]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/staging/lustre/lustre/include/lustre_fid.h
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / staging / lustre / lustre / include / lustre_fid.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
6a5b99a4 18 * http://www.gnu.org/licenses/gpl-2.0.html
d7e09d03 19 *
d7e09d03
PT
20 * GPL HEADER END
21 */
22/*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
1dc563a6 26 * Copyright (c) 2011, 2015, Intel Corporation.
d7e09d03
PT
27 */
28/*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 *
32 * lustre/include/lustre_fid.h
33 *
34 * Author: Yury Umanets <umka@clusterfs.com>
35 */
36
56f4c5a8
LX
37#ifndef __LUSTRE_FID_H
38#define __LUSTRE_FID_H
d7e09d03
PT
39
40/** \defgroup fid fid
41 *
42 * @{
43 *
25ed6a5e 44 * http://wiki.old.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
d7e09d03
PT
45 * describes the FID namespace and interoperability requirements for FIDs.
46 * The important parts of that document are included here for reference.
47 *
48 * FID
49 * File IDentifier generated by client from range allocated by the SEQuence
50 * service and stored in struct lu_fid. The FID is composed of three parts:
51 * SEQuence, ObjectID, and VERsion. The SEQ component is a filesystem
52 * unique 64-bit integer, and only one client is ever assigned any SEQ value.
53 * The first 0x400 FID_SEQ_NORMAL [2^33, 2^33 + 0x400] values are reserved
54 * for system use. The OID component is a 32-bit value generated by the
55 * client on a per-SEQ basis to allow creating many unique FIDs without
56 * communication with the server. The VER component is a 32-bit value that
57 * distinguishes between different FID instantiations, such as snapshots or
58 * separate subtrees within the filesystem. FIDs with the same VER field
59 * are considered part of the same namespace.
60 *
61 * OLD filesystems are those upgraded from Lustre 1.x that predate FIDs, and
62 * MDTs use 32-bit ldiskfs internal inode/generation numbers (IGIFs), while
63 * OSTs use 64-bit Lustre object IDs and generation numbers.
64 *
65 * NEW filesystems are those formatted since the introduction of FIDs.
66 *
67 * IGIF
68 * Inode and Generation In FID, a surrogate FID used to globally identify
69 * an existing object on OLD formatted MDT file system. This would only be
70 * used on MDT0 in a DNE filesystem, because there cannot be more than one
71 * MDT in an OLD formatted filesystem. Belongs to sequence in [12, 2^32 - 1]
72 * range, where inode number is stored in SEQ, and inode generation is in OID.
73 * NOTE: This assumes no more than 2^32-1 inodes exist in the MDT filesystem,
74 * which is the maximum possible for an ldiskfs backend. It also assumes
75 * that the reserved ext3/ext4/ldiskfs inode numbers [0-11] are never visible
76 * to clients, which has always been true.
77 *
78 * IDIF
79 * object ID In FID, a surrogate FID used to globally identify an existing
80 * OST object on OLD formatted OST file system. Belongs to a sequence in
81 * [2^32, 2^33 - 1]. Sequence number is calculated as:
82 *
83 * 1 << 32 | (ost_index << 16) | ((objid >> 32) & 0xffff)
84 *
85 * that is, SEQ consists of 16-bit OST index, and higher 16 bits of object
86 * ID. The generation of unique SEQ values per OST allows the IDIF FIDs to
87 * be identified in the FLD correctly. The OID field is calculated as:
88 *
89 * objid & 0xffffffff
90 *
91 * that is, it consists of lower 32 bits of object ID. For objects within
92 * the IDIF range, object ID extraction will be:
93 *
94 * o_id = (fid->f_seq & 0x7fff) << 16 | fid->f_oid;
95 * o_seq = 0; // formerly group number
96 *
97 * NOTE: This assumes that no more than 2^48-1 objects have ever been created
98 * on any OST, and that no more than 65535 OSTs are in use. Both are very
99 * reasonable assumptions, i.e. an IDIF can uniquely map all objects assuming
100 * a maximum creation rate of 1M objects per second for a maximum of 9 years,
101 * or combinations thereof.
