]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/spi/spi.c
spi: core: Add devm_spi_register_master()
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
8ae12a0d
DB
42static void spidev_release(struct device *dev)
43{
0ffa0285 44 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
0c868461 50 spi_master_put(spi->master);
07a389fe 51 kfree(spi);
8ae12a0d
DB
52}
53
54static ssize_t
55modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56{
57 const struct spi_device *spi = to_spi_device(dev);
58
d8e328b3 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
60}
61
62static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65};
66
67/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
75368bf6
AV
71static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73{
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80}
81
82const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83{
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87}
88EXPORT_SYMBOL_GPL(spi_get_device_id);
89
8ae12a0d
DB
90static int spi_match_device(struct device *dev, struct device_driver *drv)
91{
92 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
2b7a32f7
SA
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
64bee4d2
MW
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
75368bf6
AV
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 105
35f74fca 106 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
107}
108
7eff2e7a 109static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
110{
111 const struct spi_device *spi = to_spi_device(dev);
112
e0626e38 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
114 return 0;
115}
116
3ae22e8c
MB
117#ifdef CONFIG_PM_SLEEP
118static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 119{
3c72426f 120 int value = 0;
b885244e 121 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 122
8ae12a0d 123 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
8ae12a0d
DB
130 return value;
131}
132
3ae22e8c 133static int spi_legacy_resume(struct device *dev)
8ae12a0d 134{
3c72426f 135 int value = 0;
b885244e 136 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 137
8ae12a0d 138 /* resume may restart the i/o queue */
3c72426f
DB
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
8ae12a0d
DB
145 return value;
146}
147
3ae22e8c
MB
148static int spi_pm_suspend(struct device *dev)
149{
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156}
157
158static int spi_pm_resume(struct device *dev)
159{
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166}
167
168static int spi_pm_freeze(struct device *dev)
169{
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176}
177
178static int spi_pm_thaw(struct device *dev)
179{
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186}
187
188static int spi_pm_poweroff(struct device *dev)
189{
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196}
197
198static int spi_pm_restore(struct device *dev)
199{
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206}
8ae12a0d 207#else
3ae22e8c
MB
208#define spi_pm_suspend NULL
209#define spi_pm_resume NULL
210#define spi_pm_freeze NULL
211#define spi_pm_thaw NULL
212#define spi_pm_poweroff NULL
213#define spi_pm_restore NULL
8ae12a0d
DB
214#endif
215
3ae22e8c
MB
216static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
45f0a85c 226 NULL
3ae22e8c
MB
227 )
228};
229
8ae12a0d
DB
230struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
3ae22e8c 235 .pm = &spi_pm,
8ae12a0d
DB
236};
237EXPORT_SYMBOL_GPL(spi_bus_type);
238
b885244e
DB
239
240static int spi_drv_probe(struct device *dev)
241{
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245}
246
247static int spi_drv_remove(struct device *dev)
248{
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252}
253
254static void spi_drv_shutdown(struct device *dev)
255{
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259}
260
33e34dc6
DB
261/**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
b885244e
DB
266int spi_register_driver(struct spi_driver *sdrv)
267{
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276}
277EXPORT_SYMBOL_GPL(spi_register_driver);
278
8ae12a0d
DB
279/*-------------------------------------------------------------------------*/
280
281/* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287struct boardinfo {
288 struct list_head list;
2b9603a0 289 struct spi_board_info board_info;
8ae12a0d
DB
290};
291
292static LIST_HEAD(board_list);
2b9603a0
FT
293static LIST_HEAD(spi_master_list);
294
295/*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
94040828 299static DEFINE_MUTEX(board_lock);
8ae12a0d 300
dc87c98e
GL
301/**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
318struct spi_device *spi_alloc_device(struct spi_master *master)
319{
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
178db7d3 334 spi->dev.parent = &master->dev;
dc87c98e
GL
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
446411e1 337 spi->cs_gpio = -ENOENT;
dc87c98e
GL
338 device_initialize(&spi->dev);
339 return spi;
340}
341EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343/**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
e48880e0 350 * Returns 0 on success; negative errno on failure
dc87c98e
GL
351 */
352int spi_add_device(struct spi_device *spi)
353{
e48880e0 354 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
8ec130a0 357 struct device *d;
dc87c98e
GL
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
74317984 361 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
74317984 364 master->num_chipselect);
dc87c98e
GL
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
35f74fca 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
370 spi->chip_select);
371
e48880e0
DB
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
8ec130a0
RT
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
e48880e0
DB
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
8ec130a0 383 put_device(d);
e48880e0
DB
384 status = -EBUSY;
385 goto done;
386 }
387
74317984
JCPV
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
e48880e0
DB
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
7d077197 395 status = spi_setup(spi);
dc87c98e 396 if (status < 0) {
eb288a1f
LW
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
e48880e0 399 goto done;
dc87c98e
GL
400 }
401
e48880e0 402 /* Device may be bound to an active driver when this returns */
dc87c98e 403 status = device_add(&spi->dev);
e48880e0 404 if (status < 0)
eb288a1f
LW
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
e48880e0 407 else
35f74fca 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 409
e48880e0
DB
410done:
411 mutex_unlock(&spi_add_lock);
412 return status;
dc87c98e
GL
413}
414EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 415
33e34dc6
DB
416/**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
427 *
428 * Returns the new device, or NULL.
