]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/staging/media/atomisp/i2c/atomisp-mt9m114.c
media: staging: atomisp: Use module_i2c_driver() macro
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / media / atomisp / i2c / atomisp-mt9m114.c
CommitLineData
a49d2536
AC
1/*
2 * Support for mt9m114 Camera Sensor.
3 *
4 * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License version
8 * 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/types.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/string.h>
27#include <linux/errno.h>
28#include <linux/init.h>
29#include <linux/kmod.h>
30#include <linux/device.h>
31#include <linux/fs.h>
a49d2536
AC
32#include <linux/slab.h>
33#include <linux/delay.h>
34#include <linux/i2c.h>
35#include <linux/gpio.h>
36#include <linux/acpi.h>
25016567 37#include "../include/linux/atomisp_gmin_platform.h"
a49d2536
AC
38#include <media/v4l2-device.h>
39
40#include "mt9m114.h"
41
42#define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
43
44/*
45 * TODO: use debug parameter to actually define when debug messages should
46 * be printed.
47 */
48static int debug;
49static int aaalock;
50module_param(debug, int, 0644);
51MODULE_PARM_DESC(debug, "Debug level (0-1)");
52
53static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
54static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
55static int mt9m114_wait_state(struct i2c_client *client, int timeout);
56
57static int
58mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
59{
60 int err;
61 struct i2c_msg msg[2];
62 unsigned char data[4];
63
64 if (!client->adapter) {
65 v4l2_err(client, "%s error, no client->adapter\n", __func__);
66 return -ENODEV;
67 }
68
69 if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
70 && data_length != MISENSOR_32BIT) {
71 v4l2_err(client, "%s error, invalid data length\n", __func__);
72 return -EINVAL;
73 }
74
75 msg[0].addr = client->addr;
76 msg[0].flags = 0;
77 msg[0].len = MSG_LEN_OFFSET;
78 msg[0].buf = data;
79
80 /* high byte goes out first */
81 data[0] = (u16) (reg >> 8);
82 data[1] = (u16) (reg & 0xff);
83
84 msg[1].addr = client->addr;
85 msg[1].len = data_length;
86 msg[1].flags = I2C_M_RD;
87 msg[1].buf = data;
88
89 err = i2c_transfer(client->adapter, msg, 2);
90
91 if (err >= 0) {
92 *val = 0;
93 /* high byte comes first */
94 if (data_length == MISENSOR_8BIT)
95 *val = data[0];
96 else if (data_length == MISENSOR_16BIT)
97 *val = data[1] + (data[0] << 8);
98 else
99 *val = data[3] + (data[2] << 8) +
100 (data[1] << 16) + (data[0] << 24);
101
102 return 0;
103 }
104
105 dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
106 return err;
107}
108
109static int
110mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
111{
112 int num_msg;
113 struct i2c_msg msg;
114 unsigned char data[6] = {0};
115 u16 *wreg;
116 int retry = 0;
117
118 if (!client->adapter) {
119 v4l2_err(client, "%s error, no client->adapter\n", __func__);
120 return -ENODEV;
121 }
122
123 if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
124 && data_length != MISENSOR_32BIT) {
125 v4l2_err(client, "%s error, invalid data_length\n", __func__);
126 return -EINVAL;
127 }
128
129 memset(&msg, 0, sizeof(msg));
130
131again:
132 msg.addr = client->addr;
133 msg.flags = 0;
134 msg.len = 2 + data_length;
135 msg.buf = data;
136
137 /* high byte goes out first */
138 wreg = (u16 *)data;
139 *wreg = cpu_to_be16(reg);
140
141 if (data_length == MISENSOR_8BIT) {
142 data[2] = (u8)(val);
143 } else if (data_length == MISENSOR_16BIT) {
144 u16 *wdata = (u16 *)&data[2];
145 *wdata = be16_to_cpu((u16)val);
146 } else {
147 /* MISENSOR_32BIT */
148 u32 *wdata = (u32 *)&data[2];
149 *wdata = be32_to_cpu(val);
150 }
151
152 num_msg = i2c_transfer(client->adapter, &msg, 1);
153
154 /*
155 * HACK: Need some delay here for Rev 2 sensors otherwise some
156 * registers do not seem to load correctly.
157 */
158 mdelay(1);
159
160 if (num_msg >= 0)
161 return 0;
162
163 dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
164 val, reg, num_msg);
165 if (retry <= I2C_RETRY_COUNT) {
166 dev_dbg(&client->dev, "retrying... %d", retry);
167 retry++;
168 msleep(20);
169 goto again;
170 }
171
172 return num_msg;
173}
174
175/**
176 * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
177 * device
178 * @client: i2c driver client structure
179 * @data_length: 8/16/32-bits length
180 * @reg: register address
181 * @mask: masked out bits
182 * @set: bits set
183 *
184 * Read/modify/write a value to a register in the sensor device.
185 * Returns zero if successful, or non-zero otherwise.
186 */
187static int
188misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
189 u32 mask, u32 set)
190{
191 int err;
192 u32 val;
193
194 /* Exit when no mask */
195 if (mask == 0)
196 return 0;
197
198 /* @mask must not exceed data length */
199 switch (data_length) {
200 case MISENSOR_8BIT:
201 if (mask & ~0xff)
202 return -EINVAL;
203 break;
204 case MISENSOR_16BIT:
205 if (mask & ~0xffff)
206 return -EINVAL;
207 break;
208 case MISENSOR_32BIT:
209 break;
210 default:
211 /* Wrong @data_length */
212 return -EINVAL;
213 }
214
215 err = mt9m114_read_reg(client, data_length, reg, &val);
216 if (err) {
217 v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
218 return -EINVAL;
219 }
220
221 val &= ~mask;
222
223 /*
224 * Perform the OR function if the @set exists.
225 * Shift @set value to target bit location. @set should set only
226 * bits included in @mask.
227 *
228 * REVISIT: This function expects @set to be non-shifted. Its shift
229 * value is then defined to be equal to mask's LSB position.
230 * How about to inform values in their right offset position and avoid
231 * this unneeded shift operation?