102 *
103 * OST_MDT0
104 * Surrogate FID used to identify an existing object on OLD formatted OST
105 * filesystem. Belongs to the reserved SEQuence 0, and is used prior to
106 * the introduction of FID-on-OST, at which point IDIF will be used to
107 * identify objects as residing on a specific OST.
108 *
109 * LLOG
110 * For Lustre Log objects the object sequence 1 is used. This is compatible
111 * with both OLD and NEW namespaces, as this SEQ number is in the
112 * ext3/ldiskfs reserved inode range and does not conflict with IGIF
113 * sequence numbers.
114 *
115 * ECHO
116 * For testing OST IO performance the object sequence 2 is used. This is
117 * compatible with both OLD and NEW namespaces, as this SEQ number is in
118 * the ext3/ldiskfs reserved inode range and does not conflict with IGIF
119 * sequence numbers.
120 *
121 * OST_MDT1 .. OST_MAX
122 * For testing with multiple MDTs the object sequence 3 through 9 is used,
123 * allowing direct mapping of MDTs 1 through 7 respectively, for a total
124 * of 8 MDTs including OST_MDT0. This matches the legacy CMD project "group"
125 * mappings. However, this SEQ range is only for testing prior to any
126 * production DNE release, as the objects in this range conflict across all
127 * OSTs, as the OST index is not part of the FID. For production DNE usage,
128 * OST objects created by MDT1+ will use FID_SEQ_NORMAL FIDs.
129 *
130 * DLM OST objid to IDIF mapping
131 * For compatibility with existing OLD OST network protocol structures, the
132 * FID must map onto the o_id and o_seq in a manner that ensures existing
133 * objects are identified consistently for IO, as well as onto the LDLM
134 * namespace to ensure IDIFs there is only a single resource name for any
135 * object in the DLM. The OLD OST object DLM resource mapping is:
136 *
137 * resource[] = {o_id, o_seq, 0, 0}; // o_seq == 0 for production releases
138 *
139 * The NEW OST object DLM resource mapping is the same for both MDT and OST:
140 *
141 * resource[] = {SEQ, OID, VER, HASH};
142 *
143 * NOTE: for mapping IDIF values to DLM resource names the o_id may be
144 * larger than the 2^33 reserved sequence numbers for IDIF, so it is possible
145 * for the o_id numbers to overlap FID SEQ numbers in the resource. However,
146 * in all production releases the OLD o_seq field is always zero, and all
147 * valid FID OID values are non-zero, so the lock resources will not collide.
148 * Even so, the MDT and OST resources are also in different LDLM namespaces.
149 */
150
9fdaf8c0 151#include "../../include/linux/libcfs/libcfs.h"
1accaadf 152#include "lustre/lustre_idl.h"
5d01897e 153#include "seq_range.h"
d7e09d03 154
56f4c5a8 155struct lu_env;
d7e09d03
PT
156struct lu_site;
157struct lu_context;
56f4c5a8
LX
158struct obd_device;
159struct obd_export;
d7e09d03
PT
160
161/* Whole sequences space range and zero range definitions */
162extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE;
163extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE;
164extern const struct lu_fid LUSTRE_BFL_FID;
165extern const struct lu_fid LU_OBF_FID;
166extern const struct lu_fid LU_DOT_LUSTRE_FID;
167
168enum {
169 /*
170 * This is how may metadata FIDs may be allocated in one sequence(128k)
171 */
172 LUSTRE_METADATA_SEQ_MAX_WIDTH = 0x0000000000020000ULL,
173
174 /*
175 * This is how many data FIDs could be allocated in one sequence(4B - 1)
176 */
177 LUSTRE_DATA_SEQ_MAX_WIDTH = 0x00000000FFFFFFFFULL,
178
179 /*
180 * How many sequences to allocate to a client at once.
