]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/spi/spi.c
spi: Correct set_cs() documentation
[mirror_ubuntu-hirsute-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
56ec1978
MB
42#define CREATE_TRACE_POINTS
43#include <trace/events/spi.h>
44
8ae12a0d
DB
45static void spidev_release(struct device *dev)
46{
0ffa0285 47 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
0c868461 53 spi_master_put(spi->master);
07a389fe 54 kfree(spi);
8ae12a0d
DB
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60 const struct spi_device *spi = to_spi_device(dev);
61
d8e328b3 62 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 63}
aa7da564 64static DEVICE_ATTR_RO(modalias);
8ae12a0d 65
aa7da564
GKH
66static struct attribute *spi_dev_attrs[] = {
67 &dev_attr_modalias.attr,
68 NULL,
8ae12a0d 69};
aa7da564 70ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
71
72/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
73 * and the sysfs version makes coldplug work too.
74 */
75
75368bf6
AV
76static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
77 const struct spi_device *sdev)
78{
79 while (id->name[0]) {
80 if (!strcmp(sdev->modalias, id->name))
81 return id;
82 id++;
83 }
84 return NULL;
85}
86
87const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
88{
89 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
90
91 return spi_match_id(sdrv->id_table, sdev);
92}
93EXPORT_SYMBOL_GPL(spi_get_device_id);
94
8ae12a0d
DB
95static int spi_match_device(struct device *dev, struct device_driver *drv)
96{
97 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
98 const struct spi_driver *sdrv = to_spi_driver(drv);
99
2b7a32f7
SA
100 /* Attempt an OF style match */
101 if (of_driver_match_device(dev, drv))
102 return 1;
103
64bee4d2
MW
104 /* Then try ACPI */
105 if (acpi_driver_match_device(dev, drv))
106 return 1;
107
75368bf6
AV
108 if (sdrv->id_table)
109 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 110
35f74fca 111 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
112}
113
7eff2e7a 114static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
115{
116 const struct spi_device *spi = to_spi_device(dev);
117
e0626e38 118 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
119 return 0;
120}
121
3ae22e8c
MB
122#ifdef CONFIG_PM_SLEEP
123static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 124{
3c72426f 125 int value = 0;
b885244e 126 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 127
8ae12a0d 128 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
129 if (drv) {
130 if (drv->suspend)
131 value = drv->suspend(to_spi_device(dev), message);
132 else
133 dev_dbg(dev, "... can't suspend\n");
134 }
8ae12a0d
DB
135 return value;
136}
137
3ae22e8c 138static int spi_legacy_resume(struct device *dev)
8ae12a0d 139{
3c72426f 140 int value = 0;
b885244e 141 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 142
8ae12a0d 143 /* resume may restart the i/o queue */
3c72426f
DB
144 if (drv) {
145 if (drv->resume)
146 value = drv->resume(to_spi_device(dev));
147 else
148 dev_dbg(dev, "... can't resume\n");
149 }
8ae12a0d
DB
150 return value;
151}
152
3ae22e8c
MB
153static int spi_pm_suspend(struct device *dev)
154{
155 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
156
157 if (pm)
158 return pm_generic_suspend(dev);
159 else
160 return spi_legacy_suspend(dev, PMSG_SUSPEND);
161}
162
163static int spi_pm_resume(struct device *dev)
164{
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_resume(dev);
169 else
170 return spi_legacy_resume(dev);
171}
172
173static int spi_pm_freeze(struct device *dev)
174{
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_freeze(dev);
179 else
180 return spi_legacy_suspend(dev, PMSG_FREEZE);
181}
182
183static int spi_pm_thaw(struct device *dev)
184{
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_thaw(dev);
189 else
190 return spi_legacy_resume(dev);
191}
192
193static int spi_pm_poweroff(struct device *dev)
194{
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_poweroff(dev);
199 else
200 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
201}
202
203static int spi_pm_restore(struct device *dev)
204{
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_restore(dev);
209 else
210 return spi_legacy_resume(dev);
211}
8ae12a0d 212#else
3ae22e8c
MB
213#define spi_pm_suspend NULL
214#define spi_pm_resume NULL
215#define spi_pm_freeze NULL
216#define spi_pm_thaw NULL
217#define spi_pm_poweroff NULL
218#define spi_pm_restore NULL
8ae12a0d
DB
219#endif
220
3ae22e8c
MB
221static const struct dev_pm_ops spi_pm = {
222 .suspend = spi_pm_suspend,
223 .resume = spi_pm_resume,
224 .freeze = spi_pm_freeze,
225 .thaw = spi_pm_thaw,
226 .poweroff = spi_pm_poweroff,
227 .restore = spi_pm_restore,
228 SET_RUNTIME_PM_OPS(
229 pm_generic_runtime_suspend,
230 pm_generic_runtime_resume,
45f0a85c 231 NULL
3ae22e8c
MB
232 )
233};
234
8ae12a0d
DB
235struct bus_type spi_bus_type = {
236 .name = "spi",
aa7da564 237 .dev_groups = spi_dev_groups,
8ae12a0d
DB
238 .match = spi_match_device,
239 .uevent = spi_uevent,
3ae22e8c 240 .pm = &spi_pm,
8ae12a0d
DB
241};
242EXPORT_SYMBOL_GPL(spi_bus_type);
243
b885244e
DB
244
245static int spi_drv_probe(struct device *dev)
246{
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
248 struct spi_device *spi = to_spi_device(dev);
249 int ret;
250
251 acpi_dev_pm_attach(&spi->dev, true);
252 ret = sdrv->probe(spi);
253 if (ret)
254 acpi_dev_pm_detach(&spi->dev, true);
b885244e 255
33cf00e5 256 return ret;
b885244e
DB
257}
258
259static int spi_drv_remove(struct device *dev)
260{
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
262 struct spi_device *spi = to_spi_device(dev);
263 int ret;
264
265 ret = sdrv->remove(spi);
266 acpi_dev_pm_detach(&spi->dev, true);
b885244e 267
33cf00e5 268 return ret;
b885244e
DB
269}
270
271static void spi_drv_shutdown(struct device *dev)
272{
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
274
275 sdrv->shutdown(to_spi_device(dev));
276}
277
33e34dc6
DB
278/**
279 * spi_register_driver - register a SPI driver
280 * @sdrv: the driver to register
281 * Context: can sleep
282 */
b885244e
DB
283int spi_register_driver(struct spi_driver *sdrv)
284{
285 sdrv->driver.bus = &spi_bus_type;
286 if (sdrv->probe)
287 sdrv->driver.probe = spi_drv_probe;
288 if (sdrv->remove)
289 sdrv->driver.remove = spi_drv_remove;
290 if (sdrv->shutdown)
291 sdrv->driver.shutdown = spi_drv_shutdown;
292 return driver_register(&sdrv->driver);
293}
294EXPORT_SYMBOL_GPL(spi_register_driver);
295
8ae12a0d
DB
296/*-------------------------------------------------------------------------*/
297
298/* SPI devices should normally not be created by SPI device drivers; that
299 * would make them board-specific. Similarly with SPI master drivers.
300 * Device registration normally goes into like arch/.../mach.../board-YYY.c
301 * with other readonly (flashable) information about mainboard devices.
302 */
303
304struct boardinfo {
305 struct list_head list;
2b9603a0 306 struct spi_board_info board_info;
8ae12a0d
DB
307};
308
309static LIST_HEAD(board_list);
2b9603a0
FT
310static LIST_HEAD(spi_master_list);
311
312/*
313 * Used to protect add/del opertion for board_info list and
314 * spi_master list, and their matching process
315 */
94040828 316static DEFINE_MUTEX(board_lock);
8ae12a0d 317
dc87c98e
GL
318/**
319 * spi_alloc_device - Allocate a new SPI device
320 * @master: Controller to which device is connected
321 * Context: can sleep
322 *
323 * Allows a driver to allocate and initialize a spi_device without
324 * registering it immediately. This allows a driver to directly
325 * fill the spi_device with device parameters before calling
326 * spi_add_device() on it.
327 *
328 * Caller is responsible to call spi_add_device() on the returned
329 * spi_device structure to add it to the SPI master. If the caller
330 * needs to discard the spi_device without adding it, then it should
331 * call spi_dev_put() on it.
