %s\n",
8caab75f 2480 spi_controller_is_slave(ctlr) ? "slave" : "master",
9b61e302 2481 dev_name(&ctlr->dev));
8ae12a0d 2482
b5932f5c
BB
2483 /*
2484 * If we're using a queued driver, start the queue. Note that we don't
2485 * need the queueing logic if the driver is only supporting high-level
2486 * memory operations.
2487 */
2488 if (ctlr->transfer) {
8caab75f 2489 dev_info(dev, "controller is unqueued, this is deprecated\n");
b5932f5c 2490 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
8caab75f 2491 status = spi_controller_initialize_queue(ctlr);
ffbbdd21 2492 if (status) {
8caab75f 2493 device_del(&ctlr->dev);
9b61e302
SM
2494 /* free bus id */
2495 mutex_lock(&board_lock);
2496 idr_remove(&spi_master_idr, ctlr->bus_num);
2497 mutex_unlock(&board_lock);
ffbbdd21
LW
2498 goto done;
2499 }
2500 }
eca2ebc7 2501 /* add statistics */
8caab75f 2502 spin_lock_init(&ctlr->statistics.lock);
ffbbdd21 2503
2b9603a0 2504 mutex_lock(&board_lock);
8caab75f 2505 list_add_tail(&ctlr->list, &spi_controller_list);
2b9603a0 2506 list_for_each_entry(bi, &board_list, list)
8caab75f 2507 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2b9603a0
FT
2508 mutex_unlock(&board_lock);
2509
64bee4d2 2510 /* Register devices from the device tree and ACPI */
8caab75f
GU
2511 of_register_spi_devices(ctlr);
2512 acpi_register_spi_devices(ctlr);
8ae12a0d
DB
2513done:
2514 return status;
2515}
8caab75f 2516EXPORT_SYMBOL_GPL(spi_register_controller);
8ae12a0d 2517
666d5b4c
MB
2518static void devm_spi_unregister(struct device *dev, void *res)
2519{
8caab75f 2520 spi_unregister_controller(*(struct spi_controller **)res);
666d5b4c
MB
2521}
2522
2523/**
8caab75f
GU
2524 * devm_spi_register_controller - register managed SPI master or slave
2525 * controller
2526 * @dev: device managing SPI controller
2527 * @ctlr: initialized controller, originally from spi_alloc_master() or
2528 * spi_alloc_slave()
666d5b4c
MB
2529 * Context: can sleep
2530 *
8caab75f 2531 * Register a SPI device as with spi_register_controller() which will
68b892f1 2532 * automatically be unregistered and freed.
97d56dc6
JMC
2533 *
2534 * Return: zero on success, else a negative error code.
666d5b4c 2535 */
8caab75f
GU
2536int devm_spi_register_controller(struct device *dev,
2537 struct spi_controller *ctlr)
666d5b4c 2538{
8caab75f 2539 struct spi_controller **ptr;
666d5b4c
MB
2540 int ret;
2541
2542 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2543 if (!ptr)
2544 return -ENOMEM;
2545
8caab75f 2546 ret = spi_register_controller(ctlr);
4b92894e 2547 if (!ret) {
8caab75f 2548 *ptr = ctlr;
666d5b4c
MB
2549 devres_add(dev, ptr);
2550 } else {
2551 devres_free(ptr);
2552 }
2553
2554 return ret;
2555}
8caab75f 2556EXPORT_SYMBOL_GPL(devm_spi_register_controller);
666d5b4c 2557
34860089 2558static int __unregister(struct device *dev, void *null)
8ae12a0d 2559{
34860089 2560 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
2561 return 0;
2562}
2563
2564/**
8caab75f
GU
2565 * spi_unregister_controller - unregister SPI master or slave controller
2566 * @ctlr: the controller being unregistered
33e34dc6 2567 * Context: can sleep
8ae12a0d 2568 *
8caab75f 2569 * This call is used only by SPI controller drivers, which are the
8ae12a0d
DB
2570 * only ones directly touching chip registers.
2571 *
2572 * This must be called from context that can sleep.
68b892f1
JH
2573 *
2574 * Note that this function also drops a reference to the controller.
8ae12a0d 2575 */
8caab75f 2576void spi_unregister_controller(struct spi_controller *ctlr)
8ae12a0d 2577{
9b61e302 2578 struct spi_controller *found;
67f7b278 2579 int id = ctlr->bus_num;
89fc9a1a 2580
9b61e302
SM
2581 /* First make sure that this controller was ever added */
2582 mutex_lock(&board_lock);
67f7b278 2583 found = idr_find(&spi_master_idr, id);
9b61e302 2584 mutex_unlock(&board_lock);
8caab75f
GU
2585 if (ctlr->queued) {
2586 if (spi_destroy_queue(ctlr))
2587 dev_err(&ctlr->dev, "queue remove failed\n");
ffbbdd21 2588 }
2b9603a0 2589 mutex_lock(&board_lock);
8caab75f 2590 list_del(&ctlr->list);
2b9603a0
FT
2591 mutex_unlock(&board_lock);
2592
ebc37af5 2593 device_for_each_child(&ctlr->dev, NULL, __unregister);
8caab75f 2594 device_unregister(&ctlr->dev);
9b61e302
SM
2595 /* free bus id */
2596 mutex_lock(&board_lock);
613bd1ea
JN
2597 if (found == ctlr)
2598 idr_remove(&spi_master_idr, id);
9b61e302 2599 mutex_unlock(&board_lock);
8ae12a0d 2600}
8caab75f 2601EXPORT_SYMBOL_GPL(spi_unregister_controller);
8ae12a0d 2602
8caab75f 2603int spi_controller_suspend(struct spi_controller *ctlr)
ffbbdd21
LW
2604{
2605 int ret;
2606
8caab75f
GU
2607 /* Basically no-ops for non-queued controllers */
2608 if (!ctlr->queued)
ffbbdd21
LW
2609 return 0;
2610
8caab75f 2611 ret = spi_stop_queue(ctlr);
ffbbdd21 2612 if (ret)
8caab75f 2613 dev_err(&ctlr->dev, "queue stop failed\n");
ffbbdd21
LW
2614
2615 return ret;
2616}
8caab75f 2617EXPORT_SYMBOL_GPL(spi_controller_suspend);
ffbbdd21 2618
8caab75f 2619int spi_controller_resume(struct spi_controller *ctlr)
ffbbdd21
LW
2620{
2621 int ret;
2622
8caab75f 2623 if (!ctlr->queued)
ffbbdd21
LW
2624 return 0;
2625
8caab75f 2626 ret = spi_start_queue(ctlr);
ffbbdd21 2627 if (ret)
8caab75f 2628 dev_err(&ctlr->dev, "queue restart failed\n");
ffbbdd21
LW
2629
2630 return ret;
2631}
8caab75f 2632EXPORT_SYMBOL_GPL(spi_controller_resume);
ffbbdd21 2633
8caab75f 2634static int __spi_controller_match(struct device *dev, const void *data)
5ed2c832 2635{
8caab75f 2636 struct spi_controller *ctlr;
9f3b795a 2637 const u16 *bus_num = data;
5ed2c832 2638
8caab75f
GU
2639 ctlr = container_of(dev, struct spi_controller, dev);
2640 return ctlr->bus_num == *bus_num;
5ed2c832
DY
2641}
2642
8ae12a0d
DB
2643/**
2644 * spi_busnum_to_master - look up master associated with bus_num
2645 * @bus_num: the master's bus number
33e34dc6 2646 * Context: can sleep
8ae12a0d
DB
2647 *
2648 * This call may be used with devices that are registered after
2649 * arch init time. It returns a refcounted pointer to the relevant
8caab75f 2650 * spi_controller (which the caller must release), or NULL if there is
8ae12a0d 2651 * no such master registered.
