]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: fix race freeing dummy_tx/rx before it is unmapped
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
8ae12a0d
DB
16 */
17
8ae12a0d
DB
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
99adef31
MB
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
94040828 24#include <linux/mutex.h>
2b7a32f7 25#include <linux/of_device.h>
d57a4282 26#include <linux/of_irq.h>
86be408b 27#include <linux/clk/clk-conf.h>
5a0e3ad6 28#include <linux/slab.h>
e0626e38 29#include <linux/mod_devicetable.h>
8ae12a0d 30#include <linux/spi/spi.h>
74317984 31#include <linux/of_gpio.h>
3ae22e8c 32#include <linux/pm_runtime.h>
f48c767c 33#include <linux/pm_domain.h>
025ed130 34#include <linux/export.h>
8bd75c77 35#include <linux/sched/rt.h>
ffbbdd21
LW
36#include <linux/delay.h>
37#include <linux/kthread.h>
64bee4d2
MW
38#include <linux/ioport.h>
39#include <linux/acpi.h>
8ae12a0d 40
56ec1978
MB
41#define CREATE_TRACE_POINTS
42#include <trace/events/spi.h>
43
8ae12a0d
DB
44static void spidev_release(struct device *dev)
45{
0ffa0285 46 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
0c868461 52 spi_master_put(spi->master);
07a389fe 53 kfree(spi);
8ae12a0d
DB
54}
55
56static ssize_t
57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58{
59 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
8ae12a0d 65
d8e328b3 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 67}
aa7da564 68static DEVICE_ATTR_RO(modalias);
8ae12a0d 69
aa7da564
GKH
70static struct attribute *spi_dev_attrs[] = {
71 &dev_attr_modalias.attr,
72 NULL,
8ae12a0d 73};
aa7da564 74ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
75
76/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77 * and the sysfs version makes coldplug work too.
78 */
79
75368bf6
AV
80static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81 const struct spi_device *sdev)
82{
83 while (id->name[0]) {
84 if (!strcmp(sdev->modalias, id->name))
85 return id;
86 id++;
87 }
88 return NULL;
89}
90
91const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92{
93 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94
95 return spi_match_id(sdrv->id_table, sdev);
96}
97EXPORT_SYMBOL_GPL(spi_get_device_id);
98
8ae12a0d
DB
99static int spi_match_device(struct device *dev, struct device_driver *drv)
100{
101 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
102 const struct spi_driver *sdrv = to_spi_driver(drv);
103
2b7a32f7
SA
104 /* Attempt an OF style match */
105 if (of_driver_match_device(dev, drv))
106 return 1;
107
64bee4d2
MW
108 /* Then try ACPI */
109 if (acpi_driver_match_device(dev, drv))
110 return 1;
111
75368bf6
AV
112 if (sdrv->id_table)
113 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 114
35f74fca 115 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
116}
117
7eff2e7a 118static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
119{
120 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
121 int rc;
122
123 rc = acpi_device_uevent_modalias(dev, env);
124 if (rc != -ENODEV)
125 return rc;
8ae12a0d 126
e0626e38 127 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
128 return 0;
129}
130
8ae12a0d
DB
131struct bus_type spi_bus_type = {
132 .name = "spi",
aa7da564 133 .dev_groups = spi_dev_groups,
8ae12a0d
DB
134 .match = spi_match_device,
135 .uevent = spi_uevent,
8ae12a0d
DB
136};
137EXPORT_SYMBOL_GPL(spi_bus_type);
138
b885244e
DB
139
140static int spi_drv_probe(struct device *dev)
141{
142 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
143 int ret;
144
86be408b
SN
145 ret = of_clk_set_defaults(dev->of_node, false);
146 if (ret)
147 return ret;
148
676e7c25
UH
149 ret = dev_pm_domain_attach(dev, true);
150 if (ret != -EPROBE_DEFER) {
151 ret = sdrv->probe(to_spi_device(dev));
152 if (ret)
153 dev_pm_domain_detach(dev, true);
154 }
b885244e 155
33cf00e5 156 return ret;
b885244e
DB
157}
158
159static int spi_drv_remove(struct device *dev)
160{
161 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
162 int ret;
163
aec35f4e 164 ret = sdrv->remove(to_spi_device(dev));
676e7c25 165 dev_pm_domain_detach(dev, true);
b885244e 166
33cf00e5 167 return ret;
b885244e
DB
168}
169
170static void spi_drv_shutdown(struct device *dev)
171{
172 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
173
174 sdrv->shutdown(to_spi_device(dev));
175}
176
33e34dc6
DB
177/**
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
180 * Context: can sleep
181 */
b885244e
DB
182int spi_register_driver(struct spi_driver *sdrv)
183{
184 sdrv->driver.bus = &spi_bus_type;
185 if (sdrv->probe)
186 sdrv->driver.probe = spi_drv_probe;
187 if (sdrv->remove)
188 sdrv->driver.remove = spi_drv_remove;
189 if (sdrv->shutdown)
190 sdrv->driver.shutdown = spi_drv_shutdown;
191 return driver_register(&sdrv->driver);
192}
193EXPORT_SYMBOL_GPL(spi_register_driver);
194
8ae12a0d
DB
195/*-------------------------------------------------------------------------*/
196
197/* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific. Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
201 */
202
203struct boardinfo {
204 struct list_head list;
2b9603a0 205 struct spi_board_info board_info;
8ae12a0d
DB
206};
207
208static LIST_HEAD(board_list);
2b9603a0
FT
209static LIST_HEAD(spi_master_list);
210
211/*
212 * Used to protect add/del opertion for board_info list and
213 * spi_master list, and their matching process
214 */
94040828 215static DEFINE_MUTEX(board_lock);
8ae12a0d 216
dc87c98e
GL
217/**
218 * spi_alloc_device - Allocate a new SPI device
219 * @master: Controller to which device is connected
220 * Context: can sleep
221 *
222 * Allows a driver to allocate and initialize a spi_device without
223 * registering it immediately. This allows a driver to directly
224 * fill the spi_device with device parameters before calling
225 * spi_add_device() on it.
226 *
227 * Caller is responsible to call spi_add_device() on the returned
228 * spi_device structure to add it to the SPI master. If the caller
229 * needs to discard the spi_device without adding it, then it should
230 * call spi_dev_put() on it.
231 *
232 * Returns a pointer to the new device, or NULL.
233 */
234struct spi_device *spi_alloc_device(struct spi_master *master)
235{
236 struct spi_device *spi;
dc87c98e
GL
237
238 if (!spi_master_get(master))
239 return NULL;
240
5fe5f05e 241 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 242 if (!spi) {
dc87c98e
GL
243 spi_master_put(master);
244 return NULL;
245 }
246
247 spi->master = master;
178db7d3 248 spi->dev.parent = &master->dev;
dc87c98e
GL
249 spi->dev.bus = &spi_bus_type;
250 spi->dev.release = spidev_release;
446411e1 251 spi->cs_gpio = -ENOENT;
dc87c98e
GL
252 device_initialize(&spi->dev);
253 return spi;
254}
255EXPORT_SYMBOL_GPL(spi_alloc_device);
256
e13ac47b
JN
257static void spi_dev_set_name(struct spi_device *spi)
258{
259 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260
261 if (adev) {
262 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263 return;
264 }
265
266 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267 spi->chip_select);
268}
269
b6fb8d3a
MW
270static int spi_dev_check(struct device *dev, void *data)
271{
272 struct spi_device *spi = to_spi_device(dev);
273 struct spi_device *new_spi = data;
274
275 if (spi->master == new_spi->master &&
276 spi->chip_select == new_spi->chip_select)
277 return -EBUSY;
278 return 0;
279}
280
dc87c98e
GL
281/**
282 * spi_add_device - Add spi_device allocated with spi_alloc_device
283 * @spi: spi_device to register
284 *
285 * Companion function to spi_alloc_device. Devices allocated with
286 * spi_alloc_device can be added onto the spi bus with this function.
287 *
e48880e0 288 * Returns 0 on success; negative errno on failure
dc87c98e
GL
289 */
290int spi_add_device(struct spi_device *spi)
291{
e48880e0 292 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
293 struct spi_master *master = spi->master;
294 struct device *dev = master->dev.parent;
dc87c98e
GL
295 int status;
296
297 /* Chipselects are numbered 0..max; validate. */
74317984 298 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
299 dev_err(dev, "cs%d >= max %d\n",
300 spi->chip_select,
74317984 301 master->num_chipselect);
dc87c98e
GL
302 return -EINVAL;
303 }
304
305 /* Set the bus ID string */
e13ac47b 306 spi_dev_set_name(spi);
e48880e0
DB
307
308 /* We need to make sure there's no other device with this
309 * chipselect **BEFORE** we call setup(), else we'll trash
310 * its configuration. Lock against concurrent add() calls.
311 */
312 mutex_lock(&spi_add_lock);
313
b6fb8d3a
MW
314 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315 if (status) {
e48880e0
DB
316 dev_err(dev, "chipselect %d already in use\n",
317 spi->chip_select);
e48880e0
DB
318 goto done;
319 }
320
74317984
JCPV
321 if (master->cs_gpios)
322 spi->cs_gpio = master->cs_gpios[spi->chip_select];
323
e48880e0
DB
324 /* Drivers may modify this initial i/o setup, but will
325 * normally rely on the device being setup. Devices
326 * using SPI_CS_HIGH can't coexist well otherwise...
