]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/staging/lustre/lustre/include/lu_object.h
staging/lustre: get rid of obd_* typedefs
[mirror_ubuntu-jammy-kernel.git] / drivers / staging / lustre / lustre / include / lu_object.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36
37#ifndef __LUSTRE_LU_OBJECT_H
38#define __LUSTRE_LU_OBJECT_H
39
40#include <stdarg.h>
9fdaf8c0 41#include "../../include/linux/libcfs/libcfs.h"
1accaadf
GKH
42#include "lustre/lustre_idl.h"
43#include "lu_ref.h"
d7e09d03
PT
44
45struct seq_file;
46struct proc_dir_entry;
47struct lustre_cfg;
48struct lprocfs_stats;
49
50/** \defgroup lu lu
51 * lu_* data-types represent server-side entities shared by data and meta-data
52 * stacks.
53 *
54 * Design goals:
55 *
56 * -# support for layering.
57 *
58 * Server side object is split into layers, one per device in the
59 * corresponding device stack. Individual layer is represented by struct
60 * lu_object. Compound layered object --- by struct lu_object_header. Most
61 * interface functions take lu_object as an argument and operate on the
62 * whole compound object. This decision was made due to the following
63 * reasons:
64 *
65 * - it's envisaged that lu_object will be used much more often than
66 * lu_object_header;
67 *
68 * - we want lower (non-top) layers to be able to initiate operations
69 * on the whole object.
70 *
71 * Generic code supports layering more complex than simple stacking, e.g.,
72 * it is possible that at some layer object "spawns" multiple sub-objects
73 * on the lower layer.
74 *
75 * -# fid-based identification.
76 *
77 * Compound object is uniquely identified by its fid. Objects are indexed
78 * by their fids (hash table is used for index).
79 *
80 * -# caching and life-cycle management.
81 *
82 * Object's life-time is controlled by reference counting. When reference
83 * count drops to 0, object is returned to cache. Cached objects still
84 * retain their identity (i.e., fid), and can be recovered from cache.
85 *
86 * Objects are kept in the global LRU list, and lu_site_purge() function
87 * can be used to reclaim given number of unused objects from the tail of
88 * the LRU.
89 *
90 * -# avoiding recursion.
91 *
92 * Generic code tries to replace recursion through layers by iterations
93 * where possible. Additionally to the end of reducing stack consumption,
94 * data, when practically possible, are allocated through lu_context_key
95 * interface rather than on stack.
96 * @{
97 */
98
99struct lu_site;
100struct lu_object;
101struct lu_device;
102struct lu_object_header;
103struct lu_context;
104struct lu_env;
105
106/**
107 * Operations common for data and meta-data devices.
108 */
109struct lu_device_operations {
110 /**
111 * Allocate object for the given device (without lower-layer
112 * parts). This is called by lu_object_operations::loo_object_init()
113 * from the parent layer, and should setup at least lu_object::lo_dev
114 * and lu_object::lo_ops fields of resulting lu_object.
115 *
116 * Object creation protocol.
117 *
118 * Due to design goal of avoiding recursion, object creation (see
119 * lu_object_alloc()) is somewhat involved:
120 *
121 * - first, lu_device_operations::ldo_object_alloc() method of the
122 * top-level device in the stack is called. It should allocate top
123 * level object (including lu_object_header), but without any
124 * lower-layer sub-object(s).
125 *
126 * - then lu_object_alloc() sets fid in the header of newly created
127 * object.
128 *
129 * - then lu_object_operations::loo_object_init() is called. It has
130 * to allocate lower-layer object(s). To do this,
131 * lu_object_operations::loo_object_init() calls ldo_object_alloc()
132 * of the lower-layer device(s).
133 *
134 * - for all new objects allocated by
135 * lu_object_operations::loo_object_init() (and inserted into object
136 * stack), lu_object_operations::loo_object_init() is called again
137 * repeatedly, until no new objects are created.
138 *
139 * \post ergo(!IS_ERR(result), result->lo_dev == d &&
140 * result->lo_ops != NULL);
141 */
142 struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
143 const struct lu_object_header *h,
144 struct lu_device *d);
145 /**
146 * process config specific for device.
147 */
148 int (*ldo_process_config)(const struct lu_env *env,
149 struct lu_device *, struct lustre_cfg *);
150 int (*ldo_recovery_complete)(const struct lu_env *,
151 struct lu_device *);
152
153 /**
154 * initialize local objects for device. this method called after layer has
155 * been initialized (after LCFG_SETUP stage) and before it starts serving
156 * user requests.
157 */
158
159 int (*ldo_prepare)(const struct lu_env *,
160 struct lu_device *parent,
161 struct lu_device *dev);
162
163};
164
165/**
166 * For lu_object_conf flags
167 */
168typedef enum {
169 /* This is a new object to be allocated, or the file
170 * corresponding to the object does not exists. */
171 LOC_F_NEW = 0x00000001,
172} loc_flags_t;
173
174/**
175 * Object configuration, describing particulars of object being created. On
176 * server this is not used, as server objects are full identified by fid. On
177 * client configuration contains struct lustre_md.
178 */
179struct lu_object_conf {
180 /**
181 * Some hints for obj find and alloc.