97d56dc6
JMC
2652 *
2653 * Return: the SPI master structure on success, else NULL.
8ae12a0d 2654 */
8caab75f 2655struct spi_controller *spi_busnum_to_master(u16 bus_num)
8ae12a0d 2656{
49dce689 2657 struct device *dev;
8caab75f 2658 struct spi_controller *ctlr = NULL;
5ed2c832 2659
695794ae 2660 dev = class_find_device(&spi_master_class, NULL, &bus_num,
8caab75f 2661 __spi_controller_match);
5ed2c832 2662 if (dev)
8caab75f 2663 ctlr = container_of(dev, struct spi_controller, dev);
5ed2c832 2664 /* reference got in class_find_device */
8caab75f 2665 return ctlr;
8ae12a0d
DB
2666}
2667EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2668
d780c371
MS
2669/*-------------------------------------------------------------------------*/
2670
2671/* Core methods for SPI resource management */
2672
2673/**
2674 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2675 * during the processing of a spi_message while using
2676 * spi_transfer_one
2677 * @spi: the spi device for which we allocate memory
2678 * @release: the release code to execute for this resource
2679 * @size: size to alloc and return
2680 * @gfp: GFP allocation flags
2681 *
2682 * Return: the pointer to the allocated data
2683 *
2684 * This may get enhanced in the future to allocate from a memory pool
8caab75f 2685 * of the @spi_device or @spi_controller to avoid repeated allocations.
d780c371
MS
2686 */
2687void *spi_res_alloc(struct spi_device *spi,
2688 spi_res_release_t release,
2689 size_t size, gfp_t gfp)
2690{
2691 struct spi_res *sres;
2692
2693 sres = kzalloc(sizeof(*sres) + size, gfp);
2694 if (!sres)
2695 return NULL;
2696
2697 INIT_LIST_HEAD(&sres->entry);
2698 sres->release = release;
2699
2700 return sres->data;
2701}
2702EXPORT_SYMBOL_GPL(spi_res_alloc);
2703
2704/**
2705 * spi_res_free - free an spi resource
2706 * @res: pointer to the custom data of a resource
2707 *
2708 */
2709void spi_res_free(void *res)
2710{
2711 struct spi_res *sres = container_of(res, struct spi_res, data);
2712
2713 if (!res)
2714 return;
2715
2716 WARN_ON(!list_empty(&sres->entry));
2717 kfree(sres);
2718}
2719EXPORT_SYMBOL_GPL(spi_res_free);
2720
2721/**
2722 * spi_res_add - add a spi_res to the spi_message
2723 * @message: the spi message
2724 * @res: the spi_resource
2725 */
2726void spi_res_add(struct spi_message *message, void *res)
2727{
2728 struct spi_res *sres = container_of(res, struct spi_res, data);
2729
2730 WARN_ON(!list_empty(&sres->entry));
2731 list_add_tail(&sres->entry, &message->resources);
2732}
2733EXPORT_SYMBOL_GPL(spi_res_add);
2734
2735/**
2736 * spi_res_release - release all spi resources for this message
8caab75f 2737 * @ctlr: the @spi_controller
d780c371
MS
2738 * @message: the @spi_message
2739 */
8caab75f 2740void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
d780c371 2741{
f5694369 2742 struct spi_res *res, *tmp;
d780c371 2743
f5694369 2744 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
d780c371 2745 if (res->release)
8caab75f 2746 res->release(ctlr, message, res->data);
d780c371
MS
2747
2748 list_del(&res->entry);
2749
2750 kfree(res);
2751 }
2752}
2753EXPORT_SYMBOL_GPL(spi_res_release);
8ae12a0d
DB
2754
2755/*-------------------------------------------------------------------------*/
2756
523baf5a
MS
2757/* Core methods for spi_message alterations */
2758
8caab75f 2759static void __spi_replace_transfers_release(struct spi_controller *ctlr,
523baf5a
MS
2760 struct spi_message *msg,
2761 void *res)
2762{
2763 struct spi_replaced_transfers *rxfer = res;
2764 size_t i;
2765
2766 /* call extra callback if requested */
2767 if (rxfer->release)
8caab75f 2768 rxfer->release(ctlr, msg, res);
523baf5a
MS
2769
2770 /* insert replaced transfers back into the message */
2771 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2772
2773 /* remove the formerly inserted entries */
2774 for (i = 0; i < rxfer->inserted; i++)
2775 list_del(&rxfer->inserted_transfers[i].transfer_list);
2776}
2777
2778/**
2779 * spi_replace_transfers - replace transfers with several transfers
2780 * and register change with spi_message.resources
2781 * @msg: the spi_message we work upon
2782 * @xfer_first: the first spi_transfer we want to replace
2783 * @remove: number of transfers to remove
2784 * @insert: the number of transfers we want to insert instead
2785 * @release: extra release code necessary in some circumstances
2786 * @extradatasize: extra data to allocate (with alignment guarantees
2787 * of struct @spi_transfer)
05885397 2788 * @gfp: gfp flags
523baf5a
MS
2789 *
2790 * Returns: pointer to @spi_replaced_transfers,
2791 * PTR_ERR(...) in case of errors.
