]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/staging/lustre/lustre/include/lustre_net.h
mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
[mirror_ubuntu-artful-kernel.git] / drivers / staging / lustre / lustre / include / lustre_net.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
1dc563a6 30 * Copyright (c) 2010, 2015, Intel Corporation.
d7e09d03
PT
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36/** \defgroup PtlRPC Portal RPC and networking module.
37 *
38 * PortalRPC is the layer used by rest of lustre code to achieve network
39 * communications: establish connections with corresponding export and import
40 * states, listen for a service, send and receive RPCs.
41 * PortalRPC also includes base recovery framework: packet resending and
42 * replaying, reconnections, pinger.
43 *
44 * PortalRPC utilizes LNet as its transport layer.
45 *
46 * @{
47 */
48
d7e09d03
PT
49#ifndef _LUSTRE_NET_H
50#define _LUSTRE_NET_H
51
52/** \defgroup net net
53 *
54 * @{
55 */
56
9fdaf8c0 57#include "../../include/linux/libcfs/libcfs.h"
bbf00c3d
JS
58#include "../../include/linux/lnet/nidstr.h"
59#include "../../include/linux/lnet/api.h"
1accaadf
GKH
60#include "lustre/lustre_idl.h"
61#include "lustre_ha.h"
62#include "lustre_sec.h"
63#include "lustre_import.h"
64#include "lprocfs_status.h"
65#include "lu_object.h"
66#include "lustre_req_layout.h"
d7e09d03 67
1accaadf
GKH
68#include "obd_support.h"
69#include "lustre_ver.h"
d7e09d03
PT
70
71/* MD flags we _always_ use */
72#define PTLRPC_MD_OPTIONS 0
73
74/**
75 * Max # of bulk operations in one request.
76 * In order for the client and server to properly negotiate the maximum
77 * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
78 * value. The client is free to limit the actual RPC size for any bulk
c56e256d
OD
79 * transfer via cl_max_pages_per_rpc to some non-power-of-two value.
80 */
d7e09d03
PT
81#define PTLRPC_BULK_OPS_BITS 2
82#define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS)
83/**
84 * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
85 * should not be used on the server at all. Otherwise, it imposes a
86 * protocol limitation on the maximum RPC size that can be used by any
87 * RPC sent to that server in the future. Instead, the server should
88 * use the negotiated per-client ocd_brw_size to determine the bulk
c56e256d
OD
89 * RPC count.
90 */
d7e09d03
PT
91#define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
92
93/**
94 * Define maxima for bulk I/O.
95 *
96 * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
97 * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the
98 * currently supported maximum between peers at connect via ocd_brw_size.
99 */
100#define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
101#define PTLRPC_MAX_BRW_SIZE (1 << PTLRPC_MAX_BRW_BITS)
09cbfeaf 102#define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> PAGE_SHIFT)
d7e09d03
PT
103
104#define ONE_MB_BRW_SIZE (1 << LNET_MTU_BITS)
105#define MD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
09cbfeaf 106#define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> PAGE_SHIFT)
d7e09d03 107#define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE
09cbfeaf 108#define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> PAGE_SHIFT)
d7e09d03
PT
109#define OFD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
110
111/* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
112# if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
113# error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
114# endif
ea1754a0
KS
115# if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_SIZE))
116# error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_SIZE"
d7e09d03
PT
117# endif
118# if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
119# error "PTLRPC_MAX_BRW_SIZE too big"
120# endif
121# if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
122# error "PTLRPC_MAX_BRW_PAGES too big"
123# endif
124
125#define PTLRPC_NTHRS_INIT 2
126
127/**
128 * Buffer Constants
129 *
130 * Constants determine how memory is used to buffer incoming service requests.
131 *
132 * ?_NBUFS # buffers to allocate when growing the pool
133 * ?_BUFSIZE # bytes in a single request buffer
134 * ?_MAXREQSIZE # maximum request service will receive
135 *
136 * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
137 * of ?_NBUFS is added to the pool.
138 *
139 * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are
140 * considered full when less than ?_MAXREQSIZE is left in them.
141 */
142/**
143 * Thread Constants
144 *
145 * Constants determine how threads are created for ptlrpc service.
146 *
147 * ?_NTHRS_INIT # threads to create for each service partition on
148 * initializing. If it's non-affinity service and
149 * there is only one partition, it's the overall #
150 * threads for the service while initializing.
151 * ?_NTHRS_BASE # threads should be created at least for each
152 * ptlrpc partition to keep the service healthy.
153 * It's the low-water mark of threads upper-limit
154 * for each partition.
155 * ?_THR_FACTOR # threads can be added on threads upper-limit for
156 * each CPU core. This factor is only for reference,
157 * we might decrease value of factor if number of cores
158 * per CPT is above a limit.
159 * ?_NTHRS_MAX # overall threads can be created for a service,
160 * it's a soft limit because if service is running
161 * on machine with hundreds of cores and tens of
162 * CPU partitions, we need to guarantee each partition
163 * has ?_NTHRS_BASE threads, which means total threads
164 * will be ?_NTHRS_BASE * number_of_cpts which can
165 * exceed ?_NTHRS_MAX.
166 *
167 * Examples
168 *
169 * #define MDS_NTHRS_INIT 2
170 * #define MDS_NTHRS_BASE 64
171 * #define MDS_NTHRS_FACTOR 8
172 * #define MDS_NTHRS_MAX 1024
173 *
174 * Example 1):
175 * ---------------------------------------------------------------------
176 * Server(A) has 16 cores, user configured it to 4 partitions so each
177 * partition has 4 cores, then actual number of service threads on each
178 * partition is:
179 * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
180 *
181 * Total number of threads for the service is:
182 * 96 * partitions(4) = 384
183 *
184 * Example 2):
185 * ---------------------------------------------------------------------
186 * Server(B) has 32 cores, user configured it to 4 partitions so each
187 * partition has 8 cores, then actual number of service threads on each
188 * partition is:
189 * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
190 *
191 * Total number of threads for the service is:
192 * 128 * partitions(4) = 512
193 *
194 * Example 3):
195 * ---------------------------------------------------------------------
196 * Server(B) has 96 cores, user configured it to 8 partitions so each
197 * partition has 12 cores, then actual number of service threads on each
198 * partition is:
199 * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
200 *
201 * Total number of threads for the service is:
202 * 160 * partitions(8) = 1280
203 *
204 * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
205 * as upper limit of threads number for each partition:
206 * MDS_NTHRS_MAX(1024) / partitions(8) = 128
207 *
208 * Example 4):
209 * ---------------------------------------------------------------------
210 * Server(C) have a thousand of cores and user configured it to 32 partitions
211 * MDS_NTHRS_BASE(64) * 32 = 2048
212 *
213 * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
214 * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
215 * to keep service healthy, so total number of threads will just be 2048.
216 *
217 * NB: we don't suggest to choose server with that many cores because backend
218 * filesystem itself, buffer cache, or underlying network stack might
219 * have some SMP scalability issues at that large scale.
220 *
221 * If user already has a fat machine with hundreds or thousands of cores,
222 * there are two choices for configuration:
223 * a) create CPU table from subset of all CPUs and run Lustre on
224 * top of this subset
225 * b) bind service threads on a few partitions, see modparameters of
226 * MDS and OSS for details
227*
228 * NB: these calculations (and examples below) are simplified to help
229 * understanding, the real implementation is a little more complex,
230 * please see ptlrpc_server_nthreads_check() for details.
231 *
232 */
233
234 /*
235 * LDLM threads constants:
236 *
237 * Given 8 as factor and 24 as base threads number
238 *
239 * example 1)
240 * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
241 *
242 * example 2)
243 * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
244 * threads for each partition and total threads number will be 112.
245 *
246 * example 3)
247 * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
248 * threads for each partition to keep service healthy, so total threads
249 * number should be 24 * 8 = 192.
250 *
251 * So with these constants, threads number will be at the similar level
252 * of old versions, unless target machine has over a hundred cores
253 */
254#define LDLM_THR_FACTOR 8
255#define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT
256#define LDLM_NTHRS_BASE 24
257#define LDLM_NTHRS_MAX (num_online_cpus() == 1 ? 64 : 128)
258
259#define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT
260#define LDLM_CLIENT_NBUFS 1
261#define LDLM_SERVER_NBUFS 64
262#define LDLM_BUFSIZE (8 * 1024)
263#define LDLM_MAXREQSIZE (5 * 1024)
264#define LDLM_MAXREPSIZE (1024)
265
e55c4476
JN
266#define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */
267
d7e09d03 268#define OST_MAXREQSIZE (5 * 1024)
d7e09d03
PT
269
270/* Macro to hide a typecast. */
271#define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
272
273/**
274 * Structure to single define portal connection.
275 */
276struct ptlrpc_connection {
277 /** linkage for connections hash table */
278 struct hlist_node c_hash;
279 /** Our own lnet nid for this connection */
280 lnet_nid_t c_self;
281 /** Remote side nid for this connection */
282 lnet_process_id_t c_peer;
283 /** UUID of the other side */
284 struct obd_uuid c_remote_uuid;
285 /** reference counter for this connection */
286 atomic_t c_refcount;
287};
288
289/** Client definition for PortalRPC */
290struct ptlrpc_client {
291 /** What lnet portal does this client send messages to by default */
292 __u32 cli_request_portal;
293 /** What portal do we expect replies on */
294 __u32 cli_reply_portal;
295 /** Name of the client */
296 char *cli_name;
297};
298
299/** state flags of requests */
300/* XXX only ones left are those used by the bulk descs as well! */
301#define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */
302#define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */
303
304#define REQ_MAX_ACK_LOCKS 8
305
306union ptlrpc_async_args {
307 /**
308 * Scratchpad for passing args to completion interpreter. Users
309 * cast to the struct of their choosing, and CLASSERT that this is
c0a2472f 310 * big enough. For _tons_ of context, kmalloc a struct and store
d7e09d03
PT
311 * a pointer to it here. The pointer_arg ensures this struct is at
312 * least big enough for that.
313 */
314 void *pointer_arg[11];
315 __u64 space[7];
316};
317
318struct ptlrpc_request_set;
319typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
320typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
321
322/**
323 * Definition of request set structure.
324 * Request set is a list of requests (not necessary to the same target) that
325 * once populated with RPCs could be sent in parallel.
326 * There are two kinds of request sets. General purpose and with dedicated
327 * serving thread. Example of the latter is ptlrpcd set.
328 * For general purpose sets once request set started sending it is impossible
329 * to add new requests to such set.
330 * Provides a way to call "completion callbacks" when all requests in the set
331 * returned.
332 */
333struct ptlrpc_request_set {
334 atomic_t set_refcount;
335 /** number of in queue requests */
336 atomic_t set_new_count;
337 /** number of uncompleted requests */
338 atomic_t set_remaining;
339 /** wait queue to wait on for request events */
340 wait_queue_head_t set_waitq;
341 wait_queue_head_t *set_wakeup_ptr;
342 /** List of requests in the set */
343 struct list_head set_requests;
344 /**
345 * List of completion callbacks to be called when the set is completed
346 * This is only used if \a set_interpret is NULL.
347 * Links struct ptlrpc_set_cbdata.
348 */
349 struct list_head set_cblist;
350 /** Completion callback, if only one. */
351 set_interpreter_func set_interpret;
352 /** opaq argument passed to completion \a set_interpret callback. */
353 void *set_arg;
354 /**
355 * Lock for \a set_new_requests manipulations
356 * locked so that any old caller can communicate requests to
357 * the set holder who can then fold them into the lock-free set
358 */
359 spinlock_t set_new_req_lock;
360 /** List of new yet unsent requests. Only used with ptlrpcd now. */
361 struct list_head set_new_requests;
362
363 /** rq_status of requests that have been freed already */
364 int set_rc;
365 /** Additional fields used by the flow control extension */
366 /** Maximum number of RPCs in flight */
367 int set_max_inflight;
368 /** Callback function used to generate RPCs */
369 set_producer_func set_producer;
370 /** opaq argument passed to the producer callback */
371 void *set_producer_arg;
372};
373
374/**
375 * Description of a single ptrlrpc_set callback
376 */
377struct ptlrpc_set_cbdata {
378 /** List linkage item */
379 struct list_head psc_item;
380 /** Pointer to interpreting function */
381 set_interpreter_func psc_interpret;
382 /** Opaq argument to pass to the callback */
383 void *psc_data;
384};
385
386struct ptlrpc_bulk_desc;
387struct ptlrpc_service_part;
388struct ptlrpc_service;
389
390/**
391 * ptlrpc callback & work item stuff
392 */
393struct ptlrpc_cb_id {
394 void (*cbid_fn)(lnet_event_t *ev); /* specific callback fn */
395 void *cbid_arg; /* additional arg */
396};
397
398/** Maximum number of locks to fit into reply state */
399#define RS_MAX_LOCKS 8
400#define RS_DEBUG 0
401
402/**
403 * Structure to define reply state on the server
404 * Reply state holds various reply message information. Also for "difficult"
405 * replies (rep-ack case) we store the state after sending reply and wait
406 * for the client to acknowledge the reception. In these cases locks could be
407 * added to the state for replay/failover consistency guarantees.
