]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/spi/spi.c
Merge commit 'spi/topic/sc18is602' into spi-linus
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
56ec1978
MB
42#define CREATE_TRACE_POINTS
43#include <trace/events/spi.h>
44
8ae12a0d
DB
45static void spidev_release(struct device *dev)
46{
0ffa0285 47 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
0c868461 53 spi_master_put(spi->master);
07a389fe 54 kfree(spi);
8ae12a0d
DB
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60 const struct spi_device *spi = to_spi_device(dev);
61
d8e328b3 62 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 63}
aa7da564 64static DEVICE_ATTR_RO(modalias);
8ae12a0d 65
aa7da564
GKH
66static struct attribute *spi_dev_attrs[] = {
67 &dev_attr_modalias.attr,
68 NULL,
8ae12a0d 69};
aa7da564 70ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
71
72/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
73 * and the sysfs version makes coldplug work too.
74 */
75
75368bf6
AV
76static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
77 const struct spi_device *sdev)
78{
79 while (id->name[0]) {
80 if (!strcmp(sdev->modalias, id->name))
81 return id;
82 id++;
83 }
84 return NULL;
85}
86
87const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
88{
89 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
90
91 return spi_match_id(sdrv->id_table, sdev);
92}
93EXPORT_SYMBOL_GPL(spi_get_device_id);
94
8ae12a0d
DB
95static int spi_match_device(struct device *dev, struct device_driver *drv)
96{
97 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
98 const struct spi_driver *sdrv = to_spi_driver(drv);
99
2b7a32f7
SA
100 /* Attempt an OF style match */
101 if (of_driver_match_device(dev, drv))
102 return 1;
103
64bee4d2
MW
104 /* Then try ACPI */
105 if (acpi_driver_match_device(dev, drv))
106 return 1;
107
75368bf6
AV
108 if (sdrv->id_table)
109 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 110
35f74fca 111 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
112}
113
7eff2e7a 114static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
115{
116 const struct spi_device *spi = to_spi_device(dev);
117
e0626e38 118 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
119 return 0;
120}
121
3ae22e8c
MB
122#ifdef CONFIG_PM_SLEEP
123static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 124{
3c72426f 125 int value = 0;
b885244e 126 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 127
8ae12a0d 128 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
129 if (drv) {
130 if (drv->suspend)
131 value = drv->suspend(to_spi_device(dev), message);
132 else
133 dev_dbg(dev, "... can't suspend\n");
134 }
8ae12a0d
DB
135 return value;
136}
137
3ae22e8c 138static int spi_legacy_resume(struct device *dev)
8ae12a0d 139{
3c72426f 140 int value = 0;
b885244e 141 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 142
8ae12a0d 143 /* resume may restart the i/o queue */
3c72426f
DB
144 if (drv) {
145 if (drv->resume)
146 value = drv->resume(to_spi_device(dev));
147 else
148 dev_dbg(dev, "... can't resume\n");
149 }
8ae12a0d
DB
150 return value;
151}
152
3ae22e8c
MB
153static int spi_pm_suspend(struct device *dev)
154{
155 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
156
157 if (pm)
158 return pm_generic_suspend(dev);
159 else
160 return spi_legacy_suspend(dev, PMSG_SUSPEND);
161}
162
163static int spi_pm_resume(struct device *dev)
164{
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_resume(dev);
169 else
170 return spi_legacy_resume(dev);
171}
172
173static int spi_pm_freeze(struct device *dev)
174{
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_freeze(dev);
179 else
180 return spi_legacy_suspend(dev, PMSG_FREEZE);
181}
182
183static int spi_pm_thaw(struct device *dev)
184{
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_thaw(dev);
189 else
190 return spi_legacy_resume(dev);
191}
192
193static int spi_pm_poweroff(struct device *dev)
194{
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_poweroff(dev);
199 else
200 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
201}
202
203static int spi_pm_restore(struct device *dev)
204{
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_restore(dev);
209 else
210 return spi_legacy_resume(dev);
211}
8ae12a0d 212#else
3ae22e8c
MB
213#define spi_pm_suspend NULL
214#define spi_pm_resume NULL
215#define spi_pm_freeze NULL
216#define spi_pm_thaw NULL
217#define spi_pm_poweroff NULL
218#define spi_pm_restore NULL
8ae12a0d
DB
219#endif
220
3ae22e8c
MB
221static const struct dev_pm_ops spi_pm = {
222 .suspend = spi_pm_suspend,
223 .resume = spi_pm_resume,
224 .freeze = spi_pm_freeze,
225 .thaw = spi_pm_thaw,
226 .poweroff = spi_pm_poweroff,
227 .restore = spi_pm_restore,
228 SET_RUNTIME_PM_OPS(
229 pm_generic_runtime_suspend,
230 pm_generic_runtime_resume,
45f0a85c 231 NULL
3ae22e8c
MB
232 )
233};
234
8ae12a0d
DB
235struct bus_type spi_bus_type = {
236 .name = "spi",
aa7da564 237 .dev_groups = spi_dev_groups,
8ae12a0d
DB
238 .match = spi_match_device,
239 .uevent = spi_uevent,
3ae22e8c 240 .pm = &spi_pm,
8ae12a0d
DB
241};
242EXPORT_SYMBOL_GPL(spi_bus_type);
243
b885244e
DB
244
245static int spi_drv_probe(struct device *dev)
246{
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
248 struct spi_device *spi = to_spi_device(dev);
249 int ret;
250
251 acpi_dev_pm_attach(&spi->dev, true);
252 ret = sdrv->probe(spi);
253 if (ret)
254 acpi_dev_pm_detach(&spi->dev, true);
b885244e 255
33cf00e5 256 return ret;
b885244e
DB
257}
258
259static int spi_drv_remove(struct device *dev)
260{
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
262 struct spi_device *spi = to_spi_device(dev);
263 int ret;
264
265 ret = sdrv->remove(spi);
266 acpi_dev_pm_detach(&spi->dev, true);
b885244e 267
33cf00e5 268 return ret;
b885244e
DB
269}
270
271static void spi_drv_shutdown(struct device *dev)
272{
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
274
275 sdrv->shutdown(to_spi_device(dev));
276}
277
33e34dc6
DB
278/**
279 * spi_register_driver - register a SPI driver
280 * @sdrv: the driver to register
281 * Context: can sleep
282 */
b885244e
DB
283int spi_register_driver(struct spi_driver *sdrv)
284{
285 sdrv->driver.bus = &spi_bus_type;
286 if (sdrv->probe)
287 sdrv->driver.probe = spi_drv_probe;
288 if (sdrv->remove)
289 sdrv->driver.remove = spi_drv_remove;
290 if (sdrv->shutdown)
291 sdrv->driver.shutdown = spi_drv_shutdown;
292 return driver_register(&sdrv->driver);
293}
294EXPORT_SYMBOL_GPL(spi_register_driver);
295
8ae12a0d
DB
296/*-------------------------------------------------------------------------*/
297
298/* SPI devices should normally not be created by SPI device drivers; that
299 * would make them board-specific. Similarly with SPI master drivers.
300 * Device registration normally goes into like arch/.../mach.../board-YYY.c
301 * with other readonly (flashable) information about mainboard devices.
302 */
303
304struct boardinfo {
305 struct list_head list;
2b9603a0 306 struct spi_board_info board_info;
8ae12a0d
DB
307};
308
309static LIST_HEAD(board_list);
2b9603a0
FT
310static LIST_HEAD(spi_master_list);
311
312/*
313 * Used to protect add/del opertion for board_info list and
314 * spi_master list, and their matching process
315 */
94040828 316static DEFINE_MUTEX(board_lock);
8ae12a0d 317
dc87c98e
GL
318/**
319 * spi_alloc_device - Allocate a new SPI device
320 * @master: Controller to which device is connected
321 * Context: can sleep
322 *
323 * Allows a driver to allocate and initialize a spi_device without
324 * registering it immediately. This allows a driver to directly
325 * fill the spi_device with device parameters before calling
326 * spi_add_device() on it.
327 *
328 * Caller is responsible to call spi_add_device() on the returned
329 * spi_device structure to add it to the SPI master. If the caller
330 * needs to discard the spi_device without adding it, then it should
331 * call spi_dev_put() on it.
332 *
333 * Returns a pointer to the new device, or NULL.