181 */
182 LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL,
183
184 /*
185 * seq allocation pool size.
186 */
187 LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000,
188
189 /*
190 * This is how many sequences may be in one super-sequence allocated to
191 * MDTs.
192 */
193 LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH)
194};
195
196enum {
197 /** 2^6 FIDs for OI containers */
198 OSD_OI_FID_OID_BITS = 6,
199 /** reserve enough FIDs in case we want more in the future */
200 OSD_OI_FID_OID_BITS_MAX = 10,
201};
202
203/** special OID for local objects */
204enum local_oid {
205 /** \see fld_mod_init */
206 FLD_INDEX_OID = 3UL,
207 /** \see fid_mod_init */
208 FID_SEQ_CTL_OID = 4UL,
209 FID_SEQ_SRV_OID = 5UL,
210 /** \see mdd_mod_init */
211 MDD_ROOT_INDEX_OID = 6UL, /* deprecated in 2.4 */
212 MDD_ORPHAN_OID = 7UL, /* deprecated in 2.4 */
213 MDD_LOV_OBJ_OID = 8UL,
214 MDD_CAPA_KEYS_OID = 9UL,
215 /** \see mdt_mod_init */
216 LAST_RECV_OID = 11UL,
217 OSD_FS_ROOT_OID = 13UL,
218 ACCT_USER_OID = 15UL,
219 ACCT_GROUP_OID = 16UL,
220 LFSCK_BOOKMARK_OID = 17UL,
221 OTABLE_IT_OID = 18UL,
222 /* These two definitions are obsolete
223 * OFD_GROUP0_LAST_OID = 20UL,
224 * OFD_GROUP4K_LAST_OID = 20UL+4096,
225 */
226 OFD_LAST_GROUP_OID = 4117UL,
227 LLOG_CATALOGS_OID = 4118UL,
228 MGS_CONFIGS_OID = 4119UL,
229 OFD_HEALTH_CHECK_OID = 4120UL,
230 MDD_LOV_OBJ_OSEQ = 4121UL,
231 LFSCK_NAMESPACE_OID = 4122UL,
232 REMOTE_PARENT_DIR_OID = 4123UL,
75ac62fc 233 SLAVE_LLOG_CATALOGS_OID = 4124UL,
d7e09d03
PT
234};
235
236static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid)
237{
238 fid->f_seq = FID_SEQ_LOCAL_FILE;
239 fid->f_oid = oid;
240 fid->f_ver = 0;
241}
242
243static inline void lu_local_name_obj_fid(struct lu_fid *fid, __u32 oid)
244{
245 fid->f_seq = FID_SEQ_LOCAL_NAME;
246 fid->f_oid = oid;
247 fid->f_ver = 0;
248}
249
250/* For new FS (>= 2.4), the root FID will be changed to
251 * [FID_SEQ_ROOT:1:0], for existing FS, (upgraded to 2.4),
c56e256d
OD
252 * the root FID will still be IGIF
253 */
d7e09d03
PT
254static inline int fid_is_root(const struct lu_fid *fid)
255{
256 return unlikely((fid_seq(fid) == FID_SEQ_ROOT &&
257 fid_oid(fid) == 1));
258}
259
260static inline int fid_is_dot_lustre(const struct lu_fid *fid)
261{
262 return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
263 fid_oid(fid) == FID_OID_DOT_LUSTRE);
264}
265
266static inline int fid_is_obf(const struct lu_fid *fid)
267{
268 return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
269 fid_oid(fid) == FID_OID_DOT_LUSTRE_OBF);
270}
271
272static inline int fid_is_otable_it(const struct lu_fid *fid)
273{
274 return unlikely(fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
275 fid_oid(fid) == OTABLE_IT_OID);
276}
277
278static inline int fid_is_acct(const struct lu_fid *fid)
279{
280 return fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
281 (fid_oid(fid) == ACCT_USER_OID ||
282 fid_oid(fid) == ACCT_GROUP_OID);
283}
284
285static inline int fid_is_quota(const struct lu_fid *fid)
286{
287 return fid_seq(fid) == FID_SEQ_QUOTA ||
288 fid_seq(fid) == FID_SEQ_QUOTA_GLB;
289}
290
291static inline int fid_is_namespace_visible(const struct lu_fid *fid)
292{
293 const __u64 seq = fid_seq(fid);
294
295 /* Here, we cannot distinguish whether the normal FID is for OST
c56e256d
OD
296 * object or not. It is caller's duty to check more if needed.