408 */
409struct ptlrpc_reply_state {
410 /** Callback description */
411 struct ptlrpc_cb_id rs_cb_id;
412 /** Linkage for list of all reply states in a system */
413 struct list_head rs_list;
414 /** Linkage for list of all reply states on same export */
415 struct list_head rs_exp_list;
416 /** Linkage for list of all reply states for same obd */
417 struct list_head rs_obd_list;
418#if RS_DEBUG
419 struct list_head rs_debug_list;
420#endif
421 /** A spinlock to protect the reply state flags */
422 spinlock_t rs_lock;
423 /** Reply state flags */
c56e256d 424 unsigned long rs_difficult:1; /* ACK/commit stuff */
d7e09d03 425 unsigned long rs_no_ack:1; /* no ACK, even for
c56e256d
OD
426 * difficult requests
427 */
d7e09d03
PT
428 unsigned long rs_scheduled:1; /* being handled? */
429 unsigned long rs_scheduled_ever:1;/* any schedule attempts? */
430 unsigned long rs_handled:1; /* been handled yet? */
431 unsigned long rs_on_net:1; /* reply_out_callback pending? */
432 unsigned long rs_prealloc:1; /* rs from prealloc list */
433 unsigned long rs_committed:1;/* the transaction was committed
c56e256d
OD
434 * and the rs was dispatched
435 */
d7e09d03
PT
436 /** Size of the state */
437 int rs_size;
438 /** opcode */
439 __u32 rs_opc;
440 /** Transaction number */
441 __u64 rs_transno;
442 /** xid */
443 __u64 rs_xid;
444 struct obd_export *rs_export;
445 struct ptlrpc_service_part *rs_svcpt;
446 /** Lnet metadata handle for the reply */
447 lnet_handle_md_t rs_md_h;
448 atomic_t rs_refcount;
449
17891183 450 /** Context for the service thread */
d7e09d03
PT
451 struct ptlrpc_svc_ctx *rs_svc_ctx;
452 /** Reply buffer (actually sent to the client), encoded if needed */
453 struct lustre_msg *rs_repbuf; /* wrapper */
454 /** Size of the reply buffer */
455 int rs_repbuf_len; /* wrapper buf length */
456 /** Size of the reply message */
457 int rs_repdata_len; /* wrapper msg length */
458 /**
bd9070cb 459 * Actual reply message. Its content is encrypted (if needed) to
d7e09d03 460 * produce reply buffer for actual sending. In simple case
bd9070cb 461 * of no network encryption we just set \a rs_repbuf to \a rs_msg
d7e09d03
PT
462 */
463 struct lustre_msg *rs_msg; /* reply message */
464
465 /** Number of locks awaiting client ACK */
466 int rs_nlocks;
467 /** Handles of locks awaiting client reply ACK */
468 struct lustre_handle rs_locks[RS_MAX_LOCKS];
469 /** Lock modes of locks in \a rs_locks */
52ee0d20 470 enum ldlm_mode rs_modes[RS_MAX_LOCKS];
d7e09d03
PT
471};
472
473struct ptlrpc_thread;
474
475/** RPC stages */
476enum rq_phase {
477 RQ_PHASE_NEW = 0xebc0de00,
478 RQ_PHASE_RPC = 0xebc0de01,
479 RQ_PHASE_BULK = 0xebc0de02,
480 RQ_PHASE_INTERPRET = 0xebc0de03,
481 RQ_PHASE_COMPLETE = 0xebc0de04,
482 RQ_PHASE_UNREGISTERING = 0xebc0de05,
483 RQ_PHASE_UNDEFINED = 0xebc0de06
484};
485
486/** Type of request interpreter call-back */
487typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
488 struct ptlrpc_request *req,
489 void *arg, int rc);
490
491/**
492 * Definition of request pool structure.
493 * The pool is used to store empty preallocated requests for the case
494 * when we would actually need to send something without performing
495 * any allocations (to avoid e.g. OOM).
496 */
497struct ptlrpc_request_pool {
498 /** Locks the list */
499 spinlock_t prp_lock;
500 /** list of ptlrpc_request structs */
501 struct list_head prp_req_list;
17891183 502 /** Maximum message size that would fit into a request from this pool */
d7e09d03
PT
503 int prp_rq_size;
504 /** Function to allocate more requests for this pool */
aefd9d71 505 int (*prp_populate)(struct ptlrpc_request_pool *, int);
d7e09d03
PT
506};
507
508struct lu_context;
509struct lu_env;
510
511struct ldlm_lock;
512
513/**
514 * \defgroup nrs Network Request Scheduler
515 * @{
516 */
517struct ptlrpc_nrs_policy;
518struct ptlrpc_nrs_resource;
519struct ptlrpc_nrs_request;
520
521/**
522 * NRS control operations.
523 *
524 * These are common for all policies.
525 */
526enum ptlrpc_nrs_ctl {
527 /**
528 * Not a valid opcode.
529 */
530 PTLRPC_NRS_CTL_INVALID,
531 /**
532 * Activate the policy.
533 */
534 PTLRPC_NRS_CTL_START,
535 /**
536 * Reserved for multiple primary policies, which may be a possibility
537 * in the future.
538 */
539 PTLRPC_NRS_CTL_STOP,
540 /**
541 * Policies can start using opcodes from this value and onwards for
542 * their own purposes; the assigned value itself is arbitrary.
543 */
544 PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20,
545};
546
547/**
548 * ORR policy operations
549 */
550enum nrs_ctl_orr {
551 NRS_CTL_ORR_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
552 NRS_CTL_ORR_WR_QUANTUM,
553 NRS_CTL_ORR_RD_OFF_TYPE,
554 NRS_CTL_ORR_WR_OFF_TYPE,
555 NRS_CTL_ORR_RD_SUPP_REQ,
556 NRS_CTL_ORR_WR_SUPP_REQ,
557};
558
559/**
560 * NRS policy operations.
561 *
562 * These determine the behaviour of a policy, and are called in response to
563 * NRS core events.
564 */
565struct ptlrpc_nrs_pol_ops {
566 /**
567 * Called during policy registration; this operation is optional.
568 *
569 * \param[in,out] policy The policy being initialized
570 */
571 int (*op_policy_init) (struct ptlrpc_nrs_policy *policy);
572 /**
573 * Called during policy unregistration; this operation is optional.
574 *
575 * \param[in,out] policy The policy being unregistered/finalized
576 */
577 void (*op_policy_fini) (struct ptlrpc_nrs_policy *policy);
578 /**
579 * Called when activating a policy via lprocfs; policies allocate and
580 * initialize their resources here; this operation is optional.
581 *
582 * \param[in,out] policy The policy being started
583 *
584 * \see nrs_policy_start_locked()
585 */
586 int (*op_policy_start) (struct ptlrpc_nrs_policy *policy);
587 /**
588 * Called when deactivating a policy via lprocfs; policies deallocate
589 * their resources here; this operation is optional
590 *
591 * \param[in,out] policy The policy being stopped
592 *
593 * \see nrs_policy_stop0()
594 */
595 void (*op_policy_stop) (struct ptlrpc_nrs_policy *policy);
596 /**
597 * Used for policy-specific operations; i.e. not generic ones like
598 * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous
599 * to an ioctl; this operation is optional.
600 *
601 * \param[in,out] policy The policy carrying out operation \a opc
602 * \param[in] opc The command operation being carried out
603 * \param[in,out] arg An generic buffer for communication between the
604 * user and the control operation
605 *
606 * \retval -ve error
607 * \retval 0 success
608 *
609 * \see ptlrpc_nrs_policy_control()
610 */
611 int (*op_policy_ctl) (struct ptlrpc_nrs_policy *policy,
612 enum ptlrpc_nrs_ctl opc, void *arg);
613
614 /**
615 * Called when obtaining references to the resources of the resource
616 * hierarchy for a request that has arrived for handling at the PTLRPC
617 * service. Policies should return -ve for requests they do not wish
618 * to handle. This operation is mandatory.
619 *
620 * \param[in,out] policy The policy we're getting resources for.
621 * \param[in,out] nrq The request we are getting resources for.
622 * \param[in] parent The parent resource of the resource being
623 * requested; set to NULL if none.
624 * \param[out] resp The resource is to be returned here; the
625 * fallback policy in an NRS head should
626 * \e always return a non-NULL pointer value.
627 * \param[in] moving_req When set, signifies that this is an attempt
628 * to obtain resources for a request being moved
629 * to the high-priority NRS head by
630 * ldlm_lock_reorder_req().
631 * This implies two things:
632 * 1. We are under obd_export::exp_rpc_lock and
633 * so should not sleep.
634 * 2. We should not perform non-idempotent or can
635 * skip performing idempotent operations that
636 * were carried out when resources were first
637 * taken for the request when it was initialized
638 * in ptlrpc_nrs_req_initialize().
639 *
640 * \retval 0, +ve The level of the returned resource in the resource
641 * hierarchy; currently only 0 (for a non-leaf resource)
642 * and 1 (for a leaf resource) are supported by the
643 * framework.
644 * \retval -ve error
645 *
646 * \see ptlrpc_nrs_req_initialize()
647 * \see ptlrpc_nrs_hpreq_add_nolock()
d7e09d03
PT
648 */
649 int (*op_res_get) (struct ptlrpc_nrs_policy *policy,
650 struct ptlrpc_nrs_request *nrq,
651 const struct ptlrpc_nrs_resource *parent,
652 struct ptlrpc_nrs_resource **resp,
653 bool moving_req);
654 /**
655 * Called when releasing references taken for resources in the resource
656 * hierarchy for the request; this operation is optional.
657 *
658 * \param[in,out] policy The policy the resource belongs to
659 * \param[in] res The resource to be freed
660 *
661 * \see ptlrpc_nrs_req_finalize()
662 * \see ptlrpc_nrs_hpreq_add_nolock()
d7e09d03
PT
663 */
664 void (*op_res_put) (struct ptlrpc_nrs_policy *policy,
665 const struct ptlrpc_nrs_resource *res);
666
667 /**
668 * Obtains a request for handling from the policy, and optionally
669 * removes the request from the policy; this operation is mandatory.
670 *
671 * \param[in,out] policy The policy to poll
672 * \param[in] peek When set, signifies that we just want to
673 * examine the request, and not handle it, so the
674 * request is not removed from the policy.
675 * \param[in] force When set, it will force a policy to return a
676 * request if it has one queued.
677 *
678 * \retval NULL No request available for handling
679 * \retval valid-pointer The request polled for handling
680 *
681 * \see ptlrpc_nrs_req_get_nolock()
682 */
683 struct ptlrpc_nrs_request *
684 (*op_req_get) (struct ptlrpc_nrs_policy *policy, bool peek,
685 bool force);
686 /**
687 * Called when attempting to add a request to a policy for later
688 * handling; this operation is mandatory.
689 *
690 * \param[in,out] policy The policy on which to enqueue \a nrq
691 * \param[in,out] nrq The request to enqueue
692 *
693 * \retval 0 success
694 * \retval != 0 error
695 *
696 * \see ptlrpc_nrs_req_add_nolock()
697 */
698 int (*op_req_enqueue) (struct ptlrpc_nrs_policy *policy,
699 struct ptlrpc_nrs_request *nrq);
700 /**
701 * Removes a request from the policy's set of pending requests. Normally
702 * called after a request has been polled successfully from the policy
703 * for handling; this operation is mandatory.
704 *
705 * \param[in,out] policy The policy the request \a nrq belongs to
706 * \param[in,out] nrq The request to dequeue
d7e09d03
PT
707 */
708 void (*op_req_dequeue) (struct ptlrpc_nrs_policy *policy,
709 struct ptlrpc_nrs_request *nrq);
710 /**
711 * Called after the request being carried out. Could be used for
712 * job/resource control; this operation is optional.
713 *
714 * \param[in,out] policy The policy which is stopping to handle request
715 * \a nrq
716 * \param[in,out] nrq The request
717 *
5e42bc9d 718 * \pre assert_spin_locked(&svcpt->scp_req_lock)
d7e09d03
PT
719 *
720 * \see ptlrpc_nrs_req_stop_nolock()
721 */
722 void (*op_req_stop) (struct ptlrpc_nrs_policy *policy,
723 struct ptlrpc_nrs_request *nrq);
724 /**
725 * Registers the policy's lprocfs interface with a PTLRPC service.