334 */
335struct spi_device *spi_alloc_device(struct spi_master *master)
336{
337 struct spi_device *spi;
338 struct device *dev = master->dev.parent;
339
340 if (!spi_master_get(master))
341 return NULL;
342
5fe5f05e 343 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
344 if (!spi) {
345 dev_err(dev, "cannot alloc spi_device\n");
346 spi_master_put(master);
347 return NULL;
348 }
349
350 spi->master = master;
178db7d3 351 spi->dev.parent = &master->dev;
dc87c98e
GL
352 spi->dev.bus = &spi_bus_type;
353 spi->dev.release = spidev_release;
446411e1 354 spi->cs_gpio = -ENOENT;
dc87c98e
GL
355 device_initialize(&spi->dev);
356 return spi;
357}
358EXPORT_SYMBOL_GPL(spi_alloc_device);
359
e13ac47b
JN
360static void spi_dev_set_name(struct spi_device *spi)
361{
362 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
363
364 if (adev) {
365 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
366 return;
367 }
368
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
371}
372
b6fb8d3a
MW
373static int spi_dev_check(struct device *dev, void *data)
374{
375 struct spi_device *spi = to_spi_device(dev);
376 struct spi_device *new_spi = data;
377
378 if (spi->master == new_spi->master &&
379 spi->chip_select == new_spi->chip_select)
380 return -EBUSY;
381 return 0;
382}
383
dc87c98e
GL
384/**
385 * spi_add_device - Add spi_device allocated with spi_alloc_device
386 * @spi: spi_device to register
387 *
388 * Companion function to spi_alloc_device. Devices allocated with
389 * spi_alloc_device can be added onto the spi bus with this function.
390 *
e48880e0 391 * Returns 0 on success; negative errno on failure
dc87c98e
GL
392 */
393int spi_add_device(struct spi_device *spi)
394{
e48880e0 395 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
396 struct spi_master *master = spi->master;
397 struct device *dev = master->dev.parent;
dc87c98e
GL
398 int status;
399
400 /* Chipselects are numbered 0..max; validate. */
74317984 401 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
402 dev_err(dev, "cs%d >= max %d\n",
403 spi->chip_select,
74317984 404 master->num_chipselect);
dc87c98e
GL
405 return -EINVAL;
406 }
407
408 /* Set the bus ID string */
e13ac47b 409 spi_dev_set_name(spi);
e48880e0
DB
410
411 /* We need to make sure there's no other device with this
412 * chipselect **BEFORE** we call setup(), else we'll trash
413 * its configuration. Lock against concurrent add() calls.
414 */
415 mutex_lock(&spi_add_lock);
416
b6fb8d3a
MW
417 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
418 if (status) {
e48880e0
DB
419 dev_err(dev, "chipselect %d already in use\n",
420 spi->chip_select);
e48880e0
DB
421 goto done;
422 }
423
74317984
JCPV
424 if (master->cs_gpios)
425 spi->cs_gpio = master->cs_gpios[spi->chip_select];
426
e48880e0
DB
427 /* Drivers may modify this initial i/o setup, but will
428 * normally rely on the device being setup. Devices
429 * using SPI_CS_HIGH can't coexist well otherwise...
430 */
7d077197 431 status = spi_setup(spi);
dc87c98e 432 if (status < 0) {
eb288a1f
LW
433 dev_err(dev, "can't setup %s, status %d\n",
434 dev_name(&spi->dev), status);
e48880e0 435 goto done;
dc87c98e
GL
436 }
437
e48880e0 438 /* Device may be bound to an active driver when this returns */
dc87c98e 439 status = device_add(&spi->dev);
e48880e0 440 if (status < 0)
eb288a1f
LW
441 dev_err(dev, "can't add %s, status %d\n",
442 dev_name(&spi->dev), status);
e48880e0 443 else
35f74fca 444 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 445
e48880e0
DB
446done:
447 mutex_unlock(&spi_add_lock);
448 return status;
dc87c98e
GL
449}
450EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 451
33e34dc6
DB
452/**
453 * spi_new_device - instantiate one new SPI device
454 * @master: Controller to which device is connected
455 * @chip: Describes the SPI device
456 * Context: can sleep
457 *
458 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
459 * after board init creates the hard-wired devices. Some development
460 * platforms may not be able to use spi_register_board_info though, and
461 * this is exported so that for example a USB or parport based adapter
462 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
463 *
464 * Returns the new device, or NULL.
8ae12a0d 465 */
e9d5a461
AB
466struct spi_device *spi_new_device(struct spi_master *master,
467 struct spi_board_info *chip)
8ae12a0d
DB
468{
469 struct spi_device *proxy;
8ae12a0d
DB
470 int status;
471
082c8cb4
DB
472 /* NOTE: caller did any chip->bus_num checks necessary.
473 *
474 * Also, unless we change the return value convention to use
475 * error-or-pointer (not NULL-or-pointer), troubleshootability
476 * suggests syslogged diagnostics are best here (ugh).
477 */
478
dc87c98e
GL
479 proxy = spi_alloc_device(master);
480 if (!proxy)
8ae12a0d
DB
481 return NULL;
482
102eb975
GL
483 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
484
8ae12a0d
DB
485 proxy->chip_select = chip->chip_select;
486 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 487 proxy->mode = chip->mode;
8ae12a0d 488 proxy->irq = chip->irq;
102eb975 489 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
490 proxy->dev.platform_data = (void *) chip->platform_data;
491 proxy->controller_data = chip->controller_data;
492 proxy->controller_state = NULL;
8ae12a0d 493
dc87c98e 494 status = spi_add_device(proxy);
8ae12a0d 495 if (status < 0) {
dc87c98e
GL
496 spi_dev_put(proxy);
497 return NULL;
8ae12a0d
DB
498 }
499
8ae12a0d
DB
500 return proxy;
501}
502EXPORT_SYMBOL_GPL(spi_new_device);
503
2b9603a0
FT
504static void spi_match_master_to_boardinfo(struct spi_master *master,
505 struct spi_board_info *bi)
506{
507 struct spi_device *dev;
508
509 if (master->bus_num != bi->bus_num)
510 return;
511
512 dev = spi_new_device(master, bi);
513 if (!dev)
514 dev_err(master->dev.parent, "can't create new device for %s\n",
515 bi->modalias);
516}
517
33e34dc6
DB
518/**
519 * spi_register_board_info - register SPI devices for a given board
520 * @info: array of chip descriptors
521 * @n: how many descriptors are provided
522 * Context: can sleep
523 *
8ae12a0d
DB
524 * Board-specific early init code calls this (probably during arch_initcall)
525 * with segments of the SPI device table. Any device nodes are created later,
526 * after the relevant parent SPI controller (bus_num) is defined. We keep
527 * this table of devices forever, so that reloading a controller driver will
528 * not make Linux forget about these hard-wired devices.
529 *
530 * Other code can also call this, e.g. a particular add-on board might provide
531 * SPI devices through its expansion connector, so code initializing that board
532 * would naturally declare its SPI devices.
533 *
534 * The board info passed can safely be __initdata ... but be careful of
535 * any embedded pointers (platform_data, etc), they're copied as-is.
536 */
fd4a319b 537int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 538{
2b9603a0
FT
539 struct boardinfo *bi;
540 int i;
8ae12a0d 541
2b9603a0 542 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
543 if (!bi)
544 return -ENOMEM;
8ae12a0d 545
2b9603a0
FT
546 for (i = 0; i < n; i++, bi++, info++) {
547 struct spi_master *master;
8ae12a0d 548
2b9603a0
FT
549 memcpy(&bi->board_info, info, sizeof(*info));
550 mutex_lock(&board_lock);
551 list_add_tail(&bi->list, &board_list);
552 list_for_each_entry(master, &spi_master_list, list)
553 spi_match_master_to_boardinfo(master, &bi->board_info);
554 mutex_unlock(&board_lock);
8ae12a0d 555 }
2b9603a0
FT
556
557 return 0;
8ae12a0d
DB
558}
559
560/*-------------------------------------------------------------------------*/
561
b158935f
MB
562static void spi_set_cs(struct spi_device *spi, bool enable)
563{
564 if (spi->mode & SPI_CS_HIGH)
565 enable = !enable;
566
567 if (spi->cs_gpio >= 0)
568 gpio_set_value(spi->cs_gpio, !enable);
569 else if (spi->master->set_cs)
570 spi->master->set_cs(spi, !enable);
571}
572
573/*
574 * spi_transfer_one_message - Default implementation of transfer_one_message()
575 *
576 * This is a standard implementation of transfer_one_message() for
577 * drivers which impelment a transfer_one() operation. It provides
578 * standard handling of delays and chip select management.
