]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/spi/spi.c
spi: Add cond_resched() in main message processing loop
[mirror_ubuntu-hirsute-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
8ae12a0d
DB
16 */
17
8ae12a0d
DB
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
99adef31
MB
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
94040828 24#include <linux/mutex.h>
2b7a32f7 25#include <linux/of_device.h>
d57a4282 26#include <linux/of_irq.h>
86be408b 27#include <linux/clk/clk-conf.h>
5a0e3ad6 28#include <linux/slab.h>
e0626e38 29#include <linux/mod_devicetable.h>
8ae12a0d 30#include <linux/spi/spi.h>
74317984 31#include <linux/of_gpio.h>
3ae22e8c 32#include <linux/pm_runtime.h>
f48c767c 33#include <linux/pm_domain.h>
025ed130 34#include <linux/export.h>
8bd75c77 35#include <linux/sched/rt.h>
ffbbdd21
LW
36#include <linux/delay.h>
37#include <linux/kthread.h>
64bee4d2
MW
38#include <linux/ioport.h>
39#include <linux/acpi.h>
8ae12a0d 40
56ec1978
MB
41#define CREATE_TRACE_POINTS
42#include <trace/events/spi.h>
43
8ae12a0d
DB
44static void spidev_release(struct device *dev)
45{
0ffa0285 46 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
0c868461 52 spi_master_put(spi->master);
07a389fe 53 kfree(spi);
8ae12a0d
DB
54}
55
56static ssize_t
57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58{
59 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
8ae12a0d 65
d8e328b3 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 67}
aa7da564 68static DEVICE_ATTR_RO(modalias);
8ae12a0d 69
eca2ebc7
MS
70#define SPI_STATISTICS_ATTRS(field, file) \
71static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74{ \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78} \
79static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82}; \
83static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86{ \
d1eba93b 87 struct spi_device *spi = to_spi_device(dev); \
eca2ebc7
MS
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
89} \
90static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
93}
94
95#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 char *buf) \
98{ \
99 unsigned long flags; \
100 ssize_t len; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
104 return len; \
105} \
106SPI_STATISTICS_ATTRS(name, file)
107
108#define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
111
112SPI_STATISTICS_SHOW(messages, "%lu");
113SPI_STATISTICS_SHOW(transfers, "%lu");
114SPI_STATISTICS_SHOW(errors, "%lu");
115SPI_STATISTICS_SHOW(timedout, "%lu");
116
117SPI_STATISTICS_SHOW(spi_sync, "%lu");
118SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121SPI_STATISTICS_SHOW(bytes, "%llu");
122SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
6b7bc061
MS
125#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
aa7da564
GKH
147static struct attribute *spi_dev_attrs[] = {
148 &dev_attr_modalias.attr,
149 NULL,
8ae12a0d 150};
eca2ebc7
MS
151
152static const struct attribute_group spi_dev_group = {
153 .attrs = spi_dev_attrs,
154};
155
156static struct attribute *spi_device_statistics_attrs[] = {
157 &dev_attr_spi_device_messages.attr,
158 &dev_attr_spi_device_transfers.attr,
159 &dev_attr_spi_device_errors.attr,
160 &dev_attr_spi_device_timedout.attr,
161 &dev_attr_spi_device_spi_sync.attr,
162 &dev_attr_spi_device_spi_sync_immediate.attr,
163 &dev_attr_spi_device_spi_async.attr,
164 &dev_attr_spi_device_bytes.attr,
165 &dev_attr_spi_device_bytes_rx.attr,
166 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
167 &dev_attr_spi_device_transfer_bytes_histo0.attr,
168 &dev_attr_spi_device_transfer_bytes_histo1.attr,
169 &dev_attr_spi_device_transfer_bytes_histo2.attr,
170 &dev_attr_spi_device_transfer_bytes_histo3.attr,
171 &dev_attr_spi_device_transfer_bytes_histo4.attr,
172 &dev_attr_spi_device_transfer_bytes_histo5.attr,
173 &dev_attr_spi_device_transfer_bytes_histo6.attr,
174 &dev_attr_spi_device_transfer_bytes_histo7.attr,
175 &dev_attr_spi_device_transfer_bytes_histo8.attr,
176 &dev_attr_spi_device_transfer_bytes_histo9.attr,
177 &dev_attr_spi_device_transfer_bytes_histo10.attr,
178 &dev_attr_spi_device_transfer_bytes_histo11.attr,
179 &dev_attr_spi_device_transfer_bytes_histo12.attr,
180 &dev_attr_spi_device_transfer_bytes_histo13.attr,
181 &dev_attr_spi_device_transfer_bytes_histo14.attr,
182 &dev_attr_spi_device_transfer_bytes_histo15.attr,
183 &dev_attr_spi_device_transfer_bytes_histo16.attr,
eca2ebc7
MS
184 NULL,
185};
186
187static const struct attribute_group spi_device_statistics_group = {
188 .name = "statistics",
189 .attrs = spi_device_statistics_attrs,
190};
191
192static const struct attribute_group *spi_dev_groups[] = {
193 &spi_dev_group,
194 &spi_device_statistics_group,
195 NULL,
196};
197
198static struct attribute *spi_master_statistics_attrs[] = {
199 &dev_attr_spi_master_messages.attr,
200 &dev_attr_spi_master_transfers.attr,
201 &dev_attr_spi_master_errors.attr,
202 &dev_attr_spi_master_timedout.attr,
203 &dev_attr_spi_master_spi_sync.attr,
204 &dev_attr_spi_master_spi_sync_immediate.attr,
205 &dev_attr_spi_master_spi_async.attr,
206 &dev_attr_spi_master_bytes.attr,
207 &dev_attr_spi_master_bytes_rx.attr,
208 &dev_attr_spi_master_bytes_tx.attr,
6b7bc061
MS
209 &dev_attr_spi_master_transfer_bytes_histo0.attr,
210 &dev_attr_spi_master_transfer_bytes_histo1.attr,
211 &dev_attr_spi_master_transfer_bytes_histo2.attr,
212 &dev_attr_spi_master_transfer_bytes_histo3.attr,
213 &dev_attr_spi_master_transfer_bytes_histo4.attr,
214 &dev_attr_spi_master_transfer_bytes_histo5.attr,
215 &dev_attr_spi_master_transfer_bytes_histo6.attr,
216 &dev_attr_spi_master_transfer_bytes_histo7.attr,
217 &dev_attr_spi_master_transfer_bytes_histo8.attr,
218 &dev_attr_spi_master_transfer_bytes_histo9.attr,
219 &dev_attr_spi_master_transfer_bytes_histo10.attr,
220 &dev_attr_spi_master_transfer_bytes_histo11.attr,
221 &dev_attr_spi_master_transfer_bytes_histo12.attr,
222 &dev_attr_spi_master_transfer_bytes_histo13.attr,
223 &dev_attr_spi_master_transfer_bytes_histo14.attr,
224 &dev_attr_spi_master_transfer_bytes_histo15.attr,
225 &dev_attr_spi_master_transfer_bytes_histo16.attr,
eca2ebc7
MS
226 NULL,
227};
228
229static const struct attribute_group spi_master_statistics_group = {
230 .name = "statistics",
231 .attrs = spi_master_statistics_attrs,
232};
233
234static const struct attribute_group *spi_master_groups[] = {
235 &spi_master_statistics_group,
236 NULL,
237};
238
239void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
240 struct spi_transfer *xfer,
241 struct spi_master *master)
242{
243 unsigned long flags;
6b7bc061
MS
244 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
245
246 if (l2len < 0)
247 l2len = 0;
eca2ebc7
MS
248
249 spin_lock_irqsave(&stats->lock, flags);
250
251 stats->transfers++;
6b7bc061 252 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
253
254 stats->bytes += xfer->len;
255 if ((xfer->tx_buf) &&
256 (xfer->tx_buf != master->dummy_tx))
257 stats->bytes_tx += xfer->len;
258 if ((xfer->rx_buf) &&
259 (xfer->rx_buf != master->dummy_rx))
260 stats->bytes_rx += xfer->len;
261
262 spin_unlock_irqrestore(&stats->lock, flags);
263}
264EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
265
266/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
267 * and the sysfs version makes coldplug work too.
268 */
269
75368bf6
AV
270static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
271 const struct spi_device *sdev)
272{
273 while (id->name[0]) {
274 if (!strcmp(sdev->modalias, id->name))
275 return id;
276 id++;
277 }
278 return NULL;
279}
280
281const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
282{
283 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
284
285 return spi_match_id(sdrv->id_table, sdev);
286}
287EXPORT_SYMBOL_GPL(spi_get_device_id);
288
8ae12a0d
DB
289static int spi_match_device(struct device *dev, struct device_driver *drv)
290{
291 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
292 const struct spi_driver *sdrv = to_spi_driver(drv);
293
2b7a32f7
SA
294 /* Attempt an OF style match */
295 if (of_driver_match_device(dev, drv))
296 return 1;
297
64bee4d2
MW
298 /* Then try ACPI */
299 if (acpi_driver_match_device(dev, drv))
300 return 1;
301
75368bf6
AV
302 if (sdrv->id_table)
303 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 304
35f74fca 305 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
306}
307
7eff2e7a 308static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
309{
310 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
311 int rc;
312
313 rc = acpi_device_uevent_modalias(dev, env);
314 if (rc != -ENODEV)
315 return rc;
8ae12a0d 316
e0626e38 317 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
318 return 0;
319}
320
8ae12a0d
DB
321struct bus_type spi_bus_type = {
322 .name = "spi",
aa7da564 323 .dev_groups = spi_dev_groups,
8ae12a0d
DB
324 .match = spi_match_device,
325 .uevent = spi_uevent,
8ae12a0d
DB
326};
327EXPORT_SYMBOL_GPL(spi_bus_type);
328
b885244e
DB
329
330static int spi_drv_probe(struct device *dev)
331{
332 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 333 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
334 int ret;
335
86be408b
SN
336 ret = of_clk_set_defaults(dev->of_node, false);
337 if (ret)
338 return ret;
339
44af7927
JH
340 if (dev->of_node) {
341 spi->irq = of_irq_get(dev->of_node, 0);
342 if (spi->irq == -EPROBE_DEFER)
343 return -EPROBE_DEFER;
344 if (spi->irq < 0)
345 spi->irq = 0;
346 }
347
676e7c25
UH
348 ret = dev_pm_domain_attach(dev, true);
349 if (ret != -EPROBE_DEFER) {
44af7927 350 ret = sdrv->probe(spi);
676e7c25
UH
351 if (ret)
352 dev_pm_domain_detach(dev, true);
353 }
b885244e 354
33cf00e5 355 return ret;
b885244e
DB
356}
357
358static int spi_drv_remove(struct device *dev)
359{
360 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
361 int ret;
362
aec35f4e 363 ret = sdrv->remove(to_spi_device(dev));
676e7c25 364 dev_pm_domain_detach(dev, true);
b885244e 365
33cf00e5 366 return ret;
b885244e
DB
367}
368
369static void spi_drv_shutdown(struct device *dev)
370{
371 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
372
373 sdrv->shutdown(to_spi_device(dev));
374}
375
33e34dc6 376/**
ca5d2485 377 * __spi_register_driver - register a SPI driver
88c9321d 378 * @owner: owner module of the driver to register
33e34dc6
DB
379 * @sdrv: the driver to register
380 * Context: can sleep
97d56dc6
JMC
381 *
382 * Return: zero on success, else a negative error code.