726 *
727 * \param[in] svc The service
728 *
729 * \retval 0 success
730 * \retval != 0 error
731 */
732 int (*op_lprocfs_init) (struct ptlrpc_service *svc);
733 /**
734 * Unegisters the policy's lprocfs interface with a PTLRPC service.
735 *
736 * In cases of failed policy registration in
737 * \e ptlrpc_nrs_policy_register(), this function may be called for a
738 * service which has not registered the policy successfully, so
739 * implementations of this method should make sure their operations are
740 * safe in such cases.
741 *
742 * \param[in] svc The service
743 */
744 void (*op_lprocfs_fini) (struct ptlrpc_service *svc);
745};
746
747/**
748 * Policy flags
749 */
750enum nrs_policy_flags {
751 /**
752 * Fallback policy, use this flag only on a single supported policy per
753 * service. The flag cannot be used on policies that use
754 * \e PTLRPC_NRS_FL_REG_EXTERN
755 */
756 PTLRPC_NRS_FL_FALLBACK = (1 << 0),
757 /**
758 * Start policy immediately after registering.
759 */
760 PTLRPC_NRS_FL_REG_START = (1 << 1),
761 /**
762 * This is a policy registering from a module different to the one NRS
763 * core ships in (currently ptlrpc).
764 */
765 PTLRPC_NRS_FL_REG_EXTERN = (1 << 2),
766};
767
768/**
769 * NRS queue type.
770 *
771 * Denotes whether an NRS instance is for handling normal or high-priority
772 * RPCs, or whether an operation pertains to one or both of the NRS instances
773 * in a service.
774 */
775enum ptlrpc_nrs_queue_type {
776 PTLRPC_NRS_QUEUE_REG = (1 << 0),
777 PTLRPC_NRS_QUEUE_HP = (1 << 1),
778 PTLRPC_NRS_QUEUE_BOTH = (PTLRPC_NRS_QUEUE_REG | PTLRPC_NRS_QUEUE_HP)
779};
780
781/**
782 * NRS head
783 *
784 * A PTLRPC service has at least one NRS head instance for handling normal
785 * priority RPCs, and may optionally have a second NRS head instance for
786 * handling high-priority RPCs. Each NRS head maintains a list of available
787 * policies, of which one and only one policy is acting as the fallback policy,
788 * and optionally a different policy may be acting as the primary policy. For
789 * all RPCs handled by this NRS head instance, NRS core will first attempt to
790 * enqueue the RPC using the primary policy (if any). The fallback policy is
791 * used in the following cases:
792 * - when there was no primary policy in the
793 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request
794 * was initialized.
795 * - when the primary policy that was at the
796 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
797 * RPC was initialized, denoted it did not wish, or for some other reason was
798 * not able to handle the request, by returning a non-valid NRS resource
799 * reference.
800 * - when the primary policy that was at the
801 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
802 * RPC was initialized, fails later during the request enqueueing stage.
803 *
804 * \see nrs_resource_get_safe()
805 * \see nrs_request_enqueue()
806 */
807struct ptlrpc_nrs {
808 spinlock_t nrs_lock;
809 /** XXX Possibly replace svcpt->scp_req_lock with another lock here. */
810 /**
811 * List of registered policies
812 */
813 struct list_head nrs_policy_list;
814 /**
815 * List of policies with queued requests. Policies that have any
816 * outstanding requests are queued here, and this list is queried
817 * in a round-robin manner from NRS core when obtaining a request
818 * for handling. This ensures that requests from policies that at some
819 * point transition away from the
820 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained.
821 */
822 struct list_head nrs_policy_queued;
823 /**
824 * Service partition for this NRS head
825 */
826 struct ptlrpc_service_part *nrs_svcpt;
827 /**
828 * Primary policy, which is the preferred policy for handling RPCs
829 */
830 struct ptlrpc_nrs_policy *nrs_policy_primary;
831 /**
832 * Fallback policy, which is the backup policy for handling RPCs
833 */
834 struct ptlrpc_nrs_policy *nrs_policy_fallback;
835 /**
836 * This NRS head handles either HP or regular requests
837 */
838 enum ptlrpc_nrs_queue_type nrs_queue_type;
839 /**
840 * # queued requests from all policies in this NRS head
841 */
842 unsigned long nrs_req_queued;
843 /**
844 * # scheduled requests from all policies in this NRS head
845 */
846 unsigned long nrs_req_started;
847 /**
848 * # policies on this NRS
849 */
850 unsigned nrs_num_pols;
851 /**
852 * This NRS head is in progress of starting a policy
853 */
854 unsigned nrs_policy_starting:1;
855 /**
856 * In progress of shutting down the whole NRS head; used during
857 * unregistration
858 */
859 unsigned nrs_stopping:1;
860};
861
862#define NRS_POL_NAME_MAX 16
863
864struct ptlrpc_nrs_pol_desc;
865
866/**
867 * Service compatibility predicate; this determines whether a policy is adequate
868 * for handling RPCs of a particular PTLRPC service.
869 *
870 * XXX:This should give the same result during policy registration and
871 * unregistration, and for all partitions of a service; so the result should not
872 * depend on temporal service or other properties, that may influence the
873 * result.
874 */
875typedef bool (*nrs_pol_desc_compat_t) (const struct ptlrpc_service *svc,
876 const struct ptlrpc_nrs_pol_desc *desc);
877
878struct ptlrpc_nrs_pol_conf {
879 /**
880 * Human-readable policy name
881 */
882 char nc_name[NRS_POL_NAME_MAX];
883 /**
884 * NRS operations for this policy
885 */
886 const struct ptlrpc_nrs_pol_ops *nc_ops;
887 /**
888 * Service compatibility predicate
889 */
890 nrs_pol_desc_compat_t nc_compat;
891 /**
892 * Set for policies that support a single ptlrpc service, i.e. ones that
893 * have \a pd_compat set to nrs_policy_compat_one(). The variable value
894 * depicts the name of the single service that such policies are
895 * compatible with.
896 */
897 const char *nc_compat_svc_name;
898 /**
899 * Owner module for this policy descriptor; policies registering from a
900 * different module to the one the NRS framework is held within
901 * (currently ptlrpc), should set this field to THIS_MODULE.
902 */
c34d9cd8 903 struct module *nc_owner;
d7e09d03 904 /**
bd9070cb 905 * Policy registration flags; a bitmask of \e nrs_policy_flags
d7e09d03
PT
906 */
907 unsigned nc_flags;
908};
909
910/**
911 * NRS policy registering descriptor
912 *
913 * Is used to hold a description of a policy that can be passed to NRS core in
914 * order to register the policy with NRS heads in different PTLRPC services.
915 */
916struct ptlrpc_nrs_pol_desc {
917 /**
918 * Human-readable policy name
919 */
920 char pd_name[NRS_POL_NAME_MAX];
921 /**
922 * Link into nrs_core::nrs_policies
923 */
924 struct list_head pd_list;
925 /**
926 * NRS operations for this policy
927 */
928 const struct ptlrpc_nrs_pol_ops *pd_ops;
929 /**
930 * Service compatibility predicate
931 */
932 nrs_pol_desc_compat_t pd_compat;
933 /**
934 * Set for policies that are compatible with only one PTLRPC service.
935 *
936 * \see ptlrpc_nrs_pol_conf::nc_compat_svc_name
937 */
938 const char *pd_compat_svc_name;
939 /**
940 * Owner module for this policy descriptor.
941 *
942 * We need to hold a reference to the module whenever we might make use
943 * of any of the module's contents, i.e.
944 * - If one or more instances of the policy are at a state where they
945 * might be handling a request, i.e.
946 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED or
947 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING as we will have to
948 * call into the policy's ptlrpc_nrs_pol_ops() handlers. A reference
949 * is taken on the module when
950 * \e ptlrpc_nrs_pol_desc::pd_refs becomes 1, and released when it
951 * becomes 0, so that we hold only one reference to the module maximum
952 * at any time.
953 *
954 * We do not need to hold a reference to the module, even though we
955 * might use code and data from the module, in the following cases:
956 * - During external policy registration, because this should happen in
957 * the module's init() function, in which case the module is safe from
958 * removal because a reference is being held on the module by the
959 * kernel, and iirc kmod (and I guess module-init-tools also) will
960 * serialize any racing processes properly anyway.
961 * - During external policy unregistration, because this should happen
962 * in a module's exit() function, and any attempts to start a policy
963 * instance would need to take a reference on the module, and this is
964 * not possible once we have reached the point where the exit()
965 * handler is called.
966 * - During service registration and unregistration, as service setup
967 * and cleanup, and policy registration, unregistration and policy
968 * instance starting, are serialized by \e nrs_core::nrs_mutex, so
969 * as long as users adhere to the convention of registering policies
970 * in init() and unregistering them in module exit() functions, there
971 * should not be a race between these operations.
972 * - During any policy-specific lprocfs operations, because a reference
973 * is held by the kernel on a proc entry that has been entered by a
974 * syscall, so as long as proc entries are removed during unregistration time,
975 * then unregistration and lprocfs operations will be properly
976 * serialized.
977 */
c34d9cd8 978 struct module *pd_owner;
d7e09d03
PT
979 /**
980 * Bitmask of \e nrs_policy_flags
981 */
982 unsigned pd_flags;
983 /**
984 * # of references on this descriptor
985 */
986 atomic_t pd_refs;
987};
988
989/**
990 * NRS policy state
991 *
992 * Policies transition from one state to the other during their lifetime
993 */
994enum ptlrpc_nrs_pol_state {
995 /**
996 * Not a valid policy state.
997 */
998 NRS_POL_STATE_INVALID,
999 /**
1000 * Policies are at this state either at the start of their life, or
1001 * transition here when the user selects a different policy to act
1002 * as the primary one.
1003 */
1004 NRS_POL_STATE_STOPPED,
1005 /**
1006 * Policy is progress of stopping
1007 */
1008 NRS_POL_STATE_STOPPING,
1009 /**
1010 * Policy is in progress of starting
1011 */
1012 NRS_POL_STATE_STARTING,
1013 /**
1014 * A policy is in this state in two cases:
1015 * - it is the fallback policy, which is always in this state.
1016 * - it has been activated by the user; i.e. it is the primary policy,
1017 */
1018 NRS_POL_STATE_STARTED,
1019};
1020
1021/**
1022 * NRS policy information
1023 *
1024 * Used for obtaining information for the status of a policy via lprocfs
1025 */
1026struct ptlrpc_nrs_pol_info {
1027 /**
1028 * Policy name
1029 */
1030 char pi_name[NRS_POL_NAME_MAX];
1031 /**
1032 * Current policy state
1033 */
1034 enum ptlrpc_nrs_pol_state pi_state;
1035 /**
1036 * # RPCs enqueued for later dispatching by the policy
1037 */
1038 long pi_req_queued;
1039 /**
1040 * # RPCs started for dispatch by the policy
1041 */
1042 long pi_req_started;
1043 /**
1044 * Is this a fallback policy?
1045 */
1046 unsigned pi_fallback:1;
1047};
1048
1049/**
1050 * NRS policy
1051 *
1052 * There is one instance of this for each policy in each NRS head of each
1053 * PTLRPC service partition.
1054 */
1055struct ptlrpc_nrs_policy {
1056 /**
1057 * Linkage into the NRS head's list of policies,
1058 * ptlrpc_nrs:nrs_policy_list
1059 */
1060 struct list_head pol_list;
1061 /**
1062 * Linkage into the NRS head's list of policies with enqueued
1063 * requests ptlrpc_nrs:nrs_policy_queued
1064 */
1065 struct list_head pol_list_queued;
1066 /**
1067 * Current state of this policy
1068 */
1069 enum ptlrpc_nrs_pol_state pol_state;
1070 /**
1071 * Bitmask of nrs_policy_flags
1072 */
1073 unsigned pol_flags;
1074 /**
1075 * # RPCs enqueued for later dispatching by the policy
1076 */
1077 long pol_req_queued;
1078 /**
1079 * # RPCs started for dispatch by the policy
1080 */
1081 long pol_req_started;
1082 /**
1083 * Usage Reference count taken on the policy instance
1084 */
1085 long pol_ref;
1086 /**
1087 * The NRS head this policy has been created at
1088 */
1089 struct ptlrpc_nrs *pol_nrs;
1090 /**
1091 * Private policy data; varies by policy type
1092 */
1093 void *pol_private;
1094 /**
1095 * Policy descriptor for this policy instance.