579 */
580static int spi_transfer_one_message(struct spi_master *master,
581 struct spi_message *msg)
582{
583 struct spi_transfer *xfer;
584 bool cur_cs = true;
585 bool keep_cs = false;
586 int ret = 0;
587
588 spi_set_cs(msg->spi, true);
589
590 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
591 trace_spi_transfer_start(msg, xfer);
592
16735d02 593 reinit_completion(&master->xfer_completion);
b158935f
MB
594
595 ret = master->transfer_one(master, msg->spi, xfer);
596 if (ret < 0) {
597 dev_err(&msg->spi->dev,
598 "SPI transfer failed: %d\n", ret);
599 goto out;
600 }
601
13a42798
AL
602 if (ret > 0) {
603 ret = 0;
b158935f 604 wait_for_completion(&master->xfer_completion);
13a42798 605 }
b158935f
MB
606
607 trace_spi_transfer_stop(msg, xfer);
608
609 if (msg->status != -EINPROGRESS)
610 goto out;
611
612 if (xfer->delay_usecs)
613 udelay(xfer->delay_usecs);
614
615 if (xfer->cs_change) {
616 if (list_is_last(&xfer->transfer_list,
617 &msg->transfers)) {
618 keep_cs = true;
619 } else {
620 cur_cs = !cur_cs;
621 spi_set_cs(msg->spi, cur_cs);
622 }
623 }
624
625 msg->actual_length += xfer->len;
626 }
627
628out:
629 if (ret != 0 || !keep_cs)
630 spi_set_cs(msg->spi, false);
631
632 if (msg->status == -EINPROGRESS)
633 msg->status = ret;
634
635 spi_finalize_current_message(master);
636
637 return ret;
638}
639
640/**
641 * spi_finalize_current_transfer - report completion of a transfer
642 *
643 * Called by SPI drivers using the core transfer_one_message()
644 * implementation to notify it that the current interrupt driven
9e8f4882 645 * transfer has finished and the next one may be scheduled.
b158935f
MB
646 */
647void spi_finalize_current_transfer(struct spi_master *master)
648{
649 complete(&master->xfer_completion);
650}
651EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
652
ffbbdd21
LW
653/**
654 * spi_pump_messages - kthread work function which processes spi message queue
655 * @work: pointer to kthread work struct contained in the master struct
656 *
657 * This function checks if there is any spi message in the queue that
658 * needs processing and if so call out to the driver to initialize hardware
659 * and transfer each message.
660 *
661 */
662static void spi_pump_messages(struct kthread_work *work)
663{
664 struct spi_master *master =
665 container_of(work, struct spi_master, pump_messages);
666 unsigned long flags;
667 bool was_busy = false;
668 int ret;
669
670 /* Lock queue and check for queue work */
671 spin_lock_irqsave(&master->queue_lock, flags);
672 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
673 if (!master->busy) {
674 spin_unlock_irqrestore(&master->queue_lock, flags);
675 return;
ffbbdd21
LW
676 }
677 master->busy = false;
678 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
679 if (master->unprepare_transfer_hardware &&
680 master->unprepare_transfer_hardware(master))
681 dev_err(&master->dev,
682 "failed to unprepare transfer hardware\n");
49834de2
MB
683 if (master->auto_runtime_pm) {
684 pm_runtime_mark_last_busy(master->dev.parent);
685 pm_runtime_put_autosuspend(master->dev.parent);
686 }
56ec1978 687 trace_spi_master_idle(master);
ffbbdd21
LW
688 return;
689 }
690
691 /* Make sure we are not already running a message */
692 if (master->cur_msg) {
693 spin_unlock_irqrestore(&master->queue_lock, flags);
694 return;
695 }
696 /* Extract head of queue */
697 master->cur_msg =
a89e2d27 698 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
699
700 list_del_init(&master->cur_msg->queue);
701 if (master->busy)
702 was_busy = true;
703 else
704 master->busy = true;
705 spin_unlock_irqrestore(&master->queue_lock, flags);
706
49834de2
MB
707 if (!was_busy && master->auto_runtime_pm) {
708 ret = pm_runtime_get_sync(master->dev.parent);
709 if (ret < 0) {
710 dev_err(&master->dev, "Failed to power device: %d\n",
711 ret);
712 return;
713 }
714 }
715
56ec1978
MB
716 if (!was_busy)
717 trace_spi_master_busy(master);
718
7dfd2bd7 719 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
720 ret = master->prepare_transfer_hardware(master);
721 if (ret) {
722 dev_err(&master->dev,
723 "failed to prepare transfer hardware\n");
49834de2
MB
724
725 if (master->auto_runtime_pm)
726 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
727 return;
728 }
729 }
730
56ec1978
MB
731 trace_spi_message_start(master->cur_msg);
732
2841a5fc
MB
733 if (master->prepare_message) {
734 ret = master->prepare_message(master, master->cur_msg);
735 if (ret) {
736 dev_err(&master->dev,
737 "failed to prepare message: %d\n", ret);
738 master->cur_msg->status = ret;
739 spi_finalize_current_message(master);
740 return;
741 }
742 master->cur_msg_prepared = true;
743 }
744
ffbbdd21
LW
745 ret = master->transfer_one_message(master, master->cur_msg);
746 if (ret) {
747 dev_err(&master->dev,
e120cc0d
DS
748 "failed to transfer one message from queue: %d\n", ret);
749 master->cur_msg->status = ret;
750 spi_finalize_current_message(master);
ffbbdd21
LW
751 return;
752 }
753}
754
755static int spi_init_queue(struct spi_master *master)
756{
757 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
758
759 INIT_LIST_HEAD(&master->queue);
760 spin_lock_init(&master->queue_lock);
761
762 master->running = false;
763 master->busy = false;
764
765 init_kthread_worker(&master->kworker);
766 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 767 &master->kworker, "%s",
ffbbdd21
LW
768 dev_name(&master->dev));
769 if (IS_ERR(master->kworker_task)) {
770 dev_err(&master->dev, "failed to create message pump task\n");
771 return -ENOMEM;
772 }
773 init_kthread_work(&master->pump_messages, spi_pump_messages);
774
775 /*
776 * Master config will indicate if this controller should run the
777 * message pump with high (realtime) priority to reduce the transfer
778 * latency on the bus by minimising the delay between a transfer
779 * request and the scheduling of the message pump thread. Without this
780 * setting the message pump thread will remain at default priority.
781 */
782 if (master->rt) {
783 dev_info(&master->dev,
784 "will run message pump with realtime priority\n");
785 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
786 }
787
788 return 0;
789}
790
791/**
792 * spi_get_next_queued_message() - called by driver to check for queued
793 * messages
794 * @master: the master to check for queued messages
795 *
796 * If there are more messages in the queue, the next message is returned from
797 * this call.
798 */
799struct spi_message *spi_get_next_queued_message(struct spi_master *master)
800{
801 struct spi_message *next;
802 unsigned long flags;
803
804 /* get a pointer to the next message, if any */
805 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
806 next = list_first_entry_or_null(&master->queue, struct spi_message,
807 queue);
ffbbdd21
LW
808 spin_unlock_irqrestore(&master->queue_lock, flags);
809
810 return next;
811}
812EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
813
814/**
815 * spi_finalize_current_message() - the current message is complete
816 * @master: the master to return the message to
817 *
818 * Called by the driver to notify the core that the message in the front of the
819 * queue is complete and can be removed from the queue.
