]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/staging/lustre/lustre/include/lustre/lustre_idl.h
staging/lustre/mdt: add macros for fid string len
[mirror_ubuntu-artful-kernel.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41/** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91#ifndef _LUSTRE_IDL_H_
92#define _LUSTRE_IDL_H_
93
94#if !defined(LASSERT) && !defined(LPU64)
95#include <linux/libcfs/libcfs.h> /* for LASSERT, LPUX64, etc */
96#endif
97
98/* Defn's shared with user-space. */
99#include <lustre/lustre_user.h>
100
2d58de78
LW
101#include <lustre/lustre_errno.h>
102
d7e09d03
PT
103/*
104 * GENERAL STUFF
105 */
106/* FOO_REQUEST_PORTAL is for incoming requests on the FOO
107 * FOO_REPLY_PORTAL is for incoming replies on the FOO
108 * FOO_BULK_PORTAL is for incoming bulk on the FOO
109 */
110
111#define CONNMGR_REQUEST_PORTAL 1
112#define CONNMGR_REPLY_PORTAL 2
113//#define OSC_REQUEST_PORTAL 3
114#define OSC_REPLY_PORTAL 4
115//#define OSC_BULK_PORTAL 5
116#define OST_IO_PORTAL 6
117#define OST_CREATE_PORTAL 7
118#define OST_BULK_PORTAL 8
119//#define MDC_REQUEST_PORTAL 9
120#define MDC_REPLY_PORTAL 10
121//#define MDC_BULK_PORTAL 11
122#define MDS_REQUEST_PORTAL 12
123//#define MDS_REPLY_PORTAL 13
124#define MDS_BULK_PORTAL 14
125#define LDLM_CB_REQUEST_PORTAL 15
126#define LDLM_CB_REPLY_PORTAL 16
127#define LDLM_CANCEL_REQUEST_PORTAL 17
128#define LDLM_CANCEL_REPLY_PORTAL 18
129//#define PTLBD_REQUEST_PORTAL 19
130//#define PTLBD_REPLY_PORTAL 20
131//#define PTLBD_BULK_PORTAL 21
132#define MDS_SETATTR_PORTAL 22
133#define MDS_READPAGE_PORTAL 23
134#define MDS_MDS_PORTAL 24
135
136#define MGC_REPLY_PORTAL 25
137#define MGS_REQUEST_PORTAL 26
138#define MGS_REPLY_PORTAL 27
139#define OST_REQUEST_PORTAL 28
140#define FLD_REQUEST_PORTAL 29
141#define SEQ_METADATA_PORTAL 30
142#define SEQ_DATA_PORTAL 31
143#define SEQ_CONTROLLER_PORTAL 32
144#define MGS_BULK_PORTAL 33
145
146/* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
147
148/* packet types */
149#define PTL_RPC_MSG_REQUEST 4711
150#define PTL_RPC_MSG_ERR 4712
151#define PTL_RPC_MSG_REPLY 4713
152
153/* DON'T use swabbed values of MAGIC as magic! */
154#define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
155#define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
156
157#define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
158#define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
159
160#define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
161
162#define PTLRPC_MSG_VERSION 0x00000003
163#define LUSTRE_VERSION_MASK 0xffff0000
164#define LUSTRE_OBD_VERSION 0x00010000
165#define LUSTRE_MDS_VERSION 0x00020000
166#define LUSTRE_OST_VERSION 0x00030000
167#define LUSTRE_DLM_VERSION 0x00040000
168#define LUSTRE_LOG_VERSION 0x00050000
169#define LUSTRE_MGS_VERSION 0x00060000
170
171typedef __u32 mdsno_t;
172typedef __u64 seqno_t;
173typedef __u64 obd_id;
174typedef __u64 obd_seq;
175typedef __s64 obd_time;
176typedef __u64 obd_size;
177typedef __u64 obd_off;
178typedef __u64 obd_blocks;
179typedef __u64 obd_valid;
180typedef __u32 obd_blksize;
181typedef __u32 obd_mode;
182typedef __u32 obd_uid;
183typedef __u32 obd_gid;
184typedef __u32 obd_flag;
185typedef __u32 obd_count;
186
187/**
188 * Describes a range of sequence, lsr_start is included but lsr_end is
189 * not in the range.
190 * Same structure is used in fld module where lsr_index field holds mdt id
191 * of the home mdt.
192 */
193struct lu_seq_range {
194 __u64 lsr_start;
195 __u64 lsr_end;
196 __u32 lsr_index;
197 __u32 lsr_flags;
198};
199
200#define LU_SEQ_RANGE_MDT 0x0
201#define LU_SEQ_RANGE_OST 0x1
202#define LU_SEQ_RANGE_ANY 0x3
203
204#define LU_SEQ_RANGE_MASK 0x3
205
206static inline unsigned fld_range_type(const struct lu_seq_range *range)
207{
208 return range->lsr_flags & LU_SEQ_RANGE_MASK;
209}
210
211static inline int fld_range_is_ost(const struct lu_seq_range *range)
212{
213 return fld_range_type(range) == LU_SEQ_RANGE_OST;
214}
215
216static inline int fld_range_is_mdt(const struct lu_seq_range *range)
217{
218 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
219}
220
221/**
222 * This all range is only being used when fld client sends fld query request,
223 * but it does not know whether the seq is MDT or OST, so it will send req
224 * with ALL type, which means either seq type gotten from lookup can be
225 * expected.
226 */
227static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
228{
229 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
230}
231
232static inline void fld_range_set_type(struct lu_seq_range *range,
233 unsigned flags)
234{
235 LASSERT(!(flags & ~LU_SEQ_RANGE_MASK));
236 range->lsr_flags |= flags;
237}
238
239static inline void fld_range_set_mdt(struct lu_seq_range *range)
240{
241 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
242}
243
244static inline void fld_range_set_ost(struct lu_seq_range *range)
245{
246 fld_range_set_type(range, LU_SEQ_RANGE_OST);
247}
248
249static inline void fld_range_set_any(struct lu_seq_range *range)
250{
251 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
252}
253
254/**
255 * returns width of given range \a r
256 */
257
258static inline __u64 range_space(const struct lu_seq_range *range)
259{
260 return range->lsr_end - range->lsr_start;
261}
262
263/**
264 * initialize range to zero
265 */
266
267static inline void range_init(struct lu_seq_range *range)
268{
269 range->lsr_start = range->lsr_end = range->lsr_index = 0;
270}
271
272/**
273 * check if given seq id \a s is within given range \a r
274 */
275
276static inline int range_within(const struct lu_seq_range *range,
277 __u64 s)
278{
279 return s >= range->lsr_start && s < range->lsr_end;
280}
281
282static inline int range_is_sane(const struct lu_seq_range *range)
283{
284 return (range->lsr_end >= range->lsr_start);
285}
286
287static inline int range_is_zero(const struct lu_seq_range *range)
288{
289 return (range->lsr_start == 0 && range->lsr_end == 0);
290}
291
292static inline int range_is_exhausted(const struct lu_seq_range *range)
293
294{
295 return range_space(range) == 0;
296}
297
298/* return 0 if two range have the same location */
299static inline int range_compare_loc(const struct lu_seq_range *r1,
300 const struct lu_seq_range *r2)
301{
302 return r1->lsr_index != r2->lsr_index ||
303 r1->lsr_flags != r2->lsr_flags;
304}
305
306#define DRANGE "[%#16.16"LPF64"x-%#16.16"LPF64"x):%x:%s"
307
308#define PRANGE(range) \
309 (range)->lsr_start, \
310 (range)->lsr_end, \
311 (range)->lsr_index, \
312 fld_range_is_mdt(range) ? "mdt" : "ost"
313
314
315/** \defgroup lu_fid lu_fid
316 * @{ */
317
318/**
319 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
320 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
321 * xattr.
322 */
323enum lma_compat {
324 LMAC_HSM = 0x00000001,
325 LMAC_SOM = 0x00000002,
326};
327
328/**
329 * Masks for all features that should be supported by a Lustre version to
330 * access a specific file.
331 * This information is stored in lustre_mdt_attrs::lma_incompat.
332 */
333enum lma_incompat {
334 LMAI_RELEASED = 0x0000001, /* file is released */
335 LMAI_AGENT = 0x00000002, /* agent inode */
336 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
337 is on the remote MDT */
338};
339#define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
340
341extern void lustre_lma_swab(struct lustre_mdt_attrs *lma);
342extern void lustre_lma_init(struct lustre_mdt_attrs *lma,
343 const struct lu_fid *fid, __u32 incompat);
344/**
345 * SOM on-disk attributes stored in a separate xattr.
346 */
347struct som_attrs {
348 /** Bitfield for supported data in this structure. For future use. */
349 __u32 som_compat;
350
351 /** Incompat feature list. The supported feature mask is availabe in
352 * SOM_INCOMPAT_SUPP */
353 __u32 som_incompat;
354
355 /** IO Epoch SOM attributes belongs to */
356 __u64 som_ioepoch;
357 /** total file size in objects */
358 __u64 som_size;
359 /** total fs blocks in objects */
360 __u64 som_blocks;
361 /** mds mount id the size is valid for */
362 __u64 som_mountid;
363};
364extern void lustre_som_swab(struct som_attrs *attrs);
365
366#define SOM_INCOMPAT_SUPP 0x0
367
368/**
369 * HSM on-disk attributes stored in a separate xattr.
370 */
371struct hsm_attrs {
372 /** Bitfield for supported data in this structure. For future use. */
373 __u32 hsm_compat;
374
375 /** HSM flags, see hsm_flags enum below */
376 __u32 hsm_flags;
377 /** backend archive id associated with the file */
378 __u64 hsm_arch_id;
379 /** version associated with the last archiving, if any */
380 __u64 hsm_arch_ver;
381};
382extern void lustre_hsm_swab(struct hsm_attrs *attrs);
383
384/**
385 * fid constants
386 */
387enum {
66cc83e9
MP
388 /** LASTID file has zero OID */
389 LUSTRE_FID_LASTID_OID = 0UL,
d7e09d03
PT
390 /** initial fid id value */
391 LUSTRE_FID_INIT_OID = 1UL
392};
393
394/** returns fid object sequence */
395static inline __u64 fid_seq(const struct lu_fid *fid)
396{
397 return fid->f_seq;
398}
399
400/** returns fid object id */
401static inline __u32 fid_oid(const struct lu_fid *fid)
402{
403 return fid->f_oid;
404}
405
406/** returns fid object version */
407static inline __u32 fid_ver(const struct lu_fid *fid)
408{
409 return fid->f_ver;
410}
411
412static inline void fid_zero(struct lu_fid *fid)
413{
414 memset(fid, 0, sizeof(*fid));
415}
416
417static inline obd_id fid_ver_oid(const struct lu_fid *fid)
418{
419 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
420}
421
422/**
423 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
424 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
425 * used for other purposes and not risk collisions with existing inodes.
426 *
427 * Different FID Format
428 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
429 */
430enum fid_seq {
431 FID_SEQ_OST_MDT0 = 0,
432 FID_SEQ_LLOG = 1, /* unnamed llogs */
433 FID_SEQ_ECHO = 2,
434 FID_SEQ_OST_MDT1 = 3,
435 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
436 FID_SEQ_LLOG_NAME = 10, /* named llogs */
437 FID_SEQ_RSVD = 11,
438 FID_SEQ_IGIF = 12,
439 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
440 FID_SEQ_IDIF = 0x100000000ULL,
441 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
442 /* Normal FID sequence starts from this value, i.e. 1<<33 */
443 FID_SEQ_START = 0x200000000ULL,
444 /* sequence for local pre-defined FIDs listed in local_oid */
445 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
446 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
447 /* sequence is used for local named objects FIDs generated
448 * by local_object_storage library */
449 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
450 /* Because current FLD will only cache the fid sequence, instead
451 * of oid on the client side, if the FID needs to be exposed to
452 * clients sides, it needs to make sure all of fids under one
453 * sequence will be located in one MDT. */
454 FID_SEQ_SPECIAL = 0x200000004ULL,
455 FID_SEQ_QUOTA = 0x200000005ULL,
456 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
457 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
458 FID_SEQ_NORMAL = 0x200000400ULL,
459 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
460};
461
462#define OBIF_OID_MAX_BITS 32
463#define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
464#define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
465#define IDIF_OID_MAX_BITS 48
466#define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
467#define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
468
469/** OID for FID_SEQ_SPECIAL */
470enum special_oid {
471 /* Big Filesystem Lock to serialize rename operations */
472 FID_OID_SPECIAL_BFL = 1UL,
473};
474
475/** OID for FID_SEQ_DOT_LUSTRE */
476enum dot_lustre_oid {
477 FID_OID_DOT_LUSTRE = 1UL,
478 FID_OID_DOT_LUSTRE_OBF = 2UL,
479};
480
481static inline int fid_seq_is_mdt0(obd_seq seq)
482{
483 return (seq == FID_SEQ_OST_MDT0);
484}
485
486static inline int fid_seq_is_mdt(const __u64 seq)
487{
488 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
489};
490
491static inline int fid_seq_is_echo(obd_seq seq)
492{
493 return (seq == FID_SEQ_ECHO);
494}
495
496static inline int fid_is_echo(const struct lu_fid *fid)
497{
498 return fid_seq_is_echo(fid_seq(fid));
499}
500
501static inline int fid_seq_is_llog(obd_seq seq)
502{
503 return (seq == FID_SEQ_LLOG);
504}
505
506static inline int fid_is_llog(const struct lu_fid *fid)
507{
66cc83e9
MP
508 /* file with OID == 0 is not llog but contains last oid */
509 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
d7e09d03
PT
510}
511
512static inline int fid_seq_is_rsvd(const __u64 seq)
513{
514 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
515};
516
517static inline int fid_seq_is_special(const __u64 seq)
518{
519 return seq == FID_SEQ_SPECIAL;
520};
521
522static inline int fid_seq_is_local_file(const __u64 seq)
523{
524 return seq == FID_SEQ_LOCAL_FILE ||
525 seq == FID_SEQ_LOCAL_NAME;
526};
527
528static inline int fid_seq_is_root(const __u64 seq)
529{
530 return seq == FID_SEQ_ROOT;
531}
532
533static inline int fid_seq_is_dot(const __u64 seq)
534{
535 return seq == FID_SEQ_DOT_LUSTRE;
536}
537
538static inline int fid_seq_is_default(const __u64 seq)
539{
540 return seq == FID_SEQ_LOV_DEFAULT;
541}
542
543static inline int fid_is_mdt0(const struct lu_fid *fid)
544{
545 return fid_seq_is_mdt0(fid_seq(fid));
546}
547
548static inline void lu_root_fid(struct lu_fid *fid)
549{
550 fid->f_seq = FID_SEQ_ROOT;
551 fid->f_oid = 1;
552 fid->f_ver = 0;
553}
554
555/**
556 * Check if a fid is igif or not.