8ae12a0d 429 */
e9d5a461
AB
430struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
8ae12a0d
DB
432{
433 struct spi_device *proxy;
8ae12a0d
DB
434 int status;
435
082c8cb4
DB
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
dc87c98e
GL
443 proxy = spi_alloc_device(master);
444 if (!proxy)
8ae12a0d
DB
445 return NULL;
446
102eb975
GL
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
8ae12a0d
DB
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 451 proxy->mode = chip->mode;
8ae12a0d 452 proxy->irq = chip->irq;
102eb975 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
8ae12a0d 457
dc87c98e 458 status = spi_add_device(proxy);
8ae12a0d 459 if (status < 0) {
dc87c98e
GL
460 spi_dev_put(proxy);
461 return NULL;
8ae12a0d
DB
462 }
463
8ae12a0d
DB
464 return proxy;
465}
466EXPORT_SYMBOL_GPL(spi_new_device);
467
2b9603a0
FT
468static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470{
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480}
481
33e34dc6
DB
482/**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
8ae12a0d
DB
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
fd4a319b 501int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 502{
2b9603a0
FT
503 struct boardinfo *bi;
504 int i;
8ae12a0d 505
2b9603a0 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
507 if (!bi)
508 return -ENOMEM;
8ae12a0d 509
2b9603a0
FT
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
8ae12a0d 512
2b9603a0
FT
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
8ae12a0d 519 }
2b9603a0
FT
520
521 return 0;
8ae12a0d
DB
522}
523
524/*-------------------------------------------------------------------------*/
525
ffbbdd21
LW
526/**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
535static void spi_pump_messages(struct kthread_work *work)
536{
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
546 if (!master->busy) {
547 spin_unlock_irqrestore(&master->queue_lock, flags);
548 return;
ffbbdd21
LW
549 }
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
552 if (master->unprepare_transfer_hardware &&
553 master->unprepare_transfer_hardware(master))
554 dev_err(&master->dev,
555 "failed to unprepare transfer hardware\n");
49834de2
MB
556 if (master->auto_runtime_pm) {
557 pm_runtime_mark_last_busy(master->dev.parent);
558 pm_runtime_put_autosuspend(master->dev.parent);
559 }
ffbbdd21
LW
560 return;
561 }
562
563 /* Make sure we are not already running a message */
564 if (master->cur_msg) {
565 spin_unlock_irqrestore(&master->queue_lock, flags);
566 return;
567 }
568 /* Extract head of queue */
569 master->cur_msg =
570 list_entry(master->queue.next, struct spi_message, queue);
571
572 list_del_init(&master->cur_msg->queue);
573 if (master->busy)
574 was_busy = true;
575 else
576 master->busy = true;
577 spin_unlock_irqrestore(&master->queue_lock, flags);
578
49834de2
MB
579 if (!was_busy && master->auto_runtime_pm) {
580 ret = pm_runtime_get_sync(master->dev.parent);
581 if (ret < 0) {
582 dev_err(&master->dev, "Failed to power device: %d\n",
583 ret);
584 return;
585 }
586 }
587
7dfd2bd7 588 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
589 ret = master->prepare_transfer_hardware(master);
590 if (ret) {
591 dev_err(&master->dev,
592 "failed to prepare transfer hardware\n");
49834de2
MB
593
594 if (master->auto_runtime_pm)
595 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
596 return;
597 }
598 }
599
600 ret = master->transfer_one_message(master, master->cur_msg);
601 if (ret) {
602 dev_err(&master->dev,
603 "failed to transfer one message from queue\n");
604 return;
605 }
606}
607
608static int spi_init_queue(struct spi_master *master)
609{
610 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
611
612 INIT_LIST_HEAD(&master->queue);
613 spin_lock_init(&master->queue_lock);
614
615 master->running = false;
616 master->busy = false;
617
618 init_kthread_worker(&master->kworker);
619 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 620 &master->kworker, "%s",
ffbbdd21
LW
621 dev_name(&master->dev));
622 if (IS_ERR(master->kworker_task)) {
623 dev_err(&master->dev, "failed to create message pump task\n");
624 return -ENOMEM;
625 }
626 init_kthread_work(&master->pump_messages, spi_pump_messages);
627
628 /*
629 * Master config will indicate if this controller should run the
630 * message pump with high (realtime) priority to reduce the transfer
631 * latency on the bus by minimising the delay between a transfer
632 * request and the scheduling of the message pump thread. Without this
633 * setting the message pump thread will remain at default priority.
634 */
635 if (master->rt) {
636 dev_info(&master->dev,
637 "will run message pump with realtime priority\n");
638 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
639 }
640
641 return 0;
642}
643
644/**
645 * spi_get_next_queued_message() - called by driver to check for queued
646 * messages
647 * @master: the master to check for queued messages
648 *
649 * If there are more messages in the queue, the next message is returned from
650 * this call.
651 */
652struct spi_message *spi_get_next_queued_message(struct spi_master *master)
653{
654 struct spi_message *next;
655 unsigned long flags;
656
657 /* get a pointer to the next message, if any */
658 spin_lock_irqsave(&master->queue_lock, flags);
659 if (list_empty(&master->queue))
660 next = NULL;
661 else
662 next = list_entry(master->queue.next,
663 struct spi_message, queue);
664 spin_unlock_irqrestore(&master->queue_lock, flags);
665
666 return next;
667}
668EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
669
670/**
671 * spi_finalize_current_message() - the current message is complete
672 * @master: the master to return the message to
673 *
674 * Called by the driver to notify the core that the message in the front of the
675 * queue is complete and can be removed from the queue.
676 */
677void spi_finalize_current_message(struct spi_master *master)
678{
679 struct spi_message *mesg;
680 unsigned long flags;
681
682 spin_lock_irqsave(&master->queue_lock, flags);
683 mesg = master->cur_msg;
684 master->cur_msg = NULL;
685
686 queue_kthread_work(&master->kworker, &master->pump_messages);
687 spin_unlock_irqrestore(&master->queue_lock, flags);
688
689 mesg->state = NULL;
690 if (mesg->complete)
691 mesg->complete(mesg->context);
692}
693EXPORT_SYMBOL_GPL(spi_finalize_current_message);
694
695static int spi_start_queue(struct spi_master *master)
696{
697 unsigned long flags;
698
699 spin_lock_irqsave(&master->queue_lock, flags);
700
701 if (master->running || master->busy) {
702 spin_unlock_irqrestore(&master->queue_lock, flags);
703 return -EBUSY;
704 }
705
706 master->running = true;
707 master->cur_msg = NULL;
708 spin_unlock_irqrestore(&master->queue_lock, flags);
709
710 queue_kthread_work(&master->kworker, &master->pump_messages);
711
712 return 0;
713}
714
715static int spi_stop_queue(struct spi_master *master)
716{
717 unsigned long flags;
718 unsigned limit = 500;
719 int ret = 0;
720
721 spin_lock_irqsave(&master->queue_lock, flags);
722
723 /*
724 * This is a bit lame, but is optimized for the common execution path.
725 * A wait_queue on the master->busy could be used, but then the common
726 * execution path (pump_messages) would be required to call wake_up or
727 * friends on every SPI message. Do this instead.
728 */
729 while ((!list_empty(&master->queue) || master->busy) && limit--) {
730 spin_unlock_irqrestore(&master->queue_lock, flags);
731 msleep(10);
732 spin_lock_irqsave(&master->queue_lock, flags);
733 }
734
735 if (!list_empty(&master->queue) || master->busy)
736 ret = -EBUSY;
737 else
738 master->running = false;
739
740 spin_unlock_irqrestore(&master->queue_lock, flags);
741
742 if (ret) {
743 dev_warn(&master->dev,
744 "could not stop message queue\n");
745 return ret;
746 }
747 return ret;
748}
749
750static int spi_destroy_queue(struct spi_master *master)
751{
752 int ret;
753
754 ret = spi_stop_queue(master);
755
756 /*
757 * flush_kthread_worker will block until all work is done.