332 *
333 * Returns a pointer to the new device, or NULL.
334 */
335struct spi_device *spi_alloc_device(struct spi_master *master)
336{
337 struct spi_device *spi;
338 struct device *dev = master->dev.parent;
339
340 if (!spi_master_get(master))
341 return NULL;
342
5fe5f05e 343 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
344 if (!spi) {
345 dev_err(dev, "cannot alloc spi_device\n");
346 spi_master_put(master);
347 return NULL;
348 }
349
350 spi->master = master;
178db7d3 351 spi->dev.parent = &master->dev;
dc87c98e
GL
352 spi->dev.bus = &spi_bus_type;
353 spi->dev.release = spidev_release;
446411e1 354 spi->cs_gpio = -ENOENT;
dc87c98e
GL
355 device_initialize(&spi->dev);
356 return spi;
357}
358EXPORT_SYMBOL_GPL(spi_alloc_device);
359
e13ac47b
JN
360static void spi_dev_set_name(struct spi_device *spi)
361{
362 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
363
364 if (adev) {
365 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
366 return;
367 }
368
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
371}
372
b6fb8d3a
MW
373static int spi_dev_check(struct device *dev, void *data)
374{
375 struct spi_device *spi = to_spi_device(dev);
376 struct spi_device *new_spi = data;
377
378 if (spi->master == new_spi->master &&
379 spi->chip_select == new_spi->chip_select)
380 return -EBUSY;
381 return 0;
382}
383
dc87c98e
GL
384/**
385 * spi_add_device - Add spi_device allocated with spi_alloc_device
386 * @spi: spi_device to register
387 *
388 * Companion function to spi_alloc_device. Devices allocated with
389 * spi_alloc_device can be added onto the spi bus with this function.
390 *
e48880e0 391 * Returns 0 on success; negative errno on failure
dc87c98e
GL
392 */
393int spi_add_device(struct spi_device *spi)
394{
e48880e0 395 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
396 struct spi_master *master = spi->master;
397 struct device *dev = master->dev.parent;
dc87c98e
GL
398 int status;
399
400 /* Chipselects are numbered 0..max; validate. */
74317984 401 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
402 dev_err(dev, "cs%d >= max %d\n",
403 spi->chip_select,
74317984 404 master->num_chipselect);
dc87c98e
GL
405 return -EINVAL;
406 }
407
408 /* Set the bus ID string */
e13ac47b 409 spi_dev_set_name(spi);
e48880e0
DB
410
411 /* We need to make sure there's no other device with this
412 * chipselect **BEFORE** we call setup(), else we'll trash
413 * its configuration. Lock against concurrent add() calls.
414 */
415 mutex_lock(&spi_add_lock);
416
b6fb8d3a
MW
417 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
418 if (status) {
e48880e0
DB
419 dev_err(dev, "chipselect %d already in use\n",
420 spi->chip_select);
e48880e0
DB
421 goto done;
422 }
423
74317984
JCPV
424 if (master->cs_gpios)
425 spi->cs_gpio = master->cs_gpios[spi->chip_select];
426
e48880e0
DB
427 /* Drivers may modify this initial i/o setup, but will
428 * normally rely on the device being setup. Devices
429 * using SPI_CS_HIGH can't coexist well otherwise...
430 */
7d077197 431 status = spi_setup(spi);
dc87c98e 432 if (status < 0) {
eb288a1f
LW
433 dev_err(dev, "can't setup %s, status %d\n",
434 dev_name(&spi->dev), status);
e48880e0 435 goto done;
dc87c98e
GL
436 }
437
e48880e0 438 /* Device may be bound to an active driver when this returns */
dc87c98e 439 status = device_add(&spi->dev);
e48880e0 440 if (status < 0)
eb288a1f
LW
441 dev_err(dev, "can't add %s, status %d\n",
442 dev_name(&spi->dev), status);
e48880e0 443 else
35f74fca 444 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 445
e48880e0
DB
446done:
447 mutex_unlock(&spi_add_lock);
448 return status;
dc87c98e
GL
449}
450EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 451
33e34dc6
DB
452/**
453 * spi_new_device - instantiate one new SPI device
454 * @master: Controller to which device is connected
455 * @chip: Describes the SPI device
456 * Context: can sleep
457 *
458 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
459 * after board init creates the hard-wired devices. Some development
460 * platforms may not be able to use spi_register_board_info though, and
461 * this is exported so that for example a USB or parport based adapter
462 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
463 *
464 * Returns the new device, or NULL.
8ae12a0d 465 */
e9d5a461
AB
466struct spi_device *spi_new_device(struct spi_master *master,
467 struct spi_board_info *chip)
8ae12a0d
DB
468{
469 struct spi_device *proxy;
8ae12a0d
DB
470 int status;
471
082c8cb4
DB
472 /* NOTE: caller did any chip->bus_num checks necessary.
473 *
474 * Also, unless we change the return value convention to use
475 * error-or-pointer (not NULL-or-pointer), troubleshootability
476 * suggests syslogged diagnostics are best here (ugh).
477 */
478
dc87c98e
GL
479 proxy = spi_alloc_device(master);
480 if (!proxy)
8ae12a0d
DB
481 return NULL;
482
102eb975
GL
483 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
484
8ae12a0d
DB
485 proxy->chip_select = chip->chip_select;
486 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 487 proxy->mode = chip->mode;
8ae12a0d 488 proxy->irq = chip->irq;
102eb975 489 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
490 proxy->dev.platform_data = (void *) chip->platform_data;
491 proxy->controller_data = chip->controller_data;
492 proxy->controller_state = NULL;
8ae12a0d 493
dc87c98e 494 status = spi_add_device(proxy);
8ae12a0d 495 if (status < 0) {
dc87c98e
GL
496 spi_dev_put(proxy);
497 return NULL;
8ae12a0d
DB
498 }
499
8ae12a0d
DB
500 return proxy;
501}
502EXPORT_SYMBOL_GPL(spi_new_device);
503
2b9603a0
FT
504static void spi_match_master_to_boardinfo(struct spi_master *master,
505 struct spi_board_info *bi)
506{
507 struct spi_device *dev;
508
509 if (master->bus_num != bi->bus_num)
510 return;
511
512 dev = spi_new_device(master, bi);
513 if (!dev)
514 dev_err(master->dev.parent, "can't create new device for %s\n",
515 bi->modalias);
516}
517
33e34dc6
DB
518/**
519 * spi_register_board_info - register SPI devices for a given board
520 * @info: array of chip descriptors
521 * @n: how many descriptors are provided
522 * Context: can sleep
523 *
8ae12a0d
DB
524 * Board-specific early init code calls this (probably during arch_initcall)
525 * with segments of the SPI device table. Any device nodes are created later,
526 * after the relevant parent SPI controller (bus_num) is defined. We keep
527 * this table of devices forever, so that reloading a controller driver will
528 * not make Linux forget about these hard-wired devices.
529 *
530 * Other code can also call this, e.g. a particular add-on board might provide
531 * SPI devices through its expansion connector, so code initializing that board
532 * would naturally declare its SPI devices.
533 *
534 * The board info passed can safely be __initdata ... but be careful of
535 * any embedded pointers (platform_data, etc), they're copied as-is.
536 */
fd4a319b 537int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 538{
2b9603a0
FT
539 struct boardinfo *bi;
540 int i;
8ae12a0d 541
2b9603a0 542 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
543 if (!bi)
544 return -ENOMEM;
8ae12a0d 545
2b9603a0
FT
546 for (i = 0; i < n; i++, bi++, info++) {
547 struct spi_master *master;
8ae12a0d 548
2b9603a0
FT
549 memcpy(&bi->board_info, info, sizeof(*info));
550 mutex_lock(&board_lock);
551 list_add_tail(&bi->list, &board_list);
552 list_for_each_entry(master, &spi_master_list, list)
553 spi_match_master_to_boardinfo(master, &bi->board_info);
554 mutex_unlock(&board_lock);
8ae12a0d 555 }
2b9603a0
FT
556
557 return 0;
8ae12a0d
DB
558}
559
560/*-------------------------------------------------------------------------*/
561
b158935f
MB
562static void spi_set_cs(struct spi_device *spi, bool enable)
563{
564 if (spi->mode & SPI_CS_HIGH)
565 enable = !enable;
566
567 if (spi->cs_gpio >= 0)
568 gpio_set_value(spi->cs_gpio, !enable);
569 else if (spi->master->set_cs)
570 spi->master->set_cs(spi, !enable);
571}
572
573/*
574 * spi_transfer_one_message - Default implementation of transfer_one_message()
575 *
576 * This is a standard implementation of transfer_one_message() for
577 * drivers which impelment a transfer_one() operation. It provides
578 * standard handling of delays and chip select management.