327 */
7d077197 328 status = spi_setup(spi);
dc87c98e 329 if (status < 0) {
eb288a1f
LW
330 dev_err(dev, "can't setup %s, status %d\n",
331 dev_name(&spi->dev), status);
e48880e0 332 goto done;
dc87c98e
GL
333 }
334
e48880e0 335 /* Device may be bound to an active driver when this returns */
dc87c98e 336 status = device_add(&spi->dev);
e48880e0 337 if (status < 0)
eb288a1f
LW
338 dev_err(dev, "can't add %s, status %d\n",
339 dev_name(&spi->dev), status);
e48880e0 340 else
35f74fca 341 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 342
e48880e0
DB
343done:
344 mutex_unlock(&spi_add_lock);
345 return status;
dc87c98e
GL
346}
347EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 348
33e34dc6
DB
349/**
350 * spi_new_device - instantiate one new SPI device
351 * @master: Controller to which device is connected
352 * @chip: Describes the SPI device
353 * Context: can sleep
354 *
355 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
356 * after board init creates the hard-wired devices. Some development
357 * platforms may not be able to use spi_register_board_info though, and
358 * this is exported so that for example a USB or parport based adapter
359 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
360 *
361 * Returns the new device, or NULL.
8ae12a0d 362 */
e9d5a461
AB
363struct spi_device *spi_new_device(struct spi_master *master,
364 struct spi_board_info *chip)
8ae12a0d
DB
365{
366 struct spi_device *proxy;
8ae12a0d
DB
367 int status;
368
082c8cb4
DB
369 /* NOTE: caller did any chip->bus_num checks necessary.
370 *
371 * Also, unless we change the return value convention to use
372 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 * suggests syslogged diagnostics are best here (ugh).
374 */
375
dc87c98e
GL
376 proxy = spi_alloc_device(master);
377 if (!proxy)
8ae12a0d
DB
378 return NULL;
379
102eb975
GL
380 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381
8ae12a0d
DB
382 proxy->chip_select = chip->chip_select;
383 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 384 proxy->mode = chip->mode;
8ae12a0d 385 proxy->irq = chip->irq;
102eb975 386 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
387 proxy->dev.platform_data = (void *) chip->platform_data;
388 proxy->controller_data = chip->controller_data;
389 proxy->controller_state = NULL;
8ae12a0d 390
dc87c98e 391 status = spi_add_device(proxy);
8ae12a0d 392 if (status < 0) {
dc87c98e
GL
393 spi_dev_put(proxy);
394 return NULL;
8ae12a0d
DB
395 }
396
8ae12a0d
DB
397 return proxy;
398}
399EXPORT_SYMBOL_GPL(spi_new_device);
400
2b9603a0
FT
401static void spi_match_master_to_boardinfo(struct spi_master *master,
402 struct spi_board_info *bi)
403{
404 struct spi_device *dev;
405
406 if (master->bus_num != bi->bus_num)
407 return;
408
409 dev = spi_new_device(master, bi);
410 if (!dev)
411 dev_err(master->dev.parent, "can't create new device for %s\n",
412 bi->modalias);
413}
414
33e34dc6
DB
415/**
416 * spi_register_board_info - register SPI devices for a given board
417 * @info: array of chip descriptors
418 * @n: how many descriptors are provided
419 * Context: can sleep
420 *
8ae12a0d
DB
421 * Board-specific early init code calls this (probably during arch_initcall)
422 * with segments of the SPI device table. Any device nodes are created later,
423 * after the relevant parent SPI controller (bus_num) is defined. We keep
424 * this table of devices forever, so that reloading a controller driver will
425 * not make Linux forget about these hard-wired devices.
426 *
427 * Other code can also call this, e.g. a particular add-on board might provide
428 * SPI devices through its expansion connector, so code initializing that board
429 * would naturally declare its SPI devices.
430 *
431 * The board info passed can safely be __initdata ... but be careful of
432 * any embedded pointers (platform_data, etc), they're copied as-is.
433 */
fd4a319b 434int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 435{
2b9603a0
FT
436 struct boardinfo *bi;
437 int i;
8ae12a0d 438
c7908a37
XL
439 if (!n)
440 return -EINVAL;
441
2b9603a0 442 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
443 if (!bi)
444 return -ENOMEM;
8ae12a0d 445
2b9603a0
FT
446 for (i = 0; i < n; i++, bi++, info++) {
447 struct spi_master *master;
8ae12a0d 448
2b9603a0
FT
449 memcpy(&bi->board_info, info, sizeof(*info));
450 mutex_lock(&board_lock);
451 list_add_tail(&bi->list, &board_list);
452 list_for_each_entry(master, &spi_master_list, list)
453 spi_match_master_to_boardinfo(master, &bi->board_info);
454 mutex_unlock(&board_lock);
8ae12a0d 455 }
2b9603a0
FT
456
457 return 0;
8ae12a0d
DB
458}
459
460/*-------------------------------------------------------------------------*/
461
b158935f
MB
462static void spi_set_cs(struct spi_device *spi, bool enable)
463{
464 if (spi->mode & SPI_CS_HIGH)
465 enable = !enable;
466
467 if (spi->cs_gpio >= 0)
468 gpio_set_value(spi->cs_gpio, !enable);
469 else if (spi->master->set_cs)
470 spi->master->set_cs(spi, !enable);
471}
472
2de440f5 473#ifdef CONFIG_HAS_DMA
6ad45a27
MB
474static int spi_map_buf(struct spi_master *master, struct device *dev,
475 struct sg_table *sgt, void *buf, size_t len,
476 enum dma_data_direction dir)
477{
478 const bool vmalloced_buf = is_vmalloc_addr(buf);
479 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480 const int sgs = DIV_ROUND_UP(len, desc_len);
481 struct page *vm_page;
482 void *sg_buf;
483 size_t min;
484 int i, ret;
485
486 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487 if (ret != 0)
488 return ret;
489
490 for (i = 0; i < sgs; i++) {
491 min = min_t(size_t, len, desc_len);
492
493 if (vmalloced_buf) {
494 vm_page = vmalloc_to_page(buf);
495 if (!vm_page) {
496 sg_free_table(sgt);
497 return -ENOMEM;
498 }
c1aefbdd
CK
499 sg_set_page(&sgt->sgl[i], vm_page,
500 min, offset_in_page(buf));
6ad45a27
MB
501 } else {
502 sg_buf = buf;
c1aefbdd 503 sg_set_buf(&sgt->sgl[i], sg_buf, min);
6ad45a27
MB
504 }
505
6ad45a27
MB
506
507 buf += min;
508 len -= min;
509 }
510
511 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
512 if (!ret)
513 ret = -ENOMEM;
6ad45a27
MB
514 if (ret < 0) {
515 sg_free_table(sgt);
516 return ret;
517 }
518
519 sgt->nents = ret;
520
521 return 0;
522}
523
524static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525 struct sg_table *sgt, enum dma_data_direction dir)
526{
527 if (sgt->orig_nents) {
528 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529 sg_free_table(sgt);
530 }
531}
532
2de440f5 533static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
99adef31 534{
99adef31
MB
535 struct device *tx_dev, *rx_dev;
536 struct spi_transfer *xfer;
6ad45a27 537 int ret;
3a2eba9b 538
6ad45a27 539 if (!master->can_dma)
99adef31
MB
540 return 0;
541
3fc25421
GU
542 tx_dev = master->dma_tx->device->dev;
543 rx_dev = master->dma_rx->device->dev;
99adef31
MB
544
545 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546 if (!master->can_dma(master, msg->spi, xfer))
547 continue;
548
549 if (xfer->tx_buf != NULL) {
6ad45a27
MB
550 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551 (void *)xfer->tx_buf, xfer->len,
552 DMA_TO_DEVICE);
553 if (ret != 0)
554 return ret;
99adef31
MB
555 }
556
557 if (xfer->rx_buf != NULL) {
6ad45a27
MB
558 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559 xfer->rx_buf, xfer->len,
560 DMA_FROM_DEVICE);
561 if (ret != 0) {
562 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563 DMA_TO_DEVICE);
564 return ret;
99adef31
MB
565 }
566 }
567 }
568
569 master->cur_msg_mapped = true;
570
571 return 0;
572}
573
574static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575{
576 struct spi_transfer *xfer;
577 struct device *tx_dev, *rx_dev;
578
6ad45a27 579 if (!master->cur_msg_mapped || !master->can_dma)
99adef31
MB
580 return 0;
581
3fc25421
GU
582 tx_dev = master->dma_tx->device->dev;
583 rx_dev = master->dma_rx->device->dev;
99adef31
MB
584
585 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
f8bb820d
RG
586 /*
587 * Restore the original value of tx_buf or rx_buf if they are
588 * NULL.
589 */
590 if (xfer->tx_buf == master->dummy_tx)
591 xfer->tx_buf = NULL;
592 if (xfer->rx_buf == master->dummy_rx)
593 xfer->rx_buf = NULL;
594
99adef31
MB
595 if (!master->can_dma(master, msg->spi, xfer))
596 continue;
597
6ad45a27
MB
598 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
599 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
600 }
601
602 return 0;
603}
2de440f5
GU
604#else /* !CONFIG_HAS_DMA */
605static inline int __spi_map_msg(struct spi_master *master,
606 struct spi_message *msg)
607{
608 return 0;
609}
610
611static inline int spi_unmap_msg(struct spi_master *master,
612 struct spi_message *msg)
613{
614 return 0;
615}
616#endif /* !CONFIG_HAS_DMA */
617
618static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
619{
620 struct spi_transfer *xfer;
621 void *tmp;
622 unsigned int max_tx, max_rx;
623
624 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
625 max_tx = 0;
626 max_rx = 0;
627
628 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
629 if ((master->flags & SPI_MASTER_MUST_TX) &&
630 !xfer->tx_buf)
631 max_tx = max(xfer->len, max_tx);
632 if ((master->flags & SPI_MASTER_MUST_RX) &&
633 !xfer->rx_buf)
634 max_rx = max(xfer->len, max_rx);
635 }
636
637 if (max_tx) {
638 tmp = krealloc(master->dummy_tx, max_tx,
639 GFP_KERNEL | GFP_DMA);
640 if (!tmp)
641 return -ENOMEM;
642 master->dummy_tx = tmp;
643 memset(tmp, 0, max_tx);
644 }
645
646 if (max_rx) {
647 tmp = krealloc(master->dummy_rx, max_rx,
648 GFP_KERNEL | GFP_DMA);
649 if (!tmp)
650 return -ENOMEM;
651 master->dummy_rx = tmp;
652 }
653
654 if (max_tx || max_rx) {
655 list_for_each_entry(xfer, &msg->transfers,
656 transfer_list) {
657 if (!xfer->tx_buf)
658 xfer->tx_buf = master->dummy_tx;
659 if (!xfer->rx_buf)
660 xfer->rx_buf = master->dummy_rx;
661 }
662 }
663 }
664
665 return __spi_map_msg(master, msg);
666}
99adef31 667
b158935f
MB
668/*
669 * spi_transfer_one_message - Default implementation of transfer_one_message()
670 *
671 * This is a standard implementation of transfer_one_message() for
672 * drivers which impelment a transfer_one() operation. It provides
673 * standard handling of delays and chip select management.
