]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/staging/comedi/drivers/s626.c
staging: comedi: Remove useless cast.
[mirror_ubuntu-artful-kernel.git] / drivers / staging / comedi / drivers / s626.c
CommitLineData
11e865c1 1/*
7f32c7c4
IA
2 * comedi/drivers/s626.c
3 * Sensoray s626 Comedi driver
4 *
5 * COMEDI - Linux Control and Measurement Device Interface
6 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7 *
8 * Based on Sensoray Model 626 Linux driver Version 0.2
9 * Copyright (C) 2002-2004 Sensoray Co., Inc.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
11e865c1
GP
21
22/*
7f32c7c4
IA
23 * Driver: s626
24 * Description: Sensoray 626 driver
25 * Devices: [Sensoray] 626 (s626)
26 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28 * Status: experimental
29
30 * Configuration options: not applicable, uses PCI auto config
31
32 * INSN_CONFIG instructions:
33 * analog input:
34 * none
35 *
36 * analog output:
37 * none
38 *
39 * digital channel:
40 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41 * supported configuration options:
42 * INSN_CONFIG_DIO_QUERY
43 * COMEDI_INPUT
44 * COMEDI_OUTPUT
45 *
46 * encoder:
47 * Every channel must be configured before reading.
48 *
49 * Example code
50 *
51 * insn.insn=INSN_CONFIG; //configuration instruction
52 * insn.n=1; //number of operation (must be 1)
53 * insn.data=&initialvalue; //initial value loaded into encoder
54 * //during configuration
55 * insn.subdev=5; //encoder subdevice
56 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57 * //to configure
58 *
59 * comedi_do_insn(cf,&insn); //executing configuration
60 */
11e865c1 61
ce157f80
HS
62#include <linux/module.h>
63#include <linux/delay.h>
25436dc9 64#include <linux/interrupt.h>
11e865c1
GP
65#include <linux/kernel.h>
66#include <linux/types.h>
67
6ab38b05 68#include "../comedi_pci.h"
11e865c1 69
11e865c1
GP
70#include "s626.h"
71
dbb263f5 72struct s626_buffer_dma {
8e06d662
IA
73 dma_addr_t physical_base;
74 void *logical_base;
75};
76
427fda4e
TH
77/**
78 * struct s626_private - Working data for s626 driver.
79 * @ai_cmd_running: non-zero if ai_cmd is running.
80 * @ai_sample_timer: time between samples in units of the timer.
81 * @ai_convert_count: conversion counter.
82 * @ai_convert_timer: time between conversion in units of the timer.
83 * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
84 * @adc_items: number of items in ADC poll list.
85 * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
86 * @ana_buf: DMA buffer used to receive ADC data and hold DAC data.
87 * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
88 * @dacpol: image of DAC polarity register.
89 * @trim_setpoint: images of TrimDAC setpoints.
90 * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
91 */
eb5e029e 92struct s626_private {
427fda4e
TH
93 u8 ai_cmd_running;
94 unsigned int ai_sample_timer;
95 int ai_convert_count;
96 unsigned int ai_convert_timer;
97 u16 counter_int_enabs;
98 u8 adc_items;
99 struct s626_buffer_dma rps_buf;
100 struct s626_buffer_dma ana_buf;
101 u32 *dac_wbuf;
102 u16 dacpol;
103 u8 trim_setpoint[12];
104 u32 i2c_adrs;
eb5e029e 105};
11e865c1 106
8ee52611 107/* Counter overflow/index event flag masks for RDMISC2. */
676921c9
IA
108#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
109#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
11e865c1 110
ddd9813e
HS
111/*
112 * Enable/disable a function or test status bit(s) that are accessed
113 * through Main Control Registers 1 or 2.
114 */
115static void s626_mc_enable(struct comedi_device *dev,
116 unsigned int cmd, unsigned int reg)
117{
ddd9813e
HS
118 unsigned int val = (cmd << 16) | cmd;
119
bb49cddc 120 mmiowb();
de9cd5ca 121 writel(val, dev->mmio + reg);
ddd9813e 122}
11e865c1 123
c5cf4606
HS
124static void s626_mc_disable(struct comedi_device *dev,
125 unsigned int cmd, unsigned int reg)
126{
ddd54d65 127 writel(cmd << 16, dev->mmio + reg);
bb49cddc 128 mmiowb();
c5cf4606 129}
11e865c1 130
95bb7982
HS
131static bool s626_mc_test(struct comedi_device *dev,
132 unsigned int cmd, unsigned int reg)
133{
95bb7982
HS
134 unsigned int val;
135
de9cd5ca 136 val = readl(dev->mmio + reg);
95bb7982
HS
137
138 return (val & cmd) ? true : false;
139}
11e865c1 140
676921c9 141#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
11e865c1 142
8ee52611 143/* Write a time slot control record to TSL2. */
d8515652 144#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
11e865c1 145
90d54ff2
HS
146static const struct comedi_lrange s626_range_table = {
147 2, {
148 BIP_RANGE(5),
481ac510 149 BIP_RANGE(10)
90d54ff2 150 }
11e865c1
GP
151};
152
8ee52611
IA
153/*
154 * Execute a DEBI transfer. This must be called from within a critical section.
155 */
31de1948 156static void s626_debi_transfer(struct comedi_device *dev)
6b387b70 157{
59a32a46
CS
158 static const int timeout = 10000;
159 int i;
7f2f7e05 160
ddd9813e 161 /* Initiate upload of shadow RAM to DEBI control register */
d8515652 162 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
6b387b70 163
95bb7982
HS
164 /*
165 * Wait for completion of upload from shadow RAM to
166 * DEBI control register.
167 */
59a32a46
CS
168 for (i = 0; i < timeout; i++) {
169 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
170 break;
171 udelay(1);
172 }
173 if (i == timeout)
cefe9336
HS
174 dev_err(dev->class_dev,
175 "Timeout while uploading to DEBI control register\n");
6b387b70 176
be008602 177 /* Wait until DEBI transfer is done */
59a32a46 178 for (i = 0; i < timeout; i++) {
de9cd5ca 179 if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
59a32a46
CS
180 break;
181 udelay(1);
182 }
183 if (i == timeout)
cefe9336 184 dev_err(dev->class_dev, "DEBI transfer timeout\n");
6b387b70
HS
185}
186
8ee52611
IA
187/*
188 * Read a value from a gate array register.
189 */
0bc45380 190static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
6b387b70 191{
25f8fd5e 192 /* Set up DEBI control register value in shadow RAM */
de9cd5ca 193 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
6b387b70
HS
194
195 /* Execute the DEBI transfer. */
31de1948 196 s626_debi_transfer(dev);
6b387b70 197
de9cd5ca 198 return readl(dev->mmio + S626_P_DEBIAD);
6b387b70
HS
199}
200
8ee52611
IA
201/*
202 * Write a value to a gate array register.
203 */
0bc45380
SR
204static void s626_debi_write(struct comedi_device *dev, u16 addr,
205 u16 wdata)
6b387b70 206{
25f8fd5e 207 /* Set up DEBI control register value in shadow RAM */
de9cd5ca
HS
208 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
209 writel(wdata, dev->mmio + S626_P_DEBIAD);
6b387b70
HS
210
211 /* Execute the DEBI transfer. */
31de1948 212 s626_debi_transfer(dev);
6b387b70
HS
213}
214
8ee52611
IA
215/*
216 * Replace the specified bits in a gate array register. Imports: mask
6b387b70
HS
217 * specifies bits that are to be preserved, wdata is new value to be
218 * or'd with the masked original.
219 */
31de1948
IA
220static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
221 unsigned int mask, unsigned int wdata)
6b387b70 222{
be008602 223 unsigned int val;
6b387b70 224
12f4e2f2 225 addr &= 0xffff;
de9cd5ca 226 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
31de1948 227 s626_debi_transfer(dev);
6b387b70 228
de9cd5ca
HS
229 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
230 val = readl(dev->mmio + S626_P_DEBIAD);
be008602
HS
231 val &= mask;
232 val |= wdata;
de9cd5ca 233 writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
31de1948 234 s626_debi_transfer(dev);
6b387b70
HS
235}
236
982e3d11
HS
237/* ************** EEPROM ACCESS FUNCTIONS ************** */
238
571845c6 239static int s626_i2c_handshake_eoc(struct comedi_device *dev,
6c7d2c8b
HS
240 struct comedi_subdevice *s,
241 struct comedi_insn *insn,
242 unsigned long context)
571845c6
CS
243{
244 bool status;
245
246 status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
247 if (status)
248 return 0;
249 return -EBUSY;
250}
251
b13db6bf 252static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
982e3d11 253{
be008602 254 unsigned int ctrl;
571845c6 255 int ret;
7f2f7e05 256
25f8fd5e 257 /* Write I2C command to I2C Transfer Control shadow register */
de9cd5ca 258 writel(val, dev->mmio + S626_P_I2CCTRL);
982e3d11 259
ddd9813e
HS
260 /*
261 * Upload I2C shadow registers into working registers and
262 * wait for upload confirmation.
263 */
d8515652 264 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
265 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
266 if (ret)
267 return ret;
982e3d11 268
be008602
HS
269 /* Wait until I2C bus transfer is finished or an error occurs */
270 do {
de9cd5ca 271 ctrl = readl(dev->mmio + S626_P_I2CCTRL);
d8515652 272 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
982e3d11 273
be008602 274 /* Return non-zero if I2C error occurred */
d8515652 275 return ctrl & S626_I2C_ERR;
982e3d11
HS
276}
277
d9f9600b
SR
278/* Read u8 from EEPROM. */
279static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
982e3d11 280{
7f2f7e05 281 struct s626_private *devpriv = dev->private;
982e3d11 282
8ee52611
IA
283 /*
284 * Send EEPROM target address:
285 * Byte2 = I2C command: write to I2C EEPROM device.
286 * Byte1 = EEPROM internal target address.
287 * Byte0 = Not sent.
288 */
d8515652
IA
289 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
290 devpriv->i2c_adrs) |
291 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
292 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 293 /* Abort function and declare error if handshake failed. */
982e3d11 294 return 0;
982e3d11 295
8ee52611
IA
296 /*
297 * Execute EEPROM read:
298 * Byte2 = I2C command: read from I2C EEPROM device.
299 * Byte1 receives uint8_t from EEPROM.
300 * Byte0 = Not sent.
301 */
d8515652 302 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
6c7d2c8b 303 (devpriv->i2c_adrs | 1)) |
d8515652
IA
304 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
305 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 306 /* Abort function and declare error if handshake failed. */
982e3d11 307 return 0;
be008602 308
de9cd5ca 309 return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
982e3d11
HS
310}
311
95414729
HS
312/* *********** DAC FUNCTIONS *********** */
313
8ee52611 314/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
d9f9600b 315static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
95414729 316
8ee52611 317/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
d9f9600b 318static const u8 s626_trimadrs[] = {
8ee52611
IA
319 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
320};
95414729 321
59a32a46
CS
322enum {
323 s626_send_dac_wait_not_mc1_a2out,
324 s626_send_dac_wait_ssr_af2_out,
325 s626_send_dac_wait_fb_buffer2_msb_00,
326 s626_send_dac_wait_fb_buffer2_msb_ff
327};
328
329static int s626_send_dac_eoc(struct comedi_device *dev,
330 struct comedi_subdevice *s,
331 struct comedi_insn *insn,
332 unsigned long context)
333{
59a32a46
CS
334 unsigned int status;
335
336 switch (context) {
337 case s626_send_dac_wait_not_mc1_a2out:
de9cd5ca 338 status = readl(dev->mmio + S626_P_MC1);
59a32a46
CS
339 if (!(status & S626_MC1_A2OUT))
340 return 0;
341 break;
342 case s626_send_dac_wait_ssr_af2_out:
de9cd5ca 343 status = readl(dev->mmio + S626_P_SSR);
59a32a46
CS
344 if (status & S626_SSR_AF2_OUT)
345 return 0;
346 break;
347 case s626_send_dac_wait_fb_buffer2_msb_00:
de9cd5ca 348 status = readl(dev->mmio + S626_P_FB_BUFFER2);
59a32a46
CS
349 if (!(status & 0xff000000))
350 return 0;
351 break;
352 case s626_send_dac_wait_fb_buffer2_msb_ff:
de9cd5ca 353 status = readl(dev->mmio + S626_P_FB_BUFFER2);
59a32a46
CS
354 if (status & 0xff000000)
355 return 0;
356 break;
357 default:
358 return -EINVAL;
359 }
360 return -EBUSY;
361}
362
8ee52611
IA
363/*
364 * Private helper function: Transmit serial data to DAC via Audio
95414729 365 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
07a36d66 366 * dacpol contains valid target image.