33e34dc6 383 */
ca5d2485 384int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 385{
ca5d2485 386 sdrv->driver.owner = owner;
b885244e
DB
387 sdrv->driver.bus = &spi_bus_type;
388 if (sdrv->probe)
389 sdrv->driver.probe = spi_drv_probe;
390 if (sdrv->remove)
391 sdrv->driver.remove = spi_drv_remove;
392 if (sdrv->shutdown)
393 sdrv->driver.shutdown = spi_drv_shutdown;
394 return driver_register(&sdrv->driver);
395}
ca5d2485 396EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 397
8ae12a0d
DB
398/*-------------------------------------------------------------------------*/
399
400/* SPI devices should normally not be created by SPI device drivers; that
401 * would make them board-specific. Similarly with SPI master drivers.
402 * Device registration normally goes into like arch/.../mach.../board-YYY.c
403 * with other readonly (flashable) information about mainboard devices.
404 */
405
406struct boardinfo {
407 struct list_head list;
2b9603a0 408 struct spi_board_info board_info;
8ae12a0d
DB
409};
410
411static LIST_HEAD(board_list);
2b9603a0
FT
412static LIST_HEAD(spi_master_list);
413
414/*
415 * Used to protect add/del opertion for board_info list and
416 * spi_master list, and their matching process
417 */
94040828 418static DEFINE_MUTEX(board_lock);
8ae12a0d 419
dc87c98e
GL
420/**
421 * spi_alloc_device - Allocate a new SPI device
422 * @master: Controller to which device is connected
423 * Context: can sleep
424 *
425 * Allows a driver to allocate and initialize a spi_device without
426 * registering it immediately. This allows a driver to directly
427 * fill the spi_device with device parameters before calling
428 * spi_add_device() on it.
429 *
430 * Caller is responsible to call spi_add_device() on the returned
431 * spi_device structure to add it to the SPI master. If the caller
432 * needs to discard the spi_device without adding it, then it should
433 * call spi_dev_put() on it.
434 *
97d56dc6 435 * Return: a pointer to the new device, or NULL.
dc87c98e
GL
436 */
437struct spi_device *spi_alloc_device(struct spi_master *master)
438{
439 struct spi_device *spi;
dc87c98e
GL
440
441 if (!spi_master_get(master))
442 return NULL;
443
5fe5f05e 444 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 445 if (!spi) {
dc87c98e
GL
446 spi_master_put(master);
447 return NULL;
448 }
449
450 spi->master = master;
178db7d3 451 spi->dev.parent = &master->dev;
dc87c98e
GL
452 spi->dev.bus = &spi_bus_type;
453 spi->dev.release = spidev_release;
446411e1 454 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
455
456 spin_lock_init(&spi->statistics.lock);
457
dc87c98e
GL
458 device_initialize(&spi->dev);
459 return spi;
460}
461EXPORT_SYMBOL_GPL(spi_alloc_device);
462
e13ac47b
JN
463static void spi_dev_set_name(struct spi_device *spi)
464{
465 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466
467 if (adev) {
468 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 return;
470 }
471
472 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 spi->chip_select);
474}
475
b6fb8d3a
MW
476static int spi_dev_check(struct device *dev, void *data)
477{
478 struct spi_device *spi = to_spi_device(dev);
479 struct spi_device *new_spi = data;
480
481 if (spi->master == new_spi->master &&
482 spi->chip_select == new_spi->chip_select)
483 return -EBUSY;
484 return 0;
485}
486
dc87c98e
GL
487/**
488 * spi_add_device - Add spi_device allocated with spi_alloc_device
489 * @spi: spi_device to register
490 *
491 * Companion function to spi_alloc_device. Devices allocated with
492 * spi_alloc_device can be added onto the spi bus with this function.
493 *
97d56dc6 494 * Return: 0 on success; negative errno on failure
dc87c98e
GL
495 */
496int spi_add_device(struct spi_device *spi)
497{
e48880e0 498 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
499 struct spi_master *master = spi->master;
500 struct device *dev = master->dev.parent;
dc87c98e
GL
501 int status;
502
503 /* Chipselects are numbered 0..max; validate. */
74317984 504 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
505 dev_err(dev, "cs%d >= max %d\n",
506 spi->chip_select,
74317984 507 master->num_chipselect);
dc87c98e
GL
508 return -EINVAL;
509 }
510
511 /* Set the bus ID string */
e13ac47b 512 spi_dev_set_name(spi);
e48880e0
DB
513
514 /* We need to make sure there's no other device with this
515 * chipselect **BEFORE** we call setup(), else we'll trash
516 * its configuration. Lock against concurrent add() calls.
517 */
518 mutex_lock(&spi_add_lock);
519
b6fb8d3a
MW
520 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 if (status) {
e48880e0
DB
522 dev_err(dev, "chipselect %d already in use\n",
523 spi->chip_select);
e48880e0
DB
524 goto done;
525 }
526
74317984
JCPV
527 if (master->cs_gpios)
528 spi->cs_gpio = master->cs_gpios[spi->chip_select];
529
e48880e0
DB
530 /* Drivers may modify this initial i/o setup, but will
531 * normally rely on the device being setup. Devices
532 * using SPI_CS_HIGH can't coexist well otherwise...
533 */
7d077197 534 status = spi_setup(spi);
dc87c98e 535 if (status < 0) {
eb288a1f
LW
536 dev_err(dev, "can't setup %s, status %d\n",
537 dev_name(&spi->dev), status);
e48880e0 538 goto done;
dc87c98e
GL
539 }
540
e48880e0 541 /* Device may be bound to an active driver when this returns */
dc87c98e 542 status = device_add(&spi->dev);
e48880e0 543 if (status < 0)
eb288a1f
LW
544 dev_err(dev, "can't add %s, status %d\n",
545 dev_name(&spi->dev), status);
e48880e0 546 else
35f74fca 547 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 548
e48880e0
DB
549done:
550 mutex_unlock(&spi_add_lock);
551 return status;
dc87c98e
GL
552}
553EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 554
33e34dc6
DB
555/**
556 * spi_new_device - instantiate one new SPI device
557 * @master: Controller to which device is connected
558 * @chip: Describes the SPI device
559 * Context: can sleep
560 *
561 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
562 * after board init creates the hard-wired devices. Some development
563 * platforms may not be able to use spi_register_board_info though, and
564 * this is exported so that for example a USB or parport based adapter
565 * driver could add devices (which it would learn about out-of-band).
082c8cb4 566 *
97d56dc6 567 * Return: the new device, or NULL.
8ae12a0d 568 */
e9d5a461
AB
569struct spi_device *spi_new_device(struct spi_master *master,
570 struct spi_board_info *chip)
8ae12a0d
DB
571{
572 struct spi_device *proxy;
8ae12a0d
DB
573 int status;
574
082c8cb4
DB
575 /* NOTE: caller did any chip->bus_num checks necessary.
576 *
577 * Also, unless we change the return value convention to use
578 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 * suggests syslogged diagnostics are best here (ugh).
580 */
581
dc87c98e
GL
582 proxy = spi_alloc_device(master);
583 if (!proxy)
8ae12a0d
DB
584 return NULL;
585
102eb975
GL
586 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587
8ae12a0d
DB
588 proxy->chip_select = chip->chip_select;
589 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 590 proxy->mode = chip->mode;
8ae12a0d 591 proxy->irq = chip->irq;
102eb975 592 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
593 proxy->dev.platform_data = (void *) chip->platform_data;
594 proxy->controller_data = chip->controller_data;
595 proxy->controller_state = NULL;
8ae12a0d 596
dc87c98e 597 status = spi_add_device(proxy);
8ae12a0d 598 if (status < 0) {
dc87c98e
GL
599 spi_dev_put(proxy);
600 return NULL;
8ae12a0d
DB
601 }
602
8ae12a0d
DB
603 return proxy;
604}
605EXPORT_SYMBOL_GPL(spi_new_device);
606
3b1884c2
GU
607/**
608 * spi_unregister_device - unregister a single SPI device
609 * @spi: spi_device to unregister
610 *
611 * Start making the passed SPI device vanish. Normally this would be handled
612 * by spi_unregister_master().
613 */
614void spi_unregister_device(struct spi_device *spi)
615{
bd6c1644
GU
616 if (!spi)
617 return;
618
619 if (spi->dev.of_node)
620 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
621 device_unregister(&spi->dev);
3b1884c2
GU
622}
623EXPORT_SYMBOL_GPL(spi_unregister_device);
624
2b9603a0
FT
625static void spi_match_master_to_boardinfo(struct spi_master *master,
626 struct spi_board_info *bi)
627{
628 struct spi_device *dev;
629
630 if (master->bus_num != bi->bus_num)
631 return;
632
633 dev = spi_new_device(master, bi);
634 if (!dev)
635 dev_err(master->dev.parent, "can't create new device for %s\n",
636 bi->modalias);
637}
638
33e34dc6
DB
639/**
640 * spi_register_board_info - register SPI devices for a given board
641 * @info: array of chip descriptors
642 * @n: how many descriptors are provided
643 * Context: can sleep
644 *
8ae12a0d
DB
645 * Board-specific early init code calls this (probably during arch_initcall)
646 * with segments of the SPI device table. Any device nodes are created later,
647 * after the relevant parent SPI controller (bus_num) is defined. We keep
648 * this table of devices forever, so that reloading a controller driver will
649 * not make Linux forget about these hard-wired devices.
650 *
651 * Other code can also call this, e.g. a particular add-on board might provide
652 * SPI devices through its expansion connector, so code initializing that board
653 * would naturally declare its SPI devices.
654 *
655 * The board info passed can safely be __initdata ... but be careful of
656 * any embedded pointers (platform_data, etc), they're copied as-is.
97d56dc6
JMC
657 *
658 * Return: zero on success, else a negative error code.
