]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/spi/spi.c
spi: No need to assign dummy value in spi_unregister_controller()
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
CommitLineData
b445bfcb 1// SPDX-License-Identifier: GPL-2.0-or-later
787f4889
MB
2// SPI init/core code
3//
4// Copyright (C) 2005 David Brownell
5// Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d 6
8ae12a0d
DB
7#include <linux/kernel.h>
8#include <linux/device.h>
9#include <linux/init.h>
10#include <linux/cache.h>
99adef31
MB
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
94040828 13#include <linux/mutex.h>
2b7a32f7 14#include <linux/of_device.h>
d57a4282 15#include <linux/of_irq.h>
86be408b 16#include <linux/clk/clk-conf.h>
5a0e3ad6 17#include <linux/slab.h>
e0626e38 18#include <linux/mod_devicetable.h>
8ae12a0d 19#include <linux/spi/spi.h>
b5932f5c 20#include <linux/spi/spi-mem.h>
74317984 21#include <linux/of_gpio.h>
f3186dd8 22#include <linux/gpio/consumer.h>
3ae22e8c 23#include <linux/pm_runtime.h>
f48c767c 24#include <linux/pm_domain.h>
826cf175 25#include <linux/property.h>
025ed130 26#include <linux/export.h>
8bd75c77 27#include <linux/sched/rt.h>
ae7e81c0 28#include <uapi/linux/sched/types.h>
ffbbdd21
LW
29#include <linux/delay.h>
30#include <linux/kthread.h>
64bee4d2
MW
31#include <linux/ioport.h>
32#include <linux/acpi.h>
b1b8153c 33#include <linux/highmem.h>
9b61e302 34#include <linux/idr.h>
8a2e487e 35#include <linux/platform_data/x86/apple.h>
8ae12a0d 36
56ec1978
MB
37#define CREATE_TRACE_POINTS
38#include <trace/events/spi.h>
ca1438dc
AB
39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
9b61e302 41
46336966
BB
42#include "internals.h"
43
9b61e302 44static DEFINE_IDR(spi_master_idr);
56ec1978 45
8ae12a0d
DB
46static void spidev_release(struct device *dev)
47{
0ffa0285 48 struct spi_device *spi = to_spi_device(dev);
8ae12a0d 49
8caab75f
GU
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
8ae12a0d 53
8caab75f 54 spi_controller_put(spi->controller);
5039563e 55 kfree(spi->driver_override);
07a389fe 56 kfree(spi);
8ae12a0d
DB
57}
58
59static ssize_t
60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61{
62 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
8ae12a0d 68
d8e328b3 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 70}
aa7da564 71static DEVICE_ATTR_RO(modalias);
8ae12a0d 72
5039563e
TP
73static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76{
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103}
104
105static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107{
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115}
116static DEVICE_ATTR_RW(driver_override);
117
eca2ebc7 118#define SPI_STATISTICS_ATTRS(field, file) \
8caab75f
GU
119static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
eca2ebc7 122{ \
8caab75f
GU
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
eca2ebc7 126} \
8caab75f 127static struct device_attribute dev_attr_spi_controller_##field = { \
ad25c92e 128 .attr = { .name = file, .mode = 0444 }, \
8caab75f 129 .show = spi_controller_##field##_show, \
eca2ebc7
MS
130}; \
131static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134{ \
d1eba93b 135 struct spi_device *spi = to_spi_device(dev); \
eca2ebc7
MS
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137} \
138static struct device_attribute dev_attr_spi_device_##field = { \
ad25c92e 139 .attr = { .name = file, .mode = 0444 }, \
eca2ebc7
MS
140 .show = spi_device_##field##_show, \
141}
142
143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146{ \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153} \
154SPI_STATISTICS_ATTRS(name, file)
155
156#define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160SPI_STATISTICS_SHOW(messages, "%lu");
161SPI_STATISTICS_SHOW(transfers, "%lu");
162SPI_STATISTICS_SHOW(errors, "%lu");
163SPI_STATISTICS_SHOW(timedout, "%lu");
164
165SPI_STATISTICS_SHOW(spi_sync, "%lu");
166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169SPI_STATISTICS_SHOW(bytes, "%llu");
170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
6b7bc061
MS
173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
d9f12122
MS
195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
aa7da564
GKH
197static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
5039563e 199 &dev_attr_driver_override.attr,
aa7da564 200 NULL,
8ae12a0d 201};
eca2ebc7
MS
202
203static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205};
206
207static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
d9f12122 235 &dev_attr_spi_device_transfers_split_maxsize.attr,
eca2ebc7
MS
236 NULL,
237};
238
239static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242};
243
244static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248};
249
8caab75f
GU
250static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
eca2ebc7
MS
279 NULL,
280};
281
8caab75f 282static const struct attribute_group spi_controller_statistics_group = {
eca2ebc7 283 .name = "statistics",
8caab75f 284 .attrs = spi_controller_statistics_attrs,
eca2ebc7
MS
285};
286
287static const struct attribute_group *spi_master_groups[] = {
8caab75f 288 &spi_controller_statistics_group,
eca2ebc7
MS
289 NULL,
290};
291
292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
8caab75f 294 struct spi_controller *ctlr)
eca2ebc7
MS
295{
296 unsigned long flags;
6b7bc061
MS
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
eca2ebc7
MS
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
6b7bc061 305 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
8caab75f 309 (xfer->tx_buf != ctlr->dummy_tx))
eca2ebc7
MS
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
8caab75f 312 (xfer->rx_buf != ctlr->dummy_rx))
eca2ebc7
MS
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316}
317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
318
319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
75368bf6
AV
323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325{
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332}
333
334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335{
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339}
340EXPORT_SYMBOL_GPL(spi_get_device_id);
341
8ae12a0d
DB
342static int spi_match_device(struct device *dev, struct device_driver *drv)
343{
344 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
5039563e
TP
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
2b7a32f7
SA
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
64bee4d2
MW
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
75368bf6
AV
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 361
35f74fca 362 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
363}
364
7eff2e7a 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
366{
367 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
8ae12a0d 373
2856670f 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
375}
376
8ae12a0d
DB
377struct bus_type spi_bus_type = {
378 .name = "spi",
aa7da564 379 .dev_groups = spi_dev_groups,
8ae12a0d
DB
380 .match = spi_match_device,
381 .uevent = spi_uevent,
8ae12a0d
DB
382};
383EXPORT_SYMBOL_GPL(spi_bus_type);
384
b885244e
DB
385
386static int spi_drv_probe(struct device *dev)
387{
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 389 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
390 int ret;
391
86be408b
SN
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
44af7927
JH
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
676e7c25 404 ret = dev_pm_domain_attach(dev, true);
71f277a7
UH
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
b885244e 411
33cf00e5 412 return ret;
b885244e
DB
413}
414
415static int spi_drv_remove(struct device *dev)
416{
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
418 int ret;
419
aec35f4e 420 ret = sdrv->remove(to_spi_device(dev));
676e7c25 421 dev_pm_domain_detach(dev, true);
b885244e 422
33cf00e5 423 return ret;
b885244e
DB
424}
425
426static void spi_drv_shutdown(struct device *dev)
427{
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431}
432
33e34dc6 433/**
ca5d2485 434 * __spi_register_driver - register a SPI driver
88c9321d 435 * @owner: owner module of the driver to register
33e34dc6
DB
436 * @sdrv: the driver to register
437 * Context: can sleep
97d56dc6
JMC
438 *
439 * Return: zero on success, else a negative error code.
33e34dc6 440 */
ca5d2485 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 442{
ca5d2485 443 sdrv->driver.owner = owner;
b885244e
DB
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452}
ca5d2485 453EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 454
8ae12a0d
DB
455/*-------------------------------------------------------------------------*/
456
457/* SPI devices should normally not be created by SPI device drivers; that
8caab75f 458 * would make them board-specific. Similarly with SPI controller drivers.
8ae12a0d
DB
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463struct boardinfo {
464 struct list_head list;
2b9603a0 465 struct spi_board_info board_info;
8ae12a0d
DB
466};
467
468static LIST_HEAD(board_list);
8caab75f 469static LIST_HEAD(spi_controller_list);
2b9603a0
FT
470
471/*
472 * Used to protect add/del opertion for board_info list and
8caab75f 473 * spi_controller list, and their matching process
9a9a047a 474 * also used to protect object of type struct idr
2b9603a0 475 */
94040828 476static DEFINE_MUTEX(board_lock);
8ae12a0d 477
dc87c98e
GL
478/**
479 * spi_alloc_device - Allocate a new SPI device
8caab75f 480 * @ctlr: Controller to which device is connected
dc87c98e
GL
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
8caab75f 489 * spi_device structure to add it to the SPI controller. If the caller
dc87c98e
GL
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
97d56dc6 493 * Return: a pointer to the new device, or NULL.
dc87c98e 494 */
8caab75f 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
dc87c98e
GL
496{
497 struct spi_device *spi;
dc87c98e 498
8caab75f 499 if (!spi_controller_get(ctlr))
dc87c98e
GL
500 return NULL;
501
5fe5f05e 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 503 if (!spi) {
8caab75f 504 spi_controller_put(ctlr);
dc87c98e
GL
505 return NULL;
506 }
507
8caab75f
GU
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
dc87c98e
GL
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
446411e1 512 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
513
514 spin_lock_init(&spi->statistics.lock);
515
dc87c98e
GL
516 device_initialize(&spi->dev);
517 return spi;
518}
519EXPORT_SYMBOL_GPL(spi_alloc_device);
520
e13ac47b
JN
521static void spi_dev_set_name(struct spi_device *spi)
522{
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
8caab75f 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
e13ac47b
JN
531 spi->chip_select);
532}
533
b6fb8d3a
MW
534static int spi_dev_check(struct device *dev, void *data)
535{
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
8caab75f 539 if (spi->controller == new_spi->controller &&
b6fb8d3a
MW
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543}
544
dc87c98e
GL
545/**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
97d56dc6 552 * Return: 0 on success; negative errno on failure
dc87c98e
GL
553 */
554int spi_add_device(struct spi_device *spi)
555{
e48880e0 556 static DEFINE_MUTEX(spi_add_lock);
8caab75f
GU
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
dc87c98e
GL
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
8caab75f
GU
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
dc87c98e
GL
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
e13ac47b 569 spi_dev_set_name(spi);
e48880e0
DB
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
b6fb8d3a
MW
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
e48880e0
DB
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
e48880e0
DB
581 goto done;
582 }
583
f3186dd8
LW
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
8caab75f 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
74317984 589
e48880e0
DB
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
7d077197 594 status = spi_setup(spi);
dc87c98e 595 if (status < 0) {
eb288a1f
LW
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
e48880e0 598 goto done;
dc87c98e
GL
599 }
600
e48880e0 601 /* Device may be bound to an active driver when this returns */
dc87c98e 602 status = device_add(&spi->dev);
e48880e0 603 if (status < 0)
eb288a1f
LW
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
e48880e0 606 else
35f74fca 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 608
e48880e0
DB
609done:
610 mutex_unlock(&spi_add_lock);
611 return status;
dc87c98e
GL
612}
613EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 614
33e34dc6
DB
615/**
616 * spi_new_device - instantiate one new SPI device
8caab75f 617 * @ctlr: Controller to which device is connected
33e34dc6
DB
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
082c8cb4 626 *
97d56dc6 627 * Return: the new device, or NULL.
8ae12a0d 628 */
8caab75f 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
e9d5a461 630 struct spi_board_info *chip)
8ae12a0d
DB
631{
632 struct spi_device *proxy;
8ae12a0d
DB
633 int status;
634
082c8cb4
DB
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
8caab75f 642 proxy = spi_alloc_device(ctlr);
dc87c98e 643 if (!proxy)
8ae12a0d
DB
644 return NULL;
645
102eb975
GL
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
8ae12a0d
DB
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 650 proxy->mode = chip->mode;
8ae12a0d 651 proxy->irq = chip->irq;
102eb975 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
8ae12a0d 656
826cf175
DT
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
8caab75f 660 dev_err(&ctlr->dev,
826cf175
DT
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
8ae12a0d
DB
665 }
666
826cf175
DT
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
8ae12a0d 671 return proxy;
826cf175
DT
672
673err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
8ae12a0d
DB
679}
680EXPORT_SYMBOL_GPL(spi_new_device);
681
3b1884c2
GU
682/**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
8caab75f 687 * by spi_unregister_controller().
3b1884c2
GU
688 */
689void spi_unregister_device(struct spi_device *spi)
690{
bd6c1644
GU
691 if (!spi)
692 return;
693
8324147f 694 if (spi->dev.of_node) {
bd6c1644 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
8324147f
JH
696 of_node_put(spi->dev.of_node);
697 }
7f24467f
OP
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
bd6c1644 700 device_unregister(&spi->dev);
3b1884c2
GU
701}
702EXPORT_SYMBOL_GPL(spi_unregister_device);
703
8caab75f
GU
704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
2b9603a0
FT
706{
707 struct spi_device *dev;
708
8caab75f 709 if (ctlr->bus_num != bi->bus_num)
2b9603a0
FT
710 return;
711
8caab75f 712 dev = spi_new_device(ctlr, bi);
2b9603a0 713 if (!dev)
8caab75f 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
2b9603a0
FT
715 bi->modalias);
716}
717
33e34dc6
DB
718/**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
8ae12a0d
DB
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
826cf175 736 * Device properties are deep-copied though.
97d56dc6
JMC
737 *
738 * Return: zero on success, else a negative error code.