232 */
233 set <<= ffs(mask) - 1;
234 val |= set & mask;
235
236 err = mt9m114_write_reg(client, data_length, reg, val);
237 if (err) {
238 v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
239 return -EINVAL;
240 }
241
242 return 0;
243}
244
245
246static int __mt9m114_flush_reg_array(struct i2c_client *client,
247 struct mt9m114_write_ctrl *ctrl)
248{
249 struct i2c_msg msg;
250 const int num_msg = 1;
251 int ret;
252 int retry = 0;
253
254 if (ctrl->index == 0)
255 return 0;
256
257again:
258 msg.addr = client->addr;
259 msg.flags = 0;
260 msg.len = 2 + ctrl->index;
261 ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
262 msg.buf = (u8 *)&ctrl->buffer;
263
264 ret = i2c_transfer(client->adapter, &msg, num_msg);
265 if (ret != num_msg) {
266 if (++retry <= I2C_RETRY_COUNT) {
267 dev_dbg(&client->dev, "retrying... %d\n", retry);
268 msleep(20);
269 goto again;
270 }
271 dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
272 return -EIO;
273 }
274
275 ctrl->index = 0;
276
277 /*
278 * REVISIT: Previously we had a delay after writing data to sensor.
279 * But it was removed as our tests have shown it is not necessary
280 * anymore.
281 */
282
283 return 0;
284}
285
286static int __mt9m114_buf_reg_array(struct i2c_client *client,
287 struct mt9m114_write_ctrl *ctrl,
288 const struct misensor_reg *next)
289{
290 u16 *data16;
291 u32 *data32;
292 int err;
293
294 /* Insufficient buffer? Let's flush and get more free space. */
295 if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
296 err = __mt9m114_flush_reg_array(client, ctrl);
297 if (err)
298 return err;
299 }
300
301 switch (next->length) {
302 case MISENSOR_8BIT:
303 ctrl->buffer.data[ctrl->index] = (u8)next->val;
304 break;
305 case MISENSOR_16BIT:
306 data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
307 *data16 = cpu_to_be16((u16)next->val);
308 break;
309 case MISENSOR_32BIT:
310 data32 = (u32 *)&ctrl->buffer.data[ctrl->index];
311 *data32 = cpu_to_be32(next->val);
312 break;
313 default:
314 return -EINVAL;
315 }
316
317 /* When first item is added, we need to store its starting address */
318 if (ctrl->index == 0)
319 ctrl->buffer.addr = next->reg;
320
321 ctrl->index += next->length;
322
323 return 0;
324}
325
326static int
327__mt9m114_write_reg_is_consecutive(struct i2c_client *client,
328 struct mt9m114_write_ctrl *ctrl,
329 const struct misensor_reg *next)
330{
331 if (ctrl->index == 0)
332 return 1;
333
334 return ctrl->buffer.addr + ctrl->index == next->reg;
335}
336
337/*
338 * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
339 * @client: i2c driver client structure
340 * @reglist: list of registers to be written
341 * @poll: completion polling requirement
342 * This function initializes a list of registers. When consecutive addresses
343 * are found in a row on the list, this function creates a buffer and sends
344 * consecutive data in a single i2c_transfer().
345 *
346 * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
347 * __mt9m114_write_reg_is_consecutive() are internal functions to
348 * mt9m114_write_reg_array() and should be not used anywhere else.
349 *
350 */
351static int mt9m114_write_reg_array(struct i2c_client *client,
352 const struct misensor_reg *reglist,
353 int poll)
354{
355 const struct misensor_reg *next = reglist;
356 struct mt9m114_write_ctrl ctrl;
357 int err;
358
359 if (poll == PRE_POLLING) {
360 err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
361 if (err)
362 return err;
363 }
364
365 ctrl.index = 0;
366 for (; next->length != MISENSOR_TOK_TERM; next++) {
367 switch (next->length & MISENSOR_TOK_MASK) {
368 case MISENSOR_TOK_DELAY:
369 err = __mt9m114_flush_reg_array(client, &ctrl);
370 if (err)
371 return err;
372 msleep(next->val);
373 break;
374 case MISENSOR_TOK_RMW:
375 err = __mt9m114_flush_reg_array(client, &ctrl);
376 err |= misensor_rmw_reg(client,
377 next->length &
378 ~MISENSOR_TOK_RMW,
379 next->reg, next->val,
380 next->val2);
381 if (err) {
382 dev_err(&client->dev, "%s read err. aborted\n",
383 __func__);
384 return -EINVAL;
385 }
386 break;
387 default:
388 /*
389 * If next address is not consecutive, data needs to be
390 * flushed before proceed.