95414729 367 */
b13db6bf 368static int s626_send_dac(struct comedi_device *dev, u32 val)
95414729 369{
7f2f7e05 370 struct s626_private *devpriv = dev->private;
59a32a46 371 int ret;
95414729
HS
372
373 /* START THE SERIAL CLOCK RUNNING ------------- */
374
8ee52611
IA
375 /*
376 * Assert DAC polarity control and enable gating of DAC serial clock
95414729
HS
377 * and audio bit stream signals. At this point in time we must be
378 * assured of being in time slot 0. If we are not in slot 0, the
379 * serial clock and audio stream signals will be disabled; this is
31de1948
IA
380 * because the following s626_debi_write statement (which enables
381 * signals to be passed through the gate array) would execute before
382 * the trailing edge of WS1/WS3 (which turns off the signals), thus
95414729
HS
383 * causing the signals to be inactive during the DAC write.
384 */
d8515652 385 s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
95414729
HS
386
387 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
388
389 /* Copy DAC setpoint value to DAC's output DMA buffer. */
de9cd5ca 390 /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
07a36d66 391 *devpriv->dac_wbuf = val;
95414729 392
ddd9813e
HS
393 /*
394 * Enable the output DMA transfer. This will cause the DMAC to copy
395 * the DAC's data value to A2's output FIFO. The DMA transfer will
95414729
HS
396 * then immediately terminate because the protection address is
397 * reached upon transfer of the first DWORD value.
398 */
d8515652 399 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
95414729 400
8ee52611 401 /* While the DMA transfer is executing ... */
95414729 402
25f8fd5e
HS
403 /*
404 * Reset Audio2 output FIFO's underflow flag (along with any
405 * other FIFO underflow/overflow flags). When set, this flag
406 * will indicate that we have emerged from slot 0.
95414729 407 */
de9cd5ca 408 writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
95414729 409
8ee52611
IA
410 /*
411 * Wait for the DMA transfer to finish so that there will be data
95414729
HS
412 * available in the FIFO when time slot 1 tries to transfer a DWORD
413 * from the FIFO to the output buffer register. We test for DMA
414 * Done by polling the DMAC enable flag; this flag is automatically
415 * cleared when the transfer has finished.
416 */
59a32a46
CS
417 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
418 s626_send_dac_wait_not_mc1_a2out);
a7aa94ce 419 if (ret) {
cefe9336 420 dev_err(dev->class_dev, "DMA transfer timeout\n");
a7aa94ce
CS
421 return ret;
422 }
95414729
HS
423
424 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
425
8ee52611
IA
426 /*
427 * FIFO data is now available, so we enable execution of time slots
95414729
HS
428 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
429 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
430 * detection.
431 */
d8515652 432 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
de9cd5ca 433 dev->mmio + S626_VECTPORT(0));
95414729 434
8ee52611
IA
435 /*
436 * Wait for slot 1 to execute to ensure that the Packet will be
95414729
HS
437 * transmitted. This is detected by polling the Audio2 output FIFO
438 * underflow flag, which will be set when slot 1 execution has
439 * finished transferring the DAC's data DWORD from the output FIFO
440 * to the output buffer register.
441 */
59a32a46
CS
442 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
443 s626_send_dac_wait_ssr_af2_out);
a7aa94ce 444 if (ret) {
cefe9336
HS
445 dev_err(dev->class_dev,
446 "TSL timeout waiting for slot 1 to execute\n");
a7aa94ce
CS
447 return ret;
448 }
95414729 449
8ee52611
IA
450 /*
451 * Set up to trap execution at slot 0 when the TSL sequencer cycles
95414729
HS
452 * back to slot 0 after executing the EOS in slot 5. Also,
453 * simultaneously shift out and in the 0x00 that is ALWAYS the value
454 * stored in the last byte to be shifted out of the FIFO's DWORD
455 * buffer register.
456 */
d8515652 457 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
de9cd5ca 458 dev->mmio + S626_VECTPORT(0));
95414729
HS
459
460 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
461
8ee52611
IA
462 /*
463 * Wait for the TSL to finish executing all time slots before
95414729
HS
464 * exiting this function. We must do this so that the next DAC
465 * write doesn't start, thereby enabling clock/chip select signals:
466 *
467 * 1. Before the TSL sequence cycles back to slot 0, which disables
468 * the clock/cs signal gating and traps slot // list execution.
469 * we have not yet finished slot 5 then the clock/cs signals are
470 * still gated and we have not finished transmitting the stream.
471 *
472 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
473 * this case, the slot sequence is currently repeating, but with
474 * clock/cs signals disabled. We must wait for slot 0 to trap
475 * execution before setting up the next DAC setpoint DMA transfer
476 * and enabling the clock/cs signals. To detect the end of slot 5,
477 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
478 * the TSL has not yet finished executing slot 5 ...
479 */
de9cd5ca 480 if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
8ee52611
IA
481 /*
482 * The trap was set on time and we are still executing somewhere
95414729
HS
483 * in slots 2-5, so we now wait for slot 0 to execute and trap
484 * TSL execution. This is detected when FB_BUFFER2 MSB changes
485 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
486 * out/in on SD2 the 0x00 that is always referenced by slot 5.
487 */
59a32a46
CS
488 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
489 s626_send_dac_wait_fb_buffer2_msb_00);
a7aa94ce 490 if (ret) {
cefe9336
HS
491 dev_err(dev->class_dev,
492 "TSL timeout waiting for slot 0 to execute\n");
a7aa94ce
CS
493 return ret;
494 }
95414729 495 }
8ee52611
IA
496 /*
497 * Either (1) we were too late setting the slot 0 trap; the TSL
95414729
HS
498 * sequencer restarted slot 0 before we could set the EOS trap flag,
499 * or (2) we were not late and execution is now trapped at slot 0.
500 * In either case, we must now change slot 0 so that it will store
501 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
502 * In order to do this, we reprogram slot 0 so that it will shift in
503 * SD3, which is driven only by a pull-up resistor.
504 */
d8515652 505 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
de9cd5ca 506 dev->mmio + S626_VECTPORT(0));
95414729 507
8ee52611
IA
508 /*
509 * Wait for slot 0 to execute, at which time the TSL is setup for
95414729
HS
510 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
511 * from 0x00 to 0xFF.
512 */
59a32a46
CS
513 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
514 s626_send_dac_wait_fb_buffer2_msb_ff);
a7aa94ce 515 if (ret) {
cefe9336
HS
516 dev_err(dev->class_dev,
517 "TSL timeout waiting for slot 0 to execute\n");
a7aa94ce
CS
518 return ret;
519 }
520 return 0;
95414729
HS
521}
522
8ee52611
IA
523/*
524 * Private helper function: Write setpoint to an application DAC channel.
525 */
6c7d2c8b 526static int s626_set_dac(struct comedi_device *dev,
0bc45380 527 u16 chan, int16_t dacdata)
95414729 528{
7f2f7e05 529 struct s626_private *devpriv = dev->private;
0bc45380 530 u16 signmask;
b13db6bf
SR
531 u32 ws_image;
532 u32 val;
95414729 533
8ee52611
IA
534 /*
535 * Adjust DAC data polarity and set up Polarity Control Register image.
536 */
95414729
HS
537 signmask = 1 << chan;
538 if (dacdata < 0) {
539 dacdata = -dacdata;
07a36d66 540 devpriv->dacpol |= signmask;
8ee52611 541 } else {
07a36d66 542 devpriv->dacpol &= ~signmask;
8ee52611 543 }
95414729 544
8ee52611 545 /* Limit DAC setpoint value to valid range. */
0bc45380 546 if ((u16)dacdata > 0x1FFF)
95414729
HS
547 dacdata = 0x1FFF;
548
8ee52611
IA
549 /*
550 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
95414729
HS
551 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
552 * data to a non-existent TrimDac channel just to keep the clock
553 * running after sending data to the target DAC. This is necessary
554 * to eliminate the clock glitch that would otherwise occur at the
555 * end of the target DAC's serial data stream. When the sequence
556 * restarts at V0 (after executing V5), the gate array automatically
557 * disables gating for the DAC clock and all DAC chip selects.
558 */
559
25f8fd5e 560 /* Choose DAC chip select to be asserted */
d8515652 561 ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
25f8fd5e 562 /* Slot 2: Transmit high data byte to target DAC */
d8515652 563 writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
de9cd5ca 564 dev->mmio + S626_VECTPORT(2));
25f8fd5e 565 /* Slot 3: Transmit low data byte to target DAC */
d8515652 566 writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
de9cd5ca 567 dev->mmio + S626_VECTPORT(3));
95414729 568 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
d8515652 569 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
de9cd5ca 570 dev->mmio + S626_VECTPORT(4));
25f8fd5e 571 /* Slot 5: running after writing target DAC's low data byte */
d8515652 572 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
de9cd5ca 573 dev->mmio + S626_VECTPORT(5));
95414729 574
8ee52611
IA
575 /*
576 * Construct and transmit target DAC's serial packet:
577 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
95414729
HS
578 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
579 * to a non-existent TrimDac channel) that serves to keep the clock
580 * running after the packet has been sent to the target DAC.
581 */
8ee52611
IA
582 val = 0x0F000000; /* Continue clock after target DAC data
583 * (write to non-existent trimdac). */
584 val |= 0x00004000; /* Address the two main dual-DAC devices
585 * (TSL's chip select enables target device). */
b13db6bf 586 val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
8ee52611 587 * within the device. */
b13db6bf 588 val |= (u32)dacdata; /* Include DAC setpoint data. */
a7aa94ce 589 return s626_send_dac(dev, val);
95414729
HS
590}
591
6c7d2c8b 592static int s626_write_trim_dac(struct comedi_device *dev,
d9f9600b 593 u8 logical_chan, u8 dac_data)
95414729 594{
7f2f7e05 595 struct s626_private *devpriv = dev->private;
b13db6bf 596 u32 chan;
95414729 597
8ee52611
IA
598 /*
599 * Save the new setpoint in case the application needs to read it back
600 * later.
601 */
a2be0626 602 devpriv->trim_setpoint[logical_chan] = dac_data;
95414729 603
8ee52611 604 /* Map logical channel number to physical channel number. */
31de1948 605 chan = s626_trimchan[logical_chan];
95414729 606
8ee52611
IA
607 /*
608 * Set up TSL2 records for TrimDac write operation. All slots shift
95414729
HS
609 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
610 * can be detected.
611 */
612
25f8fd5e 613 /* Slot 2: Send high uint8_t to target TrimDac */
d8515652 614 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
de9cd5ca 615 dev->mmio + S626_VECTPORT(2));
25f8fd5e 616 /* Slot 3: Send low uint8_t to target TrimDac */
d8515652 617 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
de9cd5ca 618 dev->mmio + S626_VECTPORT(3));
25f8fd5e 619 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
d8515652 620 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
de9cd5ca 621 dev->mmio + S626_VECTPORT(4));
25f8fd5e 622 /* Slot 5: Send NOP low uint8_t to DAC0 */
d8515652 623 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
de9cd5ca 624 dev->mmio + S626_VECTPORT(5));
95414729 625
8ee52611
IA
626 /*
627 * Construct and transmit target DAC's serial packet:
628 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
95414729
HS
629 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
630 * WORD value (that writes a channel 0 NOP command to a non-existent
631 * main DAC channel) that serves to keep the clock running after the
632 * packet has been sent to the target DAC.
633 */
634
8ee52611
IA
635 /*
636 * Address the DAC channel within the trimdac device.
637 * Include DAC setpoint data.
638 */
a7aa94ce 639 return s626_send_dac(dev, (chan << 8) | dac_data);
95414729
HS
640}
641
a7aa94ce 642static int s626_load_trim_dacs(struct comedi_device *dev)
95414729 643{
d9f9600b 644 u8 i;
a7aa94ce 645 int ret;
95414729 646
8ee52611 647 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
a7aa94ce
CS
648 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
649 ret = s626_write_trim_dac(dev, i,
6c7d2c8b 650 s626_i2c_read(dev, s626_trimadrs[i]));
a7aa94ce
CS
651 if (ret)
652 return ret;
653 }
654 return 0;
95414729
HS
655}
656
e3eb08d0 657/* ****** COUNTER FUNCTIONS ******* */
8ee52611
IA
658
659/*
660 * All counter functions address a specific counter by means of the
e3eb08d0
HS
661 * "Counter" argument, which is a logical counter number. The Counter
662 * argument may have any of the following legal values: 0=0A, 1=1A,
663 * 2=2A, 3=0B, 4=1B, 5=2B.
664 */
665
8ee52611
IA
666/*
667 * Return/set a counter pair's latch trigger source. 0: On read
e3eb08d0
HS
668 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
669 * latches B.
670 */
31de1948 671static void s626_set_latch_source(struct comedi_device *dev,
0bc45380 672 unsigned int chan, u16 value)
e3eb08d0 673{
0c9a057c 674 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 675 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
0830ada5 676 S626_SET_CRB_LATCHSRC(value));
e3eb08d0
HS
677}
678
8ee52611
IA
679/*
680 * Write value into counter preload register.
681 */
31de1948 682static void s626_preload(struct comedi_device *dev,
b13db6bf 683 unsigned int chan, u32 value)
e3eb08d0 684{
0c9a057c
HS
685 s626_debi_write(dev, S626_LP_CNTR(chan), value);
686 s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
e3eb08d0
HS
687}
688
010be96f
IA
689/* ****** PRIVATE COUNTER FUNCTIONS ****** */
690
691/*
692 * Reset a counter's index and overflow event capture flags.