182 */
183 loc_flags_t loc_flags;
184};
185
186/**
187 * Type of "printer" function used by lu_object_operations::loo_object_print()
188 * method.
189 *
190 * Printer function is needed to provide some flexibility in (semi-)debugging
191 * output: possible implementations: printk, CDEBUG, sysfs/seq_file
192 */
193typedef int (*lu_printer_t)(const struct lu_env *env,
194 void *cookie, const char *format, ...)
195 __attribute__ ((format (printf, 3, 4)));
196
197/**
198 * Operations specific for particular lu_object.
199 */
200struct lu_object_operations {
201
202 /**
203 * Allocate lower-layer parts of the object by calling
204 * lu_device_operations::ldo_object_alloc() of the corresponding
205 * underlying device.
206 *
207 * This method is called once for each object inserted into object
208 * stack. It's responsibility of this method to insert lower-layer
209 * object(s) it create into appropriate places of object stack.
210 */
211 int (*loo_object_init)(const struct lu_env *env,
212 struct lu_object *o,
213 const struct lu_object_conf *conf);
214 /**
215 * Called (in top-to-bottom order) during object allocation after all
216 * layers were allocated and initialized. Can be used to perform
217 * initialization depending on lower layers.
218 */
219 int (*loo_object_start)(const struct lu_env *env,
220 struct lu_object *o);
221 /**
222 * Called before lu_object_operations::loo_object_free() to signal
223 * that object is being destroyed. Dual to
224 * lu_object_operations::loo_object_init().
225 */
226 void (*loo_object_delete)(const struct lu_env *env,
227 struct lu_object *o);
228 /**
229 * Dual to lu_device_operations::ldo_object_alloc(). Called when
230 * object is removed from memory.
231 */
232 void (*loo_object_free)(const struct lu_env *env,
233 struct lu_object *o);
234 /**
235 * Called when last active reference to the object is released (and
236 * object returns to the cache). This method is optional.
237 */
238 void (*loo_object_release)(const struct lu_env *env,
239 struct lu_object *o);
240 /**
241 * Optional debugging helper. Print given object.
242 */
243 int (*loo_object_print)(const struct lu_env *env, void *cookie,
244 lu_printer_t p, const struct lu_object *o);
245 /**
246 * Optional debugging method. Returns true iff method is internally
247 * consistent.
248 */
249 int (*loo_object_invariant)(const struct lu_object *o);
250};
251
252/**
253 * Type of lu_device.
254 */
255struct lu_device_type;
256
257/**
258 * Device: a layer in the server side abstraction stacking.
259 */
260struct lu_device {
261 /**
262 * reference count. This is incremented, in particular, on each object
263 * created at this layer.
264 *
265 * \todo XXX which means that atomic_t is probably too small.
266 */
267 atomic_t ld_ref;
268 /**
269 * Pointer to device type. Never modified once set.
270 */
271 struct lu_device_type *ld_type;
272 /**
273 * Operation vector for this device.
274 */
275 const struct lu_device_operations *ld_ops;
276 /**
277 * Stack this device belongs to.
278 */
279 struct lu_site *ld_site;
280 struct proc_dir_entry *ld_proc_entry;
281
282 /** \todo XXX: temporary back pointer into obd. */
283 struct obd_device *ld_obd;
284 /**
285 * A list of references to this object, for debugging.
286 */
287 struct lu_ref ld_reference;
288 /**
289 * Link the device to the site.
290 **/
291 struct list_head ld_linkage;
292};
293
294struct lu_device_type_operations;
295
296/**
297 * Tag bits for device type. They are used to distinguish certain groups of
298 * device types.
299 */
300enum lu_device_tag {
301 /** this is meta-data device */
302 LU_DEVICE_MD = (1 << 0),
303 /** this is data device */
304 LU_DEVICE_DT = (1 << 1),
305 /** data device in the client stack */
306 LU_DEVICE_CL = (1 << 2)
307};
308
309/**
310 * Type of device.
311 */
312struct lu_device_type {
313 /**
314 * Tag bits. Taken from enum lu_device_tag. Never modified once set.
315 */
316 __u32 ldt_tags;
317 /**
318 * Name of this class. Unique system-wide. Never modified once set.
319 */
320 char *ldt_name;
321 /**
322 * Operations for this type.
323 */
324 const struct lu_device_type_operations *ldt_ops;
325 /**
326 * \todo XXX: temporary pointer to associated obd_type.
327 */
328 struct obd_type *ldt_obd_type;
329 /**
330 * \todo XXX: temporary: context tags used by obd_*() calls.
331 */
332 __u32 ldt_ctx_tags;
333 /**
334 * Number of existing device type instances.
335 */
336 unsigned ldt_device_nr;
337 /**
338 * Linkage into a global list of all device types.
339 *
340 * \see lu_device_types.
341 */
342 struct list_head ldt_linkage;
343};
344
345/**
346 * Operations on a device type.
347 */
348struct lu_device_type_operations {
349 /**
350 * Allocate new device.
351 */
352 struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
353 struct lu_device_type *t,
354 struct lustre_cfg *lcfg);
355 /**
356 * Free device. Dual to
357 * lu_device_type_operations::ldto_device_alloc(). Returns pointer to
358 * the next device in the stack.