820 */
821void spi_finalize_current_message(struct spi_master *master)
822{
823 struct spi_message *mesg;
824 unsigned long flags;
2841a5fc 825 int ret;
ffbbdd21
LW
826
827 spin_lock_irqsave(&master->queue_lock, flags);
828 mesg = master->cur_msg;
829 master->cur_msg = NULL;
830
831 queue_kthread_work(&master->kworker, &master->pump_messages);
832 spin_unlock_irqrestore(&master->queue_lock, flags);
833
2841a5fc
MB
834 if (master->cur_msg_prepared && master->unprepare_message) {
835 ret = master->unprepare_message(master, mesg);
836 if (ret) {
837 dev_err(&master->dev,
838 "failed to unprepare message: %d\n", ret);
839 }
840 }
841 master->cur_msg_prepared = false;
842
ffbbdd21
LW
843 mesg->state = NULL;
844 if (mesg->complete)
845 mesg->complete(mesg->context);
56ec1978
MB
846
847 trace_spi_message_done(mesg);
ffbbdd21
LW
848}
849EXPORT_SYMBOL_GPL(spi_finalize_current_message);
850
851static int spi_start_queue(struct spi_master *master)
852{
853 unsigned long flags;
854
855 spin_lock_irqsave(&master->queue_lock, flags);
856
857 if (master->running || master->busy) {
858 spin_unlock_irqrestore(&master->queue_lock, flags);
859 return -EBUSY;
860 }
861
862 master->running = true;
863 master->cur_msg = NULL;
864 spin_unlock_irqrestore(&master->queue_lock, flags);
865
866 queue_kthread_work(&master->kworker, &master->pump_messages);
867
868 return 0;
869}
870
871static int spi_stop_queue(struct spi_master *master)
872{
873 unsigned long flags;
874 unsigned limit = 500;
875 int ret = 0;
876
877 spin_lock_irqsave(&master->queue_lock, flags);
878
879 /*
880 * This is a bit lame, but is optimized for the common execution path.
881 * A wait_queue on the master->busy could be used, but then the common
882 * execution path (pump_messages) would be required to call wake_up or
883 * friends on every SPI message. Do this instead.
884 */
885 while ((!list_empty(&master->queue) || master->busy) && limit--) {
886 spin_unlock_irqrestore(&master->queue_lock, flags);
887 msleep(10);
888 spin_lock_irqsave(&master->queue_lock, flags);
889 }
890
891 if (!list_empty(&master->queue) || master->busy)
892 ret = -EBUSY;
893 else
894 master->running = false;
895
896 spin_unlock_irqrestore(&master->queue_lock, flags);
897
898 if (ret) {
899 dev_warn(&master->dev,
900 "could not stop message queue\n");
901 return ret;
902 }
903 return ret;
904}
905
906static int spi_destroy_queue(struct spi_master *master)
907{
908 int ret;
909
910 ret = spi_stop_queue(master);
911
912 /*
913 * flush_kthread_worker will block until all work is done.
914 * If the reason that stop_queue timed out is that the work will never
915 * finish, then it does no good to call flush/stop thread, so
916 * return anyway.
917 */
918 if (ret) {
919 dev_err(&master->dev, "problem destroying queue\n");
920 return ret;
921 }
922
923 flush_kthread_worker(&master->kworker);
924 kthread_stop(master->kworker_task);
925
926 return 0;
927}
928
929/**
930 * spi_queued_transfer - transfer function for queued transfers
931 * @spi: spi device which is requesting transfer
932 * @msg: spi message which is to handled is queued to driver queue
933 */
934static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
935{
936 struct spi_master *master = spi->master;
937 unsigned long flags;
938
939 spin_lock_irqsave(&master->queue_lock, flags);
940
941 if (!master->running) {
942 spin_unlock_irqrestore(&master->queue_lock, flags);
943 return -ESHUTDOWN;
944 }
945 msg->actual_length = 0;
946 msg->status = -EINPROGRESS;
947
948 list_add_tail(&msg->queue, &master->queue);
96b3eace 949 if (!master->busy)
ffbbdd21
LW
950 queue_kthread_work(&master->kworker, &master->pump_messages);
951
952 spin_unlock_irqrestore(&master->queue_lock, flags);
953 return 0;
954}
955
956static int spi_master_initialize_queue(struct spi_master *master)
957{
958 int ret;
959
960 master->queued = true;
961 master->transfer = spi_queued_transfer;
b158935f
MB
962 if (!master->transfer_one_message)
963 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
964
965 /* Initialize and start queue */
966 ret = spi_init_queue(master);
967 if (ret) {
968 dev_err(&master->dev, "problem initializing queue\n");
969 goto err_init_queue;
970 }
971 ret = spi_start_queue(master);
972 if (ret) {
973 dev_err(&master->dev, "problem starting queue\n");
974 goto err_start_queue;
975 }
976
977 return 0;
978
979err_start_queue:
980err_init_queue:
981 spi_destroy_queue(master);
982 return ret;
983}
984
985/*-------------------------------------------------------------------------*/
986
7cb94361 987#if defined(CONFIG_OF)
d57a4282
GL
988/**
989 * of_register_spi_devices() - Register child devices onto the SPI bus
990 * @master: Pointer to spi_master device
991 *
992 * Registers an spi_device for each child node of master node which has a 'reg'
993 * property.
994 */
995static void of_register_spi_devices(struct spi_master *master)
996{
997 struct spi_device *spi;
998 struct device_node *nc;
d57a4282 999 int rc;
89da4293 1000 u32 value;
d57a4282
GL
1001
1002 if (!master->dev.of_node)
1003 return;
1004
f3b6159e 1005 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
1006 /* Alloc an spi_device */
1007 spi = spi_alloc_device(master);
1008 if (!spi) {
1009 dev_err(&master->dev, "spi_device alloc error for %s\n",
1010 nc->full_name);
1011 spi_dev_put(spi);
1012 continue;
1013 }
1014
1015 /* Select device driver */
1016 if (of_modalias_node(nc, spi->modalias,
1017 sizeof(spi->modalias)) < 0) {
1018 dev_err(&master->dev, "cannot find modalias for %s\n",
1019 nc->full_name);
1020 spi_dev_put(spi);
1021 continue;
1022 }
1023
1024 /* Device address */
89da4293
TP
1025 rc = of_property_read_u32(nc, "reg", &value);
1026 if (rc) {
1027 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1028 nc->full_name, rc);
d57a4282
GL
1029 spi_dev_put(spi);
1030 continue;
1031 }
89da4293 1032 spi->chip_select = value;
d57a4282
GL
1033
1034 /* Mode (clock phase/polarity/etc.) */
1035 if (of_find_property(nc, "spi-cpha", NULL))
1036 spi->mode |= SPI_CPHA;
1037 if (of_find_property(nc, "spi-cpol", NULL))
1038 spi->mode |= SPI_CPOL;
1039 if (of_find_property(nc, "spi-cs-high", NULL))
1040 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1041 if (of_find_property(nc, "spi-3wire", NULL))
1042 spi->mode |= SPI_3WIRE;
d57a4282 1043
f477b7fb 1044 /* Device DUAL/QUAD mode */
89da4293
TP
1045 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1046 switch (value) {
1047 case 1:
a822e99c 1048 break;
89da4293 1049 case 2:
a822e99c
MB
1050 spi->mode |= SPI_TX_DUAL;
1051 break;
89da4293 1052 case 4:
a822e99c
MB
1053 spi->mode |= SPI_TX_QUAD;
1054 break;
1055 default:
1056 dev_err(&master->dev,
a110f93d 1057 "spi-tx-bus-width %d not supported\n",
89da4293 1058 value);
a822e99c
MB
1059 spi_dev_put(spi);
1060 continue;
1061 }
f477b7fb 1062 }
1063
89da4293
TP
1064 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1065 switch (value) {
1066 case 1:
a822e99c 1067 break;
89da4293 1068 case 2:
a822e99c
MB
1069 spi->mode |= SPI_RX_DUAL;
1070 break;
89da4293 1071 case 4:
a822e99c
MB
1072 spi->mode |= SPI_RX_QUAD;
1073 break;
1074 default:
1075 dev_err(&master->dev,
a110f93d 1076 "spi-rx-bus-width %d not supported\n",
89da4293 1077 value);
a822e99c
MB
1078 spi_dev_put(spi);
1079 continue;
1080 }
f477b7fb 1081 }
1082
d57a4282 1083 /* Device speed */
89da4293
TP
1084 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1085 if (rc) {
1086 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1087 nc->full_name, rc);
d57a4282
GL
1088 spi_dev_put(spi);
1089 continue;
1090 }
89da4293 1091 spi->max_speed_hz = value;
d57a4282
GL
1092
1093 /* IRQ */
1094 spi->irq = irq_of_parse_and_map(nc, 0);
1095
1096 /* Store a pointer to the node in the device structure */
1097 of_node_get(nc);
1098 spi->dev.of_node = nc;
1099
1100 /* Register the new device */
70fac17c 1101 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1102 rc = spi_add_device(spi);
1103 if (rc) {
1104 dev_err(&master->dev, "spi_device register error %s\n",
1105 nc->full_name);
1106 spi_dev_put(spi);
1107 }
1108
1109 }
1110}
1111#else
1112static void of_register_spi_devices(struct spi_master *master) { }
1113#endif
1114
64bee4d2
MW
1115#ifdef CONFIG_ACPI
1116static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1117{