557 * \param fid the fid to be tested.
558 * \return true if the fid is a igif; otherwise false.
559 */
560static inline int fid_seq_is_igif(const __u64 seq)
561{
562 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
563}
564
565static inline int fid_is_igif(const struct lu_fid *fid)
566{
567 return fid_seq_is_igif(fid_seq(fid));
568}
569
570/**
571 * Check if a fid is idif or not.
572 * \param fid the fid to be tested.
573 * \return true if the fid is a idif; otherwise false.
574 */
575static inline int fid_seq_is_idif(const __u64 seq)
576{
577 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
578}
579
580static inline int fid_is_idif(const struct lu_fid *fid)
581{
582 return fid_seq_is_idif(fid_seq(fid));
583}
584
585static inline int fid_is_local_file(const struct lu_fid *fid)
586{
587 return fid_seq_is_local_file(fid_seq(fid));
588}
589
590static inline int fid_seq_is_norm(const __u64 seq)
591{
592 return (seq >= FID_SEQ_NORMAL);
593}
594
595static inline int fid_is_norm(const struct lu_fid *fid)
596{
597 return fid_seq_is_norm(fid_seq(fid));
598}
599
600/* convert an OST objid into an IDIF FID SEQ number */
601static inline obd_seq fid_idif_seq(obd_id id, __u32 ost_idx)
602{
603 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
604}
605
606/* convert a packed IDIF FID into an OST objid */
607static inline obd_id fid_idif_id(obd_seq seq, __u32 oid, __u32 ver)
608{
609 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
610}
611
612/* extract ost index from IDIF FID */
613static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
614{
615 LASSERT(fid_is_idif(fid));
616 return (fid_seq(fid) >> 16) & 0xffff;
617}
618
619/* extract OST sequence (group) from a wire ost_id (id/seq) pair */
620static inline obd_seq ostid_seq(const struct ost_id *ostid)
621{
622 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
623 return FID_SEQ_OST_MDT0;
624
625 if (fid_seq_is_default(ostid->oi.oi_seq))
626 return FID_SEQ_LOV_DEFAULT;
627
628 if (fid_is_idif(&ostid->oi_fid))
629 return FID_SEQ_OST_MDT0;
630
631 return fid_seq(&ostid->oi_fid);
632}
633
634/* extract OST objid from a wire ost_id (id/seq) pair */
635static inline obd_id ostid_id(const struct ost_id *ostid)
636{
637 if (fid_seq_is_mdt0(ostid_seq(ostid)))
638 return ostid->oi.oi_id & IDIF_OID_MASK;
639
640 if (fid_is_idif(&ostid->oi_fid))
641 return fid_idif_id(fid_seq(&ostid->oi_fid),
642 fid_oid(&ostid->oi_fid), 0);
643
644 return fid_oid(&ostid->oi_fid);
645}
646
647static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
648{
649 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
650 oi->oi.oi_seq = seq;
651 } else {
652 oi->oi_fid.f_seq = seq;
653 /* Note: if f_oid + f_ver is zero, we need init it
654 * to be 1, otherwise, ostid_seq will treat this
655 * as old ostid (oi_seq == 0) */
656 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
657 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
658 }
659}
660
661static inline void ostid_set_seq_mdt0(struct ost_id *oi)
662{
663 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
664}
665
666static inline void ostid_set_seq_echo(struct ost_id *oi)
667{
668 ostid_set_seq(oi, FID_SEQ_ECHO);
669}
670
671static inline void ostid_set_seq_llog(struct ost_id *oi)
672{
673 ostid_set_seq(oi, FID_SEQ_LLOG);
674}
675
676/**
677 * Note: we need check oi_seq to decide where to set oi_id,
678 * so oi_seq should always be set ahead of oi_id.
679 */
680static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
681{
682 if (fid_seq_is_mdt0(ostid_seq(oi))) {
683 if (oid >= IDIF_MAX_OID) {
684 CERROR("Bad "LPU64" to set "DOSTID"\n",
685 oid, POSTID(oi));
686 return;
687 }
688 oi->oi.oi_id = oid;
689 } else {
690 if (oid > OBIF_MAX_OID) {
691 CERROR("Bad "LPU64" to set "DOSTID"\n",
692 oid, POSTID(oi));
693 return;
694 }
695 oi->oi_fid.f_oid = oid;
696 }
697}
698
699static inline void ostid_inc_id(struct ost_id *oi)
700{
701 if (fid_seq_is_mdt0(ostid_seq(oi))) {
702 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
703 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
704 return;
705 }
706 oi->oi.oi_id++;
707 } else {
708 oi->oi_fid.f_oid++;
709 }
710}
711
712static inline void ostid_dec_id(struct ost_id *oi)
713{
714 if (fid_seq_is_mdt0(ostid_seq(oi)))
715 oi->oi.oi_id--;
716 else
717 oi->oi_fid.f_oid--;
718}
719
720/**
721 * Unpack an OST object id/seq (group) into a FID. This is needed for
722 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
723 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
724 * be passed through unchanged. Only legacy OST objects in "group 0"
725 * will be mapped into the IDIF namespace so that they can fit into the
726 * struct lu_fid fields without loss. For reference see:
727 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
728 */
729static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
730 __u32 ost_idx)
731{
732 if (ost_idx > 0xffff) {
733 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
734 ost_idx);
735 return -EBADF;
736 }
737
738 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
739 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
740 * that we map into the IDIF namespace. It allows up to 2^48
741 * objects per OST, as this is the object namespace that has
742 * been in production for years. This can handle create rates
743 * of 1M objects/s/OST for 9 years, or combinations thereof. */
744 if (ostid_id(ostid) >= IDIF_MAX_OID) {
745 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
746 POSTID(ostid), ost_idx);
747 return -EBADF;
748 }
749 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
750 /* truncate to 32 bits by assignment */
751 fid->f_oid = ostid_id(ostid);
752 /* in theory, not currently used */
753 fid->f_ver = ostid_id(ostid) >> 48;
754 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
755 /* This is either an IDIF object, which identifies objects across
756 * all OSTs, or a regular FID. The IDIF namespace maps legacy
757 * OST objects into the FID namespace. In both cases, we just
758 * pass the FID through, no conversion needed. */
759 if (ostid->oi_fid.f_ver != 0) {
760 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
761 POSTID(ostid), ost_idx);
762 return -EBADF;
763 }
764 *fid = ostid->oi_fid;
765 }
766
767 return 0;
768}
769
770/* pack any OST FID into an ostid (id/seq) for the wire/disk */
771static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
772{
773 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
774 CERROR("bad IGIF, "DFID"\n", PFID(fid));
775 return -EBADF;
776 }
777
778 if (fid_is_idif(fid)) {
779 ostid_set_seq_mdt0(ostid);
780 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
781 fid_ver(fid)));
782 } else {
783 ostid->oi_fid = *fid;
784 }
785
786 return 0;
787}
788
789/* Check whether the fid is for LAST_ID */
790static inline int fid_is_last_id(const struct lu_fid *fid)
791{
66cc83e9 792 return (fid_oid(fid) == 0);
d7e09d03
PT
793}
794
795/**
796 * Get inode number from a igif.
797 * \param fid a igif to get inode number from.
798 * \return inode number for the igif.
799 */
800static inline ino_t lu_igif_ino(const struct lu_fid *fid)
801{
802 return fid_seq(fid);
803}
804
805extern void lustre_swab_ost_id(struct ost_id *oid);
806
807/**
808 * Get inode generation from a igif.
809 * \param fid a igif to get inode generation from.
810 * \return inode generation for the igif.
811 */
812static inline __u32 lu_igif_gen(const struct lu_fid *fid)
813{
814 return fid_oid(fid);
815}
816
817/**
818 * Build igif from the inode number/generation.
819 */
820static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
821{
822 fid->f_seq = ino;
823 fid->f_oid = gen;
824 fid->f_ver = 0;
825}
826
827/*
828 * Fids are transmitted across network (in the sender byte-ordering),
829 * and stored on disk in big-endian order.
830 */
831static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
832{
833 /* check that all fields are converted */
834 CLASSERT(sizeof *src ==
835 sizeof fid_seq(src) +
836 sizeof fid_oid(src) + sizeof fid_ver(src));
837 dst->f_seq = cpu_to_le64(fid_seq(src));
838 dst->f_oid = cpu_to_le32(fid_oid(src));
839 dst->f_ver = cpu_to_le32(fid_ver(src));
840}
841
842static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
843{
844 /* check that all fields are converted */
845 CLASSERT(sizeof *src ==
846 sizeof fid_seq(src) +
847 sizeof fid_oid(src) + sizeof fid_ver(src));
848 dst->f_seq = le64_to_cpu(fid_seq(src));
849 dst->f_oid = le32_to_cpu(fid_oid(src));
850 dst->f_ver = le32_to_cpu(fid_ver(src));
851}
852
853static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
854{
855 /* check that all fields are converted */
856 CLASSERT(sizeof *src ==
857 sizeof fid_seq(src) +
858 sizeof fid_oid(src) + sizeof fid_ver(src));
859 dst->f_seq = cpu_to_be64(fid_seq(src));
860 dst->f_oid = cpu_to_be32(fid_oid(src));
861 dst->f_ver = cpu_to_be32(fid_ver(src));
862}
863
864static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
865{
866 /* check that all fields are converted */
867 CLASSERT(sizeof *src ==
868 sizeof fid_seq(src) +
869 sizeof fid_oid(src) + sizeof fid_ver(src));
870 dst->f_seq = be64_to_cpu(fid_seq(src));
871 dst->f_oid = be32_to_cpu(fid_oid(src));
872 dst->f_ver = be32_to_cpu(fid_ver(src));
873}
874
875static inline int fid_is_sane(const struct lu_fid *fid)
876{
877 return fid != NULL &&
878 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
879 fid_is_igif(fid) || fid_is_idif(fid) ||
880 fid_seq_is_rsvd(fid_seq(fid)));
881}
882
883static inline int fid_is_zero(const struct lu_fid *fid)
884{
885 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
886}
887
888extern void lustre_swab_lu_fid(struct lu_fid *fid);
889extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
890
891static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
892{
893 /* Check that there is no alignment padding. */
894 CLASSERT(sizeof *f0 ==
895 sizeof f0->f_seq + sizeof f0->f_oid + sizeof f0->f_ver);
896 return memcmp(f0, f1, sizeof *f0) == 0;
897}
898
899#define __diff_normalize(val0, val1) \
900({ \
901 typeof(val0) __val0 = (val0); \
902 typeof(val1) __val1 = (val1); \
903 \
904 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
905})
906
907static inline int lu_fid_cmp(const struct lu_fid *f0,
908 const struct lu_fid *f1)
909{
910 return
911 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
912 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
913 __diff_normalize(fid_ver(f0), fid_ver(f1));
914}
915
c5b60ba7 916static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
d7e09d03
PT
917 struct ost_id *dst_oi)
918{
919 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
920 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
921 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
922 } else {
923 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
924 }
925}
926
c5b60ba7 927static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
d7e09d03
PT
928 struct ost_id *dst_oi)
929{
930 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
931 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
932 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
933 } else {
934 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
935 }
936}
937
938/** @} lu_fid */
939
940/** \defgroup lu_dir lu_dir
941 * @{ */
942
943/**
944 * Enumeration of possible directory entry attributes.
945 *
946 * Attributes follow directory entry header in the order they appear in this
947 * enumeration.
948 */
949enum lu_dirent_attrs {
950 LUDA_FID = 0x0001,
951 LUDA_TYPE = 0x0002,
952 LUDA_64BITHASH = 0x0004,
953
954 /* The following attrs are used for MDT interanl only,
955 * not visible to client */
956
957 /* Verify the dirent consistency */
958 LUDA_VERIFY = 0x8000,
959 /* Only check but not repair the dirent inconsistency */
960 LUDA_VERIFY_DRYRUN = 0x4000,
961 /* The dirent has been repaired, or to be repaired (dryrun). */
962 LUDA_REPAIR = 0x2000,
963 /* The system is upgraded, has beed or to be repaired (dryrun). */
964 LUDA_UPGRADE = 0x1000,
965 /* Ignore this record, go to next directly. */
966 LUDA_IGNORE = 0x0800,
967};
968
969#define LU_DIRENT_ATTRS_MASK 0xf800
970
971/**
972 * Layout of readdir pages, as transmitted on wire.
973 */
974struct lu_dirent {
975 /** valid if LUDA_FID is set. */
976 struct lu_fid lde_fid;
977 /** a unique entry identifier: a hash or an offset. */
978 __u64 lde_hash;
979 /** total record length, including all attributes. */
980 __u16 lde_reclen;
981 /** name length */
982 __u16 lde_namelen;
983 /** optional variable size attributes following this entry.
984 * taken from enum lu_dirent_attrs.
985 */
986 __u32 lde_attrs;
987 /** name is followed by the attributes indicated in ->ldp_attrs, in
988 * their natural order. After the last attribute, padding bytes are
989 * added to make ->lde_reclen a multiple of 8.
990 */
991 char lde_name[0];
992};
993
994/*
995 * Definitions of optional directory entry attributes formats.
996 *
997 * Individual attributes do not have their length encoded in a generic way. It
998 * is assumed that consumer of an attribute knows its format. This means that
999 * it is impossible to skip over an unknown attribute, except by skipping over all
1000 * remaining attributes (by using ->lde_reclen), which is not too
1001 * constraining, because new server versions will append new attributes at
1002 * the end of an entry.