758 * If the reason that stop_queue timed out is that the work will never
759 * finish, then it does no good to call flush/stop thread, so
760 * return anyway.
761 */
762 if (ret) {
763 dev_err(&master->dev, "problem destroying queue\n");
764 return ret;
765 }
766
767 flush_kthread_worker(&master->kworker);
768 kthread_stop(master->kworker_task);
769
770 return 0;
771}
772
773/**
774 * spi_queued_transfer - transfer function for queued transfers
775 * @spi: spi device which is requesting transfer
776 * @msg: spi message which is to handled is queued to driver queue
777 */
778static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
779{
780 struct spi_master *master = spi->master;
781 unsigned long flags;
782
783 spin_lock_irqsave(&master->queue_lock, flags);
784
785 if (!master->running) {
786 spin_unlock_irqrestore(&master->queue_lock, flags);
787 return -ESHUTDOWN;
788 }
789 msg->actual_length = 0;
790 msg->status = -EINPROGRESS;
791
792 list_add_tail(&msg->queue, &master->queue);
96b3eace 793 if (!master->busy)
ffbbdd21
LW
794 queue_kthread_work(&master->kworker, &master->pump_messages);
795
796 spin_unlock_irqrestore(&master->queue_lock, flags);
797 return 0;
798}
799
800static int spi_master_initialize_queue(struct spi_master *master)
801{
802 int ret;
803
804 master->queued = true;
805 master->transfer = spi_queued_transfer;
806
807 /* Initialize and start queue */
808 ret = spi_init_queue(master);
809 if (ret) {
810 dev_err(&master->dev, "problem initializing queue\n");
811 goto err_init_queue;
812 }
813 ret = spi_start_queue(master);
814 if (ret) {
815 dev_err(&master->dev, "problem starting queue\n");
816 goto err_start_queue;
817 }
818
819 return 0;
820
821err_start_queue:
822err_init_queue:
823 spi_destroy_queue(master);
824 return ret;
825}
826
827/*-------------------------------------------------------------------------*/
828
7cb94361 829#if defined(CONFIG_OF)
d57a4282
GL
830/**
831 * of_register_spi_devices() - Register child devices onto the SPI bus
832 * @master: Pointer to spi_master device
833 *
834 * Registers an spi_device for each child node of master node which has a 'reg'
835 * property.
836 */
837static void of_register_spi_devices(struct spi_master *master)
838{
839 struct spi_device *spi;
840 struct device_node *nc;
841 const __be32 *prop;
cb71941a 842 char modalias[SPI_NAME_SIZE + 4];
d57a4282
GL
843 int rc;
844 int len;
845
846 if (!master->dev.of_node)
847 return;
848
f3b6159e 849 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
850 /* Alloc an spi_device */
851 spi = spi_alloc_device(master);
852 if (!spi) {
853 dev_err(&master->dev, "spi_device alloc error for %s\n",
854 nc->full_name);
855 spi_dev_put(spi);
856 continue;
857 }
858
859 /* Select device driver */
860 if (of_modalias_node(nc, spi->modalias,
861 sizeof(spi->modalias)) < 0) {
862 dev_err(&master->dev, "cannot find modalias for %s\n",
863 nc->full_name);
864 spi_dev_put(spi);
865 continue;
866 }
867
868 /* Device address */
869 prop = of_get_property(nc, "reg", &len);
870 if (!prop || len < sizeof(*prop)) {
871 dev_err(&master->dev, "%s has no 'reg' property\n",
872 nc->full_name);
873 spi_dev_put(spi);
874 continue;
875 }
876 spi->chip_select = be32_to_cpup(prop);
877
878 /* Mode (clock phase/polarity/etc.) */
879 if (of_find_property(nc, "spi-cpha", NULL))
880 spi->mode |= SPI_CPHA;
881 if (of_find_property(nc, "spi-cpol", NULL))
882 spi->mode |= SPI_CPOL;
883 if (of_find_property(nc, "spi-cs-high", NULL))
884 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
885 if (of_find_property(nc, "spi-3wire", NULL))
886 spi->mode |= SPI_3WIRE;
d57a4282 887
f477b7fb 888 /* Device DUAL/QUAD mode */
a110f93d 889 prop = of_get_property(nc, "spi-tx-bus-width", &len);
a822e99c
MB
890 if (prop && len == sizeof(*prop)) {
891 switch (be32_to_cpup(prop)) {
892 case SPI_NBITS_SINGLE:
893 break;
894 case SPI_NBITS_DUAL:
895 spi->mode |= SPI_TX_DUAL;
896 break;
897 case SPI_NBITS_QUAD:
898 spi->mode |= SPI_TX_QUAD;
899 break;
900 default:
901 dev_err(&master->dev,
a110f93d 902 "spi-tx-bus-width %d not supported\n",
a822e99c
MB
903 be32_to_cpup(prop));
904 spi_dev_put(spi);
905 continue;
906 }
f477b7fb 907 }
908
a110f93d 909 prop = of_get_property(nc, "spi-rx-bus-width", &len);
a822e99c
MB
910 if (prop && len == sizeof(*prop)) {
911 switch (be32_to_cpup(prop)) {
912 case SPI_NBITS_SINGLE:
913 break;
914 case SPI_NBITS_DUAL:
915 spi->mode |= SPI_RX_DUAL;
916 break;
917 case SPI_NBITS_QUAD:
918 spi->mode |= SPI_RX_QUAD;
919 break;
920 default:
921 dev_err(&master->dev,
a110f93d 922 "spi-rx-bus-width %d not supported\n",
a822e99c
MB
923 be32_to_cpup(prop));
924 spi_dev_put(spi);
925 continue;
926 }
f477b7fb 927 }
928
d57a4282
GL
929 /* Device speed */
930 prop = of_get_property(nc, "spi-max-frequency", &len);
931 if (!prop || len < sizeof(*prop)) {
932 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
933 nc->full_name);
934 spi_dev_put(spi);
935 continue;
936 }
937 spi->max_speed_hz = be32_to_cpup(prop);
938
939 /* IRQ */
940 spi->irq = irq_of_parse_and_map(nc, 0);
941
942 /* Store a pointer to the node in the device structure */
943 of_node_get(nc);
944 spi->dev.of_node = nc;
945
946 /* Register the new device */
cb71941a
DD
947 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
948 spi->modalias);
949 request_module(modalias);
d57a4282
GL
950 rc = spi_add_device(spi);
951 if (rc) {
952 dev_err(&master->dev, "spi_device register error %s\n",
953 nc->full_name);
954 spi_dev_put(spi);
955 }
956
957 }
958}
959#else
960static void of_register_spi_devices(struct spi_master *master) { }
961#endif
962
64bee4d2
MW
963#ifdef CONFIG_ACPI
964static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
965{
966 struct spi_device *spi = data;
967
968 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
969 struct acpi_resource_spi_serialbus *sb;
970
971 sb = &ares->data.spi_serial_bus;