2792 */
2793struct spi_replaced_transfers *spi_replace_transfers(
2794 struct spi_message *msg,
2795 struct spi_transfer *xfer_first,
2796 size_t remove,
2797 size_t insert,
2798 spi_replaced_release_t release,
2799 size_t extradatasize,
2800 gfp_t gfp)
2801{
2802 struct spi_replaced_transfers *rxfer;
2803 struct spi_transfer *xfer;
2804 size_t i;
2805
2806 /* allocate the structure using spi_res */
2807 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
aef97522 2808 struct_size(rxfer, inserted_transfers, insert)
523baf5a
MS
2809 + extradatasize,
2810 gfp);
2811 if (!rxfer)
2812 return ERR_PTR(-ENOMEM);
2813
2814 /* the release code to invoke before running the generic release */
2815 rxfer->release = release;
2816
2817 /* assign extradata */
2818 if (extradatasize)
2819 rxfer->extradata =
2820 &rxfer->inserted_transfers[insert];
2821
2822 /* init the replaced_transfers list */
2823 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2824
2825 /* assign the list_entry after which we should reinsert
2826 * the @replaced_transfers - it may be spi_message.messages!
2827 */
2828 rxfer->replaced_after = xfer_first->transfer_list.prev;
2829
2830 /* remove the requested number of transfers */
2831 for (i = 0; i < remove; i++) {
2832 /* if the entry after replaced_after it is msg->transfers
2833 * then we have been requested to remove more transfers
2834 * than are in the list
2835 */
2836 if (rxfer->replaced_after->next == &msg->transfers) {
2837 dev_err(&msg->spi->dev,
2838 "requested to remove more spi_transfers than are available\n");
2839 /* insert replaced transfers back into the message */
2840 list_splice(&rxfer->replaced_transfers,
2841 rxfer->replaced_after);
2842
2843 /* free the spi_replace_transfer structure */
2844 spi_res_free(rxfer);
2845
2846 /* and return with an error */
2847 return ERR_PTR(-EINVAL);
2848 }
2849
2850 /* remove the entry after replaced_after from list of
2851 * transfers and add it to list of replaced_transfers
2852 */
2853 list_move_tail(rxfer->replaced_after->next,
2854 &rxfer->replaced_transfers);
2855 }
2856
2857 /* create copy of the given xfer with identical settings
2858 * based on the first transfer to get removed
2859 */
2860 for (i = 0; i < insert; i++) {
2861 /* we need to run in reverse order */
2862 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2863
2864 /* copy all spi_transfer data */
2865 memcpy(xfer, xfer_first, sizeof(*xfer));
2866
2867 /* add to list */
2868 list_add(&xfer->transfer_list, rxfer->replaced_after);
2869
2870 /* clear cs_change and delay_usecs for all but the last */
2871 if (i) {
2872 xfer->cs_change = false;
2873 xfer->delay_usecs = 0;
2874 }
2875 }
2876
2877 /* set up inserted */
2878 rxfer->inserted = insert;
2879
2880 /* and register it with spi_res/spi_message */
2881 spi_res_add(msg, rxfer);
2882
2883 return rxfer;
2884}
2885EXPORT_SYMBOL_GPL(spi_replace_transfers);
2886
8caab75f 2887static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
08933418
FE
2888 struct spi_message *msg,
2889 struct spi_transfer **xferp,
2890 size_t maxsize,
2891 gfp_t gfp)
d9f12122
MS
2892{
2893 struct spi_transfer *xfer = *xferp, *xfers;
2894 struct spi_replaced_transfers *srt;
2895 size_t offset;
2896 size_t count, i;
2897
d9f12122
MS
2898 /* calculate how many we have to replace */
2899 count = DIV_ROUND_UP(xfer->len, maxsize);
2900
2901 /* create replacement */
2902 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
657d32ef
DC
2903 if (IS_ERR(srt))
2904 return PTR_ERR(srt);
d9f12122
MS
2905 xfers = srt->inserted_transfers;
2906
2907 /* now handle each of those newly inserted spi_transfers
2908 * note that the replacements spi_transfers all are preset
2909 * to the same values as *xferp, so tx_buf, rx_buf and len
2910 * are all identical (as well as most others)
2911 * so we just have to fix up len and the pointers.
2912 *
2913 * this also includes support for the depreciated
2914 * spi_message.is_dma_mapped interface
2915 */
2916
2917 /* the first transfer just needs the length modified, so we
2918 * run it outside the loop
2919 */
c8dab77a 2920 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
d9f12122
MS
2921
2922 /* all the others need rx_buf/tx_buf also set */
2923 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2924 /* update rx_buf, tx_buf and dma */
2925 if (xfers[i].rx_buf)
2926 xfers[i].rx_buf += offset;
2927 if (xfers[i].rx_dma)
2928 xfers[i].rx_dma += offset;
2929 if (xfers[i].tx_buf)
2930 xfers[i].tx_buf += offset;
2931 if (xfers[i].tx_dma)
2932 xfers[i].tx_dma += offset;
2933
2934 /* update length */
2935 xfers[i].len = min(maxsize, xfers[i].len - offset);
2936 }
2937
2938 /* we set up xferp to the last entry we have inserted,
2939 * so that we skip those already split transfers
2940 */
2941 *xferp = &xfers[count - 1];
2942
2943 /* increment statistics counters */
8caab75f 2944 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
d9f12122
MS
2945 transfers_split_maxsize);
2946 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2947 transfers_split_maxsize);
2948
2949 return 0;
2950}
2951
2952/**
2953 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2954 * when an individual transfer exceeds a
2955 * certain size
8caab75f 2956 * @ctlr: the @spi_controller for this transfer
3700ce95
MI
2957 * @msg: the @spi_message to transform
2958 * @maxsize: the maximum when to apply this
10f11a22 2959 * @gfp: GFP allocation flags
d9f12122
MS
2960 *
2961 * Return: status of transformation
2962 */
8caab75f 2963int spi_split_transfers_maxsize(struct spi_controller *ctlr,
d9f12122
MS
2964 struct spi_message *msg,
2965 size_t maxsize,
2966 gfp_t gfp)
2967{
2968 struct spi_transfer *xfer;
2969 int ret;
2970
2971 /* iterate over the transfer_list,
2972 * but note that xfer is advanced to the last transfer inserted
2973 * to avoid checking sizes again unnecessarily (also xfer does
2974 * potentiall belong to a different list by the time the
2975 * replacement has happened
2976 */
2977 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2978 if (xfer->len > maxsize) {
8caab75f
GU
2979 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2980 maxsize, gfp);
d9f12122
MS
2981 if (ret)
2982 return ret;
2983 }
2984 }
2985
2986 return 0;
2987}
2988EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
8ae12a0d
DB
2989
2990/*-------------------------------------------------------------------------*/
2991
8caab75f 2992/* Core methods for SPI controller protocol drivers. Some of the
7d077197
DB
2993 * other core methods are currently defined as inline functions.