359 */
360 struct lu_device *(*ldto_device_free)(const struct lu_env *,
361 struct lu_device *);
362
363 /**
364 * Initialize the devices after allocation
365 */
366 int (*ldto_device_init)(const struct lu_env *env,
367 struct lu_device *, const char *,
368 struct lu_device *);
369 /**
370 * Finalize device. Dual to
371 * lu_device_type_operations::ldto_device_init(). Returns pointer to
372 * the next device in the stack.
373 */
374 struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
375 struct lu_device *);
376 /**
377 * Initialize device type. This is called on module load.
378 */
379 int (*ldto_init)(struct lu_device_type *t);
380 /**
381 * Finalize device type. Dual to
382 * lu_device_type_operations::ldto_init(). Called on module unload.
383 */
384 void (*ldto_fini)(struct lu_device_type *t);
385 /**
386 * Called when the first device is created.
387 */
388 void (*ldto_start)(struct lu_device_type *t);
389 /**
390 * Called when number of devices drops to 0.
391 */
392 void (*ldto_stop)(struct lu_device_type *t);
393};
394
395static inline int lu_device_is_md(const struct lu_device *d)
396{
397 return ergo(d != NULL, d->ld_type->ldt_tags & LU_DEVICE_MD);
398}
399
d7e09d03
PT
400/**
401 * Common object attributes.
402 */
403struct lu_attr {
404 /** size in bytes */
405 __u64 la_size;
406 /** modification time in seconds since Epoch */
21aef7d9 407 s64 la_mtime;
d7e09d03 408 /** access time in seconds since Epoch */
21aef7d9 409 s64 la_atime;
d7e09d03 410 /** change time in seconds since Epoch */
21aef7d9 411 s64 la_ctime;
d7e09d03
PT
412 /** 512-byte blocks allocated to object */
413 __u64 la_blocks;
414 /** permission bits and file type */
415 __u32 la_mode;
416 /** owner id */
417 __u32 la_uid;
418 /** group id */
419 __u32 la_gid;
420 /** object flags */
421 __u32 la_flags;
422 /** number of persistent references to this object */
423 __u32 la_nlink;
424 /** blk bits of the object*/
425 __u32 la_blkbits;
426 /** blk size of the object*/
427 __u32 la_blksize;
428 /** real device */
429 __u32 la_rdev;
430 /**
431 * valid bits
432 *
433 * \see enum la_valid
434 */
435 __u64 la_valid;
436};
437
438/** Bit-mask of valid attributes */
439enum la_valid {
440 LA_ATIME = 1 << 0,
441 LA_MTIME = 1 << 1,
442 LA_CTIME = 1 << 2,
443 LA_SIZE = 1 << 3,
444 LA_MODE = 1 << 4,
445 LA_UID = 1 << 5,
446 LA_GID = 1 << 6,
447 LA_BLOCKS = 1 << 7,
448 LA_TYPE = 1 << 8,
449 LA_FLAGS = 1 << 9,
450 LA_NLINK = 1 << 10,
451 LA_RDEV = 1 << 11,
452 LA_BLKSIZE = 1 << 12,
453 LA_KILL_SUID = 1 << 13,
454 LA_KILL_SGID = 1 << 14,
455};
456
457/**
458 * Layer in the layered object.
459 */
460struct lu_object {
461 /**
462 * Header for this object.
463 */
464 struct lu_object_header *lo_header;
465 /**
466 * Device for this layer.
467 */
468 struct lu_device *lo_dev;
469 /**
470 * Operations for this object.
471 */
472 const struct lu_object_operations *lo_ops;
473 /**
474 * Linkage into list of all layers.
475 */
476 struct list_head lo_linkage;
d7e09d03
PT
477 /**
478 * Link to the device, for debugging.
479 */
631abc6e 480 struct lu_ref_link lo_dev_ref;
d7e09d03
PT
481};
482
483enum lu_object_header_flags {
484 /**
485 * Don't keep this object in cache. Object will be destroyed as soon
486 * as last reference to it is released. This flag cannot be cleared
487 * once set.
488 */
489 LU_OBJECT_HEARD_BANSHEE = 0,
490 /**
491 * Mark this object has already been taken out of cache.
492 */
493 LU_OBJECT_UNHASHED = 1
494};
495
496enum lu_object_header_attr {
497 LOHA_EXISTS = 1 << 0,
498 LOHA_REMOTE = 1 << 1,
499 /**
500 * UNIX file type is stored in S_IFMT bits.
501 */
502 LOHA_FT_START = 001 << 12, /**< S_IFIFO */
503 LOHA_FT_END = 017 << 12, /**< S_IFMT */
504};
505
506/**
507 * "Compound" object, consisting of multiple layers.
508 *
509 * Compound object with given fid is unique with given lu_site.
510 *
511 * Note, that object does *not* necessary correspond to the real object in the
512 * persistent storage: object is an anchor for locking and method calling, so
513 * it is created for things like not-yet-existing child created by mkdir or
514 * create calls. lu_object_operations::loo_exists() can be used to check
515 * whether object is backed by persistent storage entity.
516 */
517struct lu_object_header {
a700f975
AD
518 /**
519 * Fid, uniquely identifying this object.
520 */
521 struct lu_fid loh_fid;
d7e09d03
PT
522 /**
523 * Object flags from enum lu_object_header_flags. Set and checked
524 * atomically.