391 */
392 if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
393 next)) {
394 err = __mt9m114_flush_reg_array(client, &ctrl);
395 if (err)
396 return err;
397 }
398 err = __mt9m114_buf_reg_array(client, &ctrl, next);
399 if (err) {
400 v4l2_err(client, "%s: write error, aborted\n",
401 __func__);
402 return err;
403 }
404 break;
405 }
406 }
407
408 err = __mt9m114_flush_reg_array(client, &ctrl);
409 if (err)
410 return err;
411
412 if (poll == POST_POLLING)
413 return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
414
415 return 0;
416}
417
418static int mt9m114_wait_state(struct i2c_client *client, int timeout)
419{
420 int ret;
421 unsigned int val;
422
423 while (timeout-- > 0) {
424 ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
425 if (ret)
426 return ret;
427 if ((val & 0x2) == 0)
428 return 0;
429 msleep(20);
430 }
431
432 return -EINVAL;
433
434}
435
436static int mt9m114_set_suspend(struct v4l2_subdev *sd)
437{
438 struct i2c_client *client = v4l2_get_subdevdata(sd);
439 return mt9m114_write_reg_array(client,
440 mt9m114_standby_reg, POST_POLLING);
441}
442
443static int mt9m114_init_common(struct v4l2_subdev *sd)
444{
445 struct i2c_client *client = v4l2_get_subdevdata(sd);
a49d2536 446
b612a976 447 return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
a49d2536
AC
448}
449
450static int power_ctrl(struct v4l2_subdev *sd, bool flag)
451{
452 int ret;
453 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
454
455 if (!dev || !dev->platform_data)
456 return -ENODEV;
457
458 /* Non-gmin platforms use the legacy callback */
459 if (dev->platform_data->power_ctrl)
460 return dev->platform_data->power_ctrl(sd, flag);
461
462 if (flag) {
463 ret = dev->platform_data->v2p8_ctrl(sd, 1);
464 if (ret == 0) {
465 ret = dev->platform_data->v1p8_ctrl(sd, 1);
466 if (ret)
467 ret = dev->platform_data->v2p8_ctrl(sd, 0);
468 }
469 } else {
470 ret = dev->platform_data->v2p8_ctrl(sd, 0);
471 ret = dev->platform_data->v1p8_ctrl(sd, 0);
472 }
473 return ret;
474}
475
476static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
477{
478 int ret;
479 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
480
481 if (!dev || !dev->platform_data)
482 return -ENODEV;
483
484 /* Non-gmin platforms use the legacy callback */
485 if (dev->platform_data->gpio_ctrl)
486 return dev->platform_data->gpio_ctrl(sd, flag);
487
488 /* Note: current modules wire only one GPIO signal (RESET#),
489 * but the schematic wires up two to the connector. BIOS
490 * versions have been unfortunately inconsistent with which
491 * ACPI index RESET# is on, so hit both */
492
493 if (flag) {
494 ret = dev->platform_data->gpio0_ctrl(sd, 0);
495 ret = dev->platform_data->gpio1_ctrl(sd, 0);
496 msleep(60);
497 ret |= dev->platform_data->gpio0_ctrl(sd, 1);
498 ret |= dev->platform_data->gpio1_ctrl(sd, 1);
499 } else {
500 ret = dev->platform_data->gpio0_ctrl(sd, 0);
501 ret = dev->platform_data->gpio1_ctrl(sd, 0);
502 }
503 return ret;
504}
505
506static int power_up(struct v4l2_subdev *sd)
507{
508 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
509 struct i2c_client *client = v4l2_get_subdevdata(sd);
510 int ret;
511
512 if (NULL == dev->platform_data) {
513 dev_err(&client->dev, "no camera_sensor_platform_data");
514 return -ENODEV;
515 }
516
517 /* power control */
518 ret = power_ctrl(sd, 1);
519 if (ret)
520 goto fail_power;
521
522 /* flis clock control */
523 ret = dev->platform_data->flisclk_ctrl(sd, 1);
524 if (ret)
525 goto fail_clk;
526
527 /* gpio ctrl */
528 ret = gpio_ctrl(sd, 1);
529 if (ret)
530 dev_err(&client->dev, "gpio failed 1\n");
531 /*
532 * according to DS, 44ms is needed between power up and first i2c
533 * commend
534 */
535 msleep(50);
536
537 return 0;
538
539fail_clk:
540 dev->platform_data->flisclk_ctrl(sd, 0);
541fail_power:
542 power_ctrl(sd, 0);
543 dev_err(&client->dev, "sensor power-up failed\n");
544
545 return ret;
546}
547
548static int power_down(struct v4l2_subdev *sd)
549{
550 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
551 struct i2c_client *client = v4l2_get_subdevdata(sd);
552 int ret;
553
554 if (NULL == dev->platform_data) {
555 dev_err(&client->dev, "no camera_sensor_platform_data");
556 return -ENODEV;
557 }
558
559 ret = dev->platform_data->flisclk_ctrl(sd, 0);
560 if (ret)
561 dev_err(&client->dev, "flisclk failed\n");
562
563 /* gpio ctrl */
564 ret = gpio_ctrl(sd, 0);
565 if (ret)
566 dev_err(&client->dev, "gpio failed 1\n");
567
568 /* power control */
569 ret = power_ctrl(sd, 0);
570 if (ret)
571 dev_err(&client->dev, "vprog failed.\n");
572
573 /*according to DS, 20ms is needed after power down*/
574 msleep(20);
575
576 return ret;
577}
578
579static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
580{
581 if (power == 0)
582 return power_down(sd);
583 else {
584 if (power_up(sd))
585 return -EINVAL;
586
587 return mt9m114_init_common(sd);
588 }
589}
590
591/*
592 * distance - calculate the distance
593 * @res: resolution
594 * @w: width
595 * @h: height
596 *
597 * Get the gap between resolution and w/h.
598 * res->width/height smaller than w/h wouldn't be considered.
599 * Returns the value of gap or -1 if fail.
600 */
601#define LARGEST_ALLOWED_RATIO_MISMATCH 600
602static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
603{
604 unsigned int w_ratio;
605 unsigned int h_ratio;
606 int match;
607
608 if (w == 0)
609 return -1;
610 w_ratio = (res->width << 13) / w;
611 if (h == 0)
612 return -1;
613 h_ratio = (res->height << 13) / h;
614 if (h_ratio == 0)
615 return -1;
bf5d0300 616 match = abs(((w_ratio << 13) / h_ratio) - 8192);
a49d2536 617
8284d205
VR
618 if ((w_ratio < 8192) || (h_ratio < 8192) ||
619 (match > LARGEST_ALLOWED_RATIO_MISMATCH))
a49d2536
AC
620 return -1;
621
622 return w_ratio + h_ratio;
623}
624
625/* Return the nearest higher resolution index */
626static int nearest_resolution_index(int w, int h)
627{
628 int i;
629 int idx = -1;
630 int dist;
631 int min_dist = INT_MAX;
632 const struct mt9m114_res_struct *tmp_res = NULL;
633
634 for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
635 tmp_res = &mt9m114_res[i];
636 dist = distance(tmp_res, w, h);
637 if (dist == -1)
638 continue;
639 if (dist < min_dist) {
640 min_dist = dist;
641 idx = i;
642 }
643 }
644
645 return idx;
646}
647
648static int mt9m114_try_res(u32 *w, u32 *h)
649{
650 int idx = 0;
651
652 if ((*w > MT9M114_RES_960P_SIZE_H)
653 || (*h > MT9M114_RES_960P_SIZE_V)) {
654 *w = MT9M114_RES_960P_SIZE_H;
655 *h = MT9M114_RES_960P_SIZE_V;
656 } else {
657 idx = nearest_resolution_index(*w, *h);
658
659 /*
660 * nearest_resolution_index() doesn't return smaller
661 * resolutions. If it fails, it means the requested
662 * resolution is higher than wecan support. Fallback
663 * to highest possible resolution in this case.