1118 struct spi_device *spi = data;
1119
1120 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1121 struct acpi_resource_spi_serialbus *sb;
1122
1123 sb = &ares->data.spi_serial_bus;
1124 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1125 spi->chip_select = sb->device_selection;
1126 spi->max_speed_hz = sb->connection_speed;
1127
1128 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1129 spi->mode |= SPI_CPHA;
1130 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1131 spi->mode |= SPI_CPOL;
1132 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1133 spi->mode |= SPI_CS_HIGH;
1134 }
1135 } else if (spi->irq < 0) {
1136 struct resource r;
1137
1138 if (acpi_dev_resource_interrupt(ares, 0, &r))
1139 spi->irq = r.start;
1140 }
1141
1142 /* Always tell the ACPI core to skip this resource */
1143 return 1;
1144}
1145
1146static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1147 void *data, void **return_value)
1148{
1149 struct spi_master *master = data;
1150 struct list_head resource_list;
1151 struct acpi_device *adev;
1152 struct spi_device *spi;
1153 int ret;
1154
1155 if (acpi_bus_get_device(handle, &adev))
1156 return AE_OK;
1157 if (acpi_bus_get_status(adev) || !adev->status.present)
1158 return AE_OK;
1159
1160 spi = spi_alloc_device(master);
1161 if (!spi) {
1162 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1163 dev_name(&adev->dev));
1164 return AE_NO_MEMORY;
1165 }
1166
7b199811 1167 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1168 spi->irq = -1;
1169
1170 INIT_LIST_HEAD(&resource_list);
1171 ret = acpi_dev_get_resources(adev, &resource_list,
1172 acpi_spi_add_resource, spi);
1173 acpi_dev_free_resource_list(&resource_list);
1174
1175 if (ret < 0 || !spi->max_speed_hz) {
1176 spi_dev_put(spi);
1177 return AE_OK;
1178 }
1179
33cf00e5 1180 adev->power.flags.ignore_parent = true;
cf9eb39c 1181 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1182 if (spi_add_device(spi)) {
33cf00e5 1183 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1184 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1185 dev_name(&adev->dev));
1186 spi_dev_put(spi);
1187 }
1188
1189 return AE_OK;
1190}
1191
1192static void acpi_register_spi_devices(struct spi_master *master)
1193{
1194 acpi_status status;
1195 acpi_handle handle;
1196
29896178 1197 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1198 if (!handle)
1199 return;
1200
1201 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1202 acpi_spi_add_device, NULL,
1203 master, NULL);
1204 if (ACPI_FAILURE(status))
1205 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1206}
1207#else
1208static inline void acpi_register_spi_devices(struct spi_master *master) {}
1209#endif /* CONFIG_ACPI */
1210
49dce689 1211static void spi_master_release(struct device *dev)
8ae12a0d
DB
1212{
1213 struct spi_master *master;
1214
49dce689 1215 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1216 kfree(master);
1217}
1218
1219static struct class spi_master_class = {
1220 .name = "spi_master",
1221 .owner = THIS_MODULE,
49dce689 1222 .dev_release = spi_master_release,
8ae12a0d
DB
1223};
1224
1225
ffbbdd21 1226
8ae12a0d
DB
1227/**
1228 * spi_alloc_master - allocate SPI master controller
1229 * @dev: the controller, possibly using the platform_bus
33e34dc6 1230 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1231 * memory is in the driver_data field of the returned device,
0c868461 1232 * accessible with spi_master_get_devdata().
33e34dc6 1233 * Context: can sleep
8ae12a0d
DB
1234 *
1235 * This call is used only by SPI master controller drivers, which are the
1236 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1237 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1238 *
1239 * This must be called from context that can sleep. It returns the SPI
1240 * master structure on success, else NULL.
1241 *
1242 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1243 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1244 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1245 * leak.
8ae12a0d 1246 */
e9d5a461 1247struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1248{
1249 struct spi_master *master;
1250
0c868461
DB
1251 if (!dev)
1252 return NULL;
1253
5fe5f05e 1254 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1255 if (!master)
1256 return NULL;
1257
49dce689 1258 device_initialize(&master->dev);
1e8a52e1
GL
1259 master->bus_num = -1;
1260 master->num_chipselect = 1;
49dce689
TJ
1261 master->dev.class = &spi_master_class;
1262 master->dev.parent = get_device(dev);
0c868461 1263 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1264
1265 return master;
1266}
1267EXPORT_SYMBOL_GPL(spi_alloc_master);
1268
74317984
JCPV
1269#ifdef CONFIG_OF
1270static int of_spi_register_master(struct spi_master *master)
1271{
e80beb27 1272 int nb, i, *cs;
74317984
JCPV
1273 struct device_node *np = master->dev.of_node;
1274
1275 if (!np)
1276 return 0;
1277
1278 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1279 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1280
8ec5d84e
AL
1281 /* Return error only for an incorrectly formed cs-gpios property */
1282 if (nb == 0 || nb == -ENOENT)
74317984 1283 return 0;
8ec5d84e
AL
1284 else if (nb < 0)
1285 return nb;
74317984
JCPV
1286
1287 cs = devm_kzalloc(&master->dev,
1288 sizeof(int) * master->num_chipselect,
1289 GFP_KERNEL);
1290 master->cs_gpios = cs;
1291
1292 if (!master->cs_gpios)
1293 return -ENOMEM;
1294
0da83bb1 1295 for (i = 0; i < master->num_chipselect; i++)
446411e1 1296 cs[i] = -ENOENT;
74317984
JCPV
1297
1298 for (i = 0; i < nb; i++)
1299 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1300
1301 return 0;
1302}
1303#else
1304static int of_spi_register_master(struct spi_master *master)
1305{
1306 return 0;
1307}
1308#endif
1309
8ae12a0d
DB
1310/**
1311 * spi_register_master - register SPI master controller
1312 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1313 * Context: can sleep
8ae12a0d
DB
1314 *
1315 * SPI master controllers connect to their drivers using some non-SPI bus,
1316 * such as the platform bus. The final stage of probe() in that code
1317 * includes calling spi_register_master() to hook up to this SPI bus glue.
1318 *
1319 * SPI controllers use board specific (often SOC specific) bus numbers,
1320 * and board-specific addressing for SPI devices combines those numbers
1321 * with chip select numbers. Since SPI does not directly support dynamic
1322 * device identification, boards need configuration tables telling which
1323 * chip is at which address.
1324 *
1325 * This must be called from context that can sleep. It returns zero on
1326 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1327 * After a successful return, the caller is responsible for calling
1328 * spi_unregister_master().
8ae12a0d 1329 */
e9d5a461 1330int spi_register_master(struct spi_master *master)
8ae12a0d 1331{
e44a45ae 1332 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1333 struct device *dev = master->dev.parent;
2b9603a0 1334 struct boardinfo *bi;
8ae12a0d
DB
1335 int status = -ENODEV;
1336 int dynamic = 0;
1337
0c868461
DB
1338 if (!dev)
1339 return -ENODEV;
1340
74317984
JCPV
1341 status = of_spi_register_master(master);
1342 if (status)
1343 return status;
1344
082c8cb4
DB
1345 /* even if it's just one always-selected device, there must
1346 * be at least one chipselect
1347 */
1348 if (master->num_chipselect == 0)
1349 return -EINVAL;
1350
bb29785e
GL
1351 if ((master->bus_num < 0) && master->dev.of_node)
1352 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1353
8ae12a0d 1354 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1355 if (master->bus_num < 0) {
082c8cb4
DB
1356 /* FIXME switch to an IDR based scheme, something like
1357 * I2C now uses, so we can't run out of "dynamic" IDs
1358 */
8ae12a0d 1359 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1360 dynamic = 1;
8ae12a0d
DB
1361 }
1362
cf32b71e
ES
1363 spin_lock_init(&master->bus_lock_spinlock);
1364 mutex_init(&master->bus_lock_mutex);
1365 master->bus_lock_flag = 0;
b158935f 1366 init_completion(&master->xfer_completion);
cf32b71e 1367
8ae12a0d
DB
1368 /* register the device, then userspace will see it.