8ae12a0d 659 */
fd4a319b 660int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 661{
2b9603a0
FT
662 struct boardinfo *bi;
663 int i;
8ae12a0d 664
c7908a37
XL
665 if (!n)
666 return -EINVAL;
667
2b9603a0 668 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
669 if (!bi)
670 return -ENOMEM;
8ae12a0d 671
2b9603a0
FT
672 for (i = 0; i < n; i++, bi++, info++) {
673 struct spi_master *master;
8ae12a0d 674
2b9603a0
FT
675 memcpy(&bi->board_info, info, sizeof(*info));
676 mutex_lock(&board_lock);
677 list_add_tail(&bi->list, &board_list);
678 list_for_each_entry(master, &spi_master_list, list)
679 spi_match_master_to_boardinfo(master, &bi->board_info);
680 mutex_unlock(&board_lock);
8ae12a0d 681 }
2b9603a0
FT
682
683 return 0;
8ae12a0d
DB
684}
685
686/*-------------------------------------------------------------------------*/
687
b158935f
MB
688static void spi_set_cs(struct spi_device *spi, bool enable)
689{
690 if (spi->mode & SPI_CS_HIGH)
691 enable = !enable;
692
243f07be 693 if (gpio_is_valid(spi->cs_gpio))
b158935f
MB
694 gpio_set_value(spi->cs_gpio, !enable);
695 else if (spi->master->set_cs)
696 spi->master->set_cs(spi, !enable);
697}
698
2de440f5 699#ifdef CONFIG_HAS_DMA
6ad45a27
MB
700static int spi_map_buf(struct spi_master *master, struct device *dev,
701 struct sg_table *sgt, void *buf, size_t len,
702 enum dma_data_direction dir)
703{
704 const bool vmalloced_buf = is_vmalloc_addr(buf);
65598c13
AG
705 int desc_len;
706 int sgs;
6ad45a27
MB
707 struct page *vm_page;
708 void *sg_buf;
709 size_t min;
710 int i, ret;
711
65598c13
AG
712 if (vmalloced_buf) {
713 desc_len = PAGE_SIZE;
714 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
715 } else {
716 desc_len = master->max_dma_len;
717 sgs = DIV_ROUND_UP(len, desc_len);
718 }
719
6ad45a27
MB
720 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
721 if (ret != 0)
722 return ret;
723
724 for (i = 0; i < sgs; i++) {
6ad45a27
MB
725
726 if (vmalloced_buf) {
65598c13
AG
727 min = min_t(size_t,
728 len, desc_len - offset_in_page(buf));
6ad45a27
MB
729 vm_page = vmalloc_to_page(buf);
730 if (!vm_page) {
731 sg_free_table(sgt);
732 return -ENOMEM;
733 }
c1aefbdd
CK
734 sg_set_page(&sgt->sgl[i], vm_page,
735 min, offset_in_page(buf));
6ad45a27 736 } else {
65598c13 737 min = min_t(size_t, len, desc_len);
6ad45a27 738 sg_buf = buf;
c1aefbdd 739 sg_set_buf(&sgt->sgl[i], sg_buf, min);
6ad45a27
MB
740 }
741
6ad45a27
MB
742
743 buf += min;
744 len -= min;
745 }
746
747 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
748 if (!ret)
749 ret = -ENOMEM;
6ad45a27
MB
750 if (ret < 0) {
751 sg_free_table(sgt);
752 return ret;
753 }
754
755 sgt->nents = ret;
756
757 return 0;
758}
759
760static void spi_unmap_buf(struct spi_master *master, struct device *dev,
761 struct sg_table *sgt, enum dma_data_direction dir)
762{
763 if (sgt->orig_nents) {
764 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
765 sg_free_table(sgt);
766 }
767}
768
2de440f5 769static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
99adef31 770{
99adef31
MB
771 struct device *tx_dev, *rx_dev;
772 struct spi_transfer *xfer;
6ad45a27 773 int ret;
3a2eba9b 774
6ad45a27 775 if (!master->can_dma)
99adef31
MB
776 return 0;
777
c37f45b5
LL
778 if (master->dma_tx)
779 tx_dev = master->dma_tx->device->dev;
780 else
781 tx_dev = &master->dev;
782
783 if (master->dma_rx)
784 rx_dev = master->dma_rx->device->dev;
785 else
786 rx_dev = &master->dev;
99adef31
MB
787
788 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
789 if (!master->can_dma(master, msg->spi, xfer))
790 continue;
791
792 if (xfer->tx_buf != NULL) {
6ad45a27
MB
793 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
794 (void *)xfer->tx_buf, xfer->len,
795 DMA_TO_DEVICE);
796 if (ret != 0)
797 return ret;
99adef31
MB
798 }
799
800 if (xfer->rx_buf != NULL) {
6ad45a27
MB
801 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
802 xfer->rx_buf, xfer->len,
803 DMA_FROM_DEVICE);
804 if (ret != 0) {
805 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
806 DMA_TO_DEVICE);
807 return ret;
99adef31
MB
808 }
809 }
810 }
811
812 master->cur_msg_mapped = true;
813
814 return 0;
815}
816
4b786458 817static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
99adef31
MB
818{
819 struct spi_transfer *xfer;
820 struct device *tx_dev, *rx_dev;
821
6ad45a27 822 if (!master->cur_msg_mapped || !master->can_dma)
99adef31
MB
823 return 0;
824
c37f45b5
LL
825 if (master->dma_tx)
826 tx_dev = master->dma_tx->device->dev;
827 else
828 tx_dev = &master->dev;
829
830 if (master->dma_rx)
831 rx_dev = master->dma_rx->device->dev;
832 else
833 rx_dev = &master->dev;
99adef31
MB
834
835 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
836 if (!master->can_dma(master, msg->spi, xfer))
837 continue;
838
6ad45a27
MB
839 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
840 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
841 }
842
843 return 0;
844}
2de440f5
GU
845#else /* !CONFIG_HAS_DMA */
846static inline int __spi_map_msg(struct spi_master *master,
847 struct spi_message *msg)
848{
849 return 0;
850}
851
4b786458
MS
852static inline int __spi_unmap_msg(struct spi_master *master,
853 struct spi_message *msg)
2de440f5
GU
854{
855 return 0;
856}
857#endif /* !CONFIG_HAS_DMA */
858
4b786458
MS
859static inline int spi_unmap_msg(struct spi_master *master,
860 struct spi_message *msg)
861{
862 struct spi_transfer *xfer;
863
864 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 /*
866 * Restore the original value of tx_buf or rx_buf if they are
867 * NULL.
868 */
869 if (xfer->tx_buf == master->dummy_tx)
870 xfer->tx_buf = NULL;
871 if (xfer->rx_buf == master->dummy_rx)
872 xfer->rx_buf = NULL;
873 }
874
875 return __spi_unmap_msg(master, msg);
876}
877
2de440f5
GU
878static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
879{
880 struct spi_transfer *xfer;
881 void *tmp;
882 unsigned int max_tx, max_rx;
883
884 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
885 max_tx = 0;
886 max_rx = 0;
887
888 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
889 if ((master->flags & SPI_MASTER_MUST_TX) &&
890 !xfer->tx_buf)
891 max_tx = max(xfer->len, max_tx);
892 if ((master->flags & SPI_MASTER_MUST_RX) &&
893 !xfer->rx_buf)
894 max_rx = max(xfer->len, max_rx);
895 }
896
897 if (max_tx) {
898 tmp = krealloc(master->dummy_tx, max_tx,
899 GFP_KERNEL | GFP_DMA);
900 if (!tmp)
901 return -ENOMEM;
902 master->dummy_tx = tmp;
903 memset(tmp, 0, max_tx);
904 }
905
906 if (max_rx) {
907 tmp = krealloc(master->dummy_rx, max_rx,
908 GFP_KERNEL | GFP_DMA);
909 if (!tmp)
910 return -ENOMEM;
911 master->dummy_rx = tmp;
912 }
913
914 if (max_tx || max_rx) {
915 list_for_each_entry(xfer, &msg->transfers,
916 transfer_list) {
917 if (!xfer->tx_buf)
918 xfer->tx_buf = master->dummy_tx;
919 if (!xfer->rx_buf)
920 xfer->rx_buf = master->dummy_rx;
921 }
922 }
923 }
924
925 return __spi_map_msg(master, msg);
926}
99adef31 927
b158935f
MB
928/*
929 * spi_transfer_one_message - Default implementation of transfer_one_message()
930 *
931 * This is a standard implementation of transfer_one_message() for
932 * drivers which impelment a transfer_one() operation. It provides
933 * standard handling of delays and chip select management.
934 */
935static int spi_transfer_one_message(struct spi_master *master,
936 struct spi_message *msg)
937{
938 struct spi_transfer *xfer;
b158935f
MB
939 bool keep_cs = false;
940 int ret = 0;
682a71b2 941 unsigned long ms = 1;
eca2ebc7
MS
942 struct spi_statistics *statm = &master->statistics;
943 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
944
945 spi_set_cs(msg->spi, true);
946
eca2ebc7
MS
947 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
948 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
949
b158935f
MB
950 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
951 trace_spi_transfer_start(msg, xfer);
952
eca2ebc7
MS
953 spi_statistics_add_transfer_stats(statm, xfer, master);
954 spi_statistics_add_transfer_stats(stats, xfer, master);
955
38ec10f6
MB
956 if (xfer->tx_buf || xfer->rx_buf) {
957 reinit_completion(&master->xfer_completion);
b158935f 958
38ec10f6
MB
959 ret = master->transfer_one(master, msg->spi, xfer);
960 if (ret < 0) {
eca2ebc7
MS
961 SPI_STATISTICS_INCREMENT_FIELD(statm,
962 errors);
963 SPI_STATISTICS_INCREMENT_FIELD(stats,
964 errors);
38ec10f6
MB
965 dev_err(&msg->spi->dev,
966 "SPI transfer failed: %d\n", ret);
967 goto out;
968 }
b158935f 969
38ec10f6
MB
970 if (ret > 0) {
971 ret = 0;
972 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
973 ms += ms + 100; /* some tolerance */
16a0ce4e 974
38ec10f6
MB
975 ms = wait_for_completion_timeout(&master->xfer_completion,
976 msecs_to_jiffies(ms));
977 }
16a0ce4e 978
38ec10f6 979 if (ms == 0) {
eca2ebc7
MS
980 SPI_STATISTICS_INCREMENT_FIELD(statm,
981 timedout);
982 SPI_STATISTICS_INCREMENT_FIELD(stats,
983 timedout);
38ec10f6
MB
984 dev_err(&msg->spi->dev,
985 "SPI transfer timed out\n");
986 msg->status = -ETIMEDOUT;
987 }
988 } else {
989 if (xfer->len)
990 dev_err(&msg->spi->dev,
991 "Bufferless transfer has length %u\n",
992 xfer->len);
13a42798 993 }
b158935f
MB
994
995 trace_spi_transfer_stop(msg, xfer);
996
997 if (msg->status != -EINPROGRESS)
998 goto out;
999
1000 if (xfer->delay_usecs)
1001 udelay(xfer->delay_usecs);
1002
1003 if (xfer->cs_change) {
1004 if (list_is_last(&xfer->transfer_list,
1005 &msg->transfers)) {
1006 keep_cs = true;
1007 } else {
0b73aa63
MB
1008 spi_set_cs(msg->spi, false);
1009 udelay(10);
1010 spi_set_cs(msg->spi, true);
b158935f
MB
1011 }
1012 }
1013
1014 msg->actual_length += xfer->len;
1015 }
1016
1017out:
1018 if (ret != 0 || !keep_cs)
1019 spi_set_cs(msg->spi, false);
1020
1021 if (msg->status == -EINPROGRESS)
1022 msg->status = ret;
1023
ff61eb42 1024 if (msg->status && master->handle_err)
b716c4ff
AS
1025 master->handle_err(master, msg);
1026
b158935f
MB
1027 spi_finalize_current_message(master);
1028
1029 return ret;
1030}
1031
1032/**
1033 * spi_finalize_current_transfer - report completion of a transfer
2c675689 1034 * @master: the master reporting completion
b158935f
MB
1035 *
1036 * Called by SPI drivers using the core transfer_one_message()
1037 * implementation to notify it that the current interrupt driven
9e8f4882 1038 * transfer has finished and the next one may be scheduled.
b158935f
MB
1039 */
1040void spi_finalize_current_transfer(struct spi_master *master)
1041{
1042 complete(&master->xfer_completion);
1043}
1044EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1045
ffbbdd21 1046/**
fc9e0f71
MB
1047 * __spi_pump_messages - function which processes spi message queue
1048 * @master: master to process queue for
1049 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1050 *
1051 * This function checks if there is any spi message in the queue that
1052 * needs processing and if so call out to the driver to initialize hardware
1053 * and transfer each message.