693 */
26499b8b 694static void s626_reset_cap_flags(struct comedi_device *dev,
0c9a057c 695 unsigned int chan)
010be96f 696{
0bc45380 697 u16 set;
010be96f 698
26499b8b 699 set = S626_SET_CRB_INTRESETCMD(1);
0c9a057c 700 if (chan < 3)
26499b8b
HS
701 set |= S626_SET_CRB_INTRESET_A(1);
702 else
703 set |= S626_SET_CRB_INTRESET_B(1);
704
0c9a057c 705 s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
010be96f
IA
706}
707
17afeac2
IA
708/*
709 * Set the operating mode for the specified counter. The setup
710 * parameter is treated as a COUNTER_SETUP data type. The following
711 * parameters are programmable (all other parms are ignored): ClkMult,
712 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
713 */
31de1948 714static void s626_set_mode_a(struct comedi_device *dev,
0bc45380
SR
715 unsigned int chan, u16 setup,
716 u16 disable_int_src)
17afeac2
IA
717{
718 struct s626_private *devpriv = dev->private;
0bc45380
SR
719 u16 cra;
720 u16 crb;
f7ede00d 721 unsigned int cntsrc, clkmult, clkpol;
17afeac2
IA
722
723 /* Initialize CRA and CRB images. */
724 /* Preload trigger is passed through. */
0830ada5 725 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
2cea19fa
IA
726 /* IndexSrc is passed through. */
727 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
728
729 /* Reset any pending CounterA event captures. */
0830ada5 730 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
17afeac2 731 /* Clock enable is passed through. */
0830ada5 732 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
17afeac2
IA
733
734 /* Force IntSrc to Disabled if disable_int_src is asserted. */
735 if (!disable_int_src)
0830ada5 736 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
17afeac2
IA
737
738 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
739 clkpol = S626_GET_STD_CLKPOL(setup);
740 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a 741 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
d8515652 742 /* Force to Timer mode (Extender valid only for B counters). */
622ec01a
IA
743 /* Fall through to case S626_ENCMODE_TIMER: */
744 case S626_ENCMODE_TIMER: /* Timer Mode: */
745 /* CntSrcA<1> selects system clock */
0830ada5 746 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 747 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
0830ada5 748 cntsrc |= clkpol;
17afeac2 749 /* ClkPolA behaves as always-on clock enable. */
0830ada5 750 clkpol = 1;
17afeac2 751 /* ClkMult must be 1x. */
7a1046e5 752 clkmult = S626_CLKMULT_1X;
17afeac2
IA
753 break;
754 default: /* Counter Mode: */
755 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 756 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 757 /* Clock polarity is passed through. */
17afeac2 758 /* Force multiplier to x1 if not legal, else pass through. */
0830ada5 759 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
760 if (clkmult == S626_CLKMULT_SPECIAL)
761 clkmult = S626_CLKMULT_1X;
17afeac2
IA
762 break;
763 }
0830ada5
IA
764 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
765 S626_SET_CRA_CLKMULT_A(clkmult);
17afeac2
IA
766
767 /*
768 * Force positive index polarity if IndxSrc is software-driven only,
769 * otherwise pass it through.
770 */
2cea19fa 771 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 772 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
773
774 /*
775 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
776 * enable mask to indicate the counter interrupt is disabled.
777 */
778 if (disable_int_src)
0c9a057c
HS
779 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
780 S626_INDXMASK(chan));
17afeac2
IA
781
782 /*
783 * While retaining CounterB and LatchSrc configurations, program the
784 * new counter operating mode.
785 */
0c9a057c 786 s626_debi_replace(dev, S626_LP_CRA(chan),
622ec01a 787 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
0c9a057c 788 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 789 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
17afeac2
IA
790}
791
31de1948 792static void s626_set_mode_b(struct comedi_device *dev,
0bc45380
SR
793 unsigned int chan, u16 setup,
794 u16 disable_int_src)
17afeac2
IA
795{
796 struct s626_private *devpriv = dev->private;
0bc45380
SR
797 u16 cra;
798 u16 crb;
f7ede00d 799 unsigned int cntsrc, clkmult, clkpol;
17afeac2
IA
800
801 /* Initialize CRA and CRB images. */
2cea19fa
IA
802 /* IndexSrc is passed through. */
803 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
804
805 /* Reset event captures and disable interrupts. */
0830ada5 806 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
17afeac2 807 /* Clock enable is passed through. */
0830ada5 808 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
17afeac2 809 /* Preload trigger source is passed through. */
0830ada5 810 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
17afeac2
IA
811
812 /* Force IntSrc to Disabled if disable_int_src is asserted. */
813 if (!disable_int_src)
0830ada5 814 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
17afeac2
IA
815
816 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
817 clkpol = S626_GET_STD_CLKPOL(setup);
818 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a
IA
819 case S626_ENCMODE_TIMER: /* Timer Mode: */
820 /* CntSrcB<1> selects system clock */
0830ada5 821 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 822 /* with direction (CntSrcB<0>) obtained from ClkPol. */
0830ada5 823 cntsrc |= clkpol;
17afeac2 824 /* ClkPolB behaves as always-on clock enable. */
0830ada5 825 clkpol = 1;
17afeac2 826 /* ClkMultB must be 1x. */
7a1046e5 827 clkmult = S626_CLKMULT_1X;
17afeac2 828 break;
622ec01a
IA
829 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
830 /* CntSrcB source is OverflowA (same as "timer") */
0830ada5 831 cntsrc = S626_CNTSRC_SYSCLK;
17afeac2 832 /* with direction obtained from ClkPol. */
0830ada5 833 cntsrc |= clkpol;
17afeac2 834 /* ClkPolB controls IndexB -- always set to active. */
0830ada5 835 clkpol = 1;
17afeac2 836 /* ClkMultB selects OverflowA as the clock source. */
7a1046e5 837 clkmult = S626_CLKMULT_SPECIAL;
17afeac2
IA
838 break;
839 default: /* Counter Mode: */
840 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 841 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 842 /* ClkPol is passed through. */
17afeac2 843 /* Force ClkMult to x1 if not legal, otherwise pass through. */
0830ada5 844 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
845 if (clkmult == S626_CLKMULT_SPECIAL)
846 clkmult = S626_CLKMULT_1X;
17afeac2
IA
847 break;
848 }
0830ada5
IA
849 cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
850 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
17afeac2
IA
851
852 /*
853 * Force positive index polarity if IndxSrc is software-driven only,
854 * otherwise pass it through.
855 */
2cea19fa 856 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 857 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
858
859 /*
860 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
861 * enable mask to indicate the counter interrupt is disabled.
862 */
863 if (disable_int_src)
0c9a057c
HS
864 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
865 S626_INDXMASK(chan));
17afeac2
IA
866
867 /*
868 * While retaining CounterA and LatchSrc configurations, program the
869 * new counter operating mode.
870 */
0c9a057c 871 s626_debi_replace(dev, S626_LP_CRA(chan),
622ec01a 872 ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
0c9a057c 873 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 874 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
17afeac2
IA
875}
876
b35d6a38 877static void s626_set_mode(struct comedi_device *dev,
0c9a057c 878 unsigned int chan,
0bc45380 879 u16 setup, u16 disable_int_src)
b35d6a38 880{
0c9a057c
HS
881 if (chan < 3)
882 s626_set_mode_a(dev, chan, setup, disable_int_src);
b35d6a38 883 else
0c9a057c 884 s626_set_mode_b(dev, chan, setup, disable_int_src);
b35d6a38
HS
885}
886
17afeac2
IA
887/*
888 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
889 */
c718f4a1 890static void s626_set_enable(struct comedi_device *dev,
0bc45380 891 unsigned int chan, u16 enab)
17afeac2 892{
c718f4a1
HS
893 unsigned int mask = S626_CRBMSK_INTCTRL;
894 unsigned int set;
17afeac2 895
0c9a057c 896 if (chan < 3) {
c718f4a1
HS
897 mask |= S626_CRBMSK_CLKENAB_A;
898 set = S626_SET_CRB_CLKENAB_A(enab);
899 } else {
900 mask |= S626_CRBMSK_CLKENAB_B;
901 set = S626_SET_CRB_CLKENAB_B(enab);
902 }
0c9a057c 903 s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
17afeac2
IA
904}
905
17afeac2
IA
906/*
907 * Return/set the event that will trigger transfer of the preload
908 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
909 * 2=OverflowA (B counters only), 3=disabled.
910 */
7f03b749 911static void s626_set_load_trig(struct comedi_device *dev,
0bc45380 912 unsigned int chan, u16 trig)
17afeac2 913{
0bc45380
SR
914 u16 reg;
915 u16 mask;
916 u16 set;
17afeac2 917
0c9a057c
HS
918 if (chan < 3) {
919 reg = S626_LP_CRA(chan);
7f03b749
HS
920 mask = S626_CRAMSK_LOADSRC_A;
921 set = S626_SET_CRA_LOADSRC_A(trig);
922 } else {
0c9a057c 923 reg = S626_LP_CRB(chan);
7f03b749
HS
924 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
925 set = S626_SET_CRB_LOADSRC_B(trig);
926 }
927 s626_debi_replace(dev, reg, ~mask, set);
17afeac2
IA
928}
929
bc284a2a
IA
930/*
931 * Return/set counter interrupt source and clear any captured
932 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
933 * 2=IndexOnly, 3=IndexAndOverflow.
934 */
253e2ee4 935static void s626_set_int_src(struct comedi_device *dev,
0bc45380 936 unsigned int chan, u16 int_source)
bc284a2a
IA
937{
938 struct s626_private *devpriv = dev->private;
0bc45380
SR
939 u16 cra_reg = S626_LP_CRA(chan);
940 u16 crb_reg = S626_LP_CRB(chan);
bc284a2a 941
0c9a057c 942 if (chan < 3) {
253e2ee4
HS
943 /* Reset any pending counter overflow or index captures */
944 s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
945 S626_SET_CRB_INTRESETCMD(1) |
946 S626_SET_CRB_INTRESET_A(1));
947
948 /* Program counter interrupt source */
949 s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
950 S626_SET_CRA_INTSRC_A(int_source));
951 } else {
0bc45380 952 u16 crb;
bc284a2a 953
253e2ee4
HS
954 /* Cache writeable CRB register image */
955 crb = s626_debi_read(dev, crb_reg);
956 crb &= ~S626_CRBMSK_INTCTRL;
bc284a2a 957
253e2ee4
HS
958 /* Reset any pending counter overflow or index captures */
959 s626_debi_write(dev, crb_reg,
960 crb | S626_SET_CRB_INTRESETCMD(1) |
961 S626_SET_CRB_INTRESET_B(1));
bc284a2a 962
253e2ee4
HS
963 /* Program counter interrupt source */
964 s626_debi_write(dev, crb_reg,
965 (crb & ~S626_CRBMSK_INTSRC_B) |
966 S626_SET_CRB_INTSRC_B(int_source));
967 }
bc284a2a
IA
968
969 /* Update MISC2 interrupt enable mask. */
0c9a057c
HS
970 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
971 S626_INDXMASK(chan));
f76d02f8
HS
972 switch (int_source) {
973 case 0:
974 default:
975 break;
976 case 1:
0c9a057c 977 devpriv->counter_int_enabs |= S626_OVERMASK(chan);
f76d02f8
HS
978 break;
979 case 2:
0c9a057c 980 devpriv->counter_int_enabs |= S626_INDXMASK(chan);
f76d02f8
HS
981 break;
982 case 3:
0c9a057c
HS
983 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
984 S626_INDXMASK(chan));
f76d02f8
HS
985 break;
986 }
bc284a2a
IA
987}
988
bc284a2a
IA
989/*
990 * Generate an index pulse.
