]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: Extend the core to ease integration of SPI memory controllers
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
8ae12a0d
DB
16 */
17
8ae12a0d
DB
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
99adef31
MB
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
94040828 24#include <linux/mutex.h>
2b7a32f7 25#include <linux/of_device.h>
d57a4282 26#include <linux/of_irq.h>
86be408b 27#include <linux/clk/clk-conf.h>
5a0e3ad6 28#include <linux/slab.h>
e0626e38 29#include <linux/mod_devicetable.h>
8ae12a0d 30#include <linux/spi/spi.h>
74317984 31#include <linux/of_gpio.h>
3ae22e8c 32#include <linux/pm_runtime.h>
f48c767c 33#include <linux/pm_domain.h>
826cf175 34#include <linux/property.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ae7e81c0 37#include <uapi/linux/sched/types.h>
ffbbdd21
LW
38#include <linux/delay.h>
39#include <linux/kthread.h>
64bee4d2
MW
40#include <linux/ioport.h>
41#include <linux/acpi.h>
b1b8153c 42#include <linux/highmem.h>
9b61e302 43#include <linux/idr.h>
8a2e487e 44#include <linux/platform_data/x86/apple.h>
8ae12a0d 45
56ec1978
MB
46#define CREATE_TRACE_POINTS
47#include <trace/events/spi.h>
9b61e302 48
46336966
BB
49#include "internals.h"
50
9b61e302 51static DEFINE_IDR(spi_master_idr);
56ec1978 52
8ae12a0d
DB
53static void spidev_release(struct device *dev)
54{
0ffa0285 55 struct spi_device *spi = to_spi_device(dev);
8ae12a0d 56
8caab75f
GU
57 /* spi controllers may cleanup for released devices */
58 if (spi->controller->cleanup)
59 spi->controller->cleanup(spi);
8ae12a0d 60
8caab75f 61 spi_controller_put(spi->controller);
07a389fe 62 kfree(spi);
8ae12a0d
DB
63}
64
65static ssize_t
66modalias_show(struct device *dev, struct device_attribute *a, char *buf)
67{
68 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
69 int len;
70
71 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
72 if (len != -ENODEV)
73 return len;
8ae12a0d 74
d8e328b3 75 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 76}
aa7da564 77static DEVICE_ATTR_RO(modalias);
8ae12a0d 78
eca2ebc7 79#define SPI_STATISTICS_ATTRS(field, file) \
8caab75f
GU
80static ssize_t spi_controller_##field##_show(struct device *dev, \
81 struct device_attribute *attr, \
82 char *buf) \
eca2ebc7 83{ \
8caab75f
GU
84 struct spi_controller *ctlr = container_of(dev, \
85 struct spi_controller, dev); \
86 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
eca2ebc7 87} \
8caab75f 88static struct device_attribute dev_attr_spi_controller_##field = { \
ad25c92e 89 .attr = { .name = file, .mode = 0444 }, \
8caab75f 90 .show = spi_controller_##field##_show, \
eca2ebc7
MS
91}; \
92static ssize_t spi_device_##field##_show(struct device *dev, \
93 struct device_attribute *attr, \
94 char *buf) \
95{ \
d1eba93b 96 struct spi_device *spi = to_spi_device(dev); \
eca2ebc7
MS
97 return spi_statistics_##field##_show(&spi->statistics, buf); \
98} \
99static struct device_attribute dev_attr_spi_device_##field = { \
ad25c92e 100 .attr = { .name = file, .mode = 0444 }, \
eca2ebc7
MS
101 .show = spi_device_##field##_show, \
102}
103
104#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
105static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
106 char *buf) \
107{ \
108 unsigned long flags; \
109 ssize_t len; \
110 spin_lock_irqsave(&stat->lock, flags); \
111 len = sprintf(buf, format_string, stat->field); \
112 spin_unlock_irqrestore(&stat->lock, flags); \
113 return len; \
114} \
115SPI_STATISTICS_ATTRS(name, file)
116
117#define SPI_STATISTICS_SHOW(field, format_string) \
118 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
119 field, format_string)
120
121SPI_STATISTICS_SHOW(messages, "%lu");
122SPI_STATISTICS_SHOW(transfers, "%lu");
123SPI_STATISTICS_SHOW(errors, "%lu");
124SPI_STATISTICS_SHOW(timedout, "%lu");
125
126SPI_STATISTICS_SHOW(spi_sync, "%lu");
127SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
128SPI_STATISTICS_SHOW(spi_async, "%lu");
129
130SPI_STATISTICS_SHOW(bytes, "%llu");
131SPI_STATISTICS_SHOW(bytes_rx, "%llu");
132SPI_STATISTICS_SHOW(bytes_tx, "%llu");
133
6b7bc061
MS
134#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
135 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
136 "transfer_bytes_histo_" number, \
137 transfer_bytes_histo[index], "%lu")
138SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
139SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
140SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
141SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
142SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
143SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
144SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
145SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
146SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
147SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
148SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
149SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
150SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
151SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
152SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
153SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
154SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
155
d9f12122
MS
156SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
157
aa7da564
GKH
158static struct attribute *spi_dev_attrs[] = {
159 &dev_attr_modalias.attr,
160 NULL,
8ae12a0d 161};
eca2ebc7
MS
162
163static const struct attribute_group spi_dev_group = {
164 .attrs = spi_dev_attrs,
165};
166
167static struct attribute *spi_device_statistics_attrs[] = {
168 &dev_attr_spi_device_messages.attr,
169 &dev_attr_spi_device_transfers.attr,
170 &dev_attr_spi_device_errors.attr,
171 &dev_attr_spi_device_timedout.attr,
172 &dev_attr_spi_device_spi_sync.attr,
173 &dev_attr_spi_device_spi_sync_immediate.attr,
174 &dev_attr_spi_device_spi_async.attr,
175 &dev_attr_spi_device_bytes.attr,
176 &dev_attr_spi_device_bytes_rx.attr,
177 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
178 &dev_attr_spi_device_transfer_bytes_histo0.attr,
179 &dev_attr_spi_device_transfer_bytes_histo1.attr,
180 &dev_attr_spi_device_transfer_bytes_histo2.attr,
181 &dev_attr_spi_device_transfer_bytes_histo3.attr,
182 &dev_attr_spi_device_transfer_bytes_histo4.attr,
183 &dev_attr_spi_device_transfer_bytes_histo5.attr,
184 &dev_attr_spi_device_transfer_bytes_histo6.attr,
185 &dev_attr_spi_device_transfer_bytes_histo7.attr,
186 &dev_attr_spi_device_transfer_bytes_histo8.attr,
187 &dev_attr_spi_device_transfer_bytes_histo9.attr,
188 &dev_attr_spi_device_transfer_bytes_histo10.attr,
189 &dev_attr_spi_device_transfer_bytes_histo11.attr,
190 &dev_attr_spi_device_transfer_bytes_histo12.attr,
191 &dev_attr_spi_device_transfer_bytes_histo13.attr,
192 &dev_attr_spi_device_transfer_bytes_histo14.attr,
193 &dev_attr_spi_device_transfer_bytes_histo15.attr,
194 &dev_attr_spi_device_transfer_bytes_histo16.attr,
d9f12122 195 &dev_attr_spi_device_transfers_split_maxsize.attr,
eca2ebc7
MS
196 NULL,
197};
198
199static const struct attribute_group spi_device_statistics_group = {
200 .name = "statistics",
201 .attrs = spi_device_statistics_attrs,
202};
203
204static const struct attribute_group *spi_dev_groups[] = {
205 &spi_dev_group,
206 &spi_device_statistics_group,
207 NULL,
208};
209
8caab75f
GU
210static struct attribute *spi_controller_statistics_attrs[] = {
211 &dev_attr_spi_controller_messages.attr,
212 &dev_attr_spi_controller_transfers.attr,
213 &dev_attr_spi_controller_errors.attr,
214 &dev_attr_spi_controller_timedout.attr,
215 &dev_attr_spi_controller_spi_sync.attr,
216 &dev_attr_spi_controller_spi_sync_immediate.attr,
217 &dev_attr_spi_controller_spi_async.attr,
218 &dev_attr_spi_controller_bytes.attr,
219 &dev_attr_spi_controller_bytes_rx.attr,
220 &dev_attr_spi_controller_bytes_tx.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
236 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
237 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
238 &dev_attr_spi_controller_transfers_split_maxsize.attr,
eca2ebc7
MS
239 NULL,
240};
241
8caab75f 242static const struct attribute_group spi_controller_statistics_group = {
eca2ebc7 243 .name = "statistics",
8caab75f 244 .attrs = spi_controller_statistics_attrs,
eca2ebc7
MS
245};
246
247static const struct attribute_group *spi_master_groups[] = {
8caab75f 248 &spi_controller_statistics_group,
eca2ebc7
MS
249 NULL,
250};
251
252void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
253 struct spi_transfer *xfer,
8caab75f 254 struct spi_controller *ctlr)
eca2ebc7
MS
255{
256 unsigned long flags;
6b7bc061
MS
257 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
258
259 if (l2len < 0)
260 l2len = 0;
eca2ebc7
MS
261
262 spin_lock_irqsave(&stats->lock, flags);
263
264 stats->transfers++;
6b7bc061 265 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
266
267 stats->bytes += xfer->len;
268 if ((xfer->tx_buf) &&
8caab75f 269 (xfer->tx_buf != ctlr->dummy_tx))
eca2ebc7
MS
270 stats->bytes_tx += xfer->len;
271 if ((xfer->rx_buf) &&
8caab75f 272 (xfer->rx_buf != ctlr->dummy_rx))
eca2ebc7
MS
273 stats->bytes_rx += xfer->len;
274
275 spin_unlock_irqrestore(&stats->lock, flags);
276}
277EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
278
279/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
280 * and the sysfs version makes coldplug work too.
281 */
282
75368bf6
AV
283static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
284 const struct spi_device *sdev)
285{
286 while (id->name[0]) {
287 if (!strcmp(sdev->modalias, id->name))
288 return id;
289 id++;
290 }
291 return NULL;
292}
293
294const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
295{
296 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
297
298 return spi_match_id(sdrv->id_table, sdev);
299}
300EXPORT_SYMBOL_GPL(spi_get_device_id);
301
8ae12a0d
DB
302static int spi_match_device(struct device *dev, struct device_driver *drv)
303{
304 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
305 const struct spi_driver *sdrv = to_spi_driver(drv);
306
2b7a32f7
SA
307 /* Attempt an OF style match */
308 if (of_driver_match_device(dev, drv))
309 return 1;
310
64bee4d2
MW
311 /* Then try ACPI */
312 if (acpi_driver_match_device(dev, drv))
313 return 1;
314
75368bf6
AV
315 if (sdrv->id_table)
316 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 317
35f74fca 318 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
319}
320
7eff2e7a 321static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
322{
323 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
324 int rc;
325
326 rc = acpi_device_uevent_modalias(dev, env);
327 if (rc != -ENODEV)
328 return rc;
8ae12a0d 329
2856670f 330 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
331}
332
8ae12a0d
DB
333struct bus_type spi_bus_type = {
334 .name = "spi",
aa7da564 335 .dev_groups = spi_dev_groups,
8ae12a0d
DB
336 .match = spi_match_device,
337 .uevent = spi_uevent,
8ae12a0d
DB
338};
339EXPORT_SYMBOL_GPL(spi_bus_type);
340
b885244e
DB
341
342static int spi_drv_probe(struct device *dev)
343{
344 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 345 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
346 int ret;
347
86be408b
SN
348 ret = of_clk_set_defaults(dev->of_node, false);
349 if (ret)
350 return ret;
351
44af7927
JH
352 if (dev->of_node) {
353 spi->irq = of_irq_get(dev->of_node, 0);
354 if (spi->irq == -EPROBE_DEFER)
355 return -EPROBE_DEFER;
356 if (spi->irq < 0)
357 spi->irq = 0;
358 }
359
676e7c25
UH
360 ret = dev_pm_domain_attach(dev, true);
361 if (ret != -EPROBE_DEFER) {
44af7927 362 ret = sdrv->probe(spi);
676e7c25
UH
363 if (ret)
364 dev_pm_domain_detach(dev, true);
365 }
b885244e 366
33cf00e5 367 return ret;
b885244e
DB
368}
369
370static int spi_drv_remove(struct device *dev)
371{
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
373 int ret;
374
aec35f4e 375 ret = sdrv->remove(to_spi_device(dev));
676e7c25 376 dev_pm_domain_detach(dev, true);
b885244e 377
33cf00e5 378 return ret;
b885244e
DB
379}
380
381static void spi_drv_shutdown(struct device *dev)
382{
383 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
384
385 sdrv->shutdown(to_spi_device(dev));
386}
387
33e34dc6 388/**
ca5d2485 389 * __spi_register_driver - register a SPI driver
88c9321d 390 * @owner: owner module of the driver to register
33e34dc6
DB
391 * @sdrv: the driver to register
392 * Context: can sleep
97d56dc6
JMC
393 *
394 * Return: zero on success, else a negative error code.
33e34dc6 395 */
ca5d2485 396int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 397{
ca5d2485 398 sdrv->driver.owner = owner;
b885244e
DB
399 sdrv->driver.bus = &spi_bus_type;
400 if (sdrv->probe)
401 sdrv->driver.probe = spi_drv_probe;
402 if (sdrv->remove)
403 sdrv->driver.remove = spi_drv_remove;
404 if (sdrv->shutdown)
405 sdrv->driver.shutdown = spi_drv_shutdown;
406 return driver_register(&sdrv->driver);
407}
ca5d2485 408EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 409
8ae12a0d
DB
410/*-------------------------------------------------------------------------*/
411
412/* SPI devices should normally not be created by SPI device drivers; that
8caab75f 413 * would make them board-specific. Similarly with SPI controller drivers.
8ae12a0d
DB
414 * Device registration normally goes into like arch/.../mach.../board-YYY.c
415 * with other readonly (flashable) information about mainboard devices.
416 */
417
418struct boardinfo {
419 struct list_head list;
2b9603a0 420 struct spi_board_info board_info;
8ae12a0d
DB
421};
422
423static LIST_HEAD(board_list);
8caab75f 424static LIST_HEAD(spi_controller_list);
2b9603a0
FT
425
426/*
427 * Used to protect add/del opertion for board_info list and
8caab75f 428 * spi_controller list, and their matching process
9a9a047a 429 * also used to protect object of type struct idr
2b9603a0 430 */
94040828 431static DEFINE_MUTEX(board_lock);
8ae12a0d 432
dc87c98e
GL
433/**
434 * spi_alloc_device - Allocate a new SPI device
8caab75f 435 * @ctlr: Controller to which device is connected
dc87c98e
GL
436 * Context: can sleep
437 *
438 * Allows a driver to allocate and initialize a spi_device without
439 * registering it immediately. This allows a driver to directly
440 * fill the spi_device with device parameters before calling
441 * spi_add_device() on it.
442 *
443 * Caller is responsible to call spi_add_device() on the returned
8caab75f 444 * spi_device structure to add it to the SPI controller. If the caller
dc87c98e
GL
445 * needs to discard the spi_device without adding it, then it should
446 * call spi_dev_put() on it.