579 */
580static int spi_transfer_one_message(struct spi_master *master,
581 struct spi_message *msg)
582{
583 struct spi_transfer *xfer;
584 bool cur_cs = true;
585 bool keep_cs = false;
586 int ret = 0;
587
588 spi_set_cs(msg->spi, true);
589
590 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
591 trace_spi_transfer_start(msg, xfer);
592
16735d02 593 reinit_completion(&master->xfer_completion);
b158935f
MB
594
595 ret = master->transfer_one(master, msg->spi, xfer);
596 if (ret < 0) {
597 dev_err(&msg->spi->dev,
598 "SPI transfer failed: %d\n", ret);
599 goto out;
600 }
601
602 if (ret > 0)
603 wait_for_completion(&master->xfer_completion);
604
605 trace_spi_transfer_stop(msg, xfer);
606
607 if (msg->status != -EINPROGRESS)
608 goto out;
609
610 if (xfer->delay_usecs)
611 udelay(xfer->delay_usecs);
612
613 if (xfer->cs_change) {
614 if (list_is_last(&xfer->transfer_list,
615 &msg->transfers)) {
616 keep_cs = true;
617 } else {
618 cur_cs = !cur_cs;
619 spi_set_cs(msg->spi, cur_cs);
620 }
621 }
622
623 msg->actual_length += xfer->len;
624 }
625
626out:
627 if (ret != 0 || !keep_cs)
628 spi_set_cs(msg->spi, false);
629
630 if (msg->status == -EINPROGRESS)
631 msg->status = ret;
632
633 spi_finalize_current_message(master);
634
635 return ret;
636}
637
638/**
639 * spi_finalize_current_transfer - report completion of a transfer
640 *
641 * Called by SPI drivers using the core transfer_one_message()
642 * implementation to notify it that the current interrupt driven
9e8f4882 643 * transfer has finished and the next one may be scheduled.
b158935f
MB
644 */
645void spi_finalize_current_transfer(struct spi_master *master)
646{
647 complete(&master->xfer_completion);
648}
649EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
650
ffbbdd21
LW
651/**
652 * spi_pump_messages - kthread work function which processes spi message queue
653 * @work: pointer to kthread work struct contained in the master struct
654 *
655 * This function checks if there is any spi message in the queue that
656 * needs processing and if so call out to the driver to initialize hardware
657 * and transfer each message.
658 *
659 */
660static void spi_pump_messages(struct kthread_work *work)
661{
662 struct spi_master *master =
663 container_of(work, struct spi_master, pump_messages);
664 unsigned long flags;
665 bool was_busy = false;
666 int ret;
667
668 /* Lock queue and check for queue work */
669 spin_lock_irqsave(&master->queue_lock, flags);
670 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
671 if (!master->busy) {
672 spin_unlock_irqrestore(&master->queue_lock, flags);
673 return;
ffbbdd21
LW
674 }
675 master->busy = false;
676 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
677 if (master->unprepare_transfer_hardware &&
678 master->unprepare_transfer_hardware(master))
679 dev_err(&master->dev,
680 "failed to unprepare transfer hardware\n");
49834de2
MB
681 if (master->auto_runtime_pm) {
682 pm_runtime_mark_last_busy(master->dev.parent);
683 pm_runtime_put_autosuspend(master->dev.parent);
684 }
56ec1978 685 trace_spi_master_idle(master);
ffbbdd21
LW
686 return;
687 }
688
689 /* Make sure we are not already running a message */
690 if (master->cur_msg) {
691 spin_unlock_irqrestore(&master->queue_lock, flags);
692 return;
693 }
694 /* Extract head of queue */
695 master->cur_msg =
696 list_entry(master->queue.next, struct spi_message, queue);
697
698 list_del_init(&master->cur_msg->queue);
699 if (master->busy)
700 was_busy = true;
701 else
702 master->busy = true;
703 spin_unlock_irqrestore(&master->queue_lock, flags);
704
49834de2
MB
705 if (!was_busy && master->auto_runtime_pm) {
706 ret = pm_runtime_get_sync(master->dev.parent);
707 if (ret < 0) {
708 dev_err(&master->dev, "Failed to power device: %d\n",
709 ret);
710 return;
711 }
712 }
713
56ec1978
MB
714 if (!was_busy)
715 trace_spi_master_busy(master);
716
7dfd2bd7 717 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
718 ret = master->prepare_transfer_hardware(master);
719 if (ret) {
720 dev_err(&master->dev,
721 "failed to prepare transfer hardware\n");
49834de2
MB
722
723 if (master->auto_runtime_pm)
724 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
725 return;
726 }
727 }
728
56ec1978
MB
729 trace_spi_message_start(master->cur_msg);
730
2841a5fc
MB
731 if (master->prepare_message) {
732 ret = master->prepare_message(master, master->cur_msg);
733 if (ret) {
734 dev_err(&master->dev,
735 "failed to prepare message: %d\n", ret);
736 master->cur_msg->status = ret;
737 spi_finalize_current_message(master);
738 return;
739 }
740 master->cur_msg_prepared = true;
741 }
742
ffbbdd21
LW
743 ret = master->transfer_one_message(master, master->cur_msg);
744 if (ret) {
745 dev_err(&master->dev,
e120cc0d
DS
746 "failed to transfer one message from queue: %d\n", ret);
747 master->cur_msg->status = ret;
748 spi_finalize_current_message(master);
ffbbdd21
LW
749 return;
750 }
751}
752
753static int spi_init_queue(struct spi_master *master)
754{
755 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
756
757 INIT_LIST_HEAD(&master->queue);
758 spin_lock_init(&master->queue_lock);
759
760 master->running = false;
761 master->busy = false;
762
763 init_kthread_worker(&master->kworker);
764 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 765 &master->kworker, "%s",
ffbbdd21
LW
766 dev_name(&master->dev));
767 if (IS_ERR(master->kworker_task)) {
768 dev_err(&master->dev, "failed to create message pump task\n");
769 return -ENOMEM;
770 }
771 init_kthread_work(&master->pump_messages, spi_pump_messages);
772
773 /*
774 * Master config will indicate if this controller should run the
775 * message pump with high (realtime) priority to reduce the transfer
776 * latency on the bus by minimising the delay between a transfer
777 * request and the scheduling of the message pump thread. Without this
778 * setting the message pump thread will remain at default priority.
779 */
780 if (master->rt) {
781 dev_info(&master->dev,
782 "will run message pump with realtime priority\n");
783 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
784 }
785
786 return 0;
787}
788
789/**
790 * spi_get_next_queued_message() - called by driver to check for queued
791 * messages
792 * @master: the master to check for queued messages
793 *
794 * If there are more messages in the queue, the next message is returned from
795 * this call.
796 */
797struct spi_message *spi_get_next_queued_message(struct spi_master *master)
798{
799 struct spi_message *next;
800 unsigned long flags;
801
802 /* get a pointer to the next message, if any */
803 spin_lock_irqsave(&master->queue_lock, flags);
804 if (list_empty(&master->queue))
805 next = NULL;
806 else
807 next = list_entry(master->queue.next,
808 struct spi_message, queue);
809 spin_unlock_irqrestore(&master->queue_lock, flags);
810
811 return next;
812}
813EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
814
815/**
816 * spi_finalize_current_message() - the current message is complete
817 * @master: the master to return the message to
818 *
819 * Called by the driver to notify the core that the message in the front of the
820 * queue is complete and can be removed from the queue.