2994 */
2995
8caab75f
GU
2996static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2997 u8 bits_per_word)
63ab645f 2998{
8caab75f 2999 if (ctlr->bits_per_word_mask) {
63ab645f
SB
3000 /* Only 32 bits fit in the mask */
3001 if (bits_per_word > 32)
3002 return -EINVAL;
8caab75f 3003 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
63ab645f
SB
3004 return -EINVAL;
3005 }
3006
3007 return 0;
3008}
3009
7d077197
DB
3010/**
3011 * spi_setup - setup SPI mode and clock rate
3012 * @spi: the device whose settings are being modified
3013 * Context: can sleep, and no requests are queued to the device
3014 *
3015 * SPI protocol drivers may need to update the transfer mode if the
3016 * device doesn't work with its default. They may likewise need
3017 * to update clock rates or word sizes from initial values. This function
3018 * changes those settings, and must be called from a context that can sleep.
3019 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3020 * effect the next time the device is selected and data is transferred to
3021 * or from it. When this function returns, the spi device is deselected.
3022 *
3023 * Note that this call will fail if the protocol driver specifies an option
3024 * that the underlying controller or its driver does not support. For
3025 * example, not all hardware supports wire transfers using nine bit words,
3026 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
3027 *
3028 * Return: zero on success, else a negative error code.
7d077197
DB
3029 */
3030int spi_setup(struct spi_device *spi)
3031{
83596fbe 3032 unsigned bad_bits, ugly_bits;
5ab8d262 3033 int status;
7d077197 3034
f477b7fb 3035 /* check mode to prevent that DUAL and QUAD set at the same time
3036 */
3037 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3038 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3039 dev_err(&spi->dev,
3040 "setup: can not select dual and quad at the same time\n");
3041 return -EINVAL;
3042 }
3043 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3044 */
3045 if ((spi->mode & SPI_3WIRE) && (spi->mode &
6b03061f
YNG
3046 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3047 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
f477b7fb 3048 return -EINVAL;
e7db06b5 3049 /* help drivers fail *cleanly* when they need options
8caab75f 3050 * that aren't supported with their current controller
cbaa62e0
DL
3051 * SPI_CS_WORD has a fallback software implementation,
3052 * so it is ignored here.
e7db06b5 3053 */
cbaa62e0 3054 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
d61ad23c
SS
3055 /* nothing prevents from working with active-high CS in case if it
3056 * is driven by GPIO.
3057 */
3058 if (gpio_is_valid(spi->cs_gpio))
3059 bad_bits &= ~SPI_CS_HIGH;
83596fbe 3060 ugly_bits = bad_bits &
6b03061f
YNG
3061 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3062 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
83596fbe
GU
3063 if (ugly_bits) {
3064 dev_warn(&spi->dev,
3065 "setup: ignoring unsupported mode bits %x\n",
3066 ugly_bits);
3067 spi->mode &= ~ugly_bits;
3068 bad_bits &= ~ugly_bits;
3069 }
e7db06b5 3070 if (bad_bits) {
eb288a1f 3071 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
3072 bad_bits);
3073 return -EINVAL;
3074 }
3075
7d077197
DB
3076 if (!spi->bits_per_word)
3077 spi->bits_per_word = 8;
3078
8caab75f
GU
3079 status = __spi_validate_bits_per_word(spi->controller,
3080 spi->bits_per_word);
5ab8d262
AS
3081 if (status)
3082 return status;
63ab645f 3083
052eb2d4 3084 if (!spi->max_speed_hz)
8caab75f 3085 spi->max_speed_hz = spi->controller->max_speed_hz;
052eb2d4 3086
8caab75f
GU
3087 if (spi->controller->setup)
3088 status = spi->controller->setup(spi);
7d077197 3089
abeedb01
FCJ
3090 spi_set_cs(spi, false);
3091
924b5867
DA
3092 if (spi->rt && !spi->controller->rt) {
3093 spi->controller->rt = true;
3094 spi_set_thread_rt(spi->controller);
3095 }
3096
5fe5f05e 3097 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
3098 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3099 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3100 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3101 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3102 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3103 spi->bits_per_word, spi->max_speed_hz,
3104 status);
3105
3106 return status;
3107}
3108EXPORT_SYMBOL_GPL(spi_setup);
3109
f1ca9992
SK
3110/**
3111 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3112 * @spi: the device that requires specific CS timing configuration
3113 * @setup: CS setup time in terms of clock count
3114 * @hold: CS hold time in terms of clock count
3115 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3116 */
3117void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3118 u8 inactive_dly)
3119{
3120 if (spi->controller->set_cs_timing)
3121 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3122}
3123EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3124
90808738 3125static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e 3126{
8caab75f 3127 struct spi_controller *ctlr = spi->controller;
e6811d1d 3128 struct spi_transfer *xfer;
6ea31293 3129 int w_size;
cf32b71e 3130
24a0013a
MB
3131 if (list_empty(&message->transfers))
3132 return -EINVAL;
24a0013a 3133
cbaa62e0 3134 /* If an SPI controller does not support toggling the CS line on each
71388b21
DL
3135 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3136 * for the CS line, we can emulate the CS-per-word hardware function by
cbaa62e0
DL
3137 * splitting transfers into one-word transfers and ensuring that
3138 * cs_change is set for each transfer.
3139 */
71388b21 3140 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
f3186dd8 3141 spi->cs_gpiod ||
71388b21 3142 gpio_is_valid(spi->cs_gpio))) {
cbaa62e0
DL
3143 size_t maxsize;
3144 int ret;
3145
3146 maxsize = (spi->bits_per_word + 7) / 8;
3147
3148 /* spi_split_transfers_maxsize() requires message->spi */
3149 message->spi = spi;
3150
3151 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3152 GFP_KERNEL);
3153 if (ret)
3154 return ret;
3155
3156 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3157 /* don't change cs_change on the last entry in the list */
3158 if (list_is_last(&xfer->transfer_list, &message->transfers))
3159 break;
3160 xfer->cs_change = 1;
3161 }
3162 }
3163
cf32b71e
ES
3164 /* Half-duplex links include original MicroWire, and ones with
3165 * only one data pin like SPI_3WIRE (switches direction) or where
3166 * either MOSI or MISO is missing. They can also be caused by
3167 * software limitations.