1369 * registration fails if the bus ID is in use.
1370 */
35f74fca 1371 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1372 status = device_add(&master->dev);
b885244e 1373 if (status < 0)
8ae12a0d 1374 goto done;
35f74fca 1375 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1376 dynamic ? " (dynamic)" : "");
1377
ffbbdd21
LW
1378 /* If we're using a queued driver, start the queue */
1379 if (master->transfer)
1380 dev_info(dev, "master is unqueued, this is deprecated\n");
1381 else {
1382 status = spi_master_initialize_queue(master);
1383 if (status) {
e93b0724 1384 device_del(&master->dev);
ffbbdd21
LW
1385 goto done;
1386 }
1387 }
1388
2b9603a0
FT
1389 mutex_lock(&board_lock);
1390 list_add_tail(&master->list, &spi_master_list);
1391 list_for_each_entry(bi, &board_list, list)
1392 spi_match_master_to_boardinfo(master, &bi->board_info);
1393 mutex_unlock(&board_lock);
1394
64bee4d2 1395 /* Register devices from the device tree and ACPI */
12b15e83 1396 of_register_spi_devices(master);
64bee4d2 1397 acpi_register_spi_devices(master);
8ae12a0d
DB
1398done:
1399 return status;
1400}
1401EXPORT_SYMBOL_GPL(spi_register_master);
1402
666d5b4c
MB
1403static void devm_spi_unregister(struct device *dev, void *res)
1404{
1405 spi_unregister_master(*(struct spi_master **)res);
1406}
1407
1408/**
1409 * dev_spi_register_master - register managed SPI master controller
1410 * @dev: device managing SPI master
1411 * @master: initialized master, originally from spi_alloc_master()
1412 * Context: can sleep
1413 *
1414 * Register a SPI device as with spi_register_master() which will
1415 * automatically be unregister
1416 */
1417int devm_spi_register_master(struct device *dev, struct spi_master *master)
1418{
1419 struct spi_master **ptr;
1420 int ret;
1421
1422 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1423 if (!ptr)
1424 return -ENOMEM;
1425
1426 ret = spi_register_master(master);
4b92894e 1427 if (!ret) {
666d5b4c
MB
1428 *ptr = master;
1429 devres_add(dev, ptr);
1430 } else {
1431 devres_free(ptr);
1432 }
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL_GPL(devm_spi_register_master);
1437
34860089 1438static int __unregister(struct device *dev, void *null)
8ae12a0d 1439{
34860089 1440 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1441 return 0;
1442}
1443
1444/**
1445 * spi_unregister_master - unregister SPI master controller
1446 * @master: the master being unregistered
33e34dc6 1447 * Context: can sleep
8ae12a0d
DB
1448 *
1449 * This call is used only by SPI master controller drivers, which are the
1450 * only ones directly touching chip registers.
1451 *
1452 * This must be called from context that can sleep.
1453 */
1454void spi_unregister_master(struct spi_master *master)
1455{
89fc9a1a
JG
1456 int dummy;
1457
ffbbdd21
LW
1458 if (master->queued) {
1459 if (spi_destroy_queue(master))
1460 dev_err(&master->dev, "queue remove failed\n");
1461 }
1462
2b9603a0
FT
1463 mutex_lock(&board_lock);
1464 list_del(&master->list);
1465 mutex_unlock(&board_lock);
1466
97dbf37d 1467 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1468 device_unregister(&master->dev);
8ae12a0d
DB
1469}
1470EXPORT_SYMBOL_GPL(spi_unregister_master);
1471
ffbbdd21
LW
1472int spi_master_suspend(struct spi_master *master)
1473{
1474 int ret;
1475
1476 /* Basically no-ops for non-queued masters */
1477 if (!master->queued)
1478 return 0;
1479
1480 ret = spi_stop_queue(master);
1481 if (ret)
1482 dev_err(&master->dev, "queue stop failed\n");
1483
1484 return ret;
1485}
1486EXPORT_SYMBOL_GPL(spi_master_suspend);
1487
1488int spi_master_resume(struct spi_master *master)
1489{
1490 int ret;
1491
1492 if (!master->queued)
1493 return 0;
1494
1495 ret = spi_start_queue(master);
1496 if (ret)
1497 dev_err(&master->dev, "queue restart failed\n");
1498
1499 return ret;
1500}
1501EXPORT_SYMBOL_GPL(spi_master_resume);
1502
9f3b795a 1503static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1504{
1505 struct spi_master *m;
9f3b795a 1506 const u16 *bus_num = data;
5ed2c832
DY
1507
1508 m = container_of(dev, struct spi_master, dev);
1509 return m->bus_num == *bus_num;
1510}
1511
8ae12a0d
DB
1512/**
1513 * spi_busnum_to_master - look up master associated with bus_num
1514 * @bus_num: the master's bus number
33e34dc6 1515 * Context: can sleep
8ae12a0d
DB
1516 *
1517 * This call may be used with devices that are registered after
1518 * arch init time. It returns a refcounted pointer to the relevant
1519 * spi_master (which the caller must release), or NULL if there is
1520 * no such master registered.
1521 */
1522struct spi_master *spi_busnum_to_master(u16 bus_num)
1523{
49dce689 1524 struct device *dev;
1e9a51dc 1525 struct spi_master *master = NULL;
5ed2c832 1526
695794ae 1527 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1528 __spi_master_match);
1529 if (dev)
1530 master = container_of(dev, struct spi_master, dev);
1531 /* reference got in class_find_device */
1e9a51dc 1532 return master;
8ae12a0d
DB
1533}
1534EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1535
1536
1537/*-------------------------------------------------------------------------*/
1538
7d077197
DB
1539/* Core methods for SPI master protocol drivers. Some of the
1540 * other core methods are currently defined as inline functions.
1541 */
1542
1543/**
1544 * spi_setup - setup SPI mode and clock rate
1545 * @spi: the device whose settings are being modified
1546 * Context: can sleep, and no requests are queued to the device
1547 *
1548 * SPI protocol drivers may need to update the transfer mode if the
1549 * device doesn't work with its default. They may likewise need
1550 * to update clock rates or word sizes from initial values. This function
1551 * changes those settings, and must be called from a context that can sleep.
1552 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1553 * effect the next time the device is selected and data is transferred to
1554 * or from it. When this function returns, the spi device is deselected.
1555 *
1556 * Note that this call will fail if the protocol driver specifies an option
1557 * that the underlying controller or its driver does not support. For
1558 * example, not all hardware supports wire transfers using nine bit words,
1559 * LSB-first wire encoding, or active-high chipselects.
1560 */
1561int spi_setup(struct spi_device *spi)
1562{
e7db06b5 1563 unsigned bad_bits;
caae070c 1564 int status = 0;
7d077197 1565
f477b7fb 1566 /* check mode to prevent that DUAL and QUAD set at the same time
1567 */
1568 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1569 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1570 dev_err(&spi->dev,
1571 "setup: can not select dual and quad at the same time\n");
1572 return -EINVAL;
1573 }
1574 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1575 */
1576 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1577 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1578 return -EINVAL;
e7db06b5
DB
1579 /* help drivers fail *cleanly* when they need options
1580 * that aren't supported with their current master
1581 */
1582 bad_bits = spi->mode & ~spi->master->mode_bits;
1583 if (bad_bits) {
eb288a1f 1584 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1585 bad_bits);
1586 return -EINVAL;
1587 }
1588
7d077197
DB
1589 if (!spi->bits_per_word)
1590 spi->bits_per_word = 8;
1591
caae070c
LD
1592 if (spi->master->setup)
1593 status = spi->master->setup(spi);
7d077197 1594
5fe5f05e 1595 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1596 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1597 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1598 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1599 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1600 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1601 spi->bits_per_word, spi->max_speed_hz,
1602 status);
1603
1604 return status;
1605}
1606EXPORT_SYMBOL_GPL(spi_setup);
1607
90808738 1608static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
1609{
1610 struct spi_master *master = spi->master;
e6811d1d 1611 struct spi_transfer *xfer;
cf32b71e 1612
24a0013a
MB
1613 if (list_empty(&message->transfers))
1614 return -EINVAL;
1615 if (!message->complete)
1616 return -EINVAL;
1617
cf32b71e
ES
1618 /* Half-duplex links include original MicroWire, and ones with
1619 * only one data pin like SPI_3WIRE (switches direction) or where
1620 * either MOSI or MISO is missing. They can also be caused by
1621 * software limitations.