1054 *
0461a414
MB
1055 * Note that it is called both from the kthread itself and also from
1056 * inside spi_sync(); the queue extraction handling at the top of the
1057 * function should deal with this safely.
ffbbdd21 1058 */
fc9e0f71 1059static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
ffbbdd21 1060{
ffbbdd21
LW
1061 unsigned long flags;
1062 bool was_busy = false;
1063 int ret;
1064
983aee5d 1065 /* Lock queue */
ffbbdd21 1066 spin_lock_irqsave(&master->queue_lock, flags);
983aee5d
MB
1067
1068 /* Make sure we are not already running a message */
1069 if (master->cur_msg) {
1070 spin_unlock_irqrestore(&master->queue_lock, flags);
1071 return;
1072 }
1073
0461a414
MB
1074 /* If another context is idling the device then defer */
1075 if (master->idling) {
1076 queue_kthread_work(&master->kworker, &master->pump_messages);
1077 spin_unlock_irqrestore(&master->queue_lock, flags);
1078 return;
1079 }
1080
983aee5d 1081 /* Check if the queue is idle */
ffbbdd21 1082 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
1083 if (!master->busy) {
1084 spin_unlock_irqrestore(&master->queue_lock, flags);
1085 return;
ffbbdd21 1086 }
fc9e0f71
MB
1087
1088 /* Only do teardown in the thread */
1089 if (!in_kthread) {
1090 queue_kthread_work(&master->kworker,
1091 &master->pump_messages);
1092 spin_unlock_irqrestore(&master->queue_lock, flags);
1093 return;
1094 }
1095
ffbbdd21 1096 master->busy = false;
0461a414 1097 master->idling = true;
ffbbdd21 1098 spin_unlock_irqrestore(&master->queue_lock, flags);
0461a414 1099
3a2eba9b
MB
1100 kfree(master->dummy_rx);
1101 master->dummy_rx = NULL;
1102 kfree(master->dummy_tx);
1103 master->dummy_tx = NULL;
b0b36b86
BF
1104 if (master->unprepare_transfer_hardware &&
1105 master->unprepare_transfer_hardware(master))
1106 dev_err(&master->dev,
1107 "failed to unprepare transfer hardware\n");
49834de2
MB
1108 if (master->auto_runtime_pm) {
1109 pm_runtime_mark_last_busy(master->dev.parent);
1110 pm_runtime_put_autosuspend(master->dev.parent);
1111 }
56ec1978 1112 trace_spi_master_idle(master);
ffbbdd21 1113
0461a414
MB
1114 spin_lock_irqsave(&master->queue_lock, flags);
1115 master->idling = false;
ffbbdd21
LW
1116 spin_unlock_irqrestore(&master->queue_lock, flags);
1117 return;
1118 }
ffbbdd21 1119
ffbbdd21
LW
1120 /* Extract head of queue */
1121 master->cur_msg =
a89e2d27 1122 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
1123
1124 list_del_init(&master->cur_msg->queue);
1125 if (master->busy)
1126 was_busy = true;
1127 else
1128 master->busy = true;
1129 spin_unlock_irqrestore(&master->queue_lock, flags);
1130
49834de2
MB
1131 if (!was_busy && master->auto_runtime_pm) {
1132 ret = pm_runtime_get_sync(master->dev.parent);
1133 if (ret < 0) {
1134 dev_err(&master->dev, "Failed to power device: %d\n",
1135 ret);
1136 return;
1137 }
1138 }
1139
56ec1978
MB
1140 if (!was_busy)
1141 trace_spi_master_busy(master);
1142
7dfd2bd7 1143 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
1144 ret = master->prepare_transfer_hardware(master);
1145 if (ret) {
1146 dev_err(&master->dev,
1147 "failed to prepare transfer hardware\n");
49834de2
MB
1148
1149 if (master->auto_runtime_pm)
1150 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
1151 return;
1152 }
1153 }
1154
556351f1 1155 mutex_lock(&master->bus_lock_mutex);
56ec1978
MB
1156 trace_spi_message_start(master->cur_msg);
1157
2841a5fc
MB
1158 if (master->prepare_message) {
1159 ret = master->prepare_message(master, master->cur_msg);
1160 if (ret) {
1161 dev_err(&master->dev,
1162 "failed to prepare message: %d\n", ret);
1163 master->cur_msg->status = ret;
1164 spi_finalize_current_message(master);
556351f1 1165 mutex_unlock(&master->bus_lock_mutex);
2841a5fc
MB
1166 return;
1167 }
1168 master->cur_msg_prepared = true;
1169 }
1170
99adef31
MB
1171 ret = spi_map_msg(master, master->cur_msg);
1172 if (ret) {
1173 master->cur_msg->status = ret;
1174 spi_finalize_current_message(master);
556351f1 1175 mutex_unlock(&master->bus_lock_mutex);
99adef31
MB
1176 return;
1177 }
1178
ffbbdd21
LW
1179 ret = master->transfer_one_message(master, master->cur_msg);
1180 if (ret) {
1181 dev_err(&master->dev,
1f802f82 1182 "failed to transfer one message from queue\n");
556351f1 1183 mutex_unlock(&master->bus_lock_mutex);
ffbbdd21
LW
1184 return;
1185 }
556351f1 1186 mutex_unlock(&master->bus_lock_mutex);
62826970
MB
1187
1188 /* Prod the scheduler in case transfer_one() was busy waiting */
1189 cond_resched();
ffbbdd21
LW
1190}
1191
fc9e0f71
MB
1192/**
1193 * spi_pump_messages - kthread work function which processes spi message queue
1194 * @work: pointer to kthread work struct contained in the master struct
1195 */
1196static void spi_pump_messages(struct kthread_work *work)
1197{
1198 struct spi_master *master =
1199 container_of(work, struct spi_master, pump_messages);
1200
1201 __spi_pump_messages(master, true);
1202}
1203
ffbbdd21
LW
1204static int spi_init_queue(struct spi_master *master)
1205{
1206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1207
ffbbdd21
LW
1208 master->running = false;
1209 master->busy = false;
1210
1211 init_kthread_worker(&master->kworker);
1212 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 1213 &master->kworker, "%s",
ffbbdd21
LW
1214 dev_name(&master->dev));
1215 if (IS_ERR(master->kworker_task)) {
1216 dev_err(&master->dev, "failed to create message pump task\n");
98a8f5a0 1217 return PTR_ERR(master->kworker_task);
ffbbdd21
LW
1218 }
1219 init_kthread_work(&master->pump_messages, spi_pump_messages);
1220
1221 /*
1222 * Master config will indicate if this controller should run the
1223 * message pump with high (realtime) priority to reduce the transfer
1224 * latency on the bus by minimising the delay between a transfer
1225 * request and the scheduling of the message pump thread. Without this
1226 * setting the message pump thread will remain at default priority.
1227 */
1228 if (master->rt) {
1229 dev_info(&master->dev,
1230 "will run message pump with realtime priority\n");
1231 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1232 }
1233
1234 return 0;
1235}
1236
1237/**
1238 * spi_get_next_queued_message() - called by driver to check for queued
1239 * messages
1240 * @master: the master to check for queued messages
1241 *
1242 * If there are more messages in the queue, the next message is returned from
1243 * this call.
97d56dc6
JMC
1244 *
1245 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21
LW
1246 */
1247struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1248{
1249 struct spi_message *next;
1250 unsigned long flags;
1251
1252 /* get a pointer to the next message, if any */
1253 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
1254 next = list_first_entry_or_null(&master->queue, struct spi_message,
1255 queue);
ffbbdd21
LW
1256 spin_unlock_irqrestore(&master->queue_lock, flags);
1257
1258 return next;
1259}
1260EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1261
1262/**
1263 * spi_finalize_current_message() - the current message is complete
1264 * @master: the master to return the message to
1265 *
1266 * Called by the driver to notify the core that the message in the front of the
1267 * queue is complete and can be removed from the queue.
1268 */
1269void spi_finalize_current_message(struct spi_master *master)
1270{
1271 struct spi_message *mesg;
1272 unsigned long flags;
2841a5fc 1273 int ret;
ffbbdd21
LW
1274
1275 spin_lock_irqsave(&master->queue_lock, flags);
1276 mesg = master->cur_msg;
ffbbdd21
LW
1277 spin_unlock_irqrestore(&master->queue_lock, flags);
1278
99adef31
MB
1279 spi_unmap_msg(master, mesg);
1280
2841a5fc
MB
1281 if (master->cur_msg_prepared && master->unprepare_message) {
1282 ret = master->unprepare_message(master, mesg);
1283 if (ret) {
1284 dev_err(&master->dev,
1285 "failed to unprepare message: %d\n", ret);
1286 }
1287 }
391949b6 1288
8e76ef88
MS
1289 spin_lock_irqsave(&master->queue_lock, flags);
1290 master->cur_msg = NULL;
2841a5fc 1291 master->cur_msg_prepared = false;
8e76ef88
MS
1292 queue_kthread_work(&master->kworker, &master->pump_messages);
1293 spin_unlock_irqrestore(&master->queue_lock, flags);
1294
1295 trace_spi_message_done(mesg);
2841a5fc 1296
ffbbdd21
LW
1297 mesg->state = NULL;
1298 if (mesg->complete)
1299 mesg->complete(mesg->context);
1300}
1301EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1302
1303static int spi_start_queue(struct spi_master *master)
1304{
1305 unsigned long flags;
1306
1307 spin_lock_irqsave(&master->queue_lock, flags);
1308
1309 if (master->running || master->busy) {
1310 spin_unlock_irqrestore(&master->queue_lock, flags);
1311 return -EBUSY;
1312 }
1313
1314 master->running = true;
1315 master->cur_msg = NULL;
1316 spin_unlock_irqrestore(&master->queue_lock, flags);
1317
1318 queue_kthread_work(&master->kworker, &master->pump_messages);
1319
1320 return 0;
1321}
1322
1323static int spi_stop_queue(struct spi_master *master)
1324{
1325 unsigned long flags;
1326 unsigned limit = 500;
1327 int ret = 0;
1328
1329 spin_lock_irqsave(&master->queue_lock, flags);
1330
1331 /*
1332 * This is a bit lame, but is optimized for the common execution path.
1333 * A wait_queue on the master->busy could be used, but then the common
1334 * execution path (pump_messages) would be required to call wake_up or
1335 * friends on every SPI message. Do this instead.
1336 */
1337 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1338 spin_unlock_irqrestore(&master->queue_lock, flags);
f97b26b0 1339 usleep_range(10000, 11000);
ffbbdd21
LW
1340 spin_lock_irqsave(&master->queue_lock, flags);
1341 }
1342
1343 if (!list_empty(&master->queue) || master->busy)
1344 ret = -EBUSY;
1345 else
1346 master->running = false;
1347
1348 spin_unlock_irqrestore(&master->queue_lock, flags);
1349
1350 if (ret) {
1351 dev_warn(&master->dev,
1352 "could not stop message queue\n");
1353 return ret;
1354 }
1355 return ret;
1356}
1357
1358static int spi_destroy_queue(struct spi_master *master)
1359{
1360 int ret;
1361
1362 ret = spi_stop_queue(master);
1363
1364 /*
1365 * flush_kthread_worker will block until all work is done.
1366 * If the reason that stop_queue timed out is that the work will never
1367 * finish, then it does no good to call flush/stop thread, so
1368 * return anyway.
1369 */
1370 if (ret) {
1371 dev_err(&master->dev, "problem destroying queue\n");
1372 return ret;
1373 }
1374
1375 flush_kthread_worker(&master->kworker);
1376 kthread_stop(master->kworker_task);
1377
1378 return 0;
1379}
1380
0461a414
MB
1381static int __spi_queued_transfer(struct spi_device *spi,
1382 struct spi_message *msg,
1383 bool need_pump)
ffbbdd21
LW
1384{
1385 struct spi_master *master = spi->master;
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(&master->queue_lock, flags);
1389
1390 if (!master->running) {
1391 spin_unlock_irqrestore(&master->queue_lock, flags);
1392 return -ESHUTDOWN;
1393 }
1394 msg->actual_length = 0;
1395 msg->status = -EINPROGRESS;
1396
1397 list_add_tail(&msg->queue, &master->queue);
0461a414 1398 if (!master->busy && need_pump)
ffbbdd21
LW
1399 queue_kthread_work(&master->kworker, &master->pump_messages);
1400
1401 spin_unlock_irqrestore(&master->queue_lock, flags);
1402 return 0;
1403}
1404
0461a414
MB
1405/**
1406 * spi_queued_transfer - transfer function for queued transfers
1407 * @spi: spi device which is requesting transfer
1408 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1409 *
1410 * Return: zero on success, else a negative error code.
