]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/staging/comedi/drivers/s626.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / staging / comedi / drivers / s626.c
CommitLineData
11e865c1 1/*
7f32c7c4
IA
2 * comedi/drivers/s626.c
3 * Sensoray s626 Comedi driver
4 *
5 * COMEDI - Linux Control and Measurement Device Interface
6 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7 *
8 * Based on Sensoray Model 626 Linux driver Version 0.2
9 * Copyright (C) 2002-2004 Sensoray Co., Inc.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
11e865c1
GP
21
22/*
7f32c7c4
IA
23 * Driver: s626
24 * Description: Sensoray 626 driver
25 * Devices: [Sensoray] 626 (s626)
26 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28 * Status: experimental
29
30 * Configuration options: not applicable, uses PCI auto config
31
32 * INSN_CONFIG instructions:
33 * analog input:
34 * none
35 *
36 * analog output:
37 * none
38 *
39 * digital channel:
40 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41 * supported configuration options:
42 * INSN_CONFIG_DIO_QUERY
43 * COMEDI_INPUT
44 * COMEDI_OUTPUT
45 *
46 * encoder:
47 * Every channel must be configured before reading.
48 *
49 * Example code
50 *
51 * insn.insn=INSN_CONFIG; //configuration instruction
52 * insn.n=1; //number of operation (must be 1)
53 * insn.data=&initialvalue; //initial value loaded into encoder
54 * //during configuration
55 * insn.subdev=5; //encoder subdevice
56 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57 * //to configure
58 *
59 * comedi_do_insn(cf,&insn); //executing configuration
60 */
11e865c1 61
ce157f80
HS
62#include <linux/module.h>
63#include <linux/delay.h>
25436dc9 64#include <linux/interrupt.h>
11e865c1
GP
65#include <linux/kernel.h>
66#include <linux/types.h>
67
6ab38b05 68#include "../comedi_pci.h"
11e865c1 69
11e865c1
GP
70#include "s626.h"
71
dbb263f5 72struct s626_buffer_dma {
8e06d662
IA
73 dma_addr_t physical_base;
74 void *logical_base;
75};
76
427fda4e
TH
77/**
78 * struct s626_private - Working data for s626 driver.
79 * @ai_cmd_running: non-zero if ai_cmd is running.
80 * @ai_sample_timer: time between samples in units of the timer.
81 * @ai_convert_count: conversion counter.
82 * @ai_convert_timer: time between conversion in units of the timer.
83 * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
84 * @adc_items: number of items in ADC poll list.
85 * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
86 * @ana_buf: DMA buffer used to receive ADC data and hold DAC data.
87 * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
88 * @dacpol: image of DAC polarity register.
89 * @trim_setpoint: images of TrimDAC setpoints.
90 * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
91 */
eb5e029e 92struct s626_private {
427fda4e
TH
93 u8 ai_cmd_running;
94 unsigned int ai_sample_timer;
95 int ai_convert_count;
96 unsigned int ai_convert_timer;
97 u16 counter_int_enabs;
98 u8 adc_items;
99 struct s626_buffer_dma rps_buf;
100 struct s626_buffer_dma ana_buf;
101 u32 *dac_wbuf;
102 u16 dacpol;
103 u8 trim_setpoint[12];
104 u32 i2c_adrs;
eb5e029e 105};
11e865c1 106
8ee52611 107/* Counter overflow/index event flag masks for RDMISC2. */
676921c9
IA
108#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
109#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
11e865c1 110
ddd9813e
HS
111/*
112 * Enable/disable a function or test status bit(s) that are accessed
113 * through Main Control Registers 1 or 2.
114 */
115static void s626_mc_enable(struct comedi_device *dev,
116 unsigned int cmd, unsigned int reg)
117{
ddd9813e
HS
118 unsigned int val = (cmd << 16) | cmd;
119
bb49cddc 120 mmiowb();
de9cd5ca 121 writel(val, dev->mmio + reg);
ddd9813e 122}
11e865c1 123
c5cf4606
HS
124static void s626_mc_disable(struct comedi_device *dev,
125 unsigned int cmd, unsigned int reg)
126{
ddd54d65 127 writel(cmd << 16, dev->mmio + reg);
bb49cddc 128 mmiowb();
c5cf4606 129}
11e865c1 130
95bb7982
HS
131static bool s626_mc_test(struct comedi_device *dev,
132 unsigned int cmd, unsigned int reg)
133{
95bb7982
HS
134 unsigned int val;
135
de9cd5ca 136 val = readl(dev->mmio + reg);
95bb7982
HS
137
138 return (val & cmd) ? true : false;
139}
11e865c1 140
676921c9 141#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
11e865c1 142
8ee52611 143/* Write a time slot control record to TSL2. */
d8515652 144#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
11e865c1 145
90d54ff2
HS
146static const struct comedi_lrange s626_range_table = {
147 2, {
148 BIP_RANGE(5),
481ac510 149 BIP_RANGE(10)
90d54ff2 150 }
11e865c1
GP
151};
152
8ee52611
IA
153/*
154 * Execute a DEBI transfer. This must be called from within a critical section.
155 */
31de1948 156static void s626_debi_transfer(struct comedi_device *dev)
6b387b70 157{
59a32a46
CS
158 static const int timeout = 10000;
159 int i;
7f2f7e05 160
ddd9813e 161 /* Initiate upload of shadow RAM to DEBI control register */
d8515652 162 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
6b387b70 163
95bb7982
HS
164 /*
165 * Wait for completion of upload from shadow RAM to
166 * DEBI control register.
167 */
59a32a46
CS
168 for (i = 0; i < timeout; i++) {
169 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
170 break;
171 udelay(1);
172 }
173 if (i == timeout)
cefe9336
HS
174 dev_err(dev->class_dev,
175 "Timeout while uploading to DEBI control register\n");
6b387b70 176
be008602 177 /* Wait until DEBI transfer is done */
59a32a46 178 for (i = 0; i < timeout; i++) {
de9cd5ca 179 if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
59a32a46
CS
180 break;
181 udelay(1);
182 }
183 if (i == timeout)
cefe9336 184 dev_err(dev->class_dev, "DEBI transfer timeout\n");
6b387b70
HS
185}
186
8ee52611
IA
187/*
188 * Read a value from a gate array register.
189 */
0bc45380 190static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
6b387b70 191{
25f8fd5e 192 /* Set up DEBI control register value in shadow RAM */
de9cd5ca 193 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
6b387b70
HS
194
195 /* Execute the DEBI transfer. */
31de1948 196 s626_debi_transfer(dev);
6b387b70 197
de9cd5ca 198 return readl(dev->mmio + S626_P_DEBIAD);
6b387b70
HS
199}
200
8ee52611
IA
201/*
202 * Write a value to a gate array register.
203 */
0bc45380
SR
204static void s626_debi_write(struct comedi_device *dev, u16 addr,
205 u16 wdata)
6b387b70 206{
25f8fd5e 207 /* Set up DEBI control register value in shadow RAM */
de9cd5ca
HS
208 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
209 writel(wdata, dev->mmio + S626_P_DEBIAD);
6b387b70
HS
210
211 /* Execute the DEBI transfer. */
31de1948 212 s626_debi_transfer(dev);
6b387b70
HS
213}
214
8ee52611
IA
215/*
216 * Replace the specified bits in a gate array register. Imports: mask
6b387b70
HS
217 * specifies bits that are to be preserved, wdata is new value to be
218 * or'd with the masked original.
219 */
31de1948
IA
220static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
221 unsigned int mask, unsigned int wdata)
6b387b70 222{
be008602 223 unsigned int val;
6b387b70 224
12f4e2f2 225 addr &= 0xffff;
de9cd5ca 226 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
31de1948 227 s626_debi_transfer(dev);
6b387b70 228
de9cd5ca
HS
229 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
230 val = readl(dev->mmio + S626_P_DEBIAD);
be008602
HS
231 val &= mask;
232 val |= wdata;
de9cd5ca 233 writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
31de1948 234 s626_debi_transfer(dev);
6b387b70
HS
235}
236
982e3d11
HS
237/* ************** EEPROM ACCESS FUNCTIONS ************** */
238
571845c6 239static int s626_i2c_handshake_eoc(struct comedi_device *dev,
6c7d2c8b
HS
240 struct comedi_subdevice *s,
241 struct comedi_insn *insn,
242 unsigned long context)
571845c6
CS
243{
244 bool status;
245
246 status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
247 if (status)
248 return 0;
249 return -EBUSY;
250}
251
b13db6bf 252static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
982e3d11 253{
be008602 254 unsigned int ctrl;
571845c6 255 int ret;
7f2f7e05 256
25f8fd5e 257 /* Write I2C command to I2C Transfer Control shadow register */
de9cd5ca 258 writel(val, dev->mmio + S626_P_I2CCTRL);
982e3d11 259
ddd9813e
HS
260 /*
261 * Upload I2C shadow registers into working registers and
262 * wait for upload confirmation.
263 */
d8515652 264 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
265 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
266 if (ret)
267 return ret;
982e3d11 268
be008602
HS
269 /* Wait until I2C bus transfer is finished or an error occurs */
270 do {
de9cd5ca 271 ctrl = readl(dev->mmio + S626_P_I2CCTRL);
d8515652 272 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
982e3d11 273
be008602 274 /* Return non-zero if I2C error occurred */
d8515652 275 return ctrl & S626_I2C_ERR;
982e3d11
HS
276}
277
d9f9600b
SR
278/* Read u8 from EEPROM. */
279static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
982e3d11 280{
7f2f7e05 281 struct s626_private *devpriv = dev->private;
982e3d11 282
8ee52611
IA
283 /*
284 * Send EEPROM target address:
285 * Byte2 = I2C command: write to I2C EEPROM device.
286 * Byte1 = EEPROM internal target address.
287 * Byte0 = Not sent.
288 */
d8515652
IA
289 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
290 devpriv->i2c_adrs) |
291 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
292 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 293 /* Abort function and declare error if handshake failed. */
982e3d11 294 return 0;
982e3d11 295
8ee52611
IA
296 /*
297 * Execute EEPROM read:
298 * Byte2 = I2C command: read from I2C EEPROM device.
299 * Byte1 receives uint8_t from EEPROM.
300 * Byte0 = Not sent.
301 */
d8515652 302 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
6c7d2c8b 303 (devpriv->i2c_adrs | 1)) |
d8515652
IA
304 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
305 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 306 /* Abort function and declare error if handshake failed. */
982e3d11 307 return 0;
be008602 308
de9cd5ca 309 return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
982e3d11
HS
310}
311
95414729
HS
312/* *********** DAC FUNCTIONS *********** */
313
8ee52611 314/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
d9f9600b 315static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
95414729 316
8ee52611 317/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
d9f9600b 318static const u8 s626_trimadrs[] = {
8ee52611
IA
319 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
320};
95414729 321
59a32a46
CS
322enum {
323 s626_send_dac_wait_not_mc1_a2out,
324 s626_send_dac_wait_ssr_af2_out,
325 s626_send_dac_wait_fb_buffer2_msb_00,
326 s626_send_dac_wait_fb_buffer2_msb_ff
327};
328
329static int s626_send_dac_eoc(struct comedi_device *dev,
330 struct comedi_subdevice *s,
331 struct comedi_insn *insn,
332 unsigned long context)
333{
59a32a46
CS
334 unsigned int status;
335
336 switch (context) {
337 case s626_send_dac_wait_not_mc1_a2out:
de9cd5ca 338 status = readl(dev->mmio + S626_P_MC1);
59a32a46
CS
339 if (!(status & S626_MC1_A2OUT))
340 return 0;
341 break;
342 case s626_send_dac_wait_ssr_af2_out:
de9cd5ca 343 status = readl(dev->mmio + S626_P_SSR);
59a32a46
CS
344 if (status & S626_SSR_AF2_OUT)
345 return 0;
346 break;
347 case s626_send_dac_wait_fb_buffer2_msb_00:
de9cd5ca 348 status = readl(dev->mmio + S626_P_FB_BUFFER2);
59a32a46
CS
349 if (!(status & 0xff000000))
350 return 0;
351 break;
352 case s626_send_dac_wait_fb_buffer2_msb_ff:
de9cd5ca 353 status = readl(dev->mmio + S626_P_FB_BUFFER2);
59a32a46
CS
354 if (status & 0xff000000)
355 return 0;
356 break;
357 default:
358 return -EINVAL;
359 }
360 return -EBUSY;
361}
362
8ee52611
IA
363/*
364 * Private helper function: Transmit serial data to DAC via Audio
95414729 365 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
07a36d66 366 * dacpol contains valid target image.
95414729 367 */
b13db6bf 368static int s626_send_dac(struct comedi_device *dev, u32 val)
95414729 369{
7f2f7e05 370 struct s626_private *devpriv = dev->private;
59a32a46 371 int ret;
95414729
HS
372
373 /* START THE SERIAL CLOCK RUNNING ------------- */
374
8ee52611
IA
375 /*
376 * Assert DAC polarity control and enable gating of DAC serial clock
95414729
HS
377 * and audio bit stream signals. At this point in time we must be
378 * assured of being in time slot 0. If we are not in slot 0, the
379 * serial clock and audio stream signals will be disabled; this is
31de1948
IA
380 * because the following s626_debi_write statement (which enables
381 * signals to be passed through the gate array) would execute before
382 * the trailing edge of WS1/WS3 (which turns off the signals), thus
95414729
HS
383 * causing the signals to be inactive during the DAC write.