297 */
d7e09d03
PT
298 return (!fid_is_last_id(fid) &&
299 (fid_seq_is_norm(seq) || fid_seq_is_igif(seq))) ||
300 fid_is_root(fid) || fid_is_dot_lustre(fid);
301}
302
303static inline int fid_seq_in_fldb(__u64 seq)
304{
305 return fid_seq_is_igif(seq) || fid_seq_is_norm(seq) ||
306 fid_seq_is_root(seq) || fid_seq_is_dot(seq);
307}
308
22144626 309static inline void lu_last_id_fid(struct lu_fid *fid, __u64 seq, __u32 ost_idx)
d7e09d03
PT
310{
311 if (fid_seq_is_mdt0(seq)) {
22144626 312 fid->f_seq = fid_idif_seq(0, ost_idx);
d7e09d03
PT
313 } else {
314 LASSERTF(fid_seq_is_norm(seq) || fid_seq_is_echo(seq) ||
55f5a824 315 fid_seq_is_idif(seq), "%#llx\n", seq);
d7e09d03
PT
316 fid->f_seq = seq;
317 }
318 fid->f_oid = 0;
319 fid->f_ver = 0;
320}
321
56f4c5a8
LX
322/* seq client type */
323enum lu_cli_type {
324 LUSTRE_SEQ_METADATA = 1,
325 LUSTRE_SEQ_DATA
326};
327
d7e09d03
PT
328enum lu_mgr_type {
329 LUSTRE_SEQ_SERVER,
330 LUSTRE_SEQ_CONTROLLER
331};
332
d7e09d03
PT
333/* Client sequence manager interface. */
334struct lu_client_seq {
335 /* Sequence-controller export. */
336 struct obd_export *lcs_exp;
337 struct mutex lcs_mutex;
338
339 /*
17891183 340 * Range of allowed for allocation sequences. When using lu_client_seq on
d7e09d03
PT
341 * clients, this contains meta-sequence range. And for servers this
342 * contains super-sequence range.
343 */
344 struct lu_seq_range lcs_space;
345
346 /* Seq related proc */
f3aa79fb 347 struct dentry *lcs_debugfs_entry;
d7e09d03
PT
348
349 /* This holds last allocated fid in last obtained seq */
350 struct lu_fid lcs_fid;
351
352 /* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */
353 enum lu_cli_type lcs_type;
354
355 /*
356 * Service uuid, passed from MDT + seq name to form unique seq name to
357 * use it with procfs.
358 */
37604896 359 char lcs_name[LUSTRE_MDT_MAXNAMELEN];
d7e09d03
PT
360
361 /*
362 * Sequence width, that is how many objects may be allocated in one
363 * sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH.
364 */
365 __u64 lcs_width;
366
d7e09d03
PT
367 /* wait queue for fid allocation and update indicator */
368 wait_queue_head_t lcs_waitq;
369 int lcs_update;
370};
371
d7e09d03 372/* Client methods */
d7e09d03
PT
373void seq_client_flush(struct lu_client_seq *seq);
374
375int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq,
376 struct lu_fid *fid);
d7e09d03
PT
377/* Fids common stuff */
378int fid_is_local(const struct lu_env *env,
379 struct lu_site *site, const struct lu_fid *fid);
380
56f4c5a8 381enum lu_cli_type;
d7e09d03
PT
382int client_fid_init(struct obd_device *obd, struct obd_export *exp,
383 enum lu_cli_type type);
384int client_fid_fini(struct obd_device *obd);
385
386/* fid locking */
387
388struct ldlm_namespace;
389
390/*
391 * Build (DLM) resource name from FID.
