]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/spi/spi.c
ACPI / driver core: Store an ACPI device pointer in struct acpi_dev_node
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
56ec1978
MB
42#define CREATE_TRACE_POINTS
43#include <trace/events/spi.h>
44
8ae12a0d
DB
45static void spidev_release(struct device *dev)
46{
0ffa0285 47 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
0c868461 53 spi_master_put(spi->master);
07a389fe 54 kfree(spi);
8ae12a0d
DB
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60 const struct spi_device *spi = to_spi_device(dev);
61
d8e328b3 62 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 63}
aa7da564 64static DEVICE_ATTR_RO(modalias);
8ae12a0d 65
aa7da564
GKH
66static struct attribute *spi_dev_attrs[] = {
67 &dev_attr_modalias.attr,
68 NULL,
8ae12a0d 69};
aa7da564 70ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
71
72/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
73 * and the sysfs version makes coldplug work too.
74 */
75
75368bf6
AV
76static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
77 const struct spi_device *sdev)
78{
79 while (id->name[0]) {
80 if (!strcmp(sdev->modalias, id->name))
81 return id;
82 id++;
83 }
84 return NULL;
85}
86
87const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
88{
89 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
90
91 return spi_match_id(sdrv->id_table, sdev);
92}
93EXPORT_SYMBOL_GPL(spi_get_device_id);
94
8ae12a0d
DB
95static int spi_match_device(struct device *dev, struct device_driver *drv)
96{
97 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
98 const struct spi_driver *sdrv = to_spi_driver(drv);
99
2b7a32f7
SA
100 /* Attempt an OF style match */
101 if (of_driver_match_device(dev, drv))
102 return 1;
103
64bee4d2
MW
104 /* Then try ACPI */
105 if (acpi_driver_match_device(dev, drv))
106 return 1;
107
75368bf6
AV
108 if (sdrv->id_table)
109 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 110
35f74fca 111 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
112}
113
7eff2e7a 114static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
115{
116 const struct spi_device *spi = to_spi_device(dev);
117
e0626e38 118 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
119 return 0;
120}
121
3ae22e8c
MB
122#ifdef CONFIG_PM_SLEEP
123static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 124{
3c72426f 125 int value = 0;
b885244e 126 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 127
8ae12a0d 128 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
129 if (drv) {
130 if (drv->suspend)
131 value = drv->suspend(to_spi_device(dev), message);
132 else
133 dev_dbg(dev, "... can't suspend\n");
134 }
8ae12a0d
DB
135 return value;
136}
137
3ae22e8c 138static int spi_legacy_resume(struct device *dev)
8ae12a0d 139{
3c72426f 140 int value = 0;
b885244e 141 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 142
8ae12a0d 143 /* resume may restart the i/o queue */
3c72426f
DB
144 if (drv) {
145 if (drv->resume)
146 value = drv->resume(to_spi_device(dev));
147 else
148 dev_dbg(dev, "... can't resume\n");
149 }
8ae12a0d
DB
150 return value;
151}
152
3ae22e8c
MB
153static int spi_pm_suspend(struct device *dev)
154{
155 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
156
157 if (pm)
158 return pm_generic_suspend(dev);
159 else
160 return spi_legacy_suspend(dev, PMSG_SUSPEND);
161}
162
163static int spi_pm_resume(struct device *dev)
164{
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_resume(dev);
169 else
170 return spi_legacy_resume(dev);
171}
172
173static int spi_pm_freeze(struct device *dev)
174{
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_freeze(dev);
179 else
180 return spi_legacy_suspend(dev, PMSG_FREEZE);
181}
182
183static int spi_pm_thaw(struct device *dev)
184{
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_thaw(dev);
189 else
190 return spi_legacy_resume(dev);
191}
192
193static int spi_pm_poweroff(struct device *dev)
194{
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_poweroff(dev);
199 else
200 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
201}
202
203static int spi_pm_restore(struct device *dev)
204{
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_restore(dev);
209 else
210 return spi_legacy_resume(dev);
211}
8ae12a0d 212#else
3ae22e8c
MB
213#define spi_pm_suspend NULL
214#define spi_pm_resume NULL
215#define spi_pm_freeze NULL
216#define spi_pm_thaw NULL
217#define spi_pm_poweroff NULL
218#define spi_pm_restore NULL
8ae12a0d
DB
219#endif
220
3ae22e8c
MB
221static const struct dev_pm_ops spi_pm = {
222 .suspend = spi_pm_suspend,
223 .resume = spi_pm_resume,
224 .freeze = spi_pm_freeze,
225 .thaw = spi_pm_thaw,
226 .poweroff = spi_pm_poweroff,
227 .restore = spi_pm_restore,
228 SET_RUNTIME_PM_OPS(
229 pm_generic_runtime_suspend,
230 pm_generic_runtime_resume,
45f0a85c 231 NULL
3ae22e8c
MB
232 )
233};
234
8ae12a0d
DB
235struct bus_type spi_bus_type = {
236 .name = "spi",
aa7da564 237 .dev_groups = spi_dev_groups,
8ae12a0d
DB
238 .match = spi_match_device,
239 .uevent = spi_uevent,
3ae22e8c 240 .pm = &spi_pm,
8ae12a0d
DB
241};
242EXPORT_SYMBOL_GPL(spi_bus_type);
243
b885244e
DB
244
245static int spi_drv_probe(struct device *dev)
246{
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
248 struct spi_device *spi = to_spi_device(dev);
249 int ret;
250
251 acpi_dev_pm_attach(&spi->dev, true);
252 ret = sdrv->probe(spi);
253 if (ret)
254 acpi_dev_pm_detach(&spi->dev, true);
b885244e 255
33cf00e5 256 return ret;
b885244e
DB
257}
258
259static int spi_drv_remove(struct device *dev)
260{
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
262 struct spi_device *spi = to_spi_device(dev);
263 int ret;
264
265 ret = sdrv->remove(spi);
266 acpi_dev_pm_detach(&spi->dev, true);
b885244e 267
33cf00e5 268 return ret;
b885244e
DB
269}
270
271static void spi_drv_shutdown(struct device *dev)
272{
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
274
275 sdrv->shutdown(to_spi_device(dev));
276}
277
33e34dc6
DB
278/**
279 * spi_register_driver - register a SPI driver
280 * @sdrv: the driver to register
281 * Context: can sleep
282 */
b885244e
DB
283int spi_register_driver(struct spi_driver *sdrv)
284{
285 sdrv->driver.bus = &spi_bus_type;
286 if (sdrv->probe)
287 sdrv->driver.probe = spi_drv_probe;
288 if (sdrv->remove)
289 sdrv->driver.remove = spi_drv_remove;
290 if (sdrv->shutdown)
291 sdrv->driver.shutdown = spi_drv_shutdown;
292 return driver_register(&sdrv->driver);
293}
294EXPORT_SYMBOL_GPL(spi_register_driver);
295
8ae12a0d
DB
296/*-------------------------------------------------------------------------*/
297
298/* SPI devices should normally not be created by SPI device drivers; that
299 * would make them board-specific. Similarly with SPI master drivers.
300 * Device registration normally goes into like arch/.../mach.../board-YYY.c
301 * with other readonly (flashable) information about mainboard devices.
302 */
303
304struct boardinfo {
305 struct list_head list;
2b9603a0 306 struct spi_board_info board_info;
8ae12a0d
DB
307};
308
309static LIST_HEAD(board_list);
2b9603a0
FT
310static LIST_HEAD(spi_master_list);
311
312/*
313 * Used to protect add/del opertion for board_info list and
314 * spi_master list, and their matching process
315 */
94040828 316static DEFINE_MUTEX(board_lock);
8ae12a0d 317
dc87c98e
GL
318/**
319 * spi_alloc_device - Allocate a new SPI device
320 * @master: Controller to which device is connected
321 * Context: can sleep
322 *
323 * Allows a driver to allocate and initialize a spi_device without
324 * registering it immediately. This allows a driver to directly
325 * fill the spi_device with device parameters before calling
326 * spi_add_device() on it.
327 *
328 * Caller is responsible to call spi_add_device() on the returned
329 * spi_device structure to add it to the SPI master. If the caller
330 * needs to discard the spi_device without adding it, then it should
331 * call spi_dev_put() on it.