664 */
665 if (idx == -1)
666 idx = ARRAY_SIZE(mt9m114_res) - 1;
667
668 *w = mt9m114_res[idx].width;
669 *h = mt9m114_res[idx].height;
670 }
671
672 return 0;
673}
674
675static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
676{
677 int index;
678
679 for (index = 0; index < N_RES; index++) {
680 if ((mt9m114_res[index].width == w) &&
681 (mt9m114_res[index].height == h))
682 break;
683 }
684
685 /* No mode found */
686 if (index >= N_RES)
687 return NULL;
688
689 return &mt9m114_res[index];
690}
691
8d7cd91d 692static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
a49d2536 693{
8d7cd91d 694 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
a49d2536
AC
695 unsigned short hsize;
696 unsigned short vsize;
697
8d7cd91d 698 switch (dev->res) {
a49d2536
AC
699 case MT9M114_RES_736P:
700 hsize = MT9M114_RES_736P_SIZE_H;
701 vsize = MT9M114_RES_736P_SIZE_V;
702 break;
703 case MT9M114_RES_864P:
704 hsize = MT9M114_RES_864P_SIZE_H;
705 vsize = MT9M114_RES_864P_SIZE_V;
706 break;
707 case MT9M114_RES_960P:
708 hsize = MT9M114_RES_960P_SIZE_H;
709 vsize = MT9M114_RES_960P_SIZE_V;
710 break;
711 default:
8d7cd91d
AB
712 v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
713 dev->res);
a49d2536
AC
714 return -EINVAL;
715 }
716
717 if (h_size != NULL)
718 *h_size = hsize;
719 if (v_size != NULL)
720 *v_size = vsize;
721
722 return 0;
723}
724
725static int mt9m114_get_intg_factor(struct i2c_client *client,
726 struct camera_mipi_info *info,
727 const struct mt9m114_res_struct *res)
728{
729 struct atomisp_sensor_mode_data *buf = &info->data;
730 u32 reg_val;
731 int ret;
732
733 if (info == NULL)
734 return -EINVAL;
735
736 ret = mt9m114_read_reg(client, MISENSOR_32BIT,
737 REG_PIXEL_CLK, &reg_val);
738 if (ret)
739 return ret;
740 buf->vt_pix_clk_freq_mhz = reg_val;
741
742 /* get integration time */
743 buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
744 buf->coarse_integration_time_max_margin =
745 MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
746
747 buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
748 buf->fine_integration_time_max_margin =
749 MT9M114_FINE_INTG_TIME_MAX_MARGIN;
750
751 buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
752
753 buf->frame_length_lines = res->lines_per_frame;
754 buf->line_length_pck = res->pixels_per_line;
755 buf->read_mode = res->bin_mode;
756
757 /* get the cropping and output resolution to ISP for this mode. */
758 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
759 REG_H_START, &reg_val);
760 if (ret)
761 return ret;
762 buf->crop_horizontal_start = reg_val;
763
764 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
765 REG_V_START, &reg_val);
766 if (ret)
767 return ret;
768 buf->crop_vertical_start = reg_val;
769
770 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
771 REG_H_END, &reg_val);
772 if (ret)
773 return ret;
774 buf->crop_horizontal_end = reg_val;
775
776 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
777 REG_V_END, &reg_val);
778 if (ret)
779 return ret;
780 buf->crop_vertical_end = reg_val;
781
782 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
783 REG_WIDTH, &reg_val);
784 if (ret)
785 return ret;
786 buf->output_width = reg_val;
787
788 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
789 REG_HEIGHT, &reg_val);
790 if (ret)
791 return ret;
792 buf->output_height = reg_val;
793
794 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
795 REG_TIMING_HTS, &reg_val);
796 if (ret)
797 return ret;
798 buf->line_length_pck = reg_val;
799
800 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
801 REG_TIMING_VTS, &reg_val);
802 if (ret)
803 return ret;
804 buf->frame_length_lines = reg_val;
805
806 buf->binning_factor_x = res->bin_factor_x ?
807 res->bin_factor_x : 1;
808 buf->binning_factor_y = res->bin_factor_y ?
809 res->bin_factor_y : 1;
810 return 0;
811}
812
813static int mt9m114_get_fmt(struct v4l2_subdev *sd,
814 struct v4l2_subdev_pad_config *cfg,
815 struct v4l2_subdev_format *format)
816{
8d7cd91d 817 struct v4l2_mbus_framefmt *fmt = &format->format;
a49d2536
AC
818 int width, height;
819 int ret;
820 if (format->pad)
821 return -EINVAL;
822 fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
823
8d7cd91d 824 ret = mt9m114_res2size(sd, &width, &height);
a49d2536
AC
825 if (ret)
826 return ret;
827 fmt->width = width;
828 fmt->height = height;
829
830 return 0;
831}
832
833static int mt9m114_set_fmt(struct v4l2_subdev *sd,
834 struct v4l2_subdev_pad_config *cfg,
835 struct v4l2_subdev_format *format)
836{
837 struct v4l2_mbus_framefmt *fmt = &format->format;
838 struct i2c_client *c = v4l2_get_subdevdata(sd);
839 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
840 struct mt9m114_res_struct *res_index;
841 u32 width = fmt->width;
842 u32 height = fmt->height;
843 struct camera_mipi_info *mt9m114_info = NULL;
844
845 int ret;
846 if (format->pad)
847 return -EINVAL;
848 dev->streamon = 0;
849 dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
850
851 mt9m114_info = v4l2_get_subdev_hostdata(sd);
852 if (mt9m114_info == NULL)
853 return -EINVAL;
854
855 mt9m114_try_res(&width, &height);
856 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
857 cfg->try_fmt = *fmt;
858 return 0;
859 }
860 res_index = mt9m114_to_res(width, height);
861
862 /* Sanity check */
863 if (unlikely(!res_index)) {
864 WARN_ON(1);
865 return -EINVAL;
866 }
867
868 switch (res_index->res) {
869 case MT9M114_RES_736P:
870 ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
871 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
872 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
873 break;
874 case MT9M114_RES_864P:
875 ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
876 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
877 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
878 break;
879 case MT9M114_RES_960P:
880 ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
881 /* set sensor read_mode to Normal */
882 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
883 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
884 break;
885 default:
886 v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
887 return -EINVAL;
888 }
889
890 if (ret)
891 return -EINVAL;
892
893 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
894 if (ret < 0)
895 return ret;
896
897 if (mt9m114_set_suspend(sd))
898 return -EINVAL;
899
900 if (dev->res != res_index->res) {
901 int index;
902
903 /* Switch to different size */
904 if (width <= 640) {
905 dev->nctx = 0x00; /* Set for context A */
906 } else {
907 /*
908 * Context B is used for resolutions larger than 640x480
909 * Using YUV for Context B.