525 */
526 unsigned long loh_flags;
527 /**
528 * Object reference count. Protected by lu_site::ls_guard.
529 */
530 atomic_t loh_ref;
d7e09d03
PT
531 /**
532 * Common object attributes, cached for efficiency. From enum
533 * lu_object_header_attr.
534 */
535 __u32 loh_attr;
536 /**
537 * Linkage into per-site hash table. Protected by lu_site::ls_guard.
538 */
539 struct hlist_node loh_hash;
540 /**
541 * Linkage into per-site LRU list. Protected by lu_site::ls_guard.
542 */
543 struct list_head loh_lru;
544 /**
545 * Linkage into list of layers. Never modified once set (except lately
546 * during object destruction). No locking is necessary.
547 */
548 struct list_head loh_layers;
549 /**
550 * A list of references to this object, for debugging.
551 */
552 struct lu_ref loh_reference;
553};
554
555struct fld;
556
557struct lu_site_bkt_data {
558 /**
559 * number of busy object on this bucket
560 */
561 long lsb_busy;
562 /**
563 * LRU list, updated on each access to object. Protected by
564 * bucket lock of lu_site::ls_obj_hash.
565 *
566 * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
567 * moved to the lu_site::ls_lru.prev (this is due to the non-existence
568 * of list_for_each_entry_safe_reverse()).
569 */
570 struct list_head lsb_lru;
571 /**
572 * Wait-queue signaled when an object in this site is ultimately
573 * destroyed (lu_object_free()). It is used by lu_object_find() to
574 * wait before re-trying when object in the process of destruction is
575 * found in the hash table.
576 *
577 * \see htable_lookup().
578 */
579 wait_queue_head_t lsb_marche_funebre;
580};
581
582enum {
583 LU_SS_CREATED = 0,
584 LU_SS_CACHE_HIT,
585 LU_SS_CACHE_MISS,
586 LU_SS_CACHE_RACE,
587 LU_SS_CACHE_DEATH_RACE,
588 LU_SS_LRU_PURGED,
589 LU_SS_LAST_STAT
590};
591
592/**
593 * lu_site is a "compartment" within which objects are unique, and LRU
594 * discipline is maintained.
595 *
596 * lu_site exists so that multiple layered stacks can co-exist in the same
597 * address space.
598 *
599 * lu_site has the same relation to lu_device as lu_object_header to
600 * lu_object.
601 */
602struct lu_site {
603 /**
604 * objects hash table
605 */
6da6eabe 606 struct cfs_hash *ls_obj_hash;
d7e09d03
PT
607 /**
608 * index of bucket on hash table while purging
609 */
610 int ls_purge_start;
611 /**
612 * Top-level device for this stack.
613 */
614 struct lu_device *ls_top_dev;
615 /**
616 * Bottom-level device for this stack
617 */
618 struct lu_device *ls_bottom_dev;
619 /**
620 * Linkage into global list of sites.
621 */
622 struct list_head ls_linkage;
623 /**
624 * List for lu device for this site, protected
625 * by ls_ld_lock.
626 **/
627 struct list_head ls_ld_linkage;
628 spinlock_t ls_ld_lock;
629
630 /**
631 * lu_site stats
632 */
633 struct lprocfs_stats *ls_stats;
634 /**
635 * XXX: a hack! fld has to find md_site via site, remove when possible
636 */
637 struct seq_server_site *ld_seq_site;
638};
639
640static inline struct lu_site_bkt_data *
641lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
642{
6ea510c1 643 struct cfs_hash_bd bd;
d7e09d03
PT
644
645 cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
646 return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
647}
648
56f4c5a8
LX
649static inline struct seq_server_site *lu_site2seq(const struct lu_site *s)
650{
651 return s->ld_seq_site;
652}
653
d7e09d03
PT
654/** \name ctors
655 * Constructors/destructors.
656 * @{
657 */
658
659int lu_site_init (struct lu_site *s, struct lu_device *d);
660void lu_site_fini (struct lu_site *s);
661int lu_site_init_finish (struct lu_site *s);
662void lu_stack_fini (const struct lu_env *env, struct lu_device *top);
663void lu_device_get (struct lu_device *d);
664void lu_device_put (struct lu_device *d);
665int lu_device_init (struct lu_device *d, struct lu_device_type *t);
666void lu_device_fini (struct lu_device *d);
667int lu_object_header_init(struct lu_object_header *h);
668void lu_object_header_fini(struct lu_object_header *h);
669int lu_object_init (struct lu_object *o,
670 struct lu_object_header *h, struct lu_device *d);
671void lu_object_fini (struct lu_object *o);
672void lu_object_add_top (struct lu_object_header *h, struct lu_object *o);
673void lu_object_add (struct lu_object *before, struct lu_object *o);
674
675void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d);
676void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d);
677
678/**
679 * Helpers to initialize and finalize device types.
680 */
681
682int lu_device_type_init(struct lu_device_type *ldt);
683void lu_device_type_fini(struct lu_device_type *ldt);
684void lu_types_stop(void);
685
686/** @} ctors */
687
688/** \name caching
689 * Caching and reference counting.
690 * @{
691 */
692
693/**
694 * Acquire additional reference to the given object. This function is used to
695 * attain additional reference. To acquire initial reference use
696 * lu_object_find().