332 *
333 * Returns a pointer to the new device, or NULL.
334 */
335struct spi_device *spi_alloc_device(struct spi_master *master)
336{
337 struct spi_device *spi;
338 struct device *dev = master->dev.parent;
339
340 if (!spi_master_get(master))
341 return NULL;
342
5fe5f05e 343 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
344 if (!spi) {
345 dev_err(dev, "cannot alloc spi_device\n");
346 spi_master_put(master);
347 return NULL;
348 }
349
350 spi->master = master;
178db7d3 351 spi->dev.parent = &master->dev;
dc87c98e
GL
352 spi->dev.bus = &spi_bus_type;
353 spi->dev.release = spidev_release;
446411e1 354 spi->cs_gpio = -ENOENT;
dc87c98e
GL
355 device_initialize(&spi->dev);
356 return spi;
357}
358EXPORT_SYMBOL_GPL(spi_alloc_device);
359
360/**
361 * spi_add_device - Add spi_device allocated with spi_alloc_device
362 * @spi: spi_device to register
363 *
364 * Companion function to spi_alloc_device. Devices allocated with
365 * spi_alloc_device can be added onto the spi bus with this function.
366 *
e48880e0 367 * Returns 0 on success; negative errno on failure
dc87c98e
GL
368 */
369int spi_add_device(struct spi_device *spi)
370{
e48880e0 371 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
372 struct spi_master *master = spi->master;
373 struct device *dev = master->dev.parent;
8ec130a0 374 struct device *d;
dc87c98e
GL
375 int status;
376
377 /* Chipselects are numbered 0..max; validate. */
74317984 378 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
379 dev_err(dev, "cs%d >= max %d\n",
380 spi->chip_select,
74317984 381 master->num_chipselect);
dc87c98e
GL
382 return -EINVAL;
383 }
384
385 /* Set the bus ID string */
35f74fca 386 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
387 spi->chip_select);
388
e48880e0
DB
389
390 /* We need to make sure there's no other device with this
391 * chipselect **BEFORE** we call setup(), else we'll trash
392 * its configuration. Lock against concurrent add() calls.
393 */
394 mutex_lock(&spi_add_lock);
395
8ec130a0
RT
396 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
397 if (d != NULL) {
e48880e0
DB
398 dev_err(dev, "chipselect %d already in use\n",
399 spi->chip_select);
8ec130a0 400 put_device(d);
e48880e0
DB
401 status = -EBUSY;
402 goto done;
403 }
404
74317984
JCPV
405 if (master->cs_gpios)
406 spi->cs_gpio = master->cs_gpios[spi->chip_select];
407
e48880e0
DB
408 /* Drivers may modify this initial i/o setup, but will
409 * normally rely on the device being setup. Devices
410 * using SPI_CS_HIGH can't coexist well otherwise...
411 */
7d077197 412 status = spi_setup(spi);
dc87c98e 413 if (status < 0) {
eb288a1f
LW
414 dev_err(dev, "can't setup %s, status %d\n",
415 dev_name(&spi->dev), status);
e48880e0 416 goto done;
dc87c98e
GL
417 }
418
e48880e0 419 /* Device may be bound to an active driver when this returns */
dc87c98e 420 status = device_add(&spi->dev);
e48880e0 421 if (status < 0)
eb288a1f
LW
422 dev_err(dev, "can't add %s, status %d\n",
423 dev_name(&spi->dev), status);
e48880e0 424 else
35f74fca 425 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 426
e48880e0
DB
427done:
428 mutex_unlock(&spi_add_lock);
429 return status;
dc87c98e
GL
430}
431EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 432
33e34dc6
DB
433/**
434 * spi_new_device - instantiate one new SPI device
435 * @master: Controller to which device is connected
436 * @chip: Describes the SPI device
437 * Context: can sleep
438 *
439 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
440 * after board init creates the hard-wired devices. Some development
441 * platforms may not be able to use spi_register_board_info though, and
442 * this is exported so that for example a USB or parport based adapter
443 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
444 *
445 * Returns the new device, or NULL.
8ae12a0d 446 */
e9d5a461
AB
447struct spi_device *spi_new_device(struct spi_master *master,
448 struct spi_board_info *chip)
8ae12a0d
DB
449{
450 struct spi_device *proxy;
8ae12a0d
DB
451 int status;
452
082c8cb4
DB
453 /* NOTE: caller did any chip->bus_num checks necessary.
454 *
455 * Also, unless we change the return value convention to use
456 * error-or-pointer (not NULL-or-pointer), troubleshootability
457 * suggests syslogged diagnostics are best here (ugh).
458 */
459
dc87c98e
GL
460 proxy = spi_alloc_device(master);
461 if (!proxy)
8ae12a0d
DB
462 return NULL;
463
102eb975
GL
464 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
465
8ae12a0d
DB
466 proxy->chip_select = chip->chip_select;
467 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 468 proxy->mode = chip->mode;
8ae12a0d 469 proxy->irq = chip->irq;
102eb975 470 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
471 proxy->dev.platform_data = (void *) chip->platform_data;
472 proxy->controller_data = chip->controller_data;
473 proxy->controller_state = NULL;
8ae12a0d 474
dc87c98e 475 status = spi_add_device(proxy);
8ae12a0d 476 if (status < 0) {
dc87c98e
GL
477 spi_dev_put(proxy);
478 return NULL;
8ae12a0d
DB
479 }
480
8ae12a0d
DB
481 return proxy;
482}
483EXPORT_SYMBOL_GPL(spi_new_device);
484
2b9603a0
FT
485static void spi_match_master_to_boardinfo(struct spi_master *master,
486 struct spi_board_info *bi)
487{
488 struct spi_device *dev;
489
490 if (master->bus_num != bi->bus_num)
491 return;
492
493 dev = spi_new_device(master, bi);
494 if (!dev)
495 dev_err(master->dev.parent, "can't create new device for %s\n",
496 bi->modalias);
497}
498
33e34dc6
DB
499/**
500 * spi_register_board_info - register SPI devices for a given board
501 * @info: array of chip descriptors
502 * @n: how many descriptors are provided
503 * Context: can sleep
504 *
8ae12a0d
DB
505 * Board-specific early init code calls this (probably during arch_initcall)
506 * with segments of the SPI device table. Any device nodes are created later,
507 * after the relevant parent SPI controller (bus_num) is defined. We keep
508 * this table of devices forever, so that reloading a controller driver will
509 * not make Linux forget about these hard-wired devices.
510 *
511 * Other code can also call this, e.g. a particular add-on board might provide
512 * SPI devices through its expansion connector, so code initializing that board
513 * would naturally declare its SPI devices.
514 *
515 * The board info passed can safely be __initdata ... but be careful of
516 * any embedded pointers (platform_data, etc), they're copied as-is.
517 */
fd4a319b 518int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 519{
2b9603a0
FT
520 struct boardinfo *bi;
521 int i;
8ae12a0d 522
2b9603a0 523 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
524 if (!bi)
525 return -ENOMEM;
8ae12a0d 526
2b9603a0
FT
527 for (i = 0; i < n; i++, bi++, info++) {
528 struct spi_master *master;
8ae12a0d 529
2b9603a0
FT
530 memcpy(&bi->board_info, info, sizeof(*info));
531 mutex_lock(&board_lock);
532 list_add_tail(&bi->list, &board_list);
533 list_for_each_entry(master, &spi_master_list, list)
534 spi_match_master_to_boardinfo(master, &bi->board_info);
535 mutex_unlock(&board_lock);
8ae12a0d 536 }
2b9603a0
FT
537
538 return 0;
8ae12a0d
DB
539}
540
541/*-------------------------------------------------------------------------*/
542
b158935f
MB
543static void spi_set_cs(struct spi_device *spi, bool enable)
544{
545 if (spi->mode & SPI_CS_HIGH)
546 enable = !enable;
547
548 if (spi->cs_gpio >= 0)
549 gpio_set_value(spi->cs_gpio, !enable);
550 else if (spi->master->set_cs)
551 spi->master->set_cs(spi, !enable);
552}
553
554/*
555 * spi_transfer_one_message - Default implementation of transfer_one_message()
556 *
557 * This is a standard implementation of transfer_one_message() for
558 * drivers which impelment a transfer_one() operation. It provides
559 * standard handling of delays and chip select management.