384 */
d8515652 385 s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
95414729
HS
386
387 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
388
389 /* Copy DAC setpoint value to DAC's output DMA buffer. */
de9cd5ca 390 /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
07a36d66 391 *devpriv->dac_wbuf = val;
95414729 392
ddd9813e
HS
393 /*
394 * Enable the output DMA transfer. This will cause the DMAC to copy
395 * the DAC's data value to A2's output FIFO. The DMA transfer will
95414729
HS
396 * then immediately terminate because the protection address is
397 * reached upon transfer of the first DWORD value.
398 */
d8515652 399 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
95414729 400
8ee52611 401 /* While the DMA transfer is executing ... */
95414729 402
25f8fd5e
HS
403 /*
404 * Reset Audio2 output FIFO's underflow flag (along with any
405 * other FIFO underflow/overflow flags). When set, this flag
406 * will indicate that we have emerged from slot 0.
95414729 407 */
de9cd5ca 408 writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
95414729 409
8ee52611
IA
410 /*
411 * Wait for the DMA transfer to finish so that there will be data
95414729
HS
412 * available in the FIFO when time slot 1 tries to transfer a DWORD
413 * from the FIFO to the output buffer register. We test for DMA
414 * Done by polling the DMAC enable flag; this flag is automatically
415 * cleared when the transfer has finished.
416 */
59a32a46
CS
417 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
418 s626_send_dac_wait_not_mc1_a2out);
a7aa94ce 419 if (ret) {
cefe9336 420 dev_err(dev->class_dev, "DMA transfer timeout\n");
a7aa94ce
CS
421 return ret;
422 }
95414729
HS
423
424 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
425
8ee52611
IA
426 /*
427 * FIFO data is now available, so we enable execution of time slots
95414729
HS
428 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
429 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
430 * detection.
431 */
d8515652 432 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
de9cd5ca 433 dev->mmio + S626_VECTPORT(0));
95414729 434
8ee52611
IA
435 /*
436 * Wait for slot 1 to execute to ensure that the Packet will be
95414729
HS
437 * transmitted. This is detected by polling the Audio2 output FIFO
438 * underflow flag, which will be set when slot 1 execution has
439 * finished transferring the DAC's data DWORD from the output FIFO
440 * to the output buffer register.
441 */
59a32a46
CS
442 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
443 s626_send_dac_wait_ssr_af2_out);
a7aa94ce 444 if (ret) {
cefe9336
HS
445 dev_err(dev->class_dev,
446 "TSL timeout waiting for slot 1 to execute\n");
a7aa94ce
CS
447 return ret;
448 }
95414729 449
8ee52611
IA
450 /*
451 * Set up to trap execution at slot 0 when the TSL sequencer cycles
95414729
HS
452 * back to slot 0 after executing the EOS in slot 5. Also,
453 * simultaneously shift out and in the 0x00 that is ALWAYS the value
454 * stored in the last byte to be shifted out of the FIFO's DWORD
455 * buffer register.
456 */
d8515652 457 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
de9cd5ca 458 dev->mmio + S626_VECTPORT(0));
95414729
HS
459
460 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
461
8ee52611
IA
462 /*
463 * Wait for the TSL to finish executing all time slots before
95414729
HS
464 * exiting this function. We must do this so that the next DAC
465 * write doesn't start, thereby enabling clock/chip select signals:
466 *
467 * 1. Before the TSL sequence cycles back to slot 0, which disables
468 * the clock/cs signal gating and traps slot // list execution.
469 * we have not yet finished slot 5 then the clock/cs signals are
470 * still gated and we have not finished transmitting the stream.
471 *
472 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
473 * this case, the slot sequence is currently repeating, but with
474 * clock/cs signals disabled. We must wait for slot 0 to trap
475 * execution before setting up the next DAC setpoint DMA transfer
476 * and enabling the clock/cs signals. To detect the end of slot 5,
477 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
478 * the TSL has not yet finished executing slot 5 ...
479 */
de9cd5ca 480 if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
8ee52611
IA
481 /*
482 * The trap was set on time and we are still executing somewhere
95414729
HS
483 * in slots 2-5, so we now wait for slot 0 to execute and trap
484 * TSL execution. This is detected when FB_BUFFER2 MSB changes
485 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
486 * out/in on SD2 the 0x00 that is always referenced by slot 5.
487 */
59a32a46
CS
488 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
489 s626_send_dac_wait_fb_buffer2_msb_00);
a7aa94ce 490 if (ret) {
cefe9336
HS
491 dev_err(dev->class_dev,
492 "TSL timeout waiting for slot 0 to execute\n");
a7aa94ce
CS
493 return ret;
494 }
95414729 495 }
8ee52611
IA
496 /*
497 * Either (1) we were too late setting the slot 0 trap; the TSL
95414729
HS
498 * sequencer restarted slot 0 before we could set the EOS trap flag,
499 * or (2) we were not late and execution is now trapped at slot 0.
500 * In either case, we must now change slot 0 so that it will store
501 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
502 * In order to do this, we reprogram slot 0 so that it will shift in
503 * SD3, which is driven only by a pull-up resistor.
504 */
d8515652 505 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
de9cd5ca 506 dev->mmio + S626_VECTPORT(0));
95414729 507
8ee52611
IA
508 /*
509 * Wait for slot 0 to execute, at which time the TSL is setup for
95414729
HS
510 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
511 * from 0x00 to 0xFF.
512 */
59a32a46
CS
513 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
514 s626_send_dac_wait_fb_buffer2_msb_ff);
a7aa94ce 515 if (ret) {
cefe9336
HS
516 dev_err(dev->class_dev,
517 "TSL timeout waiting for slot 0 to execute\n");
a7aa94ce
CS
518 return ret;
519 }
520 return 0;
95414729
HS
521}
522
8ee52611
IA
523/*
524 * Private helper function: Write setpoint to an application DAC channel.
525 */
6c7d2c8b 526static int s626_set_dac(struct comedi_device *dev,
0bc45380 527 u16 chan, int16_t dacdata)
95414729 528{
7f2f7e05 529 struct s626_private *devpriv = dev->private;
0bc45380 530 u16 signmask;
b13db6bf
SR
531 u32 ws_image;
532 u32 val;
95414729 533
8ee52611
IA
534 /*
535 * Adjust DAC data polarity and set up Polarity Control Register image.
536 */
95414729
HS
537 signmask = 1 << chan;
538 if (dacdata < 0) {
539 dacdata = -dacdata;
07a36d66 540 devpriv->dacpol |= signmask;
8ee52611 541 } else {
07a36d66 542 devpriv->dacpol &= ~signmask;
8ee52611 543 }
95414729 544
8ee52611 545 /* Limit DAC setpoint value to valid range. */
0bc45380 546 if ((u16)dacdata > 0x1FFF)
95414729
HS
547 dacdata = 0x1FFF;
548
8ee52611
IA
549 /*
550 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
95414729
HS
551 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
552 * data to a non-existent TrimDac channel just to keep the clock
553 * running after sending data to the target DAC. This is necessary
554 * to eliminate the clock glitch that would otherwise occur at the
555 * end of the target DAC's serial data stream. When the sequence
556 * restarts at V0 (after executing V5), the gate array automatically
557 * disables gating for the DAC clock and all DAC chip selects.
558 */
559
25f8fd5e 560 /* Choose DAC chip select to be asserted */
d8515652 561 ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
25f8fd5e 562 /* Slot 2: Transmit high data byte to target DAC */
d8515652 563 writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
de9cd5ca 564 dev->mmio + S626_VECTPORT(2));
25f8fd5e 565 /* Slot 3: Transmit low data byte to target DAC */
d8515652 566 writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
de9cd5ca 567 dev->mmio + S626_VECTPORT(3));
95414729 568 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
d8515652 569 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
de9cd5ca 570 dev->mmio + S626_VECTPORT(4));
25f8fd5e 571 /* Slot 5: running after writing target DAC's low data byte */
d8515652 572 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
de9cd5ca 573 dev->mmio + S626_VECTPORT(5));
95414729 574
8ee52611
IA
575 /*
576 * Construct and transmit target DAC's serial packet:
577 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
95414729
HS
578 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
579 * to a non-existent TrimDac channel) that serves to keep the clock
580 * running after the packet has been sent to the target DAC.
581 */
8ee52611 582 val = 0x0F000000; /* Continue clock after target DAC data
3137139a 583 * (write to non-existent trimdac).
584 */
8ee52611 585 val |= 0x00004000; /* Address the two main dual-DAC devices
3137139a 586 * (TSL's chip select enables target device).
587 */
b13db6bf 588 val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
3137139a 589 * within the device.
590 */
b13db6bf 591 val |= (u32)dacdata; /* Include DAC setpoint data. */
a7aa94ce 592 return s626_send_dac(dev, val);
95414729
HS
593}
594
6c7d2c8b 595static int s626_write_trim_dac(struct comedi_device *dev,
d9f9600b 596 u8 logical_chan, u8 dac_data)
95414729 597{
7f2f7e05 598 struct s626_private *devpriv = dev->private;
b13db6bf 599 u32 chan;
95414729 600
8ee52611
IA
601 /*
602 * Save the new setpoint in case the application needs to read it back
603 * later.
604 */
a2be0626 605 devpriv->trim_setpoint[logical_chan] = dac_data;
95414729 606
8ee52611 607 /* Map logical channel number to physical channel number. */
31de1948 608 chan = s626_trimchan[logical_chan];
95414729 609
8ee52611
IA
610 /*
611 * Set up TSL2 records for TrimDac write operation. All slots shift
95414729
HS
612 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
613 * can be detected.
614 */
615
25f8fd5e 616 /* Slot 2: Send high uint8_t to target TrimDac */
d8515652 617 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
de9cd5ca 618 dev->mmio + S626_VECTPORT(2));
25f8fd5e 619 /* Slot 3: Send low uint8_t to target TrimDac */
d8515652 620 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
de9cd5ca 621 dev->mmio + S626_VECTPORT(3));
25f8fd5e 622 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
d8515652 623 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
de9cd5ca 624 dev->mmio + S626_VECTPORT(4));
25f8fd5e 625 /* Slot 5: Send NOP low uint8_t to DAC0 */
d8515652 626 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
de9cd5ca 627 dev->mmio + S626_VECTPORT(5));
95414729 628
8ee52611
IA
629 /*
630 * Construct and transmit target DAC's serial packet:
631 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
95414729
HS
632 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
633 * WORD value (that writes a channel 0 NOP command to a non-existent
634 * main DAC channel) that serves to keep the clock running after the
635 * packet has been sent to the target DAC.
636 */
637
8ee52611
IA
638 /*
639 * Address the DAC channel within the trimdac device.
640 * Include DAC setpoint data.
641 */
a7aa94ce 642 return s626_send_dac(dev, (chan << 8) | dac_data);
95414729
HS
643}
644
a7aa94ce 645static int s626_load_trim_dacs(struct comedi_device *dev)
95414729 646{
d9f9600b 647 u8 i;
a7aa94ce 648 int ret;
95414729 649
8ee52611 650 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
a7aa94ce
CS
651 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
652 ret = s626_write_trim_dac(dev, i,
6c7d2c8b 653 s626_i2c_read(dev, s626_trimadrs[i]));
a7aa94ce
CS
654 if (ret)
655 return ret;
656 }
657 return 0;
95414729
HS
658}
659
e3eb08d0 660/* ****** COUNTER FUNCTIONS ******* */
8ee52611
IA
661
662/*
663 * All counter functions address a specific counter by means of the
e3eb08d0
HS
664 * "Counter" argument, which is a logical counter number. The Counter
665 * argument may have any of the following legal values: 0=0A, 1=1A,
666 * 2=2A, 3=0B, 4=1B, 5=2B.
667 */
668
8ee52611
IA
669/*
670 * Return/set a counter pair's latch trigger source. 0: On read
e3eb08d0
HS
671 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
672 * latches B.
673 */
31de1948 674static void s626_set_latch_source(struct comedi_device *dev,
0bc45380 675 unsigned int chan, u16 value)
e3eb08d0 676{
0c9a057c 677 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 678 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
0830ada5 679 S626_SET_CRB_LATCHSRC(value));
e3eb08d0
HS
680}
681
8ee52611
IA
682/*
683 * Write value into counter preload register.
684 */
31de1948 685static void s626_preload(struct comedi_device *dev,
b13db6bf 686 unsigned int chan, u32 value)
e3eb08d0 687{
0c9a057c
HS
688 s626_debi_write(dev, S626_LP_CNTR(chan), value);
689 s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
e3eb08d0
HS
690}
691
010be96f
IA
692/* ****** PRIVATE COUNTER FUNCTIONS ****** */
693
694/*
695 * Reset a counter's index and overflow event capture flags.