447 *
97d56dc6 448 * Return: a pointer to the new device, or NULL.
dc87c98e 449 */
8caab75f 450struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
dc87c98e
GL
451{
452 struct spi_device *spi;
dc87c98e 453
8caab75f 454 if (!spi_controller_get(ctlr))
dc87c98e
GL
455 return NULL;
456
5fe5f05e 457 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 458 if (!spi) {
8caab75f 459 spi_controller_put(ctlr);
dc87c98e
GL
460 return NULL;
461 }
462
8caab75f
GU
463 spi->master = spi->controller = ctlr;
464 spi->dev.parent = &ctlr->dev;
dc87c98e
GL
465 spi->dev.bus = &spi_bus_type;
466 spi->dev.release = spidev_release;
446411e1 467 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
468
469 spin_lock_init(&spi->statistics.lock);
470
dc87c98e
GL
471 device_initialize(&spi->dev);
472 return spi;
473}
474EXPORT_SYMBOL_GPL(spi_alloc_device);
475
e13ac47b
JN
476static void spi_dev_set_name(struct spi_device *spi)
477{
478 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
479
480 if (adev) {
481 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
482 return;
483 }
484
8caab75f 485 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
e13ac47b
JN
486 spi->chip_select);
487}
488
b6fb8d3a
MW
489static int spi_dev_check(struct device *dev, void *data)
490{
491 struct spi_device *spi = to_spi_device(dev);
492 struct spi_device *new_spi = data;
493
8caab75f 494 if (spi->controller == new_spi->controller &&
b6fb8d3a
MW
495 spi->chip_select == new_spi->chip_select)
496 return -EBUSY;
497 return 0;
498}
499
dc87c98e
GL
500/**
501 * spi_add_device - Add spi_device allocated with spi_alloc_device
502 * @spi: spi_device to register
503 *
504 * Companion function to spi_alloc_device. Devices allocated with
505 * spi_alloc_device can be added onto the spi bus with this function.
506 *
97d56dc6 507 * Return: 0 on success; negative errno on failure
dc87c98e
GL
508 */
509int spi_add_device(struct spi_device *spi)
510{
e48880e0 511 static DEFINE_MUTEX(spi_add_lock);
8caab75f
GU
512 struct spi_controller *ctlr = spi->controller;
513 struct device *dev = ctlr->dev.parent;
dc87c98e
GL
514 int status;
515
516 /* Chipselects are numbered 0..max; validate. */
8caab75f
GU
517 if (spi->chip_select >= ctlr->num_chipselect) {
518 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
519 ctlr->num_chipselect);
dc87c98e
GL
520 return -EINVAL;
521 }
522
523 /* Set the bus ID string */
e13ac47b 524 spi_dev_set_name(spi);
e48880e0
DB
525
526 /* We need to make sure there's no other device with this
527 * chipselect **BEFORE** we call setup(), else we'll trash
528 * its configuration. Lock against concurrent add() calls.
529 */
530 mutex_lock(&spi_add_lock);
531
b6fb8d3a
MW
532 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
533 if (status) {
e48880e0
DB
534 dev_err(dev, "chipselect %d already in use\n",
535 spi->chip_select);
e48880e0
DB
536 goto done;
537 }
538
8caab75f
GU
539 if (ctlr->cs_gpios)
540 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
74317984 541
e48880e0
DB
542 /* Drivers may modify this initial i/o setup, but will
543 * normally rely on the device being setup. Devices
544 * using SPI_CS_HIGH can't coexist well otherwise...
545 */
7d077197 546 status = spi_setup(spi);
dc87c98e 547 if (status < 0) {
eb288a1f
LW
548 dev_err(dev, "can't setup %s, status %d\n",
549 dev_name(&spi->dev), status);
e48880e0 550 goto done;
dc87c98e
GL
551 }
552
e48880e0 553 /* Device may be bound to an active driver when this returns */
dc87c98e 554 status = device_add(&spi->dev);
e48880e0 555 if (status < 0)
eb288a1f
LW
556 dev_err(dev, "can't add %s, status %d\n",
557 dev_name(&spi->dev), status);
e48880e0 558 else
35f74fca 559 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 560
e48880e0
DB
561done:
562 mutex_unlock(&spi_add_lock);
563 return status;
dc87c98e
GL
564}
565EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 566
33e34dc6
DB
567/**
568 * spi_new_device - instantiate one new SPI device
8caab75f 569 * @ctlr: Controller to which device is connected
33e34dc6
DB
570 * @chip: Describes the SPI device
571 * Context: can sleep
572 *
573 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
574 * after board init creates the hard-wired devices. Some development
575 * platforms may not be able to use spi_register_board_info though, and
576 * this is exported so that for example a USB or parport based adapter
577 * driver could add devices (which it would learn about out-of-band).
082c8cb4 578 *
97d56dc6 579 * Return: the new device, or NULL.
8ae12a0d 580 */
8caab75f 581struct spi_device *spi_new_device(struct spi_controller *ctlr,
e9d5a461 582 struct spi_board_info *chip)
8ae12a0d
DB
583{
584 struct spi_device *proxy;
8ae12a0d
DB
585 int status;
586
082c8cb4
DB
587 /* NOTE: caller did any chip->bus_num checks necessary.
588 *
589 * Also, unless we change the return value convention to use
590 * error-or-pointer (not NULL-or-pointer), troubleshootability
591 * suggests syslogged diagnostics are best here (ugh).
592 */
593
8caab75f 594 proxy = spi_alloc_device(ctlr);
dc87c98e 595 if (!proxy)
8ae12a0d
DB
596 return NULL;
597
102eb975
GL
598 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
599
8ae12a0d
DB
600 proxy->chip_select = chip->chip_select;
601 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 602 proxy->mode = chip->mode;
8ae12a0d 603 proxy->irq = chip->irq;
102eb975 604 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
605 proxy->dev.platform_data = (void *) chip->platform_data;
606 proxy->controller_data = chip->controller_data;
607 proxy->controller_state = NULL;
8ae12a0d 608
826cf175
DT
609 if (chip->properties) {
610 status = device_add_properties(&proxy->dev, chip->properties);
611 if (status) {
8caab75f 612 dev_err(&ctlr->dev,
826cf175
DT
613 "failed to add properties to '%s': %d\n",
614 chip->modalias, status);
615 goto err_dev_put;
616 }
8ae12a0d
DB
617 }
618
826cf175
DT
619 status = spi_add_device(proxy);
620 if (status < 0)
621 goto err_remove_props;
622
8ae12a0d 623 return proxy;
826cf175
DT
624
625err_remove_props:
626 if (chip->properties)
627 device_remove_properties(&proxy->dev);
628err_dev_put:
629 spi_dev_put(proxy);
630 return NULL;
8ae12a0d
DB
631}
632EXPORT_SYMBOL_GPL(spi_new_device);
633
3b1884c2
GU
634/**
635 * spi_unregister_device - unregister a single SPI device
636 * @spi: spi_device to unregister
637 *
638 * Start making the passed SPI device vanish. Normally this would be handled
8caab75f 639 * by spi_unregister_controller().
3b1884c2
GU
640 */
641void spi_unregister_device(struct spi_device *spi)
642{
bd6c1644
GU
643 if (!spi)
644 return;
645
8324147f 646 if (spi->dev.of_node) {
bd6c1644 647 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
8324147f
JH
648 of_node_put(spi->dev.of_node);
649 }
7f24467f
OP
650 if (ACPI_COMPANION(&spi->dev))
651 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
bd6c1644 652 device_unregister(&spi->dev);
3b1884c2
GU
653}
654EXPORT_SYMBOL_GPL(spi_unregister_device);
655
8caab75f
GU
656static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
657 struct spi_board_info *bi)
2b9603a0
FT
658{
659 struct spi_device *dev;
660
8caab75f 661 if (ctlr->bus_num != bi->bus_num)
2b9603a0
FT
662 return;
663
8caab75f 664 dev = spi_new_device(ctlr, bi);
2b9603a0 665 if (!dev)
8caab75f 666 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
2b9603a0
FT
667 bi->modalias);
668}
669
33e34dc6
DB
670/**
671 * spi_register_board_info - register SPI devices for a given board
672 * @info: array of chip descriptors
673 * @n: how many descriptors are provided
674 * Context: can sleep
675 *
8ae12a0d
DB
676 * Board-specific early init code calls this (probably during arch_initcall)
677 * with segments of the SPI device table. Any device nodes are created later,
678 * after the relevant parent SPI controller (bus_num) is defined. We keep
679 * this table of devices forever, so that reloading a controller driver will
680 * not make Linux forget about these hard-wired devices.
681 *
682 * Other code can also call this, e.g. a particular add-on board might provide
683 * SPI devices through its expansion connector, so code initializing that board
684 * would naturally declare its SPI devices.
685 *
686 * The board info passed can safely be __initdata ... but be careful of
687 * any embedded pointers (platform_data, etc), they're copied as-is.
826cf175 688 * Device properties are deep-copied though.
97d56dc6
JMC
689 *
690 * Return: zero on success, else a negative error code.
8ae12a0d 691 */
fd4a319b 692int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 693{
2b9603a0
FT
694 struct boardinfo *bi;
695 int i;
8ae12a0d 696
c7908a37 697 if (!n)
f974cf57 698 return 0;
c7908a37 699
f9bdb7fd 700 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
701 if (!bi)
702 return -ENOMEM;
8ae12a0d 703
2b9603a0 704 for (i = 0; i < n; i++, bi++, info++) {
8caab75f 705 struct spi_controller *ctlr;
8ae12a0d 706
2b9603a0 707 memcpy(&bi->board_info, info, sizeof(*info));
826cf175
DT
708 if (info->properties) {
709 bi->board_info.properties =
710 property_entries_dup(info->properties);
711 if (IS_ERR(bi->board_info.properties))
712 return PTR_ERR(bi->board_info.properties);
713 }
714
2b9603a0
FT
715 mutex_lock(&board_lock);
716 list_add_tail(&bi->list, &board_list);
8caab75f
GU
717 list_for_each_entry(ctlr, &spi_controller_list, list)
718 spi_match_controller_to_boardinfo(ctlr,
719 &bi->board_info);
2b9603a0 720 mutex_unlock(&board_lock);
8ae12a0d 721 }
2b9603a0
FT
722
723 return 0;
8ae12a0d
DB
724}
725
726/*-------------------------------------------------------------------------*/
727
b158935f
MB
728static void spi_set_cs(struct spi_device *spi, bool enable)
729{
730 if (spi->mode & SPI_CS_HIGH)
731 enable = !enable;
732
8eee6b9d 733 if (gpio_is_valid(spi->cs_gpio)) {
b158935f 734 gpio_set_value(spi->cs_gpio, !enable);
8eee6b9d 735 /* Some SPI masters need both GPIO CS & slave_select */
8caab75f
GU
736 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
737 spi->controller->set_cs)
738 spi->controller->set_cs(spi, !enable);
739 } else if (spi->controller->set_cs) {
740 spi->controller->set_cs(spi, !enable);
8eee6b9d 741 }
b158935f
MB
742}
743
2de440f5 744#ifdef CONFIG_HAS_DMA
46336966
BB
745int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
746 struct sg_table *sgt, void *buf, size_t len,
747 enum dma_data_direction dir)
6ad45a27
MB
748{
749 const bool vmalloced_buf = is_vmalloc_addr(buf);
df88e91b 750 unsigned int max_seg_size = dma_get_max_seg_size(dev);
b1b8153c
V
751#ifdef CONFIG_HIGHMEM
752 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
753 (unsigned long)buf < (PKMAP_BASE +
754 (LAST_PKMAP * PAGE_SIZE)));
755#else
756 const bool kmap_buf = false;
757#endif
65598c13
AG
758 int desc_len;
759 int sgs;
6ad45a27 760 struct page *vm_page;
8dd4a016 761 struct scatterlist *sg;
6ad45a27
MB
762 void *sg_buf;
763 size_t min;
764 int i, ret;
765
b1b8153c 766 if (vmalloced_buf || kmap_buf) {
df88e91b 767 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
65598c13 768 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
0569a88f 769 } else if (virt_addr_valid(buf)) {
8caab75f 770 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
65598c13 771 sgs = DIV_ROUND_UP(len, desc_len);
0569a88f
V
772 } else {
773 return -EINVAL;
65598c13
AG
774 }
775
6ad45a27
MB
776 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
777 if (ret != 0)
778 return ret;
779
8dd4a016 780 sg = &sgt->sgl[0];
6ad45a27 781 for (i = 0; i < sgs; i++) {
6ad45a27 782
b1b8153c 783 if (vmalloced_buf || kmap_buf) {
ce99319a
MC
784 /*
785 * Next scatterlist entry size is the minimum between
786 * the desc_len and the remaining buffer length that
787 * fits in a page.
788 */
789 min = min_t(size_t, desc_len,
790 min_t(size_t, len,
791 PAGE_SIZE - offset_in_page(buf)));
b1b8153c
V
792 if (vmalloced_buf)
793 vm_page = vmalloc_to_page(buf);
794 else
795 vm_page = kmap_to_page(buf);
6ad45a27
MB
796 if (!vm_page) {
797 sg_free_table(sgt);
798 return -ENOMEM;
799 }
8dd4a016 800 sg_set_page(sg, vm_page,
c1aefbdd 801 min, offset_in_page(buf));
6ad45a27 802 } else {
65598c13 803 min = min_t(size_t, len, desc_len);
6ad45a27 804 sg_buf = buf;
8dd4a016 805 sg_set_buf(sg, sg_buf, min);
6ad45a27
MB
806 }
807
6ad45a27
MB
808 buf += min;
809 len -= min;
8dd4a016 810 sg = sg_next(sg);
6ad45a27
MB
811 }
812
813 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
814 if (!ret)
815 ret = -ENOMEM;
6ad45a27
MB
816 if (ret < 0) {
817 sg_free_table(sgt);
818 return ret;
819 }
820
821 sgt->nents = ret;
822
823 return 0;
824}
825
46336966
BB
826void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
827 struct sg_table *sgt, enum dma_data_direction dir)
6ad45a27
MB
828{
829 if (sgt->orig_nents) {
830 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
831 sg_free_table(sgt);
832 }
833}
834
8caab75f 835static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31 836{
99adef31
MB
837 struct device *tx_dev, *rx_dev;
838 struct spi_transfer *xfer;
6ad45a27 839 int ret;
3a2eba9b 840
8caab75f 841 if (!ctlr->can_dma)
99adef31
MB
842 return 0;
843
8caab75f
GU
844 if (ctlr->dma_tx)
845 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 846 else
8caab75f 847 tx_dev = ctlr->dev.parent;
c37f45b5 848
8caab75f
GU
849 if (ctlr->dma_rx)
850 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 851 else
8caab75f 852 rx_dev = ctlr->dev.parent;
99adef31
MB
853
854 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 855 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
856 continue;
857
858 if (xfer->tx_buf != NULL) {
8caab75f 859 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
860 (void *)xfer->tx_buf, xfer->len,
861 DMA_TO_DEVICE);
862 if (ret != 0)
863 return ret;
99adef31
MB
864 }
865
866 if (xfer->rx_buf != NULL) {
8caab75f 867 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
6ad45a27
MB
868 xfer->rx_buf, xfer->len,
869 DMA_FROM_DEVICE);
870 if (ret != 0) {
8caab75f 871 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
872 DMA_TO_DEVICE);
873 return ret;
99adef31
MB
874 }
875 }
876 }
877
8caab75f 878 ctlr->cur_msg_mapped = true;
99adef31
MB
879
880 return 0;
881}
882
8caab75f 883static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31
MB
884{
885 struct spi_transfer *xfer;
886 struct device *tx_dev, *rx_dev;
887
8caab75f 888 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
99adef31
MB
889 return 0;
890
8caab75f
GU
891 if (ctlr->dma_tx)
892 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 893 else
8caab75f 894 tx_dev = ctlr->dev.parent;
c37f45b5 895
8caab75f
GU
896 if (ctlr->dma_rx)
897 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 898 else
8caab75f 899 rx_dev = ctlr->dev.parent;
99adef31
MB
900
901 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 902 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
903 continue;
904
8caab75f
GU
905 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
906 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
907 }
908
909 return 0;
910}
2de440f5 911#else /* !CONFIG_HAS_DMA */
8caab75f 912static inline int __spi_map_msg(struct spi_controller *ctlr,
2de440f5
GU
913 struct spi_message *msg)
914{
915 return 0;
916}
917
8caab75f 918static inline int __spi_unmap_msg(struct spi_controller *ctlr,
4b786458 919 struct spi_message *msg)
2de440f5
GU
920{
921 return 0;
922}
923#endif /* !CONFIG_HAS_DMA */
924
8caab75f 925static inline int spi_unmap_msg(struct spi_controller *ctlr,
4b786458
MS
926 struct spi_message *msg)
927{
928 struct spi_transfer *xfer;
929
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 /*
932 * Restore the original value of tx_buf or rx_buf if they are
933 * NULL.