991 */
92249e1f 992static void s626_pulse_index(struct comedi_device *dev,
0c9a057c 993 unsigned int chan)
bc284a2a 994{
0c9a057c 995 if (chan < 3) {
0bc45380 996 u16 cra;
bc284a2a 997
0c9a057c 998 cra = s626_debi_read(dev, S626_LP_CRA(chan));
bc284a2a 999
92249e1f 1000 /* Pulse index */
0c9a057c 1001 s626_debi_write(dev, S626_LP_CRA(chan),
92249e1f 1002 (cra ^ S626_CRAMSK_INDXPOL_A));
0c9a057c 1003 s626_debi_write(dev, S626_LP_CRA(chan), cra);
92249e1f 1004 } else {
0bc45380 1005 u16 crb;
bc284a2a 1006
0c9a057c 1007 crb = s626_debi_read(dev, S626_LP_CRB(chan));
92249e1f
HS
1008 crb &= ~S626_CRBMSK_INTCTRL;
1009
1010 /* Pulse index */
0c9a057c 1011 s626_debi_write(dev, S626_LP_CRB(chan),
92249e1f 1012 (crb ^ S626_CRBMSK_INDXPOL_B));
0c9a057c 1013 s626_debi_write(dev, S626_LP_CRB(chan), crb);
92249e1f 1014 }
bc284a2a
IA
1015}
1016
5fd4b711 1017static unsigned int s626_ai_reg_to_uint(unsigned int data)
11e865c1 1018{
5fd4b711 1019 return ((data >> 18) & 0x3fff) ^ 0x2000;
020c44f3 1020}
8231eb56 1021
6baffbc2
HS
1022static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1023{
100b4edc
HS
1024 unsigned int group = chan / 16;
1025 unsigned int mask = 1 << (chan - (16 * group));
6baffbc2
HS
1026 unsigned int status;
1027
6baffbc2 1028 /* set channel to capture positive edge */
d8515652
IA
1029 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1030 s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
6baffbc2
HS
1031
1032 /* enable interrupt on selected channel */
d8515652
IA
1033 status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1034 s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
6baffbc2
HS
1035
1036 /* enable edge capture write command */
d8515652 1037 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
6baffbc2
HS
1038
1039 /* enable edge capture on selected channel */
d8515652
IA
1040 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1041 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
6baffbc2
HS
1042
1043 return 0;
1044}
1045
1046static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1047 unsigned int mask)
1048{
6baffbc2 1049 /* disable edge capture write command */
d8515652 1050 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2
HS
1051
1052 /* enable edge capture on selected channel */
d8515652 1053 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
6baffbc2
HS
1054
1055 return 0;
1056}
1057
1058static int s626_dio_clear_irq(struct comedi_device *dev)
1059{
1060 unsigned int group;
1061
1062 /* disable edge capture write command */
d8515652 1063 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2 1064
100b4edc
HS
1065 /* clear all dio pending events and interrupt */
1066 for (group = 0; group < S626_DIO_BANKS; group++)
d8515652 1067 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
6baffbc2
HS
1068
1069 return 0;
1070}
1071
31de1948 1072static void s626_handle_dio_interrupt(struct comedi_device *dev,
0bc45380 1073 u16 irqbit, u8 group)
65a17c29
HS
1074{
1075 struct s626_private *devpriv = dev->private;
1076 struct comedi_subdevice *s = dev->read_subdev;
1077 struct comedi_cmd *cmd = &s->async->cmd;
1078
1079 s626_dio_reset_irq(dev, group, irqbit);
1080
1081 if (devpriv->ai_cmd_running) {
1082 /* check if interrupt is an ai acquisition start trigger */
1083 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1084 cmd->start_src == TRIG_EXT) {
1085 /* Start executing the RPS program */
d8515652 1086 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
65a17c29
HS
1087
1088 if (cmd->scan_begin_src == TRIG_EXT)
1089 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1090 }
1091 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1092 cmd->scan_begin_src == TRIG_EXT) {
ddd9813e 1093 /* Trigger ADC scan loop start */
d8515652 1094 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1095
1096 if (cmd->convert_src == TRIG_EXT) {
1097 devpriv->ai_convert_count = cmd->chanlist_len;
1098
1099 s626_dio_set_irq(dev, cmd->convert_arg);
1100 }
1101
1102 if (cmd->convert_src == TRIG_TIMER) {
65a17c29 1103 devpriv->ai_convert_count = cmd->chanlist_len;
0c9a057c 1104 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
65a17c29
HS
1105 }
1106 }
1107 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1108 cmd->convert_src == TRIG_EXT) {
ddd9813e 1109 /* Trigger ADC scan loop start */
d8515652 1110 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1111
1112 devpriv->ai_convert_count--;
1113 if (devpriv->ai_convert_count > 0)
1114 s626_dio_set_irq(dev, cmd->convert_arg);
1115 }
1116 }
1117}
1118
31de1948 1119static void s626_check_dio_interrupts(struct comedi_device *dev)
65a17c29 1120{
0bc45380 1121 u16 irqbit;
d9f9600b 1122 u8 group;
65a17c29
HS
1123
1124 for (group = 0; group < S626_DIO_BANKS; group++) {
65a17c29 1125 /* read interrupt type */
d8515652 1126 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
65a17c29
HS
1127
1128 /* check if interrupt is generated from dio channels */
1129 if (irqbit) {
31de1948 1130 s626_handle_dio_interrupt(dev, irqbit, group);
65a17c29
HS
1131 return;
1132 }
1133 }
1134}
1135
31de1948 1136static void s626_check_counter_interrupts(struct comedi_device *dev)
0b9675d5
HS
1137{
1138 struct s626_private *devpriv = dev->private;
1139 struct comedi_subdevice *s = dev->read_subdev;
1140 struct comedi_async *async = s->async;
1141 struct comedi_cmd *cmd = &async->cmd;
0bc45380 1142 u16 irqbit;
0b9675d5
HS
1143
1144 /* read interrupt type */
d8515652 1145 irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
0b9675d5
HS
1146
1147 /* check interrupt on counters */
d8515652 1148 if (irqbit & S626_IRQ_COINT1A) {
0b9675d5 1149 /* clear interrupt capture flag */
0c9a057c 1150 s626_reset_cap_flags(dev, 0);
0b9675d5 1151 }
d8515652 1152 if (irqbit & S626_IRQ_COINT2A) {
0b9675d5 1153 /* clear interrupt capture flag */
0c9a057c 1154 s626_reset_cap_flags(dev, 1);
0b9675d5 1155 }
d8515652 1156 if (irqbit & S626_IRQ_COINT3A) {
0b9675d5 1157 /* clear interrupt capture flag */
0c9a057c 1158 s626_reset_cap_flags(dev, 2);
0b9675d5 1159 }
d8515652 1160 if (irqbit & S626_IRQ_COINT1B) {
0b9675d5 1161 /* clear interrupt capture flag */
0c9a057c 1162 s626_reset_cap_flags(dev, 3);
0b9675d5 1163 }
d8515652 1164 if (irqbit & S626_IRQ_COINT2B) {
0b9675d5 1165 /* clear interrupt capture flag */
0c9a057c 1166 s626_reset_cap_flags(dev, 4);
0b9675d5
HS
1167
1168 if (devpriv->ai_convert_count > 0) {
1169 devpriv->ai_convert_count--;
1170 if (devpriv->ai_convert_count == 0)
0c9a057c 1171 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
0b9675d5
HS
1172
1173 if (cmd->convert_src == TRIG_TIMER) {
ddd9813e 1174 /* Trigger ADC scan loop start */
d8515652
IA
1175 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1176 S626_P_MC2);
0b9675d5
HS
1177 }
1178 }
1179 }
d8515652 1180 if (irqbit & S626_IRQ_COINT3B) {
0b9675d5 1181 /* clear interrupt capture flag */
0c9a057c 1182 s626_reset_cap_flags(dev, 5);
0b9675d5
HS
1183
1184 if (cmd->scan_begin_src == TRIG_TIMER) {
ddd9813e 1185 /* Trigger ADC scan loop start */
d8515652 1186 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
0b9675d5
HS
1187 }
1188
1189 if (cmd->convert_src == TRIG_TIMER) {
0b9675d5 1190 devpriv->ai_convert_count = cmd->chanlist_len;
0c9a057c 1191 s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
0b9675d5
HS
1192 }
1193 }
1194}
1195
31de1948 1196static bool s626_handle_eos_interrupt(struct comedi_device *dev)
4c2d13e0
HS
1197{
1198 struct s626_private *devpriv = dev->private;
1199 struct comedi_subdevice *s = dev->read_subdev;
1200 struct comedi_async *async = s->async;
1201 struct comedi_cmd *cmd = &async->cmd;
1202 /*
1203 * Init ptr to DMA buffer that holds new ADC data. We skip the
1204 * first uint16_t in the buffer because it contains junk data
1205 * from the final ADC of the previous poll list scan.
1206 */
b13db6bf 1207 u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
4c2d13e0
HS
1208 int i;
1209
1210 /* get the data and hand it over to comedi */
1211 for (i = 0; i < cmd->chanlist_len; i++) {
5fd4b711 1212 unsigned short tempdata;
4c2d13e0
HS
1213
1214 /*
1215 * Convert ADC data to 16-bit integer values and copy
1216 * to application buffer.
1217 */
5fd4b711 1218 tempdata = s626_ai_reg_to_uint(*readaddr);
4c2d13e0
HS
1219 readaddr++;
1220
0e017a4b 1221 comedi_buf_write_samples(s, &tempdata, 1);
4c2d13e0
HS
1222 }
1223
aee15aea
HS
1224 if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1225 async->events |= COMEDI_CB_EOA;
4c2d13e0 1226
aee15aea
HS
1227 if (async->events & COMEDI_CB_CANCEL_MASK)
1228 devpriv->ai_cmd_running = 0;
4c2d13e0
HS
1229
1230 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1231 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1232
365dae93 1233 comedi_handle_events(dev, s);
4c2d13e0 1234
365dae93 1235 return !devpriv->ai_cmd_running;
4c2d13e0
HS
1236}
1237
020c44f3
HS
1238static irqreturn_t s626_irq_handler(int irq, void *d)
1239{
1240 struct comedi_device *dev = d;
020c44f3 1241 unsigned long flags;
b13db6bf 1242 u32 irqtype, irqstatus;
11e865c1 1243
a7401cdd 1244 if (!dev->attached)
020c44f3 1245 return IRQ_NONE;
8ee52611 1246 /* lock to avoid race with comedi_poll */
020c44f3 1247 spin_lock_irqsave(&dev->spinlock, flags);
11e865c1 1248
020c44f3 1249 /* save interrupt enable register state */
de9cd5ca 1250 irqstatus = readl(dev->mmio + S626_P_IER);
11e865c1 1251
020c44f3 1252 /* read interrupt type */
de9cd5ca 1253 irqtype = readl(dev->mmio + S626_P_ISR);
11e865c1 1254
020c44f3 1255 /* disable master interrupt */
de9cd5ca 1256 writel(0, dev->mmio + S626_P_IER);
11e865c1 1257
020c44f3 1258 /* clear interrupt */
de9cd5ca 1259 writel(irqtype, dev->mmio + S626_P_ISR);
11e865c1 1260
020c44f3 1261 switch (irqtype) {
d8515652 1262 case S626_IRQ_RPS1: /* end_of_scan occurs */
31de1948 1263 if (s626_handle_eos_interrupt(dev))
020c44f3 1264 irqstatus = 0;
020c44f3 1265 break;
d8515652 1266 case S626_IRQ_GPIO3: /* check dio and counter interrupt */
020c44f3 1267 /* s626_dio_clear_irq(dev); */
31de1948
IA
1268 s626_check_dio_interrupts(dev);
1269 s626_check_counter_interrupts(dev);
0b9675d5 1270 break;
020c44f3 1271 }
11e865c1 1272
020c44f3 1273 /* enable interrupt */
de9cd5ca 1274 writel(irqstatus, dev->mmio + S626_P_IER);
b6c77757 1275
020c44f3
HS
1276 spin_unlock_irqrestore(&dev->spinlock, flags);
1277 return IRQ_HANDLED;
1278}
b6c77757 1279
020c44f3 1280/*
8ee52611 1281 * This function builds the RPS program for hardware driven acquisition.
020c44f3 1282 */
d9f9600b 1283static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
020c44f3 1284{
7f2f7e05 1285 struct s626_private *devpriv = dev->private;
9c9ab3c1
HS
1286 struct comedi_subdevice *s = dev->read_subdev;
1287 struct comedi_cmd *cmd = &s->async->cmd;
b13db6bf
SR
1288 u32 *rps;
1289 u32 jmp_adrs;
0bc45380
SR
1290 u16 i;
1291 u16 n;
b13db6bf 1292 u32 local_ppl;
11e865c1 1293
c5cf4606 1294 /* Stop RPS program in case it is currently running */
d8515652 1295 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1296
8ee52611 1297 /* Set starting logical address to write RPS commands. */
b13db6bf 1298 rps = (u32 *)devpriv->rps_buf.logical_base;
11e865c1 1299
25f8fd5e 1300 /* Initialize RPS instruction pointer */
b13db6bf 1301 writel((u32)devpriv->rps_buf.physical_base,
de9cd5ca 1302 dev->mmio + S626_P_RPSADDR1);
11e865c1 1303
07a36d66 1304 /* Construct RPS program in rps_buf DMA buffer */
857ced45 1305 if (cmd->scan_begin_src != TRIG_FOLLOW) {
8ee52611 1306 /* Wait for Start trigger. */
d8515652
IA
1307 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1308 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1309 }
11e865c1 1310
8ee52611
IA
1311 /*
1312 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
020c44f3
HS
1313 * because the first RPS DEBI Write following a non-RPS DEBI write
1314 * seems to always fail. If we don't do this dummy write, the ADC
1315 * gain might not be set to the value required for the first slot in
1316 * the poll list; the ADC gain would instead remain unchanged from
1317 * the previously programmed value.