910 */
911 dev->nctx = 0x01; /* set for context B */
912 }
913
914 /*
915 * Marked current sensor res as being "used"
916 *
917 * REVISIT: We don't need to use an "used" field on each mode
918 * list entry to know which mode is selected. If this
919 * information is really necessary, how about to use a single
920 * variable on sensor dev struct?
921 */
922 for (index = 0; index < N_RES; index++) {
923 if ((width == mt9m114_res[index].width) &&
924 (height == mt9m114_res[index].height)) {
87bb4017 925 mt9m114_res[index].used = true;
a49d2536
AC
926 continue;
927 }
87bb4017 928 mt9m114_res[index].used = false;
a49d2536
AC
929 }
930 }
931 ret = mt9m114_get_intg_factor(c, mt9m114_info,
932 &mt9m114_res[res_index->res]);
933 if (ret) {
934 dev_err(&c->dev, "failed to get integration_factor\n");
935 return -EINVAL;
936 }
937 /*
938 * mt9m114 - we don't poll for context switch
939 * because it does not happen with streaming disabled.
940 */
941 dev->res = res_index->res;
942
943 fmt->width = width;
944 fmt->height = height;
945 fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
946 return 0;
947}
948
949/* TODO: Update to SOC functions, remove exposure and gain */
950static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
951{
952 *val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
953 return 0;
954}
955
956static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
957{
958 /*const f number for mt9m114*/
959 *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
960 return 0;
961}
962
963static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
964{
965 *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
966 (MT9M114_F_NUMBER_DEM << 16) |
967 (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
968 return 0;
969}
970
971/* Horizontal flip the image. */
972static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
973{
974 struct i2c_client *c = v4l2_get_subdevdata(sd);
975 int ret;
976 u32 data;
977 ret = mt9m114_read_reg(c, MISENSOR_16BIT,
978 (u32)MISENSOR_READ_MODE, &data);
979 if (ret)
980 return ret;
981 *val = !!(data & MISENSOR_HFLIP_MASK);
982
983 return 0;
984}
985
986static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
987{
988 struct i2c_client *c = v4l2_get_subdevdata(sd);
989 int ret;
990 u32 data;
991
992 ret = mt9m114_read_reg(c, MISENSOR_16BIT,
993 (u32)MISENSOR_READ_MODE, &data);
994 if (ret)
995 return ret;
996 *val = !!(data & MISENSOR_VFLIP_MASK);
997
998 return 0;
999}
1000
1001static long mt9m114_s_exposure(struct v4l2_subdev *sd,
1002 struct atomisp_exposure *exposure)
1003{
1004 struct i2c_client *client = v4l2_get_subdevdata(sd);
1005 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1006 int ret = 0;
1007 unsigned int coarse_integration = 0;
1008 unsigned int fine_integration = 0;
1009 unsigned int FLines = 0;
1010 unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
1011 unsigned int AnalogGain, DigitalGain;
1012 u32 AnalogGainToWrite = 0;
1013 u16 exposure_local[3];
1014
1015 dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1016 exposure->integration_time[0], exposure->gain[0],
1017 exposure->gain[1]);
1018
1019 coarse_integration = exposure->integration_time[0];
1020 /* fine_integration = ExposureTime.FineIntegrationTime; */
1021 /* FrameLengthLines = ExposureTime.FrameLengthLines; */
1022 FLines = mt9m114_res[dev->res].lines_per_frame;
1023 AnalogGain = exposure->gain[0];
1024 DigitalGain = exposure->gain[1];
1025 if (!dev->streamon) {
1026 /*Save the first exposure values while stream is off*/
1027 dev->first_exp = coarse_integration;
1028 dev->first_gain = AnalogGain;
1029 dev->first_diggain = DigitalGain;
1030 }
1031 /* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1032 ((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1033
1034 /* set frame length */
1035 if (FLines < coarse_integration + 6)
1036 FLines = coarse_integration + 6;
1037 if (FLines < FrameLengthLines)
1038 FLines = FrameLengthLines;
1039 ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1040 if (ret) {
1041 v4l2_err(client, "%s: fail to set FLines\n", __func__);
1042 return -EINVAL;
1043 }
1044
1045 /* set coarse/fine integration */
1046 exposure_local[0] = REG_EXPO_COARSE;
1047 exposure_local[1] = (u16)coarse_integration;
1048 exposure_local[2] = (u16)fine_integration;
1049 /* 3A provide real exposure time.
1050 should not translate to any value here. */
1051 ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1052 REG_EXPO_COARSE, (u16)(coarse_integration));
1053 if (ret) {
1054 v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1055 return -EINVAL;
1056 }
1057
1058 /*
1059 // set analog/digital gain
1060 switch(AnalogGain)
1061 {
1062 case 0:
1063 AnalogGainToWrite = 0x0;
1064 break;
1065 case 1:
1066 AnalogGainToWrite = 0x20;
1067 break;
1068 case 2:
1069 AnalogGainToWrite = 0x60;
1070 break;
1071 case 4:
1072 AnalogGainToWrite = 0xA0;
1073 break;
1074 case 8:
1075 AnalogGainToWrite = 0xE0;
1076 break;
1077 default:
1078 AnalogGainToWrite = 0x20;
1079 break;
1080 }
1081 */
1082 if (DigitalGain >= 16 || DigitalGain <= 1)
1083 DigitalGain = 1;
1084 /* AnalogGainToWrite =
1085 (u16)((DigitalGain << 12) | AnalogGainToWrite); */
1086 AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1087 ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1088 REG_GAIN, AnalogGainToWrite);
1089 if (ret) {
1090 v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1091 __func__);
1092 return -EINVAL;
1093 }
1094
1095 return ret;
1096}
1097
1098static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1099{
1100
1101 switch (cmd) {
1102 case ATOMISP_IOC_S_EXPOSURE:
1103 return mt9m114_s_exposure(sd, arg);
1104 default:
1105 return -EINVAL;
1106 }
1107
1108 return 0;
1109}
1110
1111/* This returns the exposure time being used. This should only be used
1112 for filling in EXIF data, not for actual image processing. */
1113static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1114{
1115 struct i2c_client *client = v4l2_get_subdevdata(sd);
1116 u32 coarse;
1117 int ret;
1118
1119 /* the fine integration time is currently not calculated */
1120 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1121 REG_EXPO_COARSE, &coarse);
1122 if (ret)
1123 return ret;
1124
1125 *value = coarse;
1126 return 0;
1127}
1128#ifndef CSS15
1129/*
1130 * This function will return the sensor supported max exposure zone number.