674 */
675static int spi_transfer_one_message(struct spi_master *master,
676 struct spi_message *msg)
677{
678 struct spi_transfer *xfer;
b158935f
MB
679 bool keep_cs = false;
680 int ret = 0;
682a71b2 681 unsigned long ms = 1;
b158935f
MB
682
683 spi_set_cs(msg->spi, true);
684
685 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
686 trace_spi_transfer_start(msg, xfer);
687
38ec10f6
MB
688 if (xfer->tx_buf || xfer->rx_buf) {
689 reinit_completion(&master->xfer_completion);
b158935f 690
38ec10f6
MB
691 ret = master->transfer_one(master, msg->spi, xfer);
692 if (ret < 0) {
693 dev_err(&msg->spi->dev,
694 "SPI transfer failed: %d\n", ret);
695 goto out;
696 }
b158935f 697
38ec10f6
MB
698 if (ret > 0) {
699 ret = 0;
700 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
701 ms += ms + 100; /* some tolerance */
16a0ce4e 702
38ec10f6
MB
703 ms = wait_for_completion_timeout(&master->xfer_completion,
704 msecs_to_jiffies(ms));
705 }
16a0ce4e 706
38ec10f6
MB
707 if (ms == 0) {
708 dev_err(&msg->spi->dev,
709 "SPI transfer timed out\n");
710 msg->status = -ETIMEDOUT;
711 }
712 } else {
713 if (xfer->len)
714 dev_err(&msg->spi->dev,
715 "Bufferless transfer has length %u\n",
716 xfer->len);
13a42798 717 }
b158935f
MB
718
719 trace_spi_transfer_stop(msg, xfer);
720
721 if (msg->status != -EINPROGRESS)
722 goto out;
723
724 if (xfer->delay_usecs)
725 udelay(xfer->delay_usecs);
726
727 if (xfer->cs_change) {
728 if (list_is_last(&xfer->transfer_list,
729 &msg->transfers)) {
730 keep_cs = true;
731 } else {
0b73aa63
MB
732 spi_set_cs(msg->spi, false);
733 udelay(10);
734 spi_set_cs(msg->spi, true);
b158935f
MB
735 }
736 }
737
738 msg->actual_length += xfer->len;
739 }
740
741out:
742 if (ret != 0 || !keep_cs)
743 spi_set_cs(msg->spi, false);
744
745 if (msg->status == -EINPROGRESS)
746 msg->status = ret;
747
ff61eb42 748 if (msg->status && master->handle_err)
b716c4ff
AS
749 master->handle_err(master, msg);
750
b158935f
MB
751 spi_finalize_current_message(master);
752
753 return ret;
754}
755
756/**
757 * spi_finalize_current_transfer - report completion of a transfer
2c675689 758 * @master: the master reporting completion
b158935f
MB
759 *
760 * Called by SPI drivers using the core transfer_one_message()
761 * implementation to notify it that the current interrupt driven
9e8f4882 762 * transfer has finished and the next one may be scheduled.
b158935f
MB
763 */
764void spi_finalize_current_transfer(struct spi_master *master)
765{
766 complete(&master->xfer_completion);
767}
768EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
769
ffbbdd21 770/**
fc9e0f71
MB
771 * __spi_pump_messages - function which processes spi message queue
772 * @master: master to process queue for
773 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
774 *
775 * This function checks if there is any spi message in the queue that
776 * needs processing and if so call out to the driver to initialize hardware
777 * and transfer each message.
778 *
0461a414
MB
779 * Note that it is called both from the kthread itself and also from
780 * inside spi_sync(); the queue extraction handling at the top of the
781 * function should deal with this safely.
ffbbdd21 782 */
fc9e0f71 783static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
ffbbdd21 784{
ffbbdd21
LW
785 unsigned long flags;
786 bool was_busy = false;
787 int ret;
788
983aee5d 789 /* Lock queue */
ffbbdd21 790 spin_lock_irqsave(&master->queue_lock, flags);
983aee5d
MB
791
792 /* Make sure we are not already running a message */
793 if (master->cur_msg) {
794 spin_unlock_irqrestore(&master->queue_lock, flags);
795 return;
796 }
797
0461a414
MB
798 /* If another context is idling the device then defer */
799 if (master->idling) {
800 queue_kthread_work(&master->kworker, &master->pump_messages);
801 spin_unlock_irqrestore(&master->queue_lock, flags);
802 return;
803 }
804
983aee5d 805 /* Check if the queue is idle */
ffbbdd21 806 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
807 if (!master->busy) {
808 spin_unlock_irqrestore(&master->queue_lock, flags);
809 return;
ffbbdd21 810 }
fc9e0f71
MB
811
812 /* Only do teardown in the thread */
813 if (!in_kthread) {
814 queue_kthread_work(&master->kworker,
815 &master->pump_messages);
816 spin_unlock_irqrestore(&master->queue_lock, flags);
817 return;
818 }
819
ffbbdd21 820 master->busy = false;
0461a414 821 master->idling = true;
ffbbdd21 822 spin_unlock_irqrestore(&master->queue_lock, flags);
0461a414 823
3a2eba9b
MB
824 kfree(master->dummy_rx);
825 master->dummy_rx = NULL;
826 kfree(master->dummy_tx);
827 master->dummy_tx = NULL;
b0b36b86
BF
828 if (master->unprepare_transfer_hardware &&
829 master->unprepare_transfer_hardware(master))
830 dev_err(&master->dev,
831 "failed to unprepare transfer hardware\n");
49834de2
MB
832 if (master->auto_runtime_pm) {
833 pm_runtime_mark_last_busy(master->dev.parent);
834 pm_runtime_put_autosuspend(master->dev.parent);
835 }
56ec1978 836 trace_spi_master_idle(master);
ffbbdd21 837
0461a414
MB
838 spin_lock_irqsave(&master->queue_lock, flags);
839 master->idling = false;
ffbbdd21
LW
840 spin_unlock_irqrestore(&master->queue_lock, flags);
841 return;
842 }
ffbbdd21 843
ffbbdd21
LW
844 /* Extract head of queue */
845 master->cur_msg =
a89e2d27 846 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
847
848 list_del_init(&master->cur_msg->queue);
849 if (master->busy)
850 was_busy = true;
851 else
852 master->busy = true;
853 spin_unlock_irqrestore(&master->queue_lock, flags);
854
49834de2
MB
855 if (!was_busy && master->auto_runtime_pm) {
856 ret = pm_runtime_get_sync(master->dev.parent);
857 if (ret < 0) {
858 dev_err(&master->dev, "Failed to power device: %d\n",
859 ret);
860 return;
861 }
862 }
863
56ec1978
MB
864 if (!was_busy)
865 trace_spi_master_busy(master);
866
7dfd2bd7 867 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
868 ret = master->prepare_transfer_hardware(master);
869 if (ret) {
870 dev_err(&master->dev,
871 "failed to prepare transfer hardware\n");
49834de2
MB
872
873 if (master->auto_runtime_pm)
874 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
875 return;
876 }
877 }
878
56ec1978
MB
879 trace_spi_message_start(master->cur_msg);
880
2841a5fc
MB
881 if (master->prepare_message) {
882 ret = master->prepare_message(master, master->cur_msg);
883 if (ret) {
884 dev_err(&master->dev,
885 "failed to prepare message: %d\n", ret);
886 master->cur_msg->status = ret;
887 spi_finalize_current_message(master);
888 return;
889 }
890 master->cur_msg_prepared = true;
891 }
892
99adef31
MB
893 ret = spi_map_msg(master, master->cur_msg);
894 if (ret) {
895 master->cur_msg->status = ret;
896 spi_finalize_current_message(master);
897 return;
898 }
899
ffbbdd21
LW
900 ret = master->transfer_one_message(master, master->cur_msg);
901 if (ret) {
902 dev_err(&master->dev,
1f802f82 903 "failed to transfer one message from queue\n");
ffbbdd21
LW
904 return;
905 }
906}
907
fc9e0f71
MB
908/**
909 * spi_pump_messages - kthread work function which processes spi message queue
910 * @work: pointer to kthread work struct contained in the master struct
911 */
912static void spi_pump_messages(struct kthread_work *work)
913{
914 struct spi_master *master =
915 container_of(work, struct spi_master, pump_messages);
916
917 __spi_pump_messages(master, true);
918}
919
ffbbdd21
LW
920static int spi_init_queue(struct spi_master *master)
921{
922 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
923
ffbbdd21
LW
924 master->running = false;
925 master->busy = false;
926
927 init_kthread_worker(&master->kworker);
928 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 929 &master->kworker, "%s",
ffbbdd21
LW
930 dev_name(&master->dev));
931 if (IS_ERR(master->kworker_task)) {
932 dev_err(&master->dev, "failed to create message pump task\n");
98a8f5a0 933 return PTR_ERR(master->kworker_task);
ffbbdd21
LW
934 }
935 init_kthread_work(&master->pump_messages, spi_pump_messages);
936
937 /*
938 * Master config will indicate if this controller should run the
939 * message pump with high (realtime) priority to reduce the transfer
940 * latency on the bus by minimising the delay between a transfer
941 * request and the scheduling of the message pump thread. Without this
942 * setting the message pump thread will remain at default priority.