1318 */
020c44f3 1319 /* Write DEBI Write command and address to shadow RAM. */
d8515652
IA
1320 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1321 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1322 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1323 /* Write DEBI immediate data to shadow RAM: */
d8515652
IA
1324 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
1325 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1326 /* Reset "shadow RAM uploaded" flag. */
d8515652
IA
1327 /* Invoke shadow RAM upload. */
1328 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1329 /* Wait for shadow upload to finish. */
1330 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1331
8ee52611
IA
1332 /*
1333 * Digitize all slots in the poll list. This is implemented as a
020c44f3 1334 * for loop to limit the slot count to 16 in case the application
d8515652 1335 * forgot to set the S626_EOPL flag in the final slot.
020c44f3 1336 */
07a36d66
IA
1337 for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1338 devpriv->adc_items++) {
8ee52611
IA
1339 /*
1340 * Convert application's poll list item to private board class
020c44f3
HS
1341 * format. Each app poll list item is an uint8_t with form
1342 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1343 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
b6c77757 1344 */
d8515652
IA
1345 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1346 S626_GSEL_BIPOLAR10V);
8ee52611
IA
1347
1348 /* Switch ADC analog gain. */
1349 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1350 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1351 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
8ee52611 1352 /* Write DEBI immediate data to shadow RAM. */
d8515652 1353 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
f1f7efce 1354 *rps++ = local_ppl;
8ee52611 1355 /* Reset "shadow RAM uploaded" flag. */
d8515652 1356 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1357 /* Invoke shadow RAM upload. */
d8515652 1358 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1359 /* Wait for shadow upload to finish. */
d8515652 1360 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
8ee52611 1361 /* Select ADC analog input channel. */
d8515652 1362 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
8ee52611 1363 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1364 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1365 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1366 /* Write DEBI immediate data to shadow RAM. */
f1f7efce 1367 *rps++ = local_ppl;
8ee52611 1368 /* Reset "shadow RAM uploaded" flag. */
d8515652 1369 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1370 /* Invoke shadow RAM upload. */
d8515652 1371 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1372 /* Wait for shadow upload to finish. */
d8515652 1373 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1374
8ee52611
IA
1375 /*
1376 * Delay at least 10 microseconds for analog input settling.
d8515652
IA
1377 * Instead of padding with NOPs, we use S626_RPS_JUMP
1378 * instructions here; this allows us to produce a longer delay
1379 * than is possible with NOPs because each S626_RPS_JUMP
1380 * flushes the RPS' instruction prefetch pipeline.
020c44f3 1381 */
f1f7efce 1382 jmp_adrs =
b13db6bf
SR
1383 (u32)devpriv->rps_buf.physical_base +
1384 (u32)((unsigned long)rps -
07a36d66
IA
1385 (unsigned long)devpriv->
1386 rps_buf.logical_base);
d8515652 1387 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
f1f7efce 1388 jmp_adrs += 8; /* Repeat to implement time delay: */
d8515652
IA
1389 /* Jump to next RPS instruction. */
1390 *rps++ = S626_RPS_JUMP;
f1f7efce 1391 *rps++ = jmp_adrs;
020c44f3 1392 }
11e865c1 1393
857ced45 1394 if (cmd->convert_src != TRIG_NOW) {
8ee52611 1395 /* Wait for Start trigger. */
d8515652
IA
1396 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1397 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1398 }
8ee52611
IA
1399 /* Start ADC by pulsing GPIO1. */
1400 /* Begin ADC Start pulse. */
d8515652
IA
1401 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1402 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1403 *rps++ = S626_RPS_NOP;
8ee52611
IA
1404 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1405 /* End ADC Start pulse. */
d8515652
IA
1406 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1407 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
8ee52611
IA
1408 /*
1409 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
020c44f3
HS
1410 * busy) and for data from previous conversion to shift into FB
1411 * BUFFER 1 register.
1412 */
d8515652
IA
1413 /* Wait for ADC done. */
1414 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
11e865c1 1415
8ee52611 1416 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652
IA
1417 *rps++ = S626_RPS_STREG |
1418 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
b13db6bf 1419 *rps++ = (u32)devpriv->ana_buf.physical_base +
f1f7efce 1420 (devpriv->adc_items << 2);
11e865c1 1421
8ee52611
IA
1422 /*
1423 * If this slot's EndOfPollList flag is set, all channels have
1424 * now been processed.
1425 */
d8515652 1426 if (*ppl++ & S626_EOPL) {
07a36d66 1427 devpriv->adc_items++; /* Adjust poll list item count. */
8ee52611 1428 break; /* Exit poll list processing loop. */
020c44f3
HS
1429 }
1430 }
11e865c1 1431
8ee52611
IA
1432 /*
1433 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
020c44f3
HS
1434 * ADC to stabilize for 2 microseconds before starting the final
1435 * (dummy) conversion. This delay is necessary to allow sufficient
1436 * time between last conversion finished and the start of the dummy
1437 * conversion. Without this delay, the last conversion's data value
1438 * is sometimes set to the previous conversion's data value.
1439 */
d8515652
IA
1440 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1441 *rps++ = S626_RPS_NOP;
11e865c1 1442
8ee52611
IA
1443 /*
1444 * Start a dummy conversion to cause the data from the last
020c44f3
HS
1445 * conversion of interest to be shifted in.
1446 */
d8515652
IA
1447 /* Begin ADC Start pulse. */
1448 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1449 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1450 *rps++ = S626_RPS_NOP;
020c44f3 1451 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
d8515652
IA
1452 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1453 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
11e865c1 1454
8ee52611
IA
1455 /*
1456 * Wait for the data from the last conversion of interest to arrive
020c44f3
HS
1457 * in FB BUFFER 1 register.
1458 */
d8515652 1459 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
11e865c1 1460
8ee52611 1461 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652 1462 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
b13db6bf 1463 *rps++ = (u32)devpriv->ana_buf.physical_base +
f1f7efce 1464 (devpriv->adc_items << 2);
11e865c1 1465
8ee52611
IA
1466 /* Indicate ADC scan loop is finished. */
1467 /* Signal ReadADC() that scan is done. */
d8515652 1468 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
11e865c1 1469
020c44f3 1470 /* invoke interrupt */
8ee52611 1471 if (devpriv->ai_cmd_running == 1)
d8515652 1472 *rps++ = S626_RPS_IRQ;
11e865c1 1473
8ee52611 1474 /* Restart RPS program at its beginning. */
d8515652 1475 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
b13db6bf 1476 *rps++ = (u32)devpriv->rps_buf.physical_base;
8ee52611
IA
1477
1478 /* End of RPS program build */
020c44f3 1479}
11e865c1 1480
45b281e4
HS
1481static int s626_ai_eoc(struct comedi_device *dev,
1482 struct comedi_subdevice *s,
1483 struct comedi_insn *insn,
1484 unsigned long context)
1485{
45b281e4
HS
1486 unsigned int status;
1487
de9cd5ca 1488 status = readl(dev->mmio + S626_P_PSR);
45b281e4
HS
1489 if (status & S626_PSR_GPIO2)
1490 return 0;
1491 return -EBUSY;
1492}
1493
020c44f3
HS
1494static int s626_ai_insn_read(struct comedi_device *dev,
1495 struct comedi_subdevice *s,
de9cd5ca
HS
1496 struct comedi_insn *insn,
1497 unsigned int *data)
020c44f3 1498{
0bc45380
SR
1499 u16 chan = CR_CHAN(insn->chanspec);
1500 u16 range = CR_RANGE(insn->chanspec);
1501 u16 adc_spec = 0;
b13db6bf
SR
1502 u32 gpio_image;
1503 u32 tmp;
45b281e4 1504 int ret;
020c44f3 1505 int n;
11e865c1 1506
8ee52611
IA
1507 /*
1508 * Convert application's ADC specification into form
020c44f3
HS
1509 * appropriate for register programming.
1510 */
1511 if (range == 0)
d8515652 1512 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
020c44f3 1513 else
d8515652 1514 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
11e865c1 1515
8ee52611 1516 /* Switch ADC analog gain. */
d8515652 1517 s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
11e865c1 1518
8ee52611 1519 /* Select ADC analog input channel. */
d8515652 1520 s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
11e865c1 1521
020c44f3 1522 for (n = 0; n < insn->n; n++) {
8ee52611 1523 /* Delay 10 microseconds for analog input settling. */
df6ff8a1 1524 usleep_range(10, 20);
11e865c1 1525
be008602 1526 /* Start ADC by pulsing GPIO1 low */
de9cd5ca 1527 gpio_image = readl(dev->mmio + S626_P_GPIO);
25f8fd5e 1528 /* Assert ADC Start command */
de9cd5ca 1529 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1530 /* and stretch it out */
de9cd5ca
HS
1531 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1532 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1533 /* Negate ADC Start command */
de9cd5ca 1534 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
11e865c1 1535
8ee52611
IA
1536 /*
1537 * Wait for ADC to complete (GPIO2 is asserted high when
1538 * ADC not busy) and for data from previous conversion to
1539 * shift into FB BUFFER 1 register.
1540 */
11e865c1 1541
be008602 1542 /* Wait for ADC done */
45b281e4
HS
1543 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1544 if (ret)
1545 return ret;
11e865c1 1546
be008602
HS
1547 /* Fetch ADC data */
1548 if (n != 0) {
de9cd5ca 1549 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
be008602
HS
1550 data[n - 1] = s626_ai_reg_to_uint(tmp);
1551 }
11e865c1 1552
8ee52611
IA
1553 /*
1554 * Allow the ADC to stabilize for 4 microseconds before
020c44f3
HS
1555 * starting the next (final) conversion. This delay is
1556 * necessary to allow sufficient time between last
1557 * conversion finished and the start of the next
1558 * conversion. Without this delay, the last conversion's
1559 * data value is sometimes set to the previous
1560 * conversion's data value.
1561 */
1562 udelay(4);
1563 }
11e865c1 1564
8ee52611
IA
1565 /*
1566 * Start a dummy conversion to cause the data from the
1567 * previous conversion to be shifted in.
1568 */
de9cd5ca 1569 gpio_image = readl(dev->mmio + S626_P_GPIO);
020c44f3 1570 /* Assert ADC Start command */
de9cd5ca 1571 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1572 /* and stretch it out */
de9cd5ca
HS
1573 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1574 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1575 /* Negate ADC Start command */
de9cd5ca 1576 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
11e865c1 1577
8ee52611 1578 /* Wait for the data to arrive in FB BUFFER 1 register. */
11e865c1 1579
be008602 1580 /* Wait for ADC done */
571845c6
CS
1581 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1582 if (ret)
1583 return ret;
11e865c1 1584
8ee52611 1585 /* Fetch ADC data from audio interface's input shift register. */
11e865c1 1586
be008602
HS
1587 /* Fetch ADC data */
1588 if (n != 0) {
de9cd5ca 1589 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
be008602
HS
1590 data[n - 1] = s626_ai_reg_to_uint(tmp);
1591 }
11e865c1 1592
020c44f3
HS
1593 return n;
1594}
11e865c1 1595
d9f9600b 1596static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
020c44f3 1597{
020c44f3 1598 int n;
11e865c1 1599
020c44f3 1600 for (n = 0; n < cmd->chanlist_len; n++) {
8ee52611 1601 if (CR_RANGE(cmd->chanlist[n]) == 0)
d8515652 1602 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
020c44f3 1603 else
d8515652 1604 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
020c44f3
HS
1605 }
1606 if (n != 0)
d8515652 1607 ppl[n - 1] |= S626_EOPL;
11e865c1 1608
020c44f3
HS
1609 return n;
1610}
11e865c1 1611
020c44f3 1612static int s626_ai_inttrig(struct comedi_device *dev,
478da5c9
HS
1613 struct comedi_subdevice *s,
1614 unsigned int trig_num)
020c44f3 1615{
478da5c9
HS
1616 struct comedi_cmd *cmd = &s->async->cmd;
1617
1618 if (trig_num != cmd->start_arg)
020c44f3 1619 return -EINVAL;
11e865c1 1620
ddd9813e 1621 /* Start executing the RPS program */
d8515652 1622 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1623
020c44f3 1624 s->async->inttrig = NULL;
11e865c1 1625
020c44f3
HS
1626 return 1;
1627}
11e865c1 1628
8ee52611
IA
1629/*
1630 * This function doesn't require a particular form, this is just what
6baffbc2
HS
1631 * happens to be used in some of the drivers. It should convert ns
1632 * nanoseconds to a counter value suitable for programming the device.
1633 * Also, it should adjust ns so that it cooresponds to the actual time
8ee52611
IA
1634 * that the device will use.