1096 */
1097 struct ptlrpc_nrs_pol_desc *pol_desc;
1098};
1099
1100/**
1101 * NRS resource
1102 *
1103 * Resources are embedded into two types of NRS entities:
1104 * - Inside NRS policies, in the policy's private data in
1105 * ptlrpc_nrs_policy::pol_private
1106 * - In objects that act as prime-level scheduling entities in different NRS
1107 * policies; e.g. on a policy that performs round robin or similar order
1108 * scheduling across client NIDs, there would be one NRS resource per unique
1109 * client NID. On a policy which performs round robin scheduling across
1110 * backend filesystem objects, there would be one resource associated with
1111 * each of the backend filesystem objects partaking in the scheduling
1112 * performed by the policy.
1113 *
1114 * NRS resources share a parent-child relationship, in which resources embedded
1115 * in policy instances are the parent entities, with all scheduling entities
1116 * a policy schedules across being the children, thus forming a simple resource
1117 * hierarchy. This hierarchy may be extended with one or more levels in the
1118 * future if the ability to have more than one primary policy is added.
1119 *
1120 * Upon request initialization, references to the then active NRS policies are
1121 * taken and used to later handle the dispatching of the request with one of
1122 * these policies.
1123 *
1124 * \see nrs_resource_get_safe()
1125 * \see ptlrpc_nrs_req_add()
1126 */
1127struct ptlrpc_nrs_resource {
1128 /**
1129 * This NRS resource's parent; is NULL for resources embedded in NRS
1130 * policy instances; i.e. those are top-level ones.
1131 */
1132 struct ptlrpc_nrs_resource *res_parent;
1133 /**
1134 * The policy associated with this resource.
1135 */
1136 struct ptlrpc_nrs_policy *res_policy;
1137};
1138
1139enum {
1140 NRS_RES_FALLBACK,
1141 NRS_RES_PRIMARY,
1142 NRS_RES_MAX
1143};
1144
1145/* \name fifo
1146 *
1147 * FIFO policy
1148 *
1149 * This policy is a logical wrapper around previous, non-NRS functionality.
1150 * It dispatches RPCs in the same order as they arrive from the network. This
1151 * policy is currently used as the fallback policy, and the only enabled policy
1152 * on all NRS heads of all PTLRPC service partitions.
1153 * @{
1154 */
1155
1156/**
1157 * Private data structure for the FIFO policy
1158 */
1159struct nrs_fifo_head {
1160 /**
1161 * Resource object for policy instance.
1162 */
1163 struct ptlrpc_nrs_resource fh_res;
1164 /**
1165 * List of queued requests.
1166 */
1167 struct list_head fh_list;
1168 /**
1169 * For debugging purposes.
1170 */
1171 __u64 fh_sequence;
1172};
1173
1174struct nrs_fifo_req {
1175 struct list_head fr_list;
1176 __u64 fr_sequence;
1177};
1178
1179/** @} fifo */
1180
d7e09d03
PT
1181/**
1182 * NRS request
1183 *
1184 * Instances of this object exist embedded within ptlrpc_request; the main
1185 * purpose of this object is to hold references to the request's resources
1186 * for the lifetime of the request, and to hold properties that policies use
1187 * use for determining the request's scheduling priority.
c56e256d 1188 */
d7e09d03
PT
1189struct ptlrpc_nrs_request {
1190 /**
1191 * The request's resource hierarchy.
1192 */
1193 struct ptlrpc_nrs_resource *nr_res_ptrs[NRS_RES_MAX];
1194 /**
1195 * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the
1196 * policy that was used to enqueue the request.
1197 *
1198 * \see nrs_request_enqueue()
1199 */
1200 unsigned nr_res_idx;
1201 unsigned nr_initialized:1;
1202 unsigned nr_enqueued:1;
1203 unsigned nr_started:1;
1204 unsigned nr_finalized:1;
d7e09d03
PT
1205
1206 /**
1207 * Policy-specific fields, used for determining a request's scheduling
1208 * priority, and other supporting functionality.
1209 */
1210 union {
1211 /**
1212 * Fields for the FIFO policy
1213 */
1214 struct nrs_fifo_req fifo;
d7e09d03
PT
1215 } nr_u;
1216 /**
1217 * Externally-registering policies may want to use this to allocate
1218 * their own request properties.
1219 */
1220 void *ext;
1221};
1222
1223/** @} nrs */
1224
1225/**
1226 * Basic request prioritization operations structure.
1227 * The whole idea is centered around locks and RPCs that might affect locks.
1228 * When a lock is contended we try to give priority to RPCs that might lead
1229 * to fastest release of that lock.
1230 * Currently only implemented for OSTs only in a way that makes all
1231 * IO and truncate RPCs that are coming from a locked region where a lock is
1232 * contended a priority over other requests.
1233 */
1234struct ptlrpc_hpreq_ops {
1235 /**
1236 * Check if the lock handle of the given lock is the same as
1237 * taken from the request.
1238 */
1239 int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
1240 /**
1241 * Check if the request is a high priority one.
1242 */
1243 int (*hpreq_check)(struct ptlrpc_request *);
1244 /**
1245 * Called after the request has been handled.
1246 */
1247 void (*hpreq_fini)(struct ptlrpc_request *);
1248};
1249
1250/**
1251 * Represents remote procedure call.
1252 *
1253 * This is a staple structure used by everybody wanting to send a request
1254 * in Lustre.
1255 */
1256struct ptlrpc_request {
1257 /* Request type: one of PTL_RPC_MSG_* */
1258 int rq_type;
1259 /** Result of request processing */
1260 int rq_status;
1261 /**
1262 * Linkage item through which this request is included into
1263 * sending/delayed lists on client and into rqbd list on server
1264 */
1265 struct list_head rq_list;
1266 /**
1267 * Server side list of incoming unserved requests sorted by arrival
1268 * time. Traversed from time to time to notice about to expire
1269 * requests and sent back "early replies" to clients to let them
1270 * know server is alive and well, just very busy to service their
1271 * requests in time
1272 */
1273 struct list_head rq_timed_list;
17891183 1274 /** server-side history, used for debugging purposes. */
d7e09d03
PT
1275 struct list_head rq_history_list;
1276 /** server-side per-export list */
1277 struct list_head rq_exp_list;
1278 /** server-side hp handlers */
1279 struct ptlrpc_hpreq_ops *rq_ops;
1280
1281 /** initial thread servicing this request */
1282 struct ptlrpc_thread *rq_svc_thread;
1283
1284 /** history sequence # */
1285 __u64 rq_history_seq;
1286 /** \addtogroup nrs
1287 * @{
1288 */
1289 /** stub for NRS request */
1290 struct ptlrpc_nrs_request rq_nrq;
1291 /** @} nrs */
1292 /** the index of service's srv_at_array into which request is linked */
c8ff1810 1293 u32 rq_at_index;
d7e09d03
PT
1294 /** Lock to protect request flags and some other important bits, like
1295 * rq_list
1296 */
1297 spinlock_t rq_lock;
1298 /** client-side flags are serialized by rq_lock */
1299 unsigned int rq_intr:1, rq_replied:1, rq_err:1,
1300 rq_timedout:1, rq_resend:1, rq_restart:1,
1301 /**
1302 * when ->rq_replay is set, request is kept by the client even
1303 * after server commits corresponding transaction. This is
1304 * used for operations that require sequence of multiple
1305 * requests to be replayed. The only example currently is file
1306 * open/close. When last request in such a sequence is
1307 * committed, ->rq_replay is cleared on all requests in the
1308 * sequence.
1309 */
1310 rq_replay:1,
1311 rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
1312 rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
cf378ff7
AL
1313 rq_early:1,
1314 rq_req_unlink:1, rq_reply_unlink:1,
d7e09d03
PT
1315 rq_memalloc:1, /* req originated from "kswapd" */
1316 /* server-side flags */
1317 rq_packed_final:1, /* packed final reply */
1318 rq_hp:1, /* high priority RPC */
1319 rq_at_linked:1, /* link into service's srv_at_array */
1320 rq_reply_truncate:1,
1321 rq_committed:1,
1322 /* whether the "rq_set" is a valid one */
1323 rq_invalid_rqset:1,
1324 rq_generation_set:1,
1325 /* do not resend request on -EINPROGRESS */
1326 rq_no_retry_einprogress:1,
1327 /* allow the req to be sent if the import is in recovery
c56e256d
OD
1328 * status
1329 */
c52f69c5 1330 rq_allow_replay:1;
d7e09d03
PT
1331
1332 unsigned int rq_nr_resend;
1333
1334 enum rq_phase rq_phase; /* one of RQ_PHASE_* */
1335 enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */
c56e256d
OD
1336 atomic_t rq_refcount; /* client-side refcount for SENT race,
1337 * server-side refcount for multiple replies
1338 */
d7e09d03
PT
1339
1340 /** Portal to which this request would be sent */
1341 short rq_request_portal; /* XXX FIXME bug 249 */
1342 /** Portal where to wait for reply and where reply would be sent */
1343 short rq_reply_portal; /* XXX FIXME bug 249 */
1344
1345 /**
1346 * client-side:
1347 * !rq_truncate : # reply bytes actually received,
1348 * rq_truncate : required repbuf_len for resend
1349 */
1350 int rq_nob_received;
1351 /** Request length */
1352 int rq_reqlen;
1353 /** Reply length */
1354 int rq_replen;
1355 /** Request message - what client sent */
1356 struct lustre_msg *rq_reqmsg;
1357 /** Reply message - server response */
1358 struct lustre_msg *rq_repmsg;
1359 /** Transaction number */
1360 __u64 rq_transno;
1361 /** xid */
1362 __u64 rq_xid;
1363 /**
17891183 1364 * List item to for replay list. Not yet committed requests get linked
d7e09d03
PT
1365 * there.
1366 * Also see \a rq_replay comment above.
1367 */
1368 struct list_head rq_replay_list;
1369
1370 /**
1371 * security and encryption data
c56e256d
OD
1372 * @{
1373 */
d7e09d03
PT
1374 struct ptlrpc_cli_ctx *rq_cli_ctx; /**< client's half ctx */
1375 struct ptlrpc_svc_ctx *rq_svc_ctx; /**< server's half ctx */
1376 struct list_head rq_ctx_chain; /**< link to waited ctx */
1377
1378 struct sptlrpc_flavor rq_flvr; /**< for client & server */
1379 enum lustre_sec_part rq_sp_from;
1380
1381 /* client/server security flags */
1382 unsigned int
1383 rq_ctx_init:1, /* context initiation */
1384 rq_ctx_fini:1, /* context destroy */
1385 rq_bulk_read:1, /* request bulk read */
1386 rq_bulk_write:1, /* request bulk write */
1387 /* server authentication flags */
1388 rq_auth_gss:1, /* authenticated by gss */
1389 rq_auth_remote:1, /* authed as remote user */
1390 rq_auth_usr_root:1, /* authed as root */
1391 rq_auth_usr_mdt:1, /* authed as mdt */
1392 rq_auth_usr_ost:1, /* authed as ost */
1393 /* security tfm flags */
1394 rq_pack_udesc:1,
1395 rq_pack_bulk:1,
1396 /* doesn't expect reply FIXME */
1397 rq_no_reply:1,
1398 rq_pill_init:1; /* pill initialized */
1399
1400 uid_t rq_auth_uid; /* authed uid */
1401 uid_t rq_auth_mapped_uid; /* authed uid mapped to */
1402
1403 /* (server side), pointed directly into req buffer */
1404 struct ptlrpc_user_desc *rq_user_desc;
1405
1406 /* various buffer pointers */
1407 struct lustre_msg *rq_reqbuf; /* req wrapper */
1408 char *rq_repbuf; /* rep buffer */
1409 struct lustre_msg *rq_repdata; /* rep wrapper msg */
1410 struct lustre_msg *rq_clrbuf; /* only in priv mode */
1411 int rq_reqbuf_len; /* req wrapper buf len */
1412 int rq_reqdata_len; /* req wrapper msg len */
1413 int rq_repbuf_len; /* rep buffer len */
1414 int rq_repdata_len; /* rep wrapper msg len */
1415 int rq_clrbuf_len; /* only in priv mode */
1416 int rq_clrdata_len; /* only in priv mode */
1417
1418 /** early replies go to offset 0, regular replies go after that */
1419 unsigned int rq_reply_off;
1420
1421 /** @} */
1422
1423 /** Fields that help to see if request and reply were swabbed or not */
1424 __u32 rq_req_swab_mask;
1425 __u32 rq_rep_swab_mask;
1426
1427 /** What was import generation when this request was sent */
1428 int rq_import_generation;
1429 enum lustre_imp_state rq_send_state;
1430
1431 /** how many early replies (for stats) */
1432 int rq_early_count;
1433
1434 /** client+server request */
1435 lnet_handle_md_t rq_req_md_h;
1436 struct ptlrpc_cb_id rq_req_cbid;
1437 /** optional time limit for send attempts */
b2d201bd 1438 long rq_delay_limit;
d7e09d03 1439 /** time request was first queued */
a649ad1d 1440 unsigned long rq_queued_time;
d7e09d03
PT
1441
1442 /* server-side... */
1443 /** request arrival time */
219e6de6 1444 struct timespec64 rq_arrival_time;
d7e09d03
PT
1445 /** separated reply state */
1446 struct ptlrpc_reply_state *rq_reply_state;
1447 /** incoming request buffer */
1448 struct ptlrpc_request_buffer_desc *rq_rqbd;
1449
1450 /** client-only incoming reply */
1451 lnet_handle_md_t rq_reply_md_h;
1452 wait_queue_head_t rq_reply_waitq;
1453 struct ptlrpc_cb_id rq_reply_cbid;
1454
1455 /** our LNet NID */
1456 lnet_nid_t rq_self;
1457 /** Peer description (the other side) */
1458 lnet_process_id_t rq_peer;
1459 /** Server-side, export on which request was received */
1460 struct obd_export *rq_export;
1461 /** Client side, import where request is being sent */
1462 struct obd_import *rq_import;
1463
1464 /** Replay callback, called after request is replayed at recovery */
1465 void (*rq_replay_cb)(struct ptlrpc_request *);
1466 /**
1467 * Commit callback, called when request is committed and about to be
1468 * freed.