943 */
944 if (master->rt) {
945 dev_info(&master->dev,
946 "will run message pump with realtime priority\n");
947 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
948 }
949
950 return 0;
951}
952
953/**
954 * spi_get_next_queued_message() - called by driver to check for queued
955 * messages
956 * @master: the master to check for queued messages
957 *
958 * If there are more messages in the queue, the next message is returned from
959 * this call.
960 */
961struct spi_message *spi_get_next_queued_message(struct spi_master *master)
962{
963 struct spi_message *next;
964 unsigned long flags;
965
966 /* get a pointer to the next message, if any */
967 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
968 next = list_first_entry_or_null(&master->queue, struct spi_message,
969 queue);
ffbbdd21
LW
970 spin_unlock_irqrestore(&master->queue_lock, flags);
971
972 return next;
973}
974EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
975
976/**
977 * spi_finalize_current_message() - the current message is complete
978 * @master: the master to return the message to
979 *
980 * Called by the driver to notify the core that the message in the front of the
981 * queue is complete and can be removed from the queue.
982 */
983void spi_finalize_current_message(struct spi_master *master)
984{
985 struct spi_message *mesg;
986 unsigned long flags;
2841a5fc 987 int ret;
ffbbdd21
LW
988
989 spin_lock_irqsave(&master->queue_lock, flags);
990 mesg = master->cur_msg;
ffbbdd21
LW
991 spin_unlock_irqrestore(&master->queue_lock, flags);
992
99adef31
MB
993 spi_unmap_msg(master, mesg);
994
2841a5fc
MB
995 if (master->cur_msg_prepared && master->unprepare_message) {
996 ret = master->unprepare_message(master, mesg);
997 if (ret) {
998 dev_err(&master->dev,
999 "failed to unprepare message: %d\n", ret);
1000 }
1001 }
391949b6 1002
8e76ef88
MS
1003 spin_lock_irqsave(&master->queue_lock, flags);
1004 master->cur_msg = NULL;
2841a5fc 1005 master->cur_msg_prepared = false;
8e76ef88
MS
1006 queue_kthread_work(&master->kworker, &master->pump_messages);
1007 spin_unlock_irqrestore(&master->queue_lock, flags);
1008
1009 trace_spi_message_done(mesg);
2841a5fc 1010
ffbbdd21
LW
1011 mesg->state = NULL;
1012 if (mesg->complete)
1013 mesg->complete(mesg->context);
1014}
1015EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1016
1017static int spi_start_queue(struct spi_master *master)
1018{
1019 unsigned long flags;
1020
1021 spin_lock_irqsave(&master->queue_lock, flags);
1022
1023 if (master->running || master->busy) {
1024 spin_unlock_irqrestore(&master->queue_lock, flags);
1025 return -EBUSY;
1026 }
1027
1028 master->running = true;
1029 master->cur_msg = NULL;
1030 spin_unlock_irqrestore(&master->queue_lock, flags);
1031
1032 queue_kthread_work(&master->kworker, &master->pump_messages);
1033
1034 return 0;
1035}
1036
1037static int spi_stop_queue(struct spi_master *master)
1038{
1039 unsigned long flags;
1040 unsigned limit = 500;
1041 int ret = 0;
1042
1043 spin_lock_irqsave(&master->queue_lock, flags);
1044
1045 /*
1046 * This is a bit lame, but is optimized for the common execution path.
1047 * A wait_queue on the master->busy could be used, but then the common
1048 * execution path (pump_messages) would be required to call wake_up or
1049 * friends on every SPI message. Do this instead.
1050 */
1051 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1052 spin_unlock_irqrestore(&master->queue_lock, flags);
f97b26b0 1053 usleep_range(10000, 11000);
ffbbdd21
LW
1054 spin_lock_irqsave(&master->queue_lock, flags);
1055 }
1056
1057 if (!list_empty(&master->queue) || master->busy)
1058 ret = -EBUSY;
1059 else
1060 master->running = false;
1061
1062 spin_unlock_irqrestore(&master->queue_lock, flags);
1063
1064 if (ret) {
1065 dev_warn(&master->dev,
1066 "could not stop message queue\n");
1067 return ret;
1068 }
1069 return ret;
1070}
1071
1072static int spi_destroy_queue(struct spi_master *master)
1073{
1074 int ret;
1075
1076 ret = spi_stop_queue(master);
1077
1078 /*
1079 * flush_kthread_worker will block until all work is done.
1080 * If the reason that stop_queue timed out is that the work will never
1081 * finish, then it does no good to call flush/stop thread, so
1082 * return anyway.
1083 */
1084 if (ret) {
1085 dev_err(&master->dev, "problem destroying queue\n");
1086 return ret;
1087 }
1088
1089 flush_kthread_worker(&master->kworker);
1090 kthread_stop(master->kworker_task);
1091
1092 return 0;
1093}
1094
0461a414
MB
1095static int __spi_queued_transfer(struct spi_device *spi,
1096 struct spi_message *msg,
1097 bool need_pump)
ffbbdd21
LW
1098{
1099 struct spi_master *master = spi->master;
1100 unsigned long flags;
1101
1102 spin_lock_irqsave(&master->queue_lock, flags);
1103
1104 if (!master->running) {
1105 spin_unlock_irqrestore(&master->queue_lock, flags);
1106 return -ESHUTDOWN;
1107 }
1108 msg->actual_length = 0;
1109 msg->status = -EINPROGRESS;
1110
1111 list_add_tail(&msg->queue, &master->queue);
0461a414 1112 if (!master->busy && need_pump)
ffbbdd21
LW
1113 queue_kthread_work(&master->kworker, &master->pump_messages);
1114
1115 spin_unlock_irqrestore(&master->queue_lock, flags);
1116 return 0;
1117}
1118
0461a414
MB
1119/**
1120 * spi_queued_transfer - transfer function for queued transfers
1121 * @spi: spi device which is requesting transfer
1122 * @msg: spi message which is to handled is queued to driver queue
1123 */
1124static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1125{
1126 return __spi_queued_transfer(spi, msg, true);
1127}
1128
ffbbdd21
LW
1129static int spi_master_initialize_queue(struct spi_master *master)
1130{
1131 int ret;
1132
ffbbdd21 1133 master->transfer = spi_queued_transfer;
b158935f
MB
1134 if (!master->transfer_one_message)
1135 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1136
1137 /* Initialize and start queue */
1138 ret = spi_init_queue(master);
1139 if (ret) {
1140 dev_err(&master->dev, "problem initializing queue\n");
1141 goto err_init_queue;
1142 }
c3676d5c 1143 master->queued = true;
ffbbdd21
LW
1144 ret = spi_start_queue(master);
1145 if (ret) {
1146 dev_err(&master->dev, "problem starting queue\n");
1147 goto err_start_queue;
1148 }
1149
1150 return 0;
1151
1152err_start_queue:
ffbbdd21 1153 spi_destroy_queue(master);
c3676d5c 1154err_init_queue:
ffbbdd21
LW
1155 return ret;
1156}
1157
1158/*-------------------------------------------------------------------------*/
1159
7cb94361 1160#if defined(CONFIG_OF)
aff5e3f8
PA
1161static struct spi_device *
1162of_register_spi_device(struct spi_master *master, struct device_node *nc)
1163{
1164 struct spi_device *spi;
1165 int rc;
1166 u32 value;
1167
1168 /* Alloc an spi_device */
1169 spi = spi_alloc_device(master);
1170 if (!spi) {
1171 dev_err(&master->dev, "spi_device alloc error for %s\n",
1172 nc->full_name);
1173 rc = -ENOMEM;
1174 goto err_out;
1175 }
1176
1177 /* Select device driver */
1178 rc = of_modalias_node(nc, spi->modalias,
1179 sizeof(spi->modalias));
1180 if (rc < 0) {
1181 dev_err(&master->dev, "cannot find modalias for %s\n",
1182 nc->full_name);
1183 goto err_out;
1184 }
1185
1186 /* Device address */
1187 rc = of_property_read_u32(nc, "reg", &value);
1188 if (rc) {
1189 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1190 nc->full_name, rc);
1191 goto err_out;
1192 }
1193 spi->chip_select = value;
1194
1195 /* Mode (clock phase/polarity/etc.) */
1196 if (of_find_property(nc, "spi-cpha", NULL))
1197 spi->mode |= SPI_CPHA;
1198 if (of_find_property(nc, "spi-cpol", NULL))
1199 spi->mode |= SPI_CPOL;
1200 if (of_find_property(nc, "spi-cs-high", NULL))
1201 spi->mode |= SPI_CS_HIGH;
1202 if (of_find_property(nc, "spi-3wire", NULL))
1203 spi->mode |= SPI_3WIRE;
1204 if (of_find_property(nc, "spi-lsb-first", NULL))
1205 spi->mode |= SPI_LSB_FIRST;
1206
1207 /* Device DUAL/QUAD mode */
1208 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1209 switch (value) {
1210 case 1:
1211 break;
1212 case 2:
1213 spi->mode |= SPI_TX_DUAL;
1214 break;
1215 case 4:
1216 spi->mode |= SPI_TX_QUAD;
1217 break;
1218 default:
1219 dev_warn(&master->dev,
1220 "spi-tx-bus-width %d not supported\n",
1221 value);
1222 break;
1223 }
1224 }
1225
1226 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1227 switch (value) {
1228 case 1:
1229 break;
1230 case 2:
1231 spi->mode |= SPI_RX_DUAL;
1232 break;
1233 case 4:
1234 spi->mode |= SPI_RX_QUAD;
1235 break;
1236 default:
1237 dev_warn(&master->dev,
1238 "spi-rx-bus-width %d not supported\n",
1239 value);
1240 break;
1241 }
1242 }
1243
1244 /* Device speed */
1245 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1246 if (rc) {
1247 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1248 nc->full_name, rc);
1249 goto err_out;
1250 }
1251 spi->max_speed_hz = value;
1252
1253 /* IRQ */
1254 spi->irq = irq_of_parse_and_map(nc, 0);
1255
1256 /* Store a pointer to the node in the device structure */
1257 of_node_get(nc);
1258 spi->dev.of_node = nc;
1259
1260 /* Register the new device */
aff5e3f8
PA
1261 rc = spi_add_device(spi);
1262 if (rc) {
1263 dev_err(&master->dev, "spi_device register error %s\n",
1264 nc->full_name);
1265 goto err_out;
1266 }
1267
1268 return spi;
1269
1270err_out:
1271 spi_dev_put(spi);
1272 return ERR_PTR(rc);
1273}
1274
d57a4282
GL
1275/**
1276 * of_register_spi_devices() - Register child devices onto the SPI bus
1277 * @master: Pointer to spi_master device
1278 *
1279 * Registers an spi_device for each child node of master node which has a 'reg'
1280 * property.
