]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/staging/lustre/lustre/ptlrpc/ptlrpcd.c
Merge tag 'jfs-3.12' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-eoan-kernel.git] / drivers / staging / lustre / lustre / ptlrpc / ptlrpcd.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ptlrpc/ptlrpcd.c
37 */
38
39/** \defgroup ptlrpcd PortalRPC daemon
40 *
41 * ptlrpcd is a special thread with its own set where other user might add
42 * requests when they don't want to wait for their completion.
43 * PtlRPCD will take care of sending such requests and then processing their
44 * replies and calling completion callbacks as necessary.
45 * The callbacks are called directly from ptlrpcd context.
46 * It is important to never significantly block (esp. on RPCs!) within such
47 * completion handler or a deadlock might occur where ptlrpcd enters some
48 * callback that attempts to send another RPC and wait for it to return,
49 * during which time ptlrpcd is completely blocked, so e.g. if import
50 * fails, recovery cannot progress because connection requests are also
51 * sent by ptlrpcd.
52 *
53 * @{
54 */
55
56#define DEBUG_SUBSYSTEM S_RPC
57
58# include <linux/libcfs/libcfs.h>
59
60#include <lustre_net.h>
61# include <lustre_lib.h>
62
63#include <lustre_ha.h>
64#include <obd_class.h> /* for obd_zombie */
65#include <obd_support.h> /* for OBD_FAIL_CHECK */
66#include <cl_object.h> /* cl_env_{get,put}() */
67#include <lprocfs_status.h>
68
69#include "ptlrpc_internal.h"
70
71struct ptlrpcd {
72 int pd_size;
73 int pd_index;
74 int pd_nthreads;
75 struct ptlrpcd_ctl pd_thread_rcv;
76 struct ptlrpcd_ctl pd_threads[0];
77};
78
79static int max_ptlrpcds;
80CFS_MODULE_PARM(max_ptlrpcds, "i", int, 0644,
81 "Max ptlrpcd thread count to be started.");
82
83static int ptlrpcd_bind_policy = PDB_POLICY_PAIR;
84CFS_MODULE_PARM(ptlrpcd_bind_policy, "i", int, 0644,
85 "Ptlrpcd threads binding mode.");
86static struct ptlrpcd *ptlrpcds;
87
88struct mutex ptlrpcd_mutex;
89static int ptlrpcd_users = 0;
90
91void ptlrpcd_wake(struct ptlrpc_request *req)
92{
93 struct ptlrpc_request_set *rq_set = req->rq_set;
94
95 LASSERT(rq_set != NULL);
96
97 wake_up(&rq_set->set_waitq);
98}
99EXPORT_SYMBOL(ptlrpcd_wake);
100
101static struct ptlrpcd_ctl *
102ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index)
103{
104 int idx = 0;
105
106 if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
107 return &ptlrpcds->pd_thread_rcv;
108
109 switch (policy) {
110 case PDL_POLICY_SAME:
111 idx = smp_processor_id() % ptlrpcds->pd_nthreads;
112 break;
113 case PDL_POLICY_LOCAL:
114 /* Before CPU partition patches available, process it the same
115 * as "PDL_POLICY_ROUND". */
116# ifdef CFS_CPU_MODE_NUMA
117# warning "fix this code to use new CPU partition APIs"
118# endif
119 /* Fall through to PDL_POLICY_ROUND until the CPU
120 * CPU partition patches are available. */
121 index = -1;
122 case PDL_POLICY_PREFERRED:
123 if (index >= 0 && index < num_online_cpus()) {
124 idx = index % ptlrpcds->pd_nthreads;
125 break;
126 }
127 /* Fall through to PDL_POLICY_ROUND for bad index. */
128 default:
129 /* Fall through to PDL_POLICY_ROUND for unknown policy. */
130 case PDL_POLICY_ROUND:
131 /* We do not care whether it is strict load balance. */
132 idx = ptlrpcds->pd_index + 1;
133 if (idx == smp_processor_id())
134 idx++;
135 idx %= ptlrpcds->pd_nthreads;
136 ptlrpcds->pd_index = idx;
137 break;
138 }
139
140 return &ptlrpcds->pd_threads[idx];
141}
142
143/**
144 * Move all request from an existing request set to the ptlrpcd queue.