821 */
822void spi_finalize_current_message(struct spi_master *master)
823{
824 struct spi_message *mesg;
825 unsigned long flags;
2841a5fc 826 int ret;
ffbbdd21
LW
827
828 spin_lock_irqsave(&master->queue_lock, flags);
829 mesg = master->cur_msg;
830 master->cur_msg = NULL;
831
832 queue_kthread_work(&master->kworker, &master->pump_messages);
833 spin_unlock_irqrestore(&master->queue_lock, flags);
834
2841a5fc
MB
835 if (master->cur_msg_prepared && master->unprepare_message) {
836 ret = master->unprepare_message(master, mesg);
837 if (ret) {
838 dev_err(&master->dev,
839 "failed to unprepare message: %d\n", ret);
840 }
841 }
842 master->cur_msg_prepared = false;
843
ffbbdd21
LW
844 mesg->state = NULL;
845 if (mesg->complete)
846 mesg->complete(mesg->context);
56ec1978
MB
847
848 trace_spi_message_done(mesg);
ffbbdd21
LW
849}
850EXPORT_SYMBOL_GPL(spi_finalize_current_message);
851
852static int spi_start_queue(struct spi_master *master)
853{
854 unsigned long flags;
855
856 spin_lock_irqsave(&master->queue_lock, flags);
857
858 if (master->running || master->busy) {
859 spin_unlock_irqrestore(&master->queue_lock, flags);
860 return -EBUSY;
861 }
862
863 master->running = true;
864 master->cur_msg = NULL;
865 spin_unlock_irqrestore(&master->queue_lock, flags);
866
867 queue_kthread_work(&master->kworker, &master->pump_messages);
868
869 return 0;
870}
871
872static int spi_stop_queue(struct spi_master *master)
873{
874 unsigned long flags;
875 unsigned limit = 500;
876 int ret = 0;
877
878 spin_lock_irqsave(&master->queue_lock, flags);
879
880 /*
881 * This is a bit lame, but is optimized for the common execution path.
882 * A wait_queue on the master->busy could be used, but then the common
883 * execution path (pump_messages) would be required to call wake_up or
884 * friends on every SPI message. Do this instead.
885 */
886 while ((!list_empty(&master->queue) || master->busy) && limit--) {
887 spin_unlock_irqrestore(&master->queue_lock, flags);
888 msleep(10);
889 spin_lock_irqsave(&master->queue_lock, flags);
890 }
891
892 if (!list_empty(&master->queue) || master->busy)
893 ret = -EBUSY;
894 else
895 master->running = false;
896
897 spin_unlock_irqrestore(&master->queue_lock, flags);
898
899 if (ret) {
900 dev_warn(&master->dev,
901 "could not stop message queue\n");
902 return ret;
903 }
904 return ret;
905}
906
907static int spi_destroy_queue(struct spi_master *master)
908{
909 int ret;
910
911 ret = spi_stop_queue(master);
912
913 /*
914 * flush_kthread_worker will block until all work is done.
915 * If the reason that stop_queue timed out is that the work will never
916 * finish, then it does no good to call flush/stop thread, so
917 * return anyway.
918 */
919 if (ret) {
920 dev_err(&master->dev, "problem destroying queue\n");
921 return ret;
922 }
923
924 flush_kthread_worker(&master->kworker);
925 kthread_stop(master->kworker_task);
926
927 return 0;
928}
929
930/**
931 * spi_queued_transfer - transfer function for queued transfers
932 * @spi: spi device which is requesting transfer
933 * @msg: spi message which is to handled is queued to driver queue
934 */
935static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
936{
937 struct spi_master *master = spi->master;
938 unsigned long flags;
939
940 spin_lock_irqsave(&master->queue_lock, flags);
941
942 if (!master->running) {
943 spin_unlock_irqrestore(&master->queue_lock, flags);
944 return -ESHUTDOWN;
945 }
946 msg->actual_length = 0;
947 msg->status = -EINPROGRESS;
948
949 list_add_tail(&msg->queue, &master->queue);
96b3eace 950 if (!master->busy)
ffbbdd21
LW
951 queue_kthread_work(&master->kworker, &master->pump_messages);
952
953 spin_unlock_irqrestore(&master->queue_lock, flags);
954 return 0;
955}
956
957static int spi_master_initialize_queue(struct spi_master *master)
958{
959 int ret;
960
961 master->queued = true;
962 master->transfer = spi_queued_transfer;
b158935f
MB
963 if (!master->transfer_one_message)
964 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
965
966 /* Initialize and start queue */
967 ret = spi_init_queue(master);
968 if (ret) {
969 dev_err(&master->dev, "problem initializing queue\n");
970 goto err_init_queue;
971 }
972 ret = spi_start_queue(master);
973 if (ret) {
974 dev_err(&master->dev, "problem starting queue\n");
975 goto err_start_queue;
976 }
977
978 return 0;
979
980err_start_queue:
981err_init_queue:
982 spi_destroy_queue(master);
983 return ret;
984}
985
986/*-------------------------------------------------------------------------*/
987
7cb94361 988#if defined(CONFIG_OF)
d57a4282
GL
989/**
990 * of_register_spi_devices() - Register child devices onto the SPI bus
991 * @master: Pointer to spi_master device
992 *
993 * Registers an spi_device for each child node of master node which has a 'reg'
994 * property.
995 */
996static void of_register_spi_devices(struct spi_master *master)
997{
998 struct spi_device *spi;
999 struct device_node *nc;
d57a4282 1000 int rc;
89da4293 1001 u32 value;
d57a4282
GL
1002
1003 if (!master->dev.of_node)
1004 return;
1005
f3b6159e 1006 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
1007 /* Alloc an spi_device */
1008 spi = spi_alloc_device(master);
1009 if (!spi) {
1010 dev_err(&master->dev, "spi_device alloc error for %s\n",
1011 nc->full_name);
1012 spi_dev_put(spi);
1013 continue;
1014 }
1015
1016 /* Select device driver */
1017 if (of_modalias_node(nc, spi->modalias,
1018 sizeof(spi->modalias)) < 0) {
1019 dev_err(&master->dev, "cannot find modalias for %s\n",
1020 nc->full_name);
1021 spi_dev_put(spi);
1022 continue;
1023 }
1024
1025 /* Device address */
89da4293
TP
1026 rc = of_property_read_u32(nc, "reg", &value);
1027 if (rc) {
1028 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1029 nc->full_name, rc);
d57a4282
GL
1030 spi_dev_put(spi);
1031 continue;
1032 }
89da4293 1033 spi->chip_select = value;
d57a4282
GL
1034
1035 /* Mode (clock phase/polarity/etc.) */
1036 if (of_find_property(nc, "spi-cpha", NULL))
1037 spi->mode |= SPI_CPHA;
1038 if (of_find_property(nc, "spi-cpol", NULL))
1039 spi->mode |= SPI_CPOL;
1040 if (of_find_property(nc, "spi-cs-high", NULL))
1041 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1042 if (of_find_property(nc, "spi-3wire", NULL))
1043 spi->mode |= SPI_3WIRE;
d57a4282 1044
f477b7fb 1045 /* Device DUAL/QUAD mode */
89da4293
TP
1046 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1047 switch (value) {
1048 case 1:
a822e99c 1049 break;
89da4293 1050 case 2:
a822e99c
MB
1051 spi->mode |= SPI_TX_DUAL;
1052 break;
89da4293 1053 case 4:
a822e99c
MB
1054 spi->mode |= SPI_TX_QUAD;
1055 break;
1056 default:
1057 dev_err(&master->dev,
a110f93d 1058 "spi-tx-bus-width %d not supported\n",
89da4293 1059 value);
a822e99c
MB
1060 spi_dev_put(spi);
1061 continue;
1062 }
f477b7fb 1063 }
1064
89da4293
TP
1065 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1066 switch (value) {
1067 case 1:
a822e99c 1068 break;
89da4293 1069 case 2:
a822e99c
MB
1070 spi->mode |= SPI_RX_DUAL;
1071 break;
89da4293 1072 case 4:
a822e99c
MB
1073 spi->mode |= SPI_RX_QUAD;
1074 break;
1075 default:
1076 dev_err(&master->dev,
a110f93d 1077 "spi-rx-bus-width %d not supported\n",
89da4293 1078 value);
a822e99c
MB
1079 spi_dev_put(spi);
1080 continue;
1081 }
f477b7fb 1082 }
1083
d57a4282 1084 /* Device speed */
89da4293
TP
1085 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1086 if (rc) {
1087 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1088 nc->full_name, rc);
d57a4282
GL
1089 spi_dev_put(spi);
1090 continue;
1091 }
89da4293 1092 spi->max_speed_hz = value;
d57a4282
GL
1093
1094 /* IRQ */
1095 spi->irq = irq_of_parse_and_map(nc, 0);
1096
1097 /* Store a pointer to the node in the device structure */
1098 of_node_get(nc);
1099 spi->dev.of_node = nc;
1100
1101 /* Register the new device */
70fac17c 1102 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1103 rc = spi_add_device(spi);
1104 if (rc) {
1105 dev_err(&master->dev, "spi_device register error %s\n",
1106 nc->full_name);
1107 spi_dev_put(spi);
1108 }
1109
1110 }
1111}
1112#else
1113static void of_register_spi_devices(struct spi_master *master) { }
1114#endif
1115
64bee4d2
MW
1116#ifdef CONFIG_ACPI
1117static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1118{