1469 */
1470 void (*rq_commit_cb)(struct ptlrpc_request *);
1471 /** Opaq data for replay and commit callbacks. */
1472 void *rq_cb_data;
1473
1474 /** For bulk requests on client only: bulk descriptor */
1475 struct ptlrpc_bulk_desc *rq_bulk;
1476
1477 /** client outgoing req */
1478 /**
1479 * when request/reply sent (secs), or time when request should be sent
1480 */
219e6de6 1481 time64_t rq_sent;
d7e09d03 1482 /** time for request really sent out */
219e6de6 1483 time64_t rq_real_sent;
d7e09d03
PT
1484
1485 /** when request must finish. volatile
1486 * so that servers' early reply updates to the deadline aren't
c56e256d
OD
1487 * kept in per-cpu cache
1488 */
219e6de6 1489 volatile time64_t rq_deadline;
d7e09d03 1490 /** when req reply unlink must finish. */
219e6de6 1491 time64_t rq_reply_deadline;
d7e09d03 1492 /** when req bulk unlink must finish. */
219e6de6 1493 time64_t rq_bulk_deadline;
d7e09d03
PT
1494 /**
1495 * service time estimate (secs)
1496 * If the requestsis not served by this time, it is marked as timed out.
1497 */
1498 int rq_timeout;
1499
1500 /** Multi-rpc bits */
1501 /** Per-request waitq introduced by bug 21938 for recovery waiting */
1502 wait_queue_head_t rq_set_waitq;
1503 /** Link item for request set lists */
1504 struct list_head rq_set_chain;
1505 /** Link back to the request set */
1506 struct ptlrpc_request_set *rq_set;
1507 /** Async completion handler, called when reply is received */
1508 ptlrpc_interpterer_t rq_interpret_reply;
1509 /** Async completion context */
1510 union ptlrpc_async_args rq_async_args;
1511
1512 /** Pool if request is from preallocated list */
1513 struct ptlrpc_request_pool *rq_pool;
1514
1515 struct lu_context rq_session;
1516 struct lu_context rq_recov_session;
1517
1518 /** request format description */
1519 struct req_capsule rq_pill;
1520};
1521
1522/**
1523 * Call completion handler for rpc if any, return it's status or original
1524 * rc if there was no handler defined for this request.
1525 */
1526static inline int ptlrpc_req_interpret(const struct lu_env *env,
1527 struct ptlrpc_request *req, int rc)
1528{
d2a13989 1529 if (req->rq_interpret_reply) {
d7e09d03
PT
1530 req->rq_status = req->rq_interpret_reply(env, req,
1531 &req->rq_async_args,
1532 rc);
1533 return req->rq_status;
1534 }
1535 return rc;
1536}
1537
d7e09d03
PT
1538/*
1539 * Can the request be moved from the regular NRS head to the high-priority NRS
1540 * head (of the same PTLRPC service partition), if any?
1541 *
1542 * For a reliable result, this should be checked under svcpt->scp_req lock.
1543 */
1544static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
1545{
1546 struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
1547
1548 /**
1549 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
1550 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
1551 * to make sure it has not been scheduled yet (analogous to previous
1552 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
1553 */
1554 return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
1555}
c9f6bb96 1556
d7e09d03
PT
1557/** @} nrs */
1558
1559/**
1560 * Returns 1 if request buffer at offset \a index was already swabbed
1561 */
1562static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index)
1563{
1564 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
1565 return req->rq_req_swab_mask & (1 << index);
1566}
1567
1568/**
1569 * Returns 1 if request reply buffer at offset \a index was already swabbed
1570 */
1571static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index)
1572{
1573 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
1574 return req->rq_rep_swab_mask & (1 << index);
1575}
1576
1577/**
1578 * Returns 1 if request needs to be swabbed into local cpu byteorder
1579 */
1580static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
1581{
1582 return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
1583}
1584
1585/**
1586 * Returns 1 if request reply needs to be swabbed into local cpu byteorder
1587 */
1588static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
1589{
1590 return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
1591}
1592
1593/**
1594 * Mark request buffer at offset \a index that it was already swabbed
1595 */
1596static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index)
1597{
1598 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
1599 LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
1600 req->rq_req_swab_mask |= 1 << index;
1601}
1602
1603/**
1604 * Mark request reply buffer at offset \a index that it was already swabbed
1605 */
1606static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index)
1607{
1608 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
1609 LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
1610 req->rq_rep_swab_mask |= 1 << index;
1611}
1612
1613/**
1614 * Convert numerical request phase value \a phase into text string description
1615 */
1616static inline const char *
1617ptlrpc_phase2str(enum rq_phase phase)
1618{
1619 switch (phase) {
1620 case RQ_PHASE_NEW:
1621 return "New";
1622 case RQ_PHASE_RPC:
1623 return "Rpc";
1624 case RQ_PHASE_BULK:
1625 return "Bulk";
1626 case RQ_PHASE_INTERPRET:
1627 return "Interpret";
1628 case RQ_PHASE_COMPLETE:
1629 return "Complete";
1630 case RQ_PHASE_UNREGISTERING:
1631 return "Unregistering";
1632 default:
1633 return "?Phase?";
1634 }
1635}
1636
1637/**
1638 * Convert numerical request phase of the request \a req into text stringi
1639 * description
1640 */
1641static inline const char *
1642ptlrpc_rqphase2str(struct ptlrpc_request *req)
1643{
1644 return ptlrpc_phase2str(req->rq_phase);
1645}
1646
1647/**
1648 * Debugging functions and helpers to print request structure into debug log
1649 * @{
1650 */
1651/* Spare the preprocessor, spoil the bugs. */
1652#define FLAG(field, str) (field ? str : "")
1653
1654/** Convert bit flags into a string */
1655#define DEBUG_REQ_FLAGS(req) \
1656 ptlrpc_rqphase2str(req), \
1657 FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \
1658 FLAG(req->rq_err, "E"), \
1659 FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \
1660 FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \
1661 FLAG(req->rq_no_resend, "N"), \
1662 FLAG(req->rq_waiting, "W"), \
1663 FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \
1664 FLAG(req->rq_committed, "M")
1665
1666#define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s"
1667
1668void _debug_req(struct ptlrpc_request *req,
1669 struct libcfs_debug_msg_data *data, const char *fmt, ...)
70837c12 1670 __printf(3, 4);
d7e09d03
PT
1671
1672/**
17891183 1673 * Helper that decides if we need to print request according to current debug
d7e09d03
PT
1674 * level settings
1675 */
1676#define debug_req(msgdata, mask, cdls, req, fmt, a...) \
1677do { \
1678 CFS_CHECK_STACK(msgdata, mask, cdls); \
1679 \
1680 if (((mask) & D_CANTMASK) != 0 || \
1681 ((libcfs_debug & (mask)) != 0 && \
1682 (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \
1683 _debug_req((req), msgdata, fmt, ##a); \
a58a38ac 1684} while (0)
d7e09d03
PT
1685
1686/**
17891183 1687 * This is the debug print function you need to use to print request structure
d7e09d03 1688 * content into lustre debug log.
c56e256d
OD
1689 * for most callers (level is a constant) this is resolved at compile time
1690 */
d7e09d03
PT
1691#define DEBUG_REQ(level, req, fmt, args...) \
1692do { \
1693 if ((level) & (D_ERROR | D_WARNING)) { \
a3ea59e0 1694 static struct cfs_debug_limit_state cdls; \
d7e09d03
PT
1695 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \
1696 debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
1697 } else { \
1698 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \
1699 debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
1700 } \
1701} while (0)
1702/** @} */
1703
1704/**
1705 * Structure that defines a single page of a bulk transfer
1706 */
1707struct ptlrpc_bulk_page {
1708 /** Linkage to list of pages in a bulk */
1709 struct list_head bp_link;
1710 /**
1711 * Number of bytes in a page to transfer starting from \a bp_pageoffset
1712 */
1713 int bp_buflen;
1714 /** offset within a page */
1715 int bp_pageoffset;
1716 /** The page itself */
1717 struct page *bp_page;
1718};
1719
1720#define BULK_GET_SOURCE 0
1721#define BULK_PUT_SINK 1
1722#define BULK_GET_SINK 2
1723#define BULK_PUT_SOURCE 3
1724
1725/**
1726 * Definition of bulk descriptor.
1727 * Bulks are special "Two phase" RPCs where initial request message
1728 * is sent first and it is followed bt a transfer (o receiving) of a large
1729 * amount of data to be settled into pages referenced from the bulk descriptors.
1730 * Bulks transfers (the actual data following the small requests) are done
1731 * on separate LNet portals.
1732 * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
1733 * Another user is readpage for MDT.
1734 */
1735struct ptlrpc_bulk_desc {
1736 /** completed with failure */
1737 unsigned long bd_failure:1;
1738 /** {put,get}{source,sink} */
1739 unsigned long bd_type:2;
1740 /** client side */
1741 unsigned long bd_registered:1;
1742 /** For serialization with callback */
1743 spinlock_t bd_lock;
1744 /** Import generation when request for this bulk was sent */
1745 int bd_import_generation;
1746 /** LNet portal for this bulk */
1747 __u32 bd_portal;
1748 /** Server side - export this bulk created for */
1749 struct obd_export *bd_export;
1750 /** Client side - import this bulk was sent on */
1751 struct obd_import *bd_import;
1752 /** Back pointer to the request */
1753 struct ptlrpc_request *bd_req;
1754 wait_queue_head_t bd_waitq; /* server side only WQ */
1755 int bd_iov_count; /* # entries in bd_iov */
1756 int bd_max_iov; /* allocated size of bd_iov */
1757 int bd_nob; /* # bytes covered */
1758 int bd_nob_transferred; /* # bytes GOT/PUT */
1759
1760 __u64 bd_last_xid;
1761
1762 struct ptlrpc_cb_id bd_cbid; /* network callback info */
1763 lnet_nid_t bd_sender; /* stash event::sender */
1764 int bd_md_count; /* # valid entries in bd_mds */
1765 int bd_md_max_brw; /* max entries in bd_mds */
1766 /** array of associated MDs */
1767 lnet_handle_md_t bd_mds[PTLRPC_BULK_OPS_COUNT];
1768
1769 /*
1770 * encrypt iov, size is either 0 or bd_iov_count.
1771 */
1772 lnet_kiov_t *bd_enc_iov;
1773
1774 lnet_kiov_t bd_iov[0];
1775};
1776
1777enum {
1778 SVC_STOPPED = 1 << 0,
1779 SVC_STOPPING = 1 << 1,
1780 SVC_STARTING = 1 << 2,
1781 SVC_RUNNING = 1 << 3,
1782 SVC_EVENT = 1 << 4,
1783 SVC_SIGNAL = 1 << 5,
1784};
1785
1786#define PTLRPC_THR_NAME_LEN 32
1787/**
1788 * Definition of server service thread structure
1789 */
1790struct ptlrpc_thread {
1791 /**
1792 * List of active threads in svc->srv_threads
1793 */
1794 struct list_head t_link;
1795 /**
1796 * thread-private data (preallocated memory)
1797 */
1798 void *t_data;
1799 __u32 t_flags;
1800 /**
1801 * service thread index, from ptlrpc_start_threads
1802 */
1803 unsigned int t_id;
1804 /**
1805 * service thread pid
1806 */
1807 pid_t t_pid;
1808 /**
1809 * put watchdog in the structure per thread b=14840
5d4450c4
PT
1810 *
1811 * Lustre watchdog is removed for client in the hope
1812 * of a generic watchdog can be merged in kernel.