145 * All requests from the set must be in phase RQ_PHASE_NEW.
146 */
147void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
148{
149 struct list_head *tmp, *pos;
150 struct ptlrpcd_ctl *pc;
151 struct ptlrpc_request_set *new;
152 int count, i;
153
154 pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1);
155 new = pc->pc_set;
156
157 list_for_each_safe(pos, tmp, &set->set_requests) {
158 struct ptlrpc_request *req =
159 list_entry(pos, struct ptlrpc_request,
160 rq_set_chain);
161
162 LASSERT(req->rq_phase == RQ_PHASE_NEW);
163 req->rq_set = new;
164 req->rq_queued_time = cfs_time_current();
165 }
166
167 spin_lock(&new->set_new_req_lock);
168 list_splice_init(&set->set_requests, &new->set_new_requests);
169 i = atomic_read(&set->set_remaining);
170 count = atomic_add_return(i, &new->set_new_count);
171 atomic_set(&set->set_remaining, 0);
172 spin_unlock(&new->set_new_req_lock);
173 if (count == i) {
174 wake_up(&new->set_waitq);
175
176 /* XXX: It maybe unnecessary to wakeup all the partners. But to
177 * guarantee the async RPC can be processed ASAP, we have
178 * no other better choice. It maybe fixed in future. */
179 for (i = 0; i < pc->pc_npartners; i++)
180 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
181 }
182}
183EXPORT_SYMBOL(ptlrpcd_add_rqset);
184
185/**
186 * Return transferred RPCs count.
187 */
188static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
189 struct ptlrpc_request_set *src)
190{
191 struct list_head *tmp, *pos;
192 struct ptlrpc_request *req;
193 int rc = 0;
194
195 spin_lock(&src->set_new_req_lock);
196 if (likely(!list_empty(&src->set_new_requests))) {
197 list_for_each_safe(pos, tmp, &src->set_new_requests) {
198 req = list_entry(pos, struct ptlrpc_request,
199 rq_set_chain);
200 req->rq_set = des;
201 }
202 list_splice_init(&src->set_new_requests,
203 &des->set_requests);
204 rc = atomic_read(&src->set_new_count);
205 atomic_add(rc, &des->set_remaining);
206 atomic_set(&src->set_new_count, 0);
207 }
208 spin_unlock(&src->set_new_req_lock);
209 return rc;
210}
211
212/**
213 * Requests that are added to the ptlrpcd queue are sent via
214 * ptlrpcd_check->ptlrpc_check_set().
215 */
216void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx)
217{
218 struct ptlrpcd_ctl *pc;
219
220 if (req->rq_reqmsg)
221 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
222
223 spin_lock(&req->rq_lock);
224 if (req->rq_invalid_rqset) {
225 struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
226 back_to_sleep, NULL);
227
228 req->rq_invalid_rqset = 0;
229 spin_unlock(&req->rq_lock);
230 l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
231 } else if (req->rq_set) {
232 /* If we have a vaid "rq_set", just reuse it to avoid double
233 * linked. */
234 LASSERT(req->rq_phase == RQ_PHASE_NEW);
235 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
236
237 /* ptlrpc_check_set will decrease the count */
238 atomic_inc(&req->rq_set->set_remaining);
239 spin_unlock(&req->rq_lock);
240 wake_up(&req->rq_set->set_waitq);
241 return;
242 } else {
243 spin_unlock(&req->rq_lock);
244 }
245
246 pc = ptlrpcd_select_pc(req, policy, idx);
247
248 DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
249 req, pc->pc_name, pc->pc_index);
250
251 ptlrpc_set_add_new_req(pc, req);
252}
253EXPORT_SYMBOL(ptlrpcd_add_req);
254
255static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
256{
257 atomic_inc(&set->set_refcount);
258}
259
260/**
261 * Check if there is more work to do on ptlrpcd set.