8ae12a0d 739 */
fd4a319b 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 741{
2b9603a0
FT
742 struct boardinfo *bi;
743 int i;
8ae12a0d 744
c7908a37 745 if (!n)
f974cf57 746 return 0;
c7908a37 747
f9bdb7fd 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
749 if (!bi)
750 return -ENOMEM;
8ae12a0d 751
2b9603a0 752 for (i = 0; i < n; i++, bi++, info++) {
8caab75f 753 struct spi_controller *ctlr;
8ae12a0d 754
2b9603a0 755 memcpy(&bi->board_info, info, sizeof(*info));
826cf175
DT
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
2b9603a0
FT
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
8caab75f
GU
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
2b9603a0 768 mutex_unlock(&board_lock);
8ae12a0d 769 }
2b9603a0
FT
770
771 return 0;
8ae12a0d
DB
772}
773
774/*-------------------------------------------------------------------------*/
775
b158935f
MB
776static void spi_set_cs(struct spi_device *spi, bool enable)
777{
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
f3186dd8
LW
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
28f7604f
FF
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
f3186dd8 793 else
28f7604f 794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
f3186dd8 795 }
8eee6b9d 796 /* Some SPI masters need both GPIO CS & slave_select */
8caab75f
GU
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
8eee6b9d 802 }
b158935f
MB
803}
804
2de440f5 805#ifdef CONFIG_HAS_DMA
46336966
BB
806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
6ad45a27
MB
809{
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
df88e91b 811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
b1b8153c
V
812#ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816#else
817 const bool kmap_buf = false;
818#endif
65598c13
AG
819 int desc_len;
820 int sgs;
6ad45a27 821 struct page *vm_page;
8dd4a016 822 struct scatterlist *sg;
6ad45a27
MB
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
b1b8153c 827 if (vmalloced_buf || kmap_buf) {
df88e91b 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
65598c13 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
0569a88f 830 } else if (virt_addr_valid(buf)) {
8caab75f 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
65598c13 832 sgs = DIV_ROUND_UP(len, desc_len);
0569a88f
V
833 } else {
834 return -EINVAL;
65598c13
AG
835 }
836
6ad45a27
MB
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
8dd4a016 841 sg = &sgt->sgl[0];
6ad45a27 842 for (i = 0; i < sgs; i++) {
6ad45a27 843
b1b8153c 844 if (vmalloced_buf || kmap_buf) {
ce99319a
MC
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
b1b8153c
V
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
6ad45a27
MB
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
8dd4a016 861 sg_set_page(sg, vm_page,
c1aefbdd 862 min, offset_in_page(buf));
6ad45a27 863 } else {
65598c13 864 min = min_t(size_t, len, desc_len);
6ad45a27 865 sg_buf = buf;
8dd4a016 866 sg_set_buf(sg, sg_buf, min);
6ad45a27
MB
867 }
868
6ad45a27
MB
869 buf += min;
870 len -= min;
8dd4a016 871 sg = sg_next(sg);
6ad45a27
MB
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
875 if (!ret)
876 ret = -ENOMEM;
6ad45a27
MB
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885}
886
46336966
BB
887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
6ad45a27
MB
889{
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894}
895
8caab75f 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31 897{
99adef31
MB
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
6ad45a27 900 int ret;
3a2eba9b 901
8caab75f 902 if (!ctlr->can_dma)
99adef31
MB
903 return 0;
904
8caab75f
GU
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 907 else
8caab75f 908 tx_dev = ctlr->dev.parent;
c37f45b5 909
8caab75f
GU
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 912 else
8caab75f 913 rx_dev = ctlr->dev.parent;
99adef31
MB
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
917 continue;
918
919 if (xfer->tx_buf != NULL) {
8caab75f 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
99adef31
MB
925 }
926
927 if (xfer->rx_buf != NULL) {
8caab75f 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
6ad45a27
MB
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
8caab75f 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
6ad45a27
MB
933 DMA_TO_DEVICE);
934 return ret;
99adef31
MB
935 }
936 }
937 }
938
8caab75f 939 ctlr->cur_msg_mapped = true;
99adef31
MB
940
941 return 0;
942}
943
8caab75f 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
99adef31
MB
945{
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
8caab75f 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
99adef31
MB
950 return 0;
951
8caab75f
GU
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
c37f45b5 954 else
8caab75f 955 tx_dev = ctlr->dev.parent;
c37f45b5 956
8caab75f
GU
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
c37f45b5 959 else
8caab75f 960 rx_dev = ctlr->dev.parent;
99adef31
MB
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
99adef31
MB
964 continue;
965
8caab75f
GU
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
968 }
969
970 return 0;
971}
2de440f5 972#else /* !CONFIG_HAS_DMA */
8caab75f 973static inline int __spi_map_msg(struct spi_controller *ctlr,
2de440f5
GU
974 struct spi_message *msg)
975{
976 return 0;
977}
978
8caab75f 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
4b786458 980 struct spi_message *msg)
2de440f5
GU
981{
982 return 0;
983}
984#endif /* !CONFIG_HAS_DMA */
985
8caab75f 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
4b786458
MS
987 struct spi_message *msg)
988{
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
8caab75f 996 if (xfer->tx_buf == ctlr->dummy_tx)
4b786458 997 xfer->tx_buf = NULL;
8caab75f 998 if (xfer->rx_buf == ctlr->dummy_rx)
4b786458
MS
999 xfer->rx_buf = NULL;
1000 }
1001
8caab75f 1002 return __spi_unmap_msg(ctlr, msg);
4b786458
MS
1003}
1004
8caab75f 1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
2de440f5
GU
1006{
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
8caab75f 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
2de440f5
GU
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8caab75f 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
2de440f5
GU
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
8caab75f 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
2de440f5
GU
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
8caab75f 1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
2de440f5
GU
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
8caab75f 1029 ctlr->dummy_tx = tmp;
2de440f5
GU
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
8caab75f 1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
2de440f5
GU
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
8caab75f 1038 ctlr->dummy_rx = tmp;
2de440f5
GU
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
5442dcaa
CL
1044 if (!xfer->len)
1045 continue;
2de440f5 1046 if (!xfer->tx_buf)
8caab75f 1047 xfer->tx_buf = ctlr->dummy_tx;
2de440f5 1048 if (!xfer->rx_buf)
8caab75f 1049 xfer->rx_buf = ctlr->dummy_rx;
2de440f5
GU
1050 }
1051 }
1052 }
1053
8caab75f 1054 return __spi_map_msg(ctlr, msg);
2de440f5 1055}
99adef31 1056
810923f3
LR
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060{
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091}
1092
0ff2de8b
MS
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095 if (!ns)
1096 return;
1097 if (ns <= 1000) {
1098 ndelay(ns);
1099 } else {
1100 u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102 if (us <= 10)
1103 udelay(us);
1104 else
1105 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 }
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 struct spi_transfer *xfer)
1111{
1112 u32 delay = xfer->cs_change_delay;
1113 u32 unit = xfer->cs_change_delay_unit;
d5864e5b 1114 u32 hz;
0ff2de8b
MS
1115
1116 /* return early on "fast" mode - for everything but USECS */
1117 if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118 return;
1119
1120 switch (unit) {
1121 case SPI_DELAY_UNIT_USECS:
1122 /* for compatibility use default of 10us */
1123 if (!delay)
1124 delay = 10000;
1125 else
1126 delay *= 1000;
1127 break;
1128 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129 break;
d5864e5b
MS
1130 case SPI_DELAY_UNIT_SCK:
1131 /* if there is no effective speed know, then approximate
1132 * by underestimating with half the requested hz
1133 */
1134 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 delay *= DIV_ROUND_UP(1000000000, hz);
1136 break;
0ff2de8b
MS
1137 default:
1138 dev_err_once(&msg->spi->dev,
1139 "Use of unsupported delay unit %i, using default of 10us\n",
1140 xfer->cs_change_delay_unit);
1141 delay = 10000;
1142 }
1143 /* now sleep for the requested amount of time */
1144 _spi_transfer_delay_ns(delay);
1145}
1146
b158935f
MB
1147/*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
8ba811a7 1151 * drivers which implement a transfer_one() operation. It provides
b158935f
MB
1152 * standard handling of delays and chip select management.
1153 */
8caab75f 1154static int spi_transfer_one_message(struct spi_controller *ctlr,
b158935f
MB
1155 struct spi_message *msg)
1156{
1157 struct spi_transfer *xfer;
b158935f
MB
1158 bool keep_cs = false;
1159 int ret = 0;
8caab75f 1160 struct spi_statistics *statm = &ctlr->statistics;
eca2ebc7 1161 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
1162
1163 spi_set_cs(msg->spi, true);
1164
eca2ebc7
MS
1165 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
b158935f
MB
1168 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 trace_spi_transfer_start(msg, xfer);
1170
8caab75f
GU
1171 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
eca2ebc7 1173
38ec10f6 1174 if (xfer->tx_buf || xfer->rx_buf) {
8caab75f 1175 reinit_completion(&ctlr->xfer_completion);
b158935f 1176
8caab75f 1177 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
38ec10f6 1178 if (ret < 0) {
eca2ebc7
MS
1179 SPI_STATISTICS_INCREMENT_FIELD(statm,
1180 errors);
1181 SPI_STATISTICS_INCREMENT_FIELD(stats,
1182 errors);
38ec10f6
MB
1183 dev_err(&msg->spi->dev,
1184 "SPI transfer failed: %d\n", ret);
1185 goto out;
1186 }
b158935f 1187
d57e7960
MB
1188 if (ret > 0) {
1189 ret = spi_transfer_wait(ctlr, msg, xfer);
1190 if (ret < 0)
1191 msg->status = ret;
1192 }
38ec10f6
MB
1193 } else {
1194 if (xfer->len)
1195 dev_err(&msg->spi->dev,
1196 "Bufferless transfer has length %u\n",
1197 xfer->len);
13a42798 1198 }
b158935f
MB
1199
1200 trace_spi_transfer_stop(msg, xfer);
1201
1202 if (msg->status != -EINPROGRESS)
1203 goto out;
1204
0ff2de8b
MS
1205 if (xfer->delay_usecs)
1206 _spi_transfer_delay_ns(xfer->delay_usecs * 1000);
b158935f
MB
1207
1208 if (xfer->cs_change) {
1209 if (list_is_last(&xfer->transfer_list,
1210 &msg->transfers)) {
1211 keep_cs = true;
1212 } else {
0b73aa63 1213 spi_set_cs(msg->spi, false);
0ff2de8b 1214 _spi_transfer_cs_change_delay(msg, xfer);
0b73aa63 1215 spi_set_cs(msg->spi, true);
b158935f
MB
1216 }
1217 }
1218
1219 msg->actual_length += xfer->len;
1220 }
1221
1222out:
1223 if (ret != 0 || !keep_cs)
1224 spi_set_cs(msg->spi, false);
1225
1226 if (msg->status == -EINPROGRESS)
1227 msg->status = ret;
1228
8caab75f
GU
1229 if (msg->status && ctlr->handle_err)
1230 ctlr->handle_err(ctlr, msg);
b716c4ff 1231
c9ba7a16
NT
1232 spi_res_release(ctlr, msg);
1233
0ed56252
MB
1234 spi_finalize_current_message(ctlr);
1235
b158935f
MB
1236 return ret;
1237}
1238
1239/**
1240 * spi_finalize_current_transfer - report completion of a transfer
8caab75f 1241 * @ctlr: the controller reporting completion
b158935f
MB
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
9e8f4882 1245 * transfer has finished and the next one may be scheduled.
b158935f 1246 */
8caab75f 1247void spi_finalize_current_transfer(struct spi_controller *ctlr)
b158935f 1248{
8caab75f 1249 complete(&ctlr->xfer_completion);
b158935f
MB
1250}
1251EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
ffbbdd21 1253/**
fc9e0f71 1254 * __spi_pump_messages - function which processes spi message queue
8caab75f 1255 * @ctlr: controller to process queue for
fc9e0f71 1256 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
0461a414
MB
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
ffbbdd21 1265 */
8caab75f 1266static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
ffbbdd21 1267{
ffbbdd21
LW
1268 unsigned long flags;
1269 bool was_busy = false;
1270 int ret;
1271
983aee5d 1272 /* Lock queue */
8caab75f 1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
983aee5d
MB
1274
1275 /* Make sure we are not already running a message */
8caab75f
GU
1276 if (ctlr->cur_msg) {
1277 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
983aee5d
MB
1278 return;
1279 }
1280
f0125f1a 1281 /* If another context is idling the device then defer */
8caab75f
GU
1282 if (ctlr->idling) {
1283 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1284 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
0461a414
MB
1285 return;
1286 }
1287
983aee5d 1288 /* Check if the queue is idle */
8caab75f
GU
1289 if (list_empty(&ctlr->queue) || !ctlr->running) {
1290 if (!ctlr->busy) {
1291 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
b0b36b86 1292 return;
ffbbdd21 1293 }
fc9e0f71 1294
f0125f1a
MB
1295 /* Only do teardown in the thread */
1296 if (!in_kthread) {
1297 kthread_queue_work(&ctlr->kworker,
1298 &ctlr->pump_messages);
1299 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1300 return;
1301 }
1302
1303 ctlr->busy = false;
1304 ctlr->idling = true;
1305 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1306
1307 kfree(ctlr->dummy_rx);
1308 ctlr->dummy_rx = NULL;
1309 kfree(ctlr->dummy_tx);
1310 ctlr->dummy_tx = NULL;
1311 if (ctlr->unprepare_transfer_hardware &&
1312 ctlr->unprepare_transfer_hardware(ctlr))
1313 dev_err(&ctlr->dev,
1314 "failed to unprepare transfer hardware\n");
1315 if (ctlr->auto_runtime_pm) {
1316 pm_runtime_mark_last_busy(ctlr->dev.parent);
1317 pm_runtime_put_autosuspend(ctlr->dev.parent);
1318 }
1319 trace_spi_controller_idle(ctlr);
1320
1321 spin_lock_irqsave(&ctlr->queue_lock, flags);
1322 ctlr->idling = false;
8caab75f 1323 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1324 return;
1325 }
ffbbdd21 1326
ffbbdd21 1327 /* Extract head of queue */
8caab75f
GU
1328 ctlr->cur_msg =
1329 list_first_entry(&ctlr->queue, struct spi_message, queue);
ffbbdd21 1330
8caab75f
GU
1331 list_del_init(&ctlr->cur_msg->queue);
1332 if (ctlr->busy)
ffbbdd21
LW
1333 was_busy = true;
1334 else
8caab75f
GU
1335 ctlr->busy = true;
1336 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1337
8caab75f 1338 mutex_lock(&ctlr->io_mutex);
ef4d96ec 1339
8caab75f
GU
1340 if (!was_busy && ctlr->auto_runtime_pm) {
1341 ret = pm_runtime_get_sync(ctlr->dev.parent);
49834de2 1342 if (ret < 0) {
7e48e23a 1343 pm_runtime_put_noidle(ctlr->dev.parent);
8caab75f 1344 dev_err(&ctlr->dev, "Failed to power device: %d\n",
49834de2 1345 ret);
8caab75f 1346 mutex_unlock(&ctlr->io_mutex);
49834de2
MB
1347 return;
1348 }
1349 }
1350
56ec1978 1351 if (!was_busy)
8caab75f 1352 trace_spi_controller_busy(ctlr);
56ec1978 1353
8caab75f
GU
1354 if (!was_busy && ctlr->prepare_transfer_hardware) {
1355 ret = ctlr->prepare_transfer_hardware(ctlr);
ffbbdd21 1356 if (ret) {
8caab75f 1357 dev_err(&ctlr->dev,
f3440d9a
SL
1358 "failed to prepare transfer hardware: %d\n",
1359 ret);
49834de2 1360
8caab75f
GU
1361 if (ctlr->auto_runtime_pm)
1362 pm_runtime_put(ctlr->dev.parent);
f3440d9a
SL
1363
1364 ctlr->cur_msg->status = ret;
1365 spi_finalize_current_message(ctlr);
1366
8caab75f 1367 mutex_unlock(&ctlr->io_mutex);
ffbbdd21
LW
1368 return;
1369 }
1370 }
1371
8caab75f 1372 trace_spi_message_start(ctlr->cur_msg);
56ec1978 1373
8caab75f
GU
1374 if (ctlr->prepare_message) {
1375 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
2841a5fc 1376 if (ret) {
8caab75f
GU
1377 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1378 ret);
1379 ctlr->cur_msg->status = ret;
1380 spi_finalize_current_message(ctlr);
49023d2e 1381 goto out;
2841a5fc 1382 }
8caab75f 1383 ctlr->cur_msg_prepared = true;
2841a5fc
MB
1384 }
1385
8caab75f 1386 ret = spi_map_msg(ctlr, ctlr->cur_msg);
99adef31 1387 if (ret) {
8caab75f
GU
1388 ctlr->cur_msg->status = ret;
1389 spi_finalize_current_message(ctlr);
49023d2e 1390 goto out;
99adef31
MB
1391 }
1392
8caab75f 1393 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
ffbbdd21 1394 if (ret) {
8caab75f 1395 dev_err(&ctlr->dev,
1f802f82 1396 "failed to transfer one message from queue\n");
49023d2e 1397 goto out;
ffbbdd21 1398 }
49023d2e
JH
1399
1400out:
8caab75f 1401 mutex_unlock(&ctlr->io_mutex);
62826970
MB
1402
1403 /* Prod the scheduler in case transfer_one() was busy waiting */
49023d2e
JH
1404 if (!ret)
1405 cond_resched();
ffbbdd21
LW
1406}
1407
fc9e0f71
MB
1408/**
1409 * spi_pump_messages - kthread work function which processes spi message queue
8caab75f 1410 * @work: pointer to kthread work struct contained in the controller struct
fc9e0f71
MB
1411 */
1412static void spi_pump_messages(struct kthread_work *work)
1413{
8caab75f
GU
1414 struct spi_controller *ctlr =
1415 container_of(work, struct spi_controller, pump_messages);
fc9e0f71 1416
8caab75f 1417 __spi_pump_messages(ctlr, true);
fc9e0f71
MB
1418}
1419
8caab75f 1420static int spi_init_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1421{
1422 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1423
8caab75f
GU
1424 ctlr->running = false;
1425 ctlr->busy = false;
ffbbdd21 1426
8caab75f
GU
1427 kthread_init_worker(&ctlr->kworker);
1428 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1429 "%s", dev_name(&ctlr->dev));
1430 if (IS_ERR(ctlr->kworker_task)) {
1431 dev_err(&ctlr->dev, "failed to create message pump task\n");
1432 return PTR_ERR(ctlr->kworker_task);
ffbbdd21 1433 }
8caab75f 1434 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
f0125f1a 1435
ffbbdd21 1436 /*
8caab75f 1437 * Controller config will indicate if this controller should run the
ffbbdd21
LW
1438 * message pump with high (realtime) priority to reduce the transfer
1439 * latency on the bus by minimising the delay between a transfer
1440 * request and the scheduling of the message pump thread. Without this
1441 * setting the message pump thread will remain at default priority.