1119 struct spi_device *spi = data;
1120
1121 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1122 struct acpi_resource_spi_serialbus *sb;
1123
1124 sb = &ares->data.spi_serial_bus;
1125 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1126 spi->chip_select = sb->device_selection;
1127 spi->max_speed_hz = sb->connection_speed;
1128
1129 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1130 spi->mode |= SPI_CPHA;
1131 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1132 spi->mode |= SPI_CPOL;
1133 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1134 spi->mode |= SPI_CS_HIGH;
1135 }
1136 } else if (spi->irq < 0) {
1137 struct resource r;
1138
1139 if (acpi_dev_resource_interrupt(ares, 0, &r))
1140 spi->irq = r.start;
1141 }
1142
1143 /* Always tell the ACPI core to skip this resource */
1144 return 1;
1145}
1146
1147static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1148 void *data, void **return_value)
1149{
1150 struct spi_master *master = data;
1151 struct list_head resource_list;
1152 struct acpi_device *adev;
1153 struct spi_device *spi;
1154 int ret;
1155
1156 if (acpi_bus_get_device(handle, &adev))
1157 return AE_OK;
1158 if (acpi_bus_get_status(adev) || !adev->status.present)
1159 return AE_OK;
1160
1161 spi = spi_alloc_device(master);
1162 if (!spi) {
1163 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1164 dev_name(&adev->dev));
1165 return AE_NO_MEMORY;
1166 }
1167
7b199811 1168 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1169 spi->irq = -1;
1170
1171 INIT_LIST_HEAD(&resource_list);
1172 ret = acpi_dev_get_resources(adev, &resource_list,
1173 acpi_spi_add_resource, spi);
1174 acpi_dev_free_resource_list(&resource_list);
1175
1176 if (ret < 0 || !spi->max_speed_hz) {
1177 spi_dev_put(spi);
1178 return AE_OK;
1179 }
1180
33cf00e5 1181 adev->power.flags.ignore_parent = true;
cf9eb39c 1182 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1183 if (spi_add_device(spi)) {
33cf00e5 1184 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1185 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1186 dev_name(&adev->dev));
1187 spi_dev_put(spi);
1188 }
1189
1190 return AE_OK;
1191}
1192
1193static void acpi_register_spi_devices(struct spi_master *master)
1194{
1195 acpi_status status;
1196 acpi_handle handle;
1197
29896178 1198 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1199 if (!handle)
1200 return;
1201
1202 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1203 acpi_spi_add_device, NULL,
1204 master, NULL);
1205 if (ACPI_FAILURE(status))
1206 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1207}
1208#else
1209static inline void acpi_register_spi_devices(struct spi_master *master) {}
1210#endif /* CONFIG_ACPI */
1211
49dce689 1212static void spi_master_release(struct device *dev)
8ae12a0d
DB
1213{
1214 struct spi_master *master;
1215
49dce689 1216 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1217 kfree(master);
1218}
1219
1220static struct class spi_master_class = {
1221 .name = "spi_master",
1222 .owner = THIS_MODULE,
49dce689 1223 .dev_release = spi_master_release,
8ae12a0d
DB
1224};
1225
1226
ffbbdd21 1227
8ae12a0d
DB
1228/**
1229 * spi_alloc_master - allocate SPI master controller
1230 * @dev: the controller, possibly using the platform_bus
33e34dc6 1231 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1232 * memory is in the driver_data field of the returned device,
0c868461 1233 * accessible with spi_master_get_devdata().
33e34dc6 1234 * Context: can sleep
8ae12a0d
DB
1235 *
1236 * This call is used only by SPI master controller drivers, which are the
1237 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1238 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1239 *
1240 * This must be called from context that can sleep. It returns the SPI
1241 * master structure on success, else NULL.
1242 *
1243 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1244 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1245 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1246 * leak.
8ae12a0d 1247 */
e9d5a461 1248struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1249{
1250 struct spi_master *master;
1251
0c868461
DB
1252 if (!dev)
1253 return NULL;
1254
5fe5f05e 1255 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1256 if (!master)
1257 return NULL;
1258
49dce689 1259 device_initialize(&master->dev);
1e8a52e1
GL
1260 master->bus_num = -1;
1261 master->num_chipselect = 1;
49dce689
TJ
1262 master->dev.class = &spi_master_class;
1263 master->dev.parent = get_device(dev);
0c868461 1264 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1265
1266 return master;
1267}
1268EXPORT_SYMBOL_GPL(spi_alloc_master);
1269
74317984
JCPV
1270#ifdef CONFIG_OF
1271static int of_spi_register_master(struct spi_master *master)
1272{
e80beb27 1273 int nb, i, *cs;
74317984
JCPV
1274 struct device_node *np = master->dev.of_node;
1275
1276 if (!np)
1277 return 0;
1278
1279 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1280 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1281
8ec5d84e
AL
1282 /* Return error only for an incorrectly formed cs-gpios property */
1283 if (nb == 0 || nb == -ENOENT)
74317984 1284 return 0;
8ec5d84e
AL
1285 else if (nb < 0)
1286 return nb;
74317984
JCPV
1287
1288 cs = devm_kzalloc(&master->dev,
1289 sizeof(int) * master->num_chipselect,
1290 GFP_KERNEL);
1291 master->cs_gpios = cs;
1292
1293 if (!master->cs_gpios)
1294 return -ENOMEM;
1295
0da83bb1 1296 for (i = 0; i < master->num_chipselect; i++)
446411e1 1297 cs[i] = -ENOENT;
74317984
JCPV
1298
1299 for (i = 0; i < nb; i++)
1300 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1301
1302 return 0;
1303}
1304#else
1305static int of_spi_register_master(struct spi_master *master)
1306{
1307 return 0;
1308}
1309#endif
1310
8ae12a0d
DB
1311/**
1312 * spi_register_master - register SPI master controller
1313 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1314 * Context: can sleep
8ae12a0d
DB
1315 *
1316 * SPI master controllers connect to their drivers using some non-SPI bus,
1317 * such as the platform bus. The final stage of probe() in that code
1318 * includes calling spi_register_master() to hook up to this SPI bus glue.
1319 *
1320 * SPI controllers use board specific (often SOC specific) bus numbers,
1321 * and board-specific addressing for SPI devices combines those numbers
1322 * with chip select numbers. Since SPI does not directly support dynamic
1323 * device identification, boards need configuration tables telling which
1324 * chip is at which address.
1325 *
1326 * This must be called from context that can sleep. It returns zero on
1327 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1328 * After a successful return, the caller is responsible for calling
1329 * spi_unregister_master().
8ae12a0d 1330 */
e9d5a461 1331int spi_register_master(struct spi_master *master)
8ae12a0d 1332{
e44a45ae 1333 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1334 struct device *dev = master->dev.parent;
2b9603a0 1335 struct boardinfo *bi;
8ae12a0d
DB
1336 int status = -ENODEV;
1337 int dynamic = 0;
1338
0c868461
DB
1339 if (!dev)
1340 return -ENODEV;
1341
74317984
JCPV
1342 status = of_spi_register_master(master);
1343 if (status)
1344 return status;
1345
082c8cb4
DB
1346 /* even if it's just one always-selected device, there must
1347 * be at least one chipselect
1348 */
1349 if (master->num_chipselect == 0)
1350 return -EINVAL;
1351
bb29785e
GL
1352 if ((master->bus_num < 0) && master->dev.of_node)
1353 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1354
8ae12a0d 1355 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1356 if (master->bus_num < 0) {
082c8cb4
DB
1357 /* FIXME switch to an IDR based scheme, something like
1358 * I2C now uses, so we can't run out of "dynamic" IDs
1359 */
8ae12a0d 1360 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1361 dynamic = 1;
8ae12a0d
DB
1362 }
1363
cf32b71e
ES
1364 spin_lock_init(&master->bus_lock_spinlock);
1365 mutex_init(&master->bus_lock_mutex);
1366 master->bus_lock_flag = 0;
b158935f 1367 init_completion(&master->xfer_completion);
cf32b71e 1368
8ae12a0d
DB
1369 /* register the device, then userspace will see it.