0461a414
MB
1411 */
1412static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1413{
1414 return __spi_queued_transfer(spi, msg, true);
1415}
1416
ffbbdd21
LW
1417static int spi_master_initialize_queue(struct spi_master *master)
1418{
1419 int ret;
1420
ffbbdd21 1421 master->transfer = spi_queued_transfer;
b158935f
MB
1422 if (!master->transfer_one_message)
1423 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1424
1425 /* Initialize and start queue */
1426 ret = spi_init_queue(master);
1427 if (ret) {
1428 dev_err(&master->dev, "problem initializing queue\n");
1429 goto err_init_queue;
1430 }
c3676d5c 1431 master->queued = true;
ffbbdd21
LW
1432 ret = spi_start_queue(master);
1433 if (ret) {
1434 dev_err(&master->dev, "problem starting queue\n");
1435 goto err_start_queue;
1436 }
1437
1438 return 0;
1439
1440err_start_queue:
ffbbdd21 1441 spi_destroy_queue(master);
c3676d5c 1442err_init_queue:
ffbbdd21
LW
1443 return ret;
1444}
1445
1446/*-------------------------------------------------------------------------*/
1447
7cb94361 1448#if defined(CONFIG_OF)
aff5e3f8
PA
1449static struct spi_device *
1450of_register_spi_device(struct spi_master *master, struct device_node *nc)
1451{
1452 struct spi_device *spi;
1453 int rc;
1454 u32 value;
1455
1456 /* Alloc an spi_device */
1457 spi = spi_alloc_device(master);
1458 if (!spi) {
1459 dev_err(&master->dev, "spi_device alloc error for %s\n",
1460 nc->full_name);
1461 rc = -ENOMEM;
1462 goto err_out;
1463 }
1464
1465 /* Select device driver */
1466 rc = of_modalias_node(nc, spi->modalias,
1467 sizeof(spi->modalias));
1468 if (rc < 0) {
1469 dev_err(&master->dev, "cannot find modalias for %s\n",
1470 nc->full_name);
1471 goto err_out;
1472 }
1473
1474 /* Device address */
1475 rc = of_property_read_u32(nc, "reg", &value);
1476 if (rc) {
1477 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1478 nc->full_name, rc);
1479 goto err_out;
1480 }
1481 spi->chip_select = value;
1482
1483 /* Mode (clock phase/polarity/etc.) */
1484 if (of_find_property(nc, "spi-cpha", NULL))
1485 spi->mode |= SPI_CPHA;
1486 if (of_find_property(nc, "spi-cpol", NULL))
1487 spi->mode |= SPI_CPOL;
1488 if (of_find_property(nc, "spi-cs-high", NULL))
1489 spi->mode |= SPI_CS_HIGH;
1490 if (of_find_property(nc, "spi-3wire", NULL))
1491 spi->mode |= SPI_3WIRE;
1492 if (of_find_property(nc, "spi-lsb-first", NULL))
1493 spi->mode |= SPI_LSB_FIRST;
1494
1495 /* Device DUAL/QUAD mode */
1496 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1497 switch (value) {
1498 case 1:
1499 break;
1500 case 2:
1501 spi->mode |= SPI_TX_DUAL;
1502 break;
1503 case 4:
1504 spi->mode |= SPI_TX_QUAD;
1505 break;
1506 default:
1507 dev_warn(&master->dev,
1508 "spi-tx-bus-width %d not supported\n",
1509 value);
1510 break;
1511 }
1512 }
1513
1514 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1515 switch (value) {
1516 case 1:
1517 break;
1518 case 2:
1519 spi->mode |= SPI_RX_DUAL;
1520 break;
1521 case 4:
1522 spi->mode |= SPI_RX_QUAD;
1523 break;
1524 default:
1525 dev_warn(&master->dev,
1526 "spi-rx-bus-width %d not supported\n",
1527 value);
1528 break;
1529 }
1530 }
1531
1532 /* Device speed */
1533 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1534 if (rc) {
1535 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1536 nc->full_name, rc);
1537 goto err_out;
1538 }
1539 spi->max_speed_hz = value;
1540
aff5e3f8
PA
1541 /* Store a pointer to the node in the device structure */
1542 of_node_get(nc);
1543 spi->dev.of_node = nc;
1544
1545 /* Register the new device */
aff5e3f8
PA
1546 rc = spi_add_device(spi);
1547 if (rc) {
1548 dev_err(&master->dev, "spi_device register error %s\n",
1549 nc->full_name);
1550 goto err_out;
1551 }
1552
1553 return spi;
1554
1555err_out:
1556 spi_dev_put(spi);
1557 return ERR_PTR(rc);
1558}
1559
d57a4282
GL
1560/**
1561 * of_register_spi_devices() - Register child devices onto the SPI bus
1562 * @master: Pointer to spi_master device
1563 *
1564 * Registers an spi_device for each child node of master node which has a 'reg'
1565 * property.
1566 */
1567static void of_register_spi_devices(struct spi_master *master)
1568{
1569 struct spi_device *spi;
1570 struct device_node *nc;
d57a4282
GL
1571
1572 if (!master->dev.of_node)
1573 return;
1574
f3b6159e 1575 for_each_available_child_of_node(master->dev.of_node, nc) {
bd6c1644
GU
1576 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1577 continue;
aff5e3f8
PA
1578 spi = of_register_spi_device(master, nc);
1579 if (IS_ERR(spi))
1580 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
d57a4282 1581 nc->full_name);
d57a4282
GL
1582 }
1583}
1584#else
1585static void of_register_spi_devices(struct spi_master *master) { }
1586#endif
1587
64bee4d2
MW
1588#ifdef CONFIG_ACPI
1589static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1590{
1591 struct spi_device *spi = data;
1592
1593 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1594 struct acpi_resource_spi_serialbus *sb;
1595
1596 sb = &ares->data.spi_serial_bus;
1597 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1598 spi->chip_select = sb->device_selection;
1599 spi->max_speed_hz = sb->connection_speed;
1600
1601 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1602 spi->mode |= SPI_CPHA;
1603 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1604 spi->mode |= SPI_CPOL;
1605 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1606 spi->mode |= SPI_CS_HIGH;
1607 }
1608 } else if (spi->irq < 0) {
1609 struct resource r;
1610
1611 if (acpi_dev_resource_interrupt(ares, 0, &r))
1612 spi->irq = r.start;
1613 }
1614
1615 /* Always tell the ACPI core to skip this resource */
1616 return 1;
1617}
1618
1619static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1620 void *data, void **return_value)
1621{
1622 struct spi_master *master = data;
1623 struct list_head resource_list;
1624 struct acpi_device *adev;
1625 struct spi_device *spi;
1626 int ret;
1627
1628 if (acpi_bus_get_device(handle, &adev))
1629 return AE_OK;
1630 if (acpi_bus_get_status(adev) || !adev->status.present)
1631 return AE_OK;
1632
1633 spi = spi_alloc_device(master);
1634 if (!spi) {
1635 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1636 dev_name(&adev->dev));
1637 return AE_NO_MEMORY;
1638 }
1639
7b199811 1640 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1641 spi->irq = -1;
1642
1643 INIT_LIST_HEAD(&resource_list);
1644 ret = acpi_dev_get_resources(adev, &resource_list,
1645 acpi_spi_add_resource, spi);
1646 acpi_dev_free_resource_list(&resource_list);
1647
1648 if (ret < 0 || !spi->max_speed_hz) {
1649 spi_dev_put(spi);
1650 return AE_OK;
1651 }
1652
33ada67d
CR
1653 if (spi->irq < 0)
1654 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1655
33cf00e5 1656 adev->power.flags.ignore_parent = true;
cf9eb39c 1657 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1658 if (spi_add_device(spi)) {
33cf00e5 1659 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1660 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1661 dev_name(&adev->dev));
1662 spi_dev_put(spi);
1663 }
1664
1665 return AE_OK;
1666}
1667
1668static void acpi_register_spi_devices(struct spi_master *master)
1669{
1670 acpi_status status;
1671 acpi_handle handle;
1672
29896178 1673 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1674 if (!handle)
1675 return;
1676
1677 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1678 acpi_spi_add_device, NULL,
1679 master, NULL);
1680 if (ACPI_FAILURE(status))
1681 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1682}
1683#else
1684static inline void acpi_register_spi_devices(struct spi_master *master) {}
1685#endif /* CONFIG_ACPI */
1686
49dce689 1687static void spi_master_release(struct device *dev)
8ae12a0d
DB
1688{
1689 struct spi_master *master;
1690
49dce689 1691 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1692 kfree(master);
1693}
1694
1695static struct class spi_master_class = {
1696 .name = "spi_master",
1697 .owner = THIS_MODULE,
49dce689 1698 .dev_release = spi_master_release,
eca2ebc7 1699 .dev_groups = spi_master_groups,
8ae12a0d
DB
1700};
1701
1702
1703/**
1704 * spi_alloc_master - allocate SPI master controller
1705 * @dev: the controller, possibly using the platform_bus
33e34dc6 1706 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1707 * memory is in the driver_data field of the returned device,
0c868461 1708 * accessible with spi_master_get_devdata().
33e34dc6 1709 * Context: can sleep
8ae12a0d
DB
1710 *
1711 * This call is used only by SPI master controller drivers, which are the
1712 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1713 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d 1714 *
97d56dc6 1715 * This must be called from context that can sleep.
8ae12a0d
DB
1716 *
1717 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1718 * the master's methods before calling spi_register_master(); and (after errors
a394d635 1719 * adding the device) calling spi_master_put() to prevent a memory leak.
97d56dc6
JMC
1720 *
1721 * Return: the SPI master structure on success, else NULL.
8ae12a0d 1722 */
e9d5a461 1723struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1724{
1725 struct spi_master *master;
1726
0c868461
DB
1727 if (!dev)
1728 return NULL;
1729
5fe5f05e 1730 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1731 if (!master)
1732 return NULL;
1733
49dce689 1734 device_initialize(&master->dev);
1e8a52e1
GL
1735 master->bus_num = -1;
1736 master->num_chipselect = 1;
49dce689 1737 master->dev.class = &spi_master_class;
157f38f9 1738 master->dev.parent = dev;
0c868461 1739 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1740
1741 return master;
1742}
1743EXPORT_SYMBOL_GPL(spi_alloc_master);
1744
74317984
JCPV
1745#ifdef CONFIG_OF
1746static int of_spi_register_master(struct spi_master *master)
1747{
e80beb27 1748 int nb, i, *cs;
74317984
JCPV
1749 struct device_node *np = master->dev.of_node;
1750
1751 if (!np)
1752 return 0;
1753
1754 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1755 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1756
8ec5d84e
AL
1757 /* Return error only for an incorrectly formed cs-gpios property */
1758 if (nb == 0 || nb == -ENOENT)
74317984 1759 return 0;
8ec5d84e
AL
1760 else if (nb < 0)
1761 return nb;
74317984
JCPV
1762
1763 cs = devm_kzalloc(&master->dev,
1764 sizeof(int) * master->num_chipselect,
1765 GFP_KERNEL);
1766 master->cs_gpios = cs;
1767
1768 if (!master->cs_gpios)
1769 return -ENOMEM;
1770
0da83bb1 1771 for (i = 0; i < master->num_chipselect; i++)
446411e1 1772 cs[i] = -ENOENT;
74317984
JCPV
1773
1774 for (i = 0; i < nb; i++)
1775 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1776
1777 return 0;
1778}
1779#else
1780static int of_spi_register_master(struct spi_master *master)
1781{
1782 return 0;
1783}
1784#endif
1785
8ae12a0d
DB
1786/**
1787 * spi_register_master - register SPI master controller
1788 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1789 * Context: can sleep
8ae12a0d
DB
1790 *
1791 * SPI master controllers connect to their drivers using some non-SPI bus,
1792 * such as the platform bus. The final stage of probe() in that code
1793 * includes calling spi_register_master() to hook up to this SPI bus glue.