696 */
26499b8b 697static void s626_reset_cap_flags(struct comedi_device *dev,
0c9a057c 698 unsigned int chan)
010be96f 699{
0bc45380 700 u16 set;
010be96f 701
26499b8b 702 set = S626_SET_CRB_INTRESETCMD(1);
0c9a057c 703 if (chan < 3)
26499b8b
HS
704 set |= S626_SET_CRB_INTRESET_A(1);
705 else
706 set |= S626_SET_CRB_INTRESET_B(1);
707
0c9a057c 708 s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
010be96f
IA
709}
710
17afeac2
IA
711/*
712 * Set the operating mode for the specified counter. The setup
713 * parameter is treated as a COUNTER_SETUP data type. The following
714 * parameters are programmable (all other parms are ignored): ClkMult,
715 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
716 */
31de1948 717static void s626_set_mode_a(struct comedi_device *dev,
0bc45380
SR
718 unsigned int chan, u16 setup,
719 u16 disable_int_src)
17afeac2
IA
720{
721 struct s626_private *devpriv = dev->private;
0bc45380
SR
722 u16 cra;
723 u16 crb;
f7ede00d 724 unsigned int cntsrc, clkmult, clkpol;
17afeac2
IA
725
726 /* Initialize CRA and CRB images. */
727 /* Preload trigger is passed through. */
0830ada5 728 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
2cea19fa
IA
729 /* IndexSrc is passed through. */
730 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
731
732 /* Reset any pending CounterA event captures. */
0830ada5 733 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
17afeac2 734 /* Clock enable is passed through. */
0830ada5 735 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
17afeac2
IA
736
737 /* Force IntSrc to Disabled if disable_int_src is asserted. */
738 if (!disable_int_src)
0830ada5 739 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
17afeac2
IA
740
741 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
742 clkpol = S626_GET_STD_CLKPOL(setup);
743 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a 744 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
d8515652 745 /* Force to Timer mode (Extender valid only for B counters). */
622ec01a
IA
746 /* Fall through to case S626_ENCMODE_TIMER: */
747 case S626_ENCMODE_TIMER: /* Timer Mode: */
748 /* CntSrcA<1> selects system clock */
0830ada5 749 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 750 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
0830ada5 751 cntsrc |= clkpol;
17afeac2 752 /* ClkPolA behaves as always-on clock enable. */
0830ada5 753 clkpol = 1;
17afeac2 754 /* ClkMult must be 1x. */
7a1046e5 755 clkmult = S626_CLKMULT_1X;
17afeac2
IA
756 break;
757 default: /* Counter Mode: */
758 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 759 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 760 /* Clock polarity is passed through. */
17afeac2 761 /* Force multiplier to x1 if not legal, else pass through. */
0830ada5 762 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
763 if (clkmult == S626_CLKMULT_SPECIAL)
764 clkmult = S626_CLKMULT_1X;
17afeac2
IA
765 break;
766 }
0830ada5
IA
767 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
768 S626_SET_CRA_CLKMULT_A(clkmult);
17afeac2
IA
769
770 /*
771 * Force positive index polarity if IndxSrc is software-driven only,
772 * otherwise pass it through.
773 */
2cea19fa 774 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 775 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
776
777 /*
778 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
779 * enable mask to indicate the counter interrupt is disabled.
780 */
781 if (disable_int_src)
0c9a057c
HS
782 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
783 S626_INDXMASK(chan));
17afeac2
IA
784
785 /*
786 * While retaining CounterB and LatchSrc configurations, program the
787 * new counter operating mode.
788 */
0c9a057c 789 s626_debi_replace(dev, S626_LP_CRA(chan),
622ec01a 790 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
0c9a057c 791 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 792 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
17afeac2
IA
793}
794
31de1948 795static void s626_set_mode_b(struct comedi_device *dev,
0bc45380
SR
796 unsigned int chan, u16 setup,
797 u16 disable_int_src)
17afeac2
IA
798{
799 struct s626_private *devpriv = dev->private;
0bc45380
SR
800 u16 cra;
801 u16 crb;
f7ede00d 802 unsigned int cntsrc, clkmult, clkpol;
17afeac2
IA
803
804 /* Initialize CRA and CRB images. */
2cea19fa
IA
805 /* IndexSrc is passed through. */
806 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
807
808 /* Reset event captures and disable interrupts. */
0830ada5 809 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
17afeac2 810 /* Clock enable is passed through. */
0830ada5 811 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
17afeac2 812 /* Preload trigger source is passed through. */
0830ada5 813 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
17afeac2
IA
814
815 /* Force IntSrc to Disabled if disable_int_src is asserted. */
816 if (!disable_int_src)
0830ada5 817 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
17afeac2
IA
818
819 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
820 clkpol = S626_GET_STD_CLKPOL(setup);
821 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a
IA
822 case S626_ENCMODE_TIMER: /* Timer Mode: */
823 /* CntSrcB<1> selects system clock */
0830ada5 824 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 825 /* with direction (CntSrcB<0>) obtained from ClkPol. */
0830ada5 826 cntsrc |= clkpol;
17afeac2 827 /* ClkPolB behaves as always-on clock enable. */
0830ada5 828 clkpol = 1;
17afeac2 829 /* ClkMultB must be 1x. */
7a1046e5 830 clkmult = S626_CLKMULT_1X;
17afeac2 831 break;
622ec01a
IA
832 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
833 /* CntSrcB source is OverflowA (same as "timer") */
0830ada5 834 cntsrc = S626_CNTSRC_SYSCLK;
17afeac2 835 /* with direction obtained from ClkPol. */
0830ada5 836 cntsrc |= clkpol;
17afeac2 837 /* ClkPolB controls IndexB -- always set to active. */
0830ada5 838 clkpol = 1;
17afeac2 839 /* ClkMultB selects OverflowA as the clock source. */
7a1046e5 840 clkmult = S626_CLKMULT_SPECIAL;
17afeac2
IA
841 break;
842 default: /* Counter Mode: */
843 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 844 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 845 /* ClkPol is passed through. */
17afeac2 846 /* Force ClkMult to x1 if not legal, otherwise pass through. */
0830ada5 847 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
848 if (clkmult == S626_CLKMULT_SPECIAL)
849 clkmult = S626_CLKMULT_1X;
17afeac2
IA
850 break;
851 }
0830ada5
IA
852 cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
853 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
17afeac2
IA
854
855 /*
856 * Force positive index polarity if IndxSrc is software-driven only,
857 * otherwise pass it through.
858 */
2cea19fa 859 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 860 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
861
862 /*
863 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
864 * enable mask to indicate the counter interrupt is disabled.
865 */
866 if (disable_int_src)
0c9a057c
HS
867 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
868 S626_INDXMASK(chan));
17afeac2
IA
869
870 /*
871 * While retaining CounterA and LatchSrc configurations, program the
872 * new counter operating mode.
873 */
0c9a057c 874 s626_debi_replace(dev, S626_LP_CRA(chan),
622ec01a 875 ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
0c9a057c 876 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 877 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
17afeac2
IA
878}
879
b35d6a38 880static void s626_set_mode(struct comedi_device *dev,
0c9a057c 881 unsigned int chan,
0bc45380 882 u16 setup, u16 disable_int_src)
b35d6a38 883{
0c9a057c
HS
884 if (chan < 3)
885 s626_set_mode_a(dev, chan, setup, disable_int_src);
b35d6a38 886 else
0c9a057c 887 s626_set_mode_b(dev, chan, setup, disable_int_src);
b35d6a38
HS
888}
889
17afeac2
IA
890/*
891 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
892 */
c718f4a1 893static void s626_set_enable(struct comedi_device *dev,
0bc45380 894 unsigned int chan, u16 enab)
17afeac2 895{
c718f4a1
HS
896 unsigned int mask = S626_CRBMSK_INTCTRL;
897 unsigned int set;
17afeac2 898
0c9a057c 899 if (chan < 3) {
c718f4a1
HS
900 mask |= S626_CRBMSK_CLKENAB_A;
901 set = S626_SET_CRB_CLKENAB_A(enab);
902 } else {
903 mask |= S626_CRBMSK_CLKENAB_B;
904 set = S626_SET_CRB_CLKENAB_B(enab);
905 }
0c9a057c 906 s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
17afeac2
IA
907}
908
17afeac2
IA
909/*
910 * Return/set the event that will trigger transfer of the preload
911 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
912 * 2=OverflowA (B counters only), 3=disabled.
913 */
7f03b749 914static void s626_set_load_trig(struct comedi_device *dev,
0bc45380 915 unsigned int chan, u16 trig)
17afeac2 916{
0bc45380
SR
917 u16 reg;
918 u16 mask;
919 u16 set;
17afeac2 920
0c9a057c
HS
921 if (chan < 3) {
922 reg = S626_LP_CRA(chan);
7f03b749
HS
923 mask = S626_CRAMSK_LOADSRC_A;
924 set = S626_SET_CRA_LOADSRC_A(trig);
925 } else {
0c9a057c 926 reg = S626_LP_CRB(chan);
7f03b749
HS
927 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
928 set = S626_SET_CRB_LOADSRC_B(trig);
929 }
930 s626_debi_replace(dev, reg, ~mask, set);
17afeac2
IA
931}
932
bc284a2a
IA
933/*
934 * Return/set counter interrupt source and clear any captured
935 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
936 * 2=IndexOnly, 3=IndexAndOverflow.
937 */
253e2ee4 938static void s626_set_int_src(struct comedi_device *dev,
0bc45380 939 unsigned int chan, u16 int_source)
bc284a2a
IA
940{
941 struct s626_private *devpriv = dev->private;
0bc45380
SR
942 u16 cra_reg = S626_LP_CRA(chan);
943 u16 crb_reg = S626_LP_CRB(chan);
bc284a2a 944
0c9a057c 945 if (chan < 3) {
253e2ee4
HS
946 /* Reset any pending counter overflow or index captures */
947 s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
948 S626_SET_CRB_INTRESETCMD(1) |
949 S626_SET_CRB_INTRESET_A(1));
950
951 /* Program counter interrupt source */
952 s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
953 S626_SET_CRA_INTSRC_A(int_source));
954 } else {
0bc45380 955 u16 crb;
bc284a2a 956
253e2ee4
HS
957 /* Cache writeable CRB register image */
958 crb = s626_debi_read(dev, crb_reg);
959 crb &= ~S626_CRBMSK_INTCTRL;
bc284a2a 960
253e2ee4
HS
961 /* Reset any pending counter overflow or index captures */
962 s626_debi_write(dev, crb_reg,
963 crb | S626_SET_CRB_INTRESETCMD(1) |
964 S626_SET_CRB_INTRESET_B(1));
bc284a2a 965
253e2ee4
HS
966 /* Program counter interrupt source */
967 s626_debi_write(dev, crb_reg,
968 (crb & ~S626_CRBMSK_INTSRC_B) |
969 S626_SET_CRB_INTSRC_B(int_source));
970 }
bc284a2a
IA
971
972 /* Update MISC2 interrupt enable mask. */
0c9a057c
HS
973 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
974 S626_INDXMASK(chan));
f76d02f8
HS
975 switch (int_source) {
976 case 0:
977 default:
978 break;
979 case 1:
0c9a057c 980 devpriv->counter_int_enabs |= S626_OVERMASK(chan);
f76d02f8
HS
981 break;
982 case 2:
0c9a057c 983 devpriv->counter_int_enabs |= S626_INDXMASK(chan);
f76d02f8
HS
984 break;
985 case 3:
0c9a057c
HS
986 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
987 S626_INDXMASK(chan));
f76d02f8
HS
988 break;
989 }
bc284a2a
IA
990}
991
bc284a2a
IA
992/*
993 * Generate an index pulse.