1442 */
8caab75f
GU
1443 if (ctlr->rt) {
1444 dev_info(&ctlr->dev,
ffbbdd21 1445 "will run message pump with realtime priority\n");
8caab75f 1446 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
ffbbdd21
LW
1447 }
1448
1449 return 0;
1450}
1451
1452/**
1453 * spi_get_next_queued_message() - called by driver to check for queued
1454 * messages
8caab75f 1455 * @ctlr: the controller to check for queued messages
ffbbdd21
LW
1456 *
1457 * If there are more messages in the queue, the next message is returned from
1458 * this call.
97d56dc6
JMC
1459 *
1460 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21 1461 */
8caab75f 1462struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
ffbbdd21
LW
1463{
1464 struct spi_message *next;
1465 unsigned long flags;
1466
1467 /* get a pointer to the next message, if any */
8caab75f
GU
1468 spin_lock_irqsave(&ctlr->queue_lock, flags);
1469 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1cfd97f9 1470 queue);
8caab75f 1471 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1472
1473 return next;
1474}
1475EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1476
1477/**
1478 * spi_finalize_current_message() - the current message is complete
8caab75f 1479 * @ctlr: the controller to return the message to
ffbbdd21
LW
1480 *
1481 * Called by the driver to notify the core that the message in the front of the
1482 * queue is complete and can be removed from the queue.
1483 */
8caab75f 1484void spi_finalize_current_message(struct spi_controller *ctlr)
ffbbdd21
LW
1485{
1486 struct spi_message *mesg;
1487 unsigned long flags;
2841a5fc 1488 int ret;
ffbbdd21 1489
8caab75f
GU
1490 spin_lock_irqsave(&ctlr->queue_lock, flags);
1491 mesg = ctlr->cur_msg;
1492 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1493
8caab75f 1494 spi_unmap_msg(ctlr, mesg);
99adef31 1495
8caab75f
GU
1496 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1497 ret = ctlr->unprepare_message(ctlr, mesg);
2841a5fc 1498 if (ret) {
8caab75f
GU
1499 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1500 ret);
2841a5fc
MB
1501 }
1502 }
391949b6 1503
8caab75f
GU
1504 spin_lock_irqsave(&ctlr->queue_lock, flags);
1505 ctlr->cur_msg = NULL;
1506 ctlr->cur_msg_prepared = false;
f0125f1a 1507 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
8caab75f 1508 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
8e76ef88
MS
1509
1510 trace_spi_message_done(mesg);
2841a5fc 1511
ffbbdd21
LW
1512 mesg->state = NULL;
1513 if (mesg->complete)
1514 mesg->complete(mesg->context);
1515}
1516EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1517
8caab75f 1518static int spi_start_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1519{
1520 unsigned long flags;
1521
8caab75f 1522 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1523
8caab75f
GU
1524 if (ctlr->running || ctlr->busy) {
1525 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1526 return -EBUSY;
1527 }
1528
8caab75f
GU
1529 ctlr->running = true;
1530 ctlr->cur_msg = NULL;
1531 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21 1532
8caab75f 1533 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21
LW
1534
1535 return 0;
1536}
1537
8caab75f 1538static int spi_stop_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1539{
1540 unsigned long flags;
1541 unsigned limit = 500;
1542 int ret = 0;
1543
8caab75f 1544 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1545
1546 /*
1547 * This is a bit lame, but is optimized for the common execution path.
8caab75f 1548 * A wait_queue on the ctlr->busy could be used, but then the common
ffbbdd21
LW
1549 * execution path (pump_messages) would be required to call wake_up or
1550 * friends on every SPI message. Do this instead.
1551 */
8caab75f
GU
1552 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1553 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
f97b26b0 1554 usleep_range(10000, 11000);
8caab75f 1555 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21
LW
1556 }
1557
8caab75f 1558 if (!list_empty(&ctlr->queue) || ctlr->busy)
ffbbdd21
LW
1559 ret = -EBUSY;
1560 else
8caab75f 1561 ctlr->running = false;
ffbbdd21 1562
8caab75f 1563 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1564
1565 if (ret) {
8caab75f 1566 dev_warn(&ctlr->dev, "could not stop message queue\n");
ffbbdd21
LW
1567 return ret;
1568 }
1569 return ret;
1570}
1571
8caab75f 1572static int spi_destroy_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1573{
1574 int ret;
1575
8caab75f 1576 ret = spi_stop_queue(ctlr);
ffbbdd21
LW
1577
1578 /*
3989144f 1579 * kthread_flush_worker will block until all work is done.
ffbbdd21
LW
1580 * If the reason that stop_queue timed out is that the work will never
1581 * finish, then it does no good to call flush/stop thread, so
1582 * return anyway.
1583 */
1584 if (ret) {
8caab75f 1585 dev_err(&ctlr->dev, "problem destroying queue\n");
ffbbdd21
LW
1586 return ret;
1587 }
1588
8caab75f
GU
1589 kthread_flush_worker(&ctlr->kworker);
1590 kthread_stop(ctlr->kworker_task);
ffbbdd21
LW
1591
1592 return 0;
1593}
1594
0461a414
MB
1595static int __spi_queued_transfer(struct spi_device *spi,
1596 struct spi_message *msg,
1597 bool need_pump)
ffbbdd21 1598{
8caab75f 1599 struct spi_controller *ctlr = spi->controller;
ffbbdd21
LW
1600 unsigned long flags;
1601
8caab75f 1602 spin_lock_irqsave(&ctlr->queue_lock, flags);
ffbbdd21 1603
8caab75f
GU
1604 if (!ctlr->running) {
1605 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1606 return -ESHUTDOWN;
1607 }
1608 msg->actual_length = 0;
1609 msg->status = -EINPROGRESS;
1610
8caab75f 1611 list_add_tail(&msg->queue, &ctlr->queue);
f0125f1a 1612 if (!ctlr->busy && need_pump)
8caab75f 1613 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
ffbbdd21 1614
8caab75f 1615 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
ffbbdd21
LW
1616 return 0;
1617}
1618
0461a414
MB
1619/**
1620 * spi_queued_transfer - transfer function for queued transfers
1621 * @spi: spi device which is requesting transfer
1622 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1623 *
1624 * Return: zero on success, else a negative error code.
0461a414
MB
1625 */
1626static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1627{
1628 return __spi_queued_transfer(spi, msg, true);
1629}
1630
8caab75f 1631static int spi_controller_initialize_queue(struct spi_controller *ctlr)
ffbbdd21
LW
1632{
1633 int ret;
1634
8caab75f
GU
1635 ctlr->transfer = spi_queued_transfer;
1636 if (!ctlr->transfer_one_message)
1637 ctlr->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1638
1639 /* Initialize and start queue */
8caab75f 1640 ret = spi_init_queue(ctlr);
ffbbdd21 1641 if (ret) {
8caab75f 1642 dev_err(&ctlr->dev, "problem initializing queue\n");
ffbbdd21
LW
1643 goto err_init_queue;
1644 }
8caab75f
GU
1645 ctlr->queued = true;
1646 ret = spi_start_queue(ctlr);
ffbbdd21 1647 if (ret) {
8caab75f 1648 dev_err(&ctlr->dev, "problem starting queue\n");
ffbbdd21
LW
1649 goto err_start_queue;
1650 }
1651
1652 return 0;
1653
1654err_start_queue:
8caab75f 1655 spi_destroy_queue(ctlr);
c3676d5c 1656err_init_queue:
ffbbdd21
LW
1657 return ret;
1658}
1659
988f259b
BB
1660/**
1661 * spi_flush_queue - Send all pending messages in the queue from the callers'
1662 * context
1663 * @ctlr: controller to process queue for
1664 *
1665 * This should be used when one wants to ensure all pending messages have been
1666 * sent before doing something. Is used by the spi-mem code to make sure SPI
1667 * memory operations do not preempt regular SPI transfers that have been queued
1668 * before the spi-mem operation.
1669 */
1670void spi_flush_queue(struct spi_controller *ctlr)
1671{
1672 if (ctlr->transfer == spi_queued_transfer)
1673 __spi_pump_messages(ctlr, false);
1674}
1675
ffbbdd21
LW
1676/*-------------------------------------------------------------------------*/
1677
7cb94361 1678#if defined(CONFIG_OF)
8caab75f 1679static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
c2e51ac3 1680 struct device_node *nc)
aff5e3f8 1681{
aff5e3f8 1682 u32 value;
c2e51ac3 1683 int rc;
aff5e3f8 1684
aff5e3f8 1685 /* Mode (clock phase/polarity/etc.) */
e0bcb680 1686 if (of_property_read_bool(nc, "spi-cpha"))
aff5e3f8 1687 spi->mode |= SPI_CPHA;
e0bcb680 1688 if (of_property_read_bool(nc, "spi-cpol"))
aff5e3f8 1689 spi->mode |= SPI_CPOL;
e0bcb680 1690 if (of_property_read_bool(nc, "spi-3wire"))
aff5e3f8 1691 spi->mode |= SPI_3WIRE;
e0bcb680 1692 if (of_property_read_bool(nc, "spi-lsb-first"))
aff5e3f8
PA
1693 spi->mode |= SPI_LSB_FIRST;
1694
f3186dd8
LW
1695 /*
1696 * For descriptors associated with the device, polarity inversion is
1697 * handled in the gpiolib, so all chip selects are "active high" in
1698 * the logical sense, the gpiolib will invert the line if need be.
1699 */
1700 if (ctlr->use_gpio_descriptors)
1701 spi->mode |= SPI_CS_HIGH;
1702 else if (of_property_read_bool(nc, "spi-cs-high"))
1703 spi->mode |= SPI_CS_HIGH;
1704
aff5e3f8
PA
1705 /* Device DUAL/QUAD mode */
1706 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1707 switch (value) {
1708 case 1:
1709 break;
1710 case 2:
1711 spi->mode |= SPI_TX_DUAL;
1712 break;
1713 case 4:
1714 spi->mode |= SPI_TX_QUAD;
1715 break;
6b03061f
YNG
1716 case 8:
1717 spi->mode |= SPI_TX_OCTAL;
1718 break;
aff5e3f8 1719 default:
8caab75f 1720 dev_warn(&ctlr->dev,
aff5e3f8
PA
1721 "spi-tx-bus-width %d not supported\n",
1722 value);
1723 break;
1724 }
1725 }
1726
1727 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1728 switch (value) {
1729 case 1:
1730 break;
1731 case 2:
1732 spi->mode |= SPI_RX_DUAL;
1733 break;
1734 case 4:
1735 spi->mode |= SPI_RX_QUAD;
1736 break;
6b03061f
YNG
1737 case 8:
1738 spi->mode |= SPI_RX_OCTAL;
1739 break;
aff5e3f8 1740 default:
8caab75f 1741 dev_warn(&ctlr->dev,
aff5e3f8
PA
1742 "spi-rx-bus-width %d not supported\n",
1743 value);
1744 break;
1745 }
1746 }
1747
8caab75f 1748 if (spi_controller_is_slave(ctlr)) {
194276b0 1749 if (!of_node_name_eq(nc, "slave")) {
25c56c88
RH
1750 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1751 nc);
6c364062
GU
1752 return -EINVAL;
1753 }
1754 return 0;
1755 }
1756
1757 /* Device address */
1758 rc = of_property_read_u32(nc, "reg", &value);
1759 if (rc) {
25c56c88
RH
1760 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1761 nc, rc);
6c364062
GU
1762 return rc;
1763 }
1764 spi->chip_select = value;
1765
aff5e3f8
PA
1766 /* Device speed */
1767 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1768 if (rc) {
8caab75f 1769 dev_err(&ctlr->dev,
25c56c88 1770 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
c2e51ac3 1771 return rc;
aff5e3f8
PA
1772 }
1773 spi->max_speed_hz = value;
1774
c2e51ac3
GU
1775 return 0;
1776}
1777
1778static struct spi_device *
8caab75f 1779of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
c2e51ac3
GU
1780{
1781 struct spi_device *spi;
1782 int rc;
1783
1784 /* Alloc an spi_device */
8caab75f 1785 spi = spi_alloc_device(ctlr);
c2e51ac3 1786 if (!spi) {
25c56c88 1787 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
c2e51ac3
GU
1788 rc = -ENOMEM;
1789 goto err_out;
1790 }
1791
1792 /* Select device driver */
1793 rc = of_modalias_node(nc, spi->modalias,
1794 sizeof(spi->modalias));
1795 if (rc < 0) {
25c56c88 1796 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
c2e51ac3
GU
1797 goto err_out;
1798 }
1799
8caab75f 1800 rc = of_spi_parse_dt(ctlr, spi, nc);
c2e51ac3
GU
1801 if (rc)
1802 goto err_out;
1803
aff5e3f8
PA
1804 /* Store a pointer to the node in the device structure */
1805 of_node_get(nc);
1806 spi->dev.of_node = nc;
1807
1808 /* Register the new device */
aff5e3f8
PA
1809 rc = spi_add_device(spi);
1810 if (rc) {
25c56c88 1811 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
8324147f 1812 goto err_of_node_put;
aff5e3f8
PA
1813 }
1814
1815 return spi;
1816
8324147f
JH
1817err_of_node_put:
1818 of_node_put(nc);
aff5e3f8
PA
1819err_out:
1820 spi_dev_put(spi);
1821 return ERR_PTR(rc);
1822}
1823
d57a4282
GL
1824/**
1825 * of_register_spi_devices() - Register child devices onto the SPI bus
8caab75f 1826 * @ctlr: Pointer to spi_controller device
d57a4282 1827 *
6c364062
GU
1828 * Registers an spi_device for each child node of controller node which
1829 * represents a valid SPI slave.