1794 *
1795 * SPI controllers use board specific (often SOC specific) bus numbers,
1796 * and board-specific addressing for SPI devices combines those numbers
1797 * with chip select numbers. Since SPI does not directly support dynamic
1798 * device identification, boards need configuration tables telling which
1799 * chip is at which address.
1800 *
1801 * This must be called from context that can sleep. It returns zero on
1802 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1803 * After a successful return, the caller is responsible for calling
1804 * spi_unregister_master().
97d56dc6
JMC
1805 *
1806 * Return: zero on success, else a negative error code.
8ae12a0d 1807 */
e9d5a461 1808int spi_register_master(struct spi_master *master)
8ae12a0d 1809{
e44a45ae 1810 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1811 struct device *dev = master->dev.parent;
2b9603a0 1812 struct boardinfo *bi;
8ae12a0d
DB
1813 int status = -ENODEV;
1814 int dynamic = 0;
1815
0c868461
DB
1816 if (!dev)
1817 return -ENODEV;
1818
74317984
JCPV
1819 status = of_spi_register_master(master);
1820 if (status)
1821 return status;
1822
082c8cb4
DB
1823 /* even if it's just one always-selected device, there must
1824 * be at least one chipselect
1825 */
1826 if (master->num_chipselect == 0)
1827 return -EINVAL;
1828
bb29785e
GL
1829 if ((master->bus_num < 0) && master->dev.of_node)
1830 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1831
8ae12a0d 1832 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1833 if (master->bus_num < 0) {
082c8cb4
DB
1834 /* FIXME switch to an IDR based scheme, something like
1835 * I2C now uses, so we can't run out of "dynamic" IDs
1836 */
8ae12a0d 1837 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1838 dynamic = 1;
8ae12a0d
DB
1839 }
1840
5424d43e
MB
1841 INIT_LIST_HEAD(&master->queue);
1842 spin_lock_init(&master->queue_lock);
cf32b71e
ES
1843 spin_lock_init(&master->bus_lock_spinlock);
1844 mutex_init(&master->bus_lock_mutex);
1845 master->bus_lock_flag = 0;
b158935f 1846 init_completion(&master->xfer_completion);
6ad45a27
MB
1847 if (!master->max_dma_len)
1848 master->max_dma_len = INT_MAX;
cf32b71e 1849
8ae12a0d
DB
1850 /* register the device, then userspace will see it.
1851 * registration fails if the bus ID is in use.
1852 */
35f74fca 1853 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1854 status = device_add(&master->dev);
b885244e 1855 if (status < 0)
8ae12a0d 1856 goto done;
35f74fca 1857 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1858 dynamic ? " (dynamic)" : "");
1859
ffbbdd21
LW
1860 /* If we're using a queued driver, start the queue */
1861 if (master->transfer)
1862 dev_info(dev, "master is unqueued, this is deprecated\n");
1863 else {
1864 status = spi_master_initialize_queue(master);
1865 if (status) {
e93b0724 1866 device_del(&master->dev);
ffbbdd21
LW
1867 goto done;
1868 }
1869 }
eca2ebc7
MS
1870 /* add statistics */
1871 spin_lock_init(&master->statistics.lock);
ffbbdd21 1872
2b9603a0
FT
1873 mutex_lock(&board_lock);
1874 list_add_tail(&master->list, &spi_master_list);
1875 list_for_each_entry(bi, &board_list, list)
1876 spi_match_master_to_boardinfo(master, &bi->board_info);
1877 mutex_unlock(&board_lock);
1878
64bee4d2 1879 /* Register devices from the device tree and ACPI */
12b15e83 1880 of_register_spi_devices(master);
64bee4d2 1881 acpi_register_spi_devices(master);
8ae12a0d
DB
1882done:
1883 return status;
1884}
1885EXPORT_SYMBOL_GPL(spi_register_master);
1886
666d5b4c
MB
1887static void devm_spi_unregister(struct device *dev, void *res)
1888{
1889 spi_unregister_master(*(struct spi_master **)res);
1890}
1891
1892/**
1893 * dev_spi_register_master - register managed SPI master controller
1894 * @dev: device managing SPI master
1895 * @master: initialized master, originally from spi_alloc_master()
1896 * Context: can sleep
1897 *
1898 * Register a SPI device as with spi_register_master() which will
1899 * automatically be unregister
97d56dc6
JMC
1900 *
1901 * Return: zero on success, else a negative error code.
666d5b4c
MB
1902 */
1903int devm_spi_register_master(struct device *dev, struct spi_master *master)
1904{
1905 struct spi_master **ptr;
1906 int ret;
1907
1908 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1909 if (!ptr)
1910 return -ENOMEM;
1911
1912 ret = spi_register_master(master);
4b92894e 1913 if (!ret) {
666d5b4c
MB
1914 *ptr = master;
1915 devres_add(dev, ptr);
1916 } else {
1917 devres_free(ptr);
1918 }
1919
1920 return ret;
1921}
1922EXPORT_SYMBOL_GPL(devm_spi_register_master);
1923
34860089 1924static int __unregister(struct device *dev, void *null)
8ae12a0d 1925{
34860089 1926 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1927 return 0;
1928}
1929
1930/**
1931 * spi_unregister_master - unregister SPI master controller
1932 * @master: the master being unregistered
33e34dc6 1933 * Context: can sleep
8ae12a0d
DB
1934 *
1935 * This call is used only by SPI master controller drivers, which are the
1936 * only ones directly touching chip registers.
1937 *
1938 * This must be called from context that can sleep.
1939 */
1940void spi_unregister_master(struct spi_master *master)
1941{
89fc9a1a
JG
1942 int dummy;
1943
ffbbdd21
LW
1944 if (master->queued) {
1945 if (spi_destroy_queue(master))
1946 dev_err(&master->dev, "queue remove failed\n");
1947 }
1948
2b9603a0
FT
1949 mutex_lock(&board_lock);
1950 list_del(&master->list);
1951 mutex_unlock(&board_lock);
1952
97dbf37d 1953 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1954 device_unregister(&master->dev);
8ae12a0d
DB
1955}
1956EXPORT_SYMBOL_GPL(spi_unregister_master);
1957
ffbbdd21
LW
1958int spi_master_suspend(struct spi_master *master)
1959{
1960 int ret;
1961
1962 /* Basically no-ops for non-queued masters */
1963 if (!master->queued)
1964 return 0;
1965
1966 ret = spi_stop_queue(master);
1967 if (ret)
1968 dev_err(&master->dev, "queue stop failed\n");
1969
1970 return ret;
1971}
1972EXPORT_SYMBOL_GPL(spi_master_suspend);
1973
1974int spi_master_resume(struct spi_master *master)
1975{
1976 int ret;
1977
1978 if (!master->queued)
1979 return 0;
1980
1981 ret = spi_start_queue(master);
1982 if (ret)
1983 dev_err(&master->dev, "queue restart failed\n");
1984
1985 return ret;
1986}
1987EXPORT_SYMBOL_GPL(spi_master_resume);
1988
9f3b795a 1989static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1990{
1991 struct spi_master *m;
9f3b795a 1992 const u16 *bus_num = data;
5ed2c832
DY
1993
1994 m = container_of(dev, struct spi_master, dev);
1995 return m->bus_num == *bus_num;
1996}
1997
8ae12a0d
DB
1998/**
1999 * spi_busnum_to_master - look up master associated with bus_num
2000 * @bus_num: the master's bus number
33e34dc6 2001 * Context: can sleep
8ae12a0d
DB
2002 *
2003 * This call may be used with devices that are registered after
2004 * arch init time. It returns a refcounted pointer to the relevant
2005 * spi_master (which the caller must release), or NULL if there is
2006 * no such master registered.
97d56dc6
JMC
2007 *
2008 * Return: the SPI master structure on success, else NULL.
8ae12a0d
DB
2009 */
2010struct spi_master *spi_busnum_to_master(u16 bus_num)
2011{
49dce689 2012 struct device *dev;
1e9a51dc 2013 struct spi_master *master = NULL;
5ed2c832 2014
695794ae 2015 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
2016 __spi_master_match);
2017 if (dev)
2018 master = container_of(dev, struct spi_master, dev);
2019 /* reference got in class_find_device */
1e9a51dc 2020 return master;
8ae12a0d
DB
2021}
2022EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2023
2024
2025/*-------------------------------------------------------------------------*/
2026
7d077197
DB
2027/* Core methods for SPI master protocol drivers. Some of the
2028 * other core methods are currently defined as inline functions.
2029 */
2030
63ab645f
SB
2031static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2032{
2033 if (master->bits_per_word_mask) {
2034 /* Only 32 bits fit in the mask */
2035 if (bits_per_word > 32)
2036 return -EINVAL;
2037 if (!(master->bits_per_word_mask &
2038 SPI_BPW_MASK(bits_per_word)))
2039 return -EINVAL;
2040 }
2041
2042 return 0;
2043}
2044
7d077197
DB
2045/**
2046 * spi_setup - setup SPI mode and clock rate
2047 * @spi: the device whose settings are being modified
2048 * Context: can sleep, and no requests are queued to the device
2049 *
2050 * SPI protocol drivers may need to update the transfer mode if the
2051 * device doesn't work with its default. They may likewise need
2052 * to update clock rates or word sizes from initial values. This function
2053 * changes those settings, and must be called from a context that can sleep.
2054 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2055 * effect the next time the device is selected and data is transferred to
2056 * or from it. When this function returns, the spi device is deselected.
2057 *
2058 * Note that this call will fail if the protocol driver specifies an option
2059 * that the underlying controller or its driver does not support. For
2060 * example, not all hardware supports wire transfers using nine bit words,
2061 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
2062 *
2063 * Return: zero on success, else a negative error code.
7d077197
DB
2064 */
2065int spi_setup(struct spi_device *spi)
2066{
83596fbe 2067 unsigned bad_bits, ugly_bits;
5ab8d262 2068 int status;
7d077197 2069
f477b7fb 2070 /* check mode to prevent that DUAL and QUAD set at the same time
2071 */
2072 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2073 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2074 dev_err(&spi->dev,
2075 "setup: can not select dual and quad at the same time\n");
2076 return -EINVAL;
2077 }
2078 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2079 */
2080 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2081 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2082 return -EINVAL;
e7db06b5
DB
2083 /* help drivers fail *cleanly* when they need options
2084 * that aren't supported with their current master
2085 */
2086 bad_bits = spi->mode & ~spi->master->mode_bits;
83596fbe
GU
2087 ugly_bits = bad_bits &
2088 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2089 if (ugly_bits) {
2090 dev_warn(&spi->dev,
2091 "setup: ignoring unsupported mode bits %x\n",
2092 ugly_bits);
2093 spi->mode &= ~ugly_bits;
2094 bad_bits &= ~ugly_bits;
2095 }
e7db06b5 2096 if (bad_bits) {
eb288a1f 2097 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
2098 bad_bits);
2099 return -EINVAL;
2100 }
2101
7d077197
DB
2102 if (!spi->bits_per_word)
2103 spi->bits_per_word = 8;
2104
5ab8d262
AS
2105 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2106 if (status)
2107 return status;
63ab645f 2108
052eb2d4
AL
2109 if (!spi->max_speed_hz)
2110 spi->max_speed_hz = spi->master->max_speed_hz;
2111
caae070c
LD
2112 if (spi->master->setup)
2113 status = spi->master->setup(spi);
7d077197 2114
abeedb01
FCJ
2115 spi_set_cs(spi, false);
2116
5fe5f05e 2117 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
2118 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2119 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2120 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2121 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2122 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2123 spi->bits_per_word, spi->max_speed_hz,
2124 status);
2125
2126 return status;
2127}
2128EXPORT_SYMBOL_GPL(spi_setup);
2129
90808738 2130static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
2131{
2132 struct spi_master *master = spi->master;
e6811d1d 2133 struct spi_transfer *xfer;
6ea31293 2134 int w_size;
cf32b71e 2135
24a0013a
MB
2136 if (list_empty(&message->transfers))
2137 return -EINVAL;
24a0013a 2138
cf32b71e
ES
2139 /* Half-duplex links include original MicroWire, and ones with
2140 * only one data pin like SPI_3WIRE (switches direction) or where
2141 * either MOSI or MISO is missing. They can also be caused by
2142 * software limitations.