1635 */
a207c12f 1636static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
6baffbc2
HS
1637{
1638 int divider, base;
1639
1640 base = 500; /* 2MHz internal clock */
1641
889277b9
IA
1642 switch (flags & CMDF_ROUND_MASK) {
1643 case CMDF_ROUND_NEAREST:
6baffbc2 1644 default:
d9798aa6 1645 divider = DIV_ROUND_CLOSEST(*nanosec, base);
6baffbc2 1646 break;
889277b9 1647 case CMDF_ROUND_DOWN:
6baffbc2
HS
1648 divider = (*nanosec) / base;
1649 break;
889277b9 1650 case CMDF_ROUND_UP:
97996da1 1651 divider = DIV_ROUND_UP(*nanosec, base);
6baffbc2
HS
1652 break;
1653 }
1654
1655 *nanosec = base * divider;
1656 return divider - 1;
1657}
1658
3a305a66 1659static void s626_timer_load(struct comedi_device *dev,
0c9a057c 1660 unsigned int chan, int tick)
e3eb08d0 1661{
0bc45380 1662 u16 setup =
d8515652 1663 /* Preload upon index. */
0830ada5 1664 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 1665 /* Disable hardware index. */
0830ada5 1666 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 1667 /* Operating mode is Timer. */
0830ada5 1668 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
d8515652 1669 /* Count direction is Down. */
0830ada5 1670 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
d8515652 1671 /* Clock multiplier is 1x. */
0830ada5
IA
1672 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1673 /* Enabled by index */
1674 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
0bc45380 1675 u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
d8515652 1676 /* uint16_t enab = S626_CLKENAB_ALWAYS; */
e3eb08d0 1677
0c9a057c 1678 s626_set_mode(dev, chan, setup, false);
e3eb08d0 1679
8ee52611 1680 /* Set the preload register */
0c9a057c 1681 s626_preload(dev, chan, tick);
e3eb08d0 1682
8ee52611
IA
1683 /*
1684 * Software index pulse forces the preload register to load
1685 * into the counter
1686 */
0c9a057c
HS
1687 s626_set_load_trig(dev, chan, 0);
1688 s626_pulse_index(dev, chan);
e3eb08d0
HS
1689
1690 /* set reload on counter overflow */
0c9a057c 1691 s626_set_load_trig(dev, chan, 1);
e3eb08d0
HS
1692
1693 /* set interrupt on overflow */
0c9a057c 1694 s626_set_int_src(dev, chan, S626_INTSRC_OVER);
e3eb08d0 1695
0c9a057c
HS
1696 s626_set_latch_source(dev, chan, value_latchsrc);
1697 /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
e3eb08d0
HS
1698}
1699
8ee52611 1700/* TO COMPLETE */
020c44f3
HS
1701static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1702{
7f2f7e05 1703 struct s626_private *devpriv = dev->private;
d9f9600b 1704 u8 ppl[16];
020c44f3 1705 struct comedi_cmd *cmd = &s->async->cmd;
020c44f3 1706 int tick;
11e865c1 1707
020c44f3 1708 if (devpriv->ai_cmd_running) {
730b8e15
IA
1709 dev_err(dev->class_dev,
1710 "s626_ai_cmd: Another ai_cmd is running\n");
020c44f3
HS
1711 return -EBUSY;
1712 }
1713 /* disable interrupt */
de9cd5ca 1714 writel(0, dev->mmio + S626_P_IER);
11e865c1 1715
020c44f3 1716 /* clear interrupt request */
de9cd5ca 1717 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
11e865c1 1718
020c44f3
HS
1719 /* clear any pending interrupt */
1720 s626_dio_clear_irq(dev);
8ee52611 1721 /* s626_enc_clear_irq(dev); */
11e865c1 1722
020c44f3
HS
1723 /* reset ai_cmd_running flag */
1724 devpriv->ai_cmd_running = 0;
11e865c1 1725
020c44f3
HS
1726 s626_ai_load_polllist(ppl, cmd);
1727 devpriv->ai_cmd_running = 1;
1728 devpriv->ai_convert_count = 0;
11e865c1 1729
020c44f3
HS
1730 switch (cmd->scan_begin_src) {
1731 case TRIG_FOLLOW:
1732 break;
1733 case TRIG_TIMER:
8ee52611
IA
1734 /*
1735 * set a counter to generate adc trigger at scan_begin_arg
1736 * interval
1737 */
a207c12f 1738 tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
11e865c1 1739
020c44f3 1740 /* load timer value and enable interrupt */
0c9a057c
HS
1741 s626_timer_load(dev, 5, tick);
1742 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
020c44f3
HS
1743 break;
1744 case TRIG_EXT:
8ee52611 1745 /* set the digital line and interrupt for scan trigger */
020c44f3
HS
1746 if (cmd->start_src != TRIG_EXT)
1747 s626_dio_set_irq(dev, cmd->scan_begin_arg);
020c44f3
HS
1748 break;
1749 }
11e865c1 1750
020c44f3
HS
1751 switch (cmd->convert_src) {
1752 case TRIG_NOW:
1753 break;
1754 case TRIG_TIMER:
8ee52611
IA
1755 /*
1756 * set a counter to generate adc trigger at convert_arg
1757 * interval
1758 */
a207c12f 1759 tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
11e865c1 1760
020c44f3 1761 /* load timer value and enable interrupt */
0c9a057c
HS
1762 s626_timer_load(dev, 4, tick);
1763 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
020c44f3
HS
1764 break;
1765 case TRIG_EXT:
8ee52611
IA
1766 /* set the digital line and interrupt for convert trigger */
1767 if (cmd->scan_begin_src != TRIG_EXT &&
1768 cmd->start_src == TRIG_EXT)
020c44f3 1769 s626_dio_set_irq(dev, cmd->convert_arg);
020c44f3
HS
1770 break;
1771 }
11e865c1 1772
31de1948 1773 s626_reset_adc(dev, ppl);
11e865c1 1774
020c44f3
HS
1775 switch (cmd->start_src) {
1776 case TRIG_NOW:
ddd9813e 1777 /* Trigger ADC scan loop start */
d8515652 1778 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
11e865c1 1779
ddd9813e 1780 /* Start executing the RPS program */
d8515652 1781 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
020c44f3
HS
1782 s->async->inttrig = NULL;
1783 break;
1784 case TRIG_EXT:
1785 /* configure DIO channel for acquisition trigger */
1786 s626_dio_set_irq(dev, cmd->start_arg);
020c44f3
HS
1787 s->async->inttrig = NULL;
1788 break;
1789 case TRIG_INT:
1790 s->async->inttrig = s626_ai_inttrig;
1791 break;
11e865c1 1792 }
b6c77757 1793
020c44f3 1794 /* enable interrupt */
de9cd5ca 1795 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
b6c77757 1796
020c44f3
HS
1797 return 0;
1798}
b6c77757 1799
020c44f3
HS
1800static int s626_ai_cmdtest(struct comedi_device *dev,
1801 struct comedi_subdevice *s, struct comedi_cmd *cmd)
1802{
1803 int err = 0;
c646efe1 1804 unsigned int arg;
b6c77757 1805
27020ffe 1806 /* Step 1 : check if triggers are trivially valid */
b6c77757 1807
d044e28f
IA
1808 err |= comedi_check_trigger_src(&cmd->start_src,
1809 TRIG_NOW | TRIG_INT | TRIG_EXT);
1810 err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1811 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1812 err |= comedi_check_trigger_src(&cmd->convert_src,
1813 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1814 err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1815 err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
11e865c1 1816
020c44f3
HS
1817 if (err)
1818 return 1;
11e865c1 1819
27020ffe 1820 /* Step 2a : make sure trigger sources are unique */
11e865c1 1821
d044e28f
IA
1822 err |= comedi_check_trigger_is_unique(cmd->start_src);
1823 err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1824 err |= comedi_check_trigger_is_unique(cmd->convert_src);
1825 err |= comedi_check_trigger_is_unique(cmd->stop_src);
27020ffe
HS
1826
1827 /* Step 2b : and mutually compatible */
020c44f3
HS
1828
1829 if (err)
1830 return 2;
1831
478da5c9 1832 /* Step 3: check if arguments are trivially valid */
020c44f3 1833
478da5c9
HS
1834 switch (cmd->start_src) {
1835 case TRIG_NOW:
1836 case TRIG_INT:
d044e28f 1837 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
478da5c9
HS
1838 break;
1839 case TRIG_EXT:
d044e28f 1840 err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
478da5c9
HS
1841 break;
1842 }
1843
53a254b9 1844 if (cmd->scan_begin_src == TRIG_EXT)
d044e28f 1845 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
53a254b9 1846 if (cmd->convert_src == TRIG_EXT)
d044e28f 1847 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
11e865c1 1848
676921c9
IA
1849#define S626_MAX_SPEED 200000 /* in nanoseconds */
1850#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
11e865c1 1851
020c44f3 1852 if (cmd->scan_begin_src == TRIG_TIMER) {
d044e28f
IA
1853 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1854 S626_MAX_SPEED);
1855 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1856 S626_MIN_SPEED);
020c44f3 1857 } else {
d044e28f
IA
1858 /*
1859 * external trigger
1860 * should be level/edge, hi/lo specification here
1861 * should specify multiple external triggers
1862 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1863 */
020c44f3
HS
1864 }
1865 if (cmd->convert_src == TRIG_TIMER) {
d044e28f
IA
1866 err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1867 S626_MAX_SPEED);
1868 err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1869 S626_MIN_SPEED);
020c44f3 1870 } else {
d044e28f
IA
1871 /*
1872 * external trigger - see above
1873 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1874 */
020c44f3 1875 }
11e865c1 1876
d044e28f
IA
1877 err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1878 cmd->chanlist_len);
53a254b9
HS
1879
1880 if (cmd->stop_src == TRIG_COUNT)
d044e28f 1881 err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
53a254b9 1882 else /* TRIG_NONE */
d044e28f 1883 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
11e865c1 1884
020c44f3
HS
1885 if (err)
1886 return 3;
1887
1888 /* step 4: fix up any arguments */
1889
1890 if (cmd->scan_begin_src == TRIG_TIMER) {
c646efe1 1891 arg = cmd->scan_begin_arg;
a207c12f 1892 s626_ns_to_timer(&arg, cmd->flags);
d044e28f 1893 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
020c44f3 1894 }
c646efe1 1895
020c44f3 1896 if (cmd->convert_src == TRIG_TIMER) {
c646efe1 1897 arg = cmd->convert_arg;
a207c12f 1898 s626_ns_to_timer(&arg, cmd->flags);
d044e28f 1899 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
c646efe1
HS
1900
1901 if (cmd->scan_begin_src == TRIG_TIMER) {
1902 arg = cmd->convert_arg * cmd->scan_end_arg;
d044e28f
IA
1903 err |= comedi_check_trigger_arg_min(&cmd->
1904 scan_begin_arg,
1905 arg);
020c44f3 1906 }
11e865c1 1907 }
11e865c1 1908
020c44f3
HS
1909 if (err)
1910 return 4;
1911
1912 return 0;
11e865c1
GP
1913}
1914
020c44f3 1915static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
11e865c1 1916{
7f2f7e05
HS
1917 struct s626_private *devpriv = dev->private;
1918
c5cf4606 1919 /* Stop RPS program in case it is currently running */
d8515652 1920 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1921
020c44f3 1922 /* disable master interrupt */
de9cd5ca 1923 writel(0, dev->mmio + S626_P_IER);
11e865c1 1924
020c44f3 1925 devpriv->ai_cmd_running = 0;
11e865c1 1926
020c44f3
HS
1927 return 0;
1928}
11e865c1 1929
18259ffc
HS
1930static int s626_ao_insn_write(struct comedi_device *dev,
1931 struct comedi_subdevice *s,
1932 struct comedi_insn *insn,
1933 unsigned int *data)
11e865c1 1934{
18259ffc 1935 unsigned int chan = CR_CHAN(insn->chanspec);
020c44f3 1936 int i;
11e865c1 1937
020c44f3 1938 for (i = 0; i < insn->n; i++) {
18259ffc
HS
1939 int16_t dacdata = (int16_t)data[i];
1940 int ret;
1941
020c44f3 1942 dacdata -= (0x1fff);
11e865c1 1943
a7aa94ce
CS
1944 ret = s626_set_dac(dev, chan, dacdata);
1945 if (ret)
1946 return ret;
11e865c1 1947
18259ffc
HS
1948 s->readback[chan] = data[i];
1949 }
11e865c1 1950
18259ffc 1951 return insn->n;
020c44f3 1952}
11e865c1 1953
8ee52611
IA
1954/* *************** DIGITAL I/O FUNCTIONS *************** */
1955
1956/*
020c44f3
HS
1957 * All DIO functions address a group of DIO channels by means of
1958 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
1959 * ports A, B and C, respectively.