262 * Returns 1 if yes.
263 */
264static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
265{
266 struct list_head *tmp, *pos;
267 struct ptlrpc_request *req;
268 struct ptlrpc_request_set *set = pc->pc_set;
269 int rc = 0;
270 int rc2;
d7e09d03
PT
271
272 if (atomic_read(&set->set_new_count)) {
273 spin_lock(&set->set_new_req_lock);
274 if (likely(!list_empty(&set->set_new_requests))) {
275 list_splice_init(&set->set_new_requests,
276 &set->set_requests);
277 atomic_add(atomic_read(&set->set_new_count),
278 &set->set_remaining);
279 atomic_set(&set->set_new_count, 0);
280 /*
281 * Need to calculate its timeout.
282 */
283 rc = 1;
284 }
285 spin_unlock(&set->set_new_req_lock);
286 }
287
288 /* We should call lu_env_refill() before handling new requests to make
289 * sure that env key the requests depending on really exists.
290 */
291 rc2 = lu_env_refill(env);
292 if (rc2 != 0) {
293 /*
294 * XXX This is very awkward situation, because
295 * execution can neither continue (request
296 * interpreters assume that env is set up), nor repeat
297 * the loop (as this potentially results in a tight
298 * loop of -ENOMEM's).
299 *
300 * Fortunately, refill only ever does something when
301 * new modules are loaded, i.e., early during boot up.
302 */
303 CERROR("Failure to refill session: %d\n", rc2);
0a3bdb00 304 return rc;
d7e09d03
PT
305 }
306
307 if (atomic_read(&set->set_remaining))
308 rc |= ptlrpc_check_set(env, set);
309
310 if (!list_empty(&set->set_requests)) {
311 /*
312 * XXX: our set never completes, so we prune the completed
313 * reqs after each iteration. boy could this be smarter.
314 */
315 list_for_each_safe(pos, tmp, &set->set_requests) {
316 req = list_entry(pos, struct ptlrpc_request,
317 rq_set_chain);
318 if (req->rq_phase != RQ_PHASE_COMPLETE)
319 continue;
320
321 list_del_init(&req->rq_set_chain);
322 req->rq_set = NULL;
323 ptlrpc_req_finished(req);
324 }
325 }
326
327 if (rc == 0) {
328 /*
329 * If new requests have been added, make sure to wake up.
330 */
331 rc = atomic_read(&set->set_new_count);
332
333 /* If we have nothing to do, check whether we can take some
334 * work from our partner threads. */
335 if (rc == 0 && pc->pc_npartners > 0) {
336 struct ptlrpcd_ctl *partner;
337 struct ptlrpc_request_set *ps;
338 int first = pc->pc_cursor;
339
340 do {
341 partner = pc->pc_partners[pc->pc_cursor++];
342 if (pc->pc_cursor >= pc->pc_npartners)
343 pc->pc_cursor = 0;
344 if (partner == NULL)
345 continue;
346
347 spin_lock(&partner->pc_lock);
348 ps = partner->pc_set;
349 if (ps == NULL) {
350 spin_unlock(&partner->pc_lock);
351 continue;
352 }
353
354 ptlrpc_reqset_get(ps);
355 spin_unlock(&partner->pc_lock);
356
357 if (atomic_read(&ps->set_new_count)) {
358 rc = ptlrpcd_steal_rqset(set, ps);
359 if (rc > 0)
360 CDEBUG(D_RPCTRACE, "transfer %d"
361 " async RPCs [%d->%d]\n",
362 rc, partner->pc_index,
363 pc->pc_index);
364 }
365 ptlrpc_reqset_put(ps);
366 } while (rc == 0 && pc->pc_cursor != first);
367 }
368 }
369
0a3bdb00 370 return rc;
d7e09d03
PT
371}
372
373/**
374 * Main ptlrpcd thread.