972 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
973 spi->chip_select = sb->device_selection;
974 spi->max_speed_hz = sb->connection_speed;
975
976 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
977 spi->mode |= SPI_CPHA;
978 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
979 spi->mode |= SPI_CPOL;
980 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
981 spi->mode |= SPI_CS_HIGH;
982 }
983 } else if (spi->irq < 0) {
984 struct resource r;
985
986 if (acpi_dev_resource_interrupt(ares, 0, &r))
987 spi->irq = r.start;
988 }
989
990 /* Always tell the ACPI core to skip this resource */
991 return 1;
992}
993
994static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
995 void *data, void **return_value)
996{
997 struct spi_master *master = data;
998 struct list_head resource_list;
999 struct acpi_device *adev;
1000 struct spi_device *spi;
1001 int ret;
1002
1003 if (acpi_bus_get_device(handle, &adev))
1004 return AE_OK;
1005 if (acpi_bus_get_status(adev) || !adev->status.present)
1006 return AE_OK;
1007
1008 spi = spi_alloc_device(master);
1009 if (!spi) {
1010 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1011 dev_name(&adev->dev));
1012 return AE_NO_MEMORY;
1013 }
1014
1015 ACPI_HANDLE_SET(&spi->dev, handle);
1016 spi->irq = -1;
1017
1018 INIT_LIST_HEAD(&resource_list);
1019 ret = acpi_dev_get_resources(adev, &resource_list,
1020 acpi_spi_add_resource, spi);
1021 acpi_dev_free_resource_list(&resource_list);
1022
1023 if (ret < 0 || !spi->max_speed_hz) {
1024 spi_dev_put(spi);
1025 return AE_OK;
1026 }
1027
1028 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
1029 if (spi_add_device(spi)) {
1030 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1031 dev_name(&adev->dev));
1032 spi_dev_put(spi);
1033 }
1034
1035 return AE_OK;
1036}
1037
1038static void acpi_register_spi_devices(struct spi_master *master)
1039{
1040 acpi_status status;
1041 acpi_handle handle;
1042
29896178 1043 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1044 if (!handle)
1045 return;
1046
1047 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1048 acpi_spi_add_device, NULL,
1049 master, NULL);
1050 if (ACPI_FAILURE(status))
1051 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1052}
1053#else
1054static inline void acpi_register_spi_devices(struct spi_master *master) {}
1055#endif /* CONFIG_ACPI */
1056
49dce689 1057static void spi_master_release(struct device *dev)
8ae12a0d
DB
1058{
1059 struct spi_master *master;
1060
49dce689 1061 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1062 kfree(master);
1063}
1064
1065static struct class spi_master_class = {
1066 .name = "spi_master",
1067 .owner = THIS_MODULE,
49dce689 1068 .dev_release = spi_master_release,
8ae12a0d
DB
1069};
1070
1071
ffbbdd21 1072
8ae12a0d
DB
1073/**
1074 * spi_alloc_master - allocate SPI master controller
1075 * @dev: the controller, possibly using the platform_bus
33e34dc6 1076 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1077 * memory is in the driver_data field of the returned device,
0c868461 1078 * accessible with spi_master_get_devdata().
33e34dc6 1079 * Context: can sleep
8ae12a0d
DB
1080 *
1081 * This call is used only by SPI master controller drivers, which are the
1082 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1083 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1084 *
1085 * This must be called from context that can sleep. It returns the SPI
1086 * master structure on success, else NULL.
1087 *
1088 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1089 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1090 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1091 * leak.
8ae12a0d 1092 */
e9d5a461 1093struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1094{
1095 struct spi_master *master;
1096
0c868461
DB
1097 if (!dev)
1098 return NULL;
1099
e94b1766 1100 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
1101 if (!master)
1102 return NULL;
1103
49dce689 1104 device_initialize(&master->dev);
1e8a52e1
GL
1105 master->bus_num = -1;
1106 master->num_chipselect = 1;
49dce689
TJ
1107 master->dev.class = &spi_master_class;
1108 master->dev.parent = get_device(dev);
0c868461 1109 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1110
1111 return master;
1112}
1113EXPORT_SYMBOL_GPL(spi_alloc_master);
1114
74317984
JCPV
1115#ifdef CONFIG_OF
1116static int of_spi_register_master(struct spi_master *master)
1117{
e80beb27 1118 int nb, i, *cs;
74317984
JCPV
1119 struct device_node *np = master->dev.of_node;
1120
1121 if (!np)
1122 return 0;
1123
1124 nb = of_gpio_named_count(np, "cs-gpios");
e80beb27 1125 master->num_chipselect = max(nb, (int)master->num_chipselect);
74317984 1126
8ec5d84e
AL
1127 /* Return error only for an incorrectly formed cs-gpios property */
1128 if (nb == 0 || nb == -ENOENT)
74317984 1129 return 0;
8ec5d84e
AL
1130 else if (nb < 0)
1131 return nb;
74317984
JCPV
1132
1133 cs = devm_kzalloc(&master->dev,
1134 sizeof(int) * master->num_chipselect,
1135 GFP_KERNEL);
1136 master->cs_gpios = cs;
1137
1138 if (!master->cs_gpios)
1139 return -ENOMEM;
1140
0da83bb1 1141 for (i = 0; i < master->num_chipselect; i++)
446411e1 1142 cs[i] = -ENOENT;
74317984
JCPV
1143
1144 for (i = 0; i < nb; i++)
1145 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1146
1147 return 0;
1148}
1149#else
1150static int of_spi_register_master(struct spi_master *master)
1151{
1152 return 0;
1153}
1154#endif
1155
8ae12a0d
DB
1156/**
1157 * spi_register_master - register SPI master controller
1158 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1159 * Context: can sleep
8ae12a0d
DB
1160 *
1161 * SPI master controllers connect to their drivers using some non-SPI bus,
1162 * such as the platform bus. The final stage of probe() in that code
1163 * includes calling spi_register_master() to hook up to this SPI bus glue.