3168 */
8caab75f
GU
3169 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3170 (spi->mode & SPI_3WIRE)) {
3171 unsigned flags = ctlr->flags;
cf32b71e
ES
3172
3173 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3174 if (xfer->rx_buf && xfer->tx_buf)
3175 return -EINVAL;
8caab75f 3176 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
cf32b71e 3177 return -EINVAL;
8caab75f 3178 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
cf32b71e
ES
3179 return -EINVAL;
3180 }
3181 }
3182
e6811d1d 3183 /**
059b8ffe
LD
3184 * Set transfer bits_per_word and max speed as spi device default if
3185 * it is not set for this transfer.
f477b7fb 3186 * Set transfer tx_nbits and rx_nbits as single transfer default
3187 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
b7bb367a
JB
3188 * Ensure transfer word_delay is at least as long as that required by
3189 * device itself.
e6811d1d 3190 */
77e80588 3191 message->frame_length = 0;
e6811d1d 3192 list_for_each_entry(xfer, &message->transfers, transfer_list) {
5d7e2b5e 3193 xfer->effective_speed_hz = 0;
078726ce 3194 message->frame_length += xfer->len;
e6811d1d
LD
3195 if (!xfer->bits_per_word)
3196 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
3197
3198 if (!xfer->speed_hz)
059b8ffe 3199 xfer->speed_hz = spi->max_speed_hz;
a6f87fad 3200
8caab75f
GU
3201 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3202 xfer->speed_hz = ctlr->max_speed_hz;
56ede94a 3203
8caab75f 3204 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
63ab645f 3205 return -EINVAL;
a2fd4f9f 3206
4d94bd21
II
3207 /*
3208 * SPI transfer length should be multiple of SPI word size
3209 * where SPI word size should be power-of-two multiple
3210 */
3211 if (xfer->bits_per_word <= 8)
3212 w_size = 1;
3213 else if (xfer->bits_per_word <= 16)
3214 w_size = 2;
3215 else
3216 w_size = 4;
3217
4d94bd21 3218 /* No partial transfers accepted */
6ea31293 3219 if (xfer->len % w_size)
4d94bd21
II
3220 return -EINVAL;
3221
8caab75f
GU
3222 if (xfer->speed_hz && ctlr->min_speed_hz &&
3223 xfer->speed_hz < ctlr->min_speed_hz)
a2fd4f9f 3224 return -EINVAL;
f477b7fb 3225
3226 if (xfer->tx_buf && !xfer->tx_nbits)
3227 xfer->tx_nbits = SPI_NBITS_SINGLE;
3228 if (xfer->rx_buf && !xfer->rx_nbits)
3229 xfer->rx_nbits = SPI_NBITS_SINGLE;
3230 /* check transfer tx/rx_nbits:
1afd9989
GU
3231 * 1. check the value matches one of single, dual and quad
3232 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 3233 */
db90a441
SP
3234 if (xfer->tx_buf) {
3235 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3236 xfer->tx_nbits != SPI_NBITS_DUAL &&
3237 xfer->tx_nbits != SPI_NBITS_QUAD)
3238 return -EINVAL;
3239 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3240 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3241 return -EINVAL;
3242 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3243 !(spi->mode & SPI_TX_QUAD))
3244 return -EINVAL;
db90a441 3245 }
f477b7fb 3246 /* check transfer rx_nbits */
db90a441
SP
3247 if (xfer->rx_buf) {
3248 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3249 xfer->rx_nbits != SPI_NBITS_DUAL &&
3250 xfer->rx_nbits != SPI_NBITS_QUAD)
3251 return -EINVAL;
3252 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3253 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3254 return -EINVAL;
3255 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3256 !(spi->mode & SPI_RX_QUAD))
3257 return -EINVAL;
db90a441 3258 }
b7bb367a
JB
3259
3260 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3261 xfer->word_delay_usecs = spi->word_delay_usecs;
e6811d1d
LD
3262 }
3263
cf32b71e 3264 message->status = -EINPROGRESS;
90808738
MB
3265
3266 return 0;
3267}
3268
3269static int __spi_async(struct spi_device *spi, struct spi_message *message)
3270{
8caab75f 3271 struct spi_controller *ctlr = spi->controller;
90808738 3272
b5932f5c
BB
3273 /*
3274 * Some controllers do not support doing regular SPI transfers. Return
3275 * ENOTSUPP when this is the case.
3276 */
3277 if (!ctlr->transfer)
3278 return -ENOTSUPP;
3279
90808738
MB
3280 message->spi = spi;
3281
8caab75f 3282 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
eca2ebc7
MS
3283 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3284
90808738
MB
3285 trace_spi_message_submit(message);
3286
8caab75f 3287 return ctlr->transfer(spi, message);
cf32b71e
ES
3288}
3289
568d0697
DB
3290/**
3291 * spi_async - asynchronous SPI transfer
3292 * @spi: device with which data will be exchanged
3293 * @message: describes the data transfers, including completion callback
3294 * Context: any (irqs may be blocked, etc)
3295 *
3296 * This call may be used in_irq and other contexts which can't sleep,
3297 * as well as from task contexts which can sleep.
3298 *
3299 * The completion callback is invoked in a context which can't sleep.
3300 * Before that invocation, the value of message->status is undefined.
3301 * When the callback is issued, message->status holds either zero (to
3302 * indicate complete success) or a negative error code. After that
3303 * callback returns, the driver which issued the transfer request may
3304 * deallocate the associated memory; it's no longer in use by any SPI
3305 * core or controller driver code.
3306 *
3307 * Note that although all messages to a spi_device are handled in
3308 * FIFO order, messages may go to different devices in other orders.
3309 * Some device might be higher priority, or have various "hard" access
3310 * time requirements, for example.
3311 *
3312 * On detection of any fault during the transfer, processing of
3313 * the entire message is aborted, and the device is deselected.
3314 * Until returning from the associated message completion callback,
3315 * no other spi_message queued to that device will be processed.
3316 * (This rule applies equally to all the synchronous transfer calls,
3317 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3318 *
3319 * Return: zero on success, else a negative error code.