375 * ptlrpc's code paths like to execute in process context, so we have this
376 * thread which spins on a set which contains the rpcs and sends them.
377 *
378 */
379static int ptlrpcd(void *arg)
380{
381 struct ptlrpcd_ctl *pc = arg;
382 struct ptlrpc_request_set *set = pc->pc_set;
383 struct lu_env env = { .le_ses = NULL };
384 int rc, exit = 0;
d7e09d03
PT
385
386 unshare_fs_struct();
387#if defined(CONFIG_SMP)
388 if (test_bit(LIOD_BIND, &pc->pc_flags)) {
389 int index = pc->pc_index;
390
391 if (index >= 0 && index < num_possible_cpus()) {
392 while (!cpu_online(index)) {
393 if (++index >= num_possible_cpus())
394 index = 0;
395 }
32654b67
PT
396 set_cpus_allowed_ptr(current,
397 cpumask_of_node(cpu_to_node(index)));
d7e09d03
PT
398 }
399 }
400#endif
401 /*
402 * XXX So far only "client" ptlrpcd uses an environment. In
403 * the future, ptlrpcd thread (or a thread-set) has to given
404 * an argument, describing its "scope".
405 */
406 rc = lu_context_init(&env.le_ctx,
407 LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF);
408 complete(&pc->pc_starting);
409
410 if (rc != 0)
0a3bdb00 411 return rc;
d7e09d03
PT
412
413 /*
414 * This mainloop strongly resembles ptlrpc_set_wait() except that our
415 * set never completes. ptlrpcd_check() calls ptlrpc_check_set() when
416 * there are requests in the set. New requests come in on the set's
417 * new_req_list and ptlrpcd_check() moves them into the set.
418 */
419 do {
420 struct l_wait_info lwi;
421 int timeout;
422
423 timeout = ptlrpc_set_next_timeout(set);
424 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
425 ptlrpc_expired_set, set);
426
427 lu_context_enter(&env.le_ctx);
428 l_wait_event(set->set_waitq,
429 ptlrpcd_check(&env, pc), &lwi);
430 lu_context_exit(&env.le_ctx);
431
432 /*
433 * Abort inflight rpcs for forced stop case.
434 */
435 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
436 if (test_bit(LIOD_FORCE, &pc->pc_flags))
437 ptlrpc_abort_set(set);
438 exit++;
439 }
440
441 /*
442 * Let's make one more loop to make sure that ptlrpcd_check()
443 * copied all raced new rpcs into the set so we can kill them.
444 */
445 } while (exit < 2);
446
447 /*
448 * Wait for inflight requests to drain.
449 */
450 if (!list_empty(&set->set_requests))
451 ptlrpc_set_wait(set);
452 lu_context_fini(&env.le_ctx);
453
454 complete(&pc->pc_finishing);
455
456 return 0;
457}
458
459/* XXX: We want multiple CPU cores to share the async RPC load. So we start many
460 * ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by
461 * data transfer cross-CPU cores. So we bind ptlrpcd thread to specified
462 * CPU core. But binding all ptlrpcd threads maybe cause response delay
463 * because of some CPU core(s) busy with other loads.
464 *
465 * For example: "ls -l", some async RPCs for statahead are assigned to
466 * ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy
467 * with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l"
468 * thread, statahead thread, and ptlrpcd thread can run in parallel), under
469 * such case, the statahead async RPCs can not be processed in time, it is
470 * unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may
471 * be better. But it breaks former data transfer policy.
472 *
473 * So we shouldn't be blind for avoiding the data transfer. We make some
474 * compromise: divide the ptlrpcd threds pool into two parts. One part is
475 * for bound mode, each ptlrpcd thread in this part is bound to some CPU
476 * core. The other part is for free mode, all the ptlrpcd threads in the
477 * part can be scheduled on any CPU core. We specify some partnership
478 * between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s),
479 * and the async RPC load within the partners are shared.