1813 * When that happens, we should add below back.
1814 *
1815 * struct lc_watchdog *t_watchdog;
d7e09d03 1816 */
d7e09d03
PT
1817 /**
1818 * the svc this thread belonged to b=18582
1819 */
1820 struct ptlrpc_service_part *t_svcpt;
1821 wait_queue_head_t t_ctl_waitq;
1822 struct lu_env *t_env;
1823 char t_name[PTLRPC_THR_NAME_LEN];
1824};
1825
1826static inline int thread_is_init(struct ptlrpc_thread *thread)
1827{
1828 return thread->t_flags == 0;
1829}
1830
1831static inline int thread_is_stopped(struct ptlrpc_thread *thread)
1832{
1833 return !!(thread->t_flags & SVC_STOPPED);
1834}
1835
1836static inline int thread_is_stopping(struct ptlrpc_thread *thread)
1837{
1838 return !!(thread->t_flags & SVC_STOPPING);
1839}
1840
1841static inline int thread_is_starting(struct ptlrpc_thread *thread)
1842{
1843 return !!(thread->t_flags & SVC_STARTING);
1844}
1845
1846static inline int thread_is_running(struct ptlrpc_thread *thread)
1847{
1848 return !!(thread->t_flags & SVC_RUNNING);
1849}
1850
1851static inline int thread_is_event(struct ptlrpc_thread *thread)
1852{
1853 return !!(thread->t_flags & SVC_EVENT);
1854}
1855
1856static inline int thread_is_signal(struct ptlrpc_thread *thread)
1857{
1858 return !!(thread->t_flags & SVC_SIGNAL);
1859}
1860
1861static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
1862{
1863 thread->t_flags &= ~flags;
1864}
1865
1866static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
1867{
1868 thread->t_flags = flags;
1869}
1870
1871static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
1872{
1873 thread->t_flags |= flags;
1874}
1875
1876static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
1877 __u32 flags)
1878{
1879 if (thread->t_flags & flags) {
1880 thread->t_flags &= ~flags;
1881 return 1;
1882 }
1883 return 0;
1884}
1885
1886/**
1887 * Request buffer descriptor structure.
1888 * This is a structure that contains one posted request buffer for service.
1889 * Once data land into a buffer, event callback creates actual request and
1890 * notifies wakes one of the service threads to process new incoming request.
1891 * More than one request can fit into the buffer.
1892 */
1893struct ptlrpc_request_buffer_desc {
1894 /** Link item for rqbds on a service */
1895 struct list_head rqbd_list;
1896 /** History of requests for this buffer */
1897 struct list_head rqbd_reqs;
1898 /** Back pointer to service for which this buffer is registered */
1899 struct ptlrpc_service_part *rqbd_svcpt;
1900 /** LNet descriptor */
1901 lnet_handle_md_t rqbd_md_h;
1902 int rqbd_refcount;
1903 /** The buffer itself */
1904 char *rqbd_buffer;
1905 struct ptlrpc_cb_id rqbd_cbid;
1906 /**
1907 * This "embedded" request structure is only used for the
1908 * last request to fit into the buffer
1909 */
1910 struct ptlrpc_request rqbd_req;
1911};
1912
1913typedef int (*svc_handler_t)(struct ptlrpc_request *req);
1914
1915struct ptlrpc_service_ops {
1916 /**
1917 * if non-NULL called during thread creation (ptlrpc_start_thread())
1918 * to initialize service specific per-thread state.
1919 */
1920 int (*so_thr_init)(struct ptlrpc_thread *thr);
1921 /**
1922 * if non-NULL called during thread shutdown (ptlrpc_main()) to
1923 * destruct state created by ->srv_init().
1924 */
1925 void (*so_thr_done)(struct ptlrpc_thread *thr);
1926 /**
1927 * Handler function for incoming requests for this service
1928 */
1929 int (*so_req_handler)(struct ptlrpc_request *req);
1930 /**
1931 * function to determine priority of the request, it's called
1932 * on every new request
1933 */
1934 int (*so_hpreq_handler)(struct ptlrpc_request *);
1935 /**
1936 * service-specific print fn
1937 */
1938 void (*so_req_printer)(void *, struct ptlrpc_request *);
1939};
1940
1941#ifndef __cfs_cacheline_aligned
1942/* NB: put it here for reducing patche dependence */
1943# define __cfs_cacheline_aligned
1944#endif
1945
1946/**
1947 * How many high priority requests to serve before serving one normal
1948 * priority request
1949 */
1950#define PTLRPC_SVC_HP_RATIO 10
1951
1952/**
1953 * Definition of PortalRPC service.
1954 * The service is listening on a particular portal (like tcp port)
1955 * and perform actions for a specific server like IO service for OST
1956 * or general metadata service for MDS.
1957 */
1958struct ptlrpc_service {
f6e42a40 1959 /** serialize sysfs operations */
d7e09d03
PT
1960 spinlock_t srv_lock;
1961 /** most often accessed fields */
1962 /** chain thru all services */
1963 struct list_head srv_list;
1964 /** service operations table */
1965 struct ptlrpc_service_ops srv_ops;
1966 /** only statically allocated strings here; we don't clean them */
1967 char *srv_name;
1968 /** only statically allocated strings here; we don't clean them */
1969 char *srv_thread_name;
1970 /** service thread list */
1971 struct list_head srv_threads;
1972 /** threads # should be created for each partition on initializing */
1973 int srv_nthrs_cpt_init;
1974 /** limit of threads number for each partition */
1975 int srv_nthrs_cpt_limit;
700815d4
DE
1976 /** Root of debugfs dir tree for this service */
1977 struct dentry *srv_debugfs_entry;
d7e09d03
PT
1978 /** Pointer to statistic data for this service */
1979 struct lprocfs_stats *srv_stats;
1980 /** # hp per lp reqs to handle */
1981 int srv_hpreq_ratio;
1982 /** biggest request to receive */
1983 int srv_max_req_size;
1984 /** biggest reply to send */
1985 int srv_max_reply_size;
1986 /** size of individual buffers */
1987 int srv_buf_size;
1988 /** # buffers to allocate in 1 group */
1989 int srv_nbuf_per_group;
1990 /** Local portal on which to receive requests */
1991 __u32 srv_req_portal;
1992 /** Portal on the client to send replies to */
1993 __u32 srv_rep_portal;
1994 /**
1995 * Tags for lu_context associated with this thread, see struct
1996 * lu_context.
1997 */
1998 __u32 srv_ctx_tags;
1999 /** soft watchdog timeout multiplier */
2000 int srv_watchdog_factor;
2001 /** under unregister_service */
2002 unsigned srv_is_stopping:1;
2003
2004 /** max # request buffers in history per partition */
2005 int srv_hist_nrqbds_cpt_max;
2006 /** number of CPTs this service bound on */
2007 int srv_ncpts;
2008 /** CPTs array this service bound on */
2009 __u32 *srv_cpts;
2010 /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
2011 int srv_cpt_bits;
2012 /** CPT table this service is running over */
2013 struct cfs_cpt_table *srv_cptable;
328676f8
OD
2014
2015 /* sysfs object */
2016 struct kobject srv_kobj;
2017 struct completion srv_kobj_unregister;
d7e09d03
PT
2018 /**
2019 * partition data for ptlrpc service
2020 */
2021 struct ptlrpc_service_part *srv_parts[0];
2022};
2023
2024/**
2025 * Definition of PortalRPC service partition data.
2026 * Although a service only has one instance of it right now, but we
2027 * will have multiple instances very soon (instance per CPT).
2028 *
2029 * it has four locks:
2030 * \a scp_lock
2031 * serialize operations on rqbd and requests waiting for preprocess
2032 * \a scp_req_lock
2033 * serialize operations active requests sent to this portal
2034 * \a scp_at_lock
2035 * serialize adaptive timeout stuff
2036 * \a scp_rep_lock
2037 * serialize operations on RS list (reply states)
2038 *
2039 * We don't have any use-case to take two or more locks at the same time
2040 * for now, so there is no lock order issue.
2041 */
2042struct ptlrpc_service_part {
2043 /** back reference to owner */
2044 struct ptlrpc_service *scp_service __cfs_cacheline_aligned;
2045 /* CPT id, reserved */
2046 int scp_cpt;
2047 /** always increasing number */
2048 int scp_thr_nextid;
2049 /** # of starting threads */
2050 int scp_nthrs_starting;
2051 /** # of stopping threads, reserved for shrinking threads */
2052 int scp_nthrs_stopping;
2053 /** # running threads */
2054 int scp_nthrs_running;
2055 /** service threads list */
2056 struct list_head scp_threads;
2057
2058 /**
2059 * serialize the following fields, used for protecting
2060 * rqbd list and incoming requests waiting for preprocess,
2061 * threads starting & stopping are also protected by this lock.
2062 */
b2952d62 2063 spinlock_t scp_lock __cfs_cacheline_aligned;
d7e09d03
PT
2064 /** total # req buffer descs allocated */
2065 int scp_nrqbds_total;
2066 /** # posted request buffers for receiving */
2067 int scp_nrqbds_posted;
2068 /** in progress of allocating rqbd */
2069 int scp_rqbd_allocating;
2070 /** # incoming reqs */
2071 int scp_nreqs_incoming;
2072 /** request buffers to be reposted */
2073 struct list_head scp_rqbd_idle;
2074 /** req buffers receiving */
2075 struct list_head scp_rqbd_posted;
2076 /** incoming reqs */
2077 struct list_head scp_req_incoming;
2078 /** timeout before re-posting reqs, in tick */
b2d201bd 2079 long scp_rqbd_timeout;
d7e09d03
PT
2080 /**
2081 * all threads sleep on this. This wait-queue is signalled when new
2082 * incoming request arrives and when difficult reply has to be handled.
2083 */
2084 wait_queue_head_t scp_waitq;
2085
2086 /** request history */
2087 struct list_head scp_hist_reqs;
2088 /** request buffer history */
2089 struct list_head scp_hist_rqbds;
2090 /** # request buffers in history */
2091 int scp_hist_nrqbds;
2092 /** sequence number for request */
2093 __u64 scp_hist_seq;
2094 /** highest seq culled from history */
2095 __u64 scp_hist_seq_culled;
2096
2097 /**
2098 * serialize the following fields, used for processing requests
2099 * sent to this portal
2100 */
2101 spinlock_t scp_req_lock __cfs_cacheline_aligned;
2102 /** # reqs in either of the NRS heads below */
2103 /** # reqs being served */
2104 int scp_nreqs_active;
2105 /** # HPreqs being served */
2106 int scp_nhreqs_active;
2107 /** # hp requests handled */
2108 int scp_hreq_count;
2109
2110 /** NRS head for regular requests */
2111 struct ptlrpc_nrs scp_nrs_reg;
2112 /** NRS head for HP requests; this is only valid for services that can
c56e256d
OD
2113 * handle HP requests
2114 */
d7e09d03
PT
2115 struct ptlrpc_nrs *scp_nrs_hp;
2116
2117 /** AT stuff */
2118 /** @{ */
2119 /**
2120 * serialize the following fields, used for changes on
2121 * adaptive timeout
2122 */
2123 spinlock_t scp_at_lock __cfs_cacheline_aligned;
2124 /** estimated rpc service time */
2125 struct adaptive_timeout scp_at_estimate;
2126 /** reqs waiting for replies */
2127 struct ptlrpc_at_array scp_at_array;
2128 /** early reply timer */
54319351 2129 struct timer_list scp_at_timer;
d7e09d03 2130 /** debug */
a649ad1d 2131 unsigned long scp_at_checktime;
d7e09d03
PT
2132 /** check early replies */
2133 unsigned scp_at_check;
2134 /** @} */
2135
2136 /**
2137 * serialize the following fields, used for processing
2138 * replies for this portal
2139 */
2140 spinlock_t scp_rep_lock __cfs_cacheline_aligned;
2141 /** all the active replies */
2142 struct list_head scp_rep_active;
2143 /** List of free reply_states */
2144 struct list_head scp_rep_idle;
2145 /** waitq to run, when adding stuff to srv_free_rs_list */
2146 wait_queue_head_t scp_rep_waitq;
2147 /** # 'difficult' replies */
2148 atomic_t scp_nreps_difficult;
2149};
2150
2151#define ptlrpc_service_for_each_part(part, i, svc) \
2152 for (i = 0; \
2153 i < (svc)->srv_ncpts && \
d2a13989
OD
2154 (svc)->srv_parts && \
2155 ((part) = (svc)->srv_parts[i]); i++)
d7e09d03
PT
2156
2157/**
2158 * Declaration of ptlrpcd control structure
2159 */
2160struct ptlrpcd_ctl {
2161 /**
2162 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
2163 */
2164 unsigned long pc_flags;
2165 /**
2166 * Thread lock protecting structure fields.