1622 */
1623 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1624 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1625 unsigned flags = master->flags;
1626
1627 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1628 if (xfer->rx_buf && xfer->tx_buf)
1629 return -EINVAL;
1630 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1631 return -EINVAL;
1632 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1633 return -EINVAL;
1634 }
1635 }
1636
e6811d1d 1637 /**
059b8ffe
LD
1638 * Set transfer bits_per_word and max speed as spi device default if
1639 * it is not set for this transfer.
f477b7fb 1640 * Set transfer tx_nbits and rx_nbits as single transfer default
1641 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1642 */
1643 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1644 message->frame_length += xfer->len;
e6811d1d
LD
1645 if (!xfer->bits_per_word)
1646 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1647 if (!xfer->speed_hz) {
059b8ffe 1648 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1649 if (master->max_speed_hz &&
1650 xfer->speed_hz > master->max_speed_hz)
1651 xfer->speed_hz = master->max_speed_hz;
1652 }
1653
543bb255
SW
1654 if (master->bits_per_word_mask) {
1655 /* Only 32 bits fit in the mask */
1656 if (xfer->bits_per_word > 32)
1657 return -EINVAL;
1658 if (!(master->bits_per_word_mask &
1659 BIT(xfer->bits_per_word - 1)))
1660 return -EINVAL;
1661 }
a2fd4f9f
MB
1662
1663 if (xfer->speed_hz && master->min_speed_hz &&
1664 xfer->speed_hz < master->min_speed_hz)
1665 return -EINVAL;
1666 if (xfer->speed_hz && master->max_speed_hz &&
1667 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1668 return -EINVAL;
f477b7fb 1669
1670 if (xfer->tx_buf && !xfer->tx_nbits)
1671 xfer->tx_nbits = SPI_NBITS_SINGLE;
1672 if (xfer->rx_buf && !xfer->rx_nbits)
1673 xfer->rx_nbits = SPI_NBITS_SINGLE;
1674 /* check transfer tx/rx_nbits:
1afd9989
GU
1675 * 1. check the value matches one of single, dual and quad
1676 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 1677 */
db90a441
SP
1678 if (xfer->tx_buf) {
1679 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1680 xfer->tx_nbits != SPI_NBITS_DUAL &&
1681 xfer->tx_nbits != SPI_NBITS_QUAD)
1682 return -EINVAL;
1683 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1684 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1685 return -EINVAL;
1686 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1687 !(spi->mode & SPI_TX_QUAD))
1688 return -EINVAL;
db90a441 1689 }
f477b7fb 1690 /* check transfer rx_nbits */
db90a441
SP
1691 if (xfer->rx_buf) {
1692 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1693 xfer->rx_nbits != SPI_NBITS_DUAL &&
1694 xfer->rx_nbits != SPI_NBITS_QUAD)
1695 return -EINVAL;
1696 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1697 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1698 return -EINVAL;
1699 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1700 !(spi->mode & SPI_RX_QUAD))
1701 return -EINVAL;
db90a441 1702 }
e6811d1d
LD
1703 }
1704
cf32b71e 1705 message->status = -EINPROGRESS;
90808738
MB
1706
1707 return 0;
1708}
1709
1710static int __spi_async(struct spi_device *spi, struct spi_message *message)
1711{
1712 struct spi_master *master = spi->master;
1713
1714 message->spi = spi;
1715
1716 trace_spi_message_submit(message);
1717
cf32b71e
ES
1718 return master->transfer(spi, message);
1719}
1720
568d0697
DB
1721/**
1722 * spi_async - asynchronous SPI transfer
1723 * @spi: device with which data will be exchanged
1724 * @message: describes the data transfers, including completion callback
1725 * Context: any (irqs may be blocked, etc)
1726 *
1727 * This call may be used in_irq and other contexts which can't sleep,
1728 * as well as from task contexts which can sleep.
1729 *
1730 * The completion callback is invoked in a context which can't sleep.
1731 * Before that invocation, the value of message->status is undefined.
1732 * When the callback is issued, message->status holds either zero (to
1733 * indicate complete success) or a negative error code. After that
1734 * callback returns, the driver which issued the transfer request may
1735 * deallocate the associated memory; it's no longer in use by any SPI
1736 * core or controller driver code.
1737 *
1738 * Note that although all messages to a spi_device are handled in
1739 * FIFO order, messages may go to different devices in other orders.
1740 * Some device might be higher priority, or have various "hard" access
1741 * time requirements, for example.
1742 *
1743 * On detection of any fault during the transfer, processing of
1744 * the entire message is aborted, and the device is deselected.
1745 * Until returning from the associated message completion callback,
1746 * no other spi_message queued to that device will be processed.
1747 * (This rule applies equally to all the synchronous transfer calls,
1748 * which are wrappers around this core asynchronous primitive.)
1749 */
1750int spi_async(struct spi_device *spi, struct spi_message *message)
1751{
1752 struct spi_master *master = spi->master;
cf32b71e
ES
1753 int ret;
1754 unsigned long flags;
568d0697 1755
90808738
MB
1756 ret = __spi_validate(spi, message);
1757 if (ret != 0)
1758 return ret;
1759
cf32b71e 1760 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1761
cf32b71e
ES
1762 if (master->bus_lock_flag)
1763 ret = -EBUSY;
1764 else
1765 ret = __spi_async(spi, message);
568d0697 1766
cf32b71e
ES
1767 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1768
1769 return ret;
568d0697
DB
1770}
1771EXPORT_SYMBOL_GPL(spi_async);
1772
cf32b71e
ES
1773/**
1774 * spi_async_locked - version of spi_async with exclusive bus usage
1775 * @spi: device with which data will be exchanged
1776 * @message: describes the data transfers, including completion callback
1777 * Context: any (irqs may be blocked, etc)
1778 *
1779 * This call may be used in_irq and other contexts which can't sleep,
1780 * as well as from task contexts which can sleep.
1781 *
1782 * The completion callback is invoked in a context which can't sleep.
1783 * Before that invocation, the value of message->status is undefined.
1784 * When the callback is issued, message->status holds either zero (to
1785 * indicate complete success) or a negative error code. After that
1786 * callback returns, the driver which issued the transfer request may
1787 * deallocate the associated memory; it's no longer in use by any SPI
1788 * core or controller driver code.
1789 *
1790 * Note that although all messages to a spi_device are handled in
1791 * FIFO order, messages may go to different devices in other orders.
1792 * Some device might be higher priority, or have various "hard" access
1793 * time requirements, for example.
1794 *
1795 * On detection of any fault during the transfer, processing of
1796 * the entire message is aborted, and the device is deselected.
1797 * Until returning from the associated message completion callback,
1798 * no other spi_message queued to that device will be processed.
1799 * (This rule applies equally to all the synchronous transfer calls,
1800 * which are wrappers around this core asynchronous primitive.)
1801 */
1802int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1803{
1804 struct spi_master *master = spi->master;
1805 int ret;
1806 unsigned long flags;
1807
90808738
MB
1808 ret = __spi_validate(spi, message);
1809 if (ret != 0)
1810 return ret;
1811
cf32b71e
ES
1812 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1813
1814 ret = __spi_async(spi, message);
1815
1816 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1817
1818 return ret;
1819
1820}
1821EXPORT_SYMBOL_GPL(spi_async_locked);
1822
7d077197
DB
1823
1824/*-------------------------------------------------------------------------*/
1825
1826/* Utility methods for SPI master protocol drivers, layered on
1827 * top of the core. Some other utility methods are defined as
1828 * inline functions.