2143 */
2144 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2145 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
2146 unsigned flags = master->flags;
2147
2148 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2149 if (xfer->rx_buf && xfer->tx_buf)
2150 return -EINVAL;
2151 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2152 return -EINVAL;
2153 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2154 return -EINVAL;
2155 }
2156 }
2157
e6811d1d 2158 /**
059b8ffe
LD
2159 * Set transfer bits_per_word and max speed as spi device default if
2160 * it is not set for this transfer.
f477b7fb 2161 * Set transfer tx_nbits and rx_nbits as single transfer default
2162 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d 2163 */
77e80588 2164 message->frame_length = 0;
e6811d1d 2165 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 2166 message->frame_length += xfer->len;
e6811d1d
LD
2167 if (!xfer->bits_per_word)
2168 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
2169
2170 if (!xfer->speed_hz)
059b8ffe 2171 xfer->speed_hz = spi->max_speed_hz;
7dc9fbc3
MB
2172 if (!xfer->speed_hz)
2173 xfer->speed_hz = master->max_speed_hz;
a6f87fad
AL
2174
2175 if (master->max_speed_hz &&
2176 xfer->speed_hz > master->max_speed_hz)
2177 xfer->speed_hz = master->max_speed_hz;
56ede94a 2178
63ab645f
SB
2179 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2180 return -EINVAL;
a2fd4f9f 2181
4d94bd21
II
2182 /*
2183 * SPI transfer length should be multiple of SPI word size
2184 * where SPI word size should be power-of-two multiple
2185 */
2186 if (xfer->bits_per_word <= 8)
2187 w_size = 1;
2188 else if (xfer->bits_per_word <= 16)
2189 w_size = 2;
2190 else
2191 w_size = 4;
2192
4d94bd21 2193 /* No partial transfers accepted */
6ea31293 2194 if (xfer->len % w_size)
4d94bd21
II
2195 return -EINVAL;
2196
a2fd4f9f
MB
2197 if (xfer->speed_hz && master->min_speed_hz &&
2198 xfer->speed_hz < master->min_speed_hz)
2199 return -EINVAL;
f477b7fb 2200
2201 if (xfer->tx_buf && !xfer->tx_nbits)
2202 xfer->tx_nbits = SPI_NBITS_SINGLE;
2203 if (xfer->rx_buf && !xfer->rx_nbits)
2204 xfer->rx_nbits = SPI_NBITS_SINGLE;
2205 /* check transfer tx/rx_nbits:
1afd9989
GU
2206 * 1. check the value matches one of single, dual and quad
2207 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 2208 */
db90a441
SP
2209 if (xfer->tx_buf) {
2210 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2211 xfer->tx_nbits != SPI_NBITS_DUAL &&
2212 xfer->tx_nbits != SPI_NBITS_QUAD)
2213 return -EINVAL;
2214 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2215 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2216 return -EINVAL;
2217 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2218 !(spi->mode & SPI_TX_QUAD))
2219 return -EINVAL;
db90a441 2220 }
f477b7fb 2221 /* check transfer rx_nbits */
db90a441
SP
2222 if (xfer->rx_buf) {
2223 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2224 xfer->rx_nbits != SPI_NBITS_DUAL &&
2225 xfer->rx_nbits != SPI_NBITS_QUAD)
2226 return -EINVAL;
2227 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2228 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2229 return -EINVAL;
2230 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2231 !(spi->mode & SPI_RX_QUAD))
2232 return -EINVAL;
db90a441 2233 }
e6811d1d
LD
2234 }
2235
cf32b71e 2236 message->status = -EINPROGRESS;
90808738
MB
2237
2238 return 0;
2239}
2240
2241static int __spi_async(struct spi_device *spi, struct spi_message *message)
2242{
2243 struct spi_master *master = spi->master;
2244
2245 message->spi = spi;
2246
eca2ebc7
MS
2247 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2248 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2249
90808738
MB
2250 trace_spi_message_submit(message);
2251
cf32b71e
ES
2252 return master->transfer(spi, message);
2253}
2254
568d0697
DB
2255/**
2256 * spi_async - asynchronous SPI transfer
2257 * @spi: device with which data will be exchanged
2258 * @message: describes the data transfers, including completion callback
2259 * Context: any (irqs may be blocked, etc)
2260 *
2261 * This call may be used in_irq and other contexts which can't sleep,
2262 * as well as from task contexts which can sleep.
2263 *
2264 * The completion callback is invoked in a context which can't sleep.
2265 * Before that invocation, the value of message->status is undefined.
2266 * When the callback is issued, message->status holds either zero (to
2267 * indicate complete success) or a negative error code. After that
2268 * callback returns, the driver which issued the transfer request may
2269 * deallocate the associated memory; it's no longer in use by any SPI
2270 * core or controller driver code.
2271 *
2272 * Note that although all messages to a spi_device are handled in
2273 * FIFO order, messages may go to different devices in other orders.
2274 * Some device might be higher priority, or have various "hard" access
2275 * time requirements, for example.
2276 *
2277 * On detection of any fault during the transfer, processing of
2278 * the entire message is aborted, and the device is deselected.
2279 * Until returning from the associated message completion callback,
2280 * no other spi_message queued to that device will be processed.
2281 * (This rule applies equally to all the synchronous transfer calls,
2282 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
2283 *
2284 * Return: zero on success, else a negative error code.
568d0697
DB
2285 */
2286int spi_async(struct spi_device *spi, struct spi_message *message)
2287{
2288 struct spi_master *master = spi->master;
cf32b71e
ES
2289 int ret;
2290 unsigned long flags;
568d0697 2291
90808738
MB
2292 ret = __spi_validate(spi, message);
2293 if (ret != 0)
2294 return ret;
2295
cf32b71e 2296 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 2297
cf32b71e
ES
2298 if (master->bus_lock_flag)
2299 ret = -EBUSY;
2300 else
2301 ret = __spi_async(spi, message);
568d0697 2302
cf32b71e
ES
2303 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2304
2305 return ret;
568d0697
DB
2306}
2307EXPORT_SYMBOL_GPL(spi_async);
2308
cf32b71e
ES
2309/**
2310 * spi_async_locked - version of spi_async with exclusive bus usage
2311 * @spi: device with which data will be exchanged
2312 * @message: describes the data transfers, including completion callback
2313 * Context: any (irqs may be blocked, etc)
2314 *
2315 * This call may be used in_irq and other contexts which can't sleep,
2316 * as well as from task contexts which can sleep.
2317 *
2318 * The completion callback is invoked in a context which can't sleep.
2319 * Before that invocation, the value of message->status is undefined.
2320 * When the callback is issued, message->status holds either zero (to
2321 * indicate complete success) or a negative error code. After that
2322 * callback returns, the driver which issued the transfer request may
2323 * deallocate the associated memory; it's no longer in use by any SPI
2324 * core or controller driver code.
2325 *
2326 * Note that although all messages to a spi_device are handled in
2327 * FIFO order, messages may go to different devices in other orders.
2328 * Some device might be higher priority, or have various "hard" access
2329 * time requirements, for example.
2330 *
2331 * On detection of any fault during the transfer, processing of
2332 * the entire message is aborted, and the device is deselected.
2333 * Until returning from the associated message completion callback,
2334 * no other spi_message queued to that device will be processed.
2335 * (This rule applies equally to all the synchronous transfer calls,
2336 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
2337 *
2338 * Return: zero on success, else a negative error code.
cf32b71e
ES
2339 */
2340int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2341{
2342 struct spi_master *master = spi->master;
2343 int ret;
2344 unsigned long flags;
2345
90808738
MB
2346 ret = __spi_validate(spi, message);
2347 if (ret != 0)
2348 return ret;
2349
cf32b71e
ES
2350 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2351
2352 ret = __spi_async(spi, message);
2353
2354 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2355
2356 return ret;
2357
2358}
2359EXPORT_SYMBOL_GPL(spi_async_locked);
2360
7d077197 2361
556351f1
V
2362int spi_flash_read(struct spi_device *spi,
2363 struct spi_flash_read_message *msg)
2364
2365{
2366 struct spi_master *master = spi->master;
2367 int ret;
2368
2369 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2370 msg->addr_nbits == SPI_NBITS_DUAL) &&
2371 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2372 return -EINVAL;
2373 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2374 msg->addr_nbits == SPI_NBITS_QUAD) &&
2375 !(spi->mode & SPI_TX_QUAD))
2376 return -EINVAL;
2377 if (msg->data_nbits == SPI_NBITS_DUAL &&
2378 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2379 return -EINVAL;
2380 if (msg->data_nbits == SPI_NBITS_QUAD &&
2381 !(spi->mode & SPI_RX_QUAD))
2382 return -EINVAL;
2383
2384 if (master->auto_runtime_pm) {
2385 ret = pm_runtime_get_sync(master->dev.parent);
2386 if (ret < 0) {
2387 dev_err(&master->dev, "Failed to power device: %d\n",
2388 ret);
2389 return ret;
2390 }
2391 }
2392 mutex_lock(&master->bus_lock_mutex);
2393 ret = master->spi_flash_read(spi, msg);
2394 mutex_unlock(&master->bus_lock_mutex);
2395 if (master->auto_runtime_pm)
2396 pm_runtime_put(master->dev.parent);
2397
2398 return ret;
2399}
2400EXPORT_SYMBOL_GPL(spi_flash_read);
2401
7d077197
DB
2402/*-------------------------------------------------------------------------*/
2403
2404/* Utility methods for SPI master protocol drivers, layered on
2405 * top of the core. Some other utility methods are defined as
2406 * inline functions.
2407 */
2408
5d870c8e
AM
2409static void spi_complete(void *arg)
2410{
2411 complete(arg);
2412}
2413
cf32b71e
ES
2414static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2415 int bus_locked)
2416{
2417 DECLARE_COMPLETION_ONSTACK(done);
2418 int status;
2419 struct spi_master *master = spi->master;
0461a414
MB
2420 unsigned long flags;
2421
2422 status = __spi_validate(spi, message);
2423 if (status != 0)
2424 return status;
cf32b71e
ES
2425
2426 message->complete = spi_complete;
2427 message->context = &done;
0461a414 2428 message->spi = spi;
cf32b71e 2429
eca2ebc7
MS
2430 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2431 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2432
cf32b71e
ES
2433 if (!bus_locked)
2434 mutex_lock(&master->bus_lock_mutex);
2435
0461a414
MB
2436 /* If we're not using the legacy transfer method then we will
2437 * try to transfer in the calling context so special case.
2438 * This code would be less tricky if we could remove the
2439 * support for driver implemented message queues.