1003 */
1004
1005/**
1006 * Fid directory attribute: a fid of an object referenced by the entry. This
1007 * will be almost always requested by the client and supplied by the server.
1008 *
1009 * Aligned to 8 bytes.
1010 */
1011/* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
1012
1013/**
1014 * File type.
1015 *
1016 * Aligned to 2 bytes.
1017 */
1018struct luda_type {
1019 __u16 lt_type;
1020};
1021
1022struct lu_dirpage {
1023 __u64 ldp_hash_start;
1024 __u64 ldp_hash_end;
1025 __u32 ldp_flags;
1026 __u32 ldp_pad0;
1027 struct lu_dirent ldp_entries[0];
1028};
1029
1030enum lu_dirpage_flags {
1031 /**
1032 * dirpage contains no entry.
1033 */
1034 LDF_EMPTY = 1 << 0,
1035 /**
1036 * last entry's lde_hash equals ldp_hash_end.
1037 */
1038 LDF_COLLIDE = 1 << 1
1039};
1040
1041static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1042{
1043 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1044 return NULL;
1045 else
1046 return dp->ldp_entries;
1047}
1048
1049static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1050{
1051 struct lu_dirent *next;
1052
1053 if (le16_to_cpu(ent->lde_reclen) != 0)
1054 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1055 else
1056 next = NULL;
1057
1058 return next;
1059}
1060
1061static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1062{
1063 int size;
1064
1065 if (attr & LUDA_TYPE) {
1066 const unsigned align = sizeof(struct luda_type) - 1;
1067 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1068 size += sizeof(struct luda_type);
1069 } else
1070 size = sizeof(struct lu_dirent) + namelen;
1071
1072 return (size + 7) & ~7;
1073}
1074
1075static inline int lu_dirent_size(struct lu_dirent *ent)
1076{
1077 if (le16_to_cpu(ent->lde_reclen) == 0) {
1078 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1079 le32_to_cpu(ent->lde_attrs));
1080 }
1081 return le16_to_cpu(ent->lde_reclen);
1082}
1083
1084#define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1085
1086/**
1087 * MDS_READPAGE page size
1088 *
1089 * This is the directory page size packed in MDS_READPAGE RPC.
1090 * It's different than PAGE_CACHE_SIZE because the client needs to
1091 * access the struct lu_dirpage header packed at the beginning of
1092 * the "page" and without this there isn't any way to know find the
1093 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1094 */
1095#define LU_PAGE_SHIFT 12
1096#define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1097#define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1098
1099#define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1100
1101/** @} lu_dir */
1102
1103struct lustre_handle {
1104 __u64 cookie;
1105};
1106#define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1107
1108static inline int lustre_handle_is_used(struct lustre_handle *lh)
1109{
1110 return lh->cookie != 0ull;
1111}
1112
1113static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1114 const struct lustre_handle *lh2)
1115{
1116 return lh1->cookie == lh2->cookie;
1117}
1118
1119static inline void lustre_handle_copy(struct lustre_handle *tgt,
1120 struct lustre_handle *src)
1121{
1122 tgt->cookie = src->cookie;
1123}
1124
1125/* flags for lm_flags */
1126#define MSGHDR_AT_SUPPORT 0x1
1127#define MSGHDR_CKSUM_INCOMPAT18 0x2
1128
1129#define lustre_msg lustre_msg_v2
1130/* we depend on this structure to be 8-byte aligned */
1131/* this type is only endian-adjusted in lustre_unpack_msg() */
1132struct lustre_msg_v2 {
1133 __u32 lm_bufcount;
1134 __u32 lm_secflvr;
1135 __u32 lm_magic;
1136 __u32 lm_repsize;
1137 __u32 lm_cksum;
1138 __u32 lm_flags;
1139 __u32 lm_padding_2;
1140 __u32 lm_padding_3;
1141 __u32 lm_buflens[0];
1142};
1143
1144/* without gss, ptlrpc_body is put at the first buffer. */
1145#define PTLRPC_NUM_VERSIONS 4
1146#define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1147struct ptlrpc_body_v3 {
1148 struct lustre_handle pb_handle;
1149 __u32 pb_type;
1150 __u32 pb_version;
1151 __u32 pb_opc;
1152 __u32 pb_status;
1153 __u64 pb_last_xid;
1154 __u64 pb_last_seen;
1155 __u64 pb_last_committed;
1156 __u64 pb_transno;
1157 __u32 pb_flags;
1158 __u32 pb_op_flags;
1159 __u32 pb_conn_cnt;
1160 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1161 __u32 pb_service_time; /* for rep, actual service time */
1162 __u32 pb_limit;
1163 __u64 pb_slv;
1164 /* VBR: pre-versions */
1165 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1166 /* padding for future needs */
1167 __u64 pb_padding[4];
1168 char pb_jobid[JOBSTATS_JOBID_SIZE];
1169};
1170#define ptlrpc_body ptlrpc_body_v3
1171
1172struct ptlrpc_body_v2 {
1173 struct lustre_handle pb_handle;
1174 __u32 pb_type;
1175 __u32 pb_version;
1176 __u32 pb_opc;
1177 __u32 pb_status;
1178 __u64 pb_last_xid;
1179 __u64 pb_last_seen;
1180 __u64 pb_last_committed;
1181 __u64 pb_transno;
1182 __u32 pb_flags;
1183 __u32 pb_op_flags;
1184 __u32 pb_conn_cnt;
1185 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1186 __u32 pb_service_time; /* for rep, actual service time, also used for
1187 net_latency of req */
1188 __u32 pb_limit;
1189 __u64 pb_slv;
1190 /* VBR: pre-versions */
1191 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1192 /* padding for future needs */
1193 __u64 pb_padding[4];
1194};
1195
1196extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1197
1198/* message body offset for lustre_msg_v2 */
1199/* ptlrpc body offset in all request/reply messages */
1200#define MSG_PTLRPC_BODY_OFF 0
1201
1202/* normal request/reply message record offset */
1203#define REQ_REC_OFF 1
1204#define REPLY_REC_OFF 1
1205
1206/* ldlm request message body offset */
1207#define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1208#define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1209
1210/* ldlm intent lock message body offset */
1211#define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1212#define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1213
1214/* ldlm reply message body offset */
1215#define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1216#define DLM_REPLY_REC_OFF 2 /* reply record offset */
1217
1218/** only use in req->rq_{req,rep}_swab_mask */
1219#define MSG_PTLRPC_HEADER_OFF 31
1220
1221/* Flags that are operation-specific go in the top 16 bits. */
1222#define MSG_OP_FLAG_MASK 0xffff0000
1223#define MSG_OP_FLAG_SHIFT 16
1224
1225/* Flags that apply to all requests are in the bottom 16 bits */
1226#define MSG_GEN_FLAG_MASK 0x0000ffff
1227#define MSG_LAST_REPLAY 0x0001
1228#define MSG_RESENT 0x0002
1229#define MSG_REPLAY 0x0004
1230/* #define MSG_AT_SUPPORT 0x0008
1231 * This was used in early prototypes of adaptive timeouts, and while there
1232 * shouldn't be any users of that code there also isn't a need for using this
1233 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1234#define MSG_DELAY_REPLAY 0x0010
1235#define MSG_VERSION_REPLAY 0x0020
1236#define MSG_REQ_REPLAY_DONE 0x0040
1237#define MSG_LOCK_REPLAY_DONE 0x0080
1238
1239/*
1240 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1241 */
1242
1243#define MSG_CONNECT_RECOVERING 0x00000001
1244#define MSG_CONNECT_RECONNECT 0x00000002
1245#define MSG_CONNECT_REPLAYABLE 0x00000004
1246//#define MSG_CONNECT_PEER 0x8
1247#define MSG_CONNECT_LIBCLIENT 0x00000010
1248#define MSG_CONNECT_INITIAL 0x00000020
1249#define MSG_CONNECT_ASYNC 0x00000040
1250#define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1251#define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1252
1253/* Connect flags */
1254#define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1255#define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1256#define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1257#define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1258#define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1259#define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1260#define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1261#define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1262#define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1263#define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1264#define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1265#define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1266#define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1267#define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1268 *We do not support JOIN FILE
1269 *anymore, reserve this flags
1270 *just for preventing such bit
1271 *to be reused.*/
1272#define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1273#define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1274#define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1275#define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1276#define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1277#define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1278#define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1279#define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1280#define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1281#define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1282#define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1283#define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1284#define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1285#define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1286#define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1287#define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1288#define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1289#define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1290#define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1291#define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1292#define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1293#define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1294#define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1295#define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1296#define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1297 * directory hash */
1298#define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1299#define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1300#define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1301#define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1302#define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1303 * RPC error properly */
1304#define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1305 * finer space reservation */
1306#define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1307 * policy and 2.x server */
1308#define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1309#define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1310#define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1311#define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1312#define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
1313/* XXX README XXX:
1314 * Please DO NOT add flag values here before first ensuring that this same
1315 * flag value is not in use on some other branch. Please clear any such
1316 * changes with senior engineers before starting to use a new flag. Then,
1317 * submit a small patch against EVERY branch that ONLY adds the new flag,
1318 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1319 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1320 * can be approved and landed easily to reserve the flag for future use. */
1321
1322/* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1323 * connection. It is a temporary bug fix for Imperative Recovery interop
1324 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1325 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1326#define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1327
1328#define OCD_HAS_FLAG(ocd, flg) \
1329 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1330
1331
1332#define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1333
1334#define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1335 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1336 OBD_CONNECT_IBITS | \
1337 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1338 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1339 OBD_CONNECT_RMT_CLIENT | \
1340 OBD_CONNECT_RMT_CLIENT_FORCE | \
1341 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1342 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1343 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1344 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1345 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1346 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1347 OBD_CONNECT_EINPROGRESS | \
1348 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1349 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1350 OBD_CONNECT_PINGLESS)
1351#define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1352 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1353 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1354 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1355 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1356 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1357 OBD_CONNECT_RMT_CLIENT | \
1358 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1359 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1360 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1361 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1362 OBD_CONNECT_MAX_EASIZE | \
1363 OBD_CONNECT_EINPROGRESS | \
1364 OBD_CONNECT_JOBSTATS | \
1365 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1366 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1367 OBD_CONNECT_PINGLESS)
1368#define ECHO_CONNECT_SUPPORTED (0)
1369#define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1370 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1371 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1372
1373/* Features required for this version of the client to work with server */
1374#define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1375 OBD_CONNECT_FULL20)
1376
1377#define OBD_OCD_VERSION(major,minor,patch,fix) (((major)<<24) + ((minor)<<16) +\
1378 ((patch)<<8) + (fix))
1379#define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1380#define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1381#define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1382#define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1383
1384/* This structure is used for both request and reply.
1385 *
1386 * If we eventually have separate connect data for different types, which we
1387 * almost certainly will, then perhaps we stick a union in here. */
1388struct obd_connect_data_v1 {
1389 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1390 __u32 ocd_version; /* lustre release version number */
1391 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1392 __u32 ocd_index; /* LOV index to connect to */
1393 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1394 __u64 ocd_ibits_known; /* inode bits this client understands */
1395 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1396 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1397 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1398 __u32 ocd_unused; /* also fix lustre_swab_connect */
1399 __u64 ocd_transno; /* first transno from client to be replayed */
1400 __u32 ocd_group; /* MDS group on OST */
1401 __u32 ocd_cksum_types; /* supported checksum algorithms */
1402 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1403 __u32 ocd_instance; /* also fix lustre_swab_connect */
1404 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1405};
1406
1407struct obd_connect_data {
1408 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1409 __u32 ocd_version; /* lustre release version number */
1410 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1411 __u32 ocd_index; /* LOV index to connect to */
1412 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1413 __u64 ocd_ibits_known; /* inode bits this client understands */
1414 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1415 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1416 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1417 __u32 ocd_unused; /* also fix lustre_swab_connect */
1418 __u64 ocd_transno; /* first transno from client to be replayed */
1419 __u32 ocd_group; /* MDS group on OST */
1420 __u32 ocd_cksum_types; /* supported checksum algorithms */
1421 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1422 __u32 ocd_instance; /* instance # of this target */
1423 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1424 /* Fields after ocd_maxbytes are only accessible by the receiver
1425 * if the corresponding flag in ocd_connect_flags is set. Accessing
1426 * any field after ocd_maxbytes on the receiver without a valid flag
1427 * may result in out-of-bound memory access and kernel oops. */
1428 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1429 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1430 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1431 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1432 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1433 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1434 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1435 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1436 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1437 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1438 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1439 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1440 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1441 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1442 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1443};
1444/* XXX README XXX:
1445 * Please DO NOT use any fields here before first ensuring that this same
1446 * field is not in use on some other branch. Please clear any such changes
1447 * with senior engineers before starting to use a new field. Then, submit
1448 * a small patch against EVERY branch that ONLY adds the new field along with
1449 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1450 * reserve the flag for future use. */
1451
1452
1453extern void lustre_swab_connect(struct obd_connect_data *ocd);
1454
1455/*
1456 * Supported checksum algorithms. Up to 32 checksum types are supported.
1457 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1458 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1459 * algorithm and also the OBD_FL_CKSUM* flags.