568d0697
DB
3320 */
3321int spi_async(struct spi_device *spi, struct spi_message *message)
3322{
8caab75f 3323 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3324 int ret;
3325 unsigned long flags;
568d0697 3326
90808738
MB
3327 ret = __spi_validate(spi, message);
3328 if (ret != 0)
3329 return ret;
3330
8caab75f 3331 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
568d0697 3332
8caab75f 3333 if (ctlr->bus_lock_flag)
cf32b71e
ES
3334 ret = -EBUSY;
3335 else
3336 ret = __spi_async(spi, message);
568d0697 3337
8caab75f 3338 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3339
3340 return ret;
568d0697
DB
3341}
3342EXPORT_SYMBOL_GPL(spi_async);
3343
cf32b71e
ES
3344/**
3345 * spi_async_locked - version of spi_async with exclusive bus usage
3346 * @spi: device with which data will be exchanged
3347 * @message: describes the data transfers, including completion callback
3348 * Context: any (irqs may be blocked, etc)
3349 *
3350 * This call may be used in_irq and other contexts which can't sleep,
3351 * as well as from task contexts which can sleep.
3352 *
3353 * The completion callback is invoked in a context which can't sleep.
3354 * Before that invocation, the value of message->status is undefined.
3355 * When the callback is issued, message->status holds either zero (to
3356 * indicate complete success) or a negative error code. After that
3357 * callback returns, the driver which issued the transfer request may
3358 * deallocate the associated memory; it's no longer in use by any SPI
3359 * core or controller driver code.
3360 *
3361 * Note that although all messages to a spi_device are handled in
3362 * FIFO order, messages may go to different devices in other orders.
3363 * Some device might be higher priority, or have various "hard" access
3364 * time requirements, for example.
3365 *
3366 * On detection of any fault during the transfer, processing of
3367 * the entire message is aborted, and the device is deselected.
3368 * Until returning from the associated message completion callback,
3369 * no other spi_message queued to that device will be processed.
3370 * (This rule applies equally to all the synchronous transfer calls,
3371 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3372 *
3373 * Return: zero on success, else a negative error code.
cf32b71e
ES
3374 */
3375int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3376{
8caab75f 3377 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3378 int ret;
3379 unsigned long flags;
3380
90808738
MB
3381 ret = __spi_validate(spi, message);
3382 if (ret != 0)
3383 return ret;
3384
8caab75f 3385 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3386
3387 ret = __spi_async(spi, message);
3388
8caab75f 3389 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3390
3391 return ret;
3392
3393}
3394EXPORT_SYMBOL_GPL(spi_async_locked);
3395
7d077197
DB
3396/*-------------------------------------------------------------------------*/
3397
8caab75f 3398/* Utility methods for SPI protocol drivers, layered on
7d077197
DB
3399 * top of the core. Some other utility methods are defined as
3400 * inline functions.
3401 */
3402
5d870c8e
AM
3403static void spi_complete(void *arg)
3404{
3405 complete(arg);
3406}
3407
ef4d96ec 3408static int __spi_sync(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
3409{
3410 DECLARE_COMPLETION_ONSTACK(done);
3411 int status;
8caab75f 3412 struct spi_controller *ctlr = spi->controller;
0461a414
MB
3413 unsigned long flags;
3414
3415 status = __spi_validate(spi, message);
3416 if (status != 0)
3417 return status;
cf32b71e
ES
3418
3419 message->complete = spi_complete;
3420 message->context = &done;
0461a414 3421 message->spi = spi;
cf32b71e 3422
8caab75f 3423 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
eca2ebc7
MS
3424 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3425
0461a414
MB
3426 /* If we're not using the legacy transfer method then we will
3427 * try to transfer in the calling context so special case.
3428 * This code would be less tricky if we could remove the
3429 * support for driver implemented message queues.
3430 */
8caab75f
GU
3431 if (ctlr->transfer == spi_queued_transfer) {
3432 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3433
3434 trace_spi_message_submit(message);
3435
3436 status = __spi_queued_transfer(spi, message, false);
3437
8caab75f 3438 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3439 } else {
3440 status = spi_async_locked(spi, message);
3441 }
cf32b71e 3442
cf32b71e 3443 if (status == 0) {
0461a414
MB
3444 /* Push out the messages in the calling context if we
3445 * can.
3446 */
8caab75f
GU
3447 if (ctlr->transfer == spi_queued_transfer) {
3448 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
eca2ebc7
MS
3449 spi_sync_immediate);
3450 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3451 spi_sync_immediate);
8caab75f 3452 __spi_pump_messages(ctlr, false);
eca2ebc7 3453 }
0461a414 3454
cf32b71e
ES
3455 wait_for_completion(&done);
3456 status = message->status;
3457 }
3458 message->context = NULL;
3459 return status;
3460}
3461
8ae12a0d
DB
3462/**
3463 * spi_sync - blocking/synchronous SPI data transfers
3464 * @spi: device with which data will be exchanged
3465 * @message: describes the data transfers
33e34dc6 3466 * Context: can sleep
8ae12a0d
DB
3467 *
3468 * This call may only be used from a context that may sleep. The sleep
3469 * is non-interruptible, and has no timeout. Low-overhead controller
3470 * drivers may DMA directly into and out of the message buffers.
3471 *
3472 * Note that the SPI device's chip select is active during the message,
3473 * and then is normally disabled between messages. Drivers for some
3474 * frequently-used devices may want to minimize costs of selecting a chip,
3475 * by leaving it selected in anticipation that the next message will go
3476 * to the same chip. (That may increase power usage.)
3477 *
0c868461
DB
3478 * Also, the caller is guaranteeing that the memory associated with the
3479 * message will not be freed before this call returns.
3480 *
97d56dc6 3481 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3482 */
3483int spi_sync(struct spi_device *spi, struct spi_message *message)
3484{
ef4d96ec
MB
3485 int ret;
3486
8caab75f 3487 mutex_lock(&spi->controller->bus_lock_mutex);
ef4d96ec 3488 ret = __spi_sync(spi, message);
8caab75f 3489 mutex_unlock(&spi->controller->bus_lock_mutex);
ef4d96ec
MB
3490
3491 return ret;
8ae12a0d
DB
3492}
3493EXPORT_SYMBOL_GPL(spi_sync);
3494
cf32b71e
ES
3495/**
3496 * spi_sync_locked - version of spi_sync with exclusive bus usage
3497 * @spi: device with which data will be exchanged
3498 * @message: describes the data transfers
3499 * Context: can sleep
3500 *
3501 * This call may only be used from a context that may sleep. The sleep
3502 * is non-interruptible, and has no timeout. Low-overhead controller
3503 * drivers may DMA directly into and out of the message buffers.
3504 *
3505 * This call should be used by drivers that require exclusive access to the
25985edc 3506 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
3507 * be released by a spi_bus_unlock call when the exclusive access is over.