560 */
561static int spi_transfer_one_message(struct spi_master *master,
562 struct spi_message *msg)
563{
564 struct spi_transfer *xfer;
565 bool cur_cs = true;
566 bool keep_cs = false;
567 int ret = 0;
568
569 spi_set_cs(msg->spi, true);
570
571 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
572 trace_spi_transfer_start(msg, xfer);
573
574 INIT_COMPLETION(master->xfer_completion);
575
576 ret = master->transfer_one(master, msg->spi, xfer);
577 if (ret < 0) {
578 dev_err(&msg->spi->dev,
579 "SPI transfer failed: %d\n", ret);
580 goto out;
581 }
582
583 if (ret > 0)
584 wait_for_completion(&master->xfer_completion);
585
586 trace_spi_transfer_stop(msg, xfer);
587
588 if (msg->status != -EINPROGRESS)
589 goto out;
590
591 if (xfer->delay_usecs)
592 udelay(xfer->delay_usecs);
593
594 if (xfer->cs_change) {
595 if (list_is_last(&xfer->transfer_list,
596 &msg->transfers)) {
597 keep_cs = true;
598 } else {
599 cur_cs = !cur_cs;
600 spi_set_cs(msg->spi, cur_cs);
601 }
602 }
603
604 msg->actual_length += xfer->len;
605 }
606
607out:
608 if (ret != 0 || !keep_cs)
609 spi_set_cs(msg->spi, false);
610
611 if (msg->status == -EINPROGRESS)
612 msg->status = ret;
613
614 spi_finalize_current_message(master);
615
616 return ret;
617}
618
619/**
620 * spi_finalize_current_transfer - report completion of a transfer
621 *
622 * Called by SPI drivers using the core transfer_one_message()
623 * implementation to notify it that the current interrupt driven
624 * transfer has finised and the next one may be scheduled.
625 */
626void spi_finalize_current_transfer(struct spi_master *master)
627{
628 complete(&master->xfer_completion);
629}
630EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
631
ffbbdd21
LW
632/**
633 * spi_pump_messages - kthread work function which processes spi message queue
634 * @work: pointer to kthread work struct contained in the master struct
635 *
636 * This function checks if there is any spi message in the queue that
637 * needs processing and if so call out to the driver to initialize hardware
638 * and transfer each message.
639 *
640 */
641static void spi_pump_messages(struct kthread_work *work)
642{
643 struct spi_master *master =
644 container_of(work, struct spi_master, pump_messages);
645 unsigned long flags;
646 bool was_busy = false;
647 int ret;
648
649 /* Lock queue and check for queue work */
650 spin_lock_irqsave(&master->queue_lock, flags);
651 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
652 if (!master->busy) {
653 spin_unlock_irqrestore(&master->queue_lock, flags);
654 return;
ffbbdd21
LW
655 }
656 master->busy = false;
657 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
658 if (master->unprepare_transfer_hardware &&
659 master->unprepare_transfer_hardware(master))
660 dev_err(&master->dev,
661 "failed to unprepare transfer hardware\n");
49834de2
MB
662 if (master->auto_runtime_pm) {
663 pm_runtime_mark_last_busy(master->dev.parent);
664 pm_runtime_put_autosuspend(master->dev.parent);
665 }
56ec1978 666 trace_spi_master_idle(master);
ffbbdd21
LW
667 return;
668 }
669
670 /* Make sure we are not already running a message */
671 if (master->cur_msg) {
672 spin_unlock_irqrestore(&master->queue_lock, flags);
673 return;
674 }
675 /* Extract head of queue */
676 master->cur_msg =
677 list_entry(master->queue.next, struct spi_message, queue);
678
679 list_del_init(&master->cur_msg->queue);
680 if (master->busy)
681 was_busy = true;
682 else
683 master->busy = true;
684 spin_unlock_irqrestore(&master->queue_lock, flags);
685
49834de2
MB
686 if (!was_busy && master->auto_runtime_pm) {
687 ret = pm_runtime_get_sync(master->dev.parent);
688 if (ret < 0) {
689 dev_err(&master->dev, "Failed to power device: %d\n",
690 ret);
691 return;
692 }
693 }
694
56ec1978
MB
695 if (!was_busy)
696 trace_spi_master_busy(master);
697
7dfd2bd7 698 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
699 ret = master->prepare_transfer_hardware(master);
700 if (ret) {
701 dev_err(&master->dev,
702 "failed to prepare transfer hardware\n");
49834de2
MB
703
704 if (master->auto_runtime_pm)
705 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
706 return;
707 }
708 }
709
56ec1978
MB
710 trace_spi_message_start(master->cur_msg);
711
2841a5fc
MB
712 if (master->prepare_message) {
713 ret = master->prepare_message(master, master->cur_msg);
714 if (ret) {
715 dev_err(&master->dev,
716 "failed to prepare message: %d\n", ret);
717 master->cur_msg->status = ret;
718 spi_finalize_current_message(master);
719 return;
720 }
721 master->cur_msg_prepared = true;
722 }
723
ffbbdd21
LW
724 ret = master->transfer_one_message(master, master->cur_msg);
725 if (ret) {
726 dev_err(&master->dev,
727 "failed to transfer one message from queue\n");
728 return;
729 }
730}
731
732static int spi_init_queue(struct spi_master *master)
733{
734 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
735
736 INIT_LIST_HEAD(&master->queue);
737 spin_lock_init(&master->queue_lock);
738
739 master->running = false;
740 master->busy = false;
741
742 init_kthread_worker(&master->kworker);
743 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 744 &master->kworker, "%s",
ffbbdd21
LW
745 dev_name(&master->dev));
746 if (IS_ERR(master->kworker_task)) {
747 dev_err(&master->dev, "failed to create message pump task\n");
748 return -ENOMEM;
749 }
750 init_kthread_work(&master->pump_messages, spi_pump_messages);
751
752 /*
753 * Master config will indicate if this controller should run the
754 * message pump with high (realtime) priority to reduce the transfer
755 * latency on the bus by minimising the delay between a transfer
756 * request and the scheduling of the message pump thread. Without this
757 * setting the message pump thread will remain at default priority.
758 */
759 if (master->rt) {
760 dev_info(&master->dev,
761 "will run message pump with realtime priority\n");
762 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
763 }
764
765 return 0;
766}
767
768/**
769 * spi_get_next_queued_message() - called by driver to check for queued
770 * messages
771 * @master: the master to check for queued messages
772 *
773 * If there are more messages in the queue, the next message is returned from
774 * this call.
775 */
776struct spi_message *spi_get_next_queued_message(struct spi_master *master)
777{
778 struct spi_message *next;
779 unsigned long flags;
780
781 /* get a pointer to the next message, if any */
782 spin_lock_irqsave(&master->queue_lock, flags);
783 if (list_empty(&master->queue))
784 next = NULL;
785 else
786 next = list_entry(master->queue.next,
787 struct spi_message, queue);
788 spin_unlock_irqrestore(&master->queue_lock, flags);
789
790 return next;
791}
792EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
793
794/**
795 * spi_finalize_current_message() - the current message is complete
796 * @master: the master to return the message to
797 *
798 * Called by the driver to notify the core that the message in the front of the
799 * queue is complete and can be removed from the queue.