392 *
393 * NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
394 * but was moved into name[1] along with the OID to avoid consuming the
395 * renaming name[2,3] fields that need to be used for the quota identifier.
396 */
5ec35d45 397static inline void
c5b60ba7 398fid_build_reg_res_name(const struct lu_fid *fid, struct ldlm_res_id *res)
d7e09d03 399{
c5b60ba7
AD
400 memset(res, 0, sizeof(*res));
401 res->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(fid);
402 res->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(fid);
c5b60ba7
AD
403}
404
405/*
406 * Return true if resource is for object identified by FID.
407 */
d8f183b3
JH
408static inline bool fid_res_name_eq(const struct lu_fid *fid,
409 const struct ldlm_res_id *res)
c5b60ba7
AD
410{
411 return res->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(fid) &&
412 res->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(fid);
413}
414
415/*
416 * Extract FID from LDLM resource. Reverse of fid_build_reg_res_name().
417 */
5ec35d45 418static inline void
c5b60ba7
AD
419fid_extract_from_res_name(struct lu_fid *fid, const struct ldlm_res_id *res)
420{
421 fid->f_seq = res->name[LUSTRE_RES_ID_SEQ_OFF];
422 fid->f_oid = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF]);
423 fid->f_ver = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32);
424 LASSERT(fid_res_name_eq(fid, res));
d7e09d03
PT
425}
426
427/*
428 * Build (DLM) resource identifier from global quota FID and quota ID.
429 */
5ec35d45 430static inline void
c5b60ba7 431fid_build_quota_res_name(const struct lu_fid *glb_fid, union lquota_id *qid,
10457d4b 432 struct ldlm_res_id *res)
d7e09d03
PT
433{
434 fid_build_reg_res_name(glb_fid, res);
435 res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF] = fid_seq(&qid->qid_fid);
436 res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] = fid_ver_oid(&qid->qid_fid);
d7e09d03
PT
437}
438
439/*
440 * Extract global FID and quota ID from resource name
441 */
c5b60ba7
AD
442static inline void fid_extract_from_quota_res(struct lu_fid *glb_fid,
443 union lquota_id *qid,
444 const struct ldlm_res_id *res)
d7e09d03 445{
c5b60ba7 446 fid_extract_from_res_name(glb_fid, res);
d7e09d03
PT
447 qid->qid_fid.f_seq = res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF];
448 qid->qid_fid.f_oid = (__u32)res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF];
449 qid->qid_fid.f_ver =
450 (__u32)(res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] >> 32);
451}
452
5ec35d45 453static inline void
c5b60ba7
AD
454fid_build_pdo_res_name(const struct lu_fid *fid, unsigned int hash,
455 struct ldlm_res_id *res)
d7e09d03 456{
c5b60ba7
AD
457 fid_build_reg_res_name(fid, res);
458 res->name[LUSTRE_RES_ID_HSH_OFF] = hash;
d7e09d03
PT
459}
460
461/**
462 * Build DLM resource name from object id & seq, which will be removed
463 * finally, when we replace ost_id with FID in data stack.
464 *
465 * Currently, resid from the old client, whose res[0] = object_id,
17891183 466 * res[1] = object_seq, is just opposite with Metatdata
d7e09d03 467 * resid, where, res[0] = fid->f_seq, res[1] = fid->f_oid.
bd9070cb 468 * To unify the resid identification, we will reverse the data
d7e09d03
PT
469 * resid to keep it same with Metadata resid, i.e.