d57a4282 1830 */
8caab75f 1831static void of_register_spi_devices(struct spi_controller *ctlr)
d57a4282
GL
1832{
1833 struct spi_device *spi;
1834 struct device_node *nc;
d57a4282 1835
8caab75f 1836 if (!ctlr->dev.of_node)
d57a4282
GL
1837 return;
1838
8caab75f 1839 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
bd6c1644
GU
1840 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1841 continue;
8caab75f 1842 spi = of_register_spi_device(ctlr, nc);
e0af98a7 1843 if (IS_ERR(spi)) {
8caab75f 1844 dev_warn(&ctlr->dev,
25c56c88 1845 "Failed to create SPI device for %pOF\n", nc);
e0af98a7
RR
1846 of_node_clear_flag(nc, OF_POPULATED);
1847 }
d57a4282
GL
1848 }
1849}
1850#else
8caab75f 1851static void of_register_spi_devices(struct spi_controller *ctlr) { }
d57a4282
GL
1852#endif
1853
64bee4d2 1854#ifdef CONFIG_ACPI
4c3c5954
AB
1855struct acpi_spi_lookup {
1856 struct spi_controller *ctlr;
1857 u32 max_speed_hz;
1858 u32 mode;
1859 int irq;
1860 u8 bits_per_word;
1861 u8 chip_select;
1862};
1863
1864static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1865 struct acpi_spi_lookup *lookup)
8a2e487e 1866{
8a2e487e
LW
1867 const union acpi_object *obj;
1868
1869 if (!x86_apple_machine)
1870 return;
1871
1872 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1873 && obj->buffer.length >= 4)
4c3c5954 1874 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
8a2e487e
LW
1875
1876 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1877 && obj->buffer.length == 8)
4c3c5954 1878 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
8a2e487e
LW
1879
1880 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1881 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
4c3c5954 1882 lookup->mode |= SPI_LSB_FIRST;
8a2e487e
LW
1883
1884 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1885 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
4c3c5954 1886 lookup->mode |= SPI_CPOL;
8a2e487e
LW
1887
1888 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1889 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
4c3c5954 1890 lookup->mode |= SPI_CPHA;
8a2e487e
LW
1891}
1892
64bee4d2
MW
1893static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1894{
4c3c5954
AB
1895 struct acpi_spi_lookup *lookup = data;
1896 struct spi_controller *ctlr = lookup->ctlr;
64bee4d2
MW
1897
1898 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1899 struct acpi_resource_spi_serialbus *sb;
4c3c5954
AB
1900 acpi_handle parent_handle;
1901 acpi_status status;
64bee4d2
MW
1902
1903 sb = &ares->data.spi_serial_bus;
1904 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
4c3c5954
AB
1905
1906 status = acpi_get_handle(NULL,
1907 sb->resource_source.string_ptr,
1908 &parent_handle);
1909
1910 if (!status ||
1911 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1912 return -ENODEV;
1913
a0a90718
MW
1914 /*
1915 * ACPI DeviceSelection numbering is handled by the
1916 * host controller driver in Windows and can vary
1917 * from driver to driver. In Linux we always expect
1918 * 0 .. max - 1 so we need to ask the driver to
1919 * translate between the two schemes.
1920 */
8caab75f
GU
1921 if (ctlr->fw_translate_cs) {
1922 int cs = ctlr->fw_translate_cs(ctlr,
a0a90718
MW
1923 sb->device_selection);
1924 if (cs < 0)
1925 return cs;
4c3c5954 1926 lookup->chip_select = cs;
a0a90718 1927 } else {
4c3c5954 1928 lookup->chip_select = sb->device_selection;
a0a90718
MW
1929 }
1930
4c3c5954 1931 lookup->max_speed_hz = sb->connection_speed;
64bee4d2
MW
1932
1933 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
4c3c5954 1934 lookup->mode |= SPI_CPHA;
64bee4d2 1935 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
4c3c5954 1936 lookup->mode |= SPI_CPOL;
64bee4d2 1937 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
4c3c5954 1938 lookup->mode |= SPI_CS_HIGH;
64bee4d2 1939 }
4c3c5954 1940 } else if (lookup->irq < 0) {
64bee4d2
MW
1941 struct resource r;
1942
1943 if (acpi_dev_resource_interrupt(ares, 0, &r))
4c3c5954 1944 lookup->irq = r.start;
64bee4d2
MW
1945 }
1946
1947 /* Always tell the ACPI core to skip this resource */
1948 return 1;
1949}
1950
8caab75f 1951static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
7f24467f 1952 struct acpi_device *adev)
64bee4d2 1953{
4c3c5954 1954 acpi_handle parent_handle = NULL;
64bee4d2 1955 struct list_head resource_list;
4c3c5954 1956 struct acpi_spi_lookup lookup;
64bee4d2
MW
1957 struct spi_device *spi;
1958 int ret;
1959
7f24467f
OP
1960 if (acpi_bus_get_status(adev) || !adev->status.present ||
1961 acpi_device_enumerated(adev))
64bee4d2
MW
1962 return AE_OK;
1963
4c3c5954
AB
1964 lookup.ctlr = ctlr;
1965 lookup.mode = 0;
1966 lookup.bits_per_word = 0;
1967 lookup.irq = -1;
64bee4d2
MW
1968
1969 INIT_LIST_HEAD(&resource_list);
1970 ret = acpi_dev_get_resources(adev, &resource_list,
4c3c5954 1971 acpi_spi_add_resource, &lookup);
64bee4d2
MW
1972 acpi_dev_free_resource_list(&resource_list);
1973
4c3c5954
AB
1974 if (ret < 0)
1975 /* found SPI in _CRS but it points to another controller */
1976 return AE_OK;
8a2e487e 1977
4c3c5954
AB
1978 if (!lookup.max_speed_hz &&
1979 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1980 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1981 /* Apple does not use _CRS but nested devices for SPI slaves */
1982 acpi_spi_parse_apple_properties(adev, &lookup);
1983 }
1984
1985 if (!lookup.max_speed_hz)
64bee4d2 1986 return AE_OK;
4c3c5954
AB
1987
1988 spi = spi_alloc_device(ctlr);
1989 if (!spi) {
1990 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1991 dev_name(&adev->dev));
1992 return AE_NO_MEMORY;
64bee4d2
MW
1993 }
1994
4c3c5954
AB
1995 ACPI_COMPANION_SET(&spi->dev, adev);
1996 spi->max_speed_hz = lookup.max_speed_hz;
1997 spi->mode = lookup.mode;
1998 spi->irq = lookup.irq;
1999 spi->bits_per_word = lookup.bits_per_word;
2000 spi->chip_select = lookup.chip_select;
2001
0c6543f6
DD
2002 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2003 sizeof(spi->modalias));
2004
33ada67d
CR
2005 if (spi->irq < 0)
2006 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2007
7f24467f
OP
2008 acpi_device_set_enumerated(adev);
2009
33cf00e5 2010 adev->power.flags.ignore_parent = true;
64bee4d2 2011 if (spi_add_device(spi)) {
33cf00e5 2012 adev->power.flags.ignore_parent = false;
8caab75f 2013 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
64bee4d2
MW
2014 dev_name(&adev->dev));
2015 spi_dev_put(spi);
2016 }
2017
2018 return AE_OK;
2019}
2020
7f24467f
OP
2021static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2022 void *data, void **return_value)
2023{
8caab75f 2024 struct spi_controller *ctlr = data;
7f24467f
OP
2025 struct acpi_device *adev;
2026
2027 if (acpi_bus_get_device(handle, &adev))
2028 return AE_OK;
2029
8caab75f 2030 return acpi_register_spi_device(ctlr, adev);
7f24467f
OP
2031}
2032
4c3c5954
AB
2033#define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2034
8caab75f 2035static void acpi_register_spi_devices(struct spi_controller *ctlr)
64bee4d2
MW
2036{
2037 acpi_status status;
2038 acpi_handle handle;
2039
8caab75f 2040 handle = ACPI_HANDLE(ctlr->dev.parent);
64bee4d2
MW
2041 if (!handle)
2042 return;
2043
4c3c5954
AB
2044 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2045 SPI_ACPI_ENUMERATE_MAX_DEPTH,
8caab75f 2046 acpi_spi_add_device, NULL, ctlr, NULL);
64bee4d2 2047 if (ACPI_FAILURE(status))
8caab75f 2048 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
64bee4d2
MW
2049}
2050#else
8caab75f 2051static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
64bee4d2
MW
2052#endif /* CONFIG_ACPI */
2053
8caab75f 2054static void spi_controller_release(struct device *dev)
8ae12a0d 2055{
8caab75f 2056 struct spi_controller *ctlr;
8ae12a0d 2057
8caab75f
GU
2058 ctlr = container_of(dev, struct spi_controller, dev);
2059 kfree(ctlr);
8ae12a0d
DB
2060}
2061
2062static struct class spi_master_class = {
2063 .name = "spi_master",
2064 .owner = THIS_MODULE,
8caab75f 2065 .dev_release = spi_controller_release,
eca2ebc7 2066 .dev_groups = spi_master_groups,
8ae12a0d
DB
2067};
2068
6c364062
GU
2069#ifdef CONFIG_SPI_SLAVE
2070/**
2071 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2072 * controller
2073 * @spi: device used for the current transfer
2074 */
2075int spi_slave_abort(struct spi_device *spi)
2076{
8caab75f 2077 struct spi_controller *ctlr = spi->controller;
6c364062 2078
8caab75f
GU
2079 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2080 return ctlr->slave_abort(ctlr);
6c364062
GU
2081
2082 return -ENOTSUPP;
2083}
2084EXPORT_SYMBOL_GPL(spi_slave_abort);
2085
2086static int match_true(struct device *dev, void *data)
2087{
2088 return 1;
2089}
2090
2091static ssize_t spi_slave_show(struct device *dev,
2092 struct device_attribute *attr, char *buf)
2093{
8caab75f
GU
2094 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2095 dev);
6c364062
GU
2096 struct device *child;
2097
2098 child = device_find_child(&ctlr->dev, NULL, match_true);
2099 return sprintf(buf, "%s\n",
2100 child ? to_spi_device(child)->modalias : NULL);
2101}
2102
2103static ssize_t spi_slave_store(struct device *dev,
2104 struct device_attribute *attr, const char *buf,
2105 size_t count)
2106{
8caab75f
GU
2107 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2108 dev);
6c364062
GU
2109 struct spi_device *spi;
2110 struct device *child;
2111 char name[32];
2112 int rc;
2113
2114 rc = sscanf(buf, "%31s", name);
2115 if (rc != 1 || !name[0])
2116 return -EINVAL;
2117
2118 child = device_find_child(&ctlr->dev, NULL, match_true);
2119 if (child) {
2120 /* Remove registered slave */
2121 device_unregister(child);
2122 put_device(child);
2123 }
2124
2125 if (strcmp(name, "(null)")) {
2126 /* Register new slave */
2127 spi = spi_alloc_device(ctlr);
2128 if (!spi)
2129 return -ENOMEM;
2130
2131 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2132
2133 rc = spi_add_device(spi);
2134 if (rc) {
2135 spi_dev_put(spi);
2136 return rc;
2137 }
2138 }
2139
2140 return count;
2141}
2142
2143static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2144
2145static struct attribute *spi_slave_attrs[] = {
2146 &dev_attr_slave.attr,
2147 NULL,
2148};
2149
2150static const struct attribute_group spi_slave_group = {
2151 .attrs = spi_slave_attrs,
2152};
2153
2154static const struct attribute_group *spi_slave_groups[] = {
8caab75f 2155 &spi_controller_statistics_group,
6c364062
GU
2156 &spi_slave_group,
2157 NULL,
2158};
2159
2160static struct class spi_slave_class = {
2161 .name = "spi_slave",
2162 .owner = THIS_MODULE,
8caab75f 2163 .dev_release = spi_controller_release,
6c364062
GU
2164 .dev_groups = spi_slave_groups,
2165};
2166#else
2167extern struct class spi_slave_class; /* dummy */
2168#endif
8ae12a0d
DB
2169
2170/**
6c364062 2171 * __spi_alloc_controller - allocate an SPI master or slave controller
8ae12a0d 2172 * @dev: the controller, possibly using the platform_bus
33e34dc6 2173 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 2174 * memory is in the driver_data field of the returned device,
8caab75f 2175 * accessible with spi_controller_get_devdata().
6c364062
GU
2176 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2177 * slave (true) controller
33e34dc6 2178 * Context: can sleep
8ae12a0d 2179 *
6c364062 2180 * This call is used only by SPI controller drivers, which are the
8ae12a0d 2181 * only ones directly touching chip registers. It's how they allocate
8caab75f 2182 * an spi_controller structure, prior to calling spi_register_controller().
8ae12a0d 2183 *
97d56dc6 2184 * This must be called from context that can sleep.
8ae12a0d 2185 *
6c364062 2186 * The caller is responsible for assigning the bus number and initializing the
8caab75f
GU
2187 * controller's methods before calling spi_register_controller(); and (after
2188 * errors adding the device) calling spi_controller_put() to prevent a memory
2189 * leak.
97d56dc6 2190 *
6c364062 2191 * Return: the SPI controller structure on success, else NULL.