800 */
801void spi_finalize_current_message(struct spi_master *master)
802{
803 struct spi_message *mesg;
804 unsigned long flags;
2841a5fc 805 int ret;
ffbbdd21
LW
806
807 spin_lock_irqsave(&master->queue_lock, flags);
808 mesg = master->cur_msg;
809 master->cur_msg = NULL;
810
811 queue_kthread_work(&master->kworker, &master->pump_messages);
812 spin_unlock_irqrestore(&master->queue_lock, flags);
813
2841a5fc
MB
814 if (master->cur_msg_prepared && master->unprepare_message) {
815 ret = master->unprepare_message(master, mesg);
816 if (ret) {
817 dev_err(&master->dev,
818 "failed to unprepare message: %d\n", ret);
819 }
820 }
821 master->cur_msg_prepared = false;
822
ffbbdd21
LW
823 mesg->state = NULL;
824 if (mesg->complete)
825 mesg->complete(mesg->context);
56ec1978
MB
826
827 trace_spi_message_done(mesg);
ffbbdd21
LW
828}
829EXPORT_SYMBOL_GPL(spi_finalize_current_message);
830
831static int spi_start_queue(struct spi_master *master)
832{
833 unsigned long flags;
834
835 spin_lock_irqsave(&master->queue_lock, flags);
836
837 if (master->running || master->busy) {
838 spin_unlock_irqrestore(&master->queue_lock, flags);
839 return -EBUSY;
840 }
841
842 master->running = true;
843 master->cur_msg = NULL;
844 spin_unlock_irqrestore(&master->queue_lock, flags);
845
846 queue_kthread_work(&master->kworker, &master->pump_messages);
847
848 return 0;
849}
850
851static int spi_stop_queue(struct spi_master *master)
852{
853 unsigned long flags;
854 unsigned limit = 500;
855 int ret = 0;
856
857 spin_lock_irqsave(&master->queue_lock, flags);
858
859 /*
860 * This is a bit lame, but is optimized for the common execution path.
861 * A wait_queue on the master->busy could be used, but then the common
862 * execution path (pump_messages) would be required to call wake_up or
863 * friends on every SPI message. Do this instead.
864 */
865 while ((!list_empty(&master->queue) || master->busy) && limit--) {
866 spin_unlock_irqrestore(&master->queue_lock, flags);
867 msleep(10);
868 spin_lock_irqsave(&master->queue_lock, flags);
869 }
870
871 if (!list_empty(&master->queue) || master->busy)
872 ret = -EBUSY;
873 else
874 master->running = false;
875
876 spin_unlock_irqrestore(&master->queue_lock, flags);
877
878 if (ret) {
879 dev_warn(&master->dev,
880 "could not stop message queue\n");
881 return ret;
882 }
883 return ret;
884}
885
886static int spi_destroy_queue(struct spi_master *master)
887{
888 int ret;
889
890 ret = spi_stop_queue(master);
891
892 /*
893 * flush_kthread_worker will block until all work is done.
894 * If the reason that stop_queue timed out is that the work will never
895 * finish, then it does no good to call flush/stop thread, so
896 * return anyway.
897 */
898 if (ret) {
899 dev_err(&master->dev, "problem destroying queue\n");
900 return ret;
901 }
902
903 flush_kthread_worker(&master->kworker);
904 kthread_stop(master->kworker_task);
905
906 return 0;
907}
908
909/**
910 * spi_queued_transfer - transfer function for queued transfers
911 * @spi: spi device which is requesting transfer
912 * @msg: spi message which is to handled is queued to driver queue
913 */
914static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
915{
916 struct spi_master *master = spi->master;
917 unsigned long flags;
918
919 spin_lock_irqsave(&master->queue_lock, flags);
920
921 if (!master->running) {
922 spin_unlock_irqrestore(&master->queue_lock, flags);
923 return -ESHUTDOWN;
924 }
925 msg->actual_length = 0;
926 msg->status = -EINPROGRESS;
927
928 list_add_tail(&msg->queue, &master->queue);
96b3eace 929 if (!master->busy)
ffbbdd21
LW
930 queue_kthread_work(&master->kworker, &master->pump_messages);
931
932 spin_unlock_irqrestore(&master->queue_lock, flags);
933 return 0;
934}
935
936static int spi_master_initialize_queue(struct spi_master *master)
937{
938 int ret;
939
940 master->queued = true;
941 master->transfer = spi_queued_transfer;
b158935f
MB
942 if (!master->transfer_one_message)
943 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
944
945 /* Initialize and start queue */
946 ret = spi_init_queue(master);
947 if (ret) {
948 dev_err(&master->dev, "problem initializing queue\n");
949 goto err_init_queue;
950 }
951 ret = spi_start_queue(master);
952 if (ret) {
953 dev_err(&master->dev, "problem starting queue\n");
954 goto err_start_queue;
955 }
956
957 return 0;
958
959err_start_queue:
960err_init_queue:
961 spi_destroy_queue(master);
962 return ret;
963}
964
965/*-------------------------------------------------------------------------*/
966
7cb94361 967#if defined(CONFIG_OF)
d57a4282
GL
968/**
969 * of_register_spi_devices() - Register child devices onto the SPI bus
970 * @master: Pointer to spi_master device
971 *
972 * Registers an spi_device for each child node of master node which has a 'reg'
973 * property.
974 */
975static void of_register_spi_devices(struct spi_master *master)
976{
977 struct spi_device *spi;
978 struct device_node *nc;
d57a4282 979 int rc;
89da4293 980 u32 value;
d57a4282
GL
981
982 if (!master->dev.of_node)
983 return;
984
f3b6159e 985 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
986 /* Alloc an spi_device */
987 spi = spi_alloc_device(master);
988 if (!spi) {
989 dev_err(&master->dev, "spi_device alloc error for %s\n",
990 nc->full_name);
991 spi_dev_put(spi);
992 continue;
993 }
994
995 /* Select device driver */
996 if (of_modalias_node(nc, spi->modalias,
997 sizeof(spi->modalias)) < 0) {
998 dev_err(&master->dev, "cannot find modalias for %s\n",
999 nc->full_name);
1000 spi_dev_put(spi);
1001 continue;
1002 }
1003
1004 /* Device address */
89da4293
TP
1005 rc = of_property_read_u32(nc, "reg", &value);
1006 if (rc) {
1007 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1008 nc->full_name, rc);
d57a4282
GL
1009 spi_dev_put(spi);
1010 continue;
1011 }
89da4293 1012 spi->chip_select = value;
d57a4282
GL
1013
1014 /* Mode (clock phase/polarity/etc.) */
1015 if (of_find_property(nc, "spi-cpha", NULL))
1016 spi->mode |= SPI_CPHA;
1017 if (of_find_property(nc, "spi-cpol", NULL))
1018 spi->mode |= SPI_CPOL;
1019 if (of_find_property(nc, "spi-cs-high", NULL))
1020 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1021 if (of_find_property(nc, "spi-3wire", NULL))
1022 spi->mode |= SPI_3WIRE;
d57a4282 1023
f477b7fb 1024 /* Device DUAL/QUAD mode */
89da4293
TP
1025 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1026 switch (value) {
1027 case 1:
a822e99c 1028 break;
89da4293 1029 case 2:
a822e99c
MB
1030 spi->mode |= SPI_TX_DUAL;
1031 break;
89da4293 1032 case 4:
a822e99c
MB
1033 spi->mode |= SPI_TX_QUAD;
1034 break;
1035 default:
1036 dev_err(&master->dev,
a110f93d 1037 "spi-tx-bus-width %d not supported\n",
89da4293 1038 value);
a822e99c
MB
1039 spi_dev_put(spi);
1040 continue;
1041 }
f477b7fb 1042 }
1043
89da4293
TP
1044 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1045 switch (value) {
1046 case 1:
a822e99c 1047 break;
89da4293 1048 case 2:
a822e99c
MB
1049 spi->mode |= SPI_RX_DUAL;
1050 break;
89da4293 1051 case 4:
a822e99c
MB
1052 spi->mode |= SPI_RX_QUAD;
1053 break;
1054 default:
1055 dev_err(&master->dev,
a110f93d 1056 "spi-rx-bus-width %d not supported\n",
89da4293 1057 value);
a822e99c
MB
1058 spi_dev_put(spi);
1059 continue;
1060 }
f477b7fb 1061 }
1062
d57a4282 1063 /* Device speed */
89da4293
TP
1064 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1065 if (rc) {
1066 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1067 nc->full_name, rc);
d57a4282
GL
1068 spi_dev_put(spi);
1069 continue;
1070 }
89da4293 1071 spi->max_speed_hz = value;
d57a4282
GL
1072
1073 /* IRQ */
1074 spi->irq = irq_of_parse_and_map(nc, 0);
1075
1076 /* Store a pointer to the node in the device structure */
1077 of_node_get(nc);
1078 spi->dev.of_node = nc;
1079
1080 /* Register the new device */
70fac17c 1081 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1082 rc = spi_add_device(spi);
1083 if (rc) {
1084 dev_err(&master->dev, "spi_device register error %s\n",
1085 nc->full_name);
1086 spi_dev_put(spi);
1087 }
1088
1089 }
1090}
1091#else
1092static void of_register_spi_devices(struct spi_master *master) { }
1093#endif
1094
64bee4d2
MW
1095#ifdef CONFIG_ACPI
1096static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1097{