934 */
8caab75f 935 if (xfer->tx_buf == ctlr->dummy_tx)
4b786458 936 xfer->tx_buf = NULL;
8caab75f 937 if (xfer->rx_buf == ctlr->dummy_rx)
4b786458
MS
938 xfer->rx_buf = NULL;
939 }
940
8caab75f 941 return __spi_unmap_msg(ctlr, msg);
4b786458
MS
942}
943
8caab75f 944static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
2de440f5
GU
945{
946 struct spi_transfer *xfer;
947 void *tmp;
948 unsigned int max_tx, max_rx;
949
8caab75f 950 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
2de440f5
GU
951 max_tx = 0;
952 max_rx = 0;
953
954 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 955 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
2de440f5
GU
956 !xfer->tx_buf)
957 max_tx = max(xfer->len, max_tx);
8caab75f 958 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
2de440f5
GU
959 !xfer->rx_buf)
960 max_rx = max(xfer->len, max_rx);
961 }
962
963 if (max_tx) {
8caab75f 964 tmp = krealloc(ctlr->dummy_tx, max_tx,
2de440f5
GU
965 GFP_KERNEL | GFP_DMA);
966 if (!tmp)
967 return -ENOMEM;
8caab75f 968 ctlr->dummy_tx = tmp;
2de440f5
GU
969 memset(tmp, 0, max_tx);
970 }
971
972 if (max_rx) {
8caab75f 973 tmp = krealloc(ctlr->dummy_rx, max_rx,
2de440f5
GU
974 GFP_KERNEL | GFP_DMA);
975 if (!tmp)
976 return -ENOMEM;
8caab75f 977 ctlr->dummy_rx = tmp;
2de440f5
GU
978 }
979
980 if (max_tx || max_rx) {
981 list_for_each_entry(xfer, &msg->transfers,
982 transfer_list) {
983 if (!xfer->tx_buf)
8caab75f 984 xfer->tx_buf = ctlr->dummy_tx;
2de440f5 985 if (!xfer->rx_buf)
8caab75f 986 xfer->rx_buf = ctlr->dummy_rx;
2de440f5
GU
987 }
988 }
989 }
990
8caab75f 991 return __spi_map_msg(ctlr, msg);
2de440f5 992}
99adef31 993
b158935f
MB
994/*
995 * spi_transfer_one_message - Default implementation of transfer_one_message()
996 *
997 * This is a standard implementation of transfer_one_message() for
8ba811a7 998 * drivers which implement a transfer_one() operation. It provides
b158935f
MB
999 * standard handling of delays and chip select management.
1000 */
8caab75f 1001static int spi_transfer_one_message(struct spi_controller *ctlr,
b158935f
MB
1002 struct spi_message *msg)
1003{
1004 struct spi_transfer *xfer;
b158935f
MB
1005 bool keep_cs = false;
1006 int ret = 0;
d0716dde 1007 unsigned long long ms = 1;
8caab75f 1008 struct spi_statistics *statm = &ctlr->statistics;
eca2ebc7 1009 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
1010
1011 spi_set_cs(msg->spi, true);
1012
eca2ebc7
MS
1013 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1014 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1015
b158935f
MB
1016 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1017 trace_spi_transfer_start(msg, xfer);
1018
8caab75f
GU
1019 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1020 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
eca2ebc7 1021
38ec10f6 1022 if (xfer->tx_buf || xfer->rx_buf) {
8caab75f 1023 reinit_completion(&ctlr->xfer_completion);
b158935f 1024
8caab75f 1025 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
38ec10f6 1026 if (ret < 0) {
eca2ebc7
MS
1027 SPI_STATISTICS_INCREMENT_FIELD(statm,
1028 errors);
1029 SPI_STATISTICS_INCREMENT_FIELD(stats,
1030 errors);
38ec10f6
MB
1031 dev_err(&msg->spi->dev,
1032 "SPI transfer failed: %d\n", ret);
1033 goto out;
1034 }
b158935f 1035
38ec10f6
MB
1036 if (ret > 0) {
1037 ret = 0;
d0716dde
SW
1038 ms = 8LL * 1000LL * xfer->len;
1039 do_div(ms, xfer->speed_hz);
833bfade 1040 ms += ms + 200; /* some tolerance */
16a0ce4e 1041
d0716dde
SW
1042 if (ms > UINT_MAX)
1043 ms = UINT_MAX;
1044
8caab75f 1045 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
38ec10f6
MB
1046 msecs_to_jiffies(ms));
1047 }
16a0ce4e 1048
38ec10f6 1049 if (ms == 0) {
eca2ebc7
MS
1050 SPI_STATISTICS_INCREMENT_FIELD(statm,
1051 timedout);
1052 SPI_STATISTICS_INCREMENT_FIELD(stats,
1053 timedout);
38ec10f6
MB
1054 dev_err(&msg->spi->dev,
1055 "SPI transfer timed out\n");
1056 msg->status = -ETIMEDOUT;
1057 }
1058 } else {
1059 if (xfer->len)
1060 dev_err(&msg->spi->dev,
1061 "Bufferless transfer has length %u\n",
1062 xfer->len);
13a42798 1063 }
b158935f
MB
1064
1065 trace_spi_transfer_stop(msg, xfer);
1066
1067 if (msg->status != -EINPROGRESS)
1068 goto out;
1069
8244bd3a
DK
1070 if (xfer->delay_usecs) {
1071 u16 us = xfer->delay_usecs;
1072
1073 if (us <= 10)
1074 udelay(us);
1075 else
1076 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1077 }
b158935f
MB
1078
1079 if (xfer->cs_change) {
1080 if (list_is_last(&xfer->transfer_list,
1081 &msg->transfers)) {
1082 keep_cs = true;
1083 } else {
0b73aa63
MB
1084 spi_set_cs(msg->spi, false);
1085 udelay(10);
1086 spi_set_cs(msg->spi, true);
b158935f
MB
1087 }
1088 }
1089
1090 msg->actual_length += xfer->len;
1091 }
1092
1093out:
1094 if (ret != 0 || !keep_cs)
1095 spi_set_cs(msg->spi, false);
1096
1097 if (msg->status == -EINPROGRESS)
1098 msg->status = ret;
1099
8caab75f
GU
1100 if (msg->status && ctlr->handle_err)
1101 ctlr->handle_err(ctlr, msg);
b716c4ff 1102
8caab75f 1103 spi_res_release(ctlr, msg);
d780c371 1104
8caab75f 1105 spi_finalize_current_message(ctlr);
b158935f
MB
1106
1107 return ret;
1108}
1109
1110/**
1111 * spi_finalize_current_transfer - report completion of a transfer
8caab75f 1112 * @ctlr: the controller reporting completion
b158935f
MB
1113 *
1114 * Called by SPI drivers using the core transfer_one_message()
1115 * implementation to notify it that the current interrupt driven
9e8f4882 1116 * transfer has finished and the next one may be scheduled.
b158935f 1117 */
8caab75f 1118void spi_finalize_current_transfer(struct spi_controller *ctlr)
b158935f 1119{
8caab75f 1120 complete(&ctlr->xfer_completion);
b158935f
MB
1121}
1122EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1123
ffbbdd21 1124/**
fc9e0f71 1125 * __spi_pump_messages - function which processes spi message queue
8caab75f 1126 * @ctlr: controller to process queue for
fc9e0f71 1127 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1128 *
1129 * This function checks if there is any spi message in the queue that
1130 * needs processing and if so call out to the driver to initialize hardware
1131 * and transfer each message.
1132 *
0461a414
MB
1133 * Note that it is called both from the kthread itself and also from
1134 * inside spi_sync(); the queue extraction handling at the top of the
1135 * function should deal with this safely.
ffbbdd21 1136 */
8caab75f 1137static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
ffbbdd21 1138{
ffbbdd21
LW
1139 unsigned long flags;
1140 bool was_busy = false;
1141 int ret;
1142
983aee5d 1143 /* Lock queue */
8caab75f 1144 spin_lock_irqsave(&ctlr->queue_lock, flags);
983aee5d
MB
1145
1146 /* Make sure we are not already running a message */
8caab75f
GU
1147 if (ctlr->cur_msg) {
1148 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
983aee5d
MB
1149 return;
1150 }
1151
0461a414 1152 /* If another context is idling the device then defer */
8caab75f
GU
1153 if (ctlr->idling) {
1154 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1155 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
0461a414
MB
1156 return;
1157 }
1158
983aee5d 1159 /* Check if the queue is idle */
8caab75f
GU
1160 if (list_empty(&ctlr->queue) || !ctlr->running) {
1161 if (!ctlr->busy) {
1162 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
b0b36b86 1163 return;
ffbbdd21 1164 }
fc9e0f71
MB
1165
1166 /* Only do teardown in the thread */
1167 if (!in_kthread) {
8caab75f
GU
1168 kthread_queue_work(&ctlr->kworker,
1169 &ctlr->pump_messages);
1170 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
fc9e0f71
MB
1171 return;
1172 }
1173
8caab75f
GU
1174 ctlr->busy = false;
1175 ctlr->idling = true;
1176 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1177
1178 kfree(ctlr->dummy_rx);
1179 ctlr->dummy_rx = NULL;
1180 kfree(ctlr->dummy_tx);
1181 ctlr->dummy_tx = NULL;
1182 if (ctlr->unprepare_transfer_hardware &&
1183 ctlr->unprepare_transfer_hardware(ctlr))
1184 dev_err(&ctlr->dev,
b0b36b86 1185 "failed to unprepare transfer hardware\n");
8caab75f
GU
1186 if (ctlr->auto_runtime_pm) {
1187 pm_runtime_mark_last_busy(ctlr->dev.parent);
1188 pm_runtime_put_autosuspend(ctlr->dev.parent);
49834de2 1189 }
8caab75f 1190 trace_spi_controller_idle(ctlr);
ffbbdd21 1191
8caab75f
GU
1192 spin_lock_irqsave(&ctlr->queue_lock, flags);
1193 ctlr->idling = false;
1194 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1195 return;
1196 }
ffbbdd21 1197
ffbbdd21 1198 /* Extract head of queue */
8caab75f
GU
1199 ctlr->cur_msg =
1200 list_first_entry(&ctlr->queue, struct spi_message, queue);
ffbbdd21 1201
8caab75f
GU
1202 list_del_init(&ctlr->cur_msg->queue);
1203 if (ctlr->busy)
ffbbdd21
LW
1204 was_busy = true;
1205 else
8caab75f
GU
1206 ctlr->busy = true;
1207 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1208
8caab75f 1209 mutex_lock(&ctlr->io_mutex);
ef4d96ec 1210
8caab75f
GU
1211 if (!was_busy && ctlr->auto_runtime_pm) {
1212 ret = pm_runtime_get_sync(ctlr->dev.parent);
49834de2 1213 if (ret < 0) {
8caab75f 1214 dev_err(&ctlr->dev, "Failed to power device: %d\n",
49834de2 1215 ret);
8caab75f 1216 mutex_unlock(&ctlr->io_mutex);
49834de2
MB
1217 return;
1218 }
1219 }
1220
56ec1978 1221 if (!was_busy)
8caab75f 1222 trace_spi_controller_busy(ctlr);
56ec1978 1223
8caab75f
GU
1224 if (!was_busy && ctlr->prepare_transfer_hardware) {
1225 ret = ctlr->prepare_transfer_hardware(ctlr);
ffbbdd21 1226 if (ret) {
8caab75f 1227 dev_err(&ctlr->dev,
ffbbdd21 1228 "failed to prepare transfer hardware\n");
49834de2 1229
8caab75f
GU
1230 if (ctlr->auto_runtime_pm)
1231 pm_runtime_put(ctlr->dev.parent);
1232 mutex_unlock(&ctlr->io_mutex);
ffbbdd21
LW
1233 return;
1234 }
1235 }
1236
8caab75f 1237 trace_spi_message_start(ctlr->cur_msg);
56ec1978 1238
8caab75f
GU
1239 if (ctlr->prepare_message) {
1240 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
2841a5fc 1241 if (ret) {
8caab75f
GU
1242 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1243 ret);
1244 ctlr->cur_msg->status = ret;
1245 spi_finalize_current_message(ctlr);
49023d2e 1246 goto out;
2841a5fc 1247 }
8caab75f 1248 ctlr->cur_msg_prepared = true;
2841a5fc
MB
1249 }
1250
8caab75f 1251 ret = spi_map_msg(ctlr, ctlr->cur_msg);
99adef31 1252 if (ret) {
8caab75f
GU
1253 ctlr->cur_msg->status = ret;
1254 spi_finalize_current_message(ctlr);
49023d2e 1255 goto out;
99adef31
MB
1256 }
1257
8caab75f 1258 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
ffbbdd21 1259 if (ret) {
8caab75f 1260 dev_err(&ctlr->dev,
1f802f82 1261 "failed to transfer one message from queue\n");
49023d2e 1262 goto out;
ffbbdd21 1263 }
49023d2e
JH
1264
1265out:
8caab75f 1266 mutex_unlock(&ctlr->io_mutex);
62826970
MB
1267
1268 /* Prod the scheduler in case transfer_one() was busy waiting */
49023d2e
JH
1269 if (!ret)
1270 cond_resched();
ffbbdd21
LW
1271}
1272
fc9e0f71
MB
1273/**
1274 * spi_pump_messages - kthread work function which processes spi message queue
8caab75f 1275 * @work: pointer to kthread work struct contained in the controller struct
fc9e0f71
MB
1276 */
1277static void spi_pump_messages(struct kthread_work *work)
1278{
8caab75f
GU
1279 struct spi_controller *ctlr =
1280 container_of(work, struct spi_controller, pump_messages);
fc9e0f71 1281
8caab75f 1282 __spi_pump_messages(ctlr, true);
fc9e0f71
MB
1283}
1284
8caab75f 1285static int spi_init_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1286{
1287 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1288
8caab75f
GU
1289 ctlr->running = false;
1290 ctlr->busy = false;
ffbbdd21 1291
8caab75f
GU
1292 kthread_init_worker(&ctlr->kworker);
1293 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1294 "%s", dev_name(&ctlr->dev));
1295 if (IS_ERR(ctlr->kworker_task)) {
1296 dev_err(&ctlr->dev, "failed to create message pump task\n");
1297 return PTR_ERR(ctlr->kworker_task);
ffbbdd21 1298 }
8caab75f 1299 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
ffbbdd21
LW
1300
1301 /*
8caab75f 1302 * Controller config will indicate if this controller should run the
ffbbdd21
LW
1303 * message pump with high (realtime) priority to reduce the transfer
1304 * latency on the bus by minimising the delay between a transfer
1305 * request and the scheduling of the message pump thread. Without this
1306 * setting the message pump thread will remain at default priority.
1307 */
8caab75f
GU
1308 if (ctlr->rt) {
1309 dev_info(&ctlr->dev,
ffbbdd21 1310 "will run message pump with realtime priority\n");
8caab75f 1311 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
ffbbdd21
LW
1312 }
1313
1314 return 0;
1315}
1316
1317/**
1318 * spi_get_next_queued_message() - called by driver to check for queued
1319 * messages
8caab75f 1320 * @ctlr: the controller to check for queued messages
ffbbdd21
LW
1321 *
1322 * If there are more messages in the queue, the next message is returned from
1323 * this call.
97d56dc6
JMC
1324 *
1325 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21 1326 */
8caab75f 1327struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
ffbbdd21
LW
1328{
1329 struct spi_message *next;
1330 unsigned long flags;
1331
1332 /* get a pointer to the next message, if any */
8caab75f
GU
1333 spin_lock_irqsave(&ctlr->queue_lock, flags);
1334 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1cfd97f9 1335 queue);
8caab75f 1336 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1337
1338 return next;
1339}
1340EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1341
1342/**
1343 * spi_finalize_current_message() - the current message is complete
8caab75f 1344 * @ctlr: the controller to return the message to
ffbbdd21
LW
1345 *
1346 * Called by the driver to notify the core that the message in the front of the
1347 * queue is complete and can be removed from the queue.