1131 * the sensor which supports max exposure zone number is 1.
1132 */
1133static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1134{
1135 *val = 1;
1136
1137 return 0;
1138}
1139
1140/*
1141 * set exposure metering, average/center_weighted/spot/matrix.
1142 */
1143static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1144{
1145 struct i2c_client *client = v4l2_get_subdevdata(sd);
1146 int ret;
1147
1148 switch (val) {
1149 case V4L2_EXPOSURE_METERING_SPOT:
1150 ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1151 NO_POLLING);
1152 if (ret) {
1153 dev_err(&client->dev, "write exp_average reg err.\n");
1154 return ret;
1155 }
1156 break;
1157 case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1158 default:
1159 ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1160 NO_POLLING);
1161 if (ret) {
1162 dev_err(&client->dev, "write exp_default reg err");
1163 return ret;
1164 }
1165 }
1166
1167 return 0;
1168}
1169
1170/*
1171 * This function is for touch exposure feature.
1172 */
1173static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1174 struct v4l2_subdev_pad_config *cfg,
1175 struct v4l2_subdev_selection *sel)
1176{
1177 struct i2c_client *client = v4l2_get_subdevdata(sd);
a49d2536
AC
1178 struct misensor_reg exp_reg;
1179 int width, height;
1180 int grid_width, grid_height;
1181 int grid_left, grid_top, grid_right, grid_bottom;
1182 int win_left, win_top, win_right, win_bottom;
1183 int i, j;
1184 int ret;
1185
1186 if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1187 sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1188 return -EINVAL;
1189
1190 grid_left = sel->r.left;
1191 grid_top = sel->r.top;
1192 grid_right = sel->r.left + sel->r.width - 1;
1193 grid_bottom = sel->r.top + sel->r.height - 1;
1194
8d7cd91d 1195 ret = mt9m114_res2size(sd, &width, &height);
a49d2536
AC
1196 if (ret)
1197 return ret;
1198
1199 grid_width = width / 5;
1200 grid_height = height / 5;
1201
1202 if (grid_width && grid_height) {
1203 win_left = grid_left / grid_width;
1204 win_top = grid_top / grid_height;
1205 win_right = grid_right / grid_width;
1206 win_bottom = grid_bottom / grid_height;
1207 } else {
1208 dev_err(&client->dev, "Incorrect exp grid.\n");
1209 return -EINVAL;
1210 }
1211
0b56d1c8
DC
1212 win_left = clamp_t(int, win_left, 0, 4);
1213 win_top = clamp_t(int, win_top, 0, 4);
1214 win_right = clamp_t(int, win_right, 0, 4);
1215 win_bottom = clamp_t(int, win_bottom, 0, 4);
a49d2536
AC
1216
1217 ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1218 if (ret) {
1219 dev_err(&client->dev, "write exp_average reg err.\n");
1220 return ret;
1221 }
1222
1223 for (i = win_top; i <= win_bottom; i++) {
1224 for (j = win_left; j <= win_right; j++) {
1225 exp_reg = mt9m114_exp_win[i][j];
1226
1227 ret = mt9m114_write_reg(client, exp_reg.length,
1228 exp_reg.reg, exp_reg.val);
1229 if (ret) {
1230 dev_err(&client->dev, "write exp_reg err.\n");
1231 return ret;
1232 }
1233 }
1234 }
1235
1236 return 0;
1237}
1238#endif
1239
1240static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1241{
1242 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1243
1244 *val = mt9m114_res[dev->res].bin_factor_x;
1245
1246 return 0;
1247}
1248
1249static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1250{
1251 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1252
1253 *val = mt9m114_res[dev->res].bin_factor_y;
1254
1255 return 0;
1256}
1257
1258static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1259{
1260 struct i2c_client *c = v4l2_get_subdevdata(sd);
1261 s32 luma = 0x37;
1262 int err;
1263
1264 /* EV value only support -2 to 2
1265 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1266 */
1267 if (val < -2 || val > 2)
1268 return -EINVAL;
1269 luma += 0x10 * val;
1270 dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1271 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1272 if (err) {
1273 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1274 return err;
1275 }
1276 err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1277 if (err) {
1278 dev_err(&c->dev, "%s write target_average_luma failed\n",
1279 __func__);
1280 return err;
1281 }
1282 udelay(10);
1283
1284 return 0;
1285}
1286
1287static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1288{
1289 struct i2c_client *c = v4l2_get_subdevdata(sd);
1290 int err;
1291 u32 luma;
1292
1293 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1294 if (err) {
1295 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1296 return err;
1297 }
1298 err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1299 if (err) {
1300 dev_err(&c->dev, "%s read target_average_luma failed\n",
1301 __func__);
1302 return err;
1303 }
1304 luma -= 0x17;
1305 luma /= 0x10;
1306 *val = (s32)luma - 2;
1307 dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1308
1309 return 0;
1310}
1311
1312/* Fake interface
1313 * mt9m114 now can not support 3a_lock
1314*/
1315static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1316{
1317 aaalock = val;
1318 return 0;
1319}
1320
1321static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1322{
1323 if (aaalock)
1324 return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1325 | V4L2_LOCK_FOCUS;
1326 return 0;
1327}
1328
1329static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1330{
1331 struct mt9m114_device *dev =
1332 container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1333 struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1334 int ret = 0;
1335
1336 switch (ctrl->id) {
1337 case V4L2_CID_VFLIP:
1338 dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1339 __func__, ctrl->val);
1340 ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1341 break;
1342 case V4L2_CID_HFLIP:
1343 dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1344 __func__, ctrl->val);
1345 ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1346 break;
1347#ifndef CSS15
1348 case V4L2_CID_EXPOSURE_METERING:
1349 ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1350 break;
1351#endif
1352 case V4L2_CID_EXPOSURE:
1353 ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1354 break;
1355 case V4L2_CID_3A_LOCK:
1356 ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1357 break;
1358 default:
1359 ret = -EINVAL;
1360 }
1361 return ret;
1362}
1363
1364static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1365{
1366 struct mt9m114_device *dev =
1367 container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1368 int ret = 0;
1369
1370 switch (ctrl->id) {
1371 case V4L2_CID_VFLIP:
1372 ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1373 break;
1374 case V4L2_CID_HFLIP:
1375 ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1376 break;
1377 case V4L2_CID_FOCAL_ABSOLUTE:
1378 ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1379 break;
1380 case V4L2_CID_FNUMBER_ABSOLUTE:
1381 ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1382 break;
1383 case V4L2_CID_FNUMBER_RANGE:
1384 ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1385 break;
1386 case V4L2_CID_EXPOSURE_ABSOLUTE:
1387 ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1388 break;
1389#ifndef CSS15
1390 case V4L2_CID_EXPOSURE_ZONE_NUM:
1391 ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1392 break;
1393#endif
1394 case V4L2_CID_BIN_FACTOR_HORZ:
1395 ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1396 break;
1397 case V4L2_CID_BIN_FACTOR_VERT:
1398 ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1399 break;
1400 case V4L2_CID_EXPOSURE:
1401 ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1402 break;
1403 case V4L2_CID_3A_LOCK:
1404 ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1405 break;
1406 default:
1407 ret = -EINVAL;
1408 }
1409
1410 return ret;
1411}
1412
1413static const struct v4l2_ctrl_ops ctrl_ops = {
1414 .s_ctrl = mt9m114_s_ctrl,
1415 .g_volatile_ctrl = mt9m114_g_volatile_ctrl
1416};
1417
1418static struct v4l2_ctrl_config mt9m114_controls[] = {
1419 {
1420 .ops = &ctrl_ops,
1421 .id = V4L2_CID_VFLIP,
1422 .name = "Image v-Flip",
1423 .type = V4L2_CTRL_TYPE_INTEGER,
1424 .min = 0,
1425 .max = 1,
1426 .step = 1,
1427 .def = 0,
1428 },
1429 {
1430 .ops = &ctrl_ops,
1431 .id = V4L2_CID_HFLIP,
1432 .name = "Image h-Flip",
1433 .type = V4L2_CTRL_TYPE_INTEGER,
1434 .min = 0,
1435 .max = 1,
1436 .step = 1,
1437 .def = 0,
1438 },
1439 {
1440 .ops = &ctrl_ops,
1441 .id = V4L2_CID_FOCAL_ABSOLUTE,
1442 .name = "focal length",
1443 .type = V4L2_CTRL_TYPE_INTEGER,
1444 .min = MT9M114_FOCAL_LENGTH_DEFAULT,
1445 .max = MT9M114_FOCAL_LENGTH_DEFAULT,
1446 .step = 1,
1447 .def = MT9M114_FOCAL_LENGTH_DEFAULT,
1448 .flags = 0,
1449 },
1450 {
1451 .ops = &ctrl_ops,
1452 .id = V4L2_CID_FNUMBER_ABSOLUTE,
1453 .name = "f-number",
1454 .type = V4L2_CTRL_TYPE_INTEGER,
1455 .min = MT9M114_F_NUMBER_DEFAULT,
1456 .max = MT9M114_F_NUMBER_DEFAULT,
1457 .step = 1,
1458 .def = MT9M114_F_NUMBER_DEFAULT,
1459 .flags = 0,
1460 },
1461 {
1462 .ops = &ctrl_ops,
1463 .id = V4L2_CID_FNUMBER_RANGE,
1464 .name = "f-number range",
1465 .type = V4L2_CTRL_TYPE_INTEGER,
1466 .min = MT9M114_F_NUMBER_RANGE,
1467 .max = MT9M114_F_NUMBER_RANGE,
1468 .step = 1,
1469 .def = MT9M114_F_NUMBER_RANGE,
1470 .flags = 0,
1471 },
1472 {
1473 .ops = &ctrl_ops,
1474 .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1475 .name = "exposure",
1476 .type = V4L2_CTRL_TYPE_INTEGER,
1477 .min = 0,
1478 .max = 0xffff,
1479 .step = 1,
1480 .def = 0,
1481 .flags = 0,
1482 },
1483#ifndef CSS15
1484 {
1485 .ops = &ctrl_ops,
1486 .id = V4L2_CID_EXPOSURE_ZONE_NUM,
1487 .name = "one-time exposure zone number",
1488 .type = V4L2_CTRL_TYPE_INTEGER,
1489 .min = 0,
1490 .max = 0xffff,
1491 .step = 1,
1492 .def = 0,
1493 .flags = 0,
1494 },
1495 {
1496 .ops = &ctrl_ops,
1497 .id = V4L2_CID_EXPOSURE_METERING,
1498 .name = "metering",
1499 .type = V4L2_CTRL_TYPE_MENU,
1500 .min = 0,
1501 .max = 3,
42c6d864 1502 .step = 0,
a49d2536
AC
1503 .def = 1,
1504 .flags = 0,
1505 },
1506#endif
1507 {
1508 .ops = &ctrl_ops,
1509 .id = V4L2_CID_BIN_FACTOR_HORZ,
1510 .name = "horizontal binning factor",
1511 .type = V4L2_CTRL_TYPE_INTEGER,
1512 .min = 0,
1513 .max = MT9M114_BIN_FACTOR_MAX,
1514 .step = 1,
1515 .def = 0,
1516 .flags = 0,
1517 },
1518 {
1519 .ops = &ctrl_ops,
1520 .id = V4L2_CID_BIN_FACTOR_VERT,
1521 .name = "vertical binning factor",
1522 .type = V4L2_CTRL_TYPE_INTEGER,
1523 .min = 0,
1524 .max = MT9M114_BIN_FACTOR_MAX,
1525 .step = 1,
1526 .def = 0,
1527 .flags = 0,
1528 },
1529 {
1530 .ops = &ctrl_ops,
1531 .id = V4L2_CID_EXPOSURE,
1532 .name = "exposure biasx",
1533 .type = V4L2_CTRL_TYPE_INTEGER,
1534 .min = -2,
1535 .max = 2,
1536 .step = 1,
1537 .def = 0,
1538 .flags = 0,
1539 },
1540 {
1541 .ops = &ctrl_ops,
1542 .id = V4L2_CID_3A_LOCK,
1543 .name = "3a lock",
1544 .type = V4L2_CTRL_TYPE_BITMASK,
1545 .min = 0,
1546 .max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1547 .step = 1,
1548 .def = 0,
1549 .flags = 0,
1550 },
1551};
1552
1553static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1554{
1555 struct i2c_adapter *adapter = client->adapter;
1556 u32 retvalue;
1557
1558 if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1559 dev_err(&client->dev, "%s: i2c error", __func__);
1560 return -ENODEV;
1561 }
1562 mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1563 dev->real_model_id = retvalue;
1564
1565 if (retvalue != MT9M114_MOD_ID) {
1566 dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1567 __func__, client->addr);
1568 return -ENODEV;
1569 }
1570
1571 return 0;
1572}
1573
1574static int