2440 */
2441 if (master->transfer == spi_queued_transfer) {
2442 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2443
2444 trace_spi_message_submit(message);
2445
2446 status = __spi_queued_transfer(spi, message, false);
2447
2448 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2449 } else {
2450 status = spi_async_locked(spi, message);
2451 }
cf32b71e
ES
2452
2453 if (!bus_locked)
2454 mutex_unlock(&master->bus_lock_mutex);
2455
2456 if (status == 0) {
0461a414
MB
2457 /* Push out the messages in the calling context if we
2458 * can.
2459 */
eca2ebc7
MS
2460 if (master->transfer == spi_queued_transfer) {
2461 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2462 spi_sync_immediate);
2463 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2464 spi_sync_immediate);
fc9e0f71 2465 __spi_pump_messages(master, false);
eca2ebc7 2466 }
0461a414 2467
cf32b71e
ES
2468 wait_for_completion(&done);
2469 status = message->status;
2470 }
2471 message->context = NULL;
2472 return status;
2473}
2474
8ae12a0d
DB
2475/**
2476 * spi_sync - blocking/synchronous SPI data transfers
2477 * @spi: device with which data will be exchanged
2478 * @message: describes the data transfers
33e34dc6 2479 * Context: can sleep
8ae12a0d
DB
2480 *
2481 * This call may only be used from a context that may sleep. The sleep
2482 * is non-interruptible, and has no timeout. Low-overhead controller
2483 * drivers may DMA directly into and out of the message buffers.
2484 *
2485 * Note that the SPI device's chip select is active during the message,
2486 * and then is normally disabled between messages. Drivers for some
2487 * frequently-used devices may want to minimize costs of selecting a chip,
2488 * by leaving it selected in anticipation that the next message will go
2489 * to the same chip. (That may increase power usage.)
2490 *
0c868461
DB
2491 * Also, the caller is guaranteeing that the memory associated with the
2492 * message will not be freed before this call returns.
2493 *
97d56dc6 2494 * Return: zero on success, else a negative error code.
8ae12a0d
DB
2495 */
2496int spi_sync(struct spi_device *spi, struct spi_message *message)
2497{
cf32b71e 2498 return __spi_sync(spi, message, 0);
8ae12a0d
DB
2499}
2500EXPORT_SYMBOL_GPL(spi_sync);
2501
cf32b71e
ES
2502/**
2503 * spi_sync_locked - version of spi_sync with exclusive bus usage
2504 * @spi: device with which data will be exchanged
2505 * @message: describes the data transfers
2506 * Context: can sleep
2507 *
2508 * This call may only be used from a context that may sleep. The sleep
2509 * is non-interruptible, and has no timeout. Low-overhead controller
2510 * drivers may DMA directly into and out of the message buffers.
2511 *
2512 * This call should be used by drivers that require exclusive access to the
25985edc 2513 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
2514 * be released by a spi_bus_unlock call when the exclusive access is over.
2515 *
97d56dc6 2516 * Return: zero on success, else a negative error code.
cf32b71e
ES
2517 */
2518int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2519{
2520 return __spi_sync(spi, message, 1);
2521}
2522EXPORT_SYMBOL_GPL(spi_sync_locked);
2523
2524/**
2525 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2526 * @master: SPI bus master that should be locked for exclusive bus access
2527 * Context: can sleep
2528 *
2529 * This call may only be used from a context that may sleep. The sleep
2530 * is non-interruptible, and has no timeout.
2531 *
2532 * This call should be used by drivers that require exclusive access to the
2533 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2534 * exclusive access is over. Data transfer must be done by spi_sync_locked
2535 * and spi_async_locked calls when the SPI bus lock is held.
2536 *
97d56dc6 2537 * Return: always zero.
cf32b71e
ES
2538 */
2539int spi_bus_lock(struct spi_master *master)
2540{
2541 unsigned long flags;
2542
2543 mutex_lock(&master->bus_lock_mutex);
2544
2545 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2546 master->bus_lock_flag = 1;
2547 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2548
2549 /* mutex remains locked until spi_bus_unlock is called */
2550
2551 return 0;
2552}
2553EXPORT_SYMBOL_GPL(spi_bus_lock);
2554
2555/**
2556 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2557 * @master: SPI bus master that was locked for exclusive bus access
2558 * Context: can sleep
2559 *
2560 * This call may only be used from a context that may sleep. The sleep
2561 * is non-interruptible, and has no timeout.
2562 *
2563 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2564 * call.
2565 *
97d56dc6 2566 * Return: always zero.
cf32b71e
ES
2567 */
2568int spi_bus_unlock(struct spi_master *master)
2569{
2570 master->bus_lock_flag = 0;
2571
2572 mutex_unlock(&master->bus_lock_mutex);
2573
2574 return 0;
2575}
2576EXPORT_SYMBOL_GPL(spi_bus_unlock);
2577
a9948b61 2578/* portable code must never pass more than 32 bytes */
5fe5f05e 2579#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2580
2581static u8 *buf;
2582
2583/**
2584 * spi_write_then_read - SPI synchronous write followed by read
2585 * @spi: device with which data will be exchanged
2586 * @txbuf: data to be written (need not be dma-safe)
2587 * @n_tx: size of txbuf, in bytes
27570497
JP
2588 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2589 * @n_rx: size of rxbuf, in bytes
33e34dc6 2590 * Context: can sleep
8ae12a0d
DB
2591 *
2592 * This performs a half duplex MicroWire style transaction with the
2593 * device, sending txbuf and then reading rxbuf. The return value
2594 * is zero for success, else a negative errno status code.
b885244e 2595 * This call may only be used from a context that may sleep.
8ae12a0d 2596 *
0c868461 2597 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2598 * portable code should never use this for more than 32 bytes.
2599 * Performance-sensitive or bulk transfer code should instead use
0c868461 2600 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
2601 *
2602 * Return: zero on success, else a negative error code.
8ae12a0d
DB
2603 */
2604int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2605 const void *txbuf, unsigned n_tx,
2606 void *rxbuf, unsigned n_rx)
8ae12a0d 2607{
068f4070 2608 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2609
2610 int status;
2611 struct spi_message message;
bdff549e 2612 struct spi_transfer x[2];
8ae12a0d
DB
2613 u8 *local_buf;
2614
b3a223ee
MB
2615 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2616 * copying here, (as a pure convenience thing), but we can
2617 * keep heap costs out of the hot path unless someone else is
2618 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2619 */
b3a223ee 2620 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2621 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2622 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2623 if (!local_buf)
2624 return -ENOMEM;
2625 } else {
2626 local_buf = buf;
2627 }
8ae12a0d 2628
8275c642 2629 spi_message_init(&message);
5fe5f05e 2630 memset(x, 0, sizeof(x));
bdff549e
DB
2631 if (n_tx) {
2632 x[0].len = n_tx;
2633 spi_message_add_tail(&x[0], &message);
2634 }
2635 if (n_rx) {
2636 x[1].len = n_rx;
2637 spi_message_add_tail(&x[1], &message);
2638 }
8275c642 2639
8ae12a0d 2640 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2641 x[0].tx_buf = local_buf;
2642 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2643
2644 /* do the i/o */
8ae12a0d 2645 status = spi_sync(spi, &message);
9b938b74 2646 if (status == 0)
bdff549e 2647 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2648
bdff549e 2649 if (x[0].tx_buf == buf)
068f4070 2650 mutex_unlock(&lock);
8ae12a0d
DB
2651 else
2652 kfree(local_buf);
2653
2654 return status;
2655}
2656EXPORT_SYMBOL_GPL(spi_write_then_read);
2657
2658/*-------------------------------------------------------------------------*/
2659
ce79d54a
PA
2660#if IS_ENABLED(CONFIG_OF_DYNAMIC)
2661static int __spi_of_device_match(struct device *dev, void *data)
2662{
2663 return dev->of_node == data;
2664}
2665
2666/* must call put_device() when done with returned spi_device device */
2667static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2668{
2669 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2670 __spi_of_device_match);
2671 return dev ? to_spi_device(dev) : NULL;
2672}
2673
2674static int __spi_of_master_match(struct device *dev, const void *data)
2675{
2676 return dev->of_node == data;
2677}
2678
2679/* the spi masters are not using spi_bus, so we find it with another way */
2680static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2681{
2682 struct device *dev;
2683
2684 dev = class_find_device(&spi_master_class, NULL, node,
2685 __spi_of_master_match);
2686 if (!dev)
2687 return NULL;
2688
2689 /* reference got in class_find_device */
2690 return container_of(dev, struct spi_master, dev);
2691}
2692
2693static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2694 void *arg)
2695{
2696 struct of_reconfig_data *rd = arg;
2697 struct spi_master *master;
2698 struct spi_device *spi;
2699
2700 switch (of_reconfig_get_state_change(action, arg)) {
2701 case OF_RECONFIG_CHANGE_ADD:
2702 master = of_find_spi_master_by_node(rd->dn->parent);
2703 if (master == NULL)
2704 return NOTIFY_OK; /* not for us */
2705
bd6c1644
GU
2706 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2707 put_device(&master->dev);
2708 return NOTIFY_OK;
2709 }
2710
ce79d54a
PA
2711 spi = of_register_spi_device(master, rd->dn);
2712 put_device(&master->dev);
2713
2714 if (IS_ERR(spi)) {
2715 pr_err("%s: failed to create for '%s'\n",
2716 __func__, rd->dn->full_name);
2717 return notifier_from_errno(PTR_ERR(spi));
2718 }
2719 break;
2720
2721 case OF_RECONFIG_CHANGE_REMOVE:
bd6c1644
GU
2722 /* already depopulated? */
2723 if (!of_node_check_flag(rd->dn, OF_POPULATED))
2724 return NOTIFY_OK;
2725
ce79d54a
PA
2726 /* find our device by node */
2727 spi = of_find_spi_device_by_node(rd->dn);
2728 if (spi == NULL)
2729 return NOTIFY_OK; /* no? not meant for us */
2730
2731 /* unregister takes one ref away */
2732 spi_unregister_device(spi);
2733
2734 /* and put the reference of the find */
2735 put_device(&spi->dev);
2736 break;
2737 }
2738
2739 return NOTIFY_OK;
2740}
2741
2742static struct notifier_block spi_of_notifier = {
2743 .notifier_call = of_spi_notify,
2744};
2745#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2746extern struct notifier_block spi_of_notifier;
2747#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2748
8ae12a0d
DB
2749static int __init spi_init(void)
2750{
b885244e
DB
2751 int status;
2752
e94b1766 2753 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2754 if (!buf) {
2755 status = -ENOMEM;
2756 goto err0;
2757 }
2758
2759 status = bus_register(&spi_bus_type);
2760 if (status < 0)
2761 goto err1;
8ae12a0d 2762
b885244e
DB
2763 status = class_register(&spi_master_class);
2764 if (status < 0)
2765 goto err2;
ce79d54a 2766
5267720e 2767 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a
PA
2768 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2769
8ae12a0d 2770 return 0;
b885244e
DB
2771
2772err2:
2773 bus_unregister(&spi_bus_type);
2774err1:
2775 kfree(buf);
2776 buf = NULL;
2777err0:
2778 return status;
8ae12a0d 2779}
b885244e 2780
8ae12a0d
DB
2781/* board_info is normally registered in arch_initcall(),
2782 * but even essential drivers wait till later
b885244e
DB
2783 *
2784 * REVISIT only boardinfo really needs static linking. the rest (device and
2785 * driver registration) _could_ be dynamically linked (modular) ... costs
2786 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2787 */
673c0c00 2788postcore_initcall(spi_init);
8ae12a0d 2789