1348 */
8caab75f 1349void spi_finalize_current_message(struct spi_controller *ctlr)
ffbbdd21
LW
1350{
1351 struct spi_message *mesg;
1352 unsigned long flags;
2841a5fc 1353 int ret;
ffbbdd21 1354
8caab75f
GU
1355 spin_lock_irqsave(&ctlr->queue_lock, flags);
1356 mesg = ctlr->cur_msg;
1357 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1358
8caab75f 1359 spi_unmap_msg(ctlr, mesg);
99adef31 1360
8caab75f
GU
1361 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1362 ret = ctlr->unprepare_message(ctlr, mesg);
2841a5fc 1363 if (ret) {
8caab75f
GU
1364 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1365 ret);
2841a5fc
MB
1366 }
1367 }
391949b6 1368
8caab75f
GU
1369 spin_lock_irqsave(&ctlr->queue_lock, flags);
1370 ctlr->cur_msg = NULL;
1371 ctlr->cur_msg_prepared = false;
1372 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1373 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
8e76ef88
MS
1374
1375 trace_spi_message_done(mesg);
2841a5fc 1376
ffbbdd21
LW
1377 mesg->state = NULL;
1378 if (mesg->complete)
1379 mesg->complete(mesg->context);
1380}
1381EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1382
8caab75f 1383static int spi_start_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1384{
1385 unsigned long flags;
1386
8caab75f 1387 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1388
8caab75f
GU
1389 if (ctlr->running || ctlr->busy) {
1390 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1391 return -EBUSY;
1392 }
1393
8caab75f
GU
1394 ctlr->running = true;
1395 ctlr->cur_msg = NULL;
1396 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1397
8caab75f 1398 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21
LW
1399
1400 return 0;
1401}
1402
8caab75f 1403static int spi_stop_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1404{
1405 unsigned long flags;
1406 unsigned limit = 500;
1407 int ret = 0;
1408
8caab75f 1409 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1410
1411 /*
1412 * This is a bit lame, but is optimized for the common execution path.
8caab75f 1413 * A wait_queue on the ctlr->busy could be used, but then the common
ffbbdd21
LW
1414 * execution path (pump_messages) would be required to call wake_up or
1415 * friends on every SPI message. Do this instead.
1416 */
8caab75f
GU
1417 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
f97b26b0 1419 usleep_range(10000, 11000);
8caab75f 1420 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1421 }
1422
8caab75f 1423 if (!list_empty(&ctlr->queue) || ctlr->busy)
ffbbdd21
LW
1424 ret = -EBUSY;
1425 else
8caab75f 1426 ctlr->running = false;
ffbbdd21 1427
8caab75f 1428 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1429
1430 if (ret) {
8caab75f 1431 dev_warn(&ctlr->dev, "could not stop message queue\n");
ffbbdd21
LW
1432 return ret;
1433 }
1434 return ret;
1435}
1436
8caab75f 1437static int spi_destroy_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1438{
1439 int ret;
1440
8caab75f 1441 ret = spi_stop_queue(ctlr);
ffbbdd21
LW
1442
1443 /*
3989144f 1444 * kthread_flush_worker will block until all work is done.
ffbbdd21
LW
1445 * If the reason that stop_queue timed out is that the work will never
1446 * finish, then it does no good to call flush/stop thread, so
1447 * return anyway.
1448 */
1449 if (ret) {
8caab75f 1450 dev_err(&ctlr->dev, "problem destroying queue\n");
ffbbdd21
LW
1451 return ret;
1452 }
1453
8caab75f
GU
1454 kthread_flush_worker(&ctlr->kworker);
1455 kthread_stop(ctlr->kworker_task);
ffbbdd21
LW
1456
1457 return 0;
1458}
1459
0461a414
MB
1460static int __spi_queued_transfer(struct spi_device *spi,
1461 struct spi_message *msg,
1462 bool need_pump)
ffbbdd21 1463{
8caab75f 1464 struct spi_controller *ctlr = spi->controller;
ffbbdd21
LW
1465 unsigned long flags;
1466
8caab75f 1467 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1468
8caab75f
GU
1469 if (!ctlr->running) {
1470 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1471 return -ESHUTDOWN;
1472 }
1473 msg->actual_length = 0;
1474 msg->status = -EINPROGRESS;
1475
8caab75f
GU
1476 list_add_tail(&msg->queue, &ctlr->queue);
1477 if (!ctlr->busy && need_pump)
1478 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21 1479
8caab75f 1480 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1481 return 0;
1482}
1483
0461a414
MB
1484/**
1485 * spi_queued_transfer - transfer function for queued transfers
1486 * @spi: spi device which is requesting transfer
1487 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1488 *
1489 * Return: zero on success, else a negative error code.
0461a414
MB
1490 */
1491static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1492{
1493 return __spi_queued_transfer(spi, msg, true);
1494}
1495
8caab75f 1496static int spi_controller_initialize_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1497{
1498 int ret;
1499
8caab75f
GU
1500 ctlr->transfer = spi_queued_transfer;
1501 if (!ctlr->transfer_one_message)
1502 ctlr->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1503
1504 /* Initialize and start queue */
8caab75f 1505 ret = spi_init_queue(ctlr);
ffbbdd21 1506 if (ret) {
8caab75f 1507 dev_err(&ctlr->dev, "problem initializing queue\n");
ffbbdd21
LW
1508 goto err_init_queue;
1509 }
8caab75f
GU
1510 ctlr->queued = true;
1511 ret = spi_start_queue(ctlr);
ffbbdd21 1512 if (ret) {
8caab75f 1513 dev_err(&ctlr->dev, "problem starting queue\n");
ffbbdd21
LW
1514 goto err_start_queue;
1515 }
1516
1517 return 0;
1518
1519err_start_queue:
8caab75f 1520 spi_destroy_queue(ctlr);
c3676d5c 1521err_init_queue:
ffbbdd21
LW
1522 return ret;
1523}
1524
988f259b
BB
1525/**
1526 * spi_flush_queue - Send all pending messages in the queue from the callers'
1527 * context
1528 * @ctlr: controller to process queue for
1529 *
1530 * This should be used when one wants to ensure all pending messages have been
1531 * sent before doing something. Is used by the spi-mem code to make sure SPI
1532 * memory operations do not preempt regular SPI transfers that have been queued
1533 * before the spi-mem operation.
1534 */
1535void spi_flush_queue(struct spi_controller *ctlr)
1536{
1537 if (ctlr->transfer == spi_queued_transfer)
1538 __spi_pump_messages(ctlr, false);
1539}
1540
ffbbdd21
LW
1541/*-------------------------------------------------------------------------*/
1542
7cb94361 1543#if defined(CONFIG_OF)
8caab75f 1544static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
c2e51ac3 1545 struct device_node *nc)
aff5e3f8 1546{
aff5e3f8 1547 u32 value;
c2e51ac3 1548 int rc;
aff5e3f8 1549
aff5e3f8 1550 /* Mode (clock phase/polarity/etc.) */
e0bcb680 1551 if (of_property_read_bool(nc, "spi-cpha"))
aff5e3f8 1552 spi->mode |= SPI_CPHA;
e0bcb680 1553 if (of_property_read_bool(nc, "spi-cpol"))
aff5e3f8 1554 spi->mode |= SPI_CPOL;
e0bcb680 1555 if (of_property_read_bool(nc, "spi-cs-high"))
aff5e3f8 1556 spi->mode |= SPI_CS_HIGH;
e0bcb680 1557 if (of_property_read_bool(nc, "spi-3wire"))
aff5e3f8 1558 spi->mode |= SPI_3WIRE;
e0bcb680 1559 if (of_property_read_bool(nc, "spi-lsb-first"))
aff5e3f8
PA
1560 spi->mode |= SPI_LSB_FIRST;
1561
1562 /* Device DUAL/QUAD mode */
1563 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1564 switch (value) {
1565 case 1:
1566 break;
1567 case 2:
1568 spi->mode |= SPI_TX_DUAL;
1569 break;
1570 case 4:
1571 spi->mode |= SPI_TX_QUAD;
1572 break;
1573 default:
8caab75f 1574 dev_warn(&ctlr->dev,
aff5e3f8
PA
1575 "spi-tx-bus-width %d not supported\n",
1576 value);
1577 break;
1578 }
1579 }
1580
1581 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1582 switch (value) {
1583 case 1:
1584 break;
1585 case 2:
1586 spi->mode |= SPI_RX_DUAL;
1587 break;
1588 case 4:
1589 spi->mode |= SPI_RX_QUAD;
1590 break;
1591 default:
8caab75f 1592 dev_warn(&ctlr->dev,
aff5e3f8
PA
1593 "spi-rx-bus-width %d not supported\n",
1594 value);
1595 break;
1596 }
1597 }
1598
8caab75f 1599 if (spi_controller_is_slave(ctlr)) {
6c364062 1600 if (strcmp(nc->name, "slave")) {
25c56c88
RH
1601 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1602 nc);
6c364062
GU
1603 return -EINVAL;
1604 }
1605 return 0;
1606 }
1607
1608 /* Device address */
1609 rc = of_property_read_u32(nc, "reg", &value);
1610 if (rc) {
25c56c88
RH
1611 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1612 nc, rc);
6c364062
GU
1613 return rc;
1614 }
1615 spi->chip_select = value;
1616
aff5e3f8
PA
1617 /* Device speed */
1618 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1619 if (rc) {
8caab75f 1620 dev_err(&ctlr->dev,
25c56c88 1621 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
c2e51ac3 1622 return rc;
aff5e3f8
PA
1623 }
1624 spi->max_speed_hz = value;
1625
c2e51ac3
GU
1626 return 0;
1627}
1628
1629static struct spi_device *
8caab75f 1630of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
c2e51ac3
GU
1631{
1632 struct spi_device *spi;
1633 int rc;
1634
1635 /* Alloc an spi_device */
8caab75f 1636 spi = spi_alloc_device(ctlr);
c2e51ac3 1637 if (!spi) {
25c56c88 1638 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
c2e51ac3
GU
1639 rc = -ENOMEM;
1640 goto err_out;
1641 }
1642
1643 /* Select device driver */
1644 rc = of_modalias_node(nc, spi->modalias,
1645 sizeof(spi->modalias));
1646 if (rc < 0) {
25c56c88 1647 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
c2e51ac3
GU
1648 goto err_out;
1649 }
1650
8caab75f 1651 rc = of_spi_parse_dt(ctlr, spi, nc);
c2e51ac3
GU
1652 if (rc)
1653 goto err_out;
1654
aff5e3f8
PA
1655 /* Store a pointer to the node in the device structure */
1656 of_node_get(nc);
1657 spi->dev.of_node = nc;
1658
1659 /* Register the new device */
aff5e3f8
PA
1660 rc = spi_add_device(spi);
1661 if (rc) {
25c56c88 1662 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
8324147f 1663 goto err_of_node_put;
aff5e3f8
PA
1664 }
1665
1666 return spi;
1667
8324147f
JH
1668err_of_node_put:
1669 of_node_put(nc);
aff5e3f8
PA
1670err_out:
1671 spi_dev_put(spi);
1672 return ERR_PTR(rc);
1673}
1674
d57a4282
GL
1675/**
1676 * of_register_spi_devices() - Register child devices onto the SPI bus
8caab75f 1677 * @ctlr: Pointer to spi_controller device
d57a4282 1678 *
6c364062
GU
1679 * Registers an spi_device for each child node of controller node which
1680 * represents a valid SPI slave.
d57a4282 1681 */
8caab75f 1682static void of_register_spi_devices(struct spi_controller *ctlr)
d57a4282
GL
1683{
1684 struct spi_device *spi;
1685 struct device_node *nc;
d57a4282 1686
8caab75f 1687 if (!ctlr->dev.of_node)
d57a4282
GL
1688 return;
1689
8caab75f 1690 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
bd6c1644
GU
1691 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1692 continue;
8caab75f 1693 spi = of_register_spi_device(ctlr, nc);
e0af98a7 1694 if (IS_ERR(spi)) {
8caab75f 1695 dev_warn(&ctlr->dev,
25c56c88 1696 "Failed to create SPI device for %pOF\n", nc);
e0af98a7
RR
1697 of_node_clear_flag(nc, OF_POPULATED);
1698 }
d57a4282
GL
1699 }
1700}
1701#else
8caab75f 1702static void of_register_spi_devices(struct spi_controller *ctlr) { }
d57a4282
GL
1703#endif
1704
64bee4d2 1705#ifdef CONFIG_ACPI
8a2e487e
LW
1706static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1707{
1708 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1709 const union acpi_object *obj;
1710
1711 if (!x86_apple_machine)
1712 return;
1713
1714 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1715 && obj->buffer.length >= 4)
1716 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1717
1718 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1719 && obj->buffer.length == 8)
1720 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1721
1722 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1723 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1724 spi->mode |= SPI_LSB_FIRST;
1725
1726 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1727 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1728 spi->mode |= SPI_CPOL;
1729
1730 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1731 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1732 spi->mode |= SPI_CPHA;
1733}
1734
64bee4d2
MW
1735static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1736{
1737 struct spi_device *spi = data;
8caab75f 1738 struct spi_controller *ctlr = spi->controller;
64bee4d2
MW
1739
1740 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1741 struct acpi_resource_spi_serialbus *sb;
1742
1743 sb = &ares->data.spi_serial_bus;
1744 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
a0a90718
MW
1745 /*
1746 * ACPI DeviceSelection numbering is handled by the
1747 * host controller driver in Windows and can vary
1748 * from driver to driver. In Linux we always expect
1749 * 0 .. max - 1 so we need to ask the driver to
1750 * translate between the two schemes.