1460 */
1461typedef enum {
1462 OBD_CKSUM_CRC32 = 0x00000001,
1463 OBD_CKSUM_ADLER = 0x00000002,
1464 OBD_CKSUM_CRC32C= 0x00000004,
1465} cksum_type_t;
1466
1467/*
1468 * OST requests: OBDO & OBD request records
1469 */
1470
1471/* opcodes */
1472typedef enum {
1473 OST_REPLY = 0, /* reply ? */
1474 OST_GETATTR = 1,
1475 OST_SETATTR = 2,
1476 OST_READ = 3,
1477 OST_WRITE = 4,
1478 OST_CREATE = 5,
1479 OST_DESTROY = 6,
1480 OST_GET_INFO = 7,
1481 OST_CONNECT = 8,
1482 OST_DISCONNECT = 9,
1483 OST_PUNCH = 10,
1484 OST_OPEN = 11,
1485 OST_CLOSE = 12,
1486 OST_STATFS = 13,
1487 OST_SYNC = 16,
1488 OST_SET_INFO = 17,
1489 OST_QUOTACHECK = 18,
1490 OST_QUOTACTL = 19,
1491 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1492 OST_LAST_OPC
1493} ost_cmd_t;
1494#define OST_FIRST_OPC OST_REPLY
1495
1496enum obdo_flags {
1497 OBD_FL_INLINEDATA = 0x00000001,
1498 OBD_FL_OBDMDEXISTS = 0x00000002,
1499 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1500 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1501 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1502 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1503 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1504 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1505 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1506 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1507 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1508 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1509 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1510 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1511 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1512 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1513 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1514 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1515 * XXX: obsoleted - reserved for old
1516 * clients prior than 2.2 */
1517 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1518 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1519
1520 /* Note that while these checksum values are currently separate bits,
1521 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1522 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1523 OBD_FL_CKSUM_CRC32C,
1524
1525 /* mask for local-only flag, which won't be sent over network */
1526 OBD_FL_LOCAL_MASK = 0xF0000000,
1527};
1528
1529#define LOV_MAGIC_V1 0x0BD10BD0
1530#define LOV_MAGIC LOV_MAGIC_V1
1531#define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1532#define LOV_MAGIC_V3 0x0BD30BD0
1533
1534/*
1535 * magic for fully defined striping
1536 * the idea is that we should have different magics for striping "hints"
1537 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1538 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1539 * we can't just change it w/o long way preparation, but we still need a
1540 * mechanism to allow LOD to differentiate hint versus ready striping.
1541 * so, at the moment we do a trick: MDT knows what to expect from request
1542 * depending on the case (replay uses ready striping, non-replay req uses
1543 * hints), so MDT replaces magic with appropriate one and now LOD can
1544 * easily understand what's inside -bzzz
1545 */
1546#define LOV_MAGIC_V1_DEF 0x0CD10BD0
1547#define LOV_MAGIC_V3_DEF 0x0CD30BD0
1548
5dd16419
JX
1549#define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1550#define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1551#define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1552#define LOV_PATTERN_CMOBD 0x200
1553
1554#define LOV_PATTERN_F_MASK 0xffff0000
1555#define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1556
1557#define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1558#define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
d7e09d03
PT
1559
1560#define lov_ost_data lov_ost_data_v1
1561struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1562 struct ost_id l_ost_oi; /* OST object ID */
1563 __u32 l_ost_gen; /* generation of this l_ost_idx */
1564 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1565};
1566
1567#define lov_mds_md lov_mds_md_v1
1568struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1569 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1570 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1571 struct ost_id lmm_oi; /* LOV object ID */
1572 __u32 lmm_stripe_size; /* size of stripe in bytes */
1573 /* lmm_stripe_count used to be __u32 */
1574 __u16 lmm_stripe_count; /* num stripes in use for this object */
1575 __u16 lmm_layout_gen; /* layout generation number */
1576 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1577};
1578
1579/**
1580 * Sigh, because pre-2.4 uses
1581 * struct lov_mds_md_v1 {
1582 * ........
1583 * __u64 lmm_object_id;
1584 * __u64 lmm_object_seq;
1585 * ......
1586 * }
1587 * to identify the LOV(MDT) object, and lmm_object_seq will
1588 * be normal_fid, which make it hard to combine these conversion
1589 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1590 *
1591 * We can tell the lmm_oi by this way,
1592 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1593 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1594 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1595 * lmm_oi.f_ver = 0
1596 *
1597 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1598 * except for printing some information, and the user can always
1599 * get the real FID from LMA, besides this multiple case check might
1600 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1601 */
1602
1603static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1604 struct ost_id *oi)
1605{
1606 oi->oi.oi_id = fid_oid(fid);
1607 oi->oi.oi_seq = fid_seq(fid);
1608}
1609
1610static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1611{
1612 oi->oi.oi_seq = seq;
1613}
1614
1615static inline __u64 lmm_oi_id(struct ost_id *oi)
1616{
1617 return oi->oi.oi_id;
1618}
1619
1620static inline __u64 lmm_oi_seq(struct ost_id *oi)
1621{
1622 return oi->oi.oi_seq;
1623}
1624
1625static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1626 struct ost_id *src_oi)
1627{
1628 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1629 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1630}
1631
1632static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1633 struct ost_id *src_oi)
1634{
1635 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1636 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1637}
1638
1639/* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1640
1641#define MAX_MD_SIZE (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1642#define MIN_MD_SIZE (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1643
1644#define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1645#define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1646#define XATTR_USER_PREFIX "user."
1647#define XATTR_TRUSTED_PREFIX "trusted."
1648#define XATTR_SECURITY_PREFIX "security."
1649#define XATTR_LUSTRE_PREFIX "lustre."
1650
1651#define XATTR_NAME_LOV "trusted.lov"
1652#define XATTR_NAME_LMA "trusted.lma"
1653#define XATTR_NAME_LMV "trusted.lmv"
1654#define XATTR_NAME_LINK "trusted.link"
1655#define XATTR_NAME_FID "trusted.fid"
1656#define XATTR_NAME_VERSION "trusted.version"
1657#define XATTR_NAME_SOM "trusted.som"
1658#define XATTR_NAME_HSM "trusted.hsm"
1659#define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1660
1661struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1662 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1663 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1664 struct ost_id lmm_oi; /* LOV object ID */
1665 __u32 lmm_stripe_size; /* size of stripe in bytes */
1666 /* lmm_stripe_count used to be __u32 */
1667 __u16 lmm_stripe_count; /* num stripes in use for this object */
1668 __u16 lmm_layout_gen; /* layout generation number */
1669 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1670 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1671};
1672
1673#define OBD_MD_FLID (0x00000001ULL) /* object ID */
1674#define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1675#define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1676#define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1677#define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1678#define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1679#define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1680#define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1681#define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1682#define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1683#define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1684#define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1685#define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1686#define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1687/*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1688#define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1689#define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1690#define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1691#define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1692#define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1693#define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1694/*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1695#define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1696#define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1697#define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1698#define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1699 /* ->mds if epoch opens or closes */
1700#define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1701#define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1702#define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1703#define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1704#define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1705
1706#define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1707#define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1708#define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
1709
1710/* OBD_MD_MDTIDX is used to get MDT index, but it is never been used overwire,
1711 * and it is already obsolete since 2.3 */
1712/* #define OBD_MD_MDTIDX (0x0000000800000000ULL) */
1713
1714#define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1715#define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1716#define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1717#define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1718#define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1719#define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1720#define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1721#define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1722#define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1723#define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1724 * under lock */
1725#define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1726
1727#define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1728#define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1729#define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1730#define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1731
1732#define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1733
1734#define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1735 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1736 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1737 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1738 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1739
1740/* don't forget obdo_fid which is way down at the bottom so it can
1741 * come after the definition of llog_cookie */
1742
1743enum hss_valid {
1744 HSS_SETMASK = 0x01,
1745 HSS_CLEARMASK = 0x02,
1746 HSS_ARCHIVE_ID = 0x04,
1747};
1748
1749struct hsm_state_set {
1750 __u32 hss_valid;
1751 __u32 hss_archive_id;
1752 __u64 hss_setmask;
1753 __u64 hss_clearmask;
1754};
1755
1756extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1757extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1758
1759extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1760
1761/* ost_body.data values for OST_BRW */
1762
1763#define OBD_BRW_READ 0x01
1764#define OBD_BRW_WRITE 0x02
1765#define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1766#define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1767 * transfer and is not accounted in
1768 * the grant. */
1769#define OBD_BRW_CHECK 0x10
1770#define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1771#define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1772#define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1773#define OBD_BRW_NOQUOTA 0x100
1774#define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1775#define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1776#define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1777#define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1778#define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1779
1780#define OBD_OBJECT_EOF 0xffffffffffffffffULL
1781
1782#define OST_MIN_PRECREATE 32
1783#define OST_MAX_PRECREATE 20000
1784
1785struct obd_ioobj {
1786 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1787 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1788 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1789 * high 16 bits in 2.4 and later */
1790 __u32 ioo_bufcnt; /* number of niobufs for this object */
1791};
1792
1793#define IOOBJ_MAX_BRW_BITS 16
1794#define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1795#define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1796#define ioobj_max_brw_set(ioo, num) \
1797do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1798
1799extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1800
1801/* multiple of 8 bytes => can array */
1802struct niobuf_remote {
1803 __u64 offset;
1804 __u32 len;
1805 __u32 flags;
1806};
1807
1808extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1809
1810/* lock value block communicated between the filter and llite */
1811
1812/* OST_LVB_ERR_INIT is needed because the return code in rc is
1813 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1814#define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1815#define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1816#define OST_LVB_IS_ERR(blocks) \
1817 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1818#define OST_LVB_SET_ERR(blocks, rc) \
1819 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1820#define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1821
1822struct ost_lvb_v1 {
1823 __u64 lvb_size;