1098 struct spi_device *spi = data;
1099
1100 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1101 struct acpi_resource_spi_serialbus *sb;
1102
1103 sb = &ares->data.spi_serial_bus;
1104 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1105 spi->chip_select = sb->device_selection;
1106 spi->max_speed_hz = sb->connection_speed;
1107
1108 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1109 spi->mode |= SPI_CPHA;
1110 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1111 spi->mode |= SPI_CPOL;
1112 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1113 spi->mode |= SPI_CS_HIGH;
1114 }
1115 } else if (spi->irq < 0) {
1116 struct resource r;
1117
1118 if (acpi_dev_resource_interrupt(ares, 0, &r))
1119 spi->irq = r.start;
1120 }
1121
1122 /* Always tell the ACPI core to skip this resource */
1123 return 1;
1124}
1125
1126static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1127 void *data, void **return_value)
1128{
1129 struct spi_master *master = data;
1130 struct list_head resource_list;
1131 struct acpi_device *adev;
1132 struct spi_device *spi;
1133 int ret;
1134
1135 if (acpi_bus_get_device(handle, &adev))
1136 return AE_OK;
1137 if (acpi_bus_get_status(adev) || !adev->status.present)
1138 return AE_OK;
1139
1140 spi = spi_alloc_device(master);
1141 if (!spi) {
1142 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1143 dev_name(&adev->dev));
1144 return AE_NO_MEMORY;
1145 }
1146
7b199811 1147 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1148 spi->irq = -1;
1149
1150 INIT_LIST_HEAD(&resource_list);
1151 ret = acpi_dev_get_resources(adev, &resource_list,
1152 acpi_spi_add_resource, spi);
1153 acpi_dev_free_resource_list(&resource_list);
1154
1155 if (ret < 0 || !spi->max_speed_hz) {
1156 spi_dev_put(spi);
1157 return AE_OK;
1158 }
1159
33cf00e5 1160 adev->power.flags.ignore_parent = true;
cf9eb39c 1161 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1162 if (spi_add_device(spi)) {
33cf00e5 1163 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1164 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1165 dev_name(&adev->dev));
1166 spi_dev_put(spi);
1167 }
1168
1169 return AE_OK;
1170}
1171
1172static void acpi_register_spi_devices(struct spi_master *master)
1173{
1174 acpi_status status;
1175 acpi_handle handle;
1176
29896178 1177 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1178 if (!handle)
1179 return;
1180
1181 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1182 acpi_spi_add_device, NULL,
1183 master, NULL);
1184 if (ACPI_FAILURE(status))
1185 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1186}
1187#else
1188static inline void acpi_register_spi_devices(struct spi_master *master) {}
1189#endif /* CONFIG_ACPI */
1190
49dce689 1191static void spi_master_release(struct device *dev)
8ae12a0d
DB
1192{
1193 struct spi_master *master;
1194
49dce689 1195 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1196 kfree(master);
1197}
1198
1199static struct class spi_master_class = {
1200 .name = "spi_master",
1201 .owner = THIS_MODULE,
49dce689 1202 .dev_release = spi_master_release,
8ae12a0d
DB
1203};
1204
1205
ffbbdd21 1206
8ae12a0d
DB
1207/**
1208 * spi_alloc_master - allocate SPI master controller
1209 * @dev: the controller, possibly using the platform_bus
33e34dc6 1210 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1211 * memory is in the driver_data field of the returned device,
0c868461 1212 * accessible with spi_master_get_devdata().
33e34dc6 1213 * Context: can sleep
8ae12a0d
DB
1214 *
1215 * This call is used only by SPI master controller drivers, which are the
1216 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1217 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1218 *
1219 * This must be called from context that can sleep. It returns the SPI
1220 * master structure on success, else NULL.
1221 *
1222 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1223 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1224 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1225 * leak.
8ae12a0d 1226 */
e9d5a461 1227struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1228{
1229 struct spi_master *master;
1230
0c868461
DB
1231 if (!dev)
1232 return NULL;
1233
5fe5f05e 1234 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1235 if (!master)
1236 return NULL;
1237
49dce689 1238 device_initialize(&master->dev);
1e8a52e1
GL
1239 master->bus_num = -1;
1240 master->num_chipselect = 1;
49dce689
TJ
1241 master->dev.class = &spi_master_class;
1242 master->dev.parent = get_device(dev);
0c868461 1243 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1244
1245 return master;
1246}
1247EXPORT_SYMBOL_GPL(spi_alloc_master);
1248
74317984
JCPV
1249#ifdef CONFIG_OF
1250static int of_spi_register_master(struct spi_master *master)
1251{
e80beb27 1252 int nb, i, *cs;
74317984
JCPV
1253 struct device_node *np = master->dev.of_node;
1254
1255 if (!np)
1256 return 0;
1257
1258 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1259 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1260
8ec5d84e
AL
1261 /* Return error only for an incorrectly formed cs-gpios property */
1262 if (nb == 0 || nb == -ENOENT)
74317984 1263 return 0;
8ec5d84e
AL
1264 else if (nb < 0)
1265 return nb;
74317984
JCPV
1266
1267 cs = devm_kzalloc(&master->dev,
1268 sizeof(int) * master->num_chipselect,
1269 GFP_KERNEL);
1270 master->cs_gpios = cs;
1271
1272 if (!master->cs_gpios)
1273 return -ENOMEM;
1274
0da83bb1 1275 for (i = 0; i < master->num_chipselect; i++)
446411e1 1276 cs[i] = -ENOENT;
74317984
JCPV
1277
1278 for (i = 0; i < nb; i++)
1279 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1280
1281 return 0;
1282}
1283#else
1284static int of_spi_register_master(struct spi_master *master)
1285{
1286 return 0;
1287}
1288#endif
1289
8ae12a0d
DB
1290/**
1291 * spi_register_master - register SPI master controller
1292 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1293 * Context: can sleep
8ae12a0d
DB
1294 *
1295 * SPI master controllers connect to their drivers using some non-SPI bus,
1296 * such as the platform bus. The final stage of probe() in that code
1297 * includes calling spi_register_master() to hook up to this SPI bus glue.
1298 *
1299 * SPI controllers use board specific (often SOC specific) bus numbers,
1300 * and board-specific addressing for SPI devices combines those numbers
1301 * with chip select numbers. Since SPI does not directly support dynamic
1302 * device identification, boards need configuration tables telling which
1303 * chip is at which address.
1304 *
1305 * This must be called from context that can sleep. It returns zero on
1306 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1307 * After a successful return, the caller is responsible for calling
1308 * spi_unregister_master().
8ae12a0d 1309 */
e9d5a461 1310int spi_register_master(struct spi_master *master)
8ae12a0d 1311{
e44a45ae 1312 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1313 struct device *dev = master->dev.parent;
2b9603a0 1314 struct boardinfo *bi;
8ae12a0d
DB
1315 int status = -ENODEV;
1316 int dynamic = 0;
1317
0c868461
DB
1318 if (!dev)
1319 return -ENODEV;
1320
74317984
JCPV
1321 status = of_spi_register_master(master);
1322 if (status)
1323 return status;
1324
082c8cb4
DB
1325 /* even if it's just one always-selected device, there must
1326 * be at least one chipselect
1327 */
1328 if (master->num_chipselect == 0)
1329 return -EINVAL;
1330
bb29785e
GL
1331 if ((master->bus_num < 0) && master->dev.of_node)
1332 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1333
8ae12a0d 1334 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1335 if (master->bus_num < 0) {
082c8cb4
DB
1336 /* FIXME switch to an IDR based scheme, something like
1337 * I2C now uses, so we can't run out of "dynamic" IDs
1338 */
8ae12a0d 1339 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1340 dynamic = 1;
8ae12a0d
DB
1341 }
1342
cf32b71e
ES
1343 spin_lock_init(&master->bus_lock_spinlock);
1344 mutex_init(&master->bus_lock_mutex);
1345 master->bus_lock_flag = 0;
b158935f 1346 init_completion(&master->xfer_completion);
cf32b71e 1347
8ae12a0d
DB
1348 /* register the device, then userspace will see it.