1960 */
11e865c1 1961
020c44f3
HS
1962static void s626_dio_init(struct comedi_device *dev)
1963{
0bc45380 1964 u16 group;
11e865c1 1965
8ee52611 1966 /* Prepare to treat writes to WRCapSel as capture disables. */
d8515652 1967 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
11e865c1 1968
8ee52611 1969 /* For each group of sixteen channels ... */
020c44f3 1970 for (group = 0; group < S626_DIO_BANKS; group++) {
100b4edc 1971 /* Disable all interrupts */
d8515652 1972 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
100b4edc 1973 /* Disable all event captures */
d8515652 1974 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
100b4edc 1975 /* Init all DIOs to default edge polarity */
d8515652 1976 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
100b4edc 1977 /* Program all outputs to inactive state */
d8515652 1978 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
11e865c1 1979 }
020c44f3 1980}
11e865c1 1981
020c44f3
HS
1982static int s626_dio_insn_bits(struct comedi_device *dev,
1983 struct comedi_subdevice *s,
1515e522
HS
1984 struct comedi_insn *insn,
1985 unsigned int *data)
020c44f3 1986{
100b4edc 1987 unsigned long group = (unsigned long)s->private;
11e865c1 1988
6ea79c1d 1989 if (comedi_dio_update_state(s, data))
d8515652 1990 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
6ea79c1d 1991
d8515652 1992 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
11e865c1 1993
020c44f3 1994 return insn->n;
11e865c1
GP
1995}
1996
020c44f3
HS
1997static int s626_dio_insn_config(struct comedi_device *dev,
1998 struct comedi_subdevice *s,
e920fad2
HS
1999 struct comedi_insn *insn,
2000 unsigned int *data)
11e865c1 2001{
100b4edc 2002 unsigned long group = (unsigned long)s->private;
ddf62f2c
HS
2003 int ret;
2004
2005 ret = comedi_dio_insn_config(dev, s, insn, data, 0);
2006 if (ret)
2007 return ret;
11e865c1 2008
d8515652 2009 s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
11e865c1 2010
e920fad2 2011 return insn->n;
11e865c1
GP
2012}
2013
8ee52611
IA
2014/*
2015 * Now this function initializes the value of the counter (data[0])
2016 * and set the subdevice. To complete with trigger and interrupt
2017 * configuration.
2018 *
2019 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
affdc230 2020 * what is being configured, but this function appears to be using data[0]
8ee52611
IA
2021 * as a variable.
2022 */
020c44f3
HS
2023static int s626_enc_insn_config(struct comedi_device *dev,
2024 struct comedi_subdevice *s,
2025 struct comedi_insn *insn, unsigned int *data)
2026{
0c9a057c 2027 unsigned int chan = CR_CHAN(insn->chanspec);
0bc45380 2028 u16 setup =
d8515652 2029 /* Preload upon index. */
0830ada5 2030 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2031 /* Disable hardware index. */
0830ada5 2032 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2033 /* Operating mode is Counter. */
0830ada5 2034 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2035 /* Active high clock. */
0830ada5 2036 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2037 /* Clock multiplier is 1x. */
0830ada5
IA
2038 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2039 /* Enabled by index */
2040 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
c3e3a56d 2041 /* uint16_t disable_int_src = true; */
8ee52611 2042 /* uint32_t Preloadvalue; //Counter initial value */
0bc45380
SR
2043 u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2044 u16 enab = S626_CLKENAB_ALWAYS;
11e865c1 2045
8ee52611 2046 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
11e865c1 2047
0c9a057c
HS
2048 s626_set_mode(dev, chan, setup, true);
2049 s626_preload(dev, chan, data[0]);
2050 s626_pulse_index(dev, chan);
2051 s626_set_latch_source(dev, chan, value_latchsrc);
2052 s626_set_enable(dev, chan, (enab != 0));
11e865c1 2053
020c44f3
HS
2054 return insn->n;
2055}
11e865c1 2056
020c44f3
HS
2057static int s626_enc_insn_read(struct comedi_device *dev,
2058 struct comedi_subdevice *s,
81202ecf
HS
2059 struct comedi_insn *insn,
2060 unsigned int *data)
020c44f3 2061{
81202ecf 2062 unsigned int chan = CR_CHAN(insn->chanspec);
0bc45380 2063 u16 cntr_latch_reg = S626_LP_CNTR(chan);
81202ecf 2064 int i;
11e865c1 2065
81202ecf
HS
2066 for (i = 0; i < insn->n; i++) {
2067 unsigned int val;
11e865c1 2068
81202ecf
HS
2069 /*
2070 * Read the counter's output latch LSW/MSW.
2071 * Latches on LSW read.
2072 */
2073 val = s626_debi_read(dev, cntr_latch_reg);
2074 val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2075 data[i] = val;
2076 }
2077
2078 return insn->n;
020c44f3 2079}
11e865c1 2080
020c44f3
HS
2081static int s626_enc_insn_write(struct comedi_device *dev,
2082 struct comedi_subdevice *s,
2083 struct comedi_insn *insn, unsigned int *data)
2084{
0c9a057c 2085 unsigned int chan = CR_CHAN(insn->chanspec);
11e865c1 2086
8ee52611 2087 /* Set the preload register */
0c9a057c 2088 s626_preload(dev, chan, data[0]);
11e865c1 2089
8ee52611
IA
2090 /*
2091 * Software index pulse forces the preload register to load
2092 * into the counter
2093 */
0c9a057c
HS
2094 s626_set_load_trig(dev, chan, 0);
2095 s626_pulse_index(dev, chan);
2096 s626_set_load_trig(dev, chan, 2);
11e865c1 2097
020c44f3 2098 return 1;
11e865c1
GP
2099}
2100
0bc45380 2101static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
11e865c1 2102{
d8515652
IA
2103 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2104 s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2105 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
020c44f3 2106}
11e865c1 2107
31de1948 2108static void s626_counters_init(struct comedi_device *dev)
11e865c1 2109{
020c44f3 2110 int chan;
0bc45380 2111 u16 setup =
d8515652 2112 /* Preload upon index. */
0830ada5 2113 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2114 /* Disable hardware index. */
0830ada5 2115 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2116 /* Operating mode is counter. */
0830ada5 2117 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2118 /* Active high clock. */
0830ada5 2119 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2120 /* Clock multiplier is 1x. */
0830ada5 2121 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
d8515652 2122 /* Enabled by index */
0830ada5 2123 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
8ee52611
IA
2124
2125 /*
2126 * Disable all counter interrupts and clear any captured counter events.
2127 */
020c44f3 2128 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
0c9a057c
HS
2129 s626_set_mode(dev, chan, setup, true);
2130 s626_set_int_src(dev, chan, 0);
2131 s626_reset_cap_flags(dev, chan);
2132 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
020c44f3 2133 }
020c44f3 2134}
11e865c1 2135
b7047895
HS
2136static int s626_allocate_dma_buffers(struct comedi_device *dev)
2137{
2138 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2139 struct s626_private *devpriv = dev->private;
b7047895
HS
2140 void *addr;
2141 dma_addr_t appdma;
2142
d8515652 2143 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2144 if (!addr)
2145 return -ENOMEM;
07a36d66
IA
2146 devpriv->ana_buf.logical_base = addr;
2147 devpriv->ana_buf.physical_base = appdma;
b7047895 2148
d8515652 2149 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2150 if (!addr)
2151 return -ENOMEM;
07a36d66
IA
2152 devpriv->rps_buf.logical_base = addr;
2153 devpriv->rps_buf.physical_base = appdma;
b7047895 2154
b7047895
HS
2155 return 0;
2156}
2157
3757e795
HS
2158static void s626_free_dma_buffers(struct comedi_device *dev)
2159{
2160 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2161 struct s626_private *devpriv = dev->private;
2162
2163 if (!devpriv)
2164 return;
2165
2166 if (devpriv->rps_buf.logical_base)
2167 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2168 devpriv->rps_buf.logical_base,
2169 devpriv->rps_buf.physical_base);
2170 if (devpriv->ana_buf.logical_base)
2171 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2172 devpriv->ana_buf.logical_base,
2173 devpriv->ana_buf.physical_base);
2174}
2175
a7aa94ce 2176static int s626_initialize(struct comedi_device *dev)
020c44f3 2177{
7f2f7e05 2178 struct s626_private *devpriv = dev->private;
f1f7efce 2179 dma_addr_t phys_buf;
0bc45380 2180 u16 chan;
020c44f3 2181 int i;
a7aa94ce 2182 int ret;
11e865c1 2183
54a2a02e 2184 /* Enable DEBI and audio pins, enable I2C interface */
d8515652
IA
2185 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2186 S626_P_MC1);
54a2a02e
HS
2187
2188 /*
8ee52611 2189 * Configure DEBI operating mode
54a2a02e 2190 *
8ee52611
IA
2191 * Local bus is 16 bits wide
2192 * Declare DEBI transfer timeout interval
2193 * Set up byte lane steering
2194 * Intel-compatible local bus (DEBI never times out)
54a2a02e 2195 */
d8515652
IA
2196 writel(S626_DEBI_CFG_SLAVE16 |
2197 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
de9cd5ca 2198 S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
54a2a02e
HS
2199
2200 /* Disable MMU paging */
de9cd5ca 2201 writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
54a2a02e
HS
2202
2203 /* Init GPIO so that ADC Start* is negated */
de9cd5ca 2204 writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
68ad0ae0 2205
17553c88 2206 /* I2C device address for onboard eeprom (revb) */
07a36d66 2207 devpriv->i2c_adrs = 0xA0;
11e865c1 2208
54a2a02e
HS
2209 /*
2210 * Issue an I2C ABORT command to halt any I2C
2211 * operation in progress and reset BUSY flag.
2212 */
d8515652 2213 writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
de9cd5ca 2214 dev->mmio + S626_P_I2CSTAT);
d8515652 2215 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
2216 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2217 if (ret)
2218 return ret;
68ad0ae0 2219
54a2a02e
HS
2220 /*
2221 * Per SAA7146 data sheet, write to STATUS
2222 * reg twice to reset all I2C error flags.
2223 */
68ad0ae0 2224 for (i = 0; i < 2; i++) {
de9cd5ca 2225 writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
d8515652 2226 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2061d410
RKM
2227 ret = comedi_timeout(dev, NULL,
2228 NULL, s626_i2c_handshake_eoc, 0);
571845c6
CS
2229 if (ret)
2230 return ret;
68ad0ae0 2231 }
11e865c1 2232
54a2a02e
HS
2233 /*
2234 * Init audio interface functional attributes: set DAC/ADC
68ad0ae0
HS
2235 * serial clock rates, invert DAC serial clock so that
2236 * DAC data setup times are satisfied, enable DAC serial
2237 * clock out.
2238 */
de9cd5ca 2239 writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
11e865c1 2240
54a2a02e
HS
2241 /*
2242 * Set up TSL1 slot list, which is used to control the
d8515652
IA
2243 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2244 * S626_SIB_A1 = store data uint8_t at next available location
54a2a02e
HS
2245 * in FB BUFFER1 register.
2246 */
de9cd5ca 2247 writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
d8515652 2248 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
de9cd5ca 2249 dev->mmio + S626_P_TSL1 + 4);
11e865c1 2250
54a2a02e 2251 /* Enable TSL1 slot list so that it executes all the time */
de9cd5ca 2252 writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
11e865c1 2253
54a2a02e
HS
2254 /*
2255 * Initialize RPS registers used for ADC
2256 */
11e865c1 2257
54a2a02e 2258 /* Physical start of RPS program */
b13db6bf 2259 writel((u32)devpriv->rps_buf.physical_base,
de9cd5ca 2260 dev->mmio + S626_P_RPSADDR1);
54a2a02e 2261 /* RPS program performs no explicit mem writes */
de9cd5ca 2262 writel(0, dev->mmio + S626_P_RPSPAGE1);
54a2a02e 2263 /* Disable RPS timeouts */
de9cd5ca 2264 writel(0, dev->mmio + S626_P_RPS1_TOUT);
11e865c1 2265
59747847
HS
2266#if 0
2267 /*
2268 * SAA7146 BUG WORKAROUND
2269 *
2270 * Initialize SAA7146 ADC interface to a known state by
2271 * invoking ADCs until FB BUFFER 1 register shows that it
2272 * is correctly receiving ADC data. This is necessary
2273 * because the SAA7146 ADC interface does not start up in
2274 * a defined state after a PCI reset.
68ad0ae0 2275 */
59747847 2276 {
9c9ab3c1 2277 struct comedi_subdevice *s = dev->read_subdev;
f1f7efce
IA
2278 uint8_t poll_list;
2279 uint16_t adc_data;
2280 uint16_t start_val;
8ee52611
IA
2281 uint16_t index;
2282 unsigned int data[16];
59747847 2283
8ee52611 2284 /* Create a simple polling list for analog input channel 0 */
d8515652 2285 poll_list = S626_EOPL;
31de1948 2286 s626_reset_adc(dev, &poll_list);
59747847 2287
8ee52611 2288 /* Get initial ADC value */
9c9ab3c1 2289 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce 2290 start_val = data[0];
59747847 2291
8ee52611
IA
2292 /*
2293 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2294 * EXECUTION.
2295 *
2296 * Invoke ADCs until the new ADC value differs from the initial
2297 * value or a timeout occurs. The timeout protects against the
2298 * possibility that the driver is restarting and the ADC data is
2299 * a fixed value resulting from the applied ADC analog input
2300 * being unusually quiet or at the rail.
2301 */
2302 for (index = 0; index < 500; index++) {
9c9ab3c1 2303 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce
IA
2304 adc_data = data[0];
2305 if (adc_data != start_val)
8ee52611
IA
2306 break;
2307 }
59747847
HS
2308 }
2309#endif /* SAA7146 BUG WORKAROUND */
11e865c1 2310
54a2a02e
HS
2311 /*
2312 * Initialize the DAC interface
2313 */
11e865c1 2314
54a2a02e
HS
2315 /*
2316 * Init Audio2's output DMAC attributes:
2317 * burst length = 1 DWORD
2318 * threshold = 1 DWORD.