1824 obd_time lvb_mtime;
1825 obd_time lvb_atime;
1826 obd_time lvb_ctime;
1827 __u64 lvb_blocks;
1828};
1829
1830extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1831
1832struct ost_lvb {
1833 __u64 lvb_size;
1834 obd_time lvb_mtime;
1835 obd_time lvb_atime;
1836 obd_time lvb_ctime;
1837 __u64 lvb_blocks;
1838 __u32 lvb_mtime_ns;
1839 __u32 lvb_atime_ns;
1840 __u32 lvb_ctime_ns;
1841 __u32 lvb_padding;
1842};
1843
1844extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1845
1846/*
1847 * lquota data structures
1848 */
1849
1850#ifndef QUOTABLOCK_BITS
1851#define QUOTABLOCK_BITS 10
1852#endif
1853
1854#ifndef QUOTABLOCK_SIZE
1855#define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1856#endif
1857
1858#ifndef toqb
1859#define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1860#endif
1861
1862/* The lquota_id structure is an union of all the possible identifier types that
1863 * can be used with quota, this includes:
1864 * - 64-bit user ID
1865 * - 64-bit group ID
1866 * - a FID which can be used for per-directory quota in the future */
1867union lquota_id {
1868 struct lu_fid qid_fid; /* FID for per-directory quota */
1869 __u64 qid_uid; /* user identifier */
1870 __u64 qid_gid; /* group identifier */
1871};
1872
1873/* quotactl management */
1874struct obd_quotactl {
1875 __u32 qc_cmd;
1876 __u32 qc_type; /* see Q_* flag below */
1877 __u32 qc_id;
1878 __u32 qc_stat;
1879 struct obd_dqinfo qc_dqinfo;
1880 struct obd_dqblk qc_dqblk;
1881};
1882
1883extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1884
1885#define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1886#define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1887#define Q_GETOINFO 0x800102 /* get obd quota info */
1888#define Q_GETOQUOTA 0x800103 /* get obd quotas */
1889#define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1890
1891#define Q_COPY(out, in, member) (out)->member = (in)->member
1892
1893#define QCTL_COPY(out, in) \
1894do { \
1895 Q_COPY(out, in, qc_cmd); \
1896 Q_COPY(out, in, qc_type); \
1897 Q_COPY(out, in, qc_id); \
1898 Q_COPY(out, in, qc_stat); \
1899 Q_COPY(out, in, qc_dqinfo); \
1900 Q_COPY(out, in, qc_dqblk); \
1901} while (0)
1902
1903/* Body of quota request used for quota acquire/release RPCs between quota
1904 * master (aka QMT) and slaves (ak QSD). */
1905struct quota_body {
1906 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1907 * and type (data or metadata) as well as
1908 * the quota type (user or group). */
1909 union lquota_id qb_id; /* uid or gid or directory FID */
1910 __u32 qb_flags; /* see below */
1911 __u32 qb_padding;
1912 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1913 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1914 __u64 qb_slv_ver; /* slave index file version */
1915 struct lustre_handle qb_lockh; /* per-ID lock handle */
1916 struct lustre_handle qb_glb_lockh; /* global lock handle */
1917 __u64 qb_padding1[4];
1918};
1919
1920/* When the quota_body is used in the reply of quota global intent
1921 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1922#define qb_slv_fid qb_fid
1923/* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1924 * quota reply */
1925#define qb_qunit qb_usage
1926
1927#define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1928#define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1929#define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1930#define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1931
1932extern void lustre_swab_quota_body(struct quota_body *b);
1933
1934/* Quota types currently supported */
1935enum {
1936 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1937 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1938 LQUOTA_TYPE_MAX
1939};
1940
1941/* There are 2 different resource types on which a quota limit can be enforced:
1942 * - inodes on the MDTs
1943 * - blocks on the OSTs */
1944enum {
1945 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1946 LQUOTA_RES_DT = 0x02,
1947 LQUOTA_LAST_RES,
1948 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1949};
1950#define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1951
1952/*
1953 * Space accounting support
1954 * Format of an accounting record, providing disk usage information for a given
1955 * user or group
1956 */
1957struct lquota_acct_rec { /* 16 bytes */
1958 __u64 bspace; /* current space in use */
1959 __u64 ispace; /* current # inodes in use */
1960};
1961
1962/*
1963 * Global quota index support
1964 * Format of a global record, providing global quota settings for a given quota
1965 * identifier
1966 */
1967struct lquota_glb_rec { /* 32 bytes */
1968 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
1969 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
1970 __u64 qbr_time; /* grace time, in seconds */
1971 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
1972 * kbytes */
1973};
1974
1975/*
1976 * Slave index support
1977 * Format of a slave record, recording how much space is granted to a given
1978 * slave
1979 */
1980struct lquota_slv_rec { /* 8 bytes */
1981 __u64 qsr_granted; /* space granted to the slave for the key=ID,
1982 * in #inodes or kbytes */
1983};
1984
1985/* Data structures associated with the quota locks */
1986
1987/* Glimpse descriptor used for the index & per-ID quota locks */
1988struct ldlm_gl_lquota_desc {
1989 union lquota_id gl_id; /* quota ID subject to the glimpse */
1990 __u64 gl_flags; /* see LQUOTA_FL* below */
1991 __u64 gl_ver; /* new index version */
1992 __u64 gl_hardlimit; /* new hardlimit or qunit value */
1993 __u64 gl_softlimit; /* new softlimit */
1994 __u64 gl_time;
1995 __u64 gl_pad2;
1996};
1997#define gl_qunit gl_hardlimit /* current qunit value used when
1998 * glimpsing per-ID quota locks */
1999
2000/* quota glimpse flags */
2001#define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
2002
2003/* LVB used with quota (global and per-ID) locks */
2004struct lquota_lvb {
2005 __u64 lvb_flags; /* see LQUOTA_FL* above */
2006 __u64 lvb_id_may_rel; /* space that might be released later */
2007 __u64 lvb_id_rel; /* space released by the slave for this ID */
2008 __u64 lvb_id_qunit; /* current qunit value */
2009 __u64 lvb_pad1;
2010};
2011
2012extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2013
2014/* LVB used with global quota lock */
2015#define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2016
2017/* op codes */
2018typedef enum {
2019 QUOTA_DQACQ = 601,
2020 QUOTA_DQREL = 602,
2021 QUOTA_LAST_OPC
2022} quota_cmd_t;
2023#define QUOTA_FIRST_OPC QUOTA_DQACQ
2024
2025/*
2026 * MDS REQ RECORDS
2027 */
2028
2029/* opcodes */
2030typedef enum {
2031 MDS_GETATTR = 33,
2032 MDS_GETATTR_NAME = 34,
2033 MDS_CLOSE = 35,
2034 MDS_REINT = 36,
2035 MDS_READPAGE = 37,
2036 MDS_CONNECT = 38,
2037 MDS_DISCONNECT = 39,
2038 MDS_GETSTATUS = 40,
2039 MDS_STATFS = 41,
2040 MDS_PIN = 42,
2041 MDS_UNPIN = 43,
2042 MDS_SYNC = 44,
2043 MDS_DONE_WRITING = 45,
2044 MDS_SET_INFO = 46,
2045 MDS_QUOTACHECK = 47,
2046 MDS_QUOTACTL = 48,
2047 MDS_GETXATTR = 49,
2048 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2049 MDS_WRITEPAGE = 51,
2050 MDS_IS_SUBDIR = 52,
2051 MDS_GET_INFO = 53,
2052 MDS_HSM_STATE_GET = 54,
2053 MDS_HSM_STATE_SET = 55,
2054 MDS_HSM_ACTION = 56,
2055 MDS_HSM_PROGRESS = 57,
2056 MDS_HSM_REQUEST = 58,
2057 MDS_HSM_CT_REGISTER = 59,
2058 MDS_HSM_CT_UNREGISTER = 60,
2059 MDS_SWAP_LAYOUTS = 61,
2060 MDS_LAST_OPC
2061} mds_cmd_t;
2062
2063#define MDS_FIRST_OPC MDS_GETATTR
2064
2065
2066/* opcodes for object update */
2067typedef enum {
2068 UPDATE_OBJ = 1000,
2069 UPDATE_LAST_OPC
2070} update_cmd_t;
2071
2072#define UPDATE_FIRST_OPC UPDATE_OBJ
2073
2074/*
2075 * Do not exceed 63
2076 */
2077
2078typedef enum {
2079 REINT_SETATTR = 1,
2080 REINT_CREATE = 2,
2081 REINT_LINK = 3,
2082 REINT_UNLINK = 4,
2083 REINT_RENAME = 5,
2084 REINT_OPEN = 6,
2085 REINT_SETXATTR = 7,
2086 REINT_RMENTRY = 8,
2087// REINT_WRITE = 9,
2088 REINT_MAX
2089} mds_reint_t, mdt_reint_t;
2090
2091extern void lustre_swab_generic_32s (__u32 *val);
2092
2093/* the disposition of the intent outlines what was executed */
2094#define DISP_IT_EXECD 0x00000001
2095#define DISP_LOOKUP_EXECD 0x00000002
2096#define DISP_LOOKUP_NEG 0x00000004
2097#define DISP_LOOKUP_POS 0x00000008
2098#define DISP_OPEN_CREATE 0x00000010
2099#define DISP_OPEN_OPEN 0x00000020
2100#define DISP_ENQ_COMPLETE 0x00400000
2101#define DISP_ENQ_OPEN_REF 0x00800000
2102#define DISP_ENQ_CREATE_REF 0x01000000
2103#define DISP_OPEN_LOCK 0x02000000
2104
2105/* INODE LOCK PARTS */
2106#define MDS_INODELOCK_LOOKUP 0x000001 /* dentry, mode, owner, group */
2107#define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2108#define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2109#define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2110#define MDS_INODELOCK_PERM 0x000010 /* for permission */
2111
2112#define MDS_INODELOCK_MAXSHIFT 4
2113/* This FULL lock is useful to take on unlink sort of operations */
2114#define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2115
2116extern void lustre_swab_ll_fid (struct ll_fid *fid);
2117
2118/* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2119 * but was moved into name[1] along with the OID to avoid consuming the
2120 * name[2,3] fields that need to be used for the quota id (also a FID). */
2121enum {
2122 LUSTRE_RES_ID_SEQ_OFF = 0,
2123 LUSTRE_RES_ID_VER_OID_OFF = 1,
2124 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2125 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2126 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2127 LUSTRE_RES_ID_HSH_OFF = 3
2128};
2129
2130#define MDS_STATUS_CONN 1
2131#define MDS_STATUS_LOV 2
2132
2133/* mdt_thread_info.mti_flags. */
2134enum md_op_flags {
2135 /* The flag indicates Size-on-MDS attributes are changed. */
2136 MF_SOM_CHANGE = (1 << 0),
2137 /* Flags indicates an epoch opens or closes. */
2138 MF_EPOCH_OPEN = (1 << 1),
2139 MF_EPOCH_CLOSE = (1 << 2),
2140 MF_MDC_CANCEL_FID1 = (1 << 3),
2141 MF_MDC_CANCEL_FID2 = (1 << 4),
2142 MF_MDC_CANCEL_FID3 = (1 << 5),
2143 MF_MDC_CANCEL_FID4 = (1 << 6),
2144 /* There is a pending attribute update. */
2145 MF_SOM_AU = (1 << 7),
2146 /* Cancel OST locks while getattr OST attributes. */
2147 MF_GETATTR_LOCK = (1 << 8),
2148 MF_GET_MDT_IDX = (1 << 9),
2149};
2150
2151#define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2152
2153#define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2154
2155/* these should be identical to their EXT4_*_FL counterparts, they are
2156 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2157#define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2158#define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2159#define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2160#define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2161#define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2162
2163/* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2164 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2165 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2166 * the S_* flags are kernel-internal values that change between kernel
2167 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2168 * See b=16526 for a full history. */
2169static inline int ll_ext_to_inode_flags(int flags)
2170{
2171 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2172 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2173 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2174#if defined(S_DIRSYNC)
2175 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2176#endif
2177 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2178}
2179
2180static inline int ll_inode_to_ext_flags(int iflags)
2181{
2182 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2183 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2184 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2185#if defined(S_DIRSYNC)
2186 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2187#endif
2188 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2189}
2190
2191struct mdt_body {
2192 struct lu_fid fid1;
2193 struct lu_fid fid2;
2194 struct lustre_handle handle;
2195 __u64 valid;
2196 __u64 size; /* Offset, in the case of MDS_READPAGE */
2197 obd_time mtime;
2198 obd_time atime;
2199 obd_time ctime;
2200 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2201 __u64 ioepoch;
2202 __u64 unused1; /* was "ino" until 2.4.0 */
2203 __u32 fsuid;
2204 __u32 fsgid;
2205 __u32 capability;
2206 __u32 mode;
2207 __u32 uid;
2208 __u32 gid;
2209 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2210 __u32 rdev;
2211 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2212 __u32 unused2; /* was "generation" until 2.4.0 */
2213 __u32 suppgid;
2214 __u32 eadatasize;
2215 __u32 aclsize;
2216 __u32 max_mdsize;
2217 __u32 max_cookiesize;
2218 __u32 uid_h; /* high 32-bits of uid, for FUID */
2219 __u32 gid_h; /* high 32-bits of gid, for FUID */
2220 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2221 __u64 padding_6;
2222 __u64 padding_7;
2223 __u64 padding_8;
2224 __u64 padding_9;
2225 __u64 padding_10;
2226}; /* 216 */
2227
2228extern void lustre_swab_mdt_body (struct mdt_body *b);
2229
2230struct mdt_ioepoch {
2231 struct lustre_handle handle;
2232 __u64 ioepoch;
2233 __u32 flags;
2234 __u32 padding;
2235};
2236
2237extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2238
2239/* permissions for md_perm.mp_perm */
2240enum {
2241 CFS_SETUID_PERM = 0x01,
2242 CFS_SETGID_PERM = 0x02,
2243 CFS_SETGRP_PERM = 0x04,
2244 CFS_RMTACL_PERM = 0x08,
2245 CFS_RMTOWN_PERM = 0x10
2246};
2247
2248/* inode access permission for remote user, the inode info are omitted,
2249 * for client knows them. */
2250struct mdt_remote_perm {
2251 __u32 rp_uid;
2252 __u32 rp_gid;
2253 __u32 rp_fsuid;
2254 __u32 rp_fsuid_h;
2255 __u32 rp_fsgid;
2256 __u32 rp_fsgid_h;
2257 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2258 __u32 rp_padding;
2259};
2260
2261extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2262
2263struct mdt_rec_setattr {
2264 __u32 sa_opcode;
2265 __u32 sa_cap;
2266 __u32 sa_fsuid;
2267 __u32 sa_fsuid_h;
2268 __u32 sa_fsgid;
2269 __u32 sa_fsgid_h;
2270 __u32 sa_suppgid;
2271 __u32 sa_suppgid_h;
2272 __u32 sa_padding_1;
2273 __u32 sa_padding_1_h;
2274 struct lu_fid sa_fid;
2275 __u64 sa_valid;
2276 __u32 sa_uid;
2277 __u32 sa_gid;
2278 __u64 sa_size;
2279 __u64 sa_blocks;
2280 obd_time sa_mtime;
2281 obd_time sa_atime;
2282 obd_time sa_ctime;
2283 __u32 sa_attr_flags;
2284 __u32 sa_mode;
2285 __u32 sa_bias; /* some operation flags */
2286 __u32 sa_padding_3;
2287 __u32 sa_padding_4;
2288 __u32 sa_padding_5;
2289};
2290
2291extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2292
2293/*
2294 * Attribute flags used in mdt_rec_setattr::sa_valid.