1349 * registration fails if the bus ID is in use.
1350 */
35f74fca 1351 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1352 status = device_add(&master->dev);
b885244e 1353 if (status < 0)
8ae12a0d 1354 goto done;
35f74fca 1355 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1356 dynamic ? " (dynamic)" : "");
1357
ffbbdd21
LW
1358 /* If we're using a queued driver, start the queue */
1359 if (master->transfer)
1360 dev_info(dev, "master is unqueued, this is deprecated\n");
1361 else {
1362 status = spi_master_initialize_queue(master);
1363 if (status) {
e93b0724 1364 device_del(&master->dev);
ffbbdd21
LW
1365 goto done;
1366 }
1367 }
1368
2b9603a0
FT
1369 mutex_lock(&board_lock);
1370 list_add_tail(&master->list, &spi_master_list);
1371 list_for_each_entry(bi, &board_list, list)
1372 spi_match_master_to_boardinfo(master, &bi->board_info);
1373 mutex_unlock(&board_lock);
1374
64bee4d2 1375 /* Register devices from the device tree and ACPI */
12b15e83 1376 of_register_spi_devices(master);
64bee4d2 1377 acpi_register_spi_devices(master);
8ae12a0d
DB
1378done:
1379 return status;
1380}
1381EXPORT_SYMBOL_GPL(spi_register_master);
1382
666d5b4c
MB
1383static void devm_spi_unregister(struct device *dev, void *res)
1384{
1385 spi_unregister_master(*(struct spi_master **)res);
1386}
1387
1388/**
1389 * dev_spi_register_master - register managed SPI master controller
1390 * @dev: device managing SPI master
1391 * @master: initialized master, originally from spi_alloc_master()
1392 * Context: can sleep
1393 *
1394 * Register a SPI device as with spi_register_master() which will
1395 * automatically be unregister
1396 */
1397int devm_spi_register_master(struct device *dev, struct spi_master *master)
1398{
1399 struct spi_master **ptr;
1400 int ret;
1401
1402 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1403 if (!ptr)
1404 return -ENOMEM;
1405
1406 ret = spi_register_master(master);
1407 if (ret != 0) {
1408 *ptr = master;
1409 devres_add(dev, ptr);
1410 } else {
1411 devres_free(ptr);
1412 }
1413
1414 return ret;
1415}
1416EXPORT_SYMBOL_GPL(devm_spi_register_master);
1417
34860089 1418static int __unregister(struct device *dev, void *null)
8ae12a0d 1419{
34860089 1420 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1421 return 0;
1422}
1423
1424/**
1425 * spi_unregister_master - unregister SPI master controller
1426 * @master: the master being unregistered
33e34dc6 1427 * Context: can sleep
8ae12a0d
DB
1428 *
1429 * This call is used only by SPI master controller drivers, which are the
1430 * only ones directly touching chip registers.
1431 *
1432 * This must be called from context that can sleep.
1433 */
1434void spi_unregister_master(struct spi_master *master)
1435{
89fc9a1a
JG
1436 int dummy;
1437
ffbbdd21
LW
1438 if (master->queued) {
1439 if (spi_destroy_queue(master))
1440 dev_err(&master->dev, "queue remove failed\n");
1441 }
1442
2b9603a0
FT
1443 mutex_lock(&board_lock);
1444 list_del(&master->list);
1445 mutex_unlock(&board_lock);
1446
97dbf37d 1447 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1448 device_unregister(&master->dev);
8ae12a0d
DB
1449}
1450EXPORT_SYMBOL_GPL(spi_unregister_master);
1451
ffbbdd21
LW
1452int spi_master_suspend(struct spi_master *master)
1453{
1454 int ret;
1455
1456 /* Basically no-ops for non-queued masters */
1457 if (!master->queued)
1458 return 0;
1459
1460 ret = spi_stop_queue(master);
1461 if (ret)
1462 dev_err(&master->dev, "queue stop failed\n");
1463
1464 return ret;
1465}
1466EXPORT_SYMBOL_GPL(spi_master_suspend);
1467
1468int spi_master_resume(struct spi_master *master)
1469{
1470 int ret;
1471
1472 if (!master->queued)
1473 return 0;
1474
1475 ret = spi_start_queue(master);
1476 if (ret)
1477 dev_err(&master->dev, "queue restart failed\n");
1478
1479 return ret;
1480}
1481EXPORT_SYMBOL_GPL(spi_master_resume);
1482
9f3b795a 1483static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1484{
1485 struct spi_master *m;
9f3b795a 1486 const u16 *bus_num = data;
5ed2c832
DY
1487
1488 m = container_of(dev, struct spi_master, dev);
1489 return m->bus_num == *bus_num;
1490}
1491
8ae12a0d
DB
1492/**
1493 * spi_busnum_to_master - look up master associated with bus_num
1494 * @bus_num: the master's bus number
33e34dc6 1495 * Context: can sleep
8ae12a0d
DB
1496 *
1497 * This call may be used with devices that are registered after
1498 * arch init time. It returns a refcounted pointer to the relevant
1499 * spi_master (which the caller must release), or NULL if there is
1500 * no such master registered.
1501 */
1502struct spi_master *spi_busnum_to_master(u16 bus_num)
1503{
49dce689 1504 struct device *dev;
1e9a51dc 1505 struct spi_master *master = NULL;
5ed2c832 1506
695794ae 1507 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1508 __spi_master_match);
1509 if (dev)
1510 master = container_of(dev, struct spi_master, dev);
1511 /* reference got in class_find_device */
1e9a51dc 1512 return master;
8ae12a0d
DB
1513}
1514EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1515
1516
1517/*-------------------------------------------------------------------------*/
1518
7d077197
DB
1519/* Core methods for SPI master protocol drivers. Some of the
1520 * other core methods are currently defined as inline functions.
1521 */
1522
1523/**
1524 * spi_setup - setup SPI mode and clock rate
1525 * @spi: the device whose settings are being modified
1526 * Context: can sleep, and no requests are queued to the device
1527 *
1528 * SPI protocol drivers may need to update the transfer mode if the
1529 * device doesn't work with its default. They may likewise need
1530 * to update clock rates or word sizes from initial values. This function
1531 * changes those settings, and must be called from a context that can sleep.
1532 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1533 * effect the next time the device is selected and data is transferred to
1534 * or from it. When this function returns, the spi device is deselected.
1535 *
1536 * Note that this call will fail if the protocol driver specifies an option
1537 * that the underlying controller or its driver does not support. For
1538 * example, not all hardware supports wire transfers using nine bit words,
1539 * LSB-first wire encoding, or active-high chipselects.
1540 */
1541int spi_setup(struct spi_device *spi)
1542{
e7db06b5 1543 unsigned bad_bits;
caae070c 1544 int status = 0;
7d077197 1545
f477b7fb 1546 /* check mode to prevent that DUAL and QUAD set at the same time
1547 */
1548 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1549 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1550 dev_err(&spi->dev,
1551 "setup: can not select dual and quad at the same time\n");
1552 return -EINVAL;
1553 }
1554 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1555 */
1556 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1557 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1558 return -EINVAL;
e7db06b5
DB
1559 /* help drivers fail *cleanly* when they need options
1560 * that aren't supported with their current master
1561 */
1562 bad_bits = spi->mode & ~spi->master->mode_bits;
1563 if (bad_bits) {
eb288a1f 1564 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1565 bad_bits);
1566 return -EINVAL;
1567 }
1568
7d077197
DB
1569 if (!spi->bits_per_word)
1570 spi->bits_per_word = 8;
1571
caae070c
LD
1572 if (spi->master->setup)
1573 status = spi->master->setup(spi);
7d077197 1574
5fe5f05e 1575 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1576 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1577 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1578 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1579 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1580 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1581 spi->bits_per_word, spi->max_speed_hz,
1582 status);
1583
1584 return status;
1585}
1586EXPORT_SYMBOL_GPL(spi_setup);
1587
cf32b71e
ES
1588static int __spi_async(struct spi_device *spi, struct spi_message *message)
1589{
1590 struct spi_master *master = spi->master;
e6811d1d 1591 struct spi_transfer *xfer;
cf32b71e 1592
56ec1978
MB
1593 message->spi = spi;
1594
1595 trace_spi_message_submit(message);
1596
24a0013a
MB
1597 if (list_empty(&message->transfers))
1598 return -EINVAL;
1599 if (!message->complete)
1600 return -EINVAL;
1601
cf32b71e
ES
1602 /* Half-duplex links include original MicroWire, and ones with
1603 * only one data pin like SPI_3WIRE (switches direction) or where
1604 * either MOSI or MISO is missing. They can also be caused by
1605 * software limitations.