1370 * registration fails if the bus ID is in use.
1371 */
35f74fca 1372 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1373 status = device_add(&master->dev);
b885244e 1374 if (status < 0)
8ae12a0d 1375 goto done;
35f74fca 1376 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1377 dynamic ? " (dynamic)" : "");
1378
ffbbdd21
LW
1379 /* If we're using a queued driver, start the queue */
1380 if (master->transfer)
1381 dev_info(dev, "master is unqueued, this is deprecated\n");
1382 else {
1383 status = spi_master_initialize_queue(master);
1384 if (status) {
e93b0724 1385 device_del(&master->dev);
ffbbdd21
LW
1386 goto done;
1387 }
1388 }
1389
2b9603a0
FT
1390 mutex_lock(&board_lock);
1391 list_add_tail(&master->list, &spi_master_list);
1392 list_for_each_entry(bi, &board_list, list)
1393 spi_match_master_to_boardinfo(master, &bi->board_info);
1394 mutex_unlock(&board_lock);
1395
64bee4d2 1396 /* Register devices from the device tree and ACPI */
12b15e83 1397 of_register_spi_devices(master);
64bee4d2 1398 acpi_register_spi_devices(master);
8ae12a0d
DB
1399done:
1400 return status;
1401}
1402EXPORT_SYMBOL_GPL(spi_register_master);
1403
666d5b4c
MB
1404static void devm_spi_unregister(struct device *dev, void *res)
1405{
1406 spi_unregister_master(*(struct spi_master **)res);
1407}
1408
1409/**
1410 * dev_spi_register_master - register managed SPI master controller
1411 * @dev: device managing SPI master
1412 * @master: initialized master, originally from spi_alloc_master()
1413 * Context: can sleep
1414 *
1415 * Register a SPI device as with spi_register_master() which will
1416 * automatically be unregister
1417 */
1418int devm_spi_register_master(struct device *dev, struct spi_master *master)
1419{
1420 struct spi_master **ptr;
1421 int ret;
1422
1423 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1424 if (!ptr)
1425 return -ENOMEM;
1426
1427 ret = spi_register_master(master);
1428 if (ret != 0) {
1429 *ptr = master;
1430 devres_add(dev, ptr);
1431 } else {
1432 devres_free(ptr);
1433 }
1434
1435 return ret;
1436}
1437EXPORT_SYMBOL_GPL(devm_spi_register_master);
1438
34860089 1439static int __unregister(struct device *dev, void *null)
8ae12a0d 1440{
34860089 1441 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1442 return 0;
1443}
1444
1445/**
1446 * spi_unregister_master - unregister SPI master controller
1447 * @master: the master being unregistered
33e34dc6 1448 * Context: can sleep
8ae12a0d
DB
1449 *
1450 * This call is used only by SPI master controller drivers, which are the
1451 * only ones directly touching chip registers.
1452 *
1453 * This must be called from context that can sleep.
1454 */
1455void spi_unregister_master(struct spi_master *master)
1456{
89fc9a1a
JG
1457 int dummy;
1458
ffbbdd21
LW
1459 if (master->queued) {
1460 if (spi_destroy_queue(master))
1461 dev_err(&master->dev, "queue remove failed\n");
1462 }
1463
2b9603a0
FT
1464 mutex_lock(&board_lock);
1465 list_del(&master->list);
1466 mutex_unlock(&board_lock);
1467
97dbf37d 1468 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1469 device_unregister(&master->dev);
8ae12a0d
DB
1470}
1471EXPORT_SYMBOL_GPL(spi_unregister_master);
1472
ffbbdd21
LW
1473int spi_master_suspend(struct spi_master *master)
1474{
1475 int ret;
1476
1477 /* Basically no-ops for non-queued masters */
1478 if (!master->queued)
1479 return 0;
1480
1481 ret = spi_stop_queue(master);
1482 if (ret)
1483 dev_err(&master->dev, "queue stop failed\n");
1484
1485 return ret;
1486}
1487EXPORT_SYMBOL_GPL(spi_master_suspend);
1488
1489int spi_master_resume(struct spi_master *master)
1490{
1491 int ret;
1492
1493 if (!master->queued)
1494 return 0;
1495
1496 ret = spi_start_queue(master);
1497 if (ret)
1498 dev_err(&master->dev, "queue restart failed\n");
1499
1500 return ret;
1501}
1502EXPORT_SYMBOL_GPL(spi_master_resume);
1503
9f3b795a 1504static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1505{
1506 struct spi_master *m;
9f3b795a 1507 const u16 *bus_num = data;
5ed2c832
DY
1508
1509 m = container_of(dev, struct spi_master, dev);
1510 return m->bus_num == *bus_num;
1511}
1512
8ae12a0d
DB
1513/**
1514 * spi_busnum_to_master - look up master associated with bus_num
1515 * @bus_num: the master's bus number
33e34dc6 1516 * Context: can sleep
8ae12a0d
DB
1517 *
1518 * This call may be used with devices that are registered after
1519 * arch init time. It returns a refcounted pointer to the relevant
1520 * spi_master (which the caller must release), or NULL if there is
1521 * no such master registered.
1522 */
1523struct spi_master *spi_busnum_to_master(u16 bus_num)
1524{
49dce689 1525 struct device *dev;
1e9a51dc 1526 struct spi_master *master = NULL;
5ed2c832 1527
695794ae 1528 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1529 __spi_master_match);
1530 if (dev)
1531 master = container_of(dev, struct spi_master, dev);
1532 /* reference got in class_find_device */
1e9a51dc 1533 return master;
8ae12a0d
DB
1534}
1535EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1536
1537
1538/*-------------------------------------------------------------------------*/
1539
7d077197
DB
1540/* Core methods for SPI master protocol drivers. Some of the
1541 * other core methods are currently defined as inline functions.
1542 */
1543
1544/**
1545 * spi_setup - setup SPI mode and clock rate
1546 * @spi: the device whose settings are being modified
1547 * Context: can sleep, and no requests are queued to the device
1548 *
1549 * SPI protocol drivers may need to update the transfer mode if the
1550 * device doesn't work with its default. They may likewise need
1551 * to update clock rates or word sizes from initial values. This function
1552 * changes those settings, and must be called from a context that can sleep.
1553 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1554 * effect the next time the device is selected and data is transferred to
1555 * or from it. When this function returns, the spi device is deselected.
1556 *
1557 * Note that this call will fail if the protocol driver specifies an option
1558 * that the underlying controller or its driver does not support. For
1559 * example, not all hardware supports wire transfers using nine bit words,
1560 * LSB-first wire encoding, or active-high chipselects.
1561 */
1562int spi_setup(struct spi_device *spi)
1563{
e7db06b5 1564 unsigned bad_bits;
caae070c 1565 int status = 0;
7d077197 1566
f477b7fb 1567 /* check mode to prevent that DUAL and QUAD set at the same time
1568 */
1569 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1570 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1571 dev_err(&spi->dev,
1572 "setup: can not select dual and quad at the same time\n");
1573 return -EINVAL;
1574 }
1575 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1576 */
1577 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1578 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1579 return -EINVAL;
e7db06b5
DB
1580 /* help drivers fail *cleanly* when they need options
1581 * that aren't supported with their current master
1582 */
1583 bad_bits = spi->mode & ~spi->master->mode_bits;
1584 if (bad_bits) {
eb288a1f 1585 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1586 bad_bits);
1587 return -EINVAL;
1588 }
1589
7d077197
DB
1590 if (!spi->bits_per_word)
1591 spi->bits_per_word = 8;
1592
caae070c
LD
1593 if (spi->master->setup)
1594 status = spi->master->setup(spi);
7d077197 1595
5fe5f05e 1596 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1597 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1598 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1599 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1600 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1601 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1602 spi->bits_per_word, spi->max_speed_hz,
1603 status);
1604
1605 return status;
1606}
1607EXPORT_SYMBOL_GPL(spi_setup);
1608
cf32b71e
ES
1609static int __spi_async(struct spi_device *spi, struct spi_message *message)
1610{
1611 struct spi_master *master = spi->master;
e6811d1d 1612 struct spi_transfer *xfer;
cf32b71e 1613
56ec1978
MB
1614 message->spi = spi;
1615
1616 trace_spi_message_submit(message);
1617
24a0013a
MB
1618 if (list_empty(&message->transfers))
1619 return -EINVAL;
1620 if (!message->complete)
1621 return -EINVAL;
1622
cf32b71e
ES
1623 /* Half-duplex links include original MicroWire, and ones with
1624 * only one data pin like SPI_3WIRE (switches direction) or where
1625 * either MOSI or MISO is missing. They can also be caused by
1626 * software limitations.