1164 *
1165 * SPI controllers use board specific (often SOC specific) bus numbers,
1166 * and board-specific addressing for SPI devices combines those numbers
1167 * with chip select numbers. Since SPI does not directly support dynamic
1168 * device identification, boards need configuration tables telling which
1169 * chip is at which address.
1170 *
1171 * This must be called from context that can sleep. It returns zero on
1172 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1173 * After a successful return, the caller is responsible for calling
1174 * spi_unregister_master().
8ae12a0d 1175 */
e9d5a461 1176int spi_register_master(struct spi_master *master)
8ae12a0d 1177{
e44a45ae 1178 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1179 struct device *dev = master->dev.parent;
2b9603a0 1180 struct boardinfo *bi;
8ae12a0d
DB
1181 int status = -ENODEV;
1182 int dynamic = 0;
1183
0c868461
DB
1184 if (!dev)
1185 return -ENODEV;
1186
74317984
JCPV
1187 status = of_spi_register_master(master);
1188 if (status)
1189 return status;
1190
082c8cb4
DB
1191 /* even if it's just one always-selected device, there must
1192 * be at least one chipselect
1193 */
1194 if (master->num_chipselect == 0)
1195 return -EINVAL;
1196
bb29785e
GL
1197 if ((master->bus_num < 0) && master->dev.of_node)
1198 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1199
8ae12a0d 1200 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1201 if (master->bus_num < 0) {
082c8cb4
DB
1202 /* FIXME switch to an IDR based scheme, something like
1203 * I2C now uses, so we can't run out of "dynamic" IDs
1204 */
8ae12a0d 1205 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1206 dynamic = 1;
8ae12a0d
DB
1207 }
1208
cf32b71e
ES
1209 spin_lock_init(&master->bus_lock_spinlock);
1210 mutex_init(&master->bus_lock_mutex);
1211 master->bus_lock_flag = 0;
1212
8ae12a0d
DB
1213 /* register the device, then userspace will see it.
1214 * registration fails if the bus ID is in use.
1215 */
35f74fca 1216 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1217 status = device_add(&master->dev);
b885244e 1218 if (status < 0)
8ae12a0d 1219 goto done;
35f74fca 1220 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1221 dynamic ? " (dynamic)" : "");
1222
ffbbdd21
LW
1223 /* If we're using a queued driver, start the queue */
1224 if (master->transfer)
1225 dev_info(dev, "master is unqueued, this is deprecated\n");
1226 else {
1227 status = spi_master_initialize_queue(master);
1228 if (status) {
e93b0724 1229 device_del(&master->dev);
ffbbdd21
LW
1230 goto done;
1231 }
1232 }
1233
2b9603a0
FT
1234 mutex_lock(&board_lock);
1235 list_add_tail(&master->list, &spi_master_list);
1236 list_for_each_entry(bi, &board_list, list)
1237 spi_match_master_to_boardinfo(master, &bi->board_info);
1238 mutex_unlock(&board_lock);
1239
64bee4d2 1240 /* Register devices from the device tree and ACPI */
12b15e83 1241 of_register_spi_devices(master);
64bee4d2 1242 acpi_register_spi_devices(master);
8ae12a0d
DB
1243done:
1244 return status;
1245}
1246EXPORT_SYMBOL_GPL(spi_register_master);
1247
666d5b4c
MB
1248static void devm_spi_unregister(struct device *dev, void *res)
1249{
1250 spi_unregister_master(*(struct spi_master **)res);
1251}
1252
1253/**
1254 * dev_spi_register_master - register managed SPI master controller
1255 * @dev: device managing SPI master
1256 * @master: initialized master, originally from spi_alloc_master()
1257 * Context: can sleep
1258 *
1259 * Register a SPI device as with spi_register_master() which will
1260 * automatically be unregister
1261 */
1262int devm_spi_register_master(struct device *dev, struct spi_master *master)
1263{
1264 struct spi_master **ptr;
1265 int ret;
1266
1267 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1268 if (!ptr)
1269 return -ENOMEM;
1270
1271 ret = spi_register_master(master);
1272 if (ret != 0) {
1273 *ptr = master;
1274 devres_add(dev, ptr);
1275 } else {
1276 devres_free(ptr);
1277 }
1278
1279 return ret;
1280}
1281EXPORT_SYMBOL_GPL(devm_spi_register_master);
1282
34860089 1283static int __unregister(struct device *dev, void *null)
8ae12a0d 1284{
34860089 1285 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1286 return 0;
1287}
1288
1289/**
1290 * spi_unregister_master - unregister SPI master controller
1291 * @master: the master being unregistered
33e34dc6 1292 * Context: can sleep
8ae12a0d
DB
1293 *
1294 * This call is used only by SPI master controller drivers, which are the
1295 * only ones directly touching chip registers.
1296 *
1297 * This must be called from context that can sleep.
1298 */
1299void spi_unregister_master(struct spi_master *master)
1300{
89fc9a1a
JG
1301 int dummy;
1302
ffbbdd21
LW
1303 if (master->queued) {
1304 if (spi_destroy_queue(master))
1305 dev_err(&master->dev, "queue remove failed\n");
1306 }
1307
2b9603a0
FT
1308 mutex_lock(&board_lock);
1309 list_del(&master->list);
1310 mutex_unlock(&board_lock);
1311
97dbf37d 1312 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1313 device_unregister(&master->dev);
8ae12a0d
DB
1314}
1315EXPORT_SYMBOL_GPL(spi_unregister_master);
1316
ffbbdd21
LW
1317int spi_master_suspend(struct spi_master *master)
1318{
1319 int ret;
1320
1321 /* Basically no-ops for non-queued masters */
1322 if (!master->queued)
1323 return 0;
1324
1325 ret = spi_stop_queue(master);
1326 if (ret)
1327 dev_err(&master->dev, "queue stop failed\n");
1328
1329 return ret;
1330}
1331EXPORT_SYMBOL_GPL(spi_master_suspend);
1332
1333int spi_master_resume(struct spi_master *master)
1334{
1335 int ret;
1336
1337 if (!master->queued)
1338 return 0;
1339
1340 ret = spi_start_queue(master);
1341 if (ret)
1342 dev_err(&master->dev, "queue restart failed\n");
1343
1344 return ret;
1345}
1346EXPORT_SYMBOL_GPL(spi_master_resume);
1347
9f3b795a 1348static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1349{
1350 struct spi_master *m;
9f3b795a 1351 const u16 *bus_num = data;
5ed2c832
DY
1352
1353 m = container_of(dev, struct spi_master, dev);
1354 return m->bus_num == *bus_num;
1355}
1356
8ae12a0d
DB
1357/**
1358 * spi_busnum_to_master - look up master associated with bus_num
1359 * @bus_num: the master's bus number
33e34dc6 1360 * Context: can sleep
8ae12a0d
DB
1361 *
1362 * This call may be used with devices that are registered after
1363 * arch init time. It returns a refcounted pointer to the relevant
1364 * spi_master (which the caller must release), or NULL if there is
1365 * no such master registered.