1606 */
1607 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1608 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1609 unsigned flags = master->flags;
1610
1611 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1612 if (xfer->rx_buf && xfer->tx_buf)
1613 return -EINVAL;
1614 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1615 return -EINVAL;
1616 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1617 return -EINVAL;
1618 }
1619 }
1620
e6811d1d 1621 /**
059b8ffe
LD
1622 * Set transfer bits_per_word and max speed as spi device default if
1623 * it is not set for this transfer.
f477b7fb 1624 * Set transfer tx_nbits and rx_nbits as single transfer default
1625 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1626 */
1627 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1628 message->frame_length += xfer->len;
e6811d1d
LD
1629 if (!xfer->bits_per_word)
1630 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1631 if (!xfer->speed_hz) {
059b8ffe 1632 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1633 if (master->max_speed_hz &&
1634 xfer->speed_hz > master->max_speed_hz)
1635 xfer->speed_hz = master->max_speed_hz;
1636 }
1637
543bb255
SW
1638 if (master->bits_per_word_mask) {
1639 /* Only 32 bits fit in the mask */
1640 if (xfer->bits_per_word > 32)
1641 return -EINVAL;
1642 if (!(master->bits_per_word_mask &
1643 BIT(xfer->bits_per_word - 1)))
1644 return -EINVAL;
1645 }
a2fd4f9f
MB
1646
1647 if (xfer->speed_hz && master->min_speed_hz &&
1648 xfer->speed_hz < master->min_speed_hz)
1649 return -EINVAL;
1650 if (xfer->speed_hz && master->max_speed_hz &&
1651 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1652 return -EINVAL;
f477b7fb 1653
1654 if (xfer->tx_buf && !xfer->tx_nbits)
1655 xfer->tx_nbits = SPI_NBITS_SINGLE;
1656 if (xfer->rx_buf && !xfer->rx_nbits)
1657 xfer->rx_nbits = SPI_NBITS_SINGLE;
1658 /* check transfer tx/rx_nbits:
1659 * 1. keep the value is not out of single, dual and quad
1660 * 2. keep tx/rx_nbits is contained by mode in spi_device
1661 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1662 */
db90a441
SP
1663 if (xfer->tx_buf) {
1664 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1665 xfer->tx_nbits != SPI_NBITS_DUAL &&
1666 xfer->tx_nbits != SPI_NBITS_QUAD)
1667 return -EINVAL;
1668 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1669 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1670 return -EINVAL;
1671 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1672 !(spi->mode & SPI_TX_QUAD))
1673 return -EINVAL;
1674 if ((spi->mode & SPI_3WIRE) &&
1675 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1676 return -EINVAL;
1677 }
f477b7fb 1678 /* check transfer rx_nbits */
db90a441
SP
1679 if (xfer->rx_buf) {
1680 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1681 xfer->rx_nbits != SPI_NBITS_DUAL &&
1682 xfer->rx_nbits != SPI_NBITS_QUAD)
1683 return -EINVAL;
1684 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1685 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1686 return -EINVAL;
1687 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1688 !(spi->mode & SPI_RX_QUAD))
1689 return -EINVAL;
1690 if ((spi->mode & SPI_3WIRE) &&
1691 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1692 return -EINVAL;
1693 }
e6811d1d
LD
1694 }
1695
cf32b71e
ES
1696 message->status = -EINPROGRESS;
1697 return master->transfer(spi, message);
1698}
1699
568d0697
DB
1700/**
1701 * spi_async - asynchronous SPI transfer
1702 * @spi: device with which data will be exchanged
1703 * @message: describes the data transfers, including completion callback
1704 * Context: any (irqs may be blocked, etc)
1705 *
1706 * This call may be used in_irq and other contexts which can't sleep,
1707 * as well as from task contexts which can sleep.
1708 *
1709 * The completion callback is invoked in a context which can't sleep.
1710 * Before that invocation, the value of message->status is undefined.
1711 * When the callback is issued, message->status holds either zero (to
1712 * indicate complete success) or a negative error code. After that
1713 * callback returns, the driver which issued the transfer request may
1714 * deallocate the associated memory; it's no longer in use by any SPI
1715 * core or controller driver code.
1716 *
1717 * Note that although all messages to a spi_device are handled in
1718 * FIFO order, messages may go to different devices in other orders.
1719 * Some device might be higher priority, or have various "hard" access
1720 * time requirements, for example.
1721 *
1722 * On detection of any fault during the transfer, processing of
1723 * the entire message is aborted, and the device is deselected.
1724 * Until returning from the associated message completion callback,
1725 * no other spi_message queued to that device will be processed.
1726 * (This rule applies equally to all the synchronous transfer calls,
1727 * which are wrappers around this core asynchronous primitive.)
1728 */
1729int spi_async(struct spi_device *spi, struct spi_message *message)
1730{
1731 struct spi_master *master = spi->master;
cf32b71e
ES
1732 int ret;
1733 unsigned long flags;
568d0697 1734
cf32b71e 1735 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1736
cf32b71e
ES
1737 if (master->bus_lock_flag)
1738 ret = -EBUSY;
1739 else
1740 ret = __spi_async(spi, message);
568d0697 1741
cf32b71e
ES
1742 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1743
1744 return ret;
568d0697
DB
1745}
1746EXPORT_SYMBOL_GPL(spi_async);
1747
cf32b71e
ES
1748/**
1749 * spi_async_locked - version of spi_async with exclusive bus usage
1750 * @spi: device with which data will be exchanged
1751 * @message: describes the data transfers, including completion callback
1752 * Context: any (irqs may be blocked, etc)
1753 *
1754 * This call may be used in_irq and other contexts which can't sleep,
1755 * as well as from task contexts which can sleep.
1756 *
1757 * The completion callback is invoked in a context which can't sleep.
1758 * Before that invocation, the value of message->status is undefined.
1759 * When the callback is issued, message->status holds either zero (to
1760 * indicate complete success) or a negative error code. After that
1761 * callback returns, the driver which issued the transfer request may
1762 * deallocate the associated memory; it's no longer in use by any SPI
1763 * core or controller driver code.
1764 *
1765 * Note that although all messages to a spi_device are handled in
1766 * FIFO order, messages may go to different devices in other orders.
1767 * Some device might be higher priority, or have various "hard" access
1768 * time requirements, for example.
1769 *
1770 * On detection of any fault during the transfer, processing of
1771 * the entire message is aborted, and the device is deselected.
1772 * Until returning from the associated message completion callback,
1773 * no other spi_message queued to that device will be processed.
1774 * (This rule applies equally to all the synchronous transfer calls,
1775 * which are wrappers around this core asynchronous primitive.)
1776 */
1777int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1778{
1779 struct spi_master *master = spi->master;
1780 int ret;
1781 unsigned long flags;
1782
1783 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1784
1785 ret = __spi_async(spi, message);
1786
1787 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1788
1789 return ret;
1790
1791}
1792EXPORT_SYMBOL_GPL(spi_async_locked);
1793
7d077197
DB
1794
1795/*-------------------------------------------------------------------------*/
1796
1797/* Utility methods for SPI master protocol drivers, layered on
1798 * top of the core. Some other utility methods are defined as
1799 * inline functions.