1281 */
1282static void of_register_spi_devices(struct spi_master *master)
1283{
1284 struct spi_device *spi;
1285 struct device_node *nc;
d57a4282
GL
1286
1287 if (!master->dev.of_node)
1288 return;
1289
f3b6159e 1290 for_each_available_child_of_node(master->dev.of_node, nc) {
aff5e3f8
PA
1291 spi = of_register_spi_device(master, nc);
1292 if (IS_ERR(spi))
1293 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
d57a4282 1294 nc->full_name);
d57a4282
GL
1295 }
1296}
1297#else
1298static void of_register_spi_devices(struct spi_master *master) { }
1299#endif
1300
64bee4d2
MW
1301#ifdef CONFIG_ACPI
1302static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1303{
1304 struct spi_device *spi = data;
1305
1306 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1307 struct acpi_resource_spi_serialbus *sb;
1308
1309 sb = &ares->data.spi_serial_bus;
1310 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1311 spi->chip_select = sb->device_selection;
1312 spi->max_speed_hz = sb->connection_speed;
1313
1314 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1315 spi->mode |= SPI_CPHA;
1316 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1317 spi->mode |= SPI_CPOL;
1318 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1319 spi->mode |= SPI_CS_HIGH;
1320 }
1321 } else if (spi->irq < 0) {
1322 struct resource r;
1323
1324 if (acpi_dev_resource_interrupt(ares, 0, &r))
1325 spi->irq = r.start;
1326 }
1327
1328 /* Always tell the ACPI core to skip this resource */
1329 return 1;
1330}
1331
1332static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1333 void *data, void **return_value)
1334{
1335 struct spi_master *master = data;
1336 struct list_head resource_list;
1337 struct acpi_device *adev;
1338 struct spi_device *spi;
1339 int ret;
1340
1341 if (acpi_bus_get_device(handle, &adev))
1342 return AE_OK;
1343 if (acpi_bus_get_status(adev) || !adev->status.present)
1344 return AE_OK;
1345
1346 spi = spi_alloc_device(master);
1347 if (!spi) {
1348 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1349 dev_name(&adev->dev));
1350 return AE_NO_MEMORY;
1351 }
1352
7b199811 1353 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1354 spi->irq = -1;
1355
1356 INIT_LIST_HEAD(&resource_list);
1357 ret = acpi_dev_get_resources(adev, &resource_list,
1358 acpi_spi_add_resource, spi);
1359 acpi_dev_free_resource_list(&resource_list);
1360
1361 if (ret < 0 || !spi->max_speed_hz) {
1362 spi_dev_put(spi);
1363 return AE_OK;
1364 }
1365
33cf00e5 1366 adev->power.flags.ignore_parent = true;
cf9eb39c 1367 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1368 if (spi_add_device(spi)) {
33cf00e5 1369 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1370 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1371 dev_name(&adev->dev));
1372 spi_dev_put(spi);
1373 }
1374
1375 return AE_OK;
1376}
1377
1378static void acpi_register_spi_devices(struct spi_master *master)
1379{
1380 acpi_status status;
1381 acpi_handle handle;
1382
29896178 1383 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1384 if (!handle)
1385 return;
1386
1387 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1388 acpi_spi_add_device, NULL,
1389 master, NULL);
1390 if (ACPI_FAILURE(status))
1391 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1392}
1393#else
1394static inline void acpi_register_spi_devices(struct spi_master *master) {}
1395#endif /* CONFIG_ACPI */
1396
49dce689 1397static void spi_master_release(struct device *dev)
8ae12a0d
DB
1398{
1399 struct spi_master *master;
1400
49dce689 1401 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1402 kfree(master);
1403}
1404
1405static struct class spi_master_class = {
1406 .name = "spi_master",
1407 .owner = THIS_MODULE,
49dce689 1408 .dev_release = spi_master_release,
8ae12a0d
DB
1409};
1410
1411
ffbbdd21 1412
8ae12a0d
DB
1413/**
1414 * spi_alloc_master - allocate SPI master controller
1415 * @dev: the controller, possibly using the platform_bus
33e34dc6 1416 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1417 * memory is in the driver_data field of the returned device,
0c868461 1418 * accessible with spi_master_get_devdata().
33e34dc6 1419 * Context: can sleep
8ae12a0d
DB
1420 *
1421 * This call is used only by SPI master controller drivers, which are the
1422 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1423 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1424 *
1425 * This must be called from context that can sleep. It returns the SPI
1426 * master structure on success, else NULL.
1427 *
1428 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1429 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1430 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1431 * leak.
8ae12a0d 1432 */
e9d5a461 1433struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1434{
1435 struct spi_master *master;
1436
0c868461
DB
1437 if (!dev)
1438 return NULL;
1439
5fe5f05e 1440 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1441 if (!master)
1442 return NULL;
1443
49dce689 1444 device_initialize(&master->dev);
1e8a52e1
GL
1445 master->bus_num = -1;
1446 master->num_chipselect = 1;
49dce689
TJ
1447 master->dev.class = &spi_master_class;
1448 master->dev.parent = get_device(dev);
0c868461 1449 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1450
1451 return master;
1452}
1453EXPORT_SYMBOL_GPL(spi_alloc_master);
1454
74317984
JCPV
1455#ifdef CONFIG_OF
1456static int of_spi_register_master(struct spi_master *master)
1457{
e80beb27 1458 int nb, i, *cs;
74317984
JCPV
1459 struct device_node *np = master->dev.of_node;
1460
1461 if (!np)
1462 return 0;
1463
1464 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1465 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1466
8ec5d84e
AL
1467 /* Return error only for an incorrectly formed cs-gpios property */
1468 if (nb == 0 || nb == -ENOENT)
74317984 1469 return 0;
8ec5d84e
AL
1470 else if (nb < 0)
1471 return nb;
74317984
JCPV
1472
1473 cs = devm_kzalloc(&master->dev,
1474 sizeof(int) * master->num_chipselect,
1475 GFP_KERNEL);
1476 master->cs_gpios = cs;
1477
1478 if (!master->cs_gpios)
1479 return -ENOMEM;
1480
0da83bb1 1481 for (i = 0; i < master->num_chipselect; i++)
446411e1 1482 cs[i] = -ENOENT;
74317984
JCPV
1483
1484 for (i = 0; i < nb; i++)
1485 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1486
1487 return 0;
1488}
1489#else
1490static int of_spi_register_master(struct spi_master *master)
1491{
1492 return 0;
1493}
1494#endif
1495
8ae12a0d
DB
1496/**
1497 * spi_register_master - register SPI master controller
1498 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1499 * Context: can sleep
8ae12a0d
DB
1500 *
1501 * SPI master controllers connect to their drivers using some non-SPI bus,
1502 * such as the platform bus. The final stage of probe() in that code
1503 * includes calling spi_register_master() to hook up to this SPI bus glue.
1504 *
1505 * SPI controllers use board specific (often SOC specific) bus numbers,
1506 * and board-specific addressing for SPI devices combines those numbers
1507 * with chip select numbers. Since SPI does not directly support dynamic
1508 * device identification, boards need configuration tables telling which
1509 * chip is at which address.
1510 *
1511 * This must be called from context that can sleep. It returns zero on
1512 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1513 * After a successful return, the caller is responsible for calling
1514 * spi_unregister_master().
8ae12a0d 1515 */
e9d5a461 1516int spi_register_master(struct spi_master *master)
8ae12a0d 1517{
e44a45ae 1518 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1519 struct device *dev = master->dev.parent;
2b9603a0 1520 struct boardinfo *bi;
8ae12a0d
DB
1521 int status = -ENODEV;
1522 int dynamic = 0;
1523
0c868461
DB
1524 if (!dev)
1525 return -ENODEV;
1526
74317984
JCPV
1527 status = of_spi_register_master(master);
1528 if (status)
1529 return status;
1530
082c8cb4
DB
1531 /* even if it's just one always-selected device, there must
1532 * be at least one chipselect
1533 */
1534 if (master->num_chipselect == 0)
1535 return -EINVAL;
1536
bb29785e
GL
1537 if ((master->bus_num < 0) && master->dev.of_node)
1538 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1539
8ae12a0d 1540 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1541 if (master->bus_num < 0) {
082c8cb4
DB
1542 /* FIXME switch to an IDR based scheme, something like
1543 * I2C now uses, so we can't run out of "dynamic" IDs
1544 */
8ae12a0d 1545 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1546 dynamic = 1;
8ae12a0d
DB
1547 }
1548
5424d43e
MB
1549 INIT_LIST_HEAD(&master->queue);
1550 spin_lock_init(&master->queue_lock);
cf32b71e
ES
1551 spin_lock_init(&master->bus_lock_spinlock);
1552 mutex_init(&master->bus_lock_mutex);
1553 master->bus_lock_flag = 0;
b158935f 1554 init_completion(&master->xfer_completion);
6ad45a27
MB
1555 if (!master->max_dma_len)
1556 master->max_dma_len = INT_MAX;
cf32b71e 1557
8ae12a0d
DB
1558 /* register the device, then userspace will see it.