2167 */
2168 spinlock_t pc_lock;
2169 /**
2170 * Start completion.
2171 */
2172 struct completion pc_starting;
2173 /**
2174 * Stop completion.
2175 */
2176 struct completion pc_finishing;
2177 /**
2178 * Thread requests set.
2179 */
2180 struct ptlrpc_request_set *pc_set;
2181 /**
f72f130d 2182 * Thread name used in kthread_run()
d7e09d03
PT
2183 */
2184 char pc_name[16];
2185 /**
2186 * Environment for request interpreters to run in.
2187 */
2188 struct lu_env pc_env;
2189 /**
c5c4c6fa 2190 * CPT the thread is bound on.
d7e09d03 2191 */
c5c4c6fa 2192 int pc_cpt;
d7e09d03 2193 /**
c5c4c6fa 2194 * Index of ptlrpcd thread in the array.
d7e09d03 2195 */
c5c4c6fa 2196 int pc_index;
d7e09d03
PT
2197 /**
2198 * Pointer to the array of partners' ptlrpcd_ctl structure.
2199 */
2200 struct ptlrpcd_ctl **pc_partners;
c5c4c6fa
OW
2201 /**
2202 * Number of the ptlrpcd's partners.
2203 */
2204 int pc_npartners;
d7e09d03
PT
2205 /**
2206 * Record the partner index to be processed next.
2207 */
2208 int pc_cursor;
c5c4c6fa
OW
2209 /**
2210 * Error code if the thread failed to fully start.
2211 */
2212 int pc_error;
d7e09d03
PT
2213};
2214
2215/* Bits for pc_flags */
2216enum ptlrpcd_ctl_flags {
2217 /**
2218 * Ptlrpc thread start flag.
2219 */
2220 LIOD_START = 1 << 0,
2221 /**
2222 * Ptlrpc thread stop flag.
2223 */
2224 LIOD_STOP = 1 << 1,
2225 /**
2226 * Ptlrpc thread force flag (only stop force so far).
2227 * This will cause aborting any inflight rpcs handled
2228 * by thread if LIOD_STOP is specified.
2229 */
2230 LIOD_FORCE = 1 << 2,
2231 /**
2232 * This is a recovery ptlrpc thread.
2233 */
2234 LIOD_RECOVERY = 1 << 3,
d7e09d03
PT
2235};
2236
2237/**
2238 * \addtogroup nrs
2239 * @{
2240 *
2241 * Service compatibility function; the policy is compatible with all services.
2242 *
2243 * \param[in] svc The service the policy is attempting to register with.
2244 * \param[in] desc The policy descriptor
2245 *
2246 * \retval true The policy is compatible with the service
2247 *
2248 * \see ptlrpc_nrs_pol_desc::pd_compat()
2249 */
2250static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
2251 const struct ptlrpc_nrs_pol_desc *desc)
2252{
2253 return true;
2254}
2255
2256/**
2257 * Service compatibility function; the policy is compatible with only a specific
2258 * service which is identified by its human-readable name at
2259 * ptlrpc_service::srv_name.
2260 *
2261 * \param[in] svc The service the policy is attempting to register with.
2262 * \param[in] desc The policy descriptor
2263 *
2264 * \retval false The policy is not compatible with the service
2265 * \retval true The policy is compatible with the service
2266 *
2267 * \see ptlrpc_nrs_pol_desc::pd_compat()
2268 */
2269static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
2270 const struct ptlrpc_nrs_pol_desc *desc)
2271{
d7e09d03
PT
2272 return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
2273}
2274
2275/** @} nrs */
2276
2277/* ptlrpc/events.c */
2278extern lnet_handle_eq_t ptlrpc_eq_h;
8150a97f
JP
2279int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
2280 lnet_process_id_t *peer, lnet_nid_t *self);
d7e09d03
PT
2281/**
2282 * These callbacks are invoked by LNet when something happened to
2283 * underlying buffer
2284 * @{
2285 */
8150a97f
JP
2286void request_out_callback(lnet_event_t *ev);
2287void reply_in_callback(lnet_event_t *ev);
2288void client_bulk_callback(lnet_event_t *ev);
2289void request_in_callback(lnet_event_t *ev);
2290void reply_out_callback(lnet_event_t *ev);
d7e09d03
PT
2291/** @} */
2292
2293/* ptlrpc/connection.c */
2294struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer,
2295 lnet_nid_t self,
2296 struct obd_uuid *uuid);
2297int ptlrpc_connection_put(struct ptlrpc_connection *c);
2298struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
2299int ptlrpc_connection_init(void);
2300void ptlrpc_connection_fini(void);
d7e09d03
PT
2301
2302/* ptlrpc/niobuf.c */
2303/**
2304 * Actual interfacing with LNet to put/get/register/unregister stuff
2305 * @{
2306 */
2307
d7e09d03
PT
2308int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
2309
2310static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
2311{
2312 struct ptlrpc_bulk_desc *desc;
2313 int rc;
2314
d7e09d03
PT
2315 desc = req->rq_bulk;
2316
2317 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) &&
219e6de6 2318 req->rq_bulk_deadline > ktime_get_real_seconds())
d7e09d03
PT
2319 return 1;
2320
2321 if (!desc)
2322 return 0;
2323
2324 spin_lock(&desc->bd_lock);
2325 rc = desc->bd_md_count;
2326 spin_unlock(&desc->bd_lock);
2327 return rc;
2328}
2329
2330#define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
2331#define PTLRPC_REPLY_EARLY 0x02
2332int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
2333int ptlrpc_reply(struct ptlrpc_request *req);
2334int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
2335int ptlrpc_error(struct ptlrpc_request *req);
2336void ptlrpc_resend_req(struct ptlrpc_request *request);
2337int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
2338int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
2339int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
2340/** @} */
2341
2342/* ptlrpc/client.c */
2343/**
2344 * Client-side portals API. Everything to send requests, receive replies,
2345 * request queues, request management, etc.
2346 * @{
2347 */
63d42578
HZ
2348void ptlrpc_request_committed(struct ptlrpc_request *req, int force);
2349
d7e09d03
PT
2350void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
2351 struct ptlrpc_client *);
d7e09d03
PT
2352struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
2353
2354int ptlrpc_queue_wait(struct ptlrpc_request *req);
2355int ptlrpc_replay_req(struct ptlrpc_request *req);
2356int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async);
d7e09d03 2357void ptlrpc_abort_inflight(struct obd_import *imp);
d7e09d03
PT
2358void ptlrpc_abort_set(struct ptlrpc_request_set *set);
2359
2360struct ptlrpc_request_set *ptlrpc_prep_set(void);
2361struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
2362 void *arg);
d7e09d03
PT
2363int ptlrpc_set_next_timeout(struct ptlrpc_request_set *);
2364int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
2365int ptlrpc_set_wait(struct ptlrpc_request_set *);
2366int ptlrpc_expired_set(void *data);
2367void ptlrpc_interrupted_set(void *data);
2368void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
2369void ptlrpc_set_destroy(struct ptlrpc_request_set *);
2370void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
2371void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
2372 struct ptlrpc_request *req);
2373
2374void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
aefd9d71 2375int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
d7e09d03
PT
2376
2377struct ptlrpc_request_pool *
2378ptlrpc_init_rq_pool(int, int,
aefd9d71 2379 int (*populate_pool)(struct ptlrpc_request_pool *, int));
d7e09d03
PT
2380
2381void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
2382struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
2383 const struct req_format *format);
2384struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
10457d4b
OD
2385 struct ptlrpc_request_pool *,
2386 const struct req_format *);
d7e09d03
PT
2387void ptlrpc_request_free(struct ptlrpc_request *request);
2388int ptlrpc_request_pack(struct ptlrpc_request *request,
2389 __u32 version, int opcode);
10457d4b
OD
2390struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *,
2391 const struct req_format *,
2392 __u32, int);
d7e09d03
PT
2393int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
2394 __u32 version, int opcode, char **bufs,
2395 struct ptlrpc_cli_ctx *ctx);
d7e09d03 2396void ptlrpc_req_finished(struct ptlrpc_request *request);
d7e09d03
PT
2397struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
2398struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
2399 unsigned npages, unsigned max_brw,
2400 unsigned type, unsigned portal);
2401void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin);
2402static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk)
2403{
2404 __ptlrpc_free_bulk(bulk, 1);
2405}
c9f6bb96 2406
d7e09d03
PT
2407static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk)
2408{
2409 __ptlrpc_free_bulk(bulk, 0);
2410}
c9f6bb96 2411
d7e09d03
PT
2412void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
2413 struct page *page, int pageoffset, int len, int);
2414static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
2415 struct page *page, int pageoffset,
2416 int len)
2417{
2418 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
2419}
2420
2421static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
2422 struct page *page, int pageoffset,
2423 int len)
2424{
2425 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
2426}
2427
2428void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2429 struct obd_import *imp);
2430__u64 ptlrpc_next_xid(void);
2431__u64 ptlrpc_sample_next_xid(void);
2432__u64 ptlrpc_req_xid(struct ptlrpc_request *request);
2433
2434/* Set of routines to run a function in ptlrpcd context */
2435void *ptlrpcd_alloc_work(struct obd_import *imp,
2436 int (*cb)(const struct lu_env *, void *), void *data);
2437void ptlrpcd_destroy_work(void *handler);
2438int ptlrpcd_queue_work(void *handler);
2439
2440/** @} */
2441struct ptlrpc_service_buf_conf {
2442 /* nbufs is buffers # to allocate when growing the pool */
2443 unsigned int bc_nbufs;
2444 /* buffer size to post */
2445 unsigned int bc_buf_size;
2446 /* portal to listed for requests on */
2447 unsigned int bc_req_portal;
2448 /* portal of where to send replies to */
2449 unsigned int bc_rep_portal;
2450 /* maximum request size to be accepted for this service */
2451 unsigned int bc_req_max_size;
2452 /* maximum reply size this service can ever send */
2453 unsigned int bc_rep_max_size;
2454};
2455
2456struct ptlrpc_service_thr_conf {
2457 /* threadname should be 8 characters or less - 6 will be added on */
2458 char *tc_thr_name;
2459 /* threads increasing factor for each CPU */
2460 unsigned int tc_thr_factor;
2461 /* service threads # to start on each partition while initializing */
2462 unsigned int tc_nthrs_init;
2463 /*
2464 * low water of threads # upper-limit on each partition while running,
2465 * service availability may be impacted if threads number is lower
2466 * than this value. It can be ZERO if the service doesn't require
2467 * CPU affinity or there is only one partition.
2468 */
2469 unsigned int tc_nthrs_base;
2470 /* "soft" limit for total threads number */
2471 unsigned int tc_nthrs_max;
2472 /* user specified threads number, it will be validated due to
c56e256d
OD
2473 * other members of this structure.