2295 * The kernel's #defines for ATTR_* should not be used over the network
2296 * since the client and MDS may run different kernels (see bug 13828)
2297 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2298 */
2299#define MDS_ATTR_MODE 0x1ULL /* = 1 */
2300#define MDS_ATTR_UID 0x2ULL /* = 2 */
2301#define MDS_ATTR_GID 0x4ULL /* = 4 */
2302#define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2303#define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2304#define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2305#define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2306#define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2307#define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2308#define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2309#define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2310#define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2311#define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2312#define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2313#define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2314#define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2315
2316#ifndef FMODE_READ
2317#define FMODE_READ 00000001
2318#define FMODE_WRITE 00000002
2319#endif
2320
2321#define MDS_FMODE_CLOSED 00000000
2322#define MDS_FMODE_EXEC 00000004
2323/* IO Epoch is opened on a closed file. */
2324#define MDS_FMODE_EPOCH 01000000
2325/* IO Epoch is opened on a file truncate. */
2326#define MDS_FMODE_TRUNC 02000000
2327/* Size-on-MDS Attribute Update is pending. */
2328#define MDS_FMODE_SOM 04000000
2329
2330#define MDS_OPEN_CREATED 00000010
2331#define MDS_OPEN_CROSS 00000020
2332
2333#define MDS_OPEN_CREAT 00000100
2334#define MDS_OPEN_EXCL 00000200
2335#define MDS_OPEN_TRUNC 00001000
2336#define MDS_OPEN_APPEND 00002000
2337#define MDS_OPEN_SYNC 00010000
2338#define MDS_OPEN_DIRECTORY 00200000
2339
2340#define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2341#define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2342#define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2343#define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2344 * We do not support JOIN FILE
2345 * anymore, reserve this flags
2346 * just for preventing such bit
2347 * to be reused. */
2348
2349#define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2350#define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2351#define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2352#define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2353#define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2354 * hsm restore) */
2355#define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2356 unlinked */
2357
2358/* permission for create non-directory file */
2359#define MAY_CREATE (1 << 7)
2360/* permission for create directory file */
2361#define MAY_LINK (1 << 8)
2362/* permission for delete from the directory */
2363#define MAY_UNLINK (1 << 9)
2364/* source's permission for rename */
2365#define MAY_RENAME_SRC (1 << 10)
2366/* target's permission for rename */
2367#define MAY_RENAME_TAR (1 << 11)
2368/* part (parent's) VTX permission check */
2369#define MAY_VTX_PART (1 << 12)
2370/* full VTX permission check */
2371#define MAY_VTX_FULL (1 << 13)
2372/* lfs rgetfacl permission check */
2373#define MAY_RGETFACL (1 << 14)
2374
2375enum {
2376 MDS_CHECK_SPLIT = 1 << 0,
2377 MDS_CROSS_REF = 1 << 1,
2378 MDS_VTX_BYPASS = 1 << 2,
2379 MDS_PERM_BYPASS = 1 << 3,
2380 MDS_SOM = 1 << 4,
2381 MDS_QUOTA_IGNORE = 1 << 5,
2382 MDS_CLOSE_CLEANUP = 1 << 6,
2383 MDS_KEEP_ORPHAN = 1 << 7,
2384 MDS_RECOV_OPEN = 1 << 8,
2385 MDS_DATA_MODIFIED = 1 << 9,
2386 MDS_CREATE_VOLATILE = 1 << 10,
2387 MDS_OWNEROVERRIDE = 1 << 11,
2388};
2389
2390/* instance of mdt_reint_rec */
2391struct mdt_rec_create {
2392 __u32 cr_opcode;
2393 __u32 cr_cap;
2394 __u32 cr_fsuid;
2395 __u32 cr_fsuid_h;
2396 __u32 cr_fsgid;
2397 __u32 cr_fsgid_h;
2398 __u32 cr_suppgid1;
2399 __u32 cr_suppgid1_h;
2400 __u32 cr_suppgid2;
2401 __u32 cr_suppgid2_h;
2402 struct lu_fid cr_fid1;
2403 struct lu_fid cr_fid2;
2404 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2405 obd_time cr_time;
2406 __u64 cr_rdev;
2407 __u64 cr_ioepoch;
2408 __u64 cr_padding_1; /* rr_blocks */
2409 __u32 cr_mode;
2410 __u32 cr_bias;
2411 /* use of helpers set/get_mrc_cr_flags() is needed to access
2412 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2413 * extend cr_flags size without breaking 1.8 compat */
2414 __u32 cr_flags_l; /* for use with open, low 32 bits */
2415 __u32 cr_flags_h; /* for use with open, high 32 bits */
2416 __u32 cr_umask; /* umask for create */
2417 __u32 cr_padding_4; /* rr_padding_4 */
2418};
2419
2420static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2421{
2422 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2423 mrc->cr_flags_h = (__u32)(flags >> 32);
2424}
2425
2426static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2427{
2428 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2429}
2430
2431/* instance of mdt_reint_rec */
2432struct mdt_rec_link {
2433 __u32 lk_opcode;
2434 __u32 lk_cap;
2435 __u32 lk_fsuid;
2436 __u32 lk_fsuid_h;
2437 __u32 lk_fsgid;
2438 __u32 lk_fsgid_h;
2439 __u32 lk_suppgid1;
2440 __u32 lk_suppgid1_h;
2441 __u32 lk_suppgid2;
2442 __u32 lk_suppgid2_h;
2443 struct lu_fid lk_fid1;
2444 struct lu_fid lk_fid2;
2445 obd_time lk_time;
2446 __u64 lk_padding_1; /* rr_atime */
2447 __u64 lk_padding_2; /* rr_ctime */
2448 __u64 lk_padding_3; /* rr_size */
2449 __u64 lk_padding_4; /* rr_blocks */
2450 __u32 lk_bias;
2451 __u32 lk_padding_5; /* rr_mode */
2452 __u32 lk_padding_6; /* rr_flags */
2453 __u32 lk_padding_7; /* rr_padding_2 */
2454 __u32 lk_padding_8; /* rr_padding_3 */
2455 __u32 lk_padding_9; /* rr_padding_4 */
2456};
2457
2458/* instance of mdt_reint_rec */
2459struct mdt_rec_unlink {
2460 __u32 ul_opcode;
2461 __u32 ul_cap;
2462 __u32 ul_fsuid;
2463 __u32 ul_fsuid_h;
2464 __u32 ul_fsgid;
2465 __u32 ul_fsgid_h;
2466 __u32 ul_suppgid1;
2467 __u32 ul_suppgid1_h;
2468 __u32 ul_suppgid2;
2469 __u32 ul_suppgid2_h;
2470 struct lu_fid ul_fid1;
2471 struct lu_fid ul_fid2;
2472 obd_time ul_time;
2473 __u64 ul_padding_2; /* rr_atime */
2474 __u64 ul_padding_3; /* rr_ctime */
2475 __u64 ul_padding_4; /* rr_size */
2476 __u64 ul_padding_5; /* rr_blocks */
2477 __u32 ul_bias;
2478 __u32 ul_mode;
2479 __u32 ul_padding_6; /* rr_flags */
2480 __u32 ul_padding_7; /* rr_padding_2 */
2481 __u32 ul_padding_8; /* rr_padding_3 */
2482 __u32 ul_padding_9; /* rr_padding_4 */
2483};
2484
2485/* instance of mdt_reint_rec */
2486struct mdt_rec_rename {
2487 __u32 rn_opcode;
2488 __u32 rn_cap;
2489 __u32 rn_fsuid;
2490 __u32 rn_fsuid_h;
2491 __u32 rn_fsgid;
2492 __u32 rn_fsgid_h;
2493 __u32 rn_suppgid1;
2494 __u32 rn_suppgid1_h;
2495 __u32 rn_suppgid2;
2496 __u32 rn_suppgid2_h;
2497 struct lu_fid rn_fid1;
2498 struct lu_fid rn_fid2;
2499 obd_time rn_time;
2500 __u64 rn_padding_1; /* rr_atime */
2501 __u64 rn_padding_2; /* rr_ctime */
2502 __u64 rn_padding_3; /* rr_size */
2503 __u64 rn_padding_4; /* rr_blocks */
2504 __u32 rn_bias; /* some operation flags */
2505 __u32 rn_mode; /* cross-ref rename has mode */
2506 __u32 rn_padding_5; /* rr_flags */
2507 __u32 rn_padding_6; /* rr_padding_2 */
2508 __u32 rn_padding_7; /* rr_padding_3 */
2509 __u32 rn_padding_8; /* rr_padding_4 */
2510};
2511
2512/* instance of mdt_reint_rec */
2513struct mdt_rec_setxattr {
2514 __u32 sx_opcode;
2515 __u32 sx_cap;
2516 __u32 sx_fsuid;
2517 __u32 sx_fsuid_h;
2518 __u32 sx_fsgid;
2519 __u32 sx_fsgid_h;
2520 __u32 sx_suppgid1;
2521 __u32 sx_suppgid1_h;
2522 __u32 sx_suppgid2;
2523 __u32 sx_suppgid2_h;
2524 struct lu_fid sx_fid;
2525 __u64 sx_padding_1; /* These three are rr_fid2 */
2526 __u32 sx_padding_2;
2527 __u32 sx_padding_3;
2528 __u64 sx_valid;
2529 obd_time sx_time;
2530 __u64 sx_padding_5; /* rr_ctime */
2531 __u64 sx_padding_6; /* rr_size */
2532 __u64 sx_padding_7; /* rr_blocks */
2533 __u32 sx_size;
2534 __u32 sx_flags;
2535 __u32 sx_padding_8; /* rr_flags */
2536 __u32 sx_padding_9; /* rr_padding_2 */
2537 __u32 sx_padding_10; /* rr_padding_3 */
2538 __u32 sx_padding_11; /* rr_padding_4 */
2539};
2540
2541/*
2542 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2543 * Do NOT change the size of various members, otherwise the value
2544 * will be broken in lustre_swab_mdt_rec_reint().
2545 *
2546 * If you add new members in other mdt_reint_xxx structres and need to use the
2547 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2548 */
2549struct mdt_rec_reint {
2550 __u32 rr_opcode;
2551 __u32 rr_cap;
2552 __u32 rr_fsuid;
2553 __u32 rr_fsuid_h;
2554 __u32 rr_fsgid;
2555 __u32 rr_fsgid_h;
2556 __u32 rr_suppgid1;
2557 __u32 rr_suppgid1_h;
2558 __u32 rr_suppgid2;
2559 __u32 rr_suppgid2_h;
2560 struct lu_fid rr_fid1;
2561 struct lu_fid rr_fid2;
2562 obd_time rr_mtime;
2563 obd_time rr_atime;
2564 obd_time rr_ctime;
2565 __u64 rr_size;
2566 __u64 rr_blocks;
2567 __u32 rr_bias;
2568 __u32 rr_mode;
2569 __u32 rr_flags;
2570 __u32 rr_flags_h;
2571 __u32 rr_umask;
2572 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2573};
2574
2575extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2576
2577struct lmv_desc {
2578 __u32 ld_tgt_count; /* how many MDS's */
2579 __u32 ld_active_tgt_count; /* how many active */
2580 __u32 ld_default_stripe_count; /* how many objects are used */
2581 __u32 ld_pattern; /* default MEA_MAGIC_* */
2582 __u64 ld_default_hash_size;
2583 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2584 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2585 __u32 ld_qos_maxage; /* in second */
2586 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2587 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2588 struct obd_uuid ld_uuid;
2589};
2590
2591extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2592
2593/* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2594struct lmv_stripe_md {
2595 __u32 mea_magic;
2596 __u32 mea_count;
2597 __u32 mea_master;
2598 __u32 mea_padding;
2599 char mea_pool_name[LOV_MAXPOOLNAME];
2600 struct lu_fid mea_ids[0];
2601};
2602
2603extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2604
2605/* lmv structures */
2606#define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2607#define MEA_MAGIC_ALL_CHARS 0xb222a11c
2608#define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2609
2610#define MAX_HASH_SIZE_32 0x7fffffffUL
2611#define MAX_HASH_SIZE 0x7fffffffffffffffULL
2612#define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2613
2614enum fld_rpc_opc {
2615 FLD_QUERY = 900,
2616 FLD_LAST_OPC,
2617 FLD_FIRST_OPC = FLD_QUERY
2618};
2619
2620enum seq_rpc_opc {
2621 SEQ_QUERY = 700,
2622 SEQ_LAST_OPC,
2623 SEQ_FIRST_OPC = SEQ_QUERY
2624};
2625
2626enum seq_op {
2627 SEQ_ALLOC_SUPER = 0,
2628 SEQ_ALLOC_META = 1
2629};
2630
2631/*
2632 * LOV data structures
2633 */
2634
2635#define LOV_MAX_UUID_BUFFER_SIZE 8192
2636/* The size of the buffer the lov/mdc reserves for the
2637 * array of UUIDs returned by the MDS. With the current
2638 * protocol, this will limit the max number of OSTs per LOV */
2639
2640#define LOV_DESC_MAGIC 0xB0CCDE5C
2641
2642/* LOV settings descriptor (should only contain static info) */
2643struct lov_desc {
2644 __u32 ld_tgt_count; /* how many OBD's */
2645 __u32 ld_active_tgt_count; /* how many active */
2646 __u32 ld_default_stripe_count; /* how many objects are used */
2647 __u32 ld_pattern; /* default PATTERN_RAID0 */
2648 __u64 ld_default_stripe_size; /* in bytes */
2649 __u64 ld_default_stripe_offset; /* in bytes */
2650 __u32 ld_padding_0; /* unused */
2651 __u32 ld_qos_maxage; /* in second */
2652 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2653 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2654 struct obd_uuid ld_uuid;
2655};
2656
2657#define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2658
2659extern void lustre_swab_lov_desc (struct lov_desc *ld);
2660
2661/*
2662 * LDLM requests:
2663 */
2664/* opcodes -- MUST be distinct from OST/MDS opcodes */
2665typedef enum {
2666 LDLM_ENQUEUE = 101,
2667 LDLM_CONVERT = 102,
2668 LDLM_CANCEL = 103,
2669 LDLM_BL_CALLBACK = 104,
2670 LDLM_CP_CALLBACK = 105,
2671 LDLM_GL_CALLBACK = 106,
2672 LDLM_SET_INFO = 107,
2673 LDLM_LAST_OPC
2674} ldlm_cmd_t;
2675#define LDLM_FIRST_OPC LDLM_ENQUEUE
2676
2677#define RES_NAME_SIZE 4
2678struct ldlm_res_id {
2679 __u64 name[RES_NAME_SIZE];
2680};
2681
2682extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2683
2684static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2685 const struct ldlm_res_id *res1)
2686{
2687 return !memcmp(res0, res1, sizeof(*res0));
2688}
2689
2690/* lock types */
2691typedef enum {
2692 LCK_MINMODE = 0,
2693 LCK_EX = 1,
2694 LCK_PW = 2,
2695 LCK_PR = 4,
2696 LCK_CW = 8,
2697 LCK_CR = 16,
2698 LCK_NL = 32,
2699 LCK_GROUP = 64,
2700 LCK_COS = 128,
2701 LCK_MAXMODE
2702} ldlm_mode_t;
2703
2704#define LCK_MODE_NUM 8
2705
2706typedef enum {
2707 LDLM_PLAIN = 10,
2708 LDLM_EXTENT = 11,
2709 LDLM_FLOCK = 12,
2710 LDLM_IBITS = 13,
2711 LDLM_MAX_TYPE
2712} ldlm_type_t;
2713
2714#define LDLM_MIN_TYPE LDLM_PLAIN
2715
2716struct ldlm_extent {
2717 __u64 start;
2718 __u64 end;
2719 __u64 gid;
2720};
2721
2722static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2723 struct ldlm_extent *ex2)
2724{
2725 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2726}
2727
2728/* check if @ex1 contains @ex2 */
2729static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2730 struct ldlm_extent *ex2)
2731{
2732 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2733}
2734
2735struct ldlm_inodebits {
2736 __u64 bits;
2737};
2738
2739struct ldlm_flock_wire {
2740 __u64 lfw_start;
2741 __u64 lfw_end;
2742 __u64 lfw_owner;
2743 __u32 lfw_padding;
2744 __u32 lfw_pid;
2745};
2746
2747/* it's important that the fields of the ldlm_extent structure match
2748 * the first fields of the ldlm_flock structure because there is only
2749 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2750 * this ever changes we will need to swab the union differently based
2751 * on the resource type. */
2752
2753typedef union {
2754 struct ldlm_extent l_extent;
2755 struct ldlm_flock_wire l_flock;