1559 * registration fails if the bus ID is in use.
1560 */
35f74fca 1561 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1562 status = device_add(&master->dev);
b885244e 1563 if (status < 0)
8ae12a0d 1564 goto done;
35f74fca 1565 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1566 dynamic ? " (dynamic)" : "");
1567
ffbbdd21
LW
1568 /* If we're using a queued driver, start the queue */
1569 if (master->transfer)
1570 dev_info(dev, "master is unqueued, this is deprecated\n");
1571 else {
1572 status = spi_master_initialize_queue(master);
1573 if (status) {
e93b0724 1574 device_del(&master->dev);
ffbbdd21
LW
1575 goto done;
1576 }
1577 }
1578
2b9603a0
FT
1579 mutex_lock(&board_lock);
1580 list_add_tail(&master->list, &spi_master_list);
1581 list_for_each_entry(bi, &board_list, list)
1582 spi_match_master_to_boardinfo(master, &bi->board_info);
1583 mutex_unlock(&board_lock);
1584
64bee4d2 1585 /* Register devices from the device tree and ACPI */
12b15e83 1586 of_register_spi_devices(master);
64bee4d2 1587 acpi_register_spi_devices(master);
8ae12a0d
DB
1588done:
1589 return status;
1590}
1591EXPORT_SYMBOL_GPL(spi_register_master);
1592
666d5b4c
MB
1593static void devm_spi_unregister(struct device *dev, void *res)
1594{
1595 spi_unregister_master(*(struct spi_master **)res);
1596}
1597
1598/**
1599 * dev_spi_register_master - register managed SPI master controller
1600 * @dev: device managing SPI master
1601 * @master: initialized master, originally from spi_alloc_master()
1602 * Context: can sleep
1603 *
1604 * Register a SPI device as with spi_register_master() which will
1605 * automatically be unregister
1606 */
1607int devm_spi_register_master(struct device *dev, struct spi_master *master)
1608{
1609 struct spi_master **ptr;
1610 int ret;
1611
1612 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1613 if (!ptr)
1614 return -ENOMEM;
1615
1616 ret = spi_register_master(master);
4b92894e 1617 if (!ret) {
666d5b4c
MB
1618 *ptr = master;
1619 devres_add(dev, ptr);
1620 } else {
1621 devres_free(ptr);
1622 }
1623
1624 return ret;
1625}
1626EXPORT_SYMBOL_GPL(devm_spi_register_master);
1627
34860089 1628static int __unregister(struct device *dev, void *null)
8ae12a0d 1629{
34860089 1630 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1631 return 0;
1632}
1633
1634/**
1635 * spi_unregister_master - unregister SPI master controller
1636 * @master: the master being unregistered
33e34dc6 1637 * Context: can sleep
8ae12a0d
DB
1638 *
1639 * This call is used only by SPI master controller drivers, which are the
1640 * only ones directly touching chip registers.
1641 *
1642 * This must be called from context that can sleep.
1643 */
1644void spi_unregister_master(struct spi_master *master)
1645{
89fc9a1a
JG
1646 int dummy;
1647
ffbbdd21
LW
1648 if (master->queued) {
1649 if (spi_destroy_queue(master))
1650 dev_err(&master->dev, "queue remove failed\n");
1651 }
1652
2b9603a0
FT
1653 mutex_lock(&board_lock);
1654 list_del(&master->list);
1655 mutex_unlock(&board_lock);
1656
97dbf37d 1657 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1658 device_unregister(&master->dev);
8ae12a0d
DB
1659}
1660EXPORT_SYMBOL_GPL(spi_unregister_master);
1661
ffbbdd21
LW
1662int spi_master_suspend(struct spi_master *master)
1663{
1664 int ret;
1665
1666 /* Basically no-ops for non-queued masters */
1667 if (!master->queued)
1668 return 0;
1669
1670 ret = spi_stop_queue(master);
1671 if (ret)
1672 dev_err(&master->dev, "queue stop failed\n");
1673
1674 return ret;
1675}
1676EXPORT_SYMBOL_GPL(spi_master_suspend);
1677
1678int spi_master_resume(struct spi_master *master)
1679{
1680 int ret;
1681
1682 if (!master->queued)
1683 return 0;
1684
1685 ret = spi_start_queue(master);
1686 if (ret)
1687 dev_err(&master->dev, "queue restart failed\n");
1688
1689 return ret;
1690}
1691EXPORT_SYMBOL_GPL(spi_master_resume);
1692
9f3b795a 1693static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1694{
1695 struct spi_master *m;
9f3b795a 1696 const u16 *bus_num = data;
5ed2c832
DY
1697
1698 m = container_of(dev, struct spi_master, dev);
1699 return m->bus_num == *bus_num;
1700}
1701
8ae12a0d
DB
1702/**
1703 * spi_busnum_to_master - look up master associated with bus_num
1704 * @bus_num: the master's bus number
33e34dc6 1705 * Context: can sleep
8ae12a0d
DB
1706 *
1707 * This call may be used with devices that are registered after
1708 * arch init time. It returns a refcounted pointer to the relevant
1709 * spi_master (which the caller must release), or NULL if there is
1710 * no such master registered.
1711 */
1712struct spi_master *spi_busnum_to_master(u16 bus_num)
1713{
49dce689 1714 struct device *dev;
1e9a51dc 1715 struct spi_master *master = NULL;
5ed2c832 1716
695794ae 1717 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1718 __spi_master_match);
1719 if (dev)
1720 master = container_of(dev, struct spi_master, dev);
1721 /* reference got in class_find_device */
1e9a51dc 1722 return master;
8ae12a0d
DB
1723}
1724EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1725
1726
1727/*-------------------------------------------------------------------------*/
1728
7d077197
DB
1729/* Core methods for SPI master protocol drivers. Some of the
1730 * other core methods are currently defined as inline functions.
1731 */
1732
1733/**
1734 * spi_setup - setup SPI mode and clock rate
1735 * @spi: the device whose settings are being modified
1736 * Context: can sleep, and no requests are queued to the device
1737 *
1738 * SPI protocol drivers may need to update the transfer mode if the
1739 * device doesn't work with its default. They may likewise need
1740 * to update clock rates or word sizes from initial values. This function
1741 * changes those settings, and must be called from a context that can sleep.
1742 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1743 * effect the next time the device is selected and data is transferred to
1744 * or from it. When this function returns, the spi device is deselected.
1745 *
1746 * Note that this call will fail if the protocol driver specifies an option
1747 * that the underlying controller or its driver does not support. For
1748 * example, not all hardware supports wire transfers using nine bit words,
1749 * LSB-first wire encoding, or active-high chipselects.
1750 */
1751int spi_setup(struct spi_device *spi)
1752{
83596fbe 1753 unsigned bad_bits, ugly_bits;
caae070c 1754 int status = 0;
7d077197 1755
f477b7fb 1756 /* check mode to prevent that DUAL and QUAD set at the same time
1757 */
1758 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1759 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1760 dev_err(&spi->dev,
1761 "setup: can not select dual and quad at the same time\n");
1762 return -EINVAL;
1763 }
1764 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1765 */
1766 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1767 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1768 return -EINVAL;
e7db06b5
DB
1769 /* help drivers fail *cleanly* when they need options
1770 * that aren't supported with their current master
1771 */
1772 bad_bits = spi->mode & ~spi->master->mode_bits;
83596fbe
GU
1773 ugly_bits = bad_bits &
1774 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1775 if (ugly_bits) {
1776 dev_warn(&spi->dev,
1777 "setup: ignoring unsupported mode bits %x\n",
1778 ugly_bits);
1779 spi->mode &= ~ugly_bits;
1780 bad_bits &= ~ugly_bits;
1781 }
e7db06b5 1782 if (bad_bits) {
eb288a1f 1783 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1784 bad_bits);
1785 return -EINVAL;
1786 }
1787
7d077197
DB
1788 if (!spi->bits_per_word)
1789 spi->bits_per_word = 8;
1790
052eb2d4
AL
1791 if (!spi->max_speed_hz)
1792 spi->max_speed_hz = spi->master->max_speed_hz;
1793
1a7b7ee7
II
1794 spi_set_cs(spi, false);
1795
caae070c
LD
1796 if (spi->master->setup)
1797 status = spi->master->setup(spi);
7d077197 1798
5fe5f05e 1799 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1800 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1801 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1802 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1803 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1804 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1805 spi->bits_per_word, spi->max_speed_hz,
1806 status);
1807
1808 return status;
1809}
1810EXPORT_SYMBOL_GPL(spi_setup);
1811
90808738 1812static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
1813{
1814 struct spi_master *master = spi->master;
e6811d1d 1815 struct spi_transfer *xfer;
6ea31293 1816 int w_size;
cf32b71e 1817
24a0013a
MB
1818 if (list_empty(&message->transfers))
1819 return -EINVAL;
24a0013a 1820
cf32b71e
ES
1821 /* Half-duplex links include original MicroWire, and ones with
1822 * only one data pin like SPI_3WIRE (switches direction) or where
1823 * either MOSI or MISO is missing. They can also be caused by
1824 * software limitations.