470 *
471 * For resid from the old client,
472 * res[0] = objid, res[1] = 0, still keep the original order,
17891183 473 * for compatibility.
d7e09d03
PT
474 *
475 * For new resid
476 * res will be built from normal FID directly, i.e. res[0] = f_seq,
477 * res[1] = f_oid + f_ver.
478 */
ac8f0a5c 479static inline void ostid_build_res_name(const struct ost_id *oi,
d7e09d03
PT
480 struct ldlm_res_id *name)
481{
ec83e611 482 memset(name, 0, sizeof(*name));
d7e09d03
PT
483 if (fid_seq_is_mdt0(ostid_seq(oi))) {
484 name->name[LUSTRE_RES_ID_SEQ_OFF] = ostid_id(oi);
485 name->name[LUSTRE_RES_ID_VER_OID_OFF] = ostid_seq(oi);
486 } else {
c5b60ba7 487 fid_build_reg_res_name(&oi->oi_fid, name);
d7e09d03
PT
488 }
489}
490
d7e09d03
PT
491/**
492 * Return true if the resource is for the object identified by this id & group.
493 */
ac8f0a5c
JH
494static inline int ostid_res_name_eq(const struct ost_id *oi,
495 const struct ldlm_res_id *name)
d7e09d03
PT
496{
497 /* Note: it is just a trick here to save some effort, probably the
c56e256d
OD
498 * correct way would be turn them into the FID and compare
499 */
d7e09d03
PT
500 if (fid_seq_is_mdt0(ostid_seq(oi))) {
501 return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_id(oi) &&
502 name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_seq(oi);
503 } else {
504 return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_seq(oi) &&
505 name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_id(oi);
506 }
507}
508
509/* The same as osc_build_res_name() */
510static inline void ost_fid_build_resid(const struct lu_fid *fid,
511 struct ldlm_res_id *resname)
512{
513 if (fid_is_mdt0(fid) || fid_is_idif(fid)) {
514 struct ost_id oi;
50ffcb7e 515
bfba872a 516 oi.oi.oi_id = 0; /* gcc 4.7.2 complains otherwise */
d7e09d03
PT
517 if (fid_to_ostid(fid, &oi) != 0)
518 return;
519 ostid_build_res_name(&oi, resname);
520 } else {
521 fid_build_reg_res_name(fid, resname);
522 }
523}
524
525static inline void ost_fid_from_resid(struct lu_fid *fid,
22144626
FY
526 const struct ldlm_res_id *name,
527 int ost_idx)
d7e09d03
PT
528{
529 if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_VER_OID_OFF])) {
530 /* old resid */
531 struct ost_id oi;
50ffcb7e 532
d7e09d03
PT
533 ostid_set_seq(&oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
534 ostid_set_id(&oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
22144626 535 ostid_to_fid(fid, &oi, ost_idx);
d7e09d03
PT
536 } else {
537 /* new resid */
c5b60ba7 538 fid_extract_from_res_name(fid, name);
d7e09d03
PT
539 }
540}
541
542/**
543 * Flatten 128-bit FID values into a 64-bit value for use as an inode number.
544 * For non-IGIF FIDs this starts just over 2^32, and continues without
545 * conflict until 2^64, at which point we wrap the high 24 bits of the SEQ
546 * into the range where there may not be many OID values in use, to minimize
547 * the risk of conflict.
548 *
549 * Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true,
550 * the time between re-used inode numbers is very long - 2^40 SEQ numbers,
551 * or about 2^40 client mounts, if clients create less than 2^24 files/mount.
552 */
553static inline __u64 fid_flatten(const struct lu_fid *fid)
554{
555 __u64 ino;
556 __u64 seq;
557
558 if (fid_is_igif(fid)) {
559 ino = lu_igif_ino(fid);
0a3bdb00 560 return ino;
d7e09d03
PT
561 }
562
563 seq = fid_seq(fid);
564
565 ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);
566
0a3bdb00 567 return ino ? ino : fid_oid(fid);
d7e09d03
PT
568}
569
570static inline __u32 fid_hash(const struct lu_fid *f, int bits)
571{
572 /* all objects with same id and different versions will belong to same
c56e256d
OD
573 * collisions list.