1366 */
1367struct spi_master *spi_busnum_to_master(u16 bus_num)
1368{
49dce689 1369 struct device *dev;
1e9a51dc 1370 struct spi_master *master = NULL;
5ed2c832 1371
695794ae 1372 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1373 __spi_master_match);
1374 if (dev)
1375 master = container_of(dev, struct spi_master, dev);
1376 /* reference got in class_find_device */
1e9a51dc 1377 return master;
8ae12a0d
DB
1378}
1379EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1380
1381
1382/*-------------------------------------------------------------------------*/
1383
7d077197
DB
1384/* Core methods for SPI master protocol drivers. Some of the
1385 * other core methods are currently defined as inline functions.
1386 */
1387
1388/**
1389 * spi_setup - setup SPI mode and clock rate
1390 * @spi: the device whose settings are being modified
1391 * Context: can sleep, and no requests are queued to the device
1392 *
1393 * SPI protocol drivers may need to update the transfer mode if the
1394 * device doesn't work with its default. They may likewise need
1395 * to update clock rates or word sizes from initial values. This function
1396 * changes those settings, and must be called from a context that can sleep.
1397 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1398 * effect the next time the device is selected and data is transferred to
1399 * or from it. When this function returns, the spi device is deselected.
1400 *
1401 * Note that this call will fail if the protocol driver specifies an option
1402 * that the underlying controller or its driver does not support. For
1403 * example, not all hardware supports wire transfers using nine bit words,
1404 * LSB-first wire encoding, or active-high chipselects.
1405 */
1406int spi_setup(struct spi_device *spi)
1407{
e7db06b5 1408 unsigned bad_bits;
caae070c 1409 int status = 0;
7d077197 1410
f477b7fb 1411 /* check mode to prevent that DUAL and QUAD set at the same time
1412 */
1413 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1414 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1415 dev_err(&spi->dev,
1416 "setup: can not select dual and quad at the same time\n");
1417 return -EINVAL;
1418 }
1419 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1420 */
1421 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1422 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1423 return -EINVAL;
e7db06b5
DB
1424 /* help drivers fail *cleanly* when they need options
1425 * that aren't supported with their current master
1426 */
1427 bad_bits = spi->mode & ~spi->master->mode_bits;
1428 if (bad_bits) {
eb288a1f 1429 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1430 bad_bits);
1431 return -EINVAL;
1432 }
1433
7d077197
DB
1434 if (!spi->bits_per_word)
1435 spi->bits_per_word = 8;
1436
caae070c
LD
1437 if (spi->master->setup)
1438 status = spi->master->setup(spi);
7d077197
DB
1439
1440 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1441 "%u bits/w, %u Hz max --> %d\n",
1442 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1443 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1444 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1445 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1446 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1447 spi->bits_per_word, spi->max_speed_hz,
1448 status);
1449
1450 return status;
1451}
1452EXPORT_SYMBOL_GPL(spi_setup);
1453
cf32b71e
ES
1454static int __spi_async(struct spi_device *spi, struct spi_message *message)
1455{
1456 struct spi_master *master = spi->master;
e6811d1d 1457 struct spi_transfer *xfer;
cf32b71e 1458
24a0013a
MB
1459 if (list_empty(&message->transfers))
1460 return -EINVAL;
1461 if (!message->complete)
1462 return -EINVAL;
1463
cf32b71e
ES
1464 /* Half-duplex links include original MicroWire, and ones with
1465 * only one data pin like SPI_3WIRE (switches direction) or where
1466 * either MOSI or MISO is missing. They can also be caused by
1467 * software limitations.
1468 */
1469 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1470 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1471 unsigned flags = master->flags;
1472
1473 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1474 if (xfer->rx_buf && xfer->tx_buf)
1475 return -EINVAL;
1476 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1477 return -EINVAL;
1478 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1479 return -EINVAL;
1480 }
1481 }
1482
e6811d1d 1483 /**
059b8ffe
LD
1484 * Set transfer bits_per_word and max speed as spi device default if
1485 * it is not set for this transfer.
f477b7fb 1486 * Set transfer tx_nbits and rx_nbits as single transfer default
1487 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1488 */
1489 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1490 message->frame_length += xfer->len;
e6811d1d
LD
1491 if (!xfer->bits_per_word)
1492 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1493 if (!xfer->speed_hz) {
059b8ffe 1494 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1495 if (master->max_speed_hz &&
1496 xfer->speed_hz > master->max_speed_hz)
1497 xfer->speed_hz = master->max_speed_hz;
1498 }
1499
543bb255
SW
1500 if (master->bits_per_word_mask) {
1501 /* Only 32 bits fit in the mask */
1502 if (xfer->bits_per_word > 32)
1503 return -EINVAL;
1504 if (!(master->bits_per_word_mask &
1505 BIT(xfer->bits_per_word - 1)))
1506 return -EINVAL;
1507 }
a2fd4f9f
MB
1508
1509 if (xfer->speed_hz && master->min_speed_hz &&
1510 xfer->speed_hz < master->min_speed_hz)
1511 return -EINVAL;
1512 if (xfer->speed_hz && master->max_speed_hz &&
1513 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1514 return -EINVAL;
f477b7fb 1515
1516 if (xfer->tx_buf && !xfer->tx_nbits)
1517 xfer->tx_nbits = SPI_NBITS_SINGLE;
1518 if (xfer->rx_buf && !xfer->rx_nbits)
1519 xfer->rx_nbits = SPI_NBITS_SINGLE;
1520 /* check transfer tx/rx_nbits:
1521 * 1. keep the value is not out of single, dual and quad
1522 * 2. keep tx/rx_nbits is contained by mode in spi_device
1523 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1524 */
db90a441
SP
1525 if (xfer->tx_buf) {
1526 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1527 xfer->tx_nbits != SPI_NBITS_DUAL &&
1528 xfer->tx_nbits != SPI_NBITS_QUAD)
1529 return -EINVAL;
1530 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1531 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1532 return -EINVAL;
1533 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1534 !(spi->mode & SPI_TX_QUAD))
1535 return -EINVAL;
1536 if ((spi->mode & SPI_3WIRE) &&
1537 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1538 return -EINVAL;
1539 }
f477b7fb 1540 /* check transfer rx_nbits */
db90a441
SP
1541 if (xfer->rx_buf) {
1542 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1543 xfer->rx_nbits != SPI_NBITS_DUAL &&
1544 xfer->rx_nbits != SPI_NBITS_QUAD)
1545 return -EINVAL;
1546 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1547 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1548 return -EINVAL;
1549 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1550 !(spi->mode & SPI_RX_QUAD))
1551 return -EINVAL;
1552 if ((spi->mode & SPI_3WIRE) &&
1553 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1554 return -EINVAL;
1555 }
e6811d1d
LD
1556 }
1557
cf32b71e
ES
1558 message->spi = spi;
1559 message->status = -EINPROGRESS;
1560 return master->transfer(spi, message);
1561}
1562
568d0697
DB
1563/**
1564 * spi_async - asynchronous SPI transfer
1565 * @spi: device with which data will be exchanged
1566 * @message: describes the data transfers, including completion callback
1567 * Context: any (irqs may be blocked, etc)
1568 *
1569 * This call may be used in_irq and other contexts which can't sleep,
1570 * as well as from task contexts which can sleep.