3508 *
97d56dc6 3509 * Return: zero on success, else a negative error code.
cf32b71e
ES
3510 */
3511int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3512{
ef4d96ec 3513 return __spi_sync(spi, message);
cf32b71e
ES
3514}
3515EXPORT_SYMBOL_GPL(spi_sync_locked);
3516
3517/**
3518 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
8caab75f 3519 * @ctlr: SPI bus master that should be locked for exclusive bus access
cf32b71e
ES
3520 * Context: can sleep
3521 *
3522 * This call may only be used from a context that may sleep. The sleep
3523 * is non-interruptible, and has no timeout.
3524 *
3525 * This call should be used by drivers that require exclusive access to the
3526 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3527 * exclusive access is over. Data transfer must be done by spi_sync_locked
3528 * and spi_async_locked calls when the SPI bus lock is held.
3529 *
97d56dc6 3530 * Return: always zero.
cf32b71e 3531 */
8caab75f 3532int spi_bus_lock(struct spi_controller *ctlr)
cf32b71e
ES
3533{
3534 unsigned long flags;
3535
8caab75f 3536 mutex_lock(&ctlr->bus_lock_mutex);
cf32b71e 3537
8caab75f
GU
3538 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3539 ctlr->bus_lock_flag = 1;
3540 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3541
3542 /* mutex remains locked until spi_bus_unlock is called */
3543
3544 return 0;
3545}
3546EXPORT_SYMBOL_GPL(spi_bus_lock);
3547
3548/**
3549 * spi_bus_unlock - release the lock for exclusive SPI bus usage
8caab75f 3550 * @ctlr: SPI bus master that was locked for exclusive bus access
cf32b71e
ES
3551 * Context: can sleep
3552 *
3553 * This call may only be used from a context that may sleep. The sleep
3554 * is non-interruptible, and has no timeout.
3555 *
3556 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3557 * call.
3558 *
97d56dc6 3559 * Return: always zero.
cf32b71e 3560 */
8caab75f 3561int spi_bus_unlock(struct spi_controller *ctlr)
cf32b71e 3562{
8caab75f 3563 ctlr->bus_lock_flag = 0;
cf32b71e 3564
8caab75f 3565 mutex_unlock(&ctlr->bus_lock_mutex);
cf32b71e
ES
3566
3567 return 0;
3568}
3569EXPORT_SYMBOL_GPL(spi_bus_unlock);
3570
a9948b61 3571/* portable code must never pass more than 32 bytes */
5fe5f05e 3572#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
3573
3574static u8 *buf;
3575
3576/**
3577 * spi_write_then_read - SPI synchronous write followed by read
3578 * @spi: device with which data will be exchanged
3579 * @txbuf: data to be written (need not be dma-safe)
3580 * @n_tx: size of txbuf, in bytes
27570497
JP
3581 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3582 * @n_rx: size of rxbuf, in bytes
33e34dc6 3583 * Context: can sleep
8ae12a0d
DB
3584 *
3585 * This performs a half duplex MicroWire style transaction with the
3586 * device, sending txbuf and then reading rxbuf. The return value
3587 * is zero for success, else a negative errno status code.
b885244e 3588 * This call may only be used from a context that may sleep.
8ae12a0d 3589 *
0c868461 3590 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
3591 * portable code should never use this for more than 32 bytes.
3592 * Performance-sensitive or bulk transfer code should instead use
0c868461 3593 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
3594 *
3595 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3596 */
3597int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
3598 const void *txbuf, unsigned n_tx,
3599 void *rxbuf, unsigned n_rx)
8ae12a0d 3600{
068f4070 3601 static DEFINE_MUTEX(lock);
8ae12a0d
DB
3602
3603 int status;
3604 struct spi_message message;
bdff549e 3605 struct spi_transfer x[2];
8ae12a0d
DB
3606 u8 *local_buf;
3607
b3a223ee
MB
3608 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3609 * copying here, (as a pure convenience thing), but we can
3610 * keep heap costs out of the hot path unless someone else is
3611 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 3612 */
b3a223ee 3613 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
3614 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3615 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
3616 if (!local_buf)
3617 return -ENOMEM;
3618 } else {
3619 local_buf = buf;
3620 }
8ae12a0d 3621
8275c642 3622 spi_message_init(&message);
5fe5f05e 3623 memset(x, 0, sizeof(x));
bdff549e
DB
3624 if (n_tx) {
3625 x[0].len = n_tx;
3626 spi_message_add_tail(&x[0], &message);
3627 }
3628 if (n_rx) {
3629 x[1].len = n_rx;
3630 spi_message_add_tail(&x[1], &message);
3631 }
8275c642 3632
8ae12a0d 3633 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
3634 x[0].tx_buf = local_buf;
3635 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
3636
3637 /* do the i/o */
8ae12a0d 3638 status = spi_sync(spi, &message);
9b938b74 3639 if (status == 0)
bdff549e 3640 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 3641
bdff549e 3642 if (x[0].tx_buf == buf)
068f4070 3643 mutex_unlock(&lock);
8ae12a0d
DB
3644 else
3645 kfree(local_buf);
3646
3647 return status;
3648}
3649EXPORT_SYMBOL_GPL(spi_write_then_read);
3650
3651/*-------------------------------------------------------------------------*/
3652
5f143af7 3653#if IS_ENABLED(CONFIG_OF)
418e3ea1 3654static int __spi_of_device_match(struct device *dev, const void *data)
ce79d54a
PA
3655{
3656 return dev->of_node == data;
3657}
3658
3659/* must call put_device() when done with returned spi_device device */
5f143af7 3660struct spi_device *of_find_spi_device_by_node(struct device_node *node)
ce79d54a
PA
3661{
3662 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3663 __spi_of_device_match);
3664 return dev ? to_spi_device(dev) : NULL;
3665}
5f143af7
MF
3666EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3667#endif /* IS_ENABLED(CONFIG_OF) */
ce79d54a 3668
5f143af7 3669#if IS_ENABLED(CONFIG_OF_DYNAMIC)
8caab75f 3670static int __spi_of_controller_match(struct device *dev, const void *data)
ce79d54a
PA
3671{
3672 return dev->of_node == data;
3673}
3674
8caab75f
GU
3675/* the spi controllers are not using spi_bus, so we find it with another way */