697 */
698static inline void lu_object_get(struct lu_object *o)
699{
700 LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
701 atomic_inc(&o->lo_header->loh_ref);
702}
703
704/**
705 * Return true of object will not be cached after last reference to it is
706 * released.
707 */
708static inline int lu_object_is_dying(const struct lu_object_header *h)
709{
710 return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
711}
712
713void lu_object_put(const struct lu_env *env, struct lu_object *o);
714void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o);
715void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
716
717int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr);
718
719void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
720 lu_printer_t printer);
721struct lu_object *lu_object_find(const struct lu_env *env,
722 struct lu_device *dev, const struct lu_fid *f,
723 const struct lu_object_conf *conf);
724struct lu_object *lu_object_find_at(const struct lu_env *env,
725 struct lu_device *dev,
726 const struct lu_fid *f,
727 const struct lu_object_conf *conf);
728struct lu_object *lu_object_find_slice(const struct lu_env *env,
729 struct lu_device *dev,
730 const struct lu_fid *f,
731 const struct lu_object_conf *conf);
732/** @} caching */
733
734/** \name helpers
735 * Helpers.
736 * @{
737 */
738
739/**
740 * First (topmost) sub-object of given compound object
741 */
742static inline struct lu_object *lu_object_top(struct lu_object_header *h)
743{
744 LASSERT(!list_empty(&h->loh_layers));
745 return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
746}
747
748/**
749 * Next sub-object in the layering
750 */
751static inline struct lu_object *lu_object_next(const struct lu_object *o)
752{
753 return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
754}
755
756/**
757 * Pointer to the fid of this object.
758 */
759static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
760{
761 return &o->lo_header->loh_fid;
762}
763
764/**
765 * return device operations vector for this object
766 */
767static const inline struct lu_device_operations *
768lu_object_ops(const struct lu_object *o)
769{
770 return o->lo_dev->ld_ops;
771}
772
773/**
774 * Given a compound object, find its slice, corresponding to the device type
775 * \a dtype.
776 */
777struct lu_object *lu_object_locate(struct lu_object_header *h,
778 const struct lu_device_type *dtype);
779
780/**
781 * Printer function emitting messages through libcfs_debug_msg().
782 */
783int lu_cdebug_printer(const struct lu_env *env,
784 void *cookie, const char *format, ...);
785
786/**
787 * Print object description followed by a user-supplied message.
788 */
789#define LU_OBJECT_DEBUG(mask, env, object, format, ...) \
790do { \
791 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
792 \
793 if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
794 lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
795 CDEBUG(mask, format , ## __VA_ARGS__); \
796 } \
797} while (0)
798
799/**
800 * Print short object description followed by a user-supplied message.
801 */
802#define LU_OBJECT_HEADER(mask, env, object, format, ...) \
803do { \
804 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
805 \
806 if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
807 lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
808 (object)->lo_header); \
809 lu_cdebug_printer(env, &msgdata, "\n"); \
810 CDEBUG(mask, format , ## __VA_ARGS__); \
811 } \
812} while (0)
813
814void lu_object_print (const struct lu_env *env, void *cookie,
815 lu_printer_t printer, const struct lu_object *o);
816void lu_object_header_print(const struct lu_env *env, void *cookie,
817 lu_printer_t printer,
818 const struct lu_object_header *hdr);
819
820/**
821 * Check object consistency.
822 */
823int lu_object_invariant(const struct lu_object *o);
824
825
826/**
827 * Check whether object exists, no matter on local or remote storage.
828 * Note: LOHA_EXISTS will be set once some one created the object,
829 * and it does not needs to be committed to storage.
830 */
831#define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
832
833/**
834 * Check whether object on the remote storage.
835 */
836#define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
837
838static inline int lu_object_assert_exists(const struct lu_object *o)
839{
840 return lu_object_exists(o);
841}
842
843static inline int lu_object_assert_not_exists(const struct lu_object *o)
844{
845 return !lu_object_exists(o);
846}
847
848/**
849 * Attr of this object.
850 */
851static inline __u32 lu_object_attr(const struct lu_object *o)
852{
853 LASSERT(lu_object_exists(o) != 0);
854 return o->lo_header->loh_attr;
855}
856
631abc6e
JH
857static inline void lu_object_ref_add(struct lu_object *o,
858 const char *scope,
859 const void *source)
d7e09d03 860{
631abc6e
JH
861 lu_ref_add(&o->lo_header->loh_reference, scope, source);
862}
863
864static inline void lu_object_ref_add_at(struct lu_object *o,
865 struct lu_ref_link *link,
866 const char *scope,
867 const void *source)
868{
869 lu_ref_add_at(&o->lo_header->loh_reference, link, scope, source);
d7e09d03
PT
870}
871
872static inline void lu_object_ref_del(struct lu_object *o,
873 const char *scope, const void *source)
874{
875 lu_ref_del(&o->lo_header->loh_reference, scope, source);
876}
877
878static inline void lu_object_ref_del_at(struct lu_object *o,
879 struct lu_ref_link *link,
880 const char *scope, const void *source)
881{
882 lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
883}
884
885/** input params, should be filled out by mdt */
886struct lu_rdpg {
887 /** hash */
888 __u64 rp_hash;
889 /** count in bytes */
890 unsigned int rp_count;
891 /** number of pages */
892 unsigned int rp_npages;
893 /** requested attr */
894 __u32 rp_attrs;
895 /** pointers to pages */
896 struct page **rp_pages;
897};
898
899enum lu_xattr_flags {
900 LU_XATTR_REPLACE = (1 << 0),
901 LU_XATTR_CREATE = (1 << 1)
902};
903
904/** @} helpers */
905
906/** \name lu_context
907 * @{ */
908
909/** For lu_context health-checks */
910enum lu_context_state {
911 LCS_INITIALIZED = 1,
912 LCS_ENTERED,
913 LCS_LEFT,
914 LCS_FINALIZED
915};
916
917/**
918 * lu_context. Execution context for lu_object methods. Currently associated
919 * with thread.