1829 */
1830
5d870c8e
AM
1831static void spi_complete(void *arg)
1832{
1833 complete(arg);
1834}
1835
cf32b71e
ES
1836static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1837 int bus_locked)
1838{
1839 DECLARE_COMPLETION_ONSTACK(done);
1840 int status;
1841 struct spi_master *master = spi->master;
1842
1843 message->complete = spi_complete;
1844 message->context = &done;
1845
1846 if (!bus_locked)
1847 mutex_lock(&master->bus_lock_mutex);
1848
1849 status = spi_async_locked(spi, message);
1850
1851 if (!bus_locked)
1852 mutex_unlock(&master->bus_lock_mutex);
1853
1854 if (status == 0) {
1855 wait_for_completion(&done);
1856 status = message->status;
1857 }
1858 message->context = NULL;
1859 return status;
1860}
1861
8ae12a0d
DB
1862/**
1863 * spi_sync - blocking/synchronous SPI data transfers
1864 * @spi: device with which data will be exchanged
1865 * @message: describes the data transfers
33e34dc6 1866 * Context: can sleep
8ae12a0d
DB
1867 *
1868 * This call may only be used from a context that may sleep. The sleep
1869 * is non-interruptible, and has no timeout. Low-overhead controller
1870 * drivers may DMA directly into and out of the message buffers.
1871 *
1872 * Note that the SPI device's chip select is active during the message,
1873 * and then is normally disabled between messages. Drivers for some
1874 * frequently-used devices may want to minimize costs of selecting a chip,
1875 * by leaving it selected in anticipation that the next message will go
1876 * to the same chip. (That may increase power usage.)
1877 *
0c868461
DB
1878 * Also, the caller is guaranteeing that the memory associated with the
1879 * message will not be freed before this call returns.
1880 *
9b938b74 1881 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1882 */
1883int spi_sync(struct spi_device *spi, struct spi_message *message)
1884{
cf32b71e 1885 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1886}
1887EXPORT_SYMBOL_GPL(spi_sync);
1888
cf32b71e
ES
1889/**
1890 * spi_sync_locked - version of spi_sync with exclusive bus usage
1891 * @spi: device with which data will be exchanged
1892 * @message: describes the data transfers
1893 * Context: can sleep
1894 *
1895 * This call may only be used from a context that may sleep. The sleep
1896 * is non-interruptible, and has no timeout. Low-overhead controller
1897 * drivers may DMA directly into and out of the message buffers.
1898 *
1899 * This call should be used by drivers that require exclusive access to the
25985edc 1900 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1901 * be released by a spi_bus_unlock call when the exclusive access is over.
1902 *
1903 * It returns zero on success, else a negative error code.
1904 */
1905int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1906{
1907 return __spi_sync(spi, message, 1);
1908}
1909EXPORT_SYMBOL_GPL(spi_sync_locked);
1910
1911/**
1912 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1913 * @master: SPI bus master that should be locked for exclusive bus access
1914 * Context: can sleep
1915 *
1916 * This call may only be used from a context that may sleep. The sleep
1917 * is non-interruptible, and has no timeout.
1918 *
1919 * This call should be used by drivers that require exclusive access to the
1920 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1921 * exclusive access is over. Data transfer must be done by spi_sync_locked
1922 * and spi_async_locked calls when the SPI bus lock is held.
1923 *
1924 * It returns zero on success, else a negative error code.
1925 */
1926int spi_bus_lock(struct spi_master *master)
1927{
1928 unsigned long flags;
1929
1930 mutex_lock(&master->bus_lock_mutex);
1931
1932 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1933 master->bus_lock_flag = 1;
1934 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1935
1936 /* mutex remains locked until spi_bus_unlock is called */
1937
1938 return 0;
1939}
1940EXPORT_SYMBOL_GPL(spi_bus_lock);
1941
1942/**
1943 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1944 * @master: SPI bus master that was locked for exclusive bus access
1945 * Context: can sleep
1946 *
1947 * This call may only be used from a context that may sleep. The sleep
1948 * is non-interruptible, and has no timeout.
1949 *
1950 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1951 * call.
1952 *
1953 * It returns zero on success, else a negative error code.
1954 */
1955int spi_bus_unlock(struct spi_master *master)
1956{
1957 master->bus_lock_flag = 0;
1958
1959 mutex_unlock(&master->bus_lock_mutex);
1960
1961 return 0;
1962}
1963EXPORT_SYMBOL_GPL(spi_bus_unlock);
1964
a9948b61 1965/* portable code must never pass more than 32 bytes */
5fe5f05e 1966#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
1967
1968static u8 *buf;
1969
1970/**
1971 * spi_write_then_read - SPI synchronous write followed by read
1972 * @spi: device with which data will be exchanged
1973 * @txbuf: data to be written (need not be dma-safe)
1974 * @n_tx: size of txbuf, in bytes
27570497
JP
1975 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1976 * @n_rx: size of rxbuf, in bytes
33e34dc6 1977 * Context: can sleep
8ae12a0d
DB
1978 *
1979 * This performs a half duplex MicroWire style transaction with the
1980 * device, sending txbuf and then reading rxbuf. The return value
1981 * is zero for success, else a negative errno status code.
b885244e 1982 * This call may only be used from a context that may sleep.
8ae12a0d 1983 *
0c868461 1984 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1985 * portable code should never use this for more than 32 bytes.
1986 * Performance-sensitive or bulk transfer code should instead use
0c868461 1987 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1988 */
1989int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1990 const void *txbuf, unsigned n_tx,
1991 void *rxbuf, unsigned n_rx)
8ae12a0d 1992{
068f4070 1993 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1994
1995 int status;
1996 struct spi_message message;
bdff549e 1997 struct spi_transfer x[2];
8ae12a0d
DB
1998 u8 *local_buf;
1999
b3a223ee
MB
2000 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2001 * copying here, (as a pure convenience thing), but we can
2002 * keep heap costs out of the hot path unless someone else is
2003 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2004 */
b3a223ee 2005 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2006 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2007 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2008 if (!local_buf)
2009 return -ENOMEM;
2010 } else {
2011 local_buf = buf;
2012 }
8ae12a0d 2013
8275c642 2014 spi_message_init(&message);
5fe5f05e 2015 memset(x, 0, sizeof(x));
bdff549e
DB
2016 if (n_tx) {
2017 x[0].len = n_tx;
2018 spi_message_add_tail(&x[0], &message);
2019 }
2020 if (n_rx) {
2021 x[1].len = n_rx;
2022 spi_message_add_tail(&x[1], &message);
2023 }
8275c642 2024
8ae12a0d 2025 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2026 x[0].tx_buf = local_buf;
2027 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2028
2029 /* do the i/o */
8ae12a0d 2030 status = spi_sync(spi, &message);
9b938b74 2031 if (status == 0)
bdff549e 2032 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2033
bdff549e 2034 if (x[0].tx_buf == buf)
068f4070 2035 mutex_unlock(&lock);
8ae12a0d
DB
2036 else
2037 kfree(local_buf);
2038
2039 return status;
2040}
2041EXPORT_SYMBOL_GPL(spi_write_then_read);
2042
2043/*-------------------------------------------------------------------------*/
2044
2045static int __init spi_init(void)
2046{
b885244e
DB
2047 int status;
2048
e94b1766 2049 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2050 if (!buf) {
2051 status = -ENOMEM;
2052 goto err0;
2053 }
2054
2055 status = bus_register(&spi_bus_type);
2056 if (status < 0)
2057 goto err1;
8ae12a0d 2058
b885244e
DB
2059 status = class_register(&spi_master_class);
2060 if (status < 0)
2061 goto err2;
8ae12a0d 2062 return 0;
b885244e
DB
2063
2064err2:
2065 bus_unregister(&spi_bus_type);
2066err1:
2067 kfree(buf);
2068 buf = NULL;
2069err0:
2070 return status;
8ae12a0d 2071}
b885244e 2072
8ae12a0d
DB
2073/* board_info is normally registered in arch_initcall(),
2074 * but even essential drivers wait till later
b885244e
DB
2075 *
2076 * REVISIT only boardinfo really needs static linking. the rest (device and
2077 * driver registration) _could_ be dynamically linked (modular) ... costs
2078 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2079 */
673c0c00 2080postcore_initcall(spi_init);
8ae12a0d 2081