994 */
92249e1f 995static void s626_pulse_index(struct comedi_device *dev,
0c9a057c 996 unsigned int chan)
bc284a2a 997{
0c9a057c 998 if (chan < 3) {
0bc45380 999 u16 cra;
bc284a2a 1000
0c9a057c 1001 cra = s626_debi_read(dev, S626_LP_CRA(chan));
bc284a2a 1002
92249e1f 1003 /* Pulse index */
0c9a057c 1004 s626_debi_write(dev, S626_LP_CRA(chan),
92249e1f 1005 (cra ^ S626_CRAMSK_INDXPOL_A));
0c9a057c 1006 s626_debi_write(dev, S626_LP_CRA(chan), cra);
92249e1f 1007 } else {
0bc45380 1008 u16 crb;
bc284a2a 1009
0c9a057c 1010 crb = s626_debi_read(dev, S626_LP_CRB(chan));
92249e1f
HS
1011 crb &= ~S626_CRBMSK_INTCTRL;
1012
1013 /* Pulse index */
0c9a057c 1014 s626_debi_write(dev, S626_LP_CRB(chan),
92249e1f 1015 (crb ^ S626_CRBMSK_INDXPOL_B));
0c9a057c 1016 s626_debi_write(dev, S626_LP_CRB(chan), crb);
92249e1f 1017 }
bc284a2a
IA
1018}
1019
5fd4b711 1020static unsigned int s626_ai_reg_to_uint(unsigned int data)
11e865c1 1021{
5fd4b711 1022 return ((data >> 18) & 0x3fff) ^ 0x2000;
020c44f3 1023}
8231eb56 1024
6baffbc2
HS
1025static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1026{
100b4edc
HS
1027 unsigned int group = chan / 16;
1028 unsigned int mask = 1 << (chan - (16 * group));
6baffbc2
HS
1029 unsigned int status;
1030
6baffbc2 1031 /* set channel to capture positive edge */
d8515652
IA
1032 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1033 s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
6baffbc2
HS
1034
1035 /* enable interrupt on selected channel */
d8515652
IA
1036 status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1037 s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
6baffbc2
HS
1038
1039 /* enable edge capture write command */
d8515652 1040 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
6baffbc2
HS
1041
1042 /* enable edge capture on selected channel */
d8515652
IA
1043 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1044 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
6baffbc2
HS
1045
1046 return 0;
1047}
1048
1049static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1050 unsigned int mask)
1051{
6baffbc2 1052 /* disable edge capture write command */
d8515652 1053 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2
HS
1054
1055 /* enable edge capture on selected channel */
d8515652 1056 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
6baffbc2
HS
1057
1058 return 0;
1059}
1060
1061static int s626_dio_clear_irq(struct comedi_device *dev)
1062{
1063 unsigned int group;
1064
1065 /* disable edge capture write command */
d8515652 1066 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2 1067
100b4edc
HS
1068 /* clear all dio pending events and interrupt */
1069 for (group = 0; group < S626_DIO_BANKS; group++)
d8515652 1070 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
6baffbc2
HS
1071
1072 return 0;
1073}
1074
31de1948 1075static void s626_handle_dio_interrupt(struct comedi_device *dev,
0bc45380 1076 u16 irqbit, u8 group)
65a17c29
HS
1077{
1078 struct s626_private *devpriv = dev->private;
1079 struct comedi_subdevice *s = dev->read_subdev;
1080 struct comedi_cmd *cmd = &s->async->cmd;
1081
1082 s626_dio_reset_irq(dev, group, irqbit);
1083
1084 if (devpriv->ai_cmd_running) {
1085 /* check if interrupt is an ai acquisition start trigger */
1086 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1087 cmd->start_src == TRIG_EXT) {
1088 /* Start executing the RPS program */
d8515652 1089 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
65a17c29
HS
1090
1091 if (cmd->scan_begin_src == TRIG_EXT)
1092 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1093 }
1094 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1095 cmd->scan_begin_src == TRIG_EXT) {
ddd9813e 1096 /* Trigger ADC scan loop start */
d8515652 1097 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1098
1099 if (cmd->convert_src == TRIG_EXT) {
1100 devpriv->ai_convert_count = cmd->chanlist_len;
1101
1102 s626_dio_set_irq(dev, cmd->convert_arg);
1103 }
1104
1105 if (cmd->convert_src == TRIG_TIMER) {
65a17c29 1106 devpriv->ai_convert_count = cmd->chanlist_len;
0c9a057c 1107 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
65a17c29
HS
1108 }
1109 }
1110 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1111 cmd->convert_src == TRIG_EXT) {
ddd9813e 1112 /* Trigger ADC scan loop start */
d8515652 1113 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1114
1115 devpriv->ai_convert_count--;
1116 if (devpriv->ai_convert_count > 0)
1117 s626_dio_set_irq(dev, cmd->convert_arg);
1118 }
1119 }
1120}
1121
31de1948 1122static void s626_check_dio_interrupts(struct comedi_device *dev)
65a17c29 1123{
0bc45380 1124 u16 irqbit;
d9f9600b 1125 u8 group;
65a17c29
HS
1126
1127 for (group = 0; group < S626_DIO_BANKS; group++) {
65a17c29 1128 /* read interrupt type */
d8515652 1129 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
65a17c29
HS
1130
1131 /* check if interrupt is generated from dio channels */
1132 if (irqbit) {
31de1948 1133 s626_handle_dio_interrupt(dev, irqbit, group);
65a17c29
HS
1134 return;
1135 }
1136 }
1137}
1138
31de1948 1139static void s626_check_counter_interrupts(struct comedi_device *dev)
0b9675d5
HS
1140{
1141 struct s626_private *devpriv = dev->private;
1142 struct comedi_subdevice *s = dev->read_subdev;
1143 struct comedi_async *async = s->async;
1144 struct comedi_cmd *cmd = &async->cmd;
0bc45380 1145 u16 irqbit;
0b9675d5
HS
1146
1147 /* read interrupt type */
d8515652 1148 irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
0b9675d5
HS
1149
1150 /* check interrupt on counters */
d8515652 1151 if (irqbit & S626_IRQ_COINT1A) {
0b9675d5 1152 /* clear interrupt capture flag */
0c9a057c 1153 s626_reset_cap_flags(dev, 0);
0b9675d5 1154 }
d8515652 1155 if (irqbit & S626_IRQ_COINT2A) {
0b9675d5 1156 /* clear interrupt capture flag */
0c9a057c 1157 s626_reset_cap_flags(dev, 1);
0b9675d5 1158 }
d8515652 1159 if (irqbit & S626_IRQ_COINT3A) {
0b9675d5 1160 /* clear interrupt capture flag */
0c9a057c 1161 s626_reset_cap_flags(dev, 2);
0b9675d5 1162 }
d8515652 1163 if (irqbit & S626_IRQ_COINT1B) {
0b9675d5 1164 /* clear interrupt capture flag */
0c9a057c 1165 s626_reset_cap_flags(dev, 3);
0b9675d5 1166 }
d8515652 1167 if (irqbit & S626_IRQ_COINT2B) {
0b9675d5 1168 /* clear interrupt capture flag */
0c9a057c 1169 s626_reset_cap_flags(dev, 4);
0b9675d5
HS
1170
1171 if (devpriv->ai_convert_count > 0) {
1172 devpriv->ai_convert_count--;
1173 if (devpriv->ai_convert_count == 0)
0c9a057c 1174 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
0b9675d5
HS
1175
1176 if (cmd->convert_src == TRIG_TIMER) {
ddd9813e 1177 /* Trigger ADC scan loop start */
d8515652
IA
1178 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1179 S626_P_MC2);
0b9675d5
HS
1180 }
1181 }
1182 }
d8515652 1183 if (irqbit & S626_IRQ_COINT3B) {
0b9675d5 1184 /* clear interrupt capture flag */
0c9a057c 1185 s626_reset_cap_flags(dev, 5);
0b9675d5
HS
1186
1187 if (cmd->scan_begin_src == TRIG_TIMER) {
ddd9813e 1188 /* Trigger ADC scan loop start */
d8515652 1189 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
0b9675d5
HS
1190 }
1191
1192 if (cmd->convert_src == TRIG_TIMER) {
0b9675d5 1193 devpriv->ai_convert_count = cmd->chanlist_len;
0c9a057c 1194 s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
0b9675d5
HS
1195 }
1196 }
1197}
1198
31de1948 1199static bool s626_handle_eos_interrupt(struct comedi_device *dev)
4c2d13e0
HS
1200{
1201 struct s626_private *devpriv = dev->private;
1202 struct comedi_subdevice *s = dev->read_subdev;
1203 struct comedi_async *async = s->async;
1204 struct comedi_cmd *cmd = &async->cmd;
1205 /*
1206 * Init ptr to DMA buffer that holds new ADC data. We skip the
1207 * first uint16_t in the buffer because it contains junk data
1208 * from the final ADC of the previous poll list scan.
1209 */
b13db6bf 1210 u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
4c2d13e0
HS
1211 int i;
1212
1213 /* get the data and hand it over to comedi */
1214 for (i = 0; i < cmd->chanlist_len; i++) {
5fd4b711 1215 unsigned short tempdata;
4c2d13e0
HS
1216
1217 /*
1218 * Convert ADC data to 16-bit integer values and copy
1219 * to application buffer.
1220 */
5fd4b711 1221 tempdata = s626_ai_reg_to_uint(*readaddr);
4c2d13e0
HS
1222 readaddr++;
1223
0e017a4b 1224 comedi_buf_write_samples(s, &tempdata, 1);
4c2d13e0
HS
1225 }
1226
aee15aea
HS
1227 if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1228 async->events |= COMEDI_CB_EOA;
4c2d13e0 1229
aee15aea
HS
1230 if (async->events & COMEDI_CB_CANCEL_MASK)
1231 devpriv->ai_cmd_running = 0;
4c2d13e0
HS
1232
1233 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1234 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1235
365dae93 1236 comedi_handle_events(dev, s);
4c2d13e0 1237
365dae93 1238 return !devpriv->ai_cmd_running;
4c2d13e0
HS
1239}
1240
020c44f3
HS
1241static irqreturn_t s626_irq_handler(int irq, void *d)
1242{
1243 struct comedi_device *dev = d;
020c44f3 1244 unsigned long flags;
b13db6bf 1245 u32 irqtype, irqstatus;
11e865c1 1246
a7401cdd 1247 if (!dev->attached)
020c44f3 1248 return IRQ_NONE;
8ee52611 1249 /* lock to avoid race with comedi_poll */
020c44f3 1250 spin_lock_irqsave(&dev->spinlock, flags);
11e865c1 1251
020c44f3 1252 /* save interrupt enable register state */
de9cd5ca 1253 irqstatus = readl(dev->mmio + S626_P_IER);
11e865c1 1254
020c44f3 1255 /* read interrupt type */
de9cd5ca 1256 irqtype = readl(dev->mmio + S626_P_ISR);
11e865c1 1257
020c44f3 1258 /* disable master interrupt */
de9cd5ca 1259 writel(0, dev->mmio + S626_P_IER);
11e865c1 1260
020c44f3 1261 /* clear interrupt */
de9cd5ca 1262 writel(irqtype, dev->mmio + S626_P_ISR);
11e865c1 1263
020c44f3 1264 switch (irqtype) {
d8515652 1265 case S626_IRQ_RPS1: /* end_of_scan occurs */
31de1948 1266 if (s626_handle_eos_interrupt(dev))
020c44f3 1267 irqstatus = 0;
020c44f3 1268 break;
d8515652 1269 case S626_IRQ_GPIO3: /* check dio and counter interrupt */
020c44f3 1270 /* s626_dio_clear_irq(dev); */
31de1948
IA
1271 s626_check_dio_interrupts(dev);
1272 s626_check_counter_interrupts(dev);
0b9675d5 1273 break;
020c44f3 1274 }
11e865c1 1275
020c44f3 1276 /* enable interrupt */
de9cd5ca 1277 writel(irqstatus, dev->mmio + S626_P_IER);
b6c77757 1278
020c44f3
HS
1279 spin_unlock_irqrestore(&dev->spinlock, flags);
1280 return IRQ_HANDLED;
1281}
b6c77757 1282
020c44f3 1283/*
8ee52611 1284 * This function builds the RPS program for hardware driven acquisition.
020c44f3 1285 */
d9f9600b 1286static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
020c44f3 1287{
7f2f7e05 1288 struct s626_private *devpriv = dev->private;
9c9ab3c1
HS
1289 struct comedi_subdevice *s = dev->read_subdev;
1290 struct comedi_cmd *cmd = &s->async->cmd;
b13db6bf
SR
1291 u32 *rps;
1292 u32 jmp_adrs;
0bc45380
SR
1293 u16 i;
1294 u16 n;
b13db6bf 1295 u32 local_ppl;
11e865c1 1296
c5cf4606 1297 /* Stop RPS program in case it is currently running */
d8515652 1298 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1299
8ee52611 1300 /* Set starting logical address to write RPS commands. */
b13db6bf 1301 rps = (u32 *)devpriv->rps_buf.logical_base;
11e865c1 1302
25f8fd5e 1303 /* Initialize RPS instruction pointer */
b13db6bf 1304 writel((u32)devpriv->rps_buf.physical_base,
de9cd5ca 1305 dev->mmio + S626_P_RPSADDR1);
11e865c1 1306
07a36d66 1307 /* Construct RPS program in rps_buf DMA buffer */
857ced45 1308 if (cmd->scan_begin_src != TRIG_FOLLOW) {
8ee52611 1309 /* Wait for Start trigger. */
d8515652
IA
1310 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1311 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1312 }
11e865c1 1313
8ee52611
IA
1314 /*
1315 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
020c44f3
HS
1316 * because the first RPS DEBI Write following a non-RPS DEBI write
1317 * seems to always fail. If we don't do this dummy write, the ADC
1318 * gain might not be set to the value required for the first slot in
1319 * the poll list; the ADC gain would instead remain unchanged from
1320 * the previously programmed value.