480 *
481 * It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd
482 * thread can be scheduled in time), and try to guarantee the async RPC
483 * processed ASAP (as long as the free mode ptlrpcd thread can be scheduled
484 * on any CPU core).
485 *
486 * As for how to specify the partnership between bound mode ptlrpcd
487 * thread(s) and free mode ptlrpcd thread(s), the simplest way is to use
488 * <free bound> pair. In future, we can specify some more complex
489 * partnership based on the patches for CPU partition. But before such
490 * patches are available, we prefer to use the simplest one.
491 */
492# ifdef CFS_CPU_MODE_NUMA
493# warning "fix ptlrpcd_bind() to use new CPU partition APIs"
494# endif
495static int ptlrpcd_bind(int index, int max)
496{
497 struct ptlrpcd_ctl *pc;
498 int rc = 0;
499#if defined(CONFIG_NUMA)
500 cpumask_t mask;
501#endif
d7e09d03
PT
502
503 LASSERT(index <= max - 1);
504 pc = &ptlrpcds->pd_threads[index];
505 switch (ptlrpcd_bind_policy) {
506 case PDB_POLICY_NONE:
507 pc->pc_npartners = -1;
508 break;
509 case PDB_POLICY_FULL:
510 pc->pc_npartners = 0;
511 set_bit(LIOD_BIND, &pc->pc_flags);
512 break;
513 case PDB_POLICY_PAIR:
514 LASSERT(max % 2 == 0);
515 pc->pc_npartners = 1;
516 break;
517 case PDB_POLICY_NEIGHBOR:
518#if defined(CONFIG_NUMA)
519 {
520 int i;
521 mask = *cpumask_of_node(cpu_to_node(index));
522 for (i = max; i < num_online_cpus(); i++)
523 cpu_clear(i, mask);
524 pc->pc_npartners = cpus_weight(mask) - 1;
525 set_bit(LIOD_BIND, &pc->pc_flags);
526 }
527#else
528 LASSERT(max >= 3);
529 pc->pc_npartners = 2;
530#endif
531 break;
532 default:
533 CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy);
534 rc = -EINVAL;
535 }
536
537 if (rc == 0 && pc->pc_npartners > 0) {
538 OBD_ALLOC(pc->pc_partners,
539 sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
540 if (pc->pc_partners == NULL) {
541 pc->pc_npartners = 0;
542 rc = -ENOMEM;
543 } else {
544 switch (ptlrpcd_bind_policy) {
545 case PDB_POLICY_PAIR:
546 if (index & 0x1) {
547 set_bit(LIOD_BIND, &pc->pc_flags);
548 pc->pc_partners[0] = &ptlrpcds->
549 pd_threads[index - 1];
550 ptlrpcds->pd_threads[index - 1].
551 pc_partners[0] = pc;
552 }
553 break;
554 case PDB_POLICY_NEIGHBOR:
555#if defined(CONFIG_NUMA)
556 {
557 struct ptlrpcd_ctl *ppc;
558 int i, pidx;
559 /* partners are cores in the same NUMA node.
560 * setup partnership only with ptlrpcd threads
561 * that are already initialized
562 */
563 for (pidx = 0, i = 0; i < index; i++) {
564 if (cpu_isset(i, mask)) {
565 ppc = &ptlrpcds->pd_threads[i];
566 pc->pc_partners[pidx++] = ppc;
567 ppc->pc_partners[ppc->
568 pc_npartners++] = pc;
569 }
570 }
571 /* adjust number of partners to the number
572 * of partnership really setup */
573 pc->pc_npartners = pidx;
574 }
575#else
576 if (index & 0x1)
577 set_bit(LIOD_BIND, &pc->pc_flags);
578 if (index > 0) {
579 pc->pc_partners[0] = &ptlrpcds->
580 pd_threads[index - 1];
581 ptlrpcds->pd_threads[index - 1].
582 pc_partners[1] = pc;
583 if (index == max - 1) {
584 pc->pc_partners[1] =
585 &ptlrpcds->pd_threads[0];
586 ptlrpcds->pd_threads[0].