574 */
72c0824a 575 return hash_long(fid_flatten(f), bits);
d7e09d03
PT
576}
577
578/**
c56e256d
OD
579 * map fid to 32 bit value for ino on 32bit systems.
580 */
d7e09d03
PT
581static inline __u32 fid_flatten32(const struct lu_fid *fid)
582{
583 __u32 ino;
584 __u64 seq;
585
586 if (fid_is_igif(fid)) {
587 ino = lu_igif_ino(fid);
0a3bdb00 588 return ino;
d7e09d03
PT
589 }
590
591 seq = fid_seq(fid) - FID_SEQ_START;
592
593 /* Map the high bits of the OID into higher bits of the inode number so
594 * that inodes generated at about the same time have a reduced chance
595 * of collisions. This will give a period of 2^12 = 1024 unique clients
596 * (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects
c56e256d
OD
597 * (from OID), or up to 128M inodes without collisions for new files.
598 */
d7e09d03 599 ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) +
cd94f231 600 (seq >> (64 - (40 - 8)) & 0xffffff00) +
d7e09d03
PT
601 (fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8);
602
0a3bdb00 603 return ino ? ino : fid_oid(fid);
d7e09d03
PT
604}
605
ac8f0a5c
JH
606static inline int lu_fid_diff(const struct lu_fid *fid1,
607 const struct lu_fid *fid2)
d7e09d03 608{
1ada25dc 609 LASSERTF(fid_seq(fid1) == fid_seq(fid2), "fid1:" DFID ", fid2:" DFID "\n",
d7e09d03
PT
610 PFID(fid1), PFID(fid2));
611
612 if (fid_is_idif(fid1) && fid_is_idif(fid2))
613 return fid_idif_id(fid1->f_seq, fid1->f_oid, fid1->f_ver) -
614 fid_idif_id(fid2->f_seq, fid2->f_oid, fid2->f_ver);
615
616 return fid_oid(fid1) - fid_oid(fid2);
617}
618
619#define LUSTRE_SEQ_SRV_NAME "seq_srv"
620#define LUSTRE_SEQ_CTL_NAME "seq_ctl"
621
622/* Range common stuff */
623static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src)
624{
625 dst->lsr_start = cpu_to_le64(src->lsr_start);
626 dst->lsr_end = cpu_to_le64(src->lsr_end);
627 dst->lsr_index = cpu_to_le32(src->lsr_index);
628 dst->lsr_flags = cpu_to_le32(src->lsr_flags);
629}
630
631static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
632{
633 dst->lsr_start = le64_to_cpu(src->lsr_start);
634 dst->lsr_end = le64_to_cpu(src->lsr_end);
635 dst->lsr_index = le32_to_cpu(src->lsr_index);
636 dst->lsr_flags = le32_to_cpu(src->lsr_flags);
637}
638
639static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src)
640{
641 dst->lsr_start = cpu_to_be64(src->lsr_start);
642 dst->lsr_end = cpu_to_be64(src->lsr_end);
643 dst->lsr_index = cpu_to_be32(src->lsr_index);
644 dst->lsr_flags = cpu_to_be32(src->lsr_flags);
645}
646
647static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
648{
649 dst->lsr_start = be64_to_cpu(src->lsr_start);
650 dst->lsr_end = be64_to_cpu(src->lsr_end);
651 dst->lsr_index = be32_to_cpu(src->lsr_index);
652 dst->lsr_flags = be32_to_cpu(src->lsr_flags);
653}
654
655/** @} fid */
656
56f4c5a8 657#endif /* __LUSTRE_FID_H */