1571 *
1572 * The completion callback is invoked in a context which can't sleep.
1573 * Before that invocation, the value of message->status is undefined.
1574 * When the callback is issued, message->status holds either zero (to
1575 * indicate complete success) or a negative error code. After that
1576 * callback returns, the driver which issued the transfer request may
1577 * deallocate the associated memory; it's no longer in use by any SPI
1578 * core or controller driver code.
1579 *
1580 * Note that although all messages to a spi_device are handled in
1581 * FIFO order, messages may go to different devices in other orders.
1582 * Some device might be higher priority, or have various "hard" access
1583 * time requirements, for example.
1584 *
1585 * On detection of any fault during the transfer, processing of
1586 * the entire message is aborted, and the device is deselected.
1587 * Until returning from the associated message completion callback,
1588 * no other spi_message queued to that device will be processed.
1589 * (This rule applies equally to all the synchronous transfer calls,
1590 * which are wrappers around this core asynchronous primitive.)
1591 */
1592int spi_async(struct spi_device *spi, struct spi_message *message)
1593{
1594 struct spi_master *master = spi->master;
cf32b71e
ES
1595 int ret;
1596 unsigned long flags;
568d0697 1597
cf32b71e 1598 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1599
cf32b71e
ES
1600 if (master->bus_lock_flag)
1601 ret = -EBUSY;
1602 else
1603 ret = __spi_async(spi, message);
568d0697 1604
cf32b71e
ES
1605 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1606
1607 return ret;
568d0697
DB
1608}
1609EXPORT_SYMBOL_GPL(spi_async);
1610
cf32b71e
ES
1611/**
1612 * spi_async_locked - version of spi_async with exclusive bus usage
1613 * @spi: device with which data will be exchanged
1614 * @message: describes the data transfers, including completion callback
1615 * Context: any (irqs may be blocked, etc)
1616 *
1617 * This call may be used in_irq and other contexts which can't sleep,
1618 * as well as from task contexts which can sleep.
1619 *
1620 * The completion callback is invoked in a context which can't sleep.
1621 * Before that invocation, the value of message->status is undefined.
1622 * When the callback is issued, message->status holds either zero (to
1623 * indicate complete success) or a negative error code. After that
1624 * callback returns, the driver which issued the transfer request may
1625 * deallocate the associated memory; it's no longer in use by any SPI
1626 * core or controller driver code.
1627 *
1628 * Note that although all messages to a spi_device are handled in
1629 * FIFO order, messages may go to different devices in other orders.
1630 * Some device might be higher priority, or have various "hard" access
1631 * time requirements, for example.
1632 *
1633 * On detection of any fault during the transfer, processing of
1634 * the entire message is aborted, and the device is deselected.
1635 * Until returning from the associated message completion callback,
1636 * no other spi_message queued to that device will be processed.
1637 * (This rule applies equally to all the synchronous transfer calls,
1638 * which are wrappers around this core asynchronous primitive.)
1639 */
1640int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1641{
1642 struct spi_master *master = spi->master;
1643 int ret;
1644 unsigned long flags;
1645
1646 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1647
1648 ret = __spi_async(spi, message);
1649
1650 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1651
1652 return ret;
1653
1654}
1655EXPORT_SYMBOL_GPL(spi_async_locked);
1656
7d077197
DB
1657
1658/*-------------------------------------------------------------------------*/
1659
1660/* Utility methods for SPI master protocol drivers, layered on
1661 * top of the core. Some other utility methods are defined as
1662 * inline functions.
1663 */
1664
5d870c8e
AM
1665static void spi_complete(void *arg)
1666{
1667 complete(arg);
1668}
1669
cf32b71e
ES
1670static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1671 int bus_locked)
1672{
1673 DECLARE_COMPLETION_ONSTACK(done);
1674 int status;
1675 struct spi_master *master = spi->master;
1676
1677 message->complete = spi_complete;
1678 message->context = &done;
1679
1680 if (!bus_locked)
1681 mutex_lock(&master->bus_lock_mutex);
1682
1683 status = spi_async_locked(spi, message);
1684
1685 if (!bus_locked)
1686 mutex_unlock(&master->bus_lock_mutex);
1687
1688 if (status == 0) {
1689 wait_for_completion(&done);
1690 status = message->status;
1691 }
1692 message->context = NULL;
1693 return status;
1694}
1695
8ae12a0d
DB
1696/**
1697 * spi_sync - blocking/synchronous SPI data transfers
1698 * @spi: device with which data will be exchanged
1699 * @message: describes the data transfers
33e34dc6 1700 * Context: can sleep
8ae12a0d
DB
1701 *
1702 * This call may only be used from a context that may sleep. The sleep
1703 * is non-interruptible, and has no timeout. Low-overhead controller
1704 * drivers may DMA directly into and out of the message buffers.
1705 *
1706 * Note that the SPI device's chip select is active during the message,
1707 * and then is normally disabled between messages. Drivers for some
1708 * frequently-used devices may want to minimize costs of selecting a chip,
1709 * by leaving it selected in anticipation that the next message will go
1710 * to the same chip. (That may increase power usage.)
1711 *
0c868461
DB
1712 * Also, the caller is guaranteeing that the memory associated with the
1713 * message will not be freed before this call returns.