68ad0ae0 2319 */
de9cd5ca 2320 writel(0, dev->mmio + S626_P_PCI_BT_A);
68ad0ae0 2321
54a2a02e
HS
2322 /*
2323 * Init Audio2's output DMA physical addresses. The protection
68ad0ae0
HS
2324 * address is set to 1 DWORD past the base address so that a
2325 * single DWORD will be transferred each time a DMA transfer is
54a2a02e
HS
2326 * enabled.
2327 */
f1f7efce 2328 phys_buf = devpriv->ana_buf.physical_base +
b13db6bf
SR
2329 (S626_DAC_WDMABUF_OS * sizeof(u32));
2330 writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2331 writel((u32)(phys_buf + sizeof(u32)),
de9cd5ca 2332 dev->mmio + S626_P_PROTA2_OUT);
68ad0ae0 2333
54a2a02e
HS
2334 /*
2335 * Cache Audio2's output DMA buffer logical address. This is
2336 * where DAC data is buffered for A2 output DMA transfers.
2337 */
b13db6bf 2338 devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
d8515652 2339 S626_DAC_WDMABUF_OS;
68ad0ae0 2340
54a2a02e
HS
2341 /*
2342 * Audio2's output channels does not use paging. The
2343 * protection violation handling bit is set so that the
2344 * DMAC will automatically halt and its PCI address pointer
2345 * will be reset when the protection address is reached.
2346 */
de9cd5ca 2347 writel(8, dev->mmio + S626_P_PAGEA2_OUT);
68ad0ae0 2348
54a2a02e
HS
2349 /*
2350 * Initialize time slot list 2 (TSL2), which is used to control
68ad0ae0
HS
2351 * the clock generation for and serialization of data to be sent
2352 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2353 * execution; this permits other slots to be safely modified
2354 * without first turning off the TSL sequencer (which is
2355 * apparently impossible to do). Also, SD3 (which is driven by a
2356 * pull-up resistor) is shifted in and stored to the MSB of
2357 * FB_BUFFER2 to be used as evidence that the slot sequence has
2358 * not yet finished executing.
2359 */
11e865c1 2360
54a2a02e 2361 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
d8515652 2362 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
de9cd5ca 2363 dev->mmio + S626_VECTPORT(0));
11e865c1 2364
54a2a02e
HS
2365 /*
2366 * Initialize slot 1, which is constant. Slot 1 causes a
68ad0ae0
HS
2367 * DWORD to be transferred from audio channel 2's output FIFO
2368 * to the FIFO's output buffer so that it can be serialized
2369 * and sent to the DAC during subsequent slots. All remaining
2370 * slots are dynamically populated as required by the target
2371 * DAC device.
2372 */
54a2a02e
HS
2373
2374 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
de9cd5ca 2375 writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
11e865c1 2376
54a2a02e 2377 /* Start DAC's audio interface (TSL2) running */
de9cd5ca 2378 writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
11e865c1 2379
54a2a02e
HS
2380 /*
2381 * Init Trim DACs to calibrated values. Do it twice because the
68ad0ae0
HS
2382 * SAA7146 audio channel does not always reset properly and
2383 * sometimes causes the first few TrimDAC writes to malfunction.
2384 */
31de1948 2385 s626_load_trim_dacs(dev);
a7aa94ce
CS
2386 ret = s626_load_trim_dacs(dev);
2387 if (ret)
2388 return ret;
11e865c1 2389
54a2a02e
HS
2390 /*
2391 * Manually init all gate array hardware in case this is a soft
68ad0ae0
HS
2392 * reset (we have no way of determining whether this is a warm
2393 * or cold start). This is necessary because the gate array will
2394 * reset only in response to a PCI hard reset; there is no soft
54a2a02e
HS
2395 * reset function.
2396 */
11e865c1 2397
54a2a02e
HS
2398 /*
2399 * Init all DAC outputs to 0V and init all DAC setpoint and
68ad0ae0
HS
2400 * polarity images.
2401 */
a7aa94ce
CS
2402 for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2403 ret = s626_set_dac(dev, chan, 0);
2404 if (ret)
2405 return ret;
2406 }
11e865c1 2407
54a2a02e 2408 /* Init counters */
31de1948 2409 s626_counters_init(dev);
11e865c1 2410
54a2a02e
HS
2411 /*
2412 * Without modifying the state of the Battery Backup enab, disable
68ad0ae0
HS
2413 * the watchdog timer, set DIO channels 0-5 to operate in the
2414 * standard DIO (vs. counter overflow) mode, disable the battery
2415 * charger, and reset the watchdog interval selector to zero.
2416 */
d8515652
IA
2417 s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2418 S626_MISC2_BATT_ENABLE));
11e865c1 2419
54a2a02e 2420 /* Initialize the digital I/O subsystem */
68ad0ae0 2421 s626_dio_init(dev);
a7aa94ce
CS
2422
2423 return 0;
80ec9510
HS
2424}
2425
a690b7e5 2426static int s626_auto_attach(struct comedi_device *dev,
6c7d2c8b 2427 unsigned long context_unused)
80ec9510 2428{
750af5e5 2429 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2430 struct s626_private *devpriv;
80ec9510
HS
2431 struct comedi_subdevice *s;
2432 int ret;
2433
0bdab509 2434 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
c34fa261
HS
2435 if (!devpriv)
2436 return -ENOMEM;
80ec9510 2437
818f569f 2438 ret = comedi_pci_enable(dev);
80ec9510
HS
2439 if (ret)
2440 return ret;
80ec9510 2441
de9cd5ca
HS
2442 dev->mmio = pci_ioremap_bar(pcidev, 0);
2443 if (!dev->mmio)
80ec9510
HS
2444 return -ENOMEM;
2445
2446 /* disable master interrupt */
de9cd5ca 2447 writel(0, dev->mmio + S626_P_IER);
80ec9510
HS
2448
2449 /* soft reset */
de9cd5ca 2450 writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
80ec9510
HS
2451
2452 /* DMA FIXME DMA// */
2453
2454 ret = s626_allocate_dma_buffers(dev);
2455 if (ret)
2456 return ret;
2457
2458 if (pcidev->irq) {
2459 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2460 dev->board_name, dev);
2461
2462 if (ret == 0)
2463 dev->irq = pcidev->irq;
2464 }
2465
2466 ret = comedi_alloc_subdevices(dev, 6);
2467 if (ret)
2468 return ret;
2469
f0717f5d 2470 s = &dev->subdevices[0];
80ec9510 2471 /* analog input subdevice */
ca2f1091 2472 s->type = COMEDI_SUBD_AI;
f95321f3 2473 s->subdev_flags = SDF_READABLE | SDF_DIFF;
ca2f1091
HS
2474 s->n_chan = S626_ADC_CHANNELS;
2475 s->maxdata = 0x3fff;
2476 s->range_table = &s626_range_table;
2477 s->len_chanlist = S626_ADC_CHANNELS;
ca2f1091 2478 s->insn_read = s626_ai_insn_read;
2281befd
HS
2479 if (dev->irq) {
2480 dev->read_subdev = s;
f95321f3 2481 s->subdev_flags |= SDF_CMD_READ;
2281befd
HS
2482 s->do_cmd = s626_ai_cmd;
2483 s->do_cmdtest = s626_ai_cmdtest;
2484 s->cancel = s626_ai_cancel;
2485 }
80ec9510 2486
f0717f5d 2487 s = &dev->subdevices[1];
80ec9510 2488 /* analog output subdevice */
ca2f1091
HS
2489 s->type = COMEDI_SUBD_AO;
2490 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2491 s->n_chan = S626_DAC_CHANNELS;
2492 s->maxdata = 0x3fff;
2493 s->range_table = &range_bipolar10;
18259ffc 2494 s->insn_write = s626_ao_insn_write;
18259ffc
HS
2495
2496 ret = comedi_alloc_subdev_readback(s);
2497 if (ret)
2498 return ret;
80ec9510 2499
f0717f5d 2500 s = &dev->subdevices[2];
80ec9510 2501 /* digital I/O subdevice */
ca2f1091
HS
2502 s->type = COMEDI_SUBD_DIO;
2503 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2504 s->n_chan = 16;
2505 s->maxdata = 1;
2506 s->io_bits = 0xffff;
2507 s->private = (void *)0; /* DIO group 0 */
2508 s->range_table = &range_digital;
2509 s->insn_config = s626_dio_insn_config;
2510 s->insn_bits = s626_dio_insn_bits;
80ec9510 2511
f0717f5d 2512 s = &dev->subdevices[3];
80ec9510 2513 /* digital I/O subdevice */
ca2f1091
HS
2514 s->type = COMEDI_SUBD_DIO;
2515 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2516 s->n_chan = 16;
2517 s->maxdata = 1;
2518 s->io_bits = 0xffff;
2519 s->private = (void *)1; /* DIO group 1 */
2520 s->range_table = &range_digital;
2521 s->insn_config = s626_dio_insn_config;
2522 s->insn_bits = s626_dio_insn_bits;
80ec9510 2523
f0717f5d 2524 s = &dev->subdevices[4];
80ec9510 2525 /* digital I/O subdevice */
ca2f1091
HS
2526 s->type = COMEDI_SUBD_DIO;
2527 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2528 s->n_chan = 16;
2529 s->maxdata = 1;
2530 s->io_bits = 0xffff;
2531 s->private = (void *)2; /* DIO group 2 */
2532 s->range_table = &range_digital;
8ee52611 2533 s->insn_config = s626_dio_insn_config;
ca2f1091 2534 s->insn_bits = s626_dio_insn_bits;
80ec9510 2535
f0717f5d 2536 s = &dev->subdevices[5];
80ec9510 2537 /* encoder (counter) subdevice */
ca2f1091
HS
2538 s->type = COMEDI_SUBD_COUNTER;
2539 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2540 s->n_chan = S626_ENCODER_CHANNELS;
2541 s->maxdata = 0xffffff;
ca2f1091
HS
2542 s->range_table = &range_unknown;
2543 s->insn_config = s626_enc_insn_config;
2544 s->insn_read = s626_enc_insn_read;
2545 s->insn_write = s626_enc_insn_write;
80ec9510 2546
71b9f42e 2547 return s626_initialize(dev);
11e865c1
GP
2548}
2549
020c44f3 2550static void s626_detach(struct comedi_device *dev)
11e865c1 2551{
7f2f7e05 2552 struct s626_private *devpriv = dev->private;
f574af6d 2553
020c44f3
HS
2554 if (devpriv) {
2555 /* stop ai_command */
2556 devpriv->ai_cmd_running = 0;
11e865c1 2557
de9cd5ca 2558 if (dev->mmio) {
020c44f3 2559 /* interrupt mask */
25f8fd5e 2560 /* Disable master interrupt */
de9cd5ca 2561 writel(0, dev->mmio + S626_P_IER);
25f8fd5e 2562 /* Clear board's IRQ status flag */
d8515652 2563 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
de9cd5ca 2564 dev->mmio + S626_P_ISR);
11e865c1 2565
8ee52611 2566 /* Disable the watchdog timer and battery charger. */
31de1948 2567 s626_write_misc2(dev, 0);
11e865c1 2568
25f8fd5e 2569 /* Close all interfaces on 7146 device */
de9cd5ca
HS
2570 writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2571 writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
020c44f3 2572 }
f574af6d 2573 }
8075bfb6 2574 comedi_pci_detach(dev);
3757e795 2575 s626_free_dma_buffers(dev);
11e865c1 2576}
7122b76d 2577
75e6301b 2578static struct comedi_driver s626_driver = {
7122b76d
HS
2579 .driver_name = "s626",
2580 .module = THIS_MODULE,
750af5e5 2581 .auto_attach = s626_auto_attach,
7122b76d
HS
2582 .detach = s626_detach,
2583};
2584
a690b7e5 2585static int s626_pci_probe(struct pci_dev *dev,
b8f4ac23 2586 const struct pci_device_id *id)
7122b76d 2587{
b8f4ac23 2588 return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
7122b76d
HS
2589}
2590
7122b76d
HS
2591/*
2592 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2593 * also subvendor:subdevice ids, because otherwise it will conflict with
2594 * Philips SAA7146 media/dvb based cards.
2595 */
41e043fc 2596static const struct pci_device_id s626_pci_table[] = {
498c5070
IA
2597 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2598 0x6000, 0x0272) },
7122b76d
HS
2599 { 0 }
2600};
2601MODULE_DEVICE_TABLE(pci, s626_pci_table);
2602
75e6301b
HS
2603static struct pci_driver s626_pci_driver = {
2604 .name = "s626",
7122b76d 2605 .id_table = s626_pci_table,
75e6301b 2606 .probe = s626_pci_probe,
9901a4d7 2607 .remove = comedi_pci_auto_unconfig,
7122b76d 2608};
75e6301b 2609module_comedi_pci_driver(s626_driver, s626_pci_driver);
7122b76d
HS
2610
2611MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2612MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2613MODULE_LICENSE("GPL");