587 pc_partners[0] = pc;
588 }
589 }
590#endif
591 break;
592 }
593 }
594 }
595
0a3bdb00 596 return rc;
d7e09d03
PT
597}
598
599
600int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc)
601{
602 int rc;
603 int env = 0;
d7e09d03
PT
604
605 /*
606 * Do not allow start second thread for one pc.
607 */
608 if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
609 CWARN("Starting second thread (%s) for same pc %p\n",
610 name, pc);
0a3bdb00 611 return 0;
d7e09d03
PT
612 }
613
614 pc->pc_index = index;
615 init_completion(&pc->pc_starting);
616 init_completion(&pc->pc_finishing);
617 spin_lock_init(&pc->pc_lock);
9edf0f67 618 strlcpy(pc->pc_name, name, sizeof(pc->pc_name));
d7e09d03
PT
619 pc->pc_set = ptlrpc_prep_set();
620 if (pc->pc_set == NULL)
621 GOTO(out, rc = -ENOMEM);
622 /*
623 * So far only "client" ptlrpcd uses an environment. In the future,
624 * ptlrpcd thread (or a thread-set) has to be given an argument,
625 * describing its "scope".
626 */
627 rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
628 if (rc != 0)
629 GOTO(out, rc);
630
631 env = 1;
632 {
68b636b6
GKH
633 struct task_struct *task;
634
d7e09d03
PT
635 if (index >= 0) {
636 rc = ptlrpcd_bind(index, max);
637 if (rc < 0)
638 GOTO(out, rc);
639 }
640
9edf0f67 641 task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
d7e09d03
PT
642 if (IS_ERR(task))
643 GOTO(out, rc = PTR_ERR(task));
644
645 rc = 0;
646 wait_for_completion(&pc->pc_starting);
647 }
648out:
649 if (rc) {
650 if (pc->pc_set != NULL) {
651 struct ptlrpc_request_set *set = pc->pc_set;
652
653 spin_lock(&pc->pc_lock);
654 pc->pc_set = NULL;
655 spin_unlock(&pc->pc_lock);
656 ptlrpc_set_destroy(set);
657 }
658 if (env != 0)
659 lu_context_fini(&pc->pc_env.le_ctx);
660 clear_bit(LIOD_BIND, &pc->pc_flags);
661 clear_bit(LIOD_START, &pc->pc_flags);
662 }
0a3bdb00 663 return rc;
d7e09d03
PT
664}
665
666void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
667{
d7e09d03
PT
668 if (!test_bit(LIOD_START, &pc->pc_flags)) {
669 CWARN("Thread for pc %p was not started\n", pc);
23f14e79 670 return;
d7e09d03
PT
671 }
672
673 set_bit(LIOD_STOP, &pc->pc_flags);
674 if (force)
675 set_bit(LIOD_FORCE, &pc->pc_flags);
676 wake_up(&pc->pc_set->set_waitq);
d7e09d03
PT
677}
678
679void ptlrpcd_free(struct ptlrpcd_ctl *pc)
680{
681 struct ptlrpc_request_set *set = pc->pc_set;
d7e09d03
PT
682
683 if (!test_bit(LIOD_START, &pc->pc_flags)) {
684 CWARN("Thread for pc %p was not started\n", pc);
685 goto out;
686 }
687
688 wait_for_completion(&pc->pc_finishing);
689 lu_context_fini(&pc->pc_env.le_ctx);
690
691 spin_lock(&pc->pc_lock);
692 pc->pc_set = NULL;
693 spin_unlock(&pc->pc_lock);
694 ptlrpc_set_destroy(set);
695
696 clear_bit(LIOD_START, &pc->pc_flags);
697 clear_bit(LIOD_STOP, &pc->pc_flags);
698 clear_bit(LIOD_FORCE, &pc->pc_flags);
699 clear_bit(LIOD_BIND, &pc->pc_flags);
700
701out:
702 if (pc->pc_npartners > 0) {
703 LASSERT(pc->pc_partners != NULL);
704
705 OBD_FREE(pc->pc_partners,
706 sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
707 pc->pc_partners = NULL;
708 }
709 pc->pc_npartners = 0;
d7e09d03
PT
710}
711
712static void ptlrpcd_fini(void)
713{
714 int i;
d7e09d03
PT
715
716 if (ptlrpcds != NULL) {