1751 */
8caab75f
GU
1752 if (ctlr->fw_translate_cs) {
1753 int cs = ctlr->fw_translate_cs(ctlr,
a0a90718
MW
1754 sb->device_selection);
1755 if (cs < 0)
1756 return cs;
1757 spi->chip_select = cs;
1758 } else {
1759 spi->chip_select = sb->device_selection;
1760 }
1761
64bee4d2
MW
1762 spi->max_speed_hz = sb->connection_speed;
1763
1764 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1765 spi->mode |= SPI_CPHA;
1766 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1767 spi->mode |= SPI_CPOL;
1768 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1769 spi->mode |= SPI_CS_HIGH;
1770 }
1771 } else if (spi->irq < 0) {
1772 struct resource r;
1773
1774 if (acpi_dev_resource_interrupt(ares, 0, &r))
1775 spi->irq = r.start;
1776 }
1777
1778 /* Always tell the ACPI core to skip this resource */
1779 return 1;
1780}
1781
8caab75f 1782static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
7f24467f 1783 struct acpi_device *adev)
64bee4d2 1784{
64bee4d2 1785 struct list_head resource_list;
64bee4d2
MW
1786 struct spi_device *spi;
1787 int ret;
1788
7f24467f
OP
1789 if (acpi_bus_get_status(adev) || !adev->status.present ||
1790 acpi_device_enumerated(adev))
64bee4d2
MW
1791 return AE_OK;
1792
8caab75f 1793 spi = spi_alloc_device(ctlr);
64bee4d2 1794 if (!spi) {
8caab75f 1795 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
64bee4d2
MW
1796 dev_name(&adev->dev));
1797 return AE_NO_MEMORY;
1798 }
1799
7b199811 1800 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1801 spi->irq = -1;
1802
1803 INIT_LIST_HEAD(&resource_list);
1804 ret = acpi_dev_get_resources(adev, &resource_list,
1805 acpi_spi_add_resource, spi);
1806 acpi_dev_free_resource_list(&resource_list);
1807
8a2e487e
LW
1808 acpi_spi_parse_apple_properties(spi);
1809
64bee4d2
MW
1810 if (ret < 0 || !spi->max_speed_hz) {
1811 spi_dev_put(spi);
1812 return AE_OK;
1813 }
1814
0c6543f6
DD
1815 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1816 sizeof(spi->modalias));
1817
33ada67d
CR
1818 if (spi->irq < 0)
1819 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1820
7f24467f
OP
1821 acpi_device_set_enumerated(adev);
1822
33cf00e5 1823 adev->power.flags.ignore_parent = true;
64bee4d2 1824 if (spi_add_device(spi)) {
33cf00e5 1825 adev->power.flags.ignore_parent = false;
8caab75f 1826 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
64bee4d2
MW
1827 dev_name(&adev->dev));
1828 spi_dev_put(spi);
1829 }
1830
1831 return AE_OK;
1832}
1833
7f24467f
OP
1834static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1835 void *data, void **return_value)
1836{
8caab75f 1837 struct spi_controller *ctlr = data;
7f24467f
OP
1838 struct acpi_device *adev;
1839
1840 if (acpi_bus_get_device(handle, &adev))
1841 return AE_OK;
1842
8caab75f 1843 return acpi_register_spi_device(ctlr, adev);
7f24467f
OP
1844}
1845
8caab75f 1846static void acpi_register_spi_devices(struct spi_controller *ctlr)
64bee4d2
MW
1847{
1848 acpi_status status;
1849 acpi_handle handle;
1850
8caab75f 1851 handle = ACPI_HANDLE(ctlr->dev.parent);
64bee4d2
MW
1852 if (!handle)
1853 return;
1854
1855 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
8caab75f 1856 acpi_spi_add_device, NULL, ctlr, NULL);
64bee4d2 1857 if (ACPI_FAILURE(status))
8caab75f 1858 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
64bee4d2
MW
1859}
1860#else
8caab75f 1861static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
64bee4d2
MW
1862#endif /* CONFIG_ACPI */
1863
8caab75f 1864static void spi_controller_release(struct device *dev)
8ae12a0d 1865{
8caab75f 1866 struct spi_controller *ctlr;
8ae12a0d 1867
8caab75f
GU
1868 ctlr = container_of(dev, struct spi_controller, dev);
1869 kfree(ctlr);
8ae12a0d
DB
1870}
1871
1872static struct class spi_master_class = {
1873 .name = "spi_master",
1874 .owner = THIS_MODULE,
8caab75f 1875 .dev_release = spi_controller_release,
eca2ebc7 1876 .dev_groups = spi_master_groups,
8ae12a0d
DB
1877};
1878
6c364062
GU
1879#ifdef CONFIG_SPI_SLAVE
1880/**
1881 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1882 * controller
1883 * @spi: device used for the current transfer
1884 */
1885int spi_slave_abort(struct spi_device *spi)
1886{
8caab75f 1887 struct spi_controller *ctlr = spi->controller;
6c364062 1888
8caab75f
GU
1889 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1890 return ctlr->slave_abort(ctlr);
6c364062
GU
1891
1892 return -ENOTSUPP;
1893}
1894EXPORT_SYMBOL_GPL(spi_slave_abort);
1895
1896static int match_true(struct device *dev, void *data)
1897{
1898 return 1;
1899}
1900
1901static ssize_t spi_slave_show(struct device *dev,
1902 struct device_attribute *attr, char *buf)
1903{
8caab75f
GU
1904 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1905 dev);
6c364062
GU
1906 struct device *child;
1907
1908 child = device_find_child(&ctlr->dev, NULL, match_true);
1909 return sprintf(buf, "%s\n",
1910 child ? to_spi_device(child)->modalias : NULL);
1911}
1912
1913static ssize_t spi_slave_store(struct device *dev,
1914 struct device_attribute *attr, const char *buf,
1915 size_t count)
1916{
8caab75f
GU
1917 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1918 dev);
6c364062
GU
1919 struct spi_device *spi;
1920 struct device *child;
1921 char name[32];
1922 int rc;
1923
1924 rc = sscanf(buf, "%31s", name);
1925 if (rc != 1 || !name[0])
1926 return -EINVAL;
1927
1928 child = device_find_child(&ctlr->dev, NULL, match_true);
1929 if (child) {
1930 /* Remove registered slave */
1931 device_unregister(child);
1932 put_device(child);
1933 }
1934
1935 if (strcmp(name, "(null)")) {
1936 /* Register new slave */
1937 spi = spi_alloc_device(ctlr);
1938 if (!spi)
1939 return -ENOMEM;
1940
1941 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1942
1943 rc = spi_add_device(spi);
1944 if (rc) {
1945 spi_dev_put(spi);
1946 return rc;
1947 }
1948 }
1949
1950 return count;
1951}
1952
1953static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1954
1955static struct attribute *spi_slave_attrs[] = {
1956 &dev_attr_slave.attr,
1957 NULL,
1958};
1959
1960static const struct attribute_group spi_slave_group = {
1961 .attrs = spi_slave_attrs,
1962};
1963
1964static const struct attribute_group *spi_slave_groups[] = {
8caab75f 1965 &spi_controller_statistics_group,
6c364062
GU
1966 &spi_slave_group,
1967 NULL,
1968};
1969
1970static struct class spi_slave_class = {
1971 .name = "spi_slave",
1972 .owner = THIS_MODULE,
8caab75f 1973 .dev_release = spi_controller_release,
6c364062
GU
1974 .dev_groups = spi_slave_groups,
1975};
1976#else
1977extern struct class spi_slave_class; /* dummy */
1978#endif
8ae12a0d
DB
1979
1980/**
6c364062 1981 * __spi_alloc_controller - allocate an SPI master or slave controller
8ae12a0d 1982 * @dev: the controller, possibly using the platform_bus
33e34dc6 1983 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1984 * memory is in the driver_data field of the returned device,
8caab75f 1985 * accessible with spi_controller_get_devdata().
6c364062
GU
1986 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1987 * slave (true) controller
33e34dc6 1988 * Context: can sleep
8ae12a0d 1989 *
6c364062 1990 * This call is used only by SPI controller drivers, which are the
8ae12a0d 1991 * only ones directly touching chip registers. It's how they allocate
8caab75f 1992 * an spi_controller structure, prior to calling spi_register_controller().
8ae12a0d 1993 *
97d56dc6 1994 * This must be called from context that can sleep.
8ae12a0d 1995 *
6c364062 1996 * The caller is responsible for assigning the bus number and initializing the
8caab75f
GU
1997 * controller's methods before calling spi_register_controller(); and (after
1998 * errors adding the device) calling spi_controller_put() to prevent a memory
1999 * leak.
97d56dc6 2000 *
6c364062 2001 * Return: the SPI controller structure on success, else NULL.
8ae12a0d 2002 */
8caab75f
GU
2003struct spi_controller *__spi_alloc_controller(struct device *dev,
2004 unsigned int size, bool slave)
8ae12a0d 2005{
8caab75f 2006 struct spi_controller *ctlr;
8ae12a0d 2007
0c868461
DB
2008 if (!dev)
2009 return NULL;
2010
8caab75f
GU
2011 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2012 if (!ctlr)
8ae12a0d
DB
2013 return NULL;
2014
8caab75f
GU
2015 device_initialize(&ctlr->dev);
2016 ctlr->bus_num = -1;
2017 ctlr->num_chipselect = 1;
2018 ctlr->slave = slave;
6c364062 2019 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
8caab75f 2020 ctlr->dev.class = &spi_slave_class;
6c364062 2021 else
8caab75f
GU
2022 ctlr->dev.class = &spi_master_class;
2023 ctlr->dev.parent = dev;
2024 pm_suspend_ignore_children(&ctlr->dev, true);
2025 spi_controller_set_devdata(ctlr, &ctlr[1]);
8ae12a0d 2026
8caab75f 2027 return ctlr;
8ae12a0d 2028}
6c364062 2029EXPORT_SYMBOL_GPL(__spi_alloc_controller);
8ae12a0d 2030
74317984 2031#ifdef CONFIG_OF
8caab75f 2032static int of_spi_register_master(struct spi_controller *ctlr)
74317984 2033{
e80beb27 2034 int nb, i, *cs;
8caab75f 2035 struct device_node *np = ctlr->dev.of_node;
74317984
JCPV
2036
2037 if (!np)
2038 return 0;
2039
2040 nb = of_gpio_named_count(np, "cs-gpios");
8caab75f 2041 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
74317984 2042
8ec5d84e
AL
2043 /* Return error only for an incorrectly formed cs-gpios property */
2044 if (nb == 0 || nb == -ENOENT)
74317984 2045 return 0;
8ec5d84e
AL
2046 else if (nb < 0)
2047 return nb;
74317984 2048
8caab75f 2049 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
74317984 2050 GFP_KERNEL);
8caab75f 2051 ctlr->cs_gpios = cs;
74317984 2052
8caab75f 2053 if (!ctlr->cs_gpios)
74317984
JCPV
2054 return -ENOMEM;
2055
8caab75f 2056 for (i = 0; i < ctlr->num_chipselect; i++)
446411e1 2057 cs[i] = -ENOENT;
74317984
JCPV
2058
2059 for (i = 0; i < nb; i++)
2060 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2061
2062 return 0;
2063}
2064#else
8caab75f 2065static int of_spi_register_master(struct spi_controller *ctlr)
74317984
JCPV
2066{
2067 return 0;
2068}
2069#endif
2070
bdf3a3b5
BB
2071static int spi_controller_check_ops(struct spi_controller *ctlr)
2072{
2073 /*
2074 * The controller must at least implement one of the ->transfer()
2075 * hooks.
2076 */
2077 if (!ctlr->transfer && !ctlr->transfer_one &&
2078 !ctlr->transfer_one_message)
2079 return -EINVAL;
2080
2081 return 0;
2082}
2083
8ae12a0d 2084/**
8caab75f
GU
2085 * spi_register_controller - register SPI master or slave controller
2086 * @ctlr: initialized master, originally from spi_alloc_master() or
2087 * spi_alloc_slave()
33e34dc6 2088 * Context: can sleep
8ae12a0d 2089 *
8caab75f 2090 * SPI controllers connect to their drivers using some non-SPI bus,
8ae12a0d 2091 * such as the platform bus. The final stage of probe() in that code
8caab75f 2092 * includes calling spi_register_controller() to hook up to this SPI bus glue.
8ae12a0d
DB
2093 *
2094 * SPI controllers use board specific (often SOC specific) bus numbers,
2095 * and board-specific addressing for SPI devices combines those numbers
2096 * with chip select numbers. Since SPI does not directly support dynamic
2097 * device identification, boards need configuration tables telling which
2098 * chip is at which address.
2099 *
2100 * This must be called from context that can sleep. It returns zero on
8caab75f 2101 * success, else a negative error code (dropping the controller's refcount).
0c868461 2102 * After a successful return, the caller is responsible for calling
8caab75f 2103 * spi_unregister_controller().
97d56dc6
JMC
2104 *
2105 * Return: zero on success, else a negative error code.
8ae12a0d 2106 */
8caab75f 2107int spi_register_controller(struct spi_controller *ctlr)
8ae12a0d 2108{
8caab75f 2109 struct device *dev = ctlr->dev.parent;
2b9603a0 2110 struct boardinfo *bi;
8ae12a0d 2111 int status = -ENODEV;
42bdd706 2112 int id, first_dynamic;
8ae12a0d 2113
0c868461
DB
2114 if (!dev)
2115 return -ENODEV;
2116
bdf3a3b5
BB
2117 /*
2118 * Make sure all necessary hooks are implemented before registering
2119 * the SPI controller.
2120 */
2121 status = spi_controller_check_ops(ctlr);
2122 if (status)
2123 return status;
2124
8caab75f
GU
2125 if (!spi_controller_is_slave(ctlr)) {
2126 status = of_spi_register_master(ctlr);
6c364062
GU
2127 if (status)
2128 return status;
2129 }
74317984 2130
082c8cb4
DB
2131 /* even if it's just one always-selected device, there must
2132 * be at least one chipselect
2133 */
8caab75f 2134 if (ctlr->num_chipselect == 0)
082c8cb4 2135 return -EINVAL;
9b61e302
SM
2136 /* allocate dynamic bus number using Linux idr */
2137 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2138 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2139 if (id >= 0) {
2140 ctlr->bus_num = id;
2141 mutex_lock(&board_lock);
2142 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2143 ctlr->bus_num + 1, GFP_KERNEL);
2144 mutex_unlock(&board_lock);
2145 if (WARN(id < 0, "couldn't get idr"))
2146 return id == -ENOSPC ? -EBUSY : id;
2147 }
2148 }
8caab75f 2149 if (ctlr->bus_num < 0) {
42bdd706
LS
2150 first_dynamic = of_alias_get_highest_id("spi");
2151 if (first_dynamic < 0)
2152 first_dynamic = 0;
2153 else
2154 first_dynamic++;
2155
9a9a047a 2156 mutex_lock(&board_lock);
42bdd706
LS
2157 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2158 0, GFP_KERNEL);
9a9a047a
SM
2159 mutex_unlock(&board_lock);
2160 if (WARN(id < 0, "couldn't get idr"))
2161 return id;
2162 ctlr->bus_num = id;
8ae12a0d 2163 }
8caab75f
GU
2164 INIT_LIST_HEAD(&ctlr->queue);
2165 spin_lock_init(&ctlr->queue_lock);
2166 spin_lock_init(&ctlr->bus_lock_spinlock);
2167 mutex_init(&ctlr->bus_lock_mutex);
2168 mutex_init(&ctlr->io_mutex);
2169 ctlr->bus_lock_flag = 0;
2170 init_completion(&ctlr->xfer_completion);
2171 if (!ctlr->max_dma_len)
2172 ctlr->max_dma_len = INT_MAX;
cf32b71e 2173
8ae12a0d
DB
2174 /* register the device, then userspace will see it.
2175 * registration fails if the bus ID is in use.
2176 */
8caab75f
GU
2177 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2178 status = device_add(&ctlr->dev);
9b61e302
SM
2179 if (status < 0) {
2180 /* free bus id */
2181 mutex_lock(&board_lock);
2182 idr_remove(&spi_master_idr, ctlr->bus_num);
2183 mutex_unlock(&board_lock);
8ae12a0d 2184 goto done;
9b61e302
SM
2185 }
2186 dev_dbg(dev, "registered %s %s\n",
8caab75f 2187 spi_controller_is_slave(ctlr) ? "slave" : "master",
9b61e302 2188 dev_name(&ctlr->dev));
8ae12a0d 2189
ffbbdd21 2190 /* If we're using a queued driver, start the queue */
8caab75f
GU
2191 if (ctlr->transfer)
2192 dev_info(dev, "controller is unqueued, this is deprecated\n");
ffbbdd21 2193 else {
8caab75f 2194 status = spi_controller_initialize_queue(ctlr);
ffbbdd21 2195 if (status) {
8caab75f 2196 device_del(&ctlr->dev);
9b61e302
SM
2197 /* free bus id */
2198 mutex_lock(&board_lock);
2199 idr_remove(&spi_master_idr, ctlr->bus_num);
2200 mutex_unlock(&board_lock);
ffbbdd21
LW
2201 goto done;
2202 }
2203 }
eca2ebc7 2204 /* add statistics */
8caab75f 2205 spin_lock_init(&ctlr->statistics.lock);
ffbbdd21 2206
2b9603a0 2207 mutex_lock(&board_lock);
8caab75f 2208 list_add_tail(&ctlr->list, &spi_controller_list);
2b9603a0 2209 list_for_each_entry(bi, &board_list, list)
8caab75f 2210 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2b9603a0
FT
2211 mutex_unlock(&board_lock);
2212
64bee4d2 2213 /* Register devices from the device tree and ACPI */
8caab75f
GU
2214 of_register_spi_devices(ctlr);
2215 acpi_register_spi_devices(ctlr);
8ae12a0d
DB
2216done:
2217 return status;
2218}
8caab75f 2219EXPORT_SYMBOL_GPL(spi_register_controller);
8ae12a0d 2220
666d5b4c
MB
2221static void devm_spi_unregister(struct device *dev, void *res)
2222{
8caab75f 2223 spi_unregister_controller(*(struct spi_controller **)res);
666d5b4c
MB
2224}
2225
2226/**
8caab75f
GU
2227 * devm_spi_register_controller - register managed SPI master or slave
2228 * controller
2229 * @dev: device managing SPI controller
2230 * @ctlr: initialized controller, originally from spi_alloc_master() or
2231 * spi_alloc_slave()
666d5b4c
MB
2232 * Context: can sleep
2233 *
8caab75f 2234 * Register a SPI device as with spi_register_controller() which will
68b892f1 2235 * automatically be unregistered and freed.