1714 *
9b938b74 1715 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1716 */
1717int spi_sync(struct spi_device *spi, struct spi_message *message)
1718{
cf32b71e 1719 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1720}
1721EXPORT_SYMBOL_GPL(spi_sync);
1722
cf32b71e
ES
1723/**
1724 * spi_sync_locked - version of spi_sync with exclusive bus usage
1725 * @spi: device with which data will be exchanged
1726 * @message: describes the data transfers
1727 * Context: can sleep
1728 *
1729 * This call may only be used from a context that may sleep. The sleep
1730 * is non-interruptible, and has no timeout. Low-overhead controller
1731 * drivers may DMA directly into and out of the message buffers.
1732 *
1733 * This call should be used by drivers that require exclusive access to the
25985edc 1734 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1735 * be released by a spi_bus_unlock call when the exclusive access is over.
1736 *
1737 * It returns zero on success, else a negative error code.
1738 */
1739int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1740{
1741 return __spi_sync(spi, message, 1);
1742}
1743EXPORT_SYMBOL_GPL(spi_sync_locked);
1744
1745/**
1746 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1747 * @master: SPI bus master that should be locked for exclusive bus access
1748 * Context: can sleep
1749 *
1750 * This call may only be used from a context that may sleep. The sleep
1751 * is non-interruptible, and has no timeout.
1752 *
1753 * This call should be used by drivers that require exclusive access to the
1754 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1755 * exclusive access is over. Data transfer must be done by spi_sync_locked
1756 * and spi_async_locked calls when the SPI bus lock is held.
1757 *
1758 * It returns zero on success, else a negative error code.
1759 */
1760int spi_bus_lock(struct spi_master *master)
1761{
1762 unsigned long flags;
1763
1764 mutex_lock(&master->bus_lock_mutex);
1765
1766 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1767 master->bus_lock_flag = 1;
1768 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1769
1770 /* mutex remains locked until spi_bus_unlock is called */
1771
1772 return 0;
1773}
1774EXPORT_SYMBOL_GPL(spi_bus_lock);
1775
1776/**
1777 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1778 * @master: SPI bus master that was locked for exclusive bus access
1779 * Context: can sleep
1780 *
1781 * This call may only be used from a context that may sleep. The sleep
1782 * is non-interruptible, and has no timeout.
1783 *
1784 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1785 * call.
1786 *
1787 * It returns zero on success, else a negative error code.
1788 */
1789int spi_bus_unlock(struct spi_master *master)
1790{
1791 master->bus_lock_flag = 0;
1792
1793 mutex_unlock(&master->bus_lock_mutex);
1794
1795 return 0;
1796}
1797EXPORT_SYMBOL_GPL(spi_bus_unlock);
1798
a9948b61
DB
1799/* portable code must never pass more than 32 bytes */
1800#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
1801
1802static u8 *buf;
1803
1804/**
1805 * spi_write_then_read - SPI synchronous write followed by read
1806 * @spi: device with which data will be exchanged
1807 * @txbuf: data to be written (need not be dma-safe)
1808 * @n_tx: size of txbuf, in bytes
27570497
JP
1809 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1810 * @n_rx: size of rxbuf, in bytes
33e34dc6 1811 * Context: can sleep
8ae12a0d
DB
1812 *
1813 * This performs a half duplex MicroWire style transaction with the
1814 * device, sending txbuf and then reading rxbuf. The return value
1815 * is zero for success, else a negative errno status code.
b885244e 1816 * This call may only be used from a context that may sleep.
8ae12a0d 1817 *
0c868461 1818 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1819 * portable code should never use this for more than 32 bytes.
1820 * Performance-sensitive or bulk transfer code should instead use
0c868461 1821 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1822 */
1823int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1824 const void *txbuf, unsigned n_tx,
1825 void *rxbuf, unsigned n_rx)
8ae12a0d 1826{
068f4070 1827 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1828
1829 int status;
1830 struct spi_message message;
bdff549e 1831 struct spi_transfer x[2];
8ae12a0d
DB
1832 u8 *local_buf;
1833
b3a223ee
MB
1834 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1835 * copying here, (as a pure convenience thing), but we can
1836 * keep heap costs out of the hot path unless someone else is
1837 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1838 */
b3a223ee 1839 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1840 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1841 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
1842 if (!local_buf)
1843 return -ENOMEM;
1844 } else {
1845 local_buf = buf;
1846 }
8ae12a0d 1847
8275c642 1848 spi_message_init(&message);
bdff549e
DB
1849 memset(x, 0, sizeof x);
1850 if (n_tx) {
1851 x[0].len = n_tx;
1852 spi_message_add_tail(&x[0], &message);
1853 }
1854 if (n_rx) {
1855 x[1].len = n_rx;
1856 spi_message_add_tail(&x[1], &message);
1857 }
8275c642 1858
8ae12a0d 1859 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1860 x[0].tx_buf = local_buf;
1861 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1862
1863 /* do the i/o */
8ae12a0d 1864 status = spi_sync(spi, &message);
9b938b74 1865 if (status == 0)
bdff549e 1866 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1867
bdff549e 1868 if (x[0].tx_buf == buf)
068f4070 1869 mutex_unlock(&lock);
8ae12a0d
DB
1870 else
1871 kfree(local_buf);
1872
1873 return status;
1874}
1875EXPORT_SYMBOL_GPL(spi_write_then_read);
1876
1877/*-------------------------------------------------------------------------*/
1878
1879static int __init spi_init(void)
1880{
b885244e
DB
1881 int status;
1882
e94b1766 1883 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1884 if (!buf) {
1885 status = -ENOMEM;
1886 goto err0;
1887 }
1888
1889 status = bus_register(&spi_bus_type);
1890 if (status < 0)
1891 goto err1;
8ae12a0d 1892
b885244e
DB
1893 status = class_register(&spi_master_class);
1894 if (status < 0)
1895 goto err2;
8ae12a0d 1896 return 0;
b885244e
DB
1897
1898err2:
1899 bus_unregister(&spi_bus_type);
1900err1:
1901 kfree(buf);
1902 buf = NULL;
1903err0:
1904 return status;
8ae12a0d 1905}
b885244e 1906
8ae12a0d
DB
1907/* board_info is normally registered in arch_initcall(),
1908 * but even essential drivers wait till later
b885244e
DB
1909 *
1910 * REVISIT only boardinfo really needs static linking. the rest (device and
1911 * driver registration) _could_ be dynamically linked (modular) ... costs
1912 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1913 */
673c0c00 1914postcore_initcall(spi_init);
8ae12a0d 1915