920 *
921 * All lu_object methods, except device and device type methods (called during
922 * system initialization and shutdown) are executed "within" some
923 * lu_context. This means, that pointer to some "current" lu_context is passed
924 * as an argument to all methods.
925 *
926 * All service ptlrpc threads create lu_context as part of their
927 * initialization. It is possible to create "stand-alone" context for other
928 * execution environments (like system calls).
929 *
930 * lu_object methods mainly use lu_context through lu_context_key interface
931 * that allows each layer to associate arbitrary pieces of data with each
932 * context (see pthread_key_create(3) for similar interface).
933 *
934 * On a client, lu_context is bound to a thread, see cl_env_get().
935 *
936 * \see lu_context_key
937 */
938struct lu_context {
939 /**
940 * lu_context is used on the client side too. Yet we don't want to
941 * allocate values of server-side keys for the client contexts and
942 * vice versa.
943 *
944 * To achieve this, set of tags in introduced. Contexts and keys are
945 * marked with tags. Key value are created only for context whose set
946 * of tags has non-empty intersection with one for key. Tags are taken
947 * from enum lu_context_tag.
948 */
949 __u32 lc_tags;
950 enum lu_context_state lc_state;
951 /**
952 * Pointer to the home service thread. NULL for other execution
953 * contexts.
954 */
955 struct ptlrpc_thread *lc_thread;
956 /**
957 * Pointer to an array with key values. Internal implementation
958 * detail.
959 */
960 void **lc_value;
961 /**
962 * Linkage into a list of all remembered contexts. Only
963 * `non-transient' contexts, i.e., ones created for service threads
964 * are placed here.
965 */
966 struct list_head lc_remember;
967 /**
968 * Version counter used to skip calls to lu_context_refill() when no
969 * keys were registered.
970 */
971 unsigned lc_version;
972 /**
973 * Debugging cookie.
974 */
975 unsigned lc_cookie;
976};
977
978/**
979 * lu_context_key interface. Similar to pthread_key.
980 */
981
982enum lu_context_tag {
983 /**
984 * Thread on md server
985 */
986 LCT_MD_THREAD = 1 << 0,
987 /**
988 * Thread on dt server
989 */
990 LCT_DT_THREAD = 1 << 1,
991 /**
992 * Context for transaction handle
993 */
994 LCT_TX_HANDLE = 1 << 2,
995 /**
996 * Thread on client
997 */
998 LCT_CL_THREAD = 1 << 3,
999 /**
1000 * A per-request session on a server, and a per-system-call session on
1001 * a client.
1002 */
1003 LCT_SESSION = 1 << 4,
1004 /**
1005 * A per-request data on OSP device
1006 */
1007 LCT_OSP_THREAD = 1 << 5,
1008 /**
1009 * MGS device thread
1010 */
1011 LCT_MG_THREAD = 1 << 6,
1012 /**
1013 * Context for local operations
1014 */
1015 LCT_LOCAL = 1 << 7,
1016 /**
1017 * Set when at least one of keys, having values in this context has
1018 * non-NULL lu_context_key::lct_exit() method. This is used to
1019 * optimize lu_context_exit() call.
1020 */
1021 LCT_HAS_EXIT = 1 << 28,
1022 /**
1023 * Don't add references for modules creating key values in that context.
1024 * This is only for contexts used internally by lu_object framework.
1025 */
1026 LCT_NOREF = 1 << 29,
1027 /**
1028 * Key is being prepared for retiring, don't create new values for it.
1029 */
1030 LCT_QUIESCENT = 1 << 30,
1031 /**
1032 * Context should be remembered.
1033 */
1034 LCT_REMEMBER = 1 << 31,
1035 /**
1036 * Contexts usable in cache shrinker thread.
1037 */
1038 LCT_SHRINKER = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD|LCT_NOREF
1039};
1040
1041/**
1042 * Key. Represents per-context value slot.
1043 *
1044 * Keys are usually registered when module owning the key is initialized, and
1045 * de-registered when module is unloaded. Once key is registered, all new
1046 * contexts with matching tags, will get key value. "Old" contexts, already
1047 * initialized at the time of key registration, can be forced to get key value
1048 * by calling lu_context_refill().