8ae12a0d 2192 */
8caab75f
GU
2193struct spi_controller *__spi_alloc_controller(struct device *dev,
2194 unsigned int size, bool slave)
8ae12a0d 2195{
8caab75f 2196 struct spi_controller *ctlr;
8ae12a0d 2197
0c868461
DB
2198 if (!dev)
2199 return NULL;
2200
8caab75f
GU
2201 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2202 if (!ctlr)
8ae12a0d
DB
2203 return NULL;
2204
8caab75f
GU
2205 device_initialize(&ctlr->dev);
2206 ctlr->bus_num = -1;
2207 ctlr->num_chipselect = 1;
2208 ctlr->slave = slave;
6c364062 2209 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
8caab75f 2210 ctlr->dev.class = &spi_slave_class;
6c364062 2211 else
8caab75f
GU
2212 ctlr->dev.class = &spi_master_class;
2213 ctlr->dev.parent = dev;
2214 pm_suspend_ignore_children(&ctlr->dev, true);
2215 spi_controller_set_devdata(ctlr, &ctlr[1]);
8ae12a0d 2216
8caab75f 2217 return ctlr;
8ae12a0d 2218}
6c364062 2219EXPORT_SYMBOL_GPL(__spi_alloc_controller);
8ae12a0d 2220
74317984 2221#ifdef CONFIG_OF
8caab75f 2222static int of_spi_register_master(struct spi_controller *ctlr)
74317984 2223{
e80beb27 2224 int nb, i, *cs;
8caab75f 2225 struct device_node *np = ctlr->dev.of_node;
74317984
JCPV
2226
2227 if (!np)
2228 return 0;
2229
2230 nb = of_gpio_named_count(np, "cs-gpios");
8caab75f 2231 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
74317984 2232
8ec5d84e
AL
2233 /* Return error only for an incorrectly formed cs-gpios property */
2234 if (nb == 0 || nb == -ENOENT)
74317984 2235 return 0;
8ec5d84e
AL
2236 else if (nb < 0)
2237 return nb;
74317984 2238
a86854d0 2239 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
74317984 2240 GFP_KERNEL);
8caab75f 2241 ctlr->cs_gpios = cs;
74317984 2242
8caab75f 2243 if (!ctlr->cs_gpios)
74317984
JCPV
2244 return -ENOMEM;
2245
8caab75f 2246 for (i = 0; i < ctlr->num_chipselect; i++)
446411e1 2247 cs[i] = -ENOENT;
74317984
JCPV
2248
2249 for (i = 0; i < nb; i++)
2250 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2251
2252 return 0;
2253}
2254#else
8caab75f 2255static int of_spi_register_master(struct spi_controller *ctlr)
74317984
JCPV
2256{
2257 return 0;
2258}
2259#endif
2260
f3186dd8
LW
2261/**
2262 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2263 * @ctlr: The SPI master to grab GPIO descriptors for
2264 */
2265static int spi_get_gpio_descs(struct spi_controller *ctlr)
2266{
2267 int nb, i;
2268 struct gpio_desc **cs;
2269 struct device *dev = &ctlr->dev;
2270
2271 nb = gpiod_count(dev, "cs");
2272 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2273
2274 /* No GPIOs at all is fine, else return the error */
2275 if (nb == 0 || nb == -ENOENT)
2276 return 0;
2277 else if (nb < 0)
2278 return nb;
2279
2280 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2281 GFP_KERNEL);
2282 if (!cs)
2283 return -ENOMEM;
2284 ctlr->cs_gpiods = cs;
2285
2286 for (i = 0; i < nb; i++) {
2287 /*
2288 * Most chipselects are active low, the inverted
2289 * semantics are handled by special quirks in gpiolib,
2290 * so initializing them GPIOD_OUT_LOW here means
2291 * "unasserted", in most cases this will drive the physical
2292 * line high.
2293 */
2294 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2295 GPIOD_OUT_LOW);
1723fdec
GU
2296 if (IS_ERR(cs[i]))
2297 return PTR_ERR(cs[i]);
f3186dd8
LW
2298
2299 if (cs[i]) {
2300 /*
2301 * If we find a CS GPIO, name it after the device and
2302 * chip select line.
2303 */
2304 char *gpioname;
2305
2306 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2307 dev_name(dev), i);
2308 if (!gpioname)
2309 return -ENOMEM;
2310 gpiod_set_consumer_name(cs[i], gpioname);
2311 }
2312 }
2313
2314 return 0;
2315}
2316
bdf3a3b5
BB
2317static int spi_controller_check_ops(struct spi_controller *ctlr)
2318{
2319 /*
b5932f5c
BB
2320 * The controller may implement only the high-level SPI-memory like
2321 * operations if it does not support regular SPI transfers, and this is
2322 * valid use case.
2323 * If ->mem_ops is NULL, we request that at least one of the
2324 * ->transfer_xxx() method be implemented.
bdf3a3b5 2325 */
b5932f5c
BB
2326 if (ctlr->mem_ops) {
2327 if (!ctlr->mem_ops->exec_op)
2328 return -EINVAL;
2329 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2330 !ctlr->transfer_one_message) {
bdf3a3b5 2331 return -EINVAL;
b5932f5c 2332 }
bdf3a3b5
BB
2333
2334 return 0;
2335}
2336
8ae12a0d 2337/**
8caab75f
GU
2338 * spi_register_controller - register SPI master or slave controller
2339 * @ctlr: initialized master, originally from spi_alloc_master() or
2340 * spi_alloc_slave()
33e34dc6 2341 * Context: can sleep
8ae12a0d 2342 *
8caab75f 2343 * SPI controllers connect to their drivers using some non-SPI bus,
8ae12a0d 2344 * such as the platform bus. The final stage of probe() in that code
8caab75f 2345 * includes calling spi_register_controller() to hook up to this SPI bus glue.
8ae12a0d
DB
2346 *
2347 * SPI controllers use board specific (often SOC specific) bus numbers,
2348 * and board-specific addressing for SPI devices combines those numbers
2349 * with chip select numbers. Since SPI does not directly support dynamic
2350 * device identification, boards need configuration tables telling which
2351 * chip is at which address.
2352 *
2353 * This must be called from context that can sleep. It returns zero on
8caab75f 2354 * success, else a negative error code (dropping the controller's refcount).
0c868461 2355 * After a successful return, the caller is responsible for calling
8caab75f 2356 * spi_unregister_controller().
97d56dc6
JMC
2357 *
2358 * Return: zero on success, else a negative error code.
8ae12a0d 2359 */
8caab75f 2360int spi_register_controller(struct spi_controller *ctlr)
8ae12a0d 2361{
8caab75f 2362 struct device *dev = ctlr->dev.parent;
2b9603a0 2363 struct boardinfo *bi;
b93318a2 2364 int status;
42bdd706 2365 int id, first_dynamic;
8ae12a0d 2366
0c868461
DB
2367 if (!dev)
2368 return -ENODEV;
2369
bdf3a3b5
BB
2370 /*
2371 * Make sure all necessary hooks are implemented before registering
2372 * the SPI controller.
2373 */
2374 status = spi_controller_check_ops(ctlr);
2375 if (status)
2376 return status;
2377
082c8cb4
DB
2378 /* even if it's just one always-selected device, there must
2379 * be at least one chipselect
2380 */
8caab75f 2381 if (ctlr->num_chipselect == 0)
082c8cb4 2382 return -EINVAL;
04b2d03a
GU
2383 if (ctlr->bus_num >= 0) {
2384 /* devices with a fixed bus num must check-in with the num */
2385 mutex_lock(&board_lock);
2386 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2387 ctlr->bus_num + 1, GFP_KERNEL);
2388 mutex_unlock(&board_lock);
2389 if (WARN(id < 0, "couldn't get idr"))
2390 return id == -ENOSPC ? -EBUSY : id;
2391 ctlr->bus_num = id;
2392 } else if (ctlr->dev.of_node) {
2393 /* allocate dynamic bus number using Linux idr */
9b61e302
SM
2394 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2395 if (id >= 0) {
2396 ctlr->bus_num = id;
2397 mutex_lock(&board_lock);
2398 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2399 ctlr->bus_num + 1, GFP_KERNEL);
2400 mutex_unlock(&board_lock);
2401 if (WARN(id < 0, "couldn't get idr"))
2402 return id == -ENOSPC ? -EBUSY : id;
2403 }
2404 }
8caab75f 2405 if (ctlr->bus_num < 0) {
42bdd706
LS
2406 first_dynamic = of_alias_get_highest_id("spi");
2407 if (first_dynamic < 0)
2408 first_dynamic = 0;
2409 else
2410 first_dynamic++;
2411
9a9a047a 2412 mutex_lock(&board_lock);
42bdd706
LS
2413 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2414 0, GFP_KERNEL);
9a9a047a
SM
2415 mutex_unlock(&board_lock);
2416 if (WARN(id < 0, "couldn't get idr"))
2417 return id;
2418 ctlr->bus_num = id;
8ae12a0d 2419 }
8caab75f
GU
2420 INIT_LIST_HEAD(&ctlr->queue);
2421 spin_lock_init(&ctlr->queue_lock);
2422 spin_lock_init(&ctlr->bus_lock_spinlock);
2423 mutex_init(&ctlr->bus_lock_mutex);
2424 mutex_init(&ctlr->io_mutex);
2425 ctlr->bus_lock_flag = 0;
2426 init_completion(&ctlr->xfer_completion);
2427 if (!ctlr->max_dma_len)
2428 ctlr->max_dma_len = INT_MAX;
cf32b71e 2429
8ae12a0d
DB
2430 /* register the device, then userspace will see it.
2431 * registration fails if the bus ID is in use.
2432 */
8caab75f 2433 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
0a919ae4
AS
2434
2435 if (!spi_controller_is_slave(ctlr)) {
2436 if (ctlr->use_gpio_descriptors) {
2437 status = spi_get_gpio_descs(ctlr);
2438 if (status)
2439 return status;
2440 /*
2441 * A controller using GPIO descriptors always
2442 * supports SPI_CS_HIGH if need be.
2443 */
2444 ctlr->mode_bits |= SPI_CS_HIGH;
2445 } else {
2446 /* Legacy code path for GPIOs from DT */
2447 status = of_spi_register_master(ctlr);
2448 if (status)
2449 return status;
2450 }
2451 }
2452
8caab75f 2453 status = device_add(&ctlr->dev);
9b61e302
SM
2454 if (status < 0) {
2455 /* free bus id */
2456 mutex_lock(&board_lock);
2457 idr_remove(&spi_master_idr, ctlr->bus_num);
2458 mutex_unlock(&board_lock);
8ae12a0d 2459 goto done;
9b61e302
SM
2460 }
2461 dev_dbg(dev, "registered %s %s\n",
8caab75f 2462 spi_controller_is_slave(ctlr) ? "slave" : "master",
9b61e302 2463 dev_name(&ctlr->dev));
8ae12a0d 2464
b5932f5c
BB
2465 /*
2466 * If we're using a queued driver, start the queue. Note that we don't
2467 * need the queueing logic if the driver is only supporting high-level
2468 * memory operations.
2469 */
2470 if (ctlr->transfer) {
8caab75f 2471 dev_info(dev, "controller is unqueued, this is deprecated\n");
b5932f5c 2472 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
8caab75f 2473 status = spi_controller_initialize_queue(ctlr);
ffbbdd21 2474 if (status) {
8caab75f 2475 device_del(&ctlr->dev);
9b61e302
SM
2476 /* free bus id */
2477 mutex_lock(&board_lock);
2478 idr_remove(&spi_master_idr, ctlr->bus_num);
2479 mutex_unlock(&board_lock);
ffbbdd21
LW
2480 goto done;
2481 }
2482 }
eca2ebc7 2483 /* add statistics */
8caab75f 2484 spin_lock_init(&ctlr->statistics.lock);
ffbbdd21 2485
2b9603a0 2486 mutex_lock(&board_lock);
8caab75f 2487 list_add_tail(&ctlr->list, &spi_controller_list);
2b9603a0 2488 list_for_each_entry(bi, &board_list, list)
8caab75f 2489 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2b9603a0
FT
2490 mutex_unlock(&board_lock);
2491
64bee4d2 2492 /* Register devices from the device tree and ACPI */
8caab75f
GU
2493 of_register_spi_devices(ctlr);
2494 acpi_register_spi_devices(ctlr);
8ae12a0d
DB
2495done:
2496 return status;
2497}
8caab75f 2498EXPORT_SYMBOL_GPL(spi_register_controller);
8ae12a0d 2499
666d5b4c
MB
2500static void devm_spi_unregister(struct device *dev, void *res)
2501{
8caab75f 2502 spi_unregister_controller(*(struct spi_controller **)res);
666d5b4c
MB
2503}
2504
2505/**
8caab75f
GU
2506 * devm_spi_register_controller - register managed SPI master or slave
2507 * controller
2508 * @dev: device managing SPI controller
2509 * @ctlr: initialized controller, originally from spi_alloc_master() or
2510 * spi_alloc_slave()
666d5b4c
MB
2511 * Context: can sleep
2512 *
8caab75f 2513 * Register a SPI device as with spi_register_controller() which will
68b892f1 2514 * automatically be unregistered and freed.
97d56dc6
JMC
2515 *
2516 * Return: zero on success, else a negative error code.
666d5b4c 2517 */
8caab75f
GU
2518int devm_spi_register_controller(struct device *dev,
2519 struct spi_controller *ctlr)
666d5b4c 2520{
8caab75f 2521 struct spi_controller **ptr;
666d5b4c
MB
2522 int ret;
2523
2524 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2525 if (!ptr)
2526 return -ENOMEM;
2527
8caab75f 2528 ret = spi_register_controller(ctlr);
4b92894e 2529 if (!ret) {
8caab75f 2530 *ptr = ctlr;
666d5b4c
MB
2531 devres_add(dev, ptr);
2532 } else {
2533 devres_free(ptr);
2534 }
2535
2536 return ret;
2537}
8caab75f 2538EXPORT_SYMBOL_GPL(devm_spi_register_controller);
666d5b4c 2539
34860089 2540static int __unregister(struct device *dev, void *null)
8ae12a0d 2541{
34860089 2542 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
2543 return 0;
2544}
2545
2546/**
8caab75f
GU
2547 * spi_unregister_controller - unregister SPI master or slave controller
2548 * @ctlr: the controller being unregistered
33e34dc6 2549 * Context: can sleep
8ae12a0d 2550 *
8caab75f 2551 * This call is used only by SPI controller drivers, which are the
8ae12a0d
DB
2552 * only ones directly touching chip registers.
2553 *
2554 * This must be called from context that can sleep.
68b892f1
JH
2555 *
2556 * Note that this function also drops a reference to the controller.