1627 */
1628 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1629 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1630 unsigned flags = master->flags;
1631
1632 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1633 if (xfer->rx_buf && xfer->tx_buf)
1634 return -EINVAL;
1635 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1636 return -EINVAL;
1637 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1638 return -EINVAL;
1639 }
1640 }
1641
e6811d1d 1642 /**
059b8ffe
LD
1643 * Set transfer bits_per_word and max speed as spi device default if
1644 * it is not set for this transfer.
f477b7fb 1645 * Set transfer tx_nbits and rx_nbits as single transfer default
1646 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1647 */
1648 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1649 message->frame_length += xfer->len;
e6811d1d
LD
1650 if (!xfer->bits_per_word)
1651 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1652 if (!xfer->speed_hz) {
059b8ffe 1653 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1654 if (master->max_speed_hz &&
1655 xfer->speed_hz > master->max_speed_hz)
1656 xfer->speed_hz = master->max_speed_hz;
1657 }
1658
543bb255
SW
1659 if (master->bits_per_word_mask) {
1660 /* Only 32 bits fit in the mask */
1661 if (xfer->bits_per_word > 32)
1662 return -EINVAL;
1663 if (!(master->bits_per_word_mask &
1664 BIT(xfer->bits_per_word - 1)))
1665 return -EINVAL;
1666 }
a2fd4f9f
MB
1667
1668 if (xfer->speed_hz && master->min_speed_hz &&
1669 xfer->speed_hz < master->min_speed_hz)
1670 return -EINVAL;
1671 if (xfer->speed_hz && master->max_speed_hz &&
1672 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1673 return -EINVAL;
f477b7fb 1674
1675 if (xfer->tx_buf && !xfer->tx_nbits)
1676 xfer->tx_nbits = SPI_NBITS_SINGLE;
1677 if (xfer->rx_buf && !xfer->rx_nbits)
1678 xfer->rx_nbits = SPI_NBITS_SINGLE;
1679 /* check transfer tx/rx_nbits:
1680 * 1. keep the value is not out of single, dual and quad
1681 * 2. keep tx/rx_nbits is contained by mode in spi_device
1682 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1683 */
db90a441
SP
1684 if (xfer->tx_buf) {
1685 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1686 xfer->tx_nbits != SPI_NBITS_DUAL &&
1687 xfer->tx_nbits != SPI_NBITS_QUAD)
1688 return -EINVAL;
1689 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1690 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1691 return -EINVAL;
1692 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1693 !(spi->mode & SPI_TX_QUAD))
1694 return -EINVAL;
1695 if ((spi->mode & SPI_3WIRE) &&
1696 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1697 return -EINVAL;
1698 }
f477b7fb 1699 /* check transfer rx_nbits */
db90a441
SP
1700 if (xfer->rx_buf) {
1701 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1702 xfer->rx_nbits != SPI_NBITS_DUAL &&
1703 xfer->rx_nbits != SPI_NBITS_QUAD)
1704 return -EINVAL;
1705 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1706 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1707 return -EINVAL;
1708 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1709 !(spi->mode & SPI_RX_QUAD))
1710 return -EINVAL;
1711 if ((spi->mode & SPI_3WIRE) &&
1712 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1713 return -EINVAL;
1714 }
e6811d1d
LD
1715 }
1716
cf32b71e
ES
1717 message->status = -EINPROGRESS;
1718 return master->transfer(spi, message);
1719}
1720
568d0697
DB
1721/**
1722 * spi_async - asynchronous SPI transfer
1723 * @spi: device with which data will be exchanged
1724 * @message: describes the data transfers, including completion callback
1725 * Context: any (irqs may be blocked, etc)
1726 *
1727 * This call may be used in_irq and other contexts which can't sleep,
1728 * as well as from task contexts which can sleep.
1729 *
1730 * The completion callback is invoked in a context which can't sleep.
1731 * Before that invocation, the value of message->status is undefined.
1732 * When the callback is issued, message->status holds either zero (to
1733 * indicate complete success) or a negative error code. After that
1734 * callback returns, the driver which issued the transfer request may
1735 * deallocate the associated memory; it's no longer in use by any SPI
1736 * core or controller driver code.
1737 *
1738 * Note that although all messages to a spi_device are handled in
1739 * FIFO order, messages may go to different devices in other orders.
1740 * Some device might be higher priority, or have various "hard" access
1741 * time requirements, for example.
1742 *
1743 * On detection of any fault during the transfer, processing of
1744 * the entire message is aborted, and the device is deselected.
1745 * Until returning from the associated message completion callback,
1746 * no other spi_message queued to that device will be processed.
1747 * (This rule applies equally to all the synchronous transfer calls,
1748 * which are wrappers around this core asynchronous primitive.)
1749 */
1750int spi_async(struct spi_device *spi, struct spi_message *message)
1751{
1752 struct spi_master *master = spi->master;
cf32b71e
ES
1753 int ret;
1754 unsigned long flags;
568d0697 1755
cf32b71e 1756 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1757
cf32b71e
ES
1758 if (master->bus_lock_flag)
1759 ret = -EBUSY;
1760 else
1761 ret = __spi_async(spi, message);
568d0697 1762
cf32b71e
ES
1763 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1764
1765 return ret;
568d0697
DB
1766}
1767EXPORT_SYMBOL_GPL(spi_async);
1768
cf32b71e
ES
1769/**
1770 * spi_async_locked - version of spi_async with exclusive bus usage
1771 * @spi: device with which data will be exchanged
1772 * @message: describes the data transfers, including completion callback
1773 * Context: any (irqs may be blocked, etc)
1774 *
1775 * This call may be used in_irq and other contexts which can't sleep,
1776 * as well as from task contexts which can sleep.
1777 *
1778 * The completion callback is invoked in a context which can't sleep.
1779 * Before that invocation, the value of message->status is undefined.
1780 * When the callback is issued, message->status holds either zero (to
1781 * indicate complete success) or a negative error code. After that
1782 * callback returns, the driver which issued the transfer request may
1783 * deallocate the associated memory; it's no longer in use by any SPI
1784 * core or controller driver code.
1785 *
1786 * Note that although all messages to a spi_device are handled in
1787 * FIFO order, messages may go to different devices in other orders.
1788 * Some device might be higher priority, or have various "hard" access
1789 * time requirements, for example.
1790 *
1791 * On detection of any fault during the transfer, processing of
1792 * the entire message is aborted, and the device is deselected.
1793 * Until returning from the associated message completion callback,
1794 * no other spi_message queued to that device will be processed.
1795 * (This rule applies equally to all the synchronous transfer calls,
1796 * which are wrappers around this core asynchronous primitive.)
1797 */
1798int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1799{
1800 struct spi_master *master = spi->master;
1801 int ret;
1802 unsigned long flags;
1803
1804 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1805
1806 ret = __spi_async(spi, message);
1807
1808 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1809
1810 return ret;
1811
1812}
1813EXPORT_SYMBOL_GPL(spi_async_locked);
1814
7d077197
DB
1815
1816/*-------------------------------------------------------------------------*/
1817
1818/* Utility methods for SPI master protocol drivers, layered on
1819 * top of the core. Some other utility methods are defined as
1820 * inline functions.