97d56dc6
JMC
2236 *
2237 * Return: zero on success, else a negative error code.
666d5b4c 2238 */
8caab75f
GU
2239int devm_spi_register_controller(struct device *dev,
2240 struct spi_controller *ctlr)
666d5b4c 2241{
8caab75f 2242 struct spi_controller **ptr;
666d5b4c
MB
2243 int ret;
2244
2245 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2246 if (!ptr)
2247 return -ENOMEM;
2248
8caab75f 2249 ret = spi_register_controller(ctlr);
4b92894e 2250 if (!ret) {
8caab75f 2251 *ptr = ctlr;
666d5b4c
MB
2252 devres_add(dev, ptr);
2253 } else {
2254 devres_free(ptr);
2255 }
2256
2257 return ret;
2258}
8caab75f 2259EXPORT_SYMBOL_GPL(devm_spi_register_controller);
666d5b4c 2260
34860089 2261static int __unregister(struct device *dev, void *null)
8ae12a0d 2262{
34860089 2263 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
2264 return 0;
2265}
2266
2267/**
8caab75f
GU
2268 * spi_unregister_controller - unregister SPI master or slave controller
2269 * @ctlr: the controller being unregistered
33e34dc6 2270 * Context: can sleep
8ae12a0d 2271 *
8caab75f 2272 * This call is used only by SPI controller drivers, which are the
8ae12a0d
DB
2273 * only ones directly touching chip registers.
2274 *
2275 * This must be called from context that can sleep.
68b892f1
JH
2276 *
2277 * Note that this function also drops a reference to the controller.
8ae12a0d 2278 */
8caab75f 2279void spi_unregister_controller(struct spi_controller *ctlr)
8ae12a0d 2280{
9b61e302 2281 struct spi_controller *found;
67f7b278 2282 int id = ctlr->bus_num;
89fc9a1a
JG
2283 int dummy;
2284
9b61e302
SM
2285 /* First make sure that this controller was ever added */
2286 mutex_lock(&board_lock);
67f7b278 2287 found = idr_find(&spi_master_idr, id);
9b61e302 2288 mutex_unlock(&board_lock);
8caab75f
GU
2289 if (ctlr->queued) {
2290 if (spi_destroy_queue(ctlr))
2291 dev_err(&ctlr->dev, "queue remove failed\n");
ffbbdd21 2292 }
2b9603a0 2293 mutex_lock(&board_lock);
8caab75f 2294 list_del(&ctlr->list);
2b9603a0
FT
2295 mutex_unlock(&board_lock);
2296
8caab75f
GU
2297 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2298 device_unregister(&ctlr->dev);
9b61e302
SM
2299 /* free bus id */
2300 mutex_lock(&board_lock);
613bd1ea
JN
2301 if (found == ctlr)
2302 idr_remove(&spi_master_idr, id);
9b61e302 2303 mutex_unlock(&board_lock);
8ae12a0d 2304}
8caab75f 2305EXPORT_SYMBOL_GPL(spi_unregister_controller);
8ae12a0d 2306
8caab75f 2307int spi_controller_suspend(struct spi_controller *ctlr)
ffbbdd21
LW
2308{
2309 int ret;
2310
8caab75f
GU
2311 /* Basically no-ops for non-queued controllers */
2312 if (!ctlr->queued)
ffbbdd21
LW
2313 return 0;
2314
8caab75f 2315 ret = spi_stop_queue(ctlr);
ffbbdd21 2316 if (ret)
8caab75f 2317 dev_err(&ctlr->dev, "queue stop failed\n");
ffbbdd21
LW
2318
2319 return ret;
2320}
8caab75f 2321EXPORT_SYMBOL_GPL(spi_controller_suspend);
ffbbdd21 2322
8caab75f 2323int spi_controller_resume(struct spi_controller *ctlr)
ffbbdd21
LW
2324{
2325 int ret;
2326
8caab75f 2327 if (!ctlr->queued)
ffbbdd21
LW
2328 return 0;
2329
8caab75f 2330 ret = spi_start_queue(ctlr);
ffbbdd21 2331 if (ret)
8caab75f 2332 dev_err(&ctlr->dev, "queue restart failed\n");
ffbbdd21
LW
2333
2334 return ret;
2335}
8caab75f 2336EXPORT_SYMBOL_GPL(spi_controller_resume);
ffbbdd21 2337
8caab75f 2338static int __spi_controller_match(struct device *dev, const void *data)
5ed2c832 2339{
8caab75f 2340 struct spi_controller *ctlr;
9f3b795a 2341 const u16 *bus_num = data;
5ed2c832 2342
8caab75f
GU
2343 ctlr = container_of(dev, struct spi_controller, dev);
2344 return ctlr->bus_num == *bus_num;
5ed2c832
DY
2345}
2346
8ae12a0d
DB
2347/**
2348 * spi_busnum_to_master - look up master associated with bus_num
2349 * @bus_num: the master's bus number
33e34dc6 2350 * Context: can sleep
8ae12a0d
DB
2351 *
2352 * This call may be used with devices that are registered after
2353 * arch init time. It returns a refcounted pointer to the relevant
8caab75f 2354 * spi_controller (which the caller must release), or NULL if there is
8ae12a0d 2355 * no such master registered.
97d56dc6
JMC
2356 *
2357 * Return: the SPI master structure on success, else NULL.
8ae12a0d 2358 */
8caab75f 2359struct spi_controller *spi_busnum_to_master(u16 bus_num)
8ae12a0d 2360{
49dce689 2361 struct device *dev;
8caab75f 2362 struct spi_controller *ctlr = NULL;
5ed2c832 2363
695794ae 2364 dev = class_find_device(&spi_master_class, NULL, &bus_num,
8caab75f 2365 __spi_controller_match);
5ed2c832 2366 if (dev)
8caab75f 2367 ctlr = container_of(dev, struct spi_controller, dev);
5ed2c832 2368 /* reference got in class_find_device */
8caab75f 2369 return ctlr;
8ae12a0d
DB
2370}
2371EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2372
d780c371
MS
2373/*-------------------------------------------------------------------------*/
2374
2375/* Core methods for SPI resource management */
2376
2377/**
2378 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2379 * during the processing of a spi_message while using
2380 * spi_transfer_one
2381 * @spi: the spi device for which we allocate memory
2382 * @release: the release code to execute for this resource
2383 * @size: size to alloc and return
2384 * @gfp: GFP allocation flags
2385 *
2386 * Return: the pointer to the allocated data
2387 *
2388 * This may get enhanced in the future to allocate from a memory pool
8caab75f 2389 * of the @spi_device or @spi_controller to avoid repeated allocations.
d780c371
MS
2390 */
2391void *spi_res_alloc(struct spi_device *spi,
2392 spi_res_release_t release,
2393 size_t size, gfp_t gfp)
2394{
2395 struct spi_res *sres;
2396
2397 sres = kzalloc(sizeof(*sres) + size, gfp);
2398 if (!sres)
2399 return NULL;
2400
2401 INIT_LIST_HEAD(&sres->entry);
2402 sres->release = release;
2403
2404 return sres->data;
2405}
2406EXPORT_SYMBOL_GPL(spi_res_alloc);
2407
2408/**
2409 * spi_res_free - free an spi resource
2410 * @res: pointer to the custom data of a resource
2411 *
2412 */
2413void spi_res_free(void *res)
2414{
2415 struct spi_res *sres = container_of(res, struct spi_res, data);
2416
2417 if (!res)
2418 return;
2419
2420 WARN_ON(!list_empty(&sres->entry));
2421 kfree(sres);
2422}
2423EXPORT_SYMBOL_GPL(spi_res_free);
2424
2425/**
2426 * spi_res_add - add a spi_res to the spi_message
2427 * @message: the spi message
2428 * @res: the spi_resource
2429 */
2430void spi_res_add(struct spi_message *message, void *res)
2431{
2432 struct spi_res *sres = container_of(res, struct spi_res, data);
2433
2434 WARN_ON(!list_empty(&sres->entry));
2435 list_add_tail(&sres->entry, &message->resources);
2436}
2437EXPORT_SYMBOL_GPL(spi_res_add);
2438
2439/**
2440 * spi_res_release - release all spi resources for this message
8caab75f 2441 * @ctlr: the @spi_controller
d780c371
MS
2442 * @message: the @spi_message
2443 */
8caab75f 2444void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
d780c371
MS
2445{
2446 struct spi_res *res;
2447
2448 while (!list_empty(&message->resources)) {
2449 res = list_last_entry(&message->resources,
2450 struct spi_res, entry);
2451
2452 if (res->release)
8caab75f 2453 res->release(ctlr, message, res->data);
d780c371
MS
2454
2455 list_del(&res->entry);
2456
2457 kfree(res);
2458 }
2459}
2460EXPORT_SYMBOL_GPL(spi_res_release);
8ae12a0d
DB
2461
2462/*-------------------------------------------------------------------------*/
2463
523baf5a
MS
2464/* Core methods for spi_message alterations */
2465
8caab75f 2466static void __spi_replace_transfers_release(struct spi_controller *ctlr,
523baf5a
MS
2467 struct spi_message *msg,
2468 void *res)
2469{
2470 struct spi_replaced_transfers *rxfer = res;
2471 size_t i;
2472
2473 /* call extra callback if requested */
2474 if (rxfer->release)
8caab75f 2475 rxfer->release(ctlr, msg, res);
523baf5a
MS
2476
2477 /* insert replaced transfers back into the message */
2478 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2479
2480 /* remove the formerly inserted entries */
2481 for (i = 0; i < rxfer->inserted; i++)
2482 list_del(&rxfer->inserted_transfers[i].transfer_list);
2483}
2484
2485/**
2486 * spi_replace_transfers - replace transfers with several transfers
2487 * and register change with spi_message.resources
2488 * @msg: the spi_message we work upon
2489 * @xfer_first: the first spi_transfer we want to replace
2490 * @remove: number of transfers to remove
2491 * @insert: the number of transfers we want to insert instead
2492 * @release: extra release code necessary in some circumstances
2493 * @extradatasize: extra data to allocate (with alignment guarantees
2494 * of struct @spi_transfer)
05885397 2495 * @gfp: gfp flags
523baf5a
MS
2496 *
2497 * Returns: pointer to @spi_replaced_transfers,
2498 * PTR_ERR(...) in case of errors.
2499 */
2500struct spi_replaced_transfers *spi_replace_transfers(
2501 struct spi_message *msg,
2502 struct spi_transfer *xfer_first,
2503 size_t remove,
2504 size_t insert,
2505 spi_replaced_release_t release,
2506 size_t extradatasize,
2507 gfp_t gfp)
2508{
2509 struct spi_replaced_transfers *rxfer;
2510 struct spi_transfer *xfer;
2511 size_t i;
2512
2513 /* allocate the structure using spi_res */
2514 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2515 insert * sizeof(struct spi_transfer)
2516 + sizeof(struct spi_replaced_transfers)
2517 + extradatasize,
2518 gfp);
2519 if (!rxfer)
2520 return ERR_PTR(-ENOMEM);
2521
2522 /* the release code to invoke before running the generic release */
2523 rxfer->release = release;
2524
2525 /* assign extradata */
2526 if (extradatasize)
2527 rxfer->extradata =
2528 &rxfer->inserted_transfers[insert];
2529
2530 /* init the replaced_transfers list */
2531 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2532
2533 /* assign the list_entry after which we should reinsert
2534 * the @replaced_transfers - it may be spi_message.messages!
2535 */
2536 rxfer->replaced_after = xfer_first->transfer_list.prev;
2537
2538 /* remove the requested number of transfers */
2539 for (i = 0; i < remove; i++) {
2540 /* if the entry after replaced_after it is msg->transfers
2541 * then we have been requested to remove more transfers
2542 * than are in the list
2543 */
2544 if (rxfer->replaced_after->next == &msg->transfers) {
2545 dev_err(&msg->spi->dev,
2546 "requested to remove more spi_transfers than are available\n");
2547 /* insert replaced transfers back into the message */
2548 list_splice(&rxfer->replaced_transfers,
2549 rxfer->replaced_after);
2550
2551 /* free the spi_replace_transfer structure */
2552 spi_res_free(rxfer);
2553
2554 /* and return with an error */
2555 return ERR_PTR(-EINVAL);
2556 }
2557
2558 /* remove the entry after replaced_after from list of
2559 * transfers and add it to list of replaced_transfers
2560 */
2561 list_move_tail(rxfer->replaced_after->next,
2562 &rxfer->replaced_transfers);
2563 }
2564
2565 /* create copy of the given xfer with identical settings
2566 * based on the first transfer to get removed
2567 */
2568 for (i = 0; i < insert; i++) {
2569 /* we need to run in reverse order */
2570 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2571
2572 /* copy all spi_transfer data */
2573 memcpy(xfer, xfer_first, sizeof(*xfer));
2574
2575 /* add to list */
2576 list_add(&xfer->transfer_list, rxfer->replaced_after);
2577
2578 /* clear cs_change and delay_usecs for all but the last */
2579 if (i) {
2580 xfer->cs_change = false;
2581 xfer->delay_usecs = 0;
2582 }
2583 }
2584
2585 /* set up inserted */
2586 rxfer->inserted = insert;
2587
2588 /* and register it with spi_res/spi_message */
2589 spi_res_add(msg, rxfer);
2590
2591 return rxfer;
2592}
2593EXPORT_SYMBOL_GPL(spi_replace_transfers);
2594
8caab75f 2595static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
08933418
FE
2596 struct spi_message *msg,
2597 struct spi_transfer **xferp,
2598 size_t maxsize,
2599 gfp_t gfp)
d9f12122
MS
2600{
2601 struct spi_transfer *xfer = *xferp, *xfers;
2602 struct spi_replaced_transfers *srt;
2603 size_t offset;
2604 size_t count, i;
2605
2606 /* warn once about this fact that we are splitting a transfer */
2607 dev_warn_once(&msg->spi->dev,
7d62f51e 2608 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
d9f12122
MS
2609 xfer->len, maxsize);
2610
2611 /* calculate how many we have to replace */
2612 count = DIV_ROUND_UP(xfer->len, maxsize);
2613
2614 /* create replacement */
2615 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
657d32ef
DC
2616 if (IS_ERR(srt))
2617 return PTR_ERR(srt);
d9f12122
MS
2618 xfers = srt->inserted_transfers;
2619
2620 /* now handle each of those newly inserted spi_transfers
2621 * note that the replacements spi_transfers all are preset
2622 * to the same values as *xferp, so tx_buf, rx_buf and len
2623 * are all identical (as well as most others)
2624 * so we just have to fix up len and the pointers.
2625 *
2626 * this also includes support for the depreciated
2627 * spi_message.is_dma_mapped interface
2628 */
2629
2630 /* the first transfer just needs the length modified, so we
2631 * run it outside the loop
2632 */
c8dab77a 2633 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
d9f12122
MS
2634
2635 /* all the others need rx_buf/tx_buf also set */
2636 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2637 /* update rx_buf, tx_buf and dma */
2638 if (xfers[i].rx_buf)
2639 xfers[i].rx_buf += offset;
2640 if (xfers[i].rx_dma)
2641 xfers[i].rx_dma += offset;
2642 if (xfers[i].tx_buf)
2643 xfers[i].tx_buf += offset;
2644 if (xfers[i].tx_dma)
2645 xfers[i].tx_dma += offset;
2646
2647 /* update length */
2648 xfers[i].len = min(maxsize, xfers[i].len - offset);
2649 }
2650
2651 /* we set up xferp to the last entry we have inserted,
2652 * so that we skip those already split transfers
2653 */
2654 *xferp = &xfers[count - 1];
2655
2656 /* increment statistics counters */
8caab75f 2657 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
d9f12122
MS
2658 transfers_split_maxsize);
2659 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2660 transfers_split_maxsize);
2661
2662 return 0;
2663}
2664
2665/**
2666 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2667 * when an individual transfer exceeds a
2668 * certain size
8caab75f 2669 * @ctlr: the @spi_controller for this transfer
3700ce95
MI
2670 * @msg: the @spi_message to transform
2671 * @maxsize: the maximum when to apply this
10f11a22 2672 * @gfp: GFP allocation flags
d9f12122
MS
2673 *
2674 * Return: status of transformation
2675 */
8caab75f 2676int spi_split_transfers_maxsize(struct spi_controller *ctlr,
d9f12122
MS
2677 struct spi_message *msg,
2678 size_t maxsize,
2679 gfp_t gfp)
2680{
2681 struct spi_transfer *xfer;
2682 int ret;
2683
2684 /* iterate over the transfer_list,
2685 * but note that xfer is advanced to the last transfer inserted
2686 * to avoid checking sizes again unnecessarily (also xfer does
2687 * potentiall belong to a different list by the time the
2688 * replacement has happened
2689 */
2690 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2691 if (xfer->len > maxsize) {
8caab75f
GU
2692 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2693 maxsize, gfp);
d9f12122
MS
2694 if (ret)
2695 return ret;
2696 }
2697 }
2698
2699 return 0;
2700}
2701EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
8ae12a0d
DB
2702
2703/*-------------------------------------------------------------------------*/
2704
8caab75f 2705/* Core methods for SPI controller protocol drivers. Some of the
7d077197
DB
2706 * other core methods are currently defined as inline functions.