8ae12a0d 2557 */
8caab75f 2558void spi_unregister_controller(struct spi_controller *ctlr)
8ae12a0d 2559{
9b61e302 2560 struct spi_controller *found;
67f7b278 2561 int id = ctlr->bus_num;
89fc9a1a 2562
9b61e302
SM
2563 /* First make sure that this controller was ever added */
2564 mutex_lock(&board_lock);
67f7b278 2565 found = idr_find(&spi_master_idr, id);
9b61e302 2566 mutex_unlock(&board_lock);
8caab75f
GU
2567 if (ctlr->queued) {
2568 if (spi_destroy_queue(ctlr))
2569 dev_err(&ctlr->dev, "queue remove failed\n");
ffbbdd21 2570 }
2b9603a0 2571 mutex_lock(&board_lock);
8caab75f 2572 list_del(&ctlr->list);
2b9603a0
FT
2573 mutex_unlock(&board_lock);
2574
ebc37af5 2575 device_for_each_child(&ctlr->dev, NULL, __unregister);
8caab75f 2576 device_unregister(&ctlr->dev);
9b61e302
SM
2577 /* free bus id */
2578 mutex_lock(&board_lock);
613bd1ea
JN
2579 if (found == ctlr)
2580 idr_remove(&spi_master_idr, id);
9b61e302 2581 mutex_unlock(&board_lock);
8ae12a0d 2582}
8caab75f 2583EXPORT_SYMBOL_GPL(spi_unregister_controller);
8ae12a0d 2584
8caab75f 2585int spi_controller_suspend(struct spi_controller *ctlr)
ffbbdd21
LW
2586{
2587 int ret;
2588
8caab75f
GU
2589 /* Basically no-ops for non-queued controllers */
2590 if (!ctlr->queued)
ffbbdd21
LW
2591 return 0;
2592
8caab75f 2593 ret = spi_stop_queue(ctlr);
ffbbdd21 2594 if (ret)
8caab75f 2595 dev_err(&ctlr->dev, "queue stop failed\n");
ffbbdd21
LW
2596
2597 return ret;
2598}
8caab75f 2599EXPORT_SYMBOL_GPL(spi_controller_suspend);
ffbbdd21 2600
8caab75f 2601int spi_controller_resume(struct spi_controller *ctlr)
ffbbdd21
LW
2602{
2603 int ret;
2604
8caab75f 2605 if (!ctlr->queued)
ffbbdd21
LW
2606 return 0;
2607
8caab75f 2608 ret = spi_start_queue(ctlr);
ffbbdd21 2609 if (ret)
8caab75f 2610 dev_err(&ctlr->dev, "queue restart failed\n");
ffbbdd21
LW
2611
2612 return ret;
2613}
8caab75f 2614EXPORT_SYMBOL_GPL(spi_controller_resume);
ffbbdd21 2615
8caab75f 2616static int __spi_controller_match(struct device *dev, const void *data)
5ed2c832 2617{
8caab75f 2618 struct spi_controller *ctlr;
9f3b795a 2619 const u16 *bus_num = data;
5ed2c832 2620
8caab75f
GU
2621 ctlr = container_of(dev, struct spi_controller, dev);
2622 return ctlr->bus_num == *bus_num;
5ed2c832
DY
2623}
2624
8ae12a0d
DB
2625/**
2626 * spi_busnum_to_master - look up master associated with bus_num
2627 * @bus_num: the master's bus number
33e34dc6 2628 * Context: can sleep
8ae12a0d
DB
2629 *
2630 * This call may be used with devices that are registered after
2631 * arch init time. It returns a refcounted pointer to the relevant
8caab75f 2632 * spi_controller (which the caller must release), or NULL if there is
8ae12a0d 2633 * no such master registered.
97d56dc6
JMC
2634 *
2635 * Return: the SPI master structure on success, else NULL.
8ae12a0d 2636 */
8caab75f 2637struct spi_controller *spi_busnum_to_master(u16 bus_num)
8ae12a0d 2638{
49dce689 2639 struct device *dev;
8caab75f 2640 struct spi_controller *ctlr = NULL;
5ed2c832 2641
695794ae 2642 dev = class_find_device(&spi_master_class, NULL, &bus_num,
8caab75f 2643 __spi_controller_match);
5ed2c832 2644 if (dev)
8caab75f 2645 ctlr = container_of(dev, struct spi_controller, dev);
5ed2c832 2646 /* reference got in class_find_device */
8caab75f 2647 return ctlr;
8ae12a0d
DB
2648}
2649EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2650
d780c371
MS
2651/*-------------------------------------------------------------------------*/
2652
2653/* Core methods for SPI resource management */
2654
2655/**
2656 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2657 * during the processing of a spi_message while using
2658 * spi_transfer_one
2659 * @spi: the spi device for which we allocate memory
2660 * @release: the release code to execute for this resource
2661 * @size: size to alloc and return
2662 * @gfp: GFP allocation flags
2663 *
2664 * Return: the pointer to the allocated data
2665 *
2666 * This may get enhanced in the future to allocate from a memory pool
8caab75f 2667 * of the @spi_device or @spi_controller to avoid repeated allocations.
d780c371
MS
2668 */
2669void *spi_res_alloc(struct spi_device *spi,
2670 spi_res_release_t release,
2671 size_t size, gfp_t gfp)
2672{
2673 struct spi_res *sres;
2674
2675 sres = kzalloc(sizeof(*sres) + size, gfp);
2676 if (!sres)
2677 return NULL;
2678
2679 INIT_LIST_HEAD(&sres->entry);
2680 sres->release = release;
2681
2682 return sres->data;
2683}
2684EXPORT_SYMBOL_GPL(spi_res_alloc);
2685
2686/**
2687 * spi_res_free - free an spi resource
2688 * @res: pointer to the custom data of a resource
2689 *
2690 */
2691void spi_res_free(void *res)
2692{
2693 struct spi_res *sres = container_of(res, struct spi_res, data);
2694
2695 if (!res)
2696 return;
2697
2698 WARN_ON(!list_empty(&sres->entry));
2699 kfree(sres);
2700}
2701EXPORT_SYMBOL_GPL(spi_res_free);
2702
2703/**
2704 * spi_res_add - add a spi_res to the spi_message
2705 * @message: the spi message
2706 * @res: the spi_resource
2707 */
2708void spi_res_add(struct spi_message *message, void *res)
2709{
2710 struct spi_res *sres = container_of(res, struct spi_res, data);
2711
2712 WARN_ON(!list_empty(&sres->entry));
2713 list_add_tail(&sres->entry, &message->resources);
2714}
2715EXPORT_SYMBOL_GPL(spi_res_add);
2716
2717/**
2718 * spi_res_release - release all spi resources for this message
8caab75f 2719 * @ctlr: the @spi_controller
d780c371
MS
2720 * @message: the @spi_message
2721 */
8caab75f 2722void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
d780c371
MS
2723{
2724 struct spi_res *res;
2725
2726 while (!list_empty(&message->resources)) {
2727 res = list_last_entry(&message->resources,
2728 struct spi_res, entry);
2729
2730 if (res->release)
8caab75f 2731 res->release(ctlr, message, res->data);
d780c371
MS
2732
2733 list_del(&res->entry);
2734
2735 kfree(res);
2736 }
2737}
2738EXPORT_SYMBOL_GPL(spi_res_release);
8ae12a0d
DB
2739
2740/*-------------------------------------------------------------------------*/
2741
523baf5a
MS
2742/* Core methods for spi_message alterations */
2743
8caab75f 2744static void __spi_replace_transfers_release(struct spi_controller *ctlr,
523baf5a
MS
2745 struct spi_message *msg,
2746 void *res)
2747{
2748 struct spi_replaced_transfers *rxfer = res;
2749 size_t i;
2750
2751 /* call extra callback if requested */
2752 if (rxfer->release)
8caab75f 2753 rxfer->release(ctlr, msg, res);
523baf5a
MS
2754
2755 /* insert replaced transfers back into the message */
2756 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2757
2758 /* remove the formerly inserted entries */
2759 for (i = 0; i < rxfer->inserted; i++)
2760 list_del(&rxfer->inserted_transfers[i].transfer_list);
2761}
2762
2763/**
2764 * spi_replace_transfers - replace transfers with several transfers
2765 * and register change with spi_message.resources
2766 * @msg: the spi_message we work upon
2767 * @xfer_first: the first spi_transfer we want to replace
2768 * @remove: number of transfers to remove
2769 * @insert: the number of transfers we want to insert instead
2770 * @release: extra release code necessary in some circumstances
2771 * @extradatasize: extra data to allocate (with alignment guarantees
2772 * of struct @spi_transfer)
05885397 2773 * @gfp: gfp flags
523baf5a
MS
2774 *
2775 * Returns: pointer to @spi_replaced_transfers,
2776 * PTR_ERR(...) in case of errors.
2777 */
2778struct spi_replaced_transfers *spi_replace_transfers(
2779 struct spi_message *msg,
2780 struct spi_transfer *xfer_first,
2781 size_t remove,
2782 size_t insert,
2783 spi_replaced_release_t release,
2784 size_t extradatasize,
2785 gfp_t gfp)
2786{
2787 struct spi_replaced_transfers *rxfer;
2788 struct spi_transfer *xfer;
2789 size_t i;
2790
2791 /* allocate the structure using spi_res */
2792 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
aef97522 2793 struct_size(rxfer, inserted_transfers, insert)
523baf5a
MS
2794 + extradatasize,
2795 gfp);
2796 if (!rxfer)
2797 return ERR_PTR(-ENOMEM);
2798
2799 /* the release code to invoke before running the generic release */
2800 rxfer->release = release;
2801
2802 /* assign extradata */
2803 if (extradatasize)
2804 rxfer->extradata =
2805 &rxfer->inserted_transfers[insert];
2806
2807 /* init the replaced_transfers list */
2808 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2809
2810 /* assign the list_entry after which we should reinsert
2811 * the @replaced_transfers - it may be spi_message.messages!
2812 */
2813 rxfer->replaced_after = xfer_first->transfer_list.prev;
2814
2815 /* remove the requested number of transfers */
2816 for (i = 0; i < remove; i++) {
2817 /* if the entry after replaced_after it is msg->transfers
2818 * then we have been requested to remove more transfers
2819 * than are in the list
2820 */
2821 if (rxfer->replaced_after->next == &msg->transfers) {
2822 dev_err(&msg->spi->dev,
2823 "requested to remove more spi_transfers than are available\n");
2824 /* insert replaced transfers back into the message */
2825 list_splice(&rxfer->replaced_transfers,
2826 rxfer->replaced_after);
2827
2828 /* free the spi_replace_transfer structure */
2829 spi_res_free(rxfer);
2830
2831 /* and return with an error */
2832 return ERR_PTR(-EINVAL);
2833 }
2834
2835 /* remove the entry after replaced_after from list of
2836 * transfers and add it to list of replaced_transfers
2837 */
2838 list_move_tail(rxfer->replaced_after->next,
2839 &rxfer->replaced_transfers);
2840 }
2841
2842 /* create copy of the given xfer with identical settings
2843 * based on the first transfer to get removed
2844 */
2845 for (i = 0; i < insert; i++) {
2846 /* we need to run in reverse order */
2847 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2848
2849 /* copy all spi_transfer data */
2850 memcpy(xfer, xfer_first, sizeof(*xfer));
2851
2852 /* add to list */
2853 list_add(&xfer->transfer_list, rxfer->replaced_after);
2854
2855 /* clear cs_change and delay_usecs for all but the last */
2856 if (i) {
2857 xfer->cs_change = false;
2858 xfer->delay_usecs = 0;
2859 }
2860 }
2861
2862 /* set up inserted */
2863 rxfer->inserted = insert;
2864
2865 /* and register it with spi_res/spi_message */
2866 spi_res_add(msg, rxfer);
2867
2868 return rxfer;
2869}
2870EXPORT_SYMBOL_GPL(spi_replace_transfers);
2871
8caab75f 2872static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
08933418
FE
2873 struct spi_message *msg,
2874 struct spi_transfer **xferp,
2875 size_t maxsize,
2876 gfp_t gfp)
d9f12122
MS
2877{
2878 struct spi_transfer *xfer = *xferp, *xfers;
2879 struct spi_replaced_transfers *srt;
2880 size_t offset;
2881 size_t count, i;
2882
d9f12122
MS
2883 /* calculate how many we have to replace */
2884 count = DIV_ROUND_UP(xfer->len, maxsize);
2885
2886 /* create replacement */
2887 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
657d32ef
DC
2888 if (IS_ERR(srt))
2889 return PTR_ERR(srt);
d9f12122
MS
2890 xfers = srt->inserted_transfers;
2891
2892 /* now handle each of those newly inserted spi_transfers
2893 * note that the replacements spi_transfers all are preset
2894 * to the same values as *xferp, so tx_buf, rx_buf and len
2895 * are all identical (as well as most others)
2896 * so we just have to fix up len and the pointers.
2897 *
2898 * this also includes support for the depreciated
2899 * spi_message.is_dma_mapped interface
2900 */
2901
2902 /* the first transfer just needs the length modified, so we
2903 * run it outside the loop
2904 */
c8dab77a 2905 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
d9f12122
MS
2906
2907 /* all the others need rx_buf/tx_buf also set */
2908 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2909 /* update rx_buf, tx_buf and dma */
2910 if (xfers[i].rx_buf)
2911 xfers[i].rx_buf += offset;
2912 if (xfers[i].rx_dma)
2913 xfers[i].rx_dma += offset;
2914 if (xfers[i].tx_buf)
2915 xfers[i].tx_buf += offset;
2916 if (xfers[i].tx_dma)
2917 xfers[i].tx_dma += offset;
2918
2919 /* update length */
2920 xfers[i].len = min(maxsize, xfers[i].len - offset);
2921 }
2922
2923 /* we set up xferp to the last entry we have inserted,
2924 * so that we skip those already split transfers
2925 */
2926 *xferp = &xfers[count - 1];
2927
2928 /* increment statistics counters */
8caab75f 2929 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
d9f12122
MS
2930 transfers_split_maxsize);
2931 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2932 transfers_split_maxsize);
2933
2934 return 0;
2935}
2936
2937/**
2938 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2939 * when an individual transfer exceeds a
2940 * certain size
8caab75f 2941 * @ctlr: the @spi_controller for this transfer
3700ce95
MI
2942 * @msg: the @spi_message to transform
2943 * @maxsize: the maximum when to apply this
10f11a22 2944 * @gfp: GFP allocation flags
d9f12122
MS
2945 *
2946 * Return: status of transformation
2947 */
8caab75f 2948int spi_split_transfers_maxsize(struct spi_controller *ctlr,
d9f12122
MS
2949 struct spi_message *msg,
2950 size_t maxsize,
2951 gfp_t gfp)
2952{
2953 struct spi_transfer *xfer;
2954 int ret;
2955
2956 /* iterate over the transfer_list,
2957 * but note that xfer is advanced to the last transfer inserted
2958 * to avoid checking sizes again unnecessarily (also xfer does
2959 * potentiall belong to a different list by the time the
2960 * replacement has happened
2961 */
2962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2963 if (xfer->len > maxsize) {
8caab75f
GU
2964 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2965 maxsize, gfp);
d9f12122
MS
2966 if (ret)
2967 return ret;
2968 }
2969 }
2970
2971 return 0;
2972}
2973EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
8ae12a0d
DB
2974
2975/*-------------------------------------------------------------------------*/
2976
8caab75f 2977/* Core methods for SPI controller protocol drivers. Some of the
7d077197
DB
2978 * other core methods are currently defined as inline functions.
2979 */
2980
8caab75f
GU
2981static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2982 u8 bits_per_word)
63ab645f 2983{
8caab75f 2984 if (ctlr->bits_per_word_mask) {
63ab645f
SB
2985 /* Only 32 bits fit in the mask */
2986 if (bits_per_word > 32)
2987 return -EINVAL;
8caab75f 2988 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
63ab645f
SB
2989 return -EINVAL;
2990 }
2991
2992 return 0;
2993}
2994
7d077197
DB
2995/**
2996 * spi_setup - setup SPI mode and clock rate
2997 * @spi: the device whose settings are being modified
2998 * Context: can sleep, and no requests are queued to the device
2999 *
3000 * SPI protocol drivers may need to update the transfer mode if the
3001 * device doesn't work with its default. They may likewise need
3002 * to update clock rates or word sizes from initial values. This function
3003 * changes those settings, and must be called from a context that can sleep.
3004 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3005 * effect the next time the device is selected and data is transferred to
3006 * or from it. When this function returns, the spi device is deselected.
3007 *
3008 * Note that this call will fail if the protocol driver specifies an option
3009 * that the underlying controller or its driver does not support. For
3010 * example, not all hardware supports wire transfers using nine bit words,
3011 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
3012 *
3013 * Return: zero on success, else a negative error code.