2756 struct ldlm_inodebits l_inodebits;
2757} ldlm_wire_policy_data_t;
2758
2759extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2760
2761union ldlm_gl_desc {
2762 struct ldlm_gl_lquota_desc lquota_desc;
2763};
2764
2765extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2766
2767struct ldlm_intent {
2768 __u64 opc;
2769};
2770
2771extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2772
2773struct ldlm_resource_desc {
2774 ldlm_type_t lr_type;
2775 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2776 struct ldlm_res_id lr_name;
2777};
2778
2779extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2780
2781struct ldlm_lock_desc {
2782 struct ldlm_resource_desc l_resource;
2783 ldlm_mode_t l_req_mode;
2784 ldlm_mode_t l_granted_mode;
2785 ldlm_wire_policy_data_t l_policy_data;
2786};
2787
2788extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2789
2790#define LDLM_LOCKREQ_HANDLES 2
2791#define LDLM_ENQUEUE_CANCEL_OFF 1
2792
2793struct ldlm_request {
2794 __u32 lock_flags;
2795 __u32 lock_count;
2796 struct ldlm_lock_desc lock_desc;
2797 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2798};
2799
2800extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2801
2802/* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2803 * Otherwise, 2 are available. */
2804#define ldlm_request_bufsize(count,type) \
2805({ \
2806 int _avail = LDLM_LOCKREQ_HANDLES; \
2807 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2808 sizeof(struct ldlm_request) + \
2809 (count > _avail ? count - _avail : 0) * \
2810 sizeof(struct lustre_handle); \
2811})
2812
2813struct ldlm_reply {
2814 __u32 lock_flags;
2815 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2816 struct ldlm_lock_desc lock_desc;
2817 struct lustre_handle lock_handle;
2818 __u64 lock_policy_res1;
2819 __u64 lock_policy_res2;
2820};
2821
2822extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2823
2824#define ldlm_flags_to_wire(flags) ((__u32)(flags))
2825#define ldlm_flags_from_wire(flags) ((__u64)(flags))
2826
2827/*
2828 * Opcodes for mountconf (mgs and mgc)
2829 */
2830typedef enum {
2831 MGS_CONNECT = 250,
2832 MGS_DISCONNECT,
2833 MGS_EXCEPTION, /* node died, etc. */
2834 MGS_TARGET_REG, /* whenever target starts up */
2835 MGS_TARGET_DEL,
2836 MGS_SET_INFO,
2837 MGS_CONFIG_READ,
2838 MGS_LAST_OPC
2839} mgs_cmd_t;
2840#define MGS_FIRST_OPC MGS_CONNECT
2841
2842#define MGS_PARAM_MAXLEN 1024
2843#define KEY_SET_INFO "set_info"
2844
2845struct mgs_send_param {
2846 char mgs_param[MGS_PARAM_MAXLEN];
2847};
2848
2849/* We pass this info to the MGS so it can write config logs */
2850#define MTI_NAME_MAXLEN 64
2851#define MTI_PARAM_MAXLEN 4096
2852#define MTI_NIDS_MAX 32
2853struct mgs_target_info {
2854 __u32 mti_lustre_ver;
2855 __u32 mti_stripe_index;
2856 __u32 mti_config_ver;
2857 __u32 mti_flags;
2858 __u32 mti_nid_count;
2859 __u32 mti_instance; /* Running instance of target */
2860 char mti_fsname[MTI_NAME_MAXLEN];
2861 char mti_svname[MTI_NAME_MAXLEN];
2862 char mti_uuid[sizeof(struct obd_uuid)];
2863 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2864 char mti_params[MTI_PARAM_MAXLEN];
2865};
2866extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2867
2868struct mgs_nidtbl_entry {
2869 __u64 mne_version; /* table version of this entry */
2870 __u32 mne_instance; /* target instance # */
2871 __u32 mne_index; /* target index */
2872 __u32 mne_length; /* length of this entry - by bytes */
2873 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2874 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2875 __u8 mne_nid_size; /* size of each NID, by bytes */
2876 __u8 mne_nid_count; /* # of NIDs in buffer */
2877 union {
2878 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2879 } u;
2880};
2881extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2882
2883struct mgs_config_body {
2884 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2885 __u64 mcb_offset; /* next index of config log to request */
2886 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2887 __u8 mcb_reserved;
2888 __u8 mcb_bits; /* bits unit size of config log */
2889 __u32 mcb_units; /* # of units for bulk transfer */
2890};
2891extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2892
2893struct mgs_config_res {
2894 __u64 mcr_offset; /* index of last config log */
2895 __u64 mcr_size; /* size of the log */
2896};
2897extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2898
2899/* Config marker flags (in config log) */
2900#define CM_START 0x01
2901#define CM_END 0x02
2902#define CM_SKIP 0x04
2903#define CM_UPGRADE146 0x08
2904#define CM_EXCLUDE 0x10
2905#define CM_START_SKIP (CM_START | CM_SKIP)
2906
2907struct cfg_marker {
2908 __u32 cm_step; /* aka config version */
2909 __u32 cm_flags;
2910 __u32 cm_vers; /* lustre release version number */
2911 __u32 cm_padding; /* 64 bit align */
2912 obd_time cm_createtime; /*when this record was first created */
2913 obd_time cm_canceltime; /*when this record is no longer valid*/
2914 char cm_tgtname[MTI_NAME_MAXLEN];
2915 char cm_comment[MTI_NAME_MAXLEN];
2916};
2917
2918extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2919 int swab, int size);
2920
2921/*
2922 * Opcodes for multiple servers.
2923 */
2924
2925typedef enum {
2926 OBD_PING = 400,
2927 OBD_LOG_CANCEL,
2928 OBD_QC_CALLBACK,
2929 OBD_IDX_READ,
2930 OBD_LAST_OPC
2931} obd_cmd_t;
2932#define OBD_FIRST_OPC OBD_PING
2933
2934/* catalog of log objects */
2935
2936/** Identifier for a single log object */
2937struct llog_logid {
2938 struct ost_id lgl_oi;
2939 __u32 lgl_ogen;
2940} __attribute__((packed));
2941
2942/** Records written to the CATALOGS list */
2943#define CATLIST "CATALOGS"
2944struct llog_catid {
2945 struct llog_logid lci_logid;
2946 __u32 lci_padding1;
2947 __u32 lci_padding2;
2948 __u32 lci_padding3;
2949} __attribute__((packed));
2950
2951/* Log data record types - there is no specific reason that these need to
2952 * be related to the RPC opcodes, but no reason not to (may be handy later?)
2953 */
2954#define LLOG_OP_MAGIC 0x10600000
2955#define LLOG_OP_MASK 0xfff00000
2956
2957typedef enum {
2958 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
2959 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
2960 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
2961 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2962 REINT_UNLINK, /* obsolete after 2.5.0 */
2963 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2964 REINT_UNLINK,
2965 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2966 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2967 REINT_SETATTR,
2968 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
2969 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
2970 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
2971 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
2972 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
2973 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
2974 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
2975 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
2976} llog_op_type;
2977
2978#define LLOG_REC_HDR_NEEDS_SWABBING(r) \
2979 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
2980
2981/** Log record header - stored in little endian order.
2982 * Each record must start with this struct, end with a llog_rec_tail,
2983 * and be a multiple of 256 bits in size.
2984 */
2985struct llog_rec_hdr {
2986 __u32 lrh_len;
2987 __u32 lrh_index;
2988 __u32 lrh_type;
2989 __u32 lrh_id;
2990};
2991
2992struct llog_rec_tail {
2993 __u32 lrt_len;
2994 __u32 lrt_index;
2995};
2996
2997/* Where data follow just after header */
2998#define REC_DATA(ptr) \
2999 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3000
3001#define REC_DATA_LEN(rec) \
3002 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3003 sizeof(struct llog_rec_tail))
3004
3005struct llog_logid_rec {
3006 struct llog_rec_hdr lid_hdr;
3007 struct llog_logid lid_id;
3008 __u32 lid_padding1;
3009 __u64 lid_padding2;
3010 __u64 lid_padding3;
3011 struct llog_rec_tail lid_tail;
3012} __attribute__((packed));
3013
3014struct llog_unlink_rec {
3015 struct llog_rec_hdr lur_hdr;
3016 obd_id lur_oid;
3017 obd_count lur_oseq;
3018 obd_count lur_count;
3019 struct llog_rec_tail lur_tail;
3020} __attribute__((packed));
3021
3022struct llog_unlink64_rec {
3023 struct llog_rec_hdr lur_hdr;
3024 struct lu_fid lur_fid;
3025 obd_count lur_count; /* to destroy the lost precreated */
3026 __u32 lur_padding1;
3027 __u64 lur_padding2;
3028 __u64 lur_padding3;
3029 struct llog_rec_tail lur_tail;
3030} __attribute__((packed));
3031
3032struct llog_setattr64_rec {
3033 struct llog_rec_hdr lsr_hdr;
3034 struct ost_id lsr_oi;
3035 __u32 lsr_uid;
3036 __u32 lsr_uid_h;
3037 __u32 lsr_gid;
3038 __u32 lsr_gid_h;
3039 __u64 lsr_padding;
3040 struct llog_rec_tail lsr_tail;
3041} __attribute__((packed));
3042
3043struct llog_size_change_rec {
3044 struct llog_rec_hdr lsc_hdr;
3045 struct ll_fid lsc_fid;
3046 __u32 lsc_ioepoch;
3047 __u32 lsc_padding1;
3048 __u64 lsc_padding2;
3049 __u64 lsc_padding3;
3050 struct llog_rec_tail lsc_tail;
3051} __attribute__((packed));
3052
3053#define CHANGELOG_MAGIC 0xca103000
3054
3055/** \a changelog_rec_type's that can't be masked */
3056#define CHANGELOG_MINMASK (1 << CL_MARK)
3057/** bits covering all \a changelog_rec_type's */
3058#define CHANGELOG_ALLMASK 0XFFFFFFFF
3059/** default \a changelog_rec_type mask */
3060#define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3061
3062/* changelog llog name, needed by client replicators */
3063#define CHANGELOG_CATALOG "changelog_catalog"
3064
3065struct changelog_setinfo {
3066 __u64 cs_recno;
3067 __u32 cs_id;
3068} __attribute__((packed));
3069
3070/** changelog record */
3071struct llog_changelog_rec {
3072 struct llog_rec_hdr cr_hdr;
3073 struct changelog_rec cr;
3074 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3075} __attribute__((packed));
3076
3077struct llog_changelog_ext_rec {
3078 struct llog_rec_hdr cr_hdr;
3079 struct changelog_ext_rec cr;
3080 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3081} __attribute__((packed));
3082
3083#define CHANGELOG_USER_PREFIX "cl"
3084
3085struct llog_changelog_user_rec {
3086 struct llog_rec_hdr cur_hdr;
3087 __u32 cur_id;
3088 __u32 cur_padding;
3089 __u64 cur_endrec;
3090 struct llog_rec_tail cur_tail;
3091} __attribute__((packed));
3092
3093/* Old llog gen for compatibility */
3094struct llog_gen {
3095 __u64 mnt_cnt;
3096 __u64 conn_cnt;
3097} __attribute__((packed));
3098
3099struct llog_gen_rec {
3100 struct llog_rec_hdr lgr_hdr;
3101 struct llog_gen lgr_gen;
3102 __u64 padding1;
3103 __u64 padding2;
3104 __u64 padding3;
3105 struct llog_rec_tail lgr_tail;
3106};
3107
3108/* On-disk header structure of each log object, stored in little endian order */
3109#define LLOG_CHUNK_SIZE 8192
3110#define LLOG_HEADER_SIZE (96)
3111#define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3112
3113#define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3114
3115/* flags for the logs */
3116enum llog_flag {
3117 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3118 LLOG_F_IS_CAT = 0x2,
3119 LLOG_F_IS_PLAIN = 0x4,
3120};
3121
3122struct llog_log_hdr {
3123 struct llog_rec_hdr llh_hdr;
3124 obd_time llh_timestamp;
3125 __u32 llh_count;
3126 __u32 llh_bitmap_offset;
3127 __u32 llh_size;
3128 __u32 llh_flags;
3129 __u32 llh_cat_idx;
3130 /* for a catalog the first plain slot is next to it */
3131 struct obd_uuid llh_tgtuuid;
3132 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3133 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3134 struct llog_rec_tail llh_tail;
3135} __attribute__((packed));
3136
3137#define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3138 llh->llh_bitmap_offset - \
3139 sizeof(llh->llh_tail)) * 8)
3140
3141/** log cookies are used to reference a specific log file and a record therein */
3142struct llog_cookie {
3143 struct llog_logid lgc_lgl;
3144 __u32 lgc_subsys;
3145 __u32 lgc_index;
3146 __u32 lgc_padding;
3147} __attribute__((packed));
3148
3149/** llog protocol */
3150enum llogd_rpc_ops {
3151 LLOG_ORIGIN_HANDLE_CREATE = 501,
3152 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3153 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3154 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3155 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3156 LLOG_ORIGIN_CONNECT = 506,
3157 LLOG_CATINFO = 507, /* deprecated */
3158 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3159 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3160 LLOG_LAST_OPC,
3161 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3162};
3163
3164struct llogd_body {
3165 struct llog_logid lgd_logid;
3166 __u32 lgd_ctxt_idx;
3167 __u32 lgd_llh_flags;
3168 __u32 lgd_index;
3169 __u32 lgd_saved_index;
3170 __u32 lgd_len;
3171 __u64 lgd_cur_offset;
3172} __attribute__((packed));
3173
3174struct llogd_conn_body {
3175 struct llog_gen lgdc_gen;
3176 struct llog_logid lgdc_logid;
3177 __u32 lgdc_ctxt_idx;
3178} __attribute__((packed));
3179
3180/* Note: 64-bit types are 64-bit aligned in structure */
3181struct obdo {
3182 obd_valid o_valid; /* hot fields in this obdo */
3183 struct ost_id o_oi;
3184 obd_id o_parent_seq;
3185 obd_size o_size; /* o_size-o_blocks == ost_lvb */
3186 obd_time o_mtime;
3187 obd_time o_atime;
3188 obd_time o_ctime;
3189 obd_blocks o_blocks; /* brw: cli sent cached bytes */
3190 obd_size o_grant;
3191
3192 /* 32-bit fields start here: keep an even number of them via padding */
3193 obd_blksize o_blksize; /* optimal IO blocksize */
3194 obd_mode o_mode; /* brw: cli sent cache remain */
3195 obd_uid o_uid;
3196 obd_gid o_gid;
3197 obd_flag o_flags;
3198 obd_count o_nlink; /* brw: checksum */
3199 obd_count o_parent_oid;
3200 obd_count o_misc; /* brw: o_dropped */
3201
3202 __u64 o_ioepoch; /* epoch in ost writes */
3203 __u32 o_stripe_idx; /* holds stripe idx */
3204 __u32 o_parent_ver;
3205 struct lustre_handle o_handle; /* brw: lock handle to prolong
3206 * locks */
3207 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3208 * MDS */
3209 __u32 o_uid_h;
3210 __u32 o_gid_h;
3211
3212 __u64 o_data_version; /* getattr: sum of iversion for
3213 * each stripe.