1321 */
020c44f3 1322 /* Write DEBI Write command and address to shadow RAM. */
d8515652
IA
1323 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1324 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1325 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1326 /* Write DEBI immediate data to shadow RAM: */
d8515652
IA
1327 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
1328 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1329 /* Reset "shadow RAM uploaded" flag. */
d8515652
IA
1330 /* Invoke shadow RAM upload. */
1331 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1332 /* Wait for shadow upload to finish. */
1333 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1334
8ee52611
IA
1335 /*
1336 * Digitize all slots in the poll list. This is implemented as a
020c44f3 1337 * for loop to limit the slot count to 16 in case the application
d8515652 1338 * forgot to set the S626_EOPL flag in the final slot.
020c44f3 1339 */
07a36d66
IA
1340 for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1341 devpriv->adc_items++) {
8ee52611
IA
1342 /*
1343 * Convert application's poll list item to private board class
020c44f3
HS
1344 * format. Each app poll list item is an uint8_t with form
1345 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1346 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
b6c77757 1347 */
d8515652
IA
1348 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1349 S626_GSEL_BIPOLAR10V);
8ee52611
IA
1350
1351 /* Switch ADC analog gain. */
1352 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1353 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1354 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
8ee52611 1355 /* Write DEBI immediate data to shadow RAM. */
d8515652 1356 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
f1f7efce 1357 *rps++ = local_ppl;
8ee52611 1358 /* Reset "shadow RAM uploaded" flag. */
d8515652 1359 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1360 /* Invoke shadow RAM upload. */
d8515652 1361 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1362 /* Wait for shadow upload to finish. */
d8515652 1363 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
8ee52611 1364 /* Select ADC analog input channel. */
d8515652 1365 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
8ee52611 1366 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1367 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1368 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1369 /* Write DEBI immediate data to shadow RAM. */
f1f7efce 1370 *rps++ = local_ppl;
8ee52611 1371 /* Reset "shadow RAM uploaded" flag. */
d8515652 1372 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1373 /* Invoke shadow RAM upload. */
d8515652 1374 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1375 /* Wait for shadow upload to finish. */
d8515652 1376 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1377
8ee52611
IA
1378 /*
1379 * Delay at least 10 microseconds for analog input settling.
d8515652
IA
1380 * Instead of padding with NOPs, we use S626_RPS_JUMP
1381 * instructions here; this allows us to produce a longer delay
1382 * than is possible with NOPs because each S626_RPS_JUMP
1383 * flushes the RPS' instruction prefetch pipeline.
020c44f3 1384 */
f1f7efce 1385 jmp_adrs =
b13db6bf
SR
1386 (u32)devpriv->rps_buf.physical_base +
1387 (u32)((unsigned long)rps -
07a36d66
IA
1388 (unsigned long)devpriv->
1389 rps_buf.logical_base);
d8515652 1390 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
f1f7efce 1391 jmp_adrs += 8; /* Repeat to implement time delay: */
d8515652
IA
1392 /* Jump to next RPS instruction. */
1393 *rps++ = S626_RPS_JUMP;
f1f7efce 1394 *rps++ = jmp_adrs;
020c44f3 1395 }
11e865c1 1396
857ced45 1397 if (cmd->convert_src != TRIG_NOW) {
8ee52611 1398 /* Wait for Start trigger. */
d8515652
IA
1399 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1400 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1401 }
8ee52611
IA
1402 /* Start ADC by pulsing GPIO1. */
1403 /* Begin ADC Start pulse. */
d8515652
IA
1404 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1405 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1406 *rps++ = S626_RPS_NOP;
8ee52611
IA
1407 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1408 /* End ADC Start pulse. */
d8515652
IA
1409 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1410 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
8ee52611
IA
1411 /*
1412 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
020c44f3
HS
1413 * busy) and for data from previous conversion to shift into FB
1414 * BUFFER 1 register.
1415 */
d8515652
IA
1416 /* Wait for ADC done. */
1417 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
11e865c1 1418
8ee52611 1419 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652
IA
1420 *rps++ = S626_RPS_STREG |
1421 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
b13db6bf 1422 *rps++ = (u32)devpriv->ana_buf.physical_base +
f1f7efce 1423 (devpriv->adc_items << 2);
11e865c1 1424
8ee52611
IA
1425 /*
1426 * If this slot's EndOfPollList flag is set, all channels have
1427 * now been processed.
1428 */
d8515652 1429 if (*ppl++ & S626_EOPL) {
07a36d66 1430 devpriv->adc_items++; /* Adjust poll list item count. */
8ee52611 1431 break; /* Exit poll list processing loop. */
020c44f3
HS
1432 }
1433 }
11e865c1 1434
8ee52611
IA
1435 /*
1436 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
020c44f3
HS
1437 * ADC to stabilize for 2 microseconds before starting the final
1438 * (dummy) conversion. This delay is necessary to allow sufficient
1439 * time between last conversion finished and the start of the dummy
1440 * conversion. Without this delay, the last conversion's data value
1441 * is sometimes set to the previous conversion's data value.
1442 */
d8515652
IA
1443 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1444 *rps++ = S626_RPS_NOP;
11e865c1 1445
8ee52611
IA
1446 /*
1447 * Start a dummy conversion to cause the data from the last
020c44f3
HS
1448 * conversion of interest to be shifted in.
1449 */
d8515652
IA
1450 /* Begin ADC Start pulse. */
1451 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1452 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1453 *rps++ = S626_RPS_NOP;
020c44f3 1454 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
d8515652
IA
1455 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1456 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
11e865c1 1457
8ee52611
IA
1458 /*
1459 * Wait for the data from the last conversion of interest to arrive
020c44f3
HS
1460 * in FB BUFFER 1 register.
1461 */
d8515652 1462 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
11e865c1 1463
8ee52611 1464 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652 1465 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
b13db6bf 1466 *rps++ = (u32)devpriv->ana_buf.physical_base +
f1f7efce 1467 (devpriv->adc_items << 2);
11e865c1 1468
8ee52611
IA
1469 /* Indicate ADC scan loop is finished. */
1470 /* Signal ReadADC() that scan is done. */
d8515652 1471 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
11e865c1 1472
020c44f3 1473 /* invoke interrupt */
8ee52611 1474 if (devpriv->ai_cmd_running == 1)
d8515652 1475 *rps++ = S626_RPS_IRQ;
11e865c1 1476
8ee52611 1477 /* Restart RPS program at its beginning. */
d8515652 1478 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
b13db6bf 1479 *rps++ = (u32)devpriv->rps_buf.physical_base;
8ee52611
IA
1480
1481 /* End of RPS program build */
020c44f3 1482}
11e865c1 1483
45b281e4
HS
1484static int s626_ai_eoc(struct comedi_device *dev,
1485 struct comedi_subdevice *s,
1486 struct comedi_insn *insn,
1487 unsigned long context)
1488{
45b281e4
HS
1489 unsigned int status;
1490
de9cd5ca 1491 status = readl(dev->mmio + S626_P_PSR);
45b281e4
HS
1492 if (status & S626_PSR_GPIO2)
1493 return 0;
1494 return -EBUSY;
1495}
1496
020c44f3
HS
1497static int s626_ai_insn_read(struct comedi_device *dev,
1498 struct comedi_subdevice *s,
de9cd5ca
HS
1499 struct comedi_insn *insn,
1500 unsigned int *data)
020c44f3 1501{
0bc45380
SR
1502 u16 chan = CR_CHAN(insn->chanspec);
1503 u16 range = CR_RANGE(insn->chanspec);
1504 u16 adc_spec = 0;
b13db6bf
SR
1505 u32 gpio_image;
1506 u32 tmp;
45b281e4 1507 int ret;
020c44f3 1508 int n;
11e865c1 1509
8ee52611
IA
1510 /*
1511 * Convert application's ADC specification into form
020c44f3
HS
1512 * appropriate for register programming.
1513 */
1514 if (range == 0)
d8515652 1515 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
020c44f3 1516 else
d8515652 1517 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
11e865c1 1518
8ee52611 1519 /* Switch ADC analog gain. */
d8515652 1520 s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
11e865c1 1521
8ee52611 1522 /* Select ADC analog input channel. */
d8515652 1523 s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
11e865c1 1524
020c44f3 1525 for (n = 0; n < insn->n; n++) {
8ee52611 1526 /* Delay 10 microseconds for analog input settling. */
df6ff8a1 1527 usleep_range(10, 20);
11e865c1 1528
be008602 1529 /* Start ADC by pulsing GPIO1 low */
de9cd5ca 1530 gpio_image = readl(dev->mmio + S626_P_GPIO);
25f8fd5e 1531 /* Assert ADC Start command */
de9cd5ca 1532 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1533 /* and stretch it out */
de9cd5ca
HS
1534 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1535 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1536 /* Negate ADC Start command */
de9cd5ca 1537 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
11e865c1 1538
8ee52611
IA
1539 /*
1540 * Wait for ADC to complete (GPIO2 is asserted high when
1541 * ADC not busy) and for data from previous conversion to
1542 * shift into FB BUFFER 1 register.
1543 */
11e865c1 1544
be008602 1545 /* Wait for ADC done */
45b281e4
HS
1546 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1547 if (ret)
1548 return ret;
11e865c1 1549
be008602
HS
1550 /* Fetch ADC data */
1551 if (n != 0) {
de9cd5ca 1552 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
be008602
HS
1553 data[n - 1] = s626_ai_reg_to_uint(tmp);
1554 }
11e865c1 1555
8ee52611
IA
1556 /*
1557 * Allow the ADC to stabilize for 4 microseconds before
020c44f3
HS
1558 * starting the next (final) conversion. This delay is
1559 * necessary to allow sufficient time between last
1560 * conversion finished and the start of the next
1561 * conversion. Without this delay, the last conversion's
1562 * data value is sometimes set to the previous
1563 * conversion's data value.
1564 */
1565 udelay(4);
1566 }
11e865c1 1567
8ee52611
IA
1568 /*
1569 * Start a dummy conversion to cause the data from the
1570 * previous conversion to be shifted in.
1571 */
de9cd5ca 1572 gpio_image = readl(dev->mmio + S626_P_GPIO);
020c44f3 1573 /* Assert ADC Start command */
de9cd5ca 1574 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1575 /* and stretch it out */
de9cd5ca
HS
1576 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1577 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1578 /* Negate ADC Start command */
de9cd5ca 1579 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
11e865c1 1580
8ee52611 1581 /* Wait for the data to arrive in FB BUFFER 1 register. */
11e865c1 1582
be008602 1583 /* Wait for ADC done */
571845c6
CS
1584 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1585 if (ret)
1586 return ret;
11e865c1 1587
8ee52611 1588 /* Fetch ADC data from audio interface's input shift register. */
11e865c1 1589
be008602
HS
1590 /* Fetch ADC data */
1591 if (n != 0) {
de9cd5ca 1592 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
be008602
HS
1593 data[n - 1] = s626_ai_reg_to_uint(tmp);
1594 }
11e865c1 1595
020c44f3
HS
1596 return n;
1597}
11e865c1 1598
d9f9600b 1599static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
020c44f3 1600{
020c44f3 1601 int n;
11e865c1 1602
020c44f3 1603 for (n = 0; n < cmd->chanlist_len; n++) {
8ee52611 1604 if (CR_RANGE(cmd->chanlist[n]) == 0)
d8515652 1605 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
020c44f3 1606 else
d8515652 1607 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
020c44f3
HS
1608 }
1609 if (n != 0)
d8515652 1610 ppl[n - 1] |= S626_EOPL;
11e865c1 1611
020c44f3
HS
1612 return n;
1613}
11e865c1 1614
020c44f3 1615static int s626_ai_inttrig(struct comedi_device *dev,
478da5c9
HS
1616 struct comedi_subdevice *s,
1617 unsigned int trig_num)
020c44f3 1618{
478da5c9
HS
1619 struct comedi_cmd *cmd = &s->async->cmd;
1620
1621 if (trig_num != cmd->start_arg)
020c44f3 1622 return -EINVAL;
11e865c1 1623
ddd9813e 1624 /* Start executing the RPS program */
d8515652 1625 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1626
020c44f3 1627 s->async->inttrig = NULL;
11e865c1 1628
020c44f3
HS
1629 return 1;
1630}
11e865c1 1631
8ee52611
IA
1632/*
1633 * This function doesn't require a particular form, this is just what
6baffbc2
HS
1634 * happens to be used in some of the drivers. It should convert ns
1635 * nanoseconds to a counter value suitable for programming the device.
1636 * Also, it should adjust ns so that it cooresponds to the actual time
8ee52611
IA
1637 * that the device will use.