7d077197
DB
3014 */
3015int spi_setup(struct spi_device *spi)
3016{
83596fbe 3017 unsigned bad_bits, ugly_bits;
5ab8d262 3018 int status;
7d077197 3019
f477b7fb 3020 /* check mode to prevent that DUAL and QUAD set at the same time
3021 */
3022 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3023 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3024 dev_err(&spi->dev,
3025 "setup: can not select dual and quad at the same time\n");
3026 return -EINVAL;
3027 }
3028 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3029 */
3030 if ((spi->mode & SPI_3WIRE) && (spi->mode &
6b03061f
YNG
3031 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3032 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
f477b7fb 3033 return -EINVAL;
e7db06b5 3034 /* help drivers fail *cleanly* when they need options
8caab75f 3035 * that aren't supported with their current controller
cbaa62e0
DL
3036 * SPI_CS_WORD has a fallback software implementation,
3037 * so it is ignored here.
e7db06b5 3038 */
cbaa62e0 3039 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
d61ad23c
SS
3040 /* nothing prevents from working with active-high CS in case if it
3041 * is driven by GPIO.
3042 */
3043 if (gpio_is_valid(spi->cs_gpio))
3044 bad_bits &= ~SPI_CS_HIGH;
83596fbe 3045 ugly_bits = bad_bits &
6b03061f
YNG
3046 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3047 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
83596fbe
GU
3048 if (ugly_bits) {
3049 dev_warn(&spi->dev,
3050 "setup: ignoring unsupported mode bits %x\n",
3051 ugly_bits);
3052 spi->mode &= ~ugly_bits;
3053 bad_bits &= ~ugly_bits;
3054 }
e7db06b5 3055 if (bad_bits) {
eb288a1f 3056 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
3057 bad_bits);
3058 return -EINVAL;
3059 }
3060
7d077197
DB
3061 if (!spi->bits_per_word)
3062 spi->bits_per_word = 8;
3063
8caab75f
GU
3064 status = __spi_validate_bits_per_word(spi->controller,
3065 spi->bits_per_word);
5ab8d262
AS
3066 if (status)
3067 return status;
63ab645f 3068
052eb2d4 3069 if (!spi->max_speed_hz)
8caab75f 3070 spi->max_speed_hz = spi->controller->max_speed_hz;
052eb2d4 3071
8caab75f
GU
3072 if (spi->controller->setup)
3073 status = spi->controller->setup(spi);
7d077197 3074
abeedb01
FCJ
3075 spi_set_cs(spi, false);
3076
5fe5f05e 3077 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
3078 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3079 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3080 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3081 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3082 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3083 spi->bits_per_word, spi->max_speed_hz,
3084 status);
3085
3086 return status;
3087}
3088EXPORT_SYMBOL_GPL(spi_setup);
3089
f1ca9992
SK
3090/**
3091 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3092 * @spi: the device that requires specific CS timing configuration
3093 * @setup: CS setup time in terms of clock count
3094 * @hold: CS hold time in terms of clock count
3095 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3096 */
3097void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3098 u8 inactive_dly)
3099{
3100 if (spi->controller->set_cs_timing)
3101 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3102}
3103EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3104
90808738 3105static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e 3106{
8caab75f 3107 struct spi_controller *ctlr = spi->controller;
e6811d1d 3108 struct spi_transfer *xfer;
6ea31293 3109 int w_size;
cf32b71e 3110
24a0013a
MB
3111 if (list_empty(&message->transfers))
3112 return -EINVAL;
24a0013a 3113
cbaa62e0 3114 /* If an SPI controller does not support toggling the CS line on each
71388b21
DL
3115 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3116 * for the CS line, we can emulate the CS-per-word hardware function by
cbaa62e0
DL
3117 * splitting transfers into one-word transfers and ensuring that
3118 * cs_change is set for each transfer.
3119 */
71388b21 3120 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
f3186dd8 3121 spi->cs_gpiod ||
71388b21 3122 gpio_is_valid(spi->cs_gpio))) {
cbaa62e0
DL
3123 size_t maxsize;
3124 int ret;
3125
3126 maxsize = (spi->bits_per_word + 7) / 8;
3127
3128 /* spi_split_transfers_maxsize() requires message->spi */
3129 message->spi = spi;
3130
3131 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3132 GFP_KERNEL);
3133 if (ret)
3134 return ret;
3135
3136 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3137 /* don't change cs_change on the last entry in the list */
3138 if (list_is_last(&xfer->transfer_list, &message->transfers))
3139 break;
3140 xfer->cs_change = 1;
3141 }
3142 }
3143
cf32b71e
ES
3144 /* Half-duplex links include original MicroWire, and ones with
3145 * only one data pin like SPI_3WIRE (switches direction) or where
3146 * either MOSI or MISO is missing. They can also be caused by
3147 * software limitations.
3148 */
8caab75f
GU
3149 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3150 (spi->mode & SPI_3WIRE)) {
3151 unsigned flags = ctlr->flags;
cf32b71e
ES
3152
3153 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3154 if (xfer->rx_buf && xfer->tx_buf)
3155 return -EINVAL;
8caab75f 3156 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
cf32b71e 3157 return -EINVAL;
8caab75f 3158 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
cf32b71e
ES
3159 return -EINVAL;
3160 }
3161 }
3162
e6811d1d 3163 /**
059b8ffe
LD
3164 * Set transfer bits_per_word and max speed as spi device default if
3165 * it is not set for this transfer.
f477b7fb 3166 * Set transfer tx_nbits and rx_nbits as single transfer default
3167 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
b7bb367a
JB
3168 * Ensure transfer word_delay is at least as long as that required by
3169 * device itself.
e6811d1d 3170 */
77e80588 3171 message->frame_length = 0;
e6811d1d 3172 list_for_each_entry(xfer, &message->transfers, transfer_list) {
5d7e2b5e 3173 xfer->effective_speed_hz = 0;
078726ce 3174 message->frame_length += xfer->len;
e6811d1d
LD
3175 if (!xfer->bits_per_word)
3176 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
3177
3178 if (!xfer->speed_hz)
059b8ffe 3179 xfer->speed_hz = spi->max_speed_hz;
a6f87fad 3180
8caab75f
GU
3181 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3182 xfer->speed_hz = ctlr->max_speed_hz;
56ede94a 3183
8caab75f 3184 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
63ab645f 3185 return -EINVAL;
a2fd4f9f 3186
4d94bd21
II
3187 /*
3188 * SPI transfer length should be multiple of SPI word size
3189 * where SPI word size should be power-of-two multiple
3190 */
3191 if (xfer->bits_per_word <= 8)
3192 w_size = 1;
3193 else if (xfer->bits_per_word <= 16)
3194 w_size = 2;
3195 else
3196 w_size = 4;
3197
4d94bd21 3198 /* No partial transfers accepted */
6ea31293 3199 if (xfer->len % w_size)
4d94bd21
II
3200 return -EINVAL;
3201
8caab75f
GU
3202 if (xfer->speed_hz && ctlr->min_speed_hz &&
3203 xfer->speed_hz < ctlr->min_speed_hz)
a2fd4f9f 3204 return -EINVAL;
f477b7fb 3205
3206 if (xfer->tx_buf && !xfer->tx_nbits)
3207 xfer->tx_nbits = SPI_NBITS_SINGLE;
3208 if (xfer->rx_buf && !xfer->rx_nbits)
3209 xfer->rx_nbits = SPI_NBITS_SINGLE;
3210 /* check transfer tx/rx_nbits:
1afd9989
GU
3211 * 1. check the value matches one of single, dual and quad
3212 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 3213 */
db90a441
SP
3214 if (xfer->tx_buf) {
3215 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3216 xfer->tx_nbits != SPI_NBITS_DUAL &&
3217 xfer->tx_nbits != SPI_NBITS_QUAD)
3218 return -EINVAL;
3219 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3220 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3221 return -EINVAL;
3222 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3223 !(spi->mode & SPI_TX_QUAD))
3224 return -EINVAL;
db90a441 3225 }
f477b7fb 3226 /* check transfer rx_nbits */
db90a441
SP
3227 if (xfer->rx_buf) {
3228 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3229 xfer->rx_nbits != SPI_NBITS_DUAL &&
3230 xfer->rx_nbits != SPI_NBITS_QUAD)
3231 return -EINVAL;
3232 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3233 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3234 return -EINVAL;
3235 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3236 !(spi->mode & SPI_RX_QUAD))
3237 return -EINVAL;
db90a441 3238 }
b7bb367a
JB
3239
3240 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3241 xfer->word_delay_usecs = spi->word_delay_usecs;
e6811d1d
LD
3242 }
3243
cf32b71e 3244 message->status = -EINPROGRESS;
90808738
MB
3245
3246 return 0;
3247}
3248
3249static int __spi_async(struct spi_device *spi, struct spi_message *message)
3250{
8caab75f 3251 struct spi_controller *ctlr = spi->controller;
90808738 3252
b5932f5c
BB
3253 /*
3254 * Some controllers do not support doing regular SPI transfers. Return
3255 * ENOTSUPP when this is the case.
3256 */
3257 if (!ctlr->transfer)
3258 return -ENOTSUPP;
3259
90808738
MB
3260 message->spi = spi;
3261
8caab75f 3262 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
eca2ebc7
MS
3263 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3264
90808738
MB
3265 trace_spi_message_submit(message);
3266
8caab75f 3267 return ctlr->transfer(spi, message);
cf32b71e
ES
3268}
3269
568d0697
DB
3270/**
3271 * spi_async - asynchronous SPI transfer
3272 * @spi: device with which data will be exchanged
3273 * @message: describes the data transfers, including completion callback
3274 * Context: any (irqs may be blocked, etc)
3275 *
3276 * This call may be used in_irq and other contexts which can't sleep,
3277 * as well as from task contexts which can sleep.
3278 *
3279 * The completion callback is invoked in a context which can't sleep.
3280 * Before that invocation, the value of message->status is undefined.
3281 * When the callback is issued, message->status holds either zero (to
3282 * indicate complete success) or a negative error code. After that
3283 * callback returns, the driver which issued the transfer request may
3284 * deallocate the associated memory; it's no longer in use by any SPI
3285 * core or controller driver code.
3286 *
3287 * Note that although all messages to a spi_device are handled in
3288 * FIFO order, messages may go to different devices in other orders.
3289 * Some device might be higher priority, or have various "hard" access
3290 * time requirements, for example.
3291 *
3292 * On detection of any fault during the transfer, processing of
3293 * the entire message is aborted, and the device is deselected.
3294 * Until returning from the associated message completion callback,
3295 * no other spi_message queued to that device will be processed.
3296 * (This rule applies equally to all the synchronous transfer calls,
3297 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3298 *
3299 * Return: zero on success, else a negative error code.
568d0697
DB
3300 */
3301int spi_async(struct spi_device *spi, struct spi_message *message)
3302{
8caab75f 3303 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3304 int ret;
3305 unsigned long flags;
568d0697 3306
90808738
MB
3307 ret = __spi_validate(spi, message);
3308 if (ret != 0)
3309 return ret;
3310
8caab75f 3311 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
568d0697 3312
8caab75f 3313 if (ctlr->bus_lock_flag)
cf32b71e
ES
3314 ret = -EBUSY;
3315 else
3316 ret = __spi_async(spi, message);
568d0697 3317
8caab75f 3318 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3319
3320 return ret;
568d0697
DB
3321}
3322EXPORT_SYMBOL_GPL(spi_async);
3323
cf32b71e
ES
3324/**
3325 * spi_async_locked - version of spi_async with exclusive bus usage
3326 * @spi: device with which data will be exchanged
3327 * @message: describes the data transfers, including completion callback
3328 * Context: any (irqs may be blocked, etc)
3329 *
3330 * This call may be used in_irq and other contexts which can't sleep,
3331 * as well as from task contexts which can sleep.
3332 *
3333 * The completion callback is invoked in a context which can't sleep.
3334 * Before that invocation, the value of message->status is undefined.
3335 * When the callback is issued, message->status holds either zero (to
3336 * indicate complete success) or a negative error code. After that
3337 * callback returns, the driver which issued the transfer request may
3338 * deallocate the associated memory; it's no longer in use by any SPI
3339 * core or controller driver code.
3340 *
3341 * Note that although all messages to a spi_device are handled in
3342 * FIFO order, messages may go to different devices in other orders.
3343 * Some device might be higher priority, or have various "hard" access
3344 * time requirements, for example.
3345 *
3346 * On detection of any fault during the transfer, processing of
3347 * the entire message is aborted, and the device is deselected.
3348 * Until returning from the associated message completion callback,
3349 * no other spi_message queued to that device will be processed.
3350 * (This rule applies equally to all the synchronous transfer calls,
3351 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
3352 *
3353 * Return: zero on success, else a negative error code.
cf32b71e
ES
3354 */
3355int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3356{
8caab75f 3357 struct spi_controller *ctlr = spi->controller;
cf32b71e
ES
3358 int ret;
3359 unsigned long flags;
3360
90808738
MB
3361 ret = __spi_validate(spi, message);
3362 if (ret != 0)
3363 return ret;
3364
8caab75f 3365 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3366
3367 ret = __spi_async(spi, message);
3368
8caab75f 3369 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3370
3371 return ret;
3372
3373}
3374EXPORT_SYMBOL_GPL(spi_async_locked);
3375
7d077197
DB
3376/*-------------------------------------------------------------------------*/
3377
8caab75f 3378/* Utility methods for SPI protocol drivers, layered on
7d077197
DB
3379 * top of the core. Some other utility methods are defined as
3380 * inline functions.
3381 */
3382
5d870c8e
AM
3383static void spi_complete(void *arg)
3384{
3385 complete(arg);
3386}
3387
ef4d96ec 3388static int __spi_sync(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
3389{
3390 DECLARE_COMPLETION_ONSTACK(done);
3391 int status;
8caab75f 3392 struct spi_controller *ctlr = spi->controller;
0461a414
MB
3393 unsigned long flags;
3394
3395 status = __spi_validate(spi, message);
3396 if (status != 0)
3397 return status;
cf32b71e
ES
3398
3399 message->complete = spi_complete;
3400 message->context = &done;
0461a414 3401 message->spi = spi;
cf32b71e 3402
8caab75f 3403 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
eca2ebc7
MS
3404 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3405
0461a414
MB
3406 /* If we're not using the legacy transfer method then we will
3407 * try to transfer in the calling context so special case.
3408 * This code would be less tricky if we could remove the
3409 * support for driver implemented message queues.
3410 */
8caab75f
GU
3411 if (ctlr->transfer == spi_queued_transfer) {
3412 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3413
3414 trace_spi_message_submit(message);
3415
3416 status = __spi_queued_transfer(spi, message, false);
3417
8caab75f 3418 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
0461a414
MB
3419 } else {
3420 status = spi_async_locked(spi, message);
3421 }
cf32b71e 3422
cf32b71e 3423 if (status == 0) {
0461a414
MB
3424 /* Push out the messages in the calling context if we
3425 * can.