1821 */
1822
5d870c8e
AM
1823static void spi_complete(void *arg)
1824{
1825 complete(arg);
1826}
1827
cf32b71e
ES
1828static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1829 int bus_locked)
1830{
1831 DECLARE_COMPLETION_ONSTACK(done);
1832 int status;
1833 struct spi_master *master = spi->master;
1834
1835 message->complete = spi_complete;
1836 message->context = &done;
1837
1838 if (!bus_locked)
1839 mutex_lock(&master->bus_lock_mutex);
1840
1841 status = spi_async_locked(spi, message);
1842
1843 if (!bus_locked)
1844 mutex_unlock(&master->bus_lock_mutex);
1845
1846 if (status == 0) {
1847 wait_for_completion(&done);
1848 status = message->status;
1849 }
1850 message->context = NULL;
1851 return status;
1852}
1853
8ae12a0d
DB
1854/**
1855 * spi_sync - blocking/synchronous SPI data transfers
1856 * @spi: device with which data will be exchanged
1857 * @message: describes the data transfers
33e34dc6 1858 * Context: can sleep
8ae12a0d
DB
1859 *
1860 * This call may only be used from a context that may sleep. The sleep
1861 * is non-interruptible, and has no timeout. Low-overhead controller
1862 * drivers may DMA directly into and out of the message buffers.
1863 *
1864 * Note that the SPI device's chip select is active during the message,
1865 * and then is normally disabled between messages. Drivers for some
1866 * frequently-used devices may want to minimize costs of selecting a chip,
1867 * by leaving it selected in anticipation that the next message will go
1868 * to the same chip. (That may increase power usage.)
1869 *
0c868461
DB
1870 * Also, the caller is guaranteeing that the memory associated with the
1871 * message will not be freed before this call returns.
1872 *
9b938b74 1873 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1874 */
1875int spi_sync(struct spi_device *spi, struct spi_message *message)
1876{
cf32b71e 1877 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1878}
1879EXPORT_SYMBOL_GPL(spi_sync);
1880
cf32b71e
ES
1881/**
1882 * spi_sync_locked - version of spi_sync with exclusive bus usage
1883 * @spi: device with which data will be exchanged
1884 * @message: describes the data transfers
1885 * Context: can sleep
1886 *
1887 * This call may only be used from a context that may sleep. The sleep
1888 * is non-interruptible, and has no timeout. Low-overhead controller
1889 * drivers may DMA directly into and out of the message buffers.
1890 *
1891 * This call should be used by drivers that require exclusive access to the
25985edc 1892 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1893 * be released by a spi_bus_unlock call when the exclusive access is over.
1894 *
1895 * It returns zero on success, else a negative error code.
1896 */
1897int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1898{
1899 return __spi_sync(spi, message, 1);
1900}
1901EXPORT_SYMBOL_GPL(spi_sync_locked);
1902
1903/**
1904 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1905 * @master: SPI bus master that should be locked for exclusive bus access
1906 * Context: can sleep
1907 *
1908 * This call may only be used from a context that may sleep. The sleep
1909 * is non-interruptible, and has no timeout.
1910 *
1911 * This call should be used by drivers that require exclusive access to the
1912 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1913 * exclusive access is over. Data transfer must be done by spi_sync_locked
1914 * and spi_async_locked calls when the SPI bus lock is held.
1915 *
1916 * It returns zero on success, else a negative error code.
1917 */
1918int spi_bus_lock(struct spi_master *master)
1919{
1920 unsigned long flags;
1921
1922 mutex_lock(&master->bus_lock_mutex);
1923
1924 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1925 master->bus_lock_flag = 1;
1926 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1927
1928 /* mutex remains locked until spi_bus_unlock is called */
1929
1930 return 0;
1931}
1932EXPORT_SYMBOL_GPL(spi_bus_lock);
1933
1934/**
1935 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1936 * @master: SPI bus master that was locked for exclusive bus access
1937 * Context: can sleep
1938 *
1939 * This call may only be used from a context that may sleep. The sleep
1940 * is non-interruptible, and has no timeout.
1941 *
1942 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1943 * call.
1944 *
1945 * It returns zero on success, else a negative error code.
1946 */
1947int spi_bus_unlock(struct spi_master *master)
1948{
1949 master->bus_lock_flag = 0;
1950
1951 mutex_unlock(&master->bus_lock_mutex);
1952
1953 return 0;
1954}
1955EXPORT_SYMBOL_GPL(spi_bus_unlock);
1956
a9948b61 1957/* portable code must never pass more than 32 bytes */
5fe5f05e 1958#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
1959
1960static u8 *buf;
1961
1962/**
1963 * spi_write_then_read - SPI synchronous write followed by read
1964 * @spi: device with which data will be exchanged
1965 * @txbuf: data to be written (need not be dma-safe)
1966 * @n_tx: size of txbuf, in bytes
27570497
JP
1967 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1968 * @n_rx: size of rxbuf, in bytes
33e34dc6 1969 * Context: can sleep
8ae12a0d
DB
1970 *
1971 * This performs a half duplex MicroWire style transaction with the
1972 * device, sending txbuf and then reading rxbuf. The return value
1973 * is zero for success, else a negative errno status code.
b885244e 1974 * This call may only be used from a context that may sleep.
8ae12a0d 1975 *
0c868461 1976 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1977 * portable code should never use this for more than 32 bytes.
1978 * Performance-sensitive or bulk transfer code should instead use
0c868461 1979 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1980 */
1981int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1982 const void *txbuf, unsigned n_tx,
1983 void *rxbuf, unsigned n_rx)
8ae12a0d 1984{
068f4070 1985 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1986
1987 int status;
1988 struct spi_message message;
bdff549e 1989 struct spi_transfer x[2];
8ae12a0d
DB
1990 u8 *local_buf;
1991
b3a223ee
MB
1992 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1993 * copying here, (as a pure convenience thing), but we can
1994 * keep heap costs out of the hot path unless someone else is
1995 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1996 */
b3a223ee 1997 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1998 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1999 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2000 if (!local_buf)
2001 return -ENOMEM;
2002 } else {
2003 local_buf = buf;
2004 }
8ae12a0d 2005
8275c642 2006 spi_message_init(&message);
5fe5f05e 2007 memset(x, 0, sizeof(x));
bdff549e
DB
2008 if (n_tx) {
2009 x[0].len = n_tx;
2010 spi_message_add_tail(&x[0], &message);
2011 }
2012 if (n_rx) {
2013 x[1].len = n_rx;
2014 spi_message_add_tail(&x[1], &message);
2015 }
8275c642 2016
8ae12a0d 2017 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2018 x[0].tx_buf = local_buf;
2019 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2020
2021 /* do the i/o */
8ae12a0d 2022 status = spi_sync(spi, &message);
9b938b74 2023 if (status == 0)
bdff549e 2024 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2025
bdff549e 2026 if (x[0].tx_buf == buf)
068f4070 2027 mutex_unlock(&lock);
8ae12a0d
DB
2028 else
2029 kfree(local_buf);
2030
2031 return status;
2032}
2033EXPORT_SYMBOL_GPL(spi_write_then_read);
2034
2035/*-------------------------------------------------------------------------*/
2036
2037static int __init spi_init(void)
2038{
b885244e
DB
2039 int status;
2040
e94b1766 2041 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2042 if (!buf) {
2043 status = -ENOMEM;
2044 goto err0;
2045 }
2046
2047 status = bus_register(&spi_bus_type);
2048 if (status < 0)
2049 goto err1;
8ae12a0d 2050
b885244e
DB
2051 status = class_register(&spi_master_class);
2052 if (status < 0)
2053 goto err2;
8ae12a0d 2054 return 0;
b885244e
DB
2055
2056err2:
2057 bus_unregister(&spi_bus_type);
2058err1:
2059 kfree(buf);
2060 buf = NULL;
2061err0:
2062 return status;
8ae12a0d 2063}
b885244e 2064
8ae12a0d
DB
2065/* board_info is normally registered in arch_initcall(),
2066 * but even essential drivers wait till later
b885244e
DB
2067 *
2068 * REVISIT only boardinfo really needs static linking. the rest (device and
2069 * driver registration) _could_ be dynamically linked (modular) ... costs
2070 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2071 */
673c0c00 2072postcore_initcall(spi_init);
8ae12a0d 2073