3214 * brw: grant space consumed on
3215 * the client for the write */
3216 __u64 o_padding_4;
3217 __u64 o_padding_5;
3218 __u64 o_padding_6;
3219};
3220
3221#define o_dirty o_blocks
3222#define o_undirty o_mode
3223#define o_dropped o_misc
3224#define o_cksum o_nlink
3225#define o_grant_used o_data_version
3226
3b2f75fd 3227static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3228 struct obdo *wobdo, struct obdo *lobdo)
d7e09d03
PT
3229{
3230 memcpy(wobdo, lobdo, sizeof(*lobdo));
3231 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3b2f75fd 3232 if (ocd == NULL)
3233 return;
3234
3235 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
6752a53e 3236 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3b2f75fd 3237 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3238 * client communicate with pre-2.4 server */
3239 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3240 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3241 }
d7e09d03
PT
3242}
3243
3b2f75fd 3244static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3245 struct obdo *lobdo, struct obdo *wobdo)
d7e09d03
PT
3246{
3247 obd_flag local_flags = 0;
3248
3249 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3250 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3251
3252 LASSERT(!(wobdo->o_flags & OBD_FL_LOCAL_MASK));
3253
3254 memcpy(lobdo, wobdo, sizeof(*lobdo));
3255 if (local_flags != 0) {
3b2f75fd 3256 lobdo->o_valid |= OBD_MD_FLFLAGS;
3257 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3258 lobdo->o_flags |= local_flags;
3259 }
3260 if (ocd == NULL)
3261 return;
3262
3263 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3264 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3265 /* see above */
3266 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3267 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3268 lobdo->o_oi.oi_fid.f_ver = 0;
d7e09d03
PT
3269 }
3270}
3271
3272extern void lustre_swab_obdo (struct obdo *o);
3273
3274/* request structure for OST's */
3275struct ost_body {
3276 struct obdo oa;
3277};
3278
3279/* Key for FIEMAP to be used in get_info calls */
3280struct ll_fiemap_info_key {
3281 char name[8];
3282 struct obdo oa;
3283 struct ll_user_fiemap fiemap;
3284};
3285
3286extern void lustre_swab_ost_body (struct ost_body *b);
3287extern void lustre_swab_ost_last_id(obd_id *id);
3288extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3289
3290extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3291extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3292extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3293 int stripe_count);
3294extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3295
3296/* llog_swab.c */
3297extern void lustre_swab_llogd_body (struct llogd_body *d);
3298extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3299extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3300extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
ff8c39b2 3301extern void lustre_swab_llog_id(struct llog_logid *lid);
d7e09d03
PT
3302
3303struct lustre_cfg;
3304extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3305
3306/* Functions for dumping PTLRPC fields */
3307void dump_rniobuf(struct niobuf_remote *rnb);
3308void dump_ioo(struct obd_ioobj *nb);
3309void dump_obdo(struct obdo *oa);
3310void dump_ost_body(struct ost_body *ob);
3311void dump_rcs(__u32 *rc);
3312
3313#define IDX_INFO_MAGIC 0x3D37CC37
3314
3315/* Index file transfer through the network. The server serializes the index into
3316 * a byte stream which is sent to the client via a bulk transfer */
3317struct idx_info {
3318 __u32 ii_magic;
3319
3320 /* reply: see idx_info_flags below */
3321 __u32 ii_flags;
3322
3323 /* request & reply: number of lu_idxpage (to be) transferred */
3324 __u16 ii_count;
3325 __u16 ii_pad0;
3326
3327 /* request: requested attributes passed down to the iterator API */
3328 __u32 ii_attrs;
3329
3330 /* request & reply: index file identifier (FID) */
3331 struct lu_fid ii_fid;
3332
3333 /* reply: version of the index file before starting to walk the index.
3334 * Please note that the version can be modified at any time during the
3335 * transfer */
3336 __u64 ii_version;
3337
3338 /* request: hash to start with:
3339 * reply: hash of the first entry of the first lu_idxpage and hash
3340 * of the entry to read next if any */
3341 __u64 ii_hash_start;
3342 __u64 ii_hash_end;
3343
3344 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3345 * set */
3346 __u16 ii_keysize;
3347
3348 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3349 * is set */
3350 __u16 ii_recsize;
3351
3352 __u32 ii_pad1;
3353 __u64 ii_pad2;
3354 __u64 ii_pad3;
3355};
3356extern void lustre_swab_idx_info(struct idx_info *ii);
3357
3358#define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3359
3360/* List of flags used in idx_info::ii_flags */
3361enum idx_info_flags {
3362 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3363 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3364 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3365 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3366};
3367
3368#define LIP_MAGIC 0x8A6D6B6C
3369
3370/* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3371struct lu_idxpage {
3372 /* 16-byte header */
3373 __u32 lip_magic;
3374 __u16 lip_flags;
3375 __u16 lip_nr; /* number of entries in the container */
3376 __u64 lip_pad0; /* additional padding for future use */
3377
3378 /* key/record pairs are stored in the remaining 4080 bytes.
3379 * depending upon the flags in idx_info::ii_flags, each key/record
3380 * pair might be preceded by:
3381 * - a hash value
3382 * - the key size (II_FL_VARKEY is set)
3383 * - the record size (II_FL_VARREC is set)
3384 *
3385 * For the time being, we only support fixed-size key & record. */
3386 char lip_entries[0];
3387};
3388extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3389
3390#define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3391
3392/* Gather all possible type associated with a 4KB container */
3393union lu_page {
3394 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3395 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3396 char lp_array[LU_PAGE_SIZE];
3397};
3398
3399/* security opcodes */
3400typedef enum {
3401 SEC_CTX_INIT = 801,
3402 SEC_CTX_INIT_CONT = 802,
3403 SEC_CTX_FINI = 803,
3404 SEC_LAST_OPC,
3405 SEC_FIRST_OPC = SEC_CTX_INIT
3406} sec_cmd_t;
3407
3408/*
3409 * capa related definitions
3410 */
3411#define CAPA_HMAC_MAX_LEN 64
3412#define CAPA_HMAC_KEY_MAX_LEN 56
3413
3414/* NB take care when changing the sequence of elements this struct,
3415 * because the offset info is used in find_capa() */
3416struct lustre_capa {
3417 struct lu_fid lc_fid; /** fid */
3418 __u64 lc_opc; /** operations allowed */
3419 __u64 lc_uid; /** file owner */
3420 __u64 lc_gid; /** file group */
3421 __u32 lc_flags; /** HMAC algorithm & flags */
3422 __u32 lc_keyid; /** key# used for the capability */
3423 __u32 lc_timeout; /** capa timeout value (sec) */
3424 __u32 lc_expiry; /** expiry time (sec) */
3425 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3426} __attribute__((packed));
3427
3428extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3429
3430/** lustre_capa::lc_opc */
3431enum {
3432 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3433 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3434 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3435 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3436 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3437 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3438 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3439 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3440 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3441 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3442 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3443};
3444
3445#define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3446#define CAPA_OPC_MDS_ONLY \
3447 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3448 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3449#define CAPA_OPC_OSS_ONLY \
3450 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3451 CAPA_OPC_OSS_DESTROY)
3452#define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3453#define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3454
3455/* MDS capability covers object capability for operations of body r/w
3456 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3457 * while OSS capability only covers object capability for operations of
3458 * oss data(file content) r/w/truncate.
3459 */
3460static inline int capa_for_mds(struct lustre_capa *c)
3461{
3462 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3463}
3464
3465static inline int capa_for_oss(struct lustre_capa *c)
3466{
3467 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3468}
3469
3470/* lustre_capa::lc_hmac_alg */
3471enum {
3472 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3473 CAPA_HMAC_ALG_MAX,
3474};
3475
3476#define CAPA_FL_MASK 0x00ffffff
3477#define CAPA_HMAC_ALG_MASK 0xff000000
3478
3479struct lustre_capa_key {
3480 __u64 lk_seq; /**< mds# */
3481 __u32 lk_keyid; /**< key# */
3482 __u32 lk_padding;
3483 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3484} __attribute__((packed));
3485
3486extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3487
3488/** The link ea holds 1 \a link_ea_entry for each hardlink */
3489#define LINK_EA_MAGIC 0x11EAF1DFUL
3490struct link_ea_header {
3491 __u32 leh_magic;
3492 __u32 leh_reccount;
3493 __u64 leh_len; /* total size */
3494 /* future use */
3495 __u32 padding1;
3496 __u32 padding2;
3497};
3498
3499/** Hardlink data is name and parent fid.
3500 * Stored in this crazy struct for maximum packing and endian-neutrality
3501 */
3502struct link_ea_entry {
3503 /** __u16 stored big-endian, unaligned */
3504 unsigned char lee_reclen[2];
3505 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3506 char lee_name[0];
3507}__attribute__((packed));
3508
3509/** fid2path request/reply structure */
3510struct getinfo_fid2path {
3511 struct lu_fid gf_fid;
3512 __u64 gf_recno;
3513 __u32 gf_linkno;
3514 __u32 gf_pathlen;
3515 char gf_path[0];
3516} __attribute__((packed));
3517
3518void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3519
3520enum {
3521 LAYOUT_INTENT_ACCESS = 0,
3522 LAYOUT_INTENT_READ = 1,
3523 LAYOUT_INTENT_WRITE = 2,
3524 LAYOUT_INTENT_GLIMPSE = 3,
3525 LAYOUT_INTENT_TRUNC = 4,
3526 LAYOUT_INTENT_RELEASE = 5,
3527 LAYOUT_INTENT_RESTORE = 6
3528};
3529
3530/* enqueue layout lock with intent */
3531struct layout_intent {
3532 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3533 __u32 li_flags;
3534 __u64 li_start;
3535 __u64 li_end;
3536};
3537
3538void lustre_swab_layout_intent(struct layout_intent *li);
3539
3540/**
3541 * On the wire version of hsm_progress structure.
3542 *
3543 * Contains the userspace hsm_progress and some internal fields.
3544 */
3545struct hsm_progress_kernel {
3546 /* Field taken from struct hsm_progress */
3547 lustre_fid hpk_fid;
3548 __u64 hpk_cookie;
3549 struct hsm_extent hpk_extent;
3550 __u16 hpk_flags;
3551 __u16 hpk_errval; /* positive val */
3552 __u32 hpk_padding1;
3553 /* Additional fields */
3554 __u64 hpk_data_version;
3555 __u64 hpk_padding2;
3556} __attribute__((packed));
3557
3558extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3559extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3560extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3561extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3562extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3563extern void lustre_swab_hsm_request(struct hsm_request *hr);
3564
3565/**
3566 * These are object update opcode under UPDATE_OBJ, which is currently
3567 * being used by cross-ref operations between MDT.
3568 *
3569 * During the cross-ref operation, the Master MDT, which the client send the
3570 * request to, will disassembly the operation into object updates, then OSP
3571 * will send these updates to the remote MDT to be executed.
3572 *
3573 * Update request format
3574 * magic: UPDATE_BUFFER_MAGIC_V1
3575 * Count: How many updates in the req.
3576 * bufs[0] : following are packets of object.
3577 * update[0]:
3578 * type: object_update_op, the op code of update
3579 * fid: The object fid of the update.
3580 * lens/bufs: other parameters of the update.
3581 * update[1]:
3582 * type: object_update_op, the op code of update
3583 * fid: The object fid of the update.
3584 * lens/bufs: other parameters of the update.
3585 * ..........
3586 * update[7]: type: object_update_op, the op code of update
3587 * fid: The object fid of the update.
3588 * lens/bufs: other parameters of the update.
3589 * Current 8 maxim updates per object update request.
3590 *
3591 *******************************************************************
3592 * update reply format:
3593 *
3594 * ur_version: UPDATE_REPLY_V1
3595 * ur_count: The count of the reply, which is usually equal
3596 * to the number of updates in the request.
3597 * ur_lens: The reply lengths of each object update.
3598 *
3599 * replies: 1st update reply [4bytes_ret: other body]
3600 * 2nd update reply [4bytes_ret: other body]
3601 * .....
3602 * nth update reply [4bytes_ret: other body]
3603 *
3604 * For each reply of the update, the format would be
3605 * result(4 bytes):Other stuff
3606 */
3607
3608#define UPDATE_MAX_OPS 10
3609#define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3610#define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3611#define UPDATE_BUF_COUNT 8
3612enum object_update_op {
3613 OBJ_CREATE = 1,
3614 OBJ_DESTROY = 2,
3615 OBJ_REF_ADD = 3,
3616 OBJ_REF_DEL = 4,
3617 OBJ_ATTR_SET = 5,
3618 OBJ_ATTR_GET = 6,
3619 OBJ_XATTR_SET = 7,
3620 OBJ_XATTR_GET = 8,
3621 OBJ_INDEX_LOOKUP = 9,
3622 OBJ_INDEX_INSERT = 10,
3623 OBJ_INDEX_DELETE = 11,
3624 OBJ_LAST
3625};
3626
3627struct update {
3628 __u32 u_type;
3629 __u32 u_batchid;
3630 struct lu_fid u_fid;
3631 __u32 u_lens[UPDATE_BUF_COUNT];
3632 __u32 u_bufs[0];
3633};
3634
3635struct update_buf {
3636 __u32 ub_magic;
3637 __u32 ub_count;
3638 __u32 ub_bufs[0];
3639};
3640
3641#define UPDATE_REPLY_V1 0x00BD0001
3642struct update_reply {
3643 __u32 ur_version;
3644 __u32 ur_count;
3645 __u32 ur_lens[0];
3646};
3647
3648void lustre_swab_update_buf(struct update_buf *ub);
3649void lustre_swab_update_reply_buf(struct update_reply *ur);
3650
3651/** layout swap request structure
3652 * fid1 and fid2 are in mdt_body
3653 */
3654struct mdc_swap_layouts {
3655 __u64 msl_flags;
3656} __packed;
3657
3658void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3659
3660#endif
3661/** @} lustreidl */