1049 *
1050 * Every key value is counted in lu_context_key::lct_used and acquires a
1051 * reference on an owning module. This means, that all key values have to be
1052 * destroyed before module can be unloaded. This is usually achieved by
1053 * stopping threads started by the module, that created contexts in their
1054 * entry functions. Situation is complicated by the threads shared by multiple
1055 * modules, like ptlrpcd daemon on a client. To work around this problem,
1056 * contexts, created in such threads, are `remembered' (see
1057 * LCT_REMEMBER)---i.e., added into a global list. When module is preparing
1058 * for unloading it does the following:
1059 *
1060 * - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
1061 * preventing new key values from being allocated in the new contexts,
1062 * and
1063 *
1064 * - scans a list of remembered contexts, destroying values of module
1065 * keys, thus releasing references to the module.
1066 *
1067 * This is done by lu_context_key_quiesce(). If module is re-activated
1068 * before key has been de-registered, lu_context_key_revive() call clears
1069 * `quiescent' marker.
1070 *
1071 * lu_context code doesn't provide any internal synchronization for these
1072 * activities---it's assumed that startup (including threads start-up) and
1073 * shutdown are serialized by some external means.
1074 *
1075 * \see lu_context
1076 */
1077struct lu_context_key {
1078 /**
1079 * Set of tags for which values of this key are to be instantiated.
1080 */
1081 __u32 lct_tags;
1082 /**
1083 * Value constructor. This is called when new value is created for a
1084 * context. Returns pointer to new value of error pointer.
1085 */
1086 void *(*lct_init)(const struct lu_context *ctx,
1087 struct lu_context_key *key);
1088 /**
1089 * Value destructor. Called when context with previously allocated
1090 * value of this slot is destroyed. \a data is a value that was returned
1091 * by a matching call to lu_context_key::lct_init().
1092 */
1093 void (*lct_fini)(const struct lu_context *ctx,
1094 struct lu_context_key *key, void *data);
1095 /**
1096 * Optional method called on lu_context_exit() for all allocated
1097 * keys. Can be used by debugging code checking that locks are
1098 * released, etc.
1099 */
1100 void (*lct_exit)(const struct lu_context *ctx,
1101 struct lu_context_key *key, void *data);
1102 /**
1103 * Internal implementation detail: index within lu_context::lc_value[]
1104 * reserved for this key.
1105 */
1106 int lct_index;
1107 /**
1108 * Internal implementation detail: number of values created for this
1109 * key.
1110 */
1111 atomic_t lct_used;
1112 /**
1113 * Internal implementation detail: module for this key.
1114 */
c34d9cd8 1115 struct module *lct_owner;
d7e09d03
PT
1116 /**
1117 * References to this key. For debugging.
1118 */
1119 struct lu_ref lct_reference;
1120};
1121
1122#define LU_KEY_INIT(mod, type) \
1123 static void* mod##_key_init(const struct lu_context *ctx, \
1124 struct lu_context_key *key) \
1125 { \
1126 type *value; \
1127 \
1128 CLASSERT(PAGE_CACHE_SIZE >= sizeof (*value)); \
1129 \
1130 OBD_ALLOC_PTR(value); \
1131 if (value == NULL) \
1132 value = ERR_PTR(-ENOMEM); \
1133 \
1134 return value; \
1135 } \
1136 struct __##mod##__dummy_init {;} /* semicolon catcher */
1137
1138#define LU_KEY_FINI(mod, type) \
1139 static void mod##_key_fini(const struct lu_context *ctx, \
1140 struct lu_context_key *key, void* data) \
1141 { \
1142 type *info = data; \
1143 \
1144 OBD_FREE_PTR(info); \
1145 } \
1146 struct __##mod##__dummy_fini {;} /* semicolon catcher */
1147
1148#define LU_KEY_INIT_FINI(mod, type) \
1149 LU_KEY_INIT(mod,type); \
1150 LU_KEY_FINI(mod,type)
1151
1152#define LU_CONTEXT_KEY_DEFINE(mod, tags) \
1153 struct lu_context_key mod##_thread_key = { \
1154 .lct_tags = tags, \
1155 .lct_init = mod##_key_init, \
1156 .lct_fini = mod##_key_fini \
1157 }
1158
1159#define LU_CONTEXT_KEY_INIT(key) \
1160do { \
1161 (key)->lct_owner = THIS_MODULE; \
1162} while (0)
1163
1164int lu_context_key_register(struct lu_context_key *key);
1165void lu_context_key_degister(struct lu_context_key *key);
1166void *lu_context_key_get (const struct lu_context *ctx,
1167 const struct lu_context_key *key);
1168void lu_context_key_quiesce (struct lu_context_key *key);
1169void lu_context_key_revive (struct lu_context_key *key);
1170
1171
1172/*
1173 * LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
1174 * owning module.