1800 */
1801
5d870c8e
AM
1802static void spi_complete(void *arg)
1803{
1804 complete(arg);
1805}
1806
cf32b71e
ES
1807static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1808 int bus_locked)
1809{
1810 DECLARE_COMPLETION_ONSTACK(done);
1811 int status;
1812 struct spi_master *master = spi->master;
1813
1814 message->complete = spi_complete;
1815 message->context = &done;
1816
1817 if (!bus_locked)
1818 mutex_lock(&master->bus_lock_mutex);
1819
1820 status = spi_async_locked(spi, message);
1821
1822 if (!bus_locked)
1823 mutex_unlock(&master->bus_lock_mutex);
1824
1825 if (status == 0) {
1826 wait_for_completion(&done);
1827 status = message->status;
1828 }
1829 message->context = NULL;
1830 return status;
1831}
1832
8ae12a0d
DB
1833/**
1834 * spi_sync - blocking/synchronous SPI data transfers
1835 * @spi: device with which data will be exchanged
1836 * @message: describes the data transfers
33e34dc6 1837 * Context: can sleep
8ae12a0d
DB
1838 *
1839 * This call may only be used from a context that may sleep. The sleep
1840 * is non-interruptible, and has no timeout. Low-overhead controller
1841 * drivers may DMA directly into and out of the message buffers.
1842 *
1843 * Note that the SPI device's chip select is active during the message,
1844 * and then is normally disabled between messages. Drivers for some
1845 * frequently-used devices may want to minimize costs of selecting a chip,
1846 * by leaving it selected in anticipation that the next message will go
1847 * to the same chip. (That may increase power usage.)
1848 *
0c868461
DB
1849 * Also, the caller is guaranteeing that the memory associated with the
1850 * message will not be freed before this call returns.
1851 *
9b938b74 1852 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1853 */
1854int spi_sync(struct spi_device *spi, struct spi_message *message)
1855{
cf32b71e 1856 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1857}
1858EXPORT_SYMBOL_GPL(spi_sync);
1859
cf32b71e
ES
1860/**
1861 * spi_sync_locked - version of spi_sync with exclusive bus usage
1862 * @spi: device with which data will be exchanged
1863 * @message: describes the data transfers
1864 * Context: can sleep
1865 *
1866 * This call may only be used from a context that may sleep. The sleep
1867 * is non-interruptible, and has no timeout. Low-overhead controller
1868 * drivers may DMA directly into and out of the message buffers.
1869 *
1870 * This call should be used by drivers that require exclusive access to the
25985edc 1871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1872 * be released by a spi_bus_unlock call when the exclusive access is over.
1873 *
1874 * It returns zero on success, else a negative error code.
1875 */
1876int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1877{
1878 return __spi_sync(spi, message, 1);
1879}
1880EXPORT_SYMBOL_GPL(spi_sync_locked);
1881
1882/**
1883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1884 * @master: SPI bus master that should be locked for exclusive bus access
1885 * Context: can sleep
1886 *
1887 * This call may only be used from a context that may sleep. The sleep
1888 * is non-interruptible, and has no timeout.
1889 *
1890 * This call should be used by drivers that require exclusive access to the
1891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1892 * exclusive access is over. Data transfer must be done by spi_sync_locked
1893 * and spi_async_locked calls when the SPI bus lock is held.
1894 *
1895 * It returns zero on success, else a negative error code.
1896 */
1897int spi_bus_lock(struct spi_master *master)
1898{
1899 unsigned long flags;
1900
1901 mutex_lock(&master->bus_lock_mutex);
1902
1903 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1904 master->bus_lock_flag = 1;
1905 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1906
1907 /* mutex remains locked until spi_bus_unlock is called */
1908
1909 return 0;
1910}
1911EXPORT_SYMBOL_GPL(spi_bus_lock);
1912
1913/**
1914 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1915 * @master: SPI bus master that was locked for exclusive bus access
1916 * Context: can sleep
1917 *
1918 * This call may only be used from a context that may sleep. The sleep
1919 * is non-interruptible, and has no timeout.
1920 *
1921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1922 * call.
1923 *
1924 * It returns zero on success, else a negative error code.
1925 */
1926int spi_bus_unlock(struct spi_master *master)
1927{
1928 master->bus_lock_flag = 0;
1929
1930 mutex_unlock(&master->bus_lock_mutex);
1931
1932 return 0;
1933}
1934EXPORT_SYMBOL_GPL(spi_bus_unlock);
1935
a9948b61 1936/* portable code must never pass more than 32 bytes */
5fe5f05e 1937#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
1938
1939static u8 *buf;
1940
1941/**
1942 * spi_write_then_read - SPI synchronous write followed by read
1943 * @spi: device with which data will be exchanged
1944 * @txbuf: data to be written (need not be dma-safe)
1945 * @n_tx: size of txbuf, in bytes
27570497
JP
1946 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1947 * @n_rx: size of rxbuf, in bytes
33e34dc6 1948 * Context: can sleep
8ae12a0d
DB
1949 *
1950 * This performs a half duplex MicroWire style transaction with the
1951 * device, sending txbuf and then reading rxbuf. The return value
1952 * is zero for success, else a negative errno status code.
b885244e 1953 * This call may only be used from a context that may sleep.
8ae12a0d 1954 *
0c868461 1955 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1956 * portable code should never use this for more than 32 bytes.
1957 * Performance-sensitive or bulk transfer code should instead use
0c868461 1958 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1959 */
1960int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1961 const void *txbuf, unsigned n_tx,
1962 void *rxbuf, unsigned n_rx)
8ae12a0d 1963{
068f4070 1964 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1965
1966 int status;
1967 struct spi_message message;
bdff549e 1968 struct spi_transfer x[2];
8ae12a0d
DB
1969 u8 *local_buf;
1970
b3a223ee
MB
1971 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1972 * copying here, (as a pure convenience thing), but we can
1973 * keep heap costs out of the hot path unless someone else is
1974 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1975 */
b3a223ee 1976 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1977 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1978 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
1979 if (!local_buf)
1980 return -ENOMEM;
1981 } else {
1982 local_buf = buf;
1983 }
8ae12a0d 1984
8275c642 1985 spi_message_init(&message);
5fe5f05e 1986 memset(x, 0, sizeof(x));
bdff549e
DB
1987 if (n_tx) {
1988 x[0].len = n_tx;
1989 spi_message_add_tail(&x[0], &message);
1990 }
1991 if (n_rx) {
1992 x[1].len = n_rx;
1993 spi_message_add_tail(&x[1], &message);
1994 }
8275c642 1995
8ae12a0d 1996 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1997 x[0].tx_buf = local_buf;
1998 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1999
2000 /* do the i/o */
8ae12a0d 2001 status = spi_sync(spi, &message);
9b938b74 2002 if (status == 0)
bdff549e 2003 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2004
bdff549e 2005 if (x[0].tx_buf == buf)
068f4070 2006 mutex_unlock(&lock);
8ae12a0d
DB
2007 else
2008 kfree(local_buf);
2009
2010 return status;
2011}
2012EXPORT_SYMBOL_GPL(spi_write_then_read);
2013
2014/*-------------------------------------------------------------------------*/
2015
2016static int __init spi_init(void)
2017{
b885244e
DB
2018 int status;
2019
e94b1766 2020 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2021 if (!buf) {
2022 status = -ENOMEM;
2023 goto err0;
2024 }
2025
2026 status = bus_register(&spi_bus_type);
2027 if (status < 0)
2028 goto err1;
8ae12a0d 2029
b885244e
DB
2030 status = class_register(&spi_master_class);
2031 if (status < 0)
2032 goto err2;
8ae12a0d 2033 return 0;
b885244e
DB
2034
2035err2:
2036 bus_unregister(&spi_bus_type);
2037err1:
2038 kfree(buf);
2039 buf = NULL;
2040err0:
2041 return status;
8ae12a0d 2042}
b885244e 2043
8ae12a0d
DB
2044/* board_info is normally registered in arch_initcall(),
2045 * but even essential drivers wait till later
b885244e
DB
2046 *
2047 * REVISIT only boardinfo really needs static linking. the rest (device and
2048 * driver registration) _could_ be dynamically linked (modular) ... costs
2049 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2050 */
673c0c00 2051postcore_initcall(spi_init);
8ae12a0d 2052