1825 */
1826 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1827 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1828 unsigned flags = master->flags;
1829
1830 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1831 if (xfer->rx_buf && xfer->tx_buf)
1832 return -EINVAL;
1833 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1834 return -EINVAL;
1835 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1836 return -EINVAL;
1837 }
1838 }
1839
e6811d1d 1840 /**
059b8ffe
LD
1841 * Set transfer bits_per_word and max speed as spi device default if
1842 * it is not set for this transfer.
f477b7fb 1843 * Set transfer tx_nbits and rx_nbits as single transfer default
1844 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1845 */
1846 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1847 message->frame_length += xfer->len;
e6811d1d
LD
1848 if (!xfer->bits_per_word)
1849 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
1850
1851 if (!xfer->speed_hz)
059b8ffe 1852 xfer->speed_hz = spi->max_speed_hz;
a6f87fad
AL
1853
1854 if (master->max_speed_hz &&
1855 xfer->speed_hz > master->max_speed_hz)
1856 xfer->speed_hz = master->max_speed_hz;
56ede94a 1857
543bb255
SW
1858 if (master->bits_per_word_mask) {
1859 /* Only 32 bits fit in the mask */
1860 if (xfer->bits_per_word > 32)
1861 return -EINVAL;
1862 if (!(master->bits_per_word_mask &
1863 BIT(xfer->bits_per_word - 1)))
1864 return -EINVAL;
1865 }
a2fd4f9f 1866
4d94bd21
II
1867 /*
1868 * SPI transfer length should be multiple of SPI word size
1869 * where SPI word size should be power-of-two multiple
1870 */
1871 if (xfer->bits_per_word <= 8)
1872 w_size = 1;
1873 else if (xfer->bits_per_word <= 16)
1874 w_size = 2;
1875 else
1876 w_size = 4;
1877
4d94bd21 1878 /* No partial transfers accepted */
6ea31293 1879 if (xfer->len % w_size)
4d94bd21
II
1880 return -EINVAL;
1881
a2fd4f9f
MB
1882 if (xfer->speed_hz && master->min_speed_hz &&
1883 xfer->speed_hz < master->min_speed_hz)
1884 return -EINVAL;
f477b7fb 1885
1886 if (xfer->tx_buf && !xfer->tx_nbits)
1887 xfer->tx_nbits = SPI_NBITS_SINGLE;
1888 if (xfer->rx_buf && !xfer->rx_nbits)
1889 xfer->rx_nbits = SPI_NBITS_SINGLE;
1890 /* check transfer tx/rx_nbits:
1afd9989
GU
1891 * 1. check the value matches one of single, dual and quad
1892 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 1893 */
db90a441
SP
1894 if (xfer->tx_buf) {
1895 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1896 xfer->tx_nbits != SPI_NBITS_DUAL &&
1897 xfer->tx_nbits != SPI_NBITS_QUAD)
1898 return -EINVAL;
1899 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1900 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1901 return -EINVAL;
1902 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1903 !(spi->mode & SPI_TX_QUAD))
1904 return -EINVAL;
db90a441 1905 }
f477b7fb 1906 /* check transfer rx_nbits */
db90a441
SP
1907 if (xfer->rx_buf) {
1908 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1909 xfer->rx_nbits != SPI_NBITS_DUAL &&
1910 xfer->rx_nbits != SPI_NBITS_QUAD)
1911 return -EINVAL;
1912 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1913 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1914 return -EINVAL;
1915 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1916 !(spi->mode & SPI_RX_QUAD))
1917 return -EINVAL;
db90a441 1918 }
e6811d1d
LD
1919 }
1920
cf32b71e 1921 message->status = -EINPROGRESS;
90808738
MB
1922
1923 return 0;
1924}
1925
1926static int __spi_async(struct spi_device *spi, struct spi_message *message)
1927{
1928 struct spi_master *master = spi->master;
1929
1930 message->spi = spi;
1931
1932 trace_spi_message_submit(message);
1933
cf32b71e
ES
1934 return master->transfer(spi, message);
1935}
1936
568d0697
DB
1937/**
1938 * spi_async - asynchronous SPI transfer
1939 * @spi: device with which data will be exchanged
1940 * @message: describes the data transfers, including completion callback
1941 * Context: any (irqs may be blocked, etc)
1942 *
1943 * This call may be used in_irq and other contexts which can't sleep,
1944 * as well as from task contexts which can sleep.
1945 *
1946 * The completion callback is invoked in a context which can't sleep.
1947 * Before that invocation, the value of message->status is undefined.
1948 * When the callback is issued, message->status holds either zero (to
1949 * indicate complete success) or a negative error code. After that
1950 * callback returns, the driver which issued the transfer request may
1951 * deallocate the associated memory; it's no longer in use by any SPI
1952 * core or controller driver code.
1953 *
1954 * Note that although all messages to a spi_device are handled in
1955 * FIFO order, messages may go to different devices in other orders.
1956 * Some device might be higher priority, or have various "hard" access
1957 * time requirements, for example.
1958 *
1959 * On detection of any fault during the transfer, processing of
1960 * the entire message is aborted, and the device is deselected.
1961 * Until returning from the associated message completion callback,
1962 * no other spi_message queued to that device will be processed.
1963 * (This rule applies equally to all the synchronous transfer calls,
1964 * which are wrappers around this core asynchronous primitive.)
1965 */
1966int spi_async(struct spi_device *spi, struct spi_message *message)
1967{
1968 struct spi_master *master = spi->master;
cf32b71e
ES
1969 int ret;
1970 unsigned long flags;
568d0697 1971
90808738
MB
1972 ret = __spi_validate(spi, message);
1973 if (ret != 0)
1974 return ret;
1975
cf32b71e 1976 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1977
cf32b71e
ES
1978 if (master->bus_lock_flag)
1979 ret = -EBUSY;
1980 else
1981 ret = __spi_async(spi, message);
568d0697 1982
cf32b71e
ES
1983 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1984
1985 return ret;
568d0697
DB
1986}
1987EXPORT_SYMBOL_GPL(spi_async);
1988
cf32b71e
ES
1989/**
1990 * spi_async_locked - version of spi_async with exclusive bus usage
1991 * @spi: device with which data will be exchanged
1992 * @message: describes the data transfers, including completion callback
1993 * Context: any (irqs may be blocked, etc)
1994 *
1995 * This call may be used in_irq and other contexts which can't sleep,
1996 * as well as from task contexts which can sleep.
1997 *
1998 * The completion callback is invoked in a context which can't sleep.
1999 * Before that invocation, the value of message->status is undefined.
2000 * When the callback is issued, message->status holds either zero (to
2001 * indicate complete success) or a negative error code. After that
2002 * callback returns, the driver which issued the transfer request may
2003 * deallocate the associated memory; it's no longer in use by any SPI
2004 * core or controller driver code.
2005 *
2006 * Note that although all messages to a spi_device are handled in
2007 * FIFO order, messages may go to different devices in other orders.
2008 * Some device might be higher priority, or have various "hard" access
2009 * time requirements, for example.
2010 *
2011 * On detection of any fault during the transfer, processing of
2012 * the entire message is aborted, and the device is deselected.
2013 * Until returning from the associated message completion callback,
2014 * no other spi_message queued to that device will be processed.
2015 * (This rule applies equally to all the synchronous transfer calls,
2016 * which are wrappers around this core asynchronous primitive.)
2017 */
2018int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2019{
2020 struct spi_master *master = spi->master;
2021 int ret;
2022 unsigned long flags;
2023
90808738
MB
2024 ret = __spi_validate(spi, message);
2025 if (ret != 0)
2026 return ret;
2027
cf32b71e
ES
2028 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2029
2030 ret = __spi_async(spi, message);
2031
2032 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2033
2034 return ret;
2035
2036}
2037EXPORT_SYMBOL_GPL(spi_async_locked);
2038
7d077197
DB
2039
2040/*-------------------------------------------------------------------------*/
2041
2042/* Utility methods for SPI master protocol drivers, layered on
2043 * top of the core. Some other utility methods are defined as
2044 * inline functions.
2045 */
2046
5d870c8e
AM
2047static void spi_complete(void *arg)
2048{
2049 complete(arg);
2050}
2051
cf32b71e
ES
2052static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2053 int bus_locked)
2054{
2055 DECLARE_COMPLETION_ONSTACK(done);
2056 int status;
2057 struct spi_master *master = spi->master;
0461a414
MB
2058 unsigned long flags;
2059
2060 status = __spi_validate(spi, message);
2061 if (status != 0)
2062 return status;
cf32b71e
ES
2063
2064 message->complete = spi_complete;
2065 message->context = &done;
0461a414 2066 message->spi = spi;
cf32b71e
ES
2067
2068 if (!bus_locked)
2069 mutex_lock(&master->bus_lock_mutex);
2070
0461a414
MB
2071 /* If we're not using the legacy transfer method then we will
2072 * try to transfer in the calling context so special case.
2073 * This code would be less tricky if we could remove the
2074 * support for driver implemented message queues.
2075 */
2076 if (master->transfer == spi_queued_transfer) {
2077 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2078
2079 trace_spi_message_submit(message);
2080
2081 status = __spi_queued_transfer(spi, message, false);
2082
2083 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2084 } else {
2085 status = spi_async_locked(spi, message);
2086 }
cf32b71e
ES
2087
2088 if (!bus_locked)
2089 mutex_unlock(&master->bus_lock_mutex);
2090
2091 if (status == 0) {
0461a414
MB
2092 /* Push out the messages in the calling context if we
2093 * can.
2094 */
2095 if (master->transfer == spi_queued_transfer)
fc9e0f71 2096 __spi_pump_messages(master, false);
0461a414 2097
cf32b71e
ES
2098 wait_for_completion(&done);
2099 status = message->status;
2100 }
2101 message->context = NULL;
2102 return status;
2103}
2104
8ae12a0d
DB
2105/**
2106 * spi_sync - blocking/synchronous SPI data transfers
2107 * @spi: device with which data will be exchanged
2108 * @message: describes the data transfers
33e34dc6 2109 * Context: can sleep
8ae12a0d
DB
2110 *
2111 * This call may only be used from a context that may sleep. The sleep
2112 * is non-interruptible, and has no timeout. Low-overhead controller
2113 * drivers may DMA directly into and out of the message buffers.