1638 */
a207c12f 1639static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
6baffbc2
HS
1640{
1641 int divider, base;
1642
1643 base = 500; /* 2MHz internal clock */
1644
889277b9
IA
1645 switch (flags & CMDF_ROUND_MASK) {
1646 case CMDF_ROUND_NEAREST:
6baffbc2 1647 default:
d9798aa6 1648 divider = DIV_ROUND_CLOSEST(*nanosec, base);
6baffbc2 1649 break;
889277b9 1650 case CMDF_ROUND_DOWN:
6baffbc2
HS
1651 divider = (*nanosec) / base;
1652 break;
889277b9 1653 case CMDF_ROUND_UP:
97996da1 1654 divider = DIV_ROUND_UP(*nanosec, base);
6baffbc2
HS
1655 break;
1656 }
1657
1658 *nanosec = base * divider;
1659 return divider - 1;
1660}
1661
3a305a66 1662static void s626_timer_load(struct comedi_device *dev,
0c9a057c 1663 unsigned int chan, int tick)
e3eb08d0 1664{
0bc45380 1665 u16 setup =
d8515652 1666 /* Preload upon index. */
0830ada5 1667 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 1668 /* Disable hardware index. */
0830ada5 1669 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 1670 /* Operating mode is Timer. */
0830ada5 1671 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
d8515652 1672 /* Count direction is Down. */
0830ada5 1673 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
d8515652 1674 /* Clock multiplier is 1x. */
0830ada5
IA
1675 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1676 /* Enabled by index */
1677 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
0bc45380 1678 u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
d8515652 1679 /* uint16_t enab = S626_CLKENAB_ALWAYS; */
e3eb08d0 1680
0c9a057c 1681 s626_set_mode(dev, chan, setup, false);
e3eb08d0 1682
8ee52611 1683 /* Set the preload register */
0c9a057c 1684 s626_preload(dev, chan, tick);
e3eb08d0 1685
8ee52611
IA
1686 /*
1687 * Software index pulse forces the preload register to load
1688 * into the counter
1689 */
0c9a057c
HS
1690 s626_set_load_trig(dev, chan, 0);
1691 s626_pulse_index(dev, chan);
e3eb08d0
HS
1692
1693 /* set reload on counter overflow */
0c9a057c 1694 s626_set_load_trig(dev, chan, 1);
e3eb08d0
HS
1695
1696 /* set interrupt on overflow */
0c9a057c 1697 s626_set_int_src(dev, chan, S626_INTSRC_OVER);
e3eb08d0 1698
0c9a057c
HS
1699 s626_set_latch_source(dev, chan, value_latchsrc);
1700 /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
e3eb08d0
HS
1701}
1702
8ee52611 1703/* TO COMPLETE */
020c44f3
HS
1704static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1705{
7f2f7e05 1706 struct s626_private *devpriv = dev->private;
d9f9600b 1707 u8 ppl[16];
020c44f3 1708 struct comedi_cmd *cmd = &s->async->cmd;
020c44f3 1709 int tick;
11e865c1 1710
020c44f3 1711 if (devpriv->ai_cmd_running) {
730b8e15
IA
1712 dev_err(dev->class_dev,
1713 "s626_ai_cmd: Another ai_cmd is running\n");
020c44f3
HS
1714 return -EBUSY;
1715 }
1716 /* disable interrupt */
de9cd5ca 1717 writel(0, dev->mmio + S626_P_IER);
11e865c1 1718
020c44f3 1719 /* clear interrupt request */
de9cd5ca 1720 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
11e865c1 1721
020c44f3
HS
1722 /* clear any pending interrupt */
1723 s626_dio_clear_irq(dev);
8ee52611 1724 /* s626_enc_clear_irq(dev); */
11e865c1 1725
020c44f3
HS
1726 /* reset ai_cmd_running flag */
1727 devpriv->ai_cmd_running = 0;
11e865c1 1728
020c44f3
HS
1729 s626_ai_load_polllist(ppl, cmd);
1730 devpriv->ai_cmd_running = 1;
1731 devpriv->ai_convert_count = 0;
11e865c1 1732
020c44f3
HS
1733 switch (cmd->scan_begin_src) {
1734 case TRIG_FOLLOW:
1735 break;
1736 case TRIG_TIMER:
8ee52611
IA
1737 /*
1738 * set a counter to generate adc trigger at scan_begin_arg
1739 * interval
1740 */
a207c12f 1741 tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
11e865c1 1742
020c44f3 1743 /* load timer value and enable interrupt */
0c9a057c
HS
1744 s626_timer_load(dev, 5, tick);
1745 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
020c44f3
HS
1746 break;
1747 case TRIG_EXT:
8ee52611 1748 /* set the digital line and interrupt for scan trigger */
020c44f3
HS
1749 if (cmd->start_src != TRIG_EXT)
1750 s626_dio_set_irq(dev, cmd->scan_begin_arg);
020c44f3
HS
1751 break;
1752 }
11e865c1 1753
020c44f3
HS
1754 switch (cmd->convert_src) {
1755 case TRIG_NOW:
1756 break;
1757 case TRIG_TIMER:
8ee52611
IA
1758 /*
1759 * set a counter to generate adc trigger at convert_arg
1760 * interval
1761 */
a207c12f 1762 tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
11e865c1 1763
020c44f3 1764 /* load timer value and enable interrupt */
0c9a057c
HS
1765 s626_timer_load(dev, 4, tick);
1766 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
020c44f3
HS
1767 break;
1768 case TRIG_EXT:
8ee52611
IA
1769 /* set the digital line and interrupt for convert trigger */
1770 if (cmd->scan_begin_src != TRIG_EXT &&
1771 cmd->start_src == TRIG_EXT)
020c44f3 1772 s626_dio_set_irq(dev, cmd->convert_arg);
020c44f3
HS
1773 break;
1774 }
11e865c1 1775
31de1948 1776 s626_reset_adc(dev, ppl);
11e865c1 1777
020c44f3
HS
1778 switch (cmd->start_src) {
1779 case TRIG_NOW:
ddd9813e 1780 /* Trigger ADC scan loop start */
d8515652 1781 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
11e865c1 1782
ddd9813e 1783 /* Start executing the RPS program */
d8515652 1784 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
020c44f3
HS
1785 s->async->inttrig = NULL;
1786 break;
1787 case TRIG_EXT:
1788 /* configure DIO channel for acquisition trigger */
1789 s626_dio_set_irq(dev, cmd->start_arg);
020c44f3
HS
1790 s->async->inttrig = NULL;
1791 break;
1792 case TRIG_INT:
1793 s->async->inttrig = s626_ai_inttrig;
1794 break;
11e865c1 1795 }
b6c77757 1796
020c44f3 1797 /* enable interrupt */
de9cd5ca 1798 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
b6c77757 1799
020c44f3
HS
1800 return 0;
1801}
b6c77757 1802
020c44f3
HS
1803static int s626_ai_cmdtest(struct comedi_device *dev,
1804 struct comedi_subdevice *s, struct comedi_cmd *cmd)
1805{
1806 int err = 0;
c646efe1 1807 unsigned int arg;
b6c77757 1808
27020ffe 1809 /* Step 1 : check if triggers are trivially valid */
b6c77757 1810
d044e28f
IA
1811 err |= comedi_check_trigger_src(&cmd->start_src,
1812 TRIG_NOW | TRIG_INT | TRIG_EXT);
1813 err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1814 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1815 err |= comedi_check_trigger_src(&cmd->convert_src,
1816 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1817 err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1818 err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
11e865c1 1819
020c44f3
HS
1820 if (err)
1821 return 1;
11e865c1 1822
27020ffe 1823 /* Step 2a : make sure trigger sources are unique */
11e865c1 1824
d044e28f
IA
1825 err |= comedi_check_trigger_is_unique(cmd->start_src);
1826 err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1827 err |= comedi_check_trigger_is_unique(cmd->convert_src);
1828 err |= comedi_check_trigger_is_unique(cmd->stop_src);
27020ffe
HS
1829
1830 /* Step 2b : and mutually compatible */
020c44f3
HS
1831
1832 if (err)
1833 return 2;
1834
478da5c9 1835 /* Step 3: check if arguments are trivially valid */
020c44f3 1836
478da5c9
HS
1837 switch (cmd->start_src) {
1838 case TRIG_NOW:
1839 case TRIG_INT:
d044e28f 1840 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
478da5c9
HS
1841 break;
1842 case TRIG_EXT:
d044e28f 1843 err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
478da5c9
HS
1844 break;
1845 }
1846
53a254b9 1847 if (cmd->scan_begin_src == TRIG_EXT)
d044e28f 1848 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
53a254b9 1849 if (cmd->convert_src == TRIG_EXT)
d044e28f 1850 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
11e865c1 1851
676921c9
IA
1852#define S626_MAX_SPEED 200000 /* in nanoseconds */
1853#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
11e865c1 1854
020c44f3 1855 if (cmd->scan_begin_src == TRIG_TIMER) {
d044e28f
IA
1856 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1857 S626_MAX_SPEED);
1858 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1859 S626_MIN_SPEED);
020c44f3 1860 } else {
d044e28f
IA
1861 /*
1862 * external trigger
1863 * should be level/edge, hi/lo specification here
1864 * should specify multiple external triggers
1865 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1866 */
020c44f3
HS
1867 }
1868 if (cmd->convert_src == TRIG_TIMER) {
d044e28f
IA
1869 err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1870 S626_MAX_SPEED);
1871 err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1872 S626_MIN_SPEED);
020c44f3 1873 } else {
d044e28f
IA
1874 /*
1875 * external trigger - see above
1876 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1877 */
020c44f3 1878 }
11e865c1 1879
d044e28f
IA
1880 err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1881 cmd->chanlist_len);
53a254b9
HS
1882
1883 if (cmd->stop_src == TRIG_COUNT)
d044e28f 1884 err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
53a254b9 1885 else /* TRIG_NONE */
d044e28f 1886 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
11e865c1 1887
020c44f3
HS
1888 if (err)
1889 return 3;
1890
1891 /* step 4: fix up any arguments */
1892
1893 if (cmd->scan_begin_src == TRIG_TIMER) {
c646efe1 1894 arg = cmd->scan_begin_arg;
a207c12f 1895 s626_ns_to_timer(&arg, cmd->flags);
d044e28f 1896 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
020c44f3 1897 }
c646efe1 1898
020c44f3 1899 if (cmd->convert_src == TRIG_TIMER) {
c646efe1 1900 arg = cmd->convert_arg;
a207c12f 1901 s626_ns_to_timer(&arg, cmd->flags);
d044e28f 1902 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
c646efe1
HS
1903
1904 if (cmd->scan_begin_src == TRIG_TIMER) {
1905 arg = cmd->convert_arg * cmd->scan_end_arg;
d044e28f
IA
1906 err |= comedi_check_trigger_arg_min(&cmd->
1907 scan_begin_arg,
1908 arg);
020c44f3 1909 }
11e865c1 1910 }
11e865c1 1911
020c44f3
HS
1912 if (err)
1913 return 4;
1914
1915 return 0;
11e865c1
GP
1916}
1917
020c44f3 1918static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
11e865c1 1919{
7f2f7e05
HS
1920 struct s626_private *devpriv = dev->private;
1921
c5cf4606 1922 /* Stop RPS program in case it is currently running */
d8515652 1923 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1924
020c44f3 1925 /* disable master interrupt */
de9cd5ca 1926 writel(0, dev->mmio + S626_P_IER);
11e865c1 1927
020c44f3 1928 devpriv->ai_cmd_running = 0;
11e865c1 1929
020c44f3
HS
1930 return 0;
1931}
11e865c1 1932
18259ffc
HS
1933static int s626_ao_insn_write(struct comedi_device *dev,
1934 struct comedi_subdevice *s,
1935 struct comedi_insn *insn,
1936 unsigned int *data)
11e865c1 1937{
18259ffc 1938 unsigned int chan = CR_CHAN(insn->chanspec);
020c44f3 1939 int i;
11e865c1 1940
020c44f3 1941 for (i = 0; i < insn->n; i++) {
e45c2379 1942 s16 dacdata = (s16)data[i];
18259ffc
HS
1943 int ret;
1944
020c44f3 1945 dacdata -= (0x1fff);
11e865c1 1946
a7aa94ce
CS
1947 ret = s626_set_dac(dev, chan, dacdata);
1948 if (ret)
1949 return ret;
11e865c1 1950
18259ffc
HS
1951 s->readback[chan] = data[i];
1952 }
11e865c1 1953
18259ffc 1954 return insn->n;
020c44f3 1955}
11e865c1 1956
8ee52611
IA
1957/* *************** DIGITAL I/O FUNCTIONS *************** */
1958
1959/*
020c44f3
HS
1960 * All DIO functions address a group of DIO channels by means of
1961 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
1962 * ports A, B and C, respectively.