3426 */
8caab75f
GU
3427 if (ctlr->transfer == spi_queued_transfer) {
3428 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
eca2ebc7
MS
3429 spi_sync_immediate);
3430 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3431 spi_sync_immediate);
8caab75f 3432 __spi_pump_messages(ctlr, false);
eca2ebc7 3433 }
0461a414 3434
cf32b71e
ES
3435 wait_for_completion(&done);
3436 status = message->status;
3437 }
3438 message->context = NULL;
3439 return status;
3440}
3441
8ae12a0d
DB
3442/**
3443 * spi_sync - blocking/synchronous SPI data transfers
3444 * @spi: device with which data will be exchanged
3445 * @message: describes the data transfers
33e34dc6 3446 * Context: can sleep
8ae12a0d
DB
3447 *
3448 * This call may only be used from a context that may sleep. The sleep
3449 * is non-interruptible, and has no timeout. Low-overhead controller
3450 * drivers may DMA directly into and out of the message buffers.
3451 *
3452 * Note that the SPI device's chip select is active during the message,
3453 * and then is normally disabled between messages. Drivers for some
3454 * frequently-used devices may want to minimize costs of selecting a chip,
3455 * by leaving it selected in anticipation that the next message will go
3456 * to the same chip. (That may increase power usage.)
3457 *
0c868461
DB
3458 * Also, the caller is guaranteeing that the memory associated with the
3459 * message will not be freed before this call returns.
3460 *
97d56dc6 3461 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3462 */
3463int spi_sync(struct spi_device *spi, struct spi_message *message)
3464{
ef4d96ec
MB
3465 int ret;
3466
8caab75f 3467 mutex_lock(&spi->controller->bus_lock_mutex);
ef4d96ec 3468 ret = __spi_sync(spi, message);
8caab75f 3469 mutex_unlock(&spi->controller->bus_lock_mutex);
ef4d96ec
MB
3470
3471 return ret;
8ae12a0d
DB
3472}
3473EXPORT_SYMBOL_GPL(spi_sync);
3474
cf32b71e
ES
3475/**
3476 * spi_sync_locked - version of spi_sync with exclusive bus usage
3477 * @spi: device with which data will be exchanged
3478 * @message: describes the data transfers
3479 * Context: can sleep
3480 *
3481 * This call may only be used from a context that may sleep. The sleep
3482 * is non-interruptible, and has no timeout. Low-overhead controller
3483 * drivers may DMA directly into and out of the message buffers.
3484 *
3485 * This call should be used by drivers that require exclusive access to the
25985edc 3486 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
3487 * be released by a spi_bus_unlock call when the exclusive access is over.
3488 *
97d56dc6 3489 * Return: zero on success, else a negative error code.
cf32b71e
ES
3490 */
3491int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3492{
ef4d96ec 3493 return __spi_sync(spi, message);
cf32b71e
ES
3494}
3495EXPORT_SYMBOL_GPL(spi_sync_locked);
3496
3497/**
3498 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
8caab75f 3499 * @ctlr: SPI bus master that should be locked for exclusive bus access
cf32b71e
ES
3500 * Context: can sleep
3501 *
3502 * This call may only be used from a context that may sleep. The sleep
3503 * is non-interruptible, and has no timeout.
3504 *
3505 * This call should be used by drivers that require exclusive access to the
3506 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3507 * exclusive access is over. Data transfer must be done by spi_sync_locked
3508 * and spi_async_locked calls when the SPI bus lock is held.
3509 *
97d56dc6 3510 * Return: always zero.
cf32b71e 3511 */
8caab75f 3512int spi_bus_lock(struct spi_controller *ctlr)
cf32b71e
ES
3513{
3514 unsigned long flags;
3515
8caab75f 3516 mutex_lock(&ctlr->bus_lock_mutex);
cf32b71e 3517
8caab75f
GU
3518 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3519 ctlr->bus_lock_flag = 1;
3520 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
cf32b71e
ES
3521
3522 /* mutex remains locked until spi_bus_unlock is called */
3523
3524 return 0;
3525}
3526EXPORT_SYMBOL_GPL(spi_bus_lock);
3527
3528/**
3529 * spi_bus_unlock - release the lock for exclusive SPI bus usage
8caab75f 3530 * @ctlr: SPI bus master that was locked for exclusive bus access
cf32b71e
ES
3531 * Context: can sleep
3532 *
3533 * This call may only be used from a context that may sleep. The sleep
3534 * is non-interruptible, and has no timeout.
3535 *
3536 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3537 * call.
3538 *
97d56dc6 3539 * Return: always zero.
cf32b71e 3540 */
8caab75f 3541int spi_bus_unlock(struct spi_controller *ctlr)
cf32b71e 3542{
8caab75f 3543 ctlr->bus_lock_flag = 0;
cf32b71e 3544
8caab75f 3545 mutex_unlock(&ctlr->bus_lock_mutex);
cf32b71e
ES
3546
3547 return 0;
3548}
3549EXPORT_SYMBOL_GPL(spi_bus_unlock);
3550
a9948b61 3551/* portable code must never pass more than 32 bytes */
5fe5f05e 3552#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
3553
3554static u8 *buf;
3555
3556/**
3557 * spi_write_then_read - SPI synchronous write followed by read
3558 * @spi: device with which data will be exchanged
3559 * @txbuf: data to be written (need not be dma-safe)
3560 * @n_tx: size of txbuf, in bytes
27570497
JP
3561 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3562 * @n_rx: size of rxbuf, in bytes
33e34dc6 3563 * Context: can sleep
8ae12a0d
DB
3564 *
3565 * This performs a half duplex MicroWire style transaction with the
3566 * device, sending txbuf and then reading rxbuf. The return value
3567 * is zero for success, else a negative errno status code.
b885244e 3568 * This call may only be used from a context that may sleep.
8ae12a0d 3569 *
0c868461 3570 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
3571 * portable code should never use this for more than 32 bytes.
3572 * Performance-sensitive or bulk transfer code should instead use
0c868461 3573 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
3574 *
3575 * Return: zero on success, else a negative error code.
8ae12a0d
DB
3576 */
3577int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
3578 const void *txbuf, unsigned n_tx,
3579 void *rxbuf, unsigned n_rx)
8ae12a0d 3580{
068f4070 3581 static DEFINE_MUTEX(lock);
8ae12a0d
DB
3582
3583 int status;
3584 struct spi_message message;
bdff549e 3585 struct spi_transfer x[2];
8ae12a0d
DB
3586 u8 *local_buf;
3587
b3a223ee
MB
3588 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3589 * copying here, (as a pure convenience thing), but we can
3590 * keep heap costs out of the hot path unless someone else is
3591 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 3592 */
b3a223ee 3593 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
3594 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3595 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
3596 if (!local_buf)
3597 return -ENOMEM;
3598 } else {
3599 local_buf = buf;
3600 }
8ae12a0d 3601
8275c642 3602 spi_message_init(&message);
5fe5f05e 3603 memset(x, 0, sizeof(x));
bdff549e
DB
3604 if (n_tx) {
3605 x[0].len = n_tx;
3606 spi_message_add_tail(&x[0], &message);
3607 }
3608 if (n_rx) {
3609 x[1].len = n_rx;
3610 spi_message_add_tail(&x[1], &message);
3611 }
8275c642 3612
8ae12a0d 3613 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
3614 x[0].tx_buf = local_buf;
3615 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
3616
3617 /* do the i/o */
8ae12a0d 3618 status = spi_sync(spi, &message);
9b938b74 3619 if (status == 0)
bdff549e 3620 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 3621
bdff549e 3622 if (x[0].tx_buf == buf)
068f4070 3623 mutex_unlock(&lock);
8ae12a0d
DB
3624 else
3625 kfree(local_buf);
3626
3627 return status;
3628}
3629EXPORT_SYMBOL_GPL(spi_write_then_read);
3630
3631/*-------------------------------------------------------------------------*/
3632
5f143af7 3633#if IS_ENABLED(CONFIG_OF)
ce79d54a
PA
3634static int __spi_of_device_match(struct device *dev, void *data)
3635{
3636 return dev->of_node == data;
3637}
3638
3639/* must call put_device() when done with returned spi_device device */
5f143af7 3640struct spi_device *of_find_spi_device_by_node(struct device_node *node)
ce79d54a
PA
3641{
3642 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3643 __spi_of_device_match);
3644 return dev ? to_spi_device(dev) : NULL;
3645}
5f143af7
MF
3646EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3647#endif /* IS_ENABLED(CONFIG_OF) */
ce79d54a 3648
5f143af7 3649#if IS_ENABLED(CONFIG_OF_DYNAMIC)
8caab75f 3650static int __spi_of_controller_match(struct device *dev, const void *data)
ce79d54a
PA
3651{
3652 return dev->of_node == data;
3653}
3654
8caab75f
GU
3655/* the spi controllers are not using spi_bus, so we find it with another way */
3656static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
ce79d54a
PA
3657{
3658 struct device *dev;
3659
3660 dev = class_find_device(&spi_master_class, NULL, node,
8caab75f 3661 __spi_of_controller_match);
6c364062
GU
3662 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3663 dev = class_find_device(&spi_slave_class, NULL, node,
8caab75f 3664 __spi_of_controller_match);
ce79d54a
PA
3665 if (!dev)
3666 return NULL;
3667
3668 /* reference got in class_find_device */
8caab75f 3669 return container_of(dev, struct spi_controller, dev);
ce79d54a
PA
3670}
3671
3672static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3673 void *arg)
3674{
3675 struct of_reconfig_data *rd = arg;
8caab75f 3676 struct spi_controller *ctlr;
ce79d54a
PA
3677 struct spi_device *spi;
3678
3679 switch (of_reconfig_get_state_change(action, arg)) {
3680 case OF_RECONFIG_CHANGE_ADD:
8caab75f
GU
3681 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3682 if (ctlr == NULL)
ce79d54a
PA
3683 return NOTIFY_OK; /* not for us */
3684
bd6c1644 3685 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
8caab75f 3686 put_device(&ctlr->dev);
bd6c1644
GU
3687 return NOTIFY_OK;
3688 }
3689
8caab75f
GU
3690 spi = of_register_spi_device(ctlr, rd->dn);
3691 put_device(&ctlr->dev);
ce79d54a
PA
3692
3693 if (IS_ERR(spi)) {
25c56c88
RH
3694 pr_err("%s: failed to create for '%pOF'\n",
3695 __func__, rd->dn);
e0af98a7 3696 of_node_clear_flag(rd->dn, OF_POPULATED);
ce79d54a
PA
3697 return notifier_from_errno(PTR_ERR(spi));
3698 }
3699 break;
3700
3701 case OF_RECONFIG_CHANGE_REMOVE:
bd6c1644
GU
3702 /* already depopulated? */
3703 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3704 return NOTIFY_OK;
3705
ce79d54a
PA
3706 /* find our device by node */
3707 spi = of_find_spi_device_by_node(rd->dn);
3708 if (spi == NULL)
3709 return NOTIFY_OK; /* no? not meant for us */
3710
3711 /* unregister takes one ref away */
3712 spi_unregister_device(spi);
3713
3714 /* and put the reference of the find */
3715 put_device(&spi->dev);
3716 break;
3717 }
3718
3719 return NOTIFY_OK;
3720}
3721
3722static struct notifier_block spi_of_notifier = {
3723 .notifier_call = of_spi_notify,
3724};
3725#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3726extern struct notifier_block spi_of_notifier;
3727#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3728
7f24467f 3729#if IS_ENABLED(CONFIG_ACPI)
8caab75f 3730static int spi_acpi_controller_match(struct device *dev, const void *data)
7f24467f
OP
3731{
3732 return ACPI_COMPANION(dev->parent) == data;
3733}
3734
3735static int spi_acpi_device_match(struct device *dev, void *data)
3736{
3737 return ACPI_COMPANION(dev) == data;
3738}
3739
8caab75f 3740static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
7f24467f
OP
3741{
3742 struct device *dev;
3743
3744 dev = class_find_device(&spi_master_class, NULL, adev,
8caab75f 3745 spi_acpi_controller_match);
6c364062
GU
3746 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3747 dev = class_find_device(&spi_slave_class, NULL, adev,
8caab75f 3748 spi_acpi_controller_match);
7f24467f
OP
3749 if (!dev)
3750 return NULL;
3751
8caab75f 3752 return container_of(dev, struct spi_controller, dev);
7f24467f
OP
3753}
3754
3755static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3756{
3757 struct device *dev;
3758
3759 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3760
3761 return dev ? to_spi_device(dev) : NULL;
3762}
3763
3764static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3765 void *arg)
3766{
3767 struct acpi_device *adev = arg;
8caab75f 3768 struct spi_controller *ctlr;
7f24467f
OP
3769 struct spi_device *spi;
3770
3771 switch (value) {
3772 case ACPI_RECONFIG_DEVICE_ADD:
8caab75f
GU
3773 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3774 if (!ctlr)
7f24467f
OP
3775 break;
3776
8caab75f
GU
3777 acpi_register_spi_device(ctlr, adev);
3778 put_device(&ctlr->dev);
7f24467f
OP
3779 break;
3780 case ACPI_RECONFIG_DEVICE_REMOVE:
3781 if (!acpi_device_enumerated(adev))
3782 break;
3783
3784 spi = acpi_spi_find_device_by_adev(adev);
3785 if (!spi)
3786 break;
3787
3788 spi_unregister_device(spi);
3789 put_device(&spi->dev);
3790 break;
3791 }
3792
3793 return NOTIFY_OK;
3794}
3795
3796static struct notifier_block spi_acpi_notifier = {
3797 .notifier_call = acpi_spi_notify,
3798};
3799#else
3800extern struct notifier_block spi_acpi_notifier;
3801#endif
3802
8ae12a0d
DB
3803static int __init spi_init(void)
3804{
b885244e
DB
3805 int status;
3806
e94b1766 3807 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
3808 if (!buf) {
3809 status = -ENOMEM;
3810 goto err0;
3811 }
3812
3813 status = bus_register(&spi_bus_type);
3814 if (status < 0)
3815 goto err1;
8ae12a0d 3816
b885244e
DB
3817 status = class_register(&spi_master_class);
3818 if (status < 0)
3819 goto err2;
ce79d54a 3820
6c364062
GU
3821 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3822 status = class_register(&spi_slave_class);
3823 if (status < 0)
3824 goto err3;
3825 }
3826
5267720e 3827 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a 3828 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
7f24467f
OP
3829 if (IS_ENABLED(CONFIG_ACPI))
3830 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
ce79d54a 3831
8ae12a0d 3832 return 0;
b885244e 3833
6c364062
GU
3834err3:
3835 class_unregister(&spi_master_class);
b885244e
DB
3836err2:
3837 bus_unregister(&spi_bus_type);
3838err1:
3839 kfree(buf);
3840 buf = NULL;
3841err0:
3842 return status;
8ae12a0d 3843}
b885244e 3844
8ae12a0d
DB
3845/* board_info is normally registered in arch_initcall(),
3846 * but even essential drivers wait till later
b885244e
DB
3847 *
3848 * REVISIT only boardinfo really needs static linking. the rest (device and
3849 * driver registration) _could_ be dynamically linked (modular) ... costs
3850 * include needing to have boardinfo data structures be much more public.
8ae12a0d 3851 */
673c0c00 3852postcore_initcall(spi_init);