717 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
718 ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0);
719 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
720 ptlrpcd_free(&ptlrpcds->pd_threads[i]);
721 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
722 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
723 OBD_FREE(ptlrpcds, ptlrpcds->pd_size);
724 ptlrpcds = NULL;
725 }
d7e09d03
PT
726}
727
728static int ptlrpcd_init(void)
729{
730 int nthreads = num_online_cpus();
731 char name[16];
732 int size, i = -1, j, rc = 0;
d7e09d03
PT
733
734 if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads)
735 nthreads = max_ptlrpcds;
736 if (nthreads < 2)
737 nthreads = 2;
738 if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR)
739 ptlrpcd_bind_policy = PDB_POLICY_PAIR;
740 else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR)
741 nthreads &= ~1; /* make sure it is even */
742
743 size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
744 OBD_ALLOC(ptlrpcds, size);
745 if (ptlrpcds == NULL)
746 GOTO(out, rc = -ENOMEM);
747
9edf0f67 748 snprintf(name, sizeof(name), "ptlrpcd_rcv");
d7e09d03
PT
749 set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags);
750 rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv);
751 if (rc < 0)
752 GOTO(out, rc);
753
754 /* XXX: We start nthreads ptlrpc daemons. Each of them can process any
755 * non-recovery async RPC to improve overall async RPC efficiency.
756 *
757 * But there are some issues with async I/O RPCs and async non-I/O
758 * RPCs processed in the same set under some cases. The ptlrpcd may
759 * be blocked by some async I/O RPC(s), then will cause other async
760 * non-I/O RPC(s) can not be processed in time.
761 *
762 * Maybe we should distinguish blocked async RPCs from non-blocked
763 * async RPCs, and process them in different ptlrpcd sets to avoid
764 * unnecessary dependency. But how to distribute async RPCs load
765 * among all the ptlrpc daemons becomes another trouble. */
766 for (i = 0; i < nthreads; i++) {
9edf0f67 767 snprintf(name, sizeof(name), "ptlrpcd_%d", i);
d7e09d03
PT
768 rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]);
769 if (rc < 0)
770 GOTO(out, rc);
771 }
772
773 ptlrpcds->pd_size = size;
774 ptlrpcds->pd_index = 0;
775 ptlrpcds->pd_nthreads = nthreads;
776
777out:
778 if (rc != 0 && ptlrpcds != NULL) {
779 for (j = 0; j <= i; j++)
780 ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0);
781 for (j = 0; j <= i; j++)
782 ptlrpcd_free(&ptlrpcds->pd_threads[j]);
783 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
784 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
785 OBD_FREE(ptlrpcds, size);
786 ptlrpcds = NULL;
787 }
788
0a3bdb00 789 return 0;
d7e09d03
PT
790}
791
792int ptlrpcd_addref(void)
793{
794 int rc = 0;
d7e09d03
PT
795
796 mutex_lock(&ptlrpcd_mutex);
797 if (++ptlrpcd_users == 1)
798 rc = ptlrpcd_init();
799 mutex_unlock(&ptlrpcd_mutex);
0a3bdb00 800 return rc;
d7e09d03
PT
801}
802EXPORT_SYMBOL(ptlrpcd_addref);
803
804void ptlrpcd_decref(void)
805{
806 mutex_lock(&ptlrpcd_mutex);
807 if (--ptlrpcd_users == 0)
808 ptlrpcd_fini();
809 mutex_unlock(&ptlrpcd_mutex);
810}
811EXPORT_SYMBOL(ptlrpcd_decref);
812/** @} ptlrpcd */