2114 *
2115 * Note that the SPI device's chip select is active during the message,
2116 * and then is normally disabled between messages. Drivers for some
2117 * frequently-used devices may want to minimize costs of selecting a chip,
2118 * by leaving it selected in anticipation that the next message will go
2119 * to the same chip. (That may increase power usage.)
2120 *
0c868461
DB
2121 * Also, the caller is guaranteeing that the memory associated with the
2122 * message will not be freed before this call returns.
2123 *
9b938b74 2124 * It returns zero on success, else a negative error code.
8ae12a0d
DB
2125 */
2126int spi_sync(struct spi_device *spi, struct spi_message *message)
2127{
cf32b71e 2128 return __spi_sync(spi, message, 0);
8ae12a0d
DB
2129}
2130EXPORT_SYMBOL_GPL(spi_sync);
2131
cf32b71e
ES
2132/**
2133 * spi_sync_locked - version of spi_sync with exclusive bus usage
2134 * @spi: device with which data will be exchanged
2135 * @message: describes the data transfers
2136 * Context: can sleep
2137 *
2138 * This call may only be used from a context that may sleep. The sleep
2139 * is non-interruptible, and has no timeout. Low-overhead controller
2140 * drivers may DMA directly into and out of the message buffers.
2141 *
2142 * This call should be used by drivers that require exclusive access to the
25985edc 2143 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
2144 * be released by a spi_bus_unlock call when the exclusive access is over.
2145 *
2146 * It returns zero on success, else a negative error code.
2147 */
2148int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2149{
2150 return __spi_sync(spi, message, 1);
2151}
2152EXPORT_SYMBOL_GPL(spi_sync_locked);
2153
2154/**
2155 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2156 * @master: SPI bus master that should be locked for exclusive bus access
2157 * Context: can sleep
2158 *
2159 * This call may only be used from a context that may sleep. The sleep
2160 * is non-interruptible, and has no timeout.
2161 *
2162 * This call should be used by drivers that require exclusive access to the
2163 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2164 * exclusive access is over. Data transfer must be done by spi_sync_locked
2165 * and spi_async_locked calls when the SPI bus lock is held.
2166 *
2167 * It returns zero on success, else a negative error code.
2168 */
2169int spi_bus_lock(struct spi_master *master)
2170{
2171 unsigned long flags;
2172
2173 mutex_lock(&master->bus_lock_mutex);
2174
2175 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2176 master->bus_lock_flag = 1;
2177 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2178
2179 /* mutex remains locked until spi_bus_unlock is called */
2180
2181 return 0;
2182}
2183EXPORT_SYMBOL_GPL(spi_bus_lock);
2184
2185/**
2186 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2187 * @master: SPI bus master that was locked for exclusive bus access
2188 * Context: can sleep
2189 *
2190 * This call may only be used from a context that may sleep. The sleep
2191 * is non-interruptible, and has no timeout.
2192 *
2193 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2194 * call.
2195 *
2196 * It returns zero on success, else a negative error code.
2197 */
2198int spi_bus_unlock(struct spi_master *master)
2199{
2200 master->bus_lock_flag = 0;
2201
2202 mutex_unlock(&master->bus_lock_mutex);
2203
2204 return 0;
2205}
2206EXPORT_SYMBOL_GPL(spi_bus_unlock);
2207
a9948b61 2208/* portable code must never pass more than 32 bytes */
5fe5f05e 2209#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2210
2211static u8 *buf;
2212
2213/**
2214 * spi_write_then_read - SPI synchronous write followed by read
2215 * @spi: device with which data will be exchanged
2216 * @txbuf: data to be written (need not be dma-safe)
2217 * @n_tx: size of txbuf, in bytes
27570497
JP
2218 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2219 * @n_rx: size of rxbuf, in bytes
33e34dc6 2220 * Context: can sleep
8ae12a0d
DB
2221 *
2222 * This performs a half duplex MicroWire style transaction with the
2223 * device, sending txbuf and then reading rxbuf. The return value
2224 * is zero for success, else a negative errno status code.
b885244e 2225 * This call may only be used from a context that may sleep.
8ae12a0d 2226 *
0c868461 2227 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2228 * portable code should never use this for more than 32 bytes.
2229 * Performance-sensitive or bulk transfer code should instead use
0c868461 2230 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
2231 */
2232int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2233 const void *txbuf, unsigned n_tx,
2234 void *rxbuf, unsigned n_rx)
8ae12a0d 2235{
068f4070 2236 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2237
2238 int status;
2239 struct spi_message message;
bdff549e 2240 struct spi_transfer x[2];
8ae12a0d
DB
2241 u8 *local_buf;
2242
b3a223ee
MB
2243 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2244 * copying here, (as a pure convenience thing), but we can
2245 * keep heap costs out of the hot path unless someone else is
2246 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2247 */
b3a223ee 2248 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2249 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2250 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2251 if (!local_buf)
2252 return -ENOMEM;
2253 } else {
2254 local_buf = buf;
2255 }
8ae12a0d 2256
8275c642 2257 spi_message_init(&message);
5fe5f05e 2258 memset(x, 0, sizeof(x));
bdff549e
DB
2259 if (n_tx) {
2260 x[0].len = n_tx;
2261 spi_message_add_tail(&x[0], &message);
2262 }
2263 if (n_rx) {
2264 x[1].len = n_rx;
2265 spi_message_add_tail(&x[1], &message);
2266 }
8275c642 2267
8ae12a0d 2268 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2269 x[0].tx_buf = local_buf;
2270 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2271
2272 /* do the i/o */
8ae12a0d 2273 status = spi_sync(spi, &message);
9b938b74 2274 if (status == 0)
bdff549e 2275 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2276
bdff549e 2277 if (x[0].tx_buf == buf)
068f4070 2278 mutex_unlock(&lock);
8ae12a0d
DB
2279 else
2280 kfree(local_buf);
2281
2282 return status;
2283}
2284EXPORT_SYMBOL_GPL(spi_write_then_read);
2285
2286/*-------------------------------------------------------------------------*/
2287
ce79d54a
PA
2288#if IS_ENABLED(CONFIG_OF_DYNAMIC)
2289static int __spi_of_device_match(struct device *dev, void *data)
2290{
2291 return dev->of_node == data;
2292}
2293
2294/* must call put_device() when done with returned spi_device device */
2295static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2296{
2297 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2298 __spi_of_device_match);
2299 return dev ? to_spi_device(dev) : NULL;
2300}
2301
2302static int __spi_of_master_match(struct device *dev, const void *data)
2303{
2304 return dev->of_node == data;
2305}
2306
2307/* the spi masters are not using spi_bus, so we find it with another way */
2308static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2309{
2310 struct device *dev;
2311
2312 dev = class_find_device(&spi_master_class, NULL, node,
2313 __spi_of_master_match);
2314 if (!dev)
2315 return NULL;
2316
2317 /* reference got in class_find_device */
2318 return container_of(dev, struct spi_master, dev);
2319}
2320
2321static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2322 void *arg)
2323{
2324 struct of_reconfig_data *rd = arg;
2325 struct spi_master *master;
2326 struct spi_device *spi;
2327
2328 switch (of_reconfig_get_state_change(action, arg)) {
2329 case OF_RECONFIG_CHANGE_ADD:
2330 master = of_find_spi_master_by_node(rd->dn->parent);
2331 if (master == NULL)
2332 return NOTIFY_OK; /* not for us */
2333
2334 spi = of_register_spi_device(master, rd->dn);
2335 put_device(&master->dev);
2336
2337 if (IS_ERR(spi)) {
2338 pr_err("%s: failed to create for '%s'\n",
2339 __func__, rd->dn->full_name);
2340 return notifier_from_errno(PTR_ERR(spi));
2341 }
2342 break;
2343
2344 case OF_RECONFIG_CHANGE_REMOVE:
2345 /* find our device by node */
2346 spi = of_find_spi_device_by_node(rd->dn);
2347 if (spi == NULL)
2348 return NOTIFY_OK; /* no? not meant for us */
2349
2350 /* unregister takes one ref away */
2351 spi_unregister_device(spi);
2352
2353 /* and put the reference of the find */
2354 put_device(&spi->dev);
2355 break;
2356 }
2357
2358 return NOTIFY_OK;
2359}
2360
2361static struct notifier_block spi_of_notifier = {
2362 .notifier_call = of_spi_notify,
2363};
2364#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2365extern struct notifier_block spi_of_notifier;
2366#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2367
8ae12a0d
DB
2368static int __init spi_init(void)
2369{
b885244e
DB
2370 int status;
2371
e94b1766 2372 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2373 if (!buf) {
2374 status = -ENOMEM;
2375 goto err0;
2376 }
2377
2378 status = bus_register(&spi_bus_type);
2379 if (status < 0)
2380 goto err1;
8ae12a0d 2381
b885244e
DB
2382 status = class_register(&spi_master_class);
2383 if (status < 0)
2384 goto err2;
ce79d54a 2385
5267720e 2386 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a
PA
2387 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2388
8ae12a0d 2389 return 0;
b885244e
DB
2390
2391err2:
2392 bus_unregister(&spi_bus_type);
2393err1:
2394 kfree(buf);
2395 buf = NULL;
2396err0:
2397 return status;
8ae12a0d 2398}
b885244e 2399
8ae12a0d
DB
2400/* board_info is normally registered in arch_initcall(),
2401 * but even essential drivers wait till later
b885244e
DB
2402 *
2403 * REVISIT only boardinfo really needs static linking. the rest (device and
2404 * driver registration) _could_ be dynamically linked (modular) ... costs
2405 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2406 */
673c0c00 2407postcore_initcall(spi_init);
8ae12a0d 2408