3676static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
ce79d54a
PA
3677{
3678 struct device *dev;
3679
3680 dev = class_find_device(&spi_master_class, NULL, node,
8caab75f 3681 __spi_of_controller_match);
6c364062
GU
3682 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3683 dev = class_find_device(&spi_slave_class, NULL, node,
8caab75f 3684 __spi_of_controller_match);
ce79d54a
PA
3685 if (!dev)
3686 return NULL;
3687
3688 /* reference got in class_find_device */
8caab75f 3689 return container_of(dev, struct spi_controller, dev);
ce79d54a
PA
3690}
3691
3692static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3693 void *arg)
3694{
3695 struct of_reconfig_data *rd = arg;
8caab75f 3696 struct spi_controller *ctlr;
ce79d54a
PA
3697 struct spi_device *spi;
3698
3699 switch (of_reconfig_get_state_change(action, arg)) {
3700 case OF_RECONFIG_CHANGE_ADD:
8caab75f
GU
3701 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3702 if (ctlr == NULL)
ce79d54a
PA
3703 return NOTIFY_OK; /* not for us */
3704
bd6c1644 3705 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
8caab75f 3706 put_device(&ctlr->dev);
bd6c1644
GU
3707 return NOTIFY_OK;
3708 }
3709
8caab75f
GU
3710 spi = of_register_spi_device(ctlr, rd->dn);
3711 put_device(&ctlr->dev);
ce79d54a
PA
3712
3713 if (IS_ERR(spi)) {
25c56c88
RH
3714 pr_err("%s: failed to create for '%pOF'\n",
3715 __func__, rd->dn);
e0af98a7 3716 of_node_clear_flag(rd->dn, OF_POPULATED);
ce79d54a
PA
3717 return notifier_from_errno(PTR_ERR(spi));
3718 }
3719 break;
3720
3721 case OF_RECONFIG_CHANGE_REMOVE:
bd6c1644
GU
3722 /* already depopulated? */
3723 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3724 return NOTIFY_OK;
3725
ce79d54a
PA
3726 /* find our device by node */
3727 spi = of_find_spi_device_by_node(rd->dn);
3728 if (spi == NULL)
3729 return NOTIFY_OK; /* no? not meant for us */
3730
3731 /* unregister takes one ref away */
3732 spi_unregister_device(spi);
3733
3734 /* and put the reference of the find */
3735 put_device(&spi->dev);
3736 break;
3737 }
3738
3739 return NOTIFY_OK;
3740}
3741
3742static struct notifier_block spi_of_notifier = {
3743 .notifier_call = of_spi_notify,
3744};
3745#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3746extern struct notifier_block spi_of_notifier;
3747#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3748
7f24467f 3749#if IS_ENABLED(CONFIG_ACPI)
8caab75f 3750static int spi_acpi_controller_match(struct device *dev, const void *data)
7f24467f
OP
3751{
3752 return ACPI_COMPANION(dev->parent) == data;
3753}
3754
418e3ea1 3755static int spi_acpi_device_match(struct device *dev, const void *data)
7f24467f
OP
3756{
3757 return ACPI_COMPANION(dev) == data;
3758}
3759
8caab75f 3760static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
7f24467f
OP
3761{
3762 struct device *dev;
3763
3764 dev = class_find_device(&spi_master_class, NULL, adev,
8caab75f 3765 spi_acpi_controller_match);
6c364062
GU
3766 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3767 dev = class_find_device(&spi_slave_class, NULL, adev,
8caab75f 3768 spi_acpi_controller_match);
7f24467f
OP
3769 if (!dev)
3770 return NULL;
3771
8caab75f 3772 return container_of(dev, struct spi_controller, dev);
7f24467f
OP
3773}
3774
3775static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3776{
3777 struct device *dev;
3778
3779 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3780
3781 return dev ? to_spi_device(dev) : NULL;
3782}
3783
3784static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3785 void *arg)
3786{
3787 struct acpi_device *adev = arg;
8caab75f 3788 struct spi_controller *ctlr;
7f24467f
OP
3789 struct spi_device *spi;
3790
3791 switch (value) {
3792 case ACPI_RECONFIG_DEVICE_ADD:
8caab75f
GU
3793 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3794 if (!ctlr)
7f24467f
OP
3795 break;
3796
8caab75f
GU
3797 acpi_register_spi_device(ctlr, adev);
3798 put_device(&ctlr->dev);
7f24467f
OP
3799 break;
3800 case ACPI_RECONFIG_DEVICE_REMOVE:
3801 if (!acpi_device_enumerated(adev))
3802 break;
3803
3804 spi = acpi_spi_find_device_by_adev(adev);
3805 if (!spi)
3806 break;
3807
3808 spi_unregister_device(spi);
3809 put_device(&spi->dev);
3810 break;
3811 }
3812
3813 return NOTIFY_OK;
3814}
3815
3816static struct notifier_block spi_acpi_notifier = {
3817 .notifier_call = acpi_spi_notify,
3818};
3819#else
3820extern struct notifier_block spi_acpi_notifier;
3821#endif
3822
8ae12a0d
DB
3823static int __init spi_init(void)
3824{
b885244e
DB
3825 int status;
3826
e94b1766 3827 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
3828 if (!buf) {
3829 status = -ENOMEM;
3830 goto err0;
3831 }
3832
3833 status = bus_register(&spi_bus_type);
3834 if (status < 0)
3835 goto err1;
8ae12a0d 3836
b885244e
DB
3837 status = class_register(&spi_master_class);
3838 if (status < 0)
3839 goto err2;
ce79d54a 3840
6c364062
GU
3841 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3842 status = class_register(&spi_slave_class);
3843 if (status < 0)
3844 goto err3;
3845 }
3846
5267720e 3847 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a 3848 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
7f24467f
OP
3849 if (IS_ENABLED(CONFIG_ACPI))
3850 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
ce79d54a 3851
8ae12a0d 3852 return 0;
b885244e 3853
6c364062
GU
3854err3:
3855 class_unregister(&spi_master_class);
b885244e
DB
3856err2:
3857 bus_unregister(&spi_bus_type);
3858err1:
3859 kfree(buf);
3860 buf = NULL;
3861err0:
3862 return status;
8ae12a0d 3863}
b885244e 3864
8ae12a0d
DB
3865/* board_info is normally registered in arch_initcall(),
3866 * but even essential drivers wait till later
b885244e
DB
3867 *
3868 * REVISIT only boardinfo really needs static linking. the rest (device and
3869 * driver registration) _could_ be dynamically linked (modular) ... costs
3870 * include needing to have boardinfo data structures be much more public.
8ae12a0d 3871 */
673c0c00 3872postcore_initcall(spi_init);