2707 */
2708
8caab75f
GU
2709static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2710 u8 bits_per_word)
63ab645f 2711{
8caab75f 2712 if (ctlr->bits_per_word_mask) {
63ab645f
SB
2713 /* Only 32 bits fit in the mask */
2714 if (bits_per_word > 32)
2715 return -EINVAL;
8caab75f 2716 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
63ab645f
SB
2717 return -EINVAL;
2718 }
2719
2720 return 0;
2721}
2722
7d077197
DB
2723/**
2724 * spi_setup - setup SPI mode and clock rate
2725 * @spi: the device whose settings are being modified
2726 * Context: can sleep, and no requests are queued to the device
2727 *
2728 * SPI protocol drivers may need to update the transfer mode if the
2729 * device doesn't work with its default. They may likewise need
2730 * to update clock rates or word sizes from initial values. This function
2731 * changes those settings, and must be called from a context that can sleep.
2732 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2733 * effect the next time the device is selected and data is transferred to
2734 * or from it. When this function returns, the spi device is deselected.
2735 *
2736 * Note that this call will fail if the protocol driver specifies an option
2737 * that the underlying controller or its driver does not support. For
2738 * example, not all hardware supports wire transfers using nine bit words,
2739 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
2740 *
2741 * Return: zero on success, else a negative error code.
7d077197
DB
2742 */
2743int spi_setup(struct spi_device *spi)
2744{
83596fbe 2745 unsigned bad_bits, ugly_bits;
5ab8d262 2746 int status;
7d077197 2747
f477b7fb 2748 /* check mode to prevent that DUAL and QUAD set at the same time
2749 */
2750 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2751 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2752 dev_err(&spi->dev,
2753 "setup: can not select dual and quad at the same time\n");
2754 return -EINVAL;
2755 }
2756 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2757 */
2758 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2759 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2760 return -EINVAL;
e7db06b5 2761 /* help drivers fail *cleanly* when they need options
8caab75f 2762 * that aren't supported with their current controller
e7db06b5 2763 */
8caab75f 2764 bad_bits = spi->mode & ~spi->controller->mode_bits;
83596fbe
GU
2765 ugly_bits = bad_bits &
2766 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2767 if (ugly_bits) {
2768 dev_warn(&spi->dev,
2769 "setup: ignoring unsupported mode bits %x\n",
2770 ugly_bits);
2771 spi->mode &= ~ugly_bits;
2772 bad_bits &= ~ugly_bits;
2773 }
e7db06b5 2774 if (bad_bits) {
eb288a1f 2775 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
2776 bad_bits);
2777 return -EINVAL;
2778 }
2779
7d077197
DB
2780 if (!spi->bits_per_word)
2781 spi->bits_per_word = 8;
2782
8caab75f
GU
2783 status = __spi_validate_bits_per_word(spi->controller,
2784 spi->bits_per_word);
5ab8d262
AS
2785 if (status)
2786 return status;
63ab645f 2787
052eb2d4 2788 if (!spi->max_speed_hz)
8caab75f 2789 spi->max_speed_hz = spi->controller->max_speed_hz;
052eb2d4 2790
8caab75f
GU
2791 if (spi->controller->setup)
2792 status = spi->controller->setup(spi);
7d077197 2793
abeedb01
FCJ
2794 spi_set_cs(spi, false);
2795
5fe5f05e 2796 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
2797 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2798 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2799 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2800 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2801 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2802 spi->bits_per_word, spi->max_speed_hz,
2803 status);
2804
2805 return status;
2806}
2807EXPORT_SYMBOL_GPL(spi_setup);
2808
90808738 2809static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e 2810{
8caab75f 2811 struct spi_controller *ctlr = spi->controller;
e6811d1d 2812 struct spi_transfer *xfer;
6ea31293 2813 int w_size;
cf32b71e 2814
24a0013a
MB
2815 if (list_empty(&message->transfers))
2816 return -EINVAL;
24a0013a 2817
cf32b71e
ES
2818 /* Half-duplex links include original MicroWire, and ones with
2819 * only one data pin like SPI_3WIRE (switches direction) or where
2820 * either MOSI or MISO is missing. They can also be caused by
2821 * software limitations.
2822 */
8caab75f
GU
2823 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2824 (spi->mode & SPI_3WIRE)) {
2825 unsigned flags = ctlr->flags;
cf32b71e
ES
2826
2827 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2828 if (xfer->rx_buf && xfer->tx_buf)
2829 return -EINVAL;
8caab75f 2830 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
cf32b71e 2831 return -EINVAL;
8caab75f 2832 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
cf32b71e
ES
2833 return -EINVAL;
2834 }
2835 }
2836
e6811d1d 2837 /**
059b8ffe
LD
2838 * Set transfer bits_per_word and max speed as spi device default if
2839 * it is not set for this transfer.
f477b7fb 2840 * Set transfer tx_nbits and rx_nbits as single transfer default
2841 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d 2842 */
77e80588 2843 message->frame_length = 0;
e6811d1d 2844 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 2845 message->frame_length += xfer->len;
e6811d1d
LD
2846 if (!xfer->bits_per_word)
2847 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
2848
2849 if (!xfer->speed_hz)
059b8ffe 2850 xfer->speed_hz = spi->max_speed_hz;
7dc9fbc3 2851 if (!xfer->speed_hz)
8caab75f 2852 xfer->speed_hz = ctlr->max_speed_hz;
a6f87fad 2853
8caab75f
GU
2854 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2855 xfer->speed_hz = ctlr->max_speed_hz;
56ede94a 2856
8caab75f 2857 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
63ab645f 2858 return -EINVAL;
a2fd4f9f 2859
4d94bd21
II
2860 /*
2861 * SPI transfer length should be multiple of SPI word size
2862 * where SPI word size should be power-of-two multiple
2863 */
2864 if (xfer->bits_per_word <= 8)
2865 w_size = 1;
2866 else if (xfer->bits_per_word <= 16)
2867 w_size = 2;
2868 else
2869 w_size = 4;
2870
4d94bd21 2871 /* No partial transfers accepted */
6ea31293 2872 if (xfer->len % w_size)
4d94bd21
II
2873 return -EINVAL;
2874
8caab75f
GU
2875 if (xfer->speed_hz && ctlr->min_speed_hz &&
2876 xfer->speed_hz < ctlr->min_speed_hz)
a2fd4f9f 2877 return -EINVAL;
f477b7fb 2878
2879 if (xfer->tx_buf && !xfer->tx_nbits)
2880 xfer->tx_nbits = SPI_NBITS_SINGLE;
2881 if (xfer->rx_buf && !xfer->rx_nbits)
2882 xfer->rx_nbits = SPI_NBITS_SINGLE;
2883 /* check transfer tx/rx_nbits:
1afd9989
GU
2884 * 1. check the value matches one of single, dual and quad
2885 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 2886 */
db90a441
SP
2887 if (xfer->tx_buf) {
2888 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2889 xfer->tx_nbits != SPI_NBITS_DUAL &&
2890 xfer->tx_nbits != SPI_NBITS_QUAD)
2891 return -EINVAL;
2892 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2893 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2894 return -EINVAL;
2895 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2896 !(spi->mode & SPI_TX_QUAD))
2897 return -EINVAL;
db90a441 2898 }
f477b7fb 2899 /* check transfer rx_nbits */
db90a441
SP
2900 if (xfer->rx_buf) {
2901 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2902 xfer->rx_nbits != SPI_NBITS_DUAL &&
2903 xfer->rx_nbits != SPI_NBITS_QUAD)
2904 return -EINVAL;
2905 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2906 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2907 return -EINVAL;
2908 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2909 !(spi->mode & SPI_RX_QUAD))
2910 return -EINVAL;
db90a441 2911 }
e6811d1d
LD
2912 }
2913
cf32b71e 2914 message->status = -EINPROGRESS;
90808738
MB
2915
2916 return 0;
2917}
2918
2919static int __spi_async(struct spi_device *spi, struct spi_message *message)
2920{
8caab75f 2921 struct spi_controller *ctlr = spi->controller;
90808738
MB
2922
2923 message->spi = spi;
2924
8caab75f 2925 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
eca2ebc7
MS
2926 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2927
90808738
MB
2928 trace_spi_message_submit(message);
2929
8caab75f 2930 return ctlr->transfer(spi, message);
cf32b71e
ES
2931}
2932
568d0697
DB
2933/**
2934 * spi_async - asynchronous SPI transfer
2935 * @spi: device with which data will be exchanged
2936 * @message: describes the data transfers, including completion callback
2937 * Context: any (irqs may be blocked, etc)
2938 *
2939 * This call may be used in_irq and other contexts which can't sleep,
2940 * as well as from task contexts which can sleep.
2941 *
2942 * The completion callback is invoked in a context which can't sleep.
2943 * Before that invocation, the value of message->status is undefined.
2944 * When the callback is issued, message->status holds either zero (to
2945 * indicate complete success) or a negative error code. After that
2946 * callback returns, the driver which issued the transfer request may
2947 * deallocate the associated memory; it's no longer in use by any SPI
2948 * core or controller driver code.
2949 *
2950 * Note that although all messages to a spi_device are handled in
2951 * FIFO order, messages may go to different devices in other orders.
2952 * Some device might be higher priority, or have various "hard" access
2953 * time requirements, for example.
2954 *
2955 * On detection of any fault during the transfer, processing of
2956 * the entire message is aborted, and the device is deselected.
2957 * Until returning from the associated message completion callback,
2958 * no other spi_message queued to that device will be processed.
2959 * (This rule applies equally to all the synchronous transfer calls,
2960 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
2961 *
2962 * Return: zero on success, else a negative error code.
568d0697
DB
2963 */
2964int spi_async(struct spi_device *spi, struct spi_message *message)
2965{
8caab75f 2966 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
2967 int ret;
2968 unsigned long flags;
568d0697 2969
90808738
MB
2970 ret = __spi_validate(spi, message);
2971 if (ret != 0)
2972 return ret;
2973
8caab75f 2974 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
568d0697 2975
8caab75f 2976 if (ctlr->bus_lock_flag)
cf32b71e
ES
2977 ret = -EBUSY;
2978 else
2979 ret = __spi_async(spi, message);
568d0697 2980
8caab75f 2981 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
2982
2983 return ret;
568d0697
DB
2984}
2985EXPORT_SYMBOL_GPL(spi_async);
2986
cf32b71e
ES
2987/**
2988 * spi_async_locked - version of spi_async with exclusive bus usage
2989 * @spi: device with which data will be exchanged
2990 * @message: describes the data transfers, including completion callback
2991 * Context: any (irqs may be blocked, etc)
2992 *
2993 * This call may be used in_irq and other contexts which can't sleep,
2994 * as well as from task contexts which can sleep.
2995 *
2996 * The completion callback is invoked in a context which can't sleep.
2997 * Before that invocation, the value of message->status is undefined.
2998 * When the callback is issued, message->status holds either zero (to
2999 * indicate complete success) or a negative error code. After that
3000 * callback returns, the driver which issued the transfer request may
3001 * deallocate the associated memory; it's no longer in use by any SPI
3002 * core or controller driver code.
3003 *
3004 * Note that although all messages to a spi_device are handled in
3005 * FIFO order, messages may go to different devices in other orders.
3006 * Some device might be higher priority, or have various "hard" access
3007 * time requirements, for example.
3008 *
3009 * On detection of any fault during the transfer, processing of
3010 * the entire message is aborted, and the device is deselected.
3011 * Until returning from the associated message completion callback,
3012 * no other spi_message queued to that device will be processed.
3013 * (This rule applies equally to all the synchronous transfer calls,
3014 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3015 *
3016 * Return: zero on success, else a negative error code.
cf32b71e
ES
3017 */
3018int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3019{
8caab75f 3020 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3021 int ret;
3022 unsigned long flags;
3023
90808738
MB
3024 ret = __spi_validate(spi, message);
3025 if (ret != 0)
3026 return ret;
3027
8caab75f 3028 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3029
3030 ret = __spi_async(spi, message);
3031
8caab75f 3032 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3033
3034 return ret;
3035
3036}
3037EXPORT_SYMBOL_GPL(spi_async_locked);
3038
7d077197 3039
556351f1
V
3040int spi_flash_read(struct spi_device *spi,
3041 struct spi_flash_read_message *msg)
3042
3043{
8caab75f 3044 struct spi_controller *master = spi->controller;
f4502dd1 3045 struct device *rx_dev = NULL;
556351f1
V
3046 int ret;
3047
3048 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3049 msg->addr_nbits == SPI_NBITS_DUAL) &&
3050 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3051 return -EINVAL;
3052 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3053 msg->addr_nbits == SPI_NBITS_QUAD) &&
3054 !(spi->mode & SPI_TX_QUAD))
3055 return -EINVAL;
3056 if (msg->data_nbits == SPI_NBITS_DUAL &&
3057 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3058 return -EINVAL;
3059 if (msg->data_nbits == SPI_NBITS_QUAD &&
3060 !(spi->mode & SPI_RX_QUAD))
3061 return -EINVAL;
3062
3063 if (master->auto_runtime_pm) {
3064 ret = pm_runtime_get_sync(master->dev.parent);
3065 if (ret < 0) {
3066 dev_err(&master->dev, "Failed to power device: %d\n",
3067 ret);
3068 return ret;
3069 }
3070 }
f4502dd1 3071
556351f1 3072 mutex_lock(&master->bus_lock_mutex);
ef4d96ec 3073 mutex_lock(&master->io_mutex);
2bca3445 3074 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
f4502dd1
V
3075 rx_dev = master->dma_rx->device->dev;
3076 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3077 msg->buf, msg->len,
3078 DMA_FROM_DEVICE);
3079 if (!ret)
3080 msg->cur_msg_mapped = true;
3081 }
556351f1 3082 ret = master->spi_flash_read(spi, msg);
f4502dd1
V
3083 if (msg->cur_msg_mapped)
3084 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3085 DMA_FROM_DEVICE);
ef4d96ec 3086 mutex_unlock(&master->io_mutex);
556351f1 3087 mutex_unlock(&master->bus_lock_mutex);
f4502dd1 3088
556351f1
V
3089 if (master->auto_runtime_pm)
3090 pm_runtime_put(master->dev.parent);
3091
3092 return ret;
3093}
3094EXPORT_SYMBOL_GPL(spi_flash_read);
3095
7d077197
DB
3096/*-------------------------------------------------------------------------*/
3097
8caab75f 3098/* Utility methods for SPI protocol drivers, layered on
7d077197
DB
3099 * top of the core. Some other utility methods are defined as
3100 * inline functions.