1963 */
11e865c1 1964
020c44f3
HS
1965static void s626_dio_init(struct comedi_device *dev)
1966{
0bc45380 1967 u16 group;
11e865c1 1968
8ee52611 1969 /* Prepare to treat writes to WRCapSel as capture disables. */
d8515652 1970 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
11e865c1 1971
8ee52611 1972 /* For each group of sixteen channels ... */
020c44f3 1973 for (group = 0; group < S626_DIO_BANKS; group++) {
100b4edc 1974 /* Disable all interrupts */
d8515652 1975 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
100b4edc 1976 /* Disable all event captures */
d8515652 1977 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
100b4edc 1978 /* Init all DIOs to default edge polarity */
d8515652 1979 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
100b4edc 1980 /* Program all outputs to inactive state */
d8515652 1981 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
11e865c1 1982 }
020c44f3 1983}
11e865c1 1984
020c44f3
HS
1985static int s626_dio_insn_bits(struct comedi_device *dev,
1986 struct comedi_subdevice *s,
1515e522
HS
1987 struct comedi_insn *insn,
1988 unsigned int *data)
020c44f3 1989{
100b4edc 1990 unsigned long group = (unsigned long)s->private;
11e865c1 1991
6ea79c1d 1992 if (comedi_dio_update_state(s, data))
d8515652 1993 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
6ea79c1d 1994
d8515652 1995 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
11e865c1 1996
020c44f3 1997 return insn->n;
11e865c1
GP
1998}
1999
020c44f3
HS
2000static int s626_dio_insn_config(struct comedi_device *dev,
2001 struct comedi_subdevice *s,
e920fad2
HS
2002 struct comedi_insn *insn,
2003 unsigned int *data)
11e865c1 2004{
100b4edc 2005 unsigned long group = (unsigned long)s->private;
ddf62f2c
HS
2006 int ret;
2007
2008 ret = comedi_dio_insn_config(dev, s, insn, data, 0);
2009 if (ret)
2010 return ret;
11e865c1 2011
d8515652 2012 s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
11e865c1 2013
e920fad2 2014 return insn->n;
11e865c1
GP
2015}
2016
8ee52611
IA
2017/*
2018 * Now this function initializes the value of the counter (data[0])
2019 * and set the subdevice. To complete with trigger and interrupt
2020 * configuration.
2021 *
2022 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
affdc230 2023 * what is being configured, but this function appears to be using data[0]
8ee52611
IA
2024 * as a variable.
2025 */
020c44f3
HS
2026static int s626_enc_insn_config(struct comedi_device *dev,
2027 struct comedi_subdevice *s,
2028 struct comedi_insn *insn, unsigned int *data)
2029{
0c9a057c 2030 unsigned int chan = CR_CHAN(insn->chanspec);
0bc45380 2031 u16 setup =
d8515652 2032 /* Preload upon index. */
0830ada5 2033 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2034 /* Disable hardware index. */
0830ada5 2035 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2036 /* Operating mode is Counter. */
0830ada5 2037 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2038 /* Active high clock. */
0830ada5 2039 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2040 /* Clock multiplier is 1x. */
0830ada5
IA
2041 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2042 /* Enabled by index */
2043 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
c3e3a56d 2044 /* uint16_t disable_int_src = true; */
8ee52611 2045 /* uint32_t Preloadvalue; //Counter initial value */
0bc45380
SR
2046 u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2047 u16 enab = S626_CLKENAB_ALWAYS;
11e865c1 2048
8ee52611 2049 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
11e865c1 2050
0c9a057c
HS
2051 s626_set_mode(dev, chan, setup, true);
2052 s626_preload(dev, chan, data[0]);
2053 s626_pulse_index(dev, chan);
2054 s626_set_latch_source(dev, chan, value_latchsrc);
2055 s626_set_enable(dev, chan, (enab != 0));
11e865c1 2056
020c44f3
HS
2057 return insn->n;
2058}
11e865c1 2059
020c44f3
HS
2060static int s626_enc_insn_read(struct comedi_device *dev,
2061 struct comedi_subdevice *s,
81202ecf
HS
2062 struct comedi_insn *insn,
2063 unsigned int *data)
020c44f3 2064{
81202ecf 2065 unsigned int chan = CR_CHAN(insn->chanspec);
0bc45380 2066 u16 cntr_latch_reg = S626_LP_CNTR(chan);
81202ecf 2067 int i;
11e865c1 2068
81202ecf
HS
2069 for (i = 0; i < insn->n; i++) {
2070 unsigned int val;
11e865c1 2071
81202ecf
HS
2072 /*
2073 * Read the counter's output latch LSW/MSW.
2074 * Latches on LSW read.
2075 */
2076 val = s626_debi_read(dev, cntr_latch_reg);
2077 val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2078 data[i] = val;
2079 }
2080
2081 return insn->n;
020c44f3 2082}
11e865c1 2083
020c44f3
HS
2084static int s626_enc_insn_write(struct comedi_device *dev,
2085 struct comedi_subdevice *s,
2086 struct comedi_insn *insn, unsigned int *data)
2087{
0c9a057c 2088 unsigned int chan = CR_CHAN(insn->chanspec);
11e865c1 2089
8ee52611 2090 /* Set the preload register */
0c9a057c 2091 s626_preload(dev, chan, data[0]);
11e865c1 2092
8ee52611
IA
2093 /*
2094 * Software index pulse forces the preload register to load
2095 * into the counter
2096 */
0c9a057c
HS
2097 s626_set_load_trig(dev, chan, 0);
2098 s626_pulse_index(dev, chan);
2099 s626_set_load_trig(dev, chan, 2);
11e865c1 2100
020c44f3 2101 return 1;
11e865c1
GP
2102}
2103
0bc45380 2104static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
11e865c1 2105{
d8515652
IA
2106 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2107 s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2108 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
020c44f3 2109}
11e865c1 2110
31de1948 2111static void s626_counters_init(struct comedi_device *dev)
11e865c1 2112{
020c44f3 2113 int chan;
0bc45380 2114 u16 setup =
d8515652 2115 /* Preload upon index. */
0830ada5 2116 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2117 /* Disable hardware index. */
0830ada5 2118 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2119 /* Operating mode is counter. */
0830ada5 2120 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2121 /* Active high clock. */
0830ada5 2122 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2123 /* Clock multiplier is 1x. */
0830ada5 2124 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
d8515652 2125 /* Enabled by index */
0830ada5 2126 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
8ee52611
IA
2127
2128 /*
2129 * Disable all counter interrupts and clear any captured counter events.
2130 */
020c44f3 2131 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
0c9a057c
HS
2132 s626_set_mode(dev, chan, setup, true);
2133 s626_set_int_src(dev, chan, 0);
2134 s626_reset_cap_flags(dev, chan);
2135 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
020c44f3 2136 }
020c44f3 2137}
11e865c1 2138
b7047895
HS
2139static int s626_allocate_dma_buffers(struct comedi_device *dev)
2140{
2141 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2142 struct s626_private *devpriv = dev->private;
b7047895
HS
2143 void *addr;
2144 dma_addr_t appdma;
2145
d8515652 2146 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2147 if (!addr)
2148 return -ENOMEM;
07a36d66
IA
2149 devpriv->ana_buf.logical_base = addr;
2150 devpriv->ana_buf.physical_base = appdma;
b7047895 2151
d8515652 2152 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2153 if (!addr)
2154 return -ENOMEM;
07a36d66
IA
2155 devpriv->rps_buf.logical_base = addr;
2156 devpriv->rps_buf.physical_base = appdma;
b7047895 2157
b7047895
HS
2158 return 0;
2159}
2160
3757e795
HS
2161static void s626_free_dma_buffers(struct comedi_device *dev)
2162{
2163 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2164 struct s626_private *devpriv = dev->private;
2165
2166 if (!devpriv)
2167 return;
2168
2169 if (devpriv->rps_buf.logical_base)
2170 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2171 devpriv->rps_buf.logical_base,
2172 devpriv->rps_buf.physical_base);
2173 if (devpriv->ana_buf.logical_base)
2174 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2175 devpriv->ana_buf.logical_base,
2176 devpriv->ana_buf.physical_base);
2177}
2178
a7aa94ce 2179static int s626_initialize(struct comedi_device *dev)
020c44f3 2180{
7f2f7e05 2181 struct s626_private *devpriv = dev->private;
f1f7efce 2182 dma_addr_t phys_buf;
0bc45380 2183 u16 chan;
020c44f3 2184 int i;
a7aa94ce 2185 int ret;
11e865c1 2186
54a2a02e 2187 /* Enable DEBI and audio pins, enable I2C interface */
d8515652
IA
2188 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2189 S626_P_MC1);
54a2a02e
HS
2190
2191 /*
8ee52611 2192 * Configure DEBI operating mode
54a2a02e 2193 *
8ee52611
IA
2194 * Local bus is 16 bits wide
2195 * Declare DEBI transfer timeout interval
2196 * Set up byte lane steering
2197 * Intel-compatible local bus (DEBI never times out)
54a2a02e 2198 */
d8515652
IA
2199 writel(S626_DEBI_CFG_SLAVE16 |
2200 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
de9cd5ca 2201 S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
54a2a02e
HS
2202
2203 /* Disable MMU paging */
de9cd5ca 2204 writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
54a2a02e
HS
2205
2206 /* Init GPIO so that ADC Start* is negated */
de9cd5ca 2207 writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
68ad0ae0 2208
17553c88 2209 /* I2C device address for onboard eeprom (revb) */
07a36d66 2210 devpriv->i2c_adrs = 0xA0;
11e865c1 2211
54a2a02e
HS
2212 /*
2213 * Issue an I2C ABORT command to halt any I2C
2214 * operation in progress and reset BUSY flag.
2215 */
d8515652 2216 writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
de9cd5ca 2217 dev->mmio + S626_P_I2CSTAT);
d8515652 2218 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
2219 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2220 if (ret)
2221 return ret;
68ad0ae0 2222
54a2a02e
HS
2223 /*
2224 * Per SAA7146 data sheet, write to STATUS
2225 * reg twice to reset all I2C error flags.
2226 */
68ad0ae0 2227 for (i = 0; i < 2; i++) {
de9cd5ca 2228 writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
d8515652 2229 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2061d410
RKM
2230 ret = comedi_timeout(dev, NULL,
2231 NULL, s626_i2c_handshake_eoc, 0);
571845c6
CS
2232 if (ret)
2233 return ret;
68ad0ae0 2234 }
11e865c1 2235
54a2a02e
HS
2236 /*
2237 * Init audio interface functional attributes: set DAC/ADC
68ad0ae0
HS
2238 * serial clock rates, invert DAC serial clock so that
2239 * DAC data setup times are satisfied, enable DAC serial
2240 * clock out.
2241 */
de9cd5ca 2242 writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
11e865c1 2243
54a2a02e
HS
2244 /*
2245 * Set up TSL1 slot list, which is used to control the
d8515652
IA
2246 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2247 * S626_SIB_A1 = store data uint8_t at next available location
54a2a02e
HS
2248 * in FB BUFFER1 register.
2249 */
de9cd5ca 2250 writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
d8515652 2251 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
de9cd5ca 2252 dev->mmio + S626_P_TSL1 + 4);
11e865c1 2253
54a2a02e 2254 /* Enable TSL1 slot list so that it executes all the time */
de9cd5ca 2255 writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
11e865c1 2256
54a2a02e
HS
2257 /*
2258 * Initialize RPS registers used for ADC
2259 */
11e865c1 2260
54a2a02e 2261 /* Physical start of RPS program */
b13db6bf 2262 writel((u32)devpriv->rps_buf.physical_base,
de9cd5ca 2263 dev->mmio + S626_P_RPSADDR1);
54a2a02e 2264 /* RPS program performs no explicit mem writes */
de9cd5ca 2265 writel(0, dev->mmio + S626_P_RPSPAGE1);
54a2a02e 2266 /* Disable RPS timeouts */
de9cd5ca 2267 writel(0, dev->mmio + S626_P_RPS1_TOUT);
11e865c1 2268
59747847
HS
2269#if 0
2270 /*
2271 * SAA7146 BUG WORKAROUND
2272 *
2273 * Initialize SAA7146 ADC interface to a known state by
2274 * invoking ADCs until FB BUFFER 1 register shows that it
2275 * is correctly receiving ADC data. This is necessary
2276 * because the SAA7146 ADC interface does not start up in
2277 * a defined state after a PCI reset.
68ad0ae0 2278 */
59747847 2279 {
9c9ab3c1 2280 struct comedi_subdevice *s = dev->read_subdev;
f1f7efce
IA
2281 uint8_t poll_list;
2282 uint16_t adc_data;
2283 uint16_t start_val;
8ee52611
IA
2284 uint16_t index;
2285 unsigned int data[16];
59747847 2286
8ee52611 2287 /* Create a simple polling list for analog input channel 0 */
d8515652 2288 poll_list = S626_EOPL;
31de1948 2289 s626_reset_adc(dev, &poll_list);
59747847 2290
8ee52611 2291 /* Get initial ADC value */
9c9ab3c1 2292 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce 2293 start_val = data[0];
59747847 2294
8ee52611
IA
2295 /*
2296 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2297 * EXECUTION.
2298 *
2299 * Invoke ADCs until the new ADC value differs from the initial
2300 * value or a timeout occurs. The timeout protects against the
2301 * possibility that the driver is restarting and the ADC data is
2302 * a fixed value resulting from the applied ADC analog input
2303 * being unusually quiet or at the rail.
2304 */
2305 for (index = 0; index < 500; index++) {
9c9ab3c1 2306 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce
IA
2307 adc_data = data[0];
2308 if (adc_data != start_val)
8ee52611
IA
2309 break;
2310 }
59747847
HS
2311 }
2312#endif /* SAA7146 BUG WORKAROUND */
11e865c1 2313
54a2a02e
HS
2314 /*
2315 * Initialize the DAC interface
2316 */
11e865c1 2317
54a2a02e
HS
2318 /*
2319 * Init Audio2's output DMAC attributes:
2320 * burst length = 1 DWORD
2321 * threshold = 1 DWORD.