2474 */
d7e09d03
PT
2475 unsigned int tc_nthrs_user;
2476 /* set NUMA node affinity for service threads */
2477 unsigned int tc_cpu_affinity;
2478 /* Tags for lu_context associated with service thread */
2479 __u32 tc_ctx_tags;
2480};
2481
2482struct ptlrpc_service_cpt_conf {
2483 struct cfs_cpt_table *cc_cptable;
2484 /* string pattern to describe CPTs for a service */
2485 char *cc_pattern;
2486};
2487
2488struct ptlrpc_service_conf {
2489 /* service name */
2490 char *psc_name;
2491 /* soft watchdog timeout multiplifier to print stuck service traces */
2492 unsigned int psc_watchdog_factor;
2493 /* buffer information */
2494 struct ptlrpc_service_buf_conf psc_buf;
2495 /* thread information */
2496 struct ptlrpc_service_thr_conf psc_thr;
2497 /* CPU partition information */
2498 struct ptlrpc_service_cpt_conf psc_cpt;
2499 /* function table */
2500 struct ptlrpc_service_ops psc_ops;
2501};
2502
2503/* ptlrpc/service.c */
2504/**
2505 * Server-side services API. Register/unregister service, request state
2506 * management, service thread management
2507 *
2508 * @{
2509 */
d7e09d03
PT
2510void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
2511void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
10457d4b
OD
2512struct ptlrpc_service *ptlrpc_register_service(struct ptlrpc_service_conf *conf,
2513 struct kset *parent,
2514 struct dentry *debugfs_entry);
d7e09d03
PT
2515
2516int ptlrpc_start_threads(struct ptlrpc_service *svc);
2517int ptlrpc_unregister_service(struct ptlrpc_service *service);
d7e09d03
PT
2518
2519int ptlrpc_hr_init(void);
2520void ptlrpc_hr_fini(void);
2521
2522/** @} */
2523
2524/* ptlrpc/import.c */
2525/**
2526 * Import API
2527 * @{
2528 */
2529int ptlrpc_connect_import(struct obd_import *imp);
2530int ptlrpc_init_import(struct obd_import *imp);
2531int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
2532int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
d7e09d03
PT
2533
2534/* ptlrpc/pack_generic.c */
2535int ptlrpc_reconnect_import(struct obd_import *imp);
2536/** @} */
2537
2538/**
2539 * ptlrpc msg buffer and swab interface
2540 *
2541 * @{
2542 */
2543int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
2544 int index);
2545void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
10457d4b 2546 int index);
d7e09d03
PT
2547int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
2548int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
2549
d7e09d03
PT
2550void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
2551 char **bufs);
2552int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
2553 __u32 *lens, char **bufs);
2554int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
2555 char **bufs);
2556int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
2557 __u32 *lens, char **bufs, int flags);
2558#define LPRFL_EARLY_REPLY 1
2559int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
2560 char **bufs, int flags);
2561int lustre_shrink_msg(struct lustre_msg *msg, int segment,
2562 unsigned int newlen, int move_data);
2563void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
2564int __lustre_unpack_msg(struct lustre_msg *m, int len);
2565int lustre_msg_hdr_size(__u32 magic, int count);
2566int lustre_msg_size(__u32 magic, int count, __u32 *lengths);
2567int lustre_msg_size_v2(int count, __u32 *lengths);
2568int lustre_packed_msg_size(struct lustre_msg *msg);
2569int lustre_msg_early_size(void);
2570void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size);
2571void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen);
2572int lustre_msg_buflen(struct lustre_msg *m, int n);
d7e09d03
PT
2573int lustre_msg_bufcount(struct lustre_msg *m);
2574char *lustre_msg_string(struct lustre_msg *m, int n, int max_len);
2575__u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
2576void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
2577__u32 lustre_msg_get_flags(struct lustre_msg *msg);
2578void lustre_msg_add_flags(struct lustre_msg *msg, int flags);
2579void lustre_msg_set_flags(struct lustre_msg *msg, int flags);
2580void lustre_msg_clear_flags(struct lustre_msg *msg, int flags);
2581__u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
2582void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags);
d7e09d03
PT
2583struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
2584__u32 lustre_msg_get_type(struct lustre_msg *msg);
d7e09d03
PT
2585void lustre_msg_add_version(struct lustre_msg *msg, int version);
2586__u32 lustre_msg_get_opc(struct lustre_msg *msg);
d7e09d03
PT
2587__u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
2588__u64 *lustre_msg_get_versions(struct lustre_msg *msg);
2589__u64 lustre_msg_get_transno(struct lustre_msg *msg);
2590__u64 lustre_msg_get_slv(struct lustre_msg *msg);
2591__u32 lustre_msg_get_limit(struct lustre_msg *msg);
2592void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
2593void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
2594int lustre_msg_get_status(struct lustre_msg *msg);
2595__u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
d7e09d03
PT
2596__u32 lustre_msg_get_magic(struct lustre_msg *msg);
2597__u32 lustre_msg_get_timeout(struct lustre_msg *msg);
2598__u32 lustre_msg_get_service_time(struct lustre_msg *msg);
d7e09d03 2599__u32 lustre_msg_get_cksum(struct lustre_msg *msg);
d7e09d03 2600__u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
1d8cb70c
GD
2601void lustre_msg_set_handle(struct lustre_msg *msg,
2602 struct lustre_handle *handle);
d7e09d03
PT
2603void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
2604void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
d7e09d03
PT
2605void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
2606void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
2607void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
2608void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
d7e09d03
PT
2609void ptlrpc_request_set_replen(struct ptlrpc_request *req);
2610void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
2611void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
2612void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
2613void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
2614
2615static inline void
2616lustre_shrink_reply(struct ptlrpc_request *req, int segment,
2617 unsigned int newlen, int move_data)
2618{
2619 LASSERT(req->rq_reply_state);
2620 LASSERT(req->rq_repmsg);
2621 req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
2622 newlen, move_data);
2623}
2d58de78
LW
2624
2625#ifdef CONFIG_LUSTRE_TRANSLATE_ERRNOS
2626
2627static inline int ptlrpc_status_hton(int h)
2628{
2629 /*
2630 * Positive errnos must be network errnos, such as LUSTRE_EDEADLK,
2631 * ELDLM_LOCK_ABORTED, etc.
2632 */
2633 if (h < 0)
2634 return -lustre_errno_hton(-h);
2635 else
2636 return h;
2637}
2638
2639static inline int ptlrpc_status_ntoh(int n)
2640{
2641 /*
2642 * See the comment in ptlrpc_status_hton().
2643 */
2644 if (n < 0)
2645 return -lustre_errno_ntoh(-n);
2646 else
2647 return n;
2648}
2649
2650#else
2651
2652#define ptlrpc_status_hton(h) (h)
2653#define ptlrpc_status_ntoh(n) (n)
2654
2655#endif
d7e09d03
PT
2656/** @} */
2657
2658/** Change request phase of \a req to \a new_phase */
2659static inline void
2660ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
2661{
2662 if (req->rq_phase == new_phase)
2663 return;
2664
2665 if (new_phase == RQ_PHASE_UNREGISTERING) {
2666 req->rq_next_phase = req->rq_phase;
2667 if (req->rq_import)
2668 atomic_inc(&req->rq_import->imp_unregistering);
2669 }
2670
2671 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
2672 if (req->rq_import)
2673 atomic_dec(&req->rq_import->imp_unregistering);
2674 }
2675
2676 DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
2677 ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
2678
2679 req->rq_phase = new_phase;
2680}
2681
2682/**
2683 * Returns true if request \a req got early reply and hard deadline is not met
2684 */
2685static inline int
2686ptlrpc_client_early(struct ptlrpc_request *req)
2687{
2688 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
219e6de6 2689 req->rq_reply_deadline > ktime_get_real_seconds())
d7e09d03
PT
2690 return 0;
2691 return req->rq_early;
2692}
2693
2694/**
2695 * Returns true if we got real reply from server for this request
2696 */
2697static inline int
2698ptlrpc_client_replied(struct ptlrpc_request *req)
2699{
2700 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
219e6de6 2701 req->rq_reply_deadline > ktime_get_real_seconds())
d7e09d03
PT
2702 return 0;
2703 return req->rq_replied;
2704}
2705
2706/** Returns true if request \a req is in process of receiving server reply */
2707static inline int
2708ptlrpc_client_recv(struct ptlrpc_request *req)
2709{
2710 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
219e6de6 2711 req->rq_reply_deadline > ktime_get_real_seconds())
d7e09d03
PT
2712 return 1;
2713 return req->rq_receiving_reply;
2714}
2715
2716static inline int
2717ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
2718{
2719 int rc;
2720
2721 spin_lock(&req->rq_lock);
2722 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
219e6de6 2723 req->rq_reply_deadline > ktime_get_real_seconds()) {
d7e09d03
PT
2724 spin_unlock(&req->rq_lock);
2725 return 1;
2726 }
cf378ff7
AL
2727 rc = req->rq_receiving_reply;
2728 rc = rc || req->rq_req_unlink || req->rq_reply_unlink;
d7e09d03
PT
2729 spin_unlock(&req->rq_lock);
2730 return rc;
2731}
2732
2733static inline void
2734ptlrpc_client_wake_req(struct ptlrpc_request *req)
2735{
d2a13989 2736 if (!req->rq_set)
d7e09d03
PT
2737 wake_up(&req->rq_reply_waitq);
2738 else
2739 wake_up(&req->rq_set->set_waitq);
2740}
2741
2742static inline void
2743ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
2744{
2745 LASSERT(atomic_read(&rs->rs_refcount) > 0);
2746 atomic_inc(&rs->rs_refcount);
2747}
2748
2749static inline void
2750ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
2751{
2752 LASSERT(atomic_read(&rs->rs_refcount) > 0);
2753 if (atomic_dec_and_test(&rs->rs_refcount))
2754 lustre_free_reply_state(rs);
2755}
2756
2757/* Should only be called once per req */
2758static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
2759{
d2a13989 2760 if (!req->rq_reply_state)
d7e09d03
PT
2761 return; /* shouldn't occur */
2762 ptlrpc_rs_decref(req->rq_reply_state);
2763 req->rq_reply_state = NULL;
2764 req->rq_repmsg = NULL;
2765}
2766
2767static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
2768{
2769 return lustre_msg_get_magic(req->rq_reqmsg);
2770}
2771
2772static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
2773{
2774 switch (req->rq_reqmsg->lm_magic) {
2775 case LUSTRE_MSG_MAGIC_V2:
2776 return req->rq_reqmsg->lm_repsize;
2777 default:
2778 LASSERTF(0, "incorrect message magic: %08x\n",
2779 req->rq_reqmsg->lm_magic);
2780 return -EFAULT;
2781 }
2782}
2783
2784static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
2785{
2786 if (req->rq_delay_limit != 0 &&
699503bc
GKH
2787 time_before(cfs_time_add(req->rq_queued_time,
2788 cfs_time_seconds(req->rq_delay_limit)),
2789 cfs_time_current())) {
d7e09d03
PT
2790 return 1;
2791 }
2792 return 0;
2793}
2794
2795static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
2796{
2797 if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
2798 spin_lock(&req->rq_lock);
2799 req->rq_no_resend = 1;
2800 spin_unlock(&req->rq_lock);
2801 }
2802 return req->rq_no_resend;
2803}
2804
2805static inline int
2806ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
2807{
2808 int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
2809
2810 return svcpt->scp_service->srv_watchdog_factor *
2811 max_t(int, at, obd_timeout);
2812}
2813
2814static inline struct ptlrpc_service *
2815ptlrpc_req2svc(struct ptlrpc_request *req)
2816{
d7e09d03
PT
2817 return req->rq_rqbd->rqbd_svcpt->scp_service;
2818}
2819
2820/* ldlm/ldlm_lib.c */
2821/**
2822 * Target client logic
2823 * @{
2824 */
2825int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
2826int client_obd_cleanup(struct obd_device *obddev);
2827int client_connect_import(const struct lu_env *env,
2828 struct obd_export **exp, struct obd_device *obd,
2829 struct obd_uuid *cluuid, struct obd_connect_data *,
2830 void *localdata);
2831int client_disconnect_export(struct obd_export *exp);
2832int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
2833 int priority);
2834int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
2835int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
2836 struct obd_uuid *uuid);
2837int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
2838void client_destroy_import(struct obd_import *imp);
2839/** @} */
2840
d7e09d03
PT
2841/* ptlrpc/pinger.c */
2842/**
2843 * Pinger API (client side only)
2844 * @{
2845 */
2846enum timeout_event {
2847 TIMEOUT_GRANT = 1
2848};
c9f6bb96 2849
d7e09d03
PT
2850struct timeout_item;
2851typedef int (*timeout_cb_t)(struct timeout_item *, void *);
2852int ptlrpc_pinger_add_import(struct obd_import *imp);
2853int ptlrpc_pinger_del_import(struct obd_import *imp);
2854int ptlrpc_add_timeout_client(int time, enum timeout_event event,
2855 timeout_cb_t cb, void *data,
2856 struct list_head *obd_list);
2857int ptlrpc_del_timeout_client(struct list_head *obd_list,
2858 enum timeout_event event);
aff9d8e8 2859struct ptlrpc_request *ptlrpc_prep_ping(struct obd_import *imp);
d7e09d03 2860int ptlrpc_obd_ping(struct obd_device *obd);
d7e09d03
PT
2861void ptlrpc_pinger_ir_up(void);
2862void ptlrpc_pinger_ir_down(void);
2863/** @} */
2864int ptlrpc_pinger_suppress_pings(void);
2865
d7e09d03
PT
2866/* ptlrpc/ptlrpcd.c */
2867void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
2868void ptlrpcd_free(struct ptlrpcd_ctl *pc);
2869void ptlrpcd_wake(struct ptlrpc_request *req);
c5c4c6fa 2870void ptlrpcd_add_req(struct ptlrpc_request *req);
d7e09d03
PT
2871int ptlrpcd_addref(void);
2872void ptlrpcd_decref(void);
2873
2874/* ptlrpc/lproc_ptlrpc.c */
2875/**
2876 * procfs output related functions
2877 * @{
2878 */
9c234f6c 2879const char *ll_opcode2str(__u32 opcode);
d7e09d03
PT
2880void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
2881void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
2882void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
d7e09d03
PT
2883/** @} */
2884
d7e09d03
PT
2885/* ptlrpc/llog_client.c */
2886extern struct llog_operations llog_client_ops;
d7e09d03
PT
2887/** @} net */
2888
2889#endif
2890/** @} PtlRPC */