3101 */
3102
5d870c8e
AM
3103static void spi_complete(void *arg)
3104{
3105 complete(arg);
3106}
3107
ef4d96ec 3108static int __spi_sync(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
3109{
3110 DECLARE_COMPLETION_ONSTACK(done);
3111 int status;
8caab75f 3112 struct spi_controller *ctlr = spi->controller;
0461a414
MB
3113 unsigned long flags;
3114
3115 status = __spi_validate(spi, message);
3116 if (status != 0)
3117 return status;
cf32b71e
ES
3118
3119 message->complete = spi_complete;
3120 message->context = &done;
0461a414 3121 message->spi = spi;
cf32b71e 3122
8caab75f 3123 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
eca2ebc7
MS
3124 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3125
0461a414
MB
3126 /* If we're not using the legacy transfer method then we will
3127 * try to transfer in the calling context so special case.
3128 * This code would be less tricky if we could remove the
3129 * support for driver implemented message queues.
3130 */
8caab75f
GU
3131 if (ctlr->transfer == spi_queued_transfer) {
3132 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3133
3134 trace_spi_message_submit(message);
3135
3136 status = __spi_queued_transfer(spi, message, false);
3137
8caab75f 3138 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3139 } else {
3140 status = spi_async_locked(spi, message);
3141 }
cf32b71e 3142
cf32b71e 3143 if (status == 0) {
0461a414
MB
3144 /* Push out the messages in the calling context if we
3145 * can.
3146 */
8caab75f
GU
3147 if (ctlr->transfer == spi_queued_transfer) {
3148 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
eca2ebc7
MS
3149 spi_sync_immediate);
3150 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3151 spi_sync_immediate);
8caab75f 3152 __spi_pump_messages(ctlr, false);
eca2ebc7 3153 }
0461a414 3154
cf32b71e
ES
3155 wait_for_completion(&done);
3156 status = message->status;
3157 }
3158 message->context = NULL;
3159 return status;
3160}
3161
8ae12a0d
DB
3162/**
3163 * spi_sync - blocking/synchronous SPI data transfers
3164 * @spi: device with which data will be exchanged
3165 * @message: describes the data transfers
33e34dc6 3166 * Context: can sleep
8ae12a0d
DB
3167 *
3168 * This call may only be used from a context that may sleep. The sleep
3169 * is non-interruptible, and has no timeout. Low-overhead controller
3170 * drivers may DMA directly into and out of the message buffers.
3171 *
3172 * Note that the SPI device's chip select is active during the message,
3173 * and then is normally disabled between messages. Drivers for some
3174 * frequently-used devices may want to minimize costs of selecting a chip,
3175 * by leaving it selected in anticipation that the next message will go
3176 * to the same chip. (That may increase power usage.)
3177 *
0c868461
DB
3178 * Also, the caller is guaranteeing that the memory associated with the
3179 * message will not be freed before this call returns.
3180 *
97d56dc6 3181 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3182 */
3183int spi_sync(struct spi_device *spi, struct spi_message *message)
3184{
ef4d96ec
MB
3185 int ret;
3186
8caab75f 3187 mutex_lock(&spi->controller->bus_lock_mutex);
ef4d96ec 3188 ret = __spi_sync(spi, message);
8caab75f 3189 mutex_unlock(&spi->controller->bus_lock_mutex);
ef4d96ec
MB
3190
3191 return ret;
8ae12a0d
DB
3192}
3193EXPORT_SYMBOL_GPL(spi_sync);
3194
cf32b71e
ES
3195/**
3196 * spi_sync_locked - version of spi_sync with exclusive bus usage
3197 * @spi: device with which data will be exchanged
3198 * @message: describes the data transfers
3199 * Context: can sleep
3200 *
3201 * This call may only be used from a context that may sleep. The sleep
3202 * is non-interruptible, and has no timeout. Low-overhead controller
3203 * drivers may DMA directly into and out of the message buffers.
3204 *
3205 * This call should be used by drivers that require exclusive access to the
25985edc 3206 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
3207 * be released by a spi_bus_unlock call when the exclusive access is over.
3208 *
97d56dc6 3209 * Return: zero on success, else a negative error code.
cf32b71e
ES
3210 */
3211int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3212{
ef4d96ec 3213 return __spi_sync(spi, message);
cf32b71e
ES
3214}
3215EXPORT_SYMBOL_GPL(spi_sync_locked);
3216
3217/**
3218 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
8caab75f 3219 * @ctlr: SPI bus master that should be locked for exclusive bus access
cf32b71e
ES
3220 * Context: can sleep
3221 *
3222 * This call may only be used from a context that may sleep. The sleep
3223 * is non-interruptible, and has no timeout.
3224 *
3225 * This call should be used by drivers that require exclusive access to the
3226 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3227 * exclusive access is over. Data transfer must be done by spi_sync_locked
3228 * and spi_async_locked calls when the SPI bus lock is held.
3229 *
97d56dc6 3230 * Return: always zero.
cf32b71e 3231 */
8caab75f 3232int spi_bus_lock(struct spi_controller *ctlr)
cf32b71e
ES
3233{
3234 unsigned long flags;
3235
8caab75f 3236 mutex_lock(&ctlr->bus_lock_mutex);
cf32b71e 3237
8caab75f
GU
3238 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3239 ctlr->bus_lock_flag = 1;
3240 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3241
3242 /* mutex remains locked until spi_bus_unlock is called */
3243
3244 return 0;
3245}
3246EXPORT_SYMBOL_GPL(spi_bus_lock);
3247
3248/**
3249 * spi_bus_unlock - release the lock for exclusive SPI bus usage
8caab75f 3250 * @ctlr: SPI bus master that was locked for exclusive bus access
cf32b71e
ES
3251 * Context: can sleep
3252 *
3253 * This call may only be used from a context that may sleep. The sleep
3254 * is non-interruptible, and has no timeout.
3255 *
3256 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3257 * call.
3258 *
97d56dc6 3259 * Return: always zero.
cf32b71e 3260 */
8caab75f 3261int spi_bus_unlock(struct spi_controller *ctlr)
cf32b71e 3262{
8caab75f 3263 ctlr->bus_lock_flag = 0;
cf32b71e 3264
8caab75f 3265 mutex_unlock(&ctlr->bus_lock_mutex);
cf32b71e
ES
3266
3267 return 0;
3268}
3269EXPORT_SYMBOL_GPL(spi_bus_unlock);
3270
a9948b61 3271/* portable code must never pass more than 32 bytes */
5fe5f05e 3272#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
3273
3274static u8 *buf;
3275
3276/**
3277 * spi_write_then_read - SPI synchronous write followed by read
3278 * @spi: device with which data will be exchanged
3279 * @txbuf: data to be written (need not be dma-safe)
3280 * @n_tx: size of txbuf, in bytes
27570497
JP
3281 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3282 * @n_rx: size of rxbuf, in bytes
33e34dc6 3283 * Context: can sleep
8ae12a0d
DB
3284 *
3285 * This performs a half duplex MicroWire style transaction with the
3286 * device, sending txbuf and then reading rxbuf. The return value
3287 * is zero for success, else a negative errno status code.
b885244e 3288 * This call may only be used from a context that may sleep.
8ae12a0d 3289 *
0c868461 3290 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
3291 * portable code should never use this for more than 32 bytes.
3292 * Performance-sensitive or bulk transfer code should instead use
0c868461 3293 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
3294 *
3295 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3296 */
3297int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
3298 const void *txbuf, unsigned n_tx,
3299 void *rxbuf, unsigned n_rx)
8ae12a0d 3300{
068f4070 3301 static DEFINE_MUTEX(lock);
8ae12a0d
DB
3302
3303 int status;
3304 struct spi_message message;
bdff549e 3305 struct spi_transfer x[2];
8ae12a0d
DB
3306 u8 *local_buf;
3307
b3a223ee
MB
3308 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3309 * copying here, (as a pure convenience thing), but we can
3310 * keep heap costs out of the hot path unless someone else is
3311 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 3312 */
b3a223ee 3313 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
3314 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3315 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
3316 if (!local_buf)
3317 return -ENOMEM;
3318 } else {
3319 local_buf = buf;
3320 }
8ae12a0d 3321
8275c642 3322 spi_message_init(&message);
5fe5f05e 3323 memset(x, 0, sizeof(x));
bdff549e
DB
3324 if (n_tx) {
3325 x[0].len = n_tx;
3326 spi_message_add_tail(&x[0], &message);
3327 }
3328 if (n_rx) {
3329 x[1].len = n_rx;
3330 spi_message_add_tail(&x[1], &message);
3331 }
8275c642 3332
8ae12a0d 3333 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
3334 x[0].tx_buf = local_buf;
3335 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
3336
3337 /* do the i/o */
8ae12a0d 3338 status = spi_sync(spi, &message);
9b938b74 3339 if (status == 0)
bdff549e 3340 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 3341
bdff549e 3342 if (x[0].tx_buf == buf)
068f4070 3343 mutex_unlock(&lock);
8ae12a0d
DB
3344 else
3345 kfree(local_buf);
3346
3347 return status;
3348}
3349EXPORT_SYMBOL_GPL(spi_write_then_read);
3350
3351/*-------------------------------------------------------------------------*/
3352
ce79d54a
PA
3353#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3354static int __spi_of_device_match(struct device *dev, void *data)
3355{
3356 return dev->of_node == data;
3357}
3358
3359/* must call put_device() when done with returned spi_device device */
3360static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3361{
3362 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3363 __spi_of_device_match);
3364 return dev ? to_spi_device(dev) : NULL;
3365}
3366
8caab75f 3367static int __spi_of_controller_match(struct device *dev, const void *data)
ce79d54a
PA
3368{
3369 return dev->of_node == data;
3370}
3371
8caab75f
GU
3372/* the spi controllers are not using spi_bus, so we find it with another way */
3373static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
ce79d54a
PA
3374{
3375 struct device *dev;
3376
3377 dev = class_find_device(&spi_master_class, NULL, node,
8caab75f 3378 __spi_of_controller_match);
6c364062
GU
3379 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3380 dev = class_find_device(&spi_slave_class, NULL, node,
8caab75f 3381 __spi_of_controller_match);
ce79d54a
PA
3382 if (!dev)
3383 return NULL;
3384
3385 /* reference got in class_find_device */
8caab75f 3386 return container_of(dev, struct spi_controller, dev);
ce79d54a
PA
3387}
3388
3389static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3390 void *arg)
3391{
3392 struct of_reconfig_data *rd = arg;
8caab75f 3393 struct spi_controller *ctlr;
ce79d54a
PA
3394 struct spi_device *spi;
3395
3396 switch (of_reconfig_get_state_change(action, arg)) {
3397 case OF_RECONFIG_CHANGE_ADD:
8caab75f
GU
3398 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3399 if (ctlr == NULL)
ce79d54a
PA
3400 return NOTIFY_OK; /* not for us */
3401
bd6c1644 3402 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
8caab75f 3403 put_device(&ctlr->dev);
bd6c1644
GU
3404 return NOTIFY_OK;
3405 }
3406
8caab75f
GU
3407 spi = of_register_spi_device(ctlr, rd->dn);
3408 put_device(&ctlr->dev);
ce79d54a
PA
3409
3410 if (IS_ERR(spi)) {
25c56c88
RH
3411 pr_err("%s: failed to create for '%pOF'\n",
3412 __func__, rd->dn);
e0af98a7 3413 of_node_clear_flag(rd->dn, OF_POPULATED);
ce79d54a
PA
3414 return notifier_from_errno(PTR_ERR(spi));
3415 }
3416 break;
3417
3418 case OF_RECONFIG_CHANGE_REMOVE:
bd6c1644
GU
3419 /* already depopulated? */
3420 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3421 return NOTIFY_OK;
3422
ce79d54a
PA
3423 /* find our device by node */
3424 spi = of_find_spi_device_by_node(rd->dn);
3425 if (spi == NULL)
3426 return NOTIFY_OK; /* no? not meant for us */
3427
3428 /* unregister takes one ref away */
3429 spi_unregister_device(spi);
3430
3431 /* and put the reference of the find */
3432 put_device(&spi->dev);
3433 break;
3434 }
3435
3436 return NOTIFY_OK;
3437}
3438
3439static struct notifier_block spi_of_notifier = {
3440 .notifier_call = of_spi_notify,
3441};
3442#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3443extern struct notifier_block spi_of_notifier;
3444#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3445
7f24467f 3446#if IS_ENABLED(CONFIG_ACPI)
8caab75f 3447static int spi_acpi_controller_match(struct device *dev, const void *data)
7f24467f
OP
3448{
3449 return ACPI_COMPANION(dev->parent) == data;
3450}
3451
3452static int spi_acpi_device_match(struct device *dev, void *data)
3453{
3454 return ACPI_COMPANION(dev) == data;
3455}
3456
8caab75f 3457static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
7f24467f
OP
3458{
3459 struct device *dev;
3460
3461 dev = class_find_device(&spi_master_class, NULL, adev,
8caab75f 3462 spi_acpi_controller_match);
6c364062
GU
3463 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3464 dev = class_find_device(&spi_slave_class, NULL, adev,
8caab75f 3465 spi_acpi_controller_match);
7f24467f
OP
3466 if (!dev)
3467 return NULL;
3468
8caab75f 3469 return container_of(dev, struct spi_controller, dev);
7f24467f
OP
3470}
3471
3472static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3473{
3474 struct device *dev;
3475
3476 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3477
3478 return dev ? to_spi_device(dev) : NULL;
3479}
3480
3481static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3482 void *arg)
3483{
3484 struct acpi_device *adev = arg;
8caab75f 3485 struct spi_controller *ctlr;
7f24467f
OP
3486 struct spi_device *spi;
3487
3488 switch (value) {
3489 case ACPI_RECONFIG_DEVICE_ADD:
8caab75f
GU
3490 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3491 if (!ctlr)
7f24467f
OP
3492 break;
3493
8caab75f
GU
3494 acpi_register_spi_device(ctlr, adev);
3495 put_device(&ctlr->dev);
7f24467f
OP
3496 break;
3497 case ACPI_RECONFIG_DEVICE_REMOVE:
3498 if (!acpi_device_enumerated(adev))
3499 break;
3500
3501 spi = acpi_spi_find_device_by_adev(adev);
3502 if (!spi)
3503 break;
3504
3505 spi_unregister_device(spi);
3506 put_device(&spi->dev);
3507 break;
3508 }
3509
3510 return NOTIFY_OK;
3511}
3512
3513static struct notifier_block spi_acpi_notifier = {
3514 .notifier_call = acpi_spi_notify,
3515};
3516#else
3517extern struct notifier_block spi_acpi_notifier;
3518#endif
3519
8ae12a0d
DB
3520static int __init spi_init(void)
3521{
b885244e
DB
3522 int status;
3523
e94b1766 3524 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
3525 if (!buf) {
3526 status = -ENOMEM;
3527 goto err0;
3528 }
3529
3530 status = bus_register(&spi_bus_type);
3531 if (status < 0)
3532 goto err1;
8ae12a0d 3533
b885244e
DB
3534 status = class_register(&spi_master_class);
3535 if (status < 0)
3536 goto err2;
ce79d54a 3537
6c364062
GU
3538 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3539 status = class_register(&spi_slave_class);
3540 if (status < 0)
3541 goto err3;
3542 }
3543
5267720e 3544 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a 3545 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
7f24467f
OP
3546 if (IS_ENABLED(CONFIG_ACPI))
3547 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
ce79d54a 3548
8ae12a0d 3549 return 0;
b885244e 3550
6c364062
GU
3551err3:
3552 class_unregister(&spi_master_class);
b885244e
DB
3553err2:
3554 bus_unregister(&spi_bus_type);
3555err1:
3556 kfree(buf);
3557 buf = NULL;
3558err0:
3559 return status;
8ae12a0d 3560}
b885244e 3561
8ae12a0d
DB
3562/* board_info is normally registered in arch_initcall(),
3563 * but even essential drivers wait till later
b885244e
DB
3564 *
3565 * REVISIT only boardinfo really needs static linking. the rest (device and
3566 * driver registration) _could_ be dynamically linked (modular) ... costs
3567 * include needing to have boardinfo data structures be much more public.
8ae12a0d 3568 */
673c0c00 3569postcore_initcall(spi_init);
8ae12a0d 3570