68ad0ae0 2322 */
de9cd5ca 2323 writel(0, dev->mmio + S626_P_PCI_BT_A);
68ad0ae0 2324
54a2a02e
HS
2325 /*
2326 * Init Audio2's output DMA physical addresses. The protection
68ad0ae0
HS
2327 * address is set to 1 DWORD past the base address so that a
2328 * single DWORD will be transferred each time a DMA transfer is
54a2a02e
HS
2329 * enabled.
2330 */
f1f7efce 2331 phys_buf = devpriv->ana_buf.physical_base +
b13db6bf
SR
2332 (S626_DAC_WDMABUF_OS * sizeof(u32));
2333 writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2334 writel((u32)(phys_buf + sizeof(u32)),
de9cd5ca 2335 dev->mmio + S626_P_PROTA2_OUT);
68ad0ae0 2336
54a2a02e
HS
2337 /*
2338 * Cache Audio2's output DMA buffer logical address. This is
2339 * where DAC data is buffered for A2 output DMA transfers.
2340 */
b13db6bf 2341 devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
d8515652 2342 S626_DAC_WDMABUF_OS;
68ad0ae0 2343
54a2a02e
HS
2344 /*
2345 * Audio2's output channels does not use paging. The
2346 * protection violation handling bit is set so that the
2347 * DMAC will automatically halt and its PCI address pointer
2348 * will be reset when the protection address is reached.
2349 */
de9cd5ca 2350 writel(8, dev->mmio + S626_P_PAGEA2_OUT);
68ad0ae0 2351
54a2a02e
HS
2352 /*
2353 * Initialize time slot list 2 (TSL2), which is used to control
68ad0ae0
HS
2354 * the clock generation for and serialization of data to be sent
2355 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2356 * execution; this permits other slots to be safely modified
2357 * without first turning off the TSL sequencer (which is
2358 * apparently impossible to do). Also, SD3 (which is driven by a
2359 * pull-up resistor) is shifted in and stored to the MSB of
2360 * FB_BUFFER2 to be used as evidence that the slot sequence has
2361 * not yet finished executing.
2362 */
11e865c1 2363
54a2a02e 2364 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
d8515652 2365 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
de9cd5ca 2366 dev->mmio + S626_VECTPORT(0));
11e865c1 2367
54a2a02e
HS
2368 /*
2369 * Initialize slot 1, which is constant. Slot 1 causes a
68ad0ae0
HS
2370 * DWORD to be transferred from audio channel 2's output FIFO
2371 * to the FIFO's output buffer so that it can be serialized
2372 * and sent to the DAC during subsequent slots. All remaining
2373 * slots are dynamically populated as required by the target
2374 * DAC device.
2375 */
54a2a02e
HS
2376
2377 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
de9cd5ca 2378 writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
11e865c1 2379
54a2a02e 2380 /* Start DAC's audio interface (TSL2) running */
de9cd5ca 2381 writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
11e865c1 2382
54a2a02e
HS
2383 /*
2384 * Init Trim DACs to calibrated values. Do it twice because the
68ad0ae0
HS
2385 * SAA7146 audio channel does not always reset properly and
2386 * sometimes causes the first few TrimDAC writes to malfunction.
2387 */
31de1948 2388 s626_load_trim_dacs(dev);
a7aa94ce
CS
2389 ret = s626_load_trim_dacs(dev);
2390 if (ret)
2391 return ret;
11e865c1 2392
54a2a02e
HS
2393 /*
2394 * Manually init all gate array hardware in case this is a soft
68ad0ae0
HS
2395 * reset (we have no way of determining whether this is a warm
2396 * or cold start). This is necessary because the gate array will
2397 * reset only in response to a PCI hard reset; there is no soft
54a2a02e
HS
2398 * reset function.
2399 */
11e865c1 2400
54a2a02e
HS
2401 /*
2402 * Init all DAC outputs to 0V and init all DAC setpoint and
68ad0ae0
HS
2403 * polarity images.
2404 */
a7aa94ce
CS
2405 for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2406 ret = s626_set_dac(dev, chan, 0);
2407 if (ret)
2408 return ret;
2409 }
11e865c1 2410
54a2a02e 2411 /* Init counters */
31de1948 2412 s626_counters_init(dev);
11e865c1 2413
54a2a02e
HS
2414 /*
2415 * Without modifying the state of the Battery Backup enab, disable
68ad0ae0
HS
2416 * the watchdog timer, set DIO channels 0-5 to operate in the
2417 * standard DIO (vs. counter overflow) mode, disable the battery
2418 * charger, and reset the watchdog interval selector to zero.
2419 */
d8515652
IA
2420 s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2421 S626_MISC2_BATT_ENABLE));
11e865c1 2422
54a2a02e 2423 /* Initialize the digital I/O subsystem */
68ad0ae0 2424 s626_dio_init(dev);
a7aa94ce
CS
2425
2426 return 0;
80ec9510
HS
2427}
2428
a690b7e5 2429static int s626_auto_attach(struct comedi_device *dev,
6c7d2c8b 2430 unsigned long context_unused)
80ec9510 2431{
750af5e5 2432 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2433 struct s626_private *devpriv;
80ec9510
HS
2434 struct comedi_subdevice *s;
2435 int ret;
2436
0bdab509 2437 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
c34fa261
HS
2438 if (!devpriv)
2439 return -ENOMEM;
80ec9510 2440
818f569f 2441 ret = comedi_pci_enable(dev);
80ec9510
HS
2442 if (ret)
2443 return ret;
80ec9510 2444
de9cd5ca
HS
2445 dev->mmio = pci_ioremap_bar(pcidev, 0);
2446 if (!dev->mmio)
80ec9510
HS
2447 return -ENOMEM;
2448
2449 /* disable master interrupt */
de9cd5ca 2450 writel(0, dev->mmio + S626_P_IER);
80ec9510
HS
2451
2452 /* soft reset */
de9cd5ca 2453 writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
80ec9510
HS
2454
2455 /* DMA FIXME DMA// */
2456
2457 ret = s626_allocate_dma_buffers(dev);
2458 if (ret)
2459 return ret;
2460
2461 if (pcidev->irq) {
2462 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2463 dev->board_name, dev);
2464
2465 if (ret == 0)
2466 dev->irq = pcidev->irq;
2467 }
2468
2469 ret = comedi_alloc_subdevices(dev, 6);
2470 if (ret)
2471 return ret;
2472
f0717f5d 2473 s = &dev->subdevices[0];
80ec9510 2474 /* analog input subdevice */
ca2f1091 2475 s->type = COMEDI_SUBD_AI;
f95321f3 2476 s->subdev_flags = SDF_READABLE | SDF_DIFF;
ca2f1091
HS
2477 s->n_chan = S626_ADC_CHANNELS;
2478 s->maxdata = 0x3fff;
2479 s->range_table = &s626_range_table;
2480 s->len_chanlist = S626_ADC_CHANNELS;
ca2f1091 2481 s->insn_read = s626_ai_insn_read;
2281befd
HS
2482 if (dev->irq) {
2483 dev->read_subdev = s;
f95321f3 2484 s->subdev_flags |= SDF_CMD_READ;
2281befd
HS
2485 s->do_cmd = s626_ai_cmd;
2486 s->do_cmdtest = s626_ai_cmdtest;
2487 s->cancel = s626_ai_cancel;
2488 }
80ec9510 2489
f0717f5d 2490 s = &dev->subdevices[1];
80ec9510 2491 /* analog output subdevice */
ca2f1091
HS
2492 s->type = COMEDI_SUBD_AO;
2493 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2494 s->n_chan = S626_DAC_CHANNELS;
2495 s->maxdata = 0x3fff;
2496 s->range_table = &range_bipolar10;
18259ffc 2497 s->insn_write = s626_ao_insn_write;
18259ffc
HS
2498
2499 ret = comedi_alloc_subdev_readback(s);
2500 if (ret)
2501 return ret;
80ec9510 2502
f0717f5d 2503 s = &dev->subdevices[2];
80ec9510 2504 /* digital I/O subdevice */
ca2f1091
HS
2505 s->type = COMEDI_SUBD_DIO;
2506 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2507 s->n_chan = 16;
2508 s->maxdata = 1;
2509 s->io_bits = 0xffff;
2510 s->private = (void *)0; /* DIO group 0 */
2511 s->range_table = &range_digital;
2512 s->insn_config = s626_dio_insn_config;
2513 s->insn_bits = s626_dio_insn_bits;
80ec9510 2514
f0717f5d 2515 s = &dev->subdevices[3];
80ec9510 2516 /* digital I/O subdevice */
ca2f1091
HS
2517 s->type = COMEDI_SUBD_DIO;
2518 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2519 s->n_chan = 16;
2520 s->maxdata = 1;
2521 s->io_bits = 0xffff;
2522 s->private = (void *)1; /* DIO group 1 */
2523 s->range_table = &range_digital;
2524 s->insn_config = s626_dio_insn_config;
2525 s->insn_bits = s626_dio_insn_bits;
80ec9510 2526
f0717f5d 2527 s = &dev->subdevices[4];
80ec9510 2528 /* digital I/O subdevice */
ca2f1091
HS
2529 s->type = COMEDI_SUBD_DIO;
2530 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2531 s->n_chan = 16;
2532 s->maxdata = 1;
2533 s->io_bits = 0xffff;
2534 s->private = (void *)2; /* DIO group 2 */
2535 s->range_table = &range_digital;
8ee52611 2536 s->insn_config = s626_dio_insn_config;
ca2f1091 2537 s->insn_bits = s626_dio_insn_bits;
80ec9510 2538
f0717f5d 2539 s = &dev->subdevices[5];
80ec9510 2540 /* encoder (counter) subdevice */
ca2f1091
HS
2541 s->type = COMEDI_SUBD_COUNTER;
2542 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2543 s->n_chan = S626_ENCODER_CHANNELS;
2544 s->maxdata = 0xffffff;
ca2f1091
HS
2545 s->range_table = &range_unknown;
2546 s->insn_config = s626_enc_insn_config;
2547 s->insn_read = s626_enc_insn_read;
2548 s->insn_write = s626_enc_insn_write;
80ec9510 2549
71b9f42e 2550 return s626_initialize(dev);
11e865c1
GP
2551}
2552
020c44f3 2553static void s626_detach(struct comedi_device *dev)
11e865c1 2554{
7f2f7e05 2555 struct s626_private *devpriv = dev->private;
f574af6d 2556
020c44f3
HS
2557 if (devpriv) {
2558 /* stop ai_command */
2559 devpriv->ai_cmd_running = 0;
11e865c1 2560
de9cd5ca 2561 if (dev->mmio) {
020c44f3 2562 /* interrupt mask */
25f8fd5e 2563 /* Disable master interrupt */
de9cd5ca 2564 writel(0, dev->mmio + S626_P_IER);
25f8fd5e 2565 /* Clear board's IRQ status flag */
d8515652 2566 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
de9cd5ca 2567 dev->mmio + S626_P_ISR);
11e865c1 2568
8ee52611 2569 /* Disable the watchdog timer and battery charger. */
31de1948 2570 s626_write_misc2(dev, 0);
11e865c1 2571
25f8fd5e 2572 /* Close all interfaces on 7146 device */
de9cd5ca
HS
2573 writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2574 writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
020c44f3 2575 }
f574af6d 2576 }
8075bfb6 2577 comedi_pci_detach(dev);
3757e795 2578 s626_free_dma_buffers(dev);
11e865c1 2579}
7122b76d 2580
75e6301b 2581static struct comedi_driver s626_driver = {
7122b76d
HS
2582 .driver_name = "s626",
2583 .module = THIS_MODULE,
750af5e5 2584 .auto_attach = s626_auto_attach,
7122b76d
HS
2585 .detach = s626_detach,
2586};
2587
a690b7e5 2588static int s626_pci_probe(struct pci_dev *dev,
b8f4ac23 2589 const struct pci_device_id *id)
7122b76d 2590{
b8f4ac23 2591 return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
7122b76d
HS
2592}
2593
7122b76d
HS
2594/*
2595 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2596 * also subvendor:subdevice ids, because otherwise it will conflict with
2597 * Philips SAA7146 media/dvb based cards.
2598 */
41e043fc 2599static const struct pci_device_id s626_pci_table[] = {
498c5070
IA
2600 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2601 0x6000, 0x0272) },
7122b76d
HS
2602 { 0 }
2603};
2604MODULE_DEVICE_TABLE(pci, s626_pci_table);
2605
75e6301b
HS
2606static struct pci_driver s626_pci_driver = {
2607 .name = "s626",
7122b76d 2608 .id_table = s626_pci_table,
75e6301b 2609 .probe = s626_pci_probe,
9901a4d7 2610 .remove = comedi_pci_auto_unconfig,
7122b76d 2611};
75e6301b 2612module_comedi_pci_driver(s626_driver, s626_pci_driver);
7122b76d
HS
2613
2614MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2615MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2616MODULE_LICENSE("GPL");