1175 */
1176
1177#define LU_KEY_INIT_GENERIC(mod) \
1178 static void mod##_key_init_generic(struct lu_context_key *k, ...) \
1179 { \
1180 struct lu_context_key *key = k; \
1181 va_list args; \
1182 \
1183 va_start(args, k); \
1184 do { \
1185 LU_CONTEXT_KEY_INIT(key); \
1186 key = va_arg(args, struct lu_context_key *); \
1187 } while (key != NULL); \
1188 va_end(args); \
1189 }
1190
1191#define LU_TYPE_INIT(mod, ...) \
1192 LU_KEY_INIT_GENERIC(mod) \
1193 static int mod##_type_init(struct lu_device_type *t) \
1194 { \
1195 mod##_key_init_generic(__VA_ARGS__, NULL); \
1196 return lu_context_key_register_many(__VA_ARGS__, NULL); \
1197 } \
1198 struct __##mod##_dummy_type_init {;}
1199
1200#define LU_TYPE_FINI(mod, ...) \
1201 static void mod##_type_fini(struct lu_device_type *t) \
1202 { \
1203 lu_context_key_degister_many(__VA_ARGS__, NULL); \
1204 } \
1205 struct __##mod##_dummy_type_fini {;}
1206
1207#define LU_TYPE_START(mod, ...) \
1208 static void mod##_type_start(struct lu_device_type *t) \
1209 { \
1210 lu_context_key_revive_many(__VA_ARGS__, NULL); \
1211 } \
1212 struct __##mod##_dummy_type_start {;}
1213
1214#define LU_TYPE_STOP(mod, ...) \
1215 static void mod##_type_stop(struct lu_device_type *t) \
1216 { \
1217 lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
1218 } \
1219 struct __##mod##_dummy_type_stop {;}
1220
1221
1222
1223#define LU_TYPE_INIT_FINI(mod, ...) \
1224 LU_TYPE_INIT(mod, __VA_ARGS__); \
1225 LU_TYPE_FINI(mod, __VA_ARGS__); \
1226 LU_TYPE_START(mod, __VA_ARGS__); \
1227 LU_TYPE_STOP(mod, __VA_ARGS__)
1228
1229int lu_context_init (struct lu_context *ctx, __u32 tags);
1230void lu_context_fini (struct lu_context *ctx);
1231void lu_context_enter (struct lu_context *ctx);
1232void lu_context_exit (struct lu_context *ctx);
1233int lu_context_refill(struct lu_context *ctx);
1234
1235/*
1236 * Helper functions to operate on multiple keys. These are used by the default
1237 * device type operations, defined by LU_TYPE_INIT_FINI().
1238 */
1239
1240int lu_context_key_register_many(struct lu_context_key *k, ...);
1241void lu_context_key_degister_many(struct lu_context_key *k, ...);
1242void lu_context_key_revive_many (struct lu_context_key *k, ...);
1243void lu_context_key_quiesce_many (struct lu_context_key *k, ...);
1244
1245/*
1246 * update/clear ctx/ses tags.
1247 */
1248void lu_context_tags_update(__u32 tags);
1249void lu_context_tags_clear(__u32 tags);
1250void lu_session_tags_update(__u32 tags);
1251void lu_session_tags_clear(__u32 tags);
1252
1253/**
1254 * Environment.
1255 */
1256struct lu_env {
1257 /**
1258 * "Local" context, used to store data instead of stack.
1259 */
1260 struct lu_context le_ctx;
1261 /**
1262 * "Session" context for per-request data.
1263 */
1264 struct lu_context *le_ses;
1265};
1266
1267int lu_env_init (struct lu_env *env, __u32 tags);
1268void lu_env_fini (struct lu_env *env);
1269int lu_env_refill(struct lu_env *env);
1270int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags, __u32 stags);
1271
1272/** @} lu_context */
1273
1274/**
1275 * Output site statistical counters into a buffer. Suitable for
1276 * ll_rd_*()-style functions.
1277 */
73bb1da6 1278int lu_site_stats_print(const struct lu_site *s, struct seq_file *m);
d7e09d03
PT
1279
1280/**
1281 * Common name structure to be passed around for various name related methods.
1282 */
1283struct lu_name {
1284 const char *ln_name;
1285 int ln_namelen;
1286};
1287
1288/**
1289 * Common buffer structure to be passed around for various xattr_{s,g}et()
1290 * methods.
1291 */
1292struct lu_buf {
1293 void *lb_buf;
1294 ssize_t lb_len;
1295};
1296
1297#define DLUBUF "(%p %zu)"
1298#define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
1299/**
1300 * One-time initializers, called at obdclass module initialization, not
1301 * exported.
1302 */
1303
1304/**
1305 * Initialization of global lu_* data.
1306 */
1307int lu_global_init(void);
1308
1309/**
1310 * Dual to lu_global_init().
1311 */
1312void lu_global_fini(void);
1313
1314struct lu_kmem_descr {
1315 struct kmem_cache **ckd_cache;
1316 const char *ckd_name;
1317 const size_t ckd_size;
1318};
1319
1320int lu_kmem_init(struct lu_kmem_descr *caches);
1321void lu_kmem_fini(struct lu_kmem_descr *caches);
1322
1323void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
1324 const struct lu_fid *fid);
1325struct lu_object *lu_object_anon(const struct lu_env *env,
1326 struct lu_device *dev,
1327 const struct lu_object_conf *conf);
1328
1329/** null buffer */
1330extern struct lu_buf LU_BUF_NULL;
1331
1332void lu_buf_free(struct lu_buf *buf);
1333void lu_buf_alloc(struct lu_buf *buf, int size);
1334void lu_buf_realloc(struct lu_buf *buf, int size);
1335
1336int lu_buf_check_and_grow(struct lu_buf *buf, int len);
1337struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len);
1338
1339/** @} lu */
1340#endif /* __LUSTRE_LU_OBJECT_H */