1575mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1576{
1577 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1578 struct i2c_client *client = v4l2_get_subdevdata(sd);
1579 int ret;
1580
1581 if (NULL == platform_data)
1582 return -ENODEV;
1583
1584 dev->platform_data =
1585 (struct camera_sensor_platform_data *)platform_data;
1586
1587 if (dev->platform_data->platform_init) {
1588 ret = dev->platform_data->platform_init(client);
1589 if (ret) {
1590 v4l2_err(client, "mt9m114 platform init err\n");
1591 return ret;
1592 }
1593 }
1594 ret = power_up(sd);
1595 if (ret) {
1596 v4l2_err(client, "mt9m114 power-up err");
1597 return ret;
1598 }
1599
1600 /* config & detect sensor */
1601 ret = mt9m114_detect(dev, client);
1602 if (ret) {
1603 v4l2_err(client, "mt9m114_detect err s_config.\n");
1604 goto fail_detect;
1605 }
1606
1607 ret = dev->platform_data->csi_cfg(sd, 1);
1608 if (ret)
1609 goto fail_csi_cfg;
1610
1611 ret = mt9m114_set_suspend(sd);
1612 if (ret) {
1613 v4l2_err(client, "mt9m114 suspend err");
1614 return ret;
1615 }
1616
1617 ret = power_down(sd);
1618 if (ret) {
1619 v4l2_err(client, "mt9m114 power down err");
1620 return ret;
1621 }
1622
1623 return ret;
1624
1625fail_csi_cfg:
1626 dev->platform_data->csi_cfg(sd, 0);
1627fail_detect:
1628 power_down(sd);
1629 dev_err(&client->dev, "sensor power-gating failed\n");
1630 return ret;
1631}
1632
1633/* Horizontal flip the image. */
1634static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1635{
1636 struct i2c_client *c = v4l2_get_subdevdata(sd);
1637 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1638 int err;
1639 /* set for direct mode */
1640 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1641 if (value) {
1642 /* enable H flip ctx A */
1643 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1644 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1645 /* ctx B */
1646 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1647 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1648
1649 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1650 MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1651
1652 dev->bpat = MT9M114_BPAT_GRGRBGBG;
1653 } else {
1654 /* disable H flip ctx A */
1655 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1656 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1657 /* ctx B */
1658 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1659 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1660
1661 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1662 MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1663
1664 dev->bpat = MT9M114_BPAT_BGBGGRGR;
1665 }
1666
1667 err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1668 udelay(10);
1669
1670 return !!err;
1671}
1672
1673/* Vertically flip the image */
1674static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1675{
1676 struct i2c_client *c = v4l2_get_subdevdata(sd);
1677 int err;
1678 /* set for direct mode */
1679 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1680 if (value >= 1) {
1681 /* enable H flip - ctx A */
1682 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1683 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1684 /* ctx B */
1685 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1686 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1687
1688 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1689 MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1690 } else {
1691 /* disable H flip - ctx A */
1692 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1693 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1694 /* ctx B */
1695 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1696 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1697
1698 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1699 MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1700 }
1701
1702 err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1703 udelay(10);
1704
1705 return !!err;
1706}
1707static int mt9m114_s_parm(struct v4l2_subdev *sd,
1708 struct v4l2_streamparm *param)
1709{
1710 return 0;
1711}
1712
1713static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1714 struct v4l2_subdev_frame_interval *interval)
1715{
1716 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1717
1718 interval->interval.numerator = 1;
1719 interval->interval.denominator = mt9m114_res[dev->res].fps;
1720
1721 return 0;
1722}
1723
1724static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1725{
1726 int ret;
1727 struct i2c_client *c = v4l2_get_subdevdata(sd);
1728 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1729 struct atomisp_exposure exposure;
1730
1731 if (enable) {
1732 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1733 POST_POLLING);
1734 if (ret < 0)
1735 return ret;
1736
1737 if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1738 exposure.integration_time[0] = dev->first_exp;
1739 exposure.gain[0] = dev->first_gain;
1740 exposure.gain[1] = dev->first_diggain;
1741 mt9m114_s_exposure(sd, &exposure);
1742 }
1743 dev->streamon = 1;
1744
1745 } else {
1746 dev->streamon = 0;
1747 ret = mt9m114_set_suspend(sd);
1748 }
1749
1750 return ret;
1751}
1752
1753static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1754 struct v4l2_subdev_pad_config *cfg,
1755 struct v4l2_subdev_mbus_code_enum *code)
1756{
1757 if (code->index)
1758 return -EINVAL;
1759 code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1760
1761 return 0;
1762}
1763
1764static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1765 struct v4l2_subdev_pad_config *cfg,
1766 struct v4l2_subdev_frame_size_enum *fse)
1767{
1768
1769 unsigned int index = fse->index;
1770
1771 if (index >= N_RES)
1772 return -EINVAL;
1773
1774 fse->min_width = mt9m114_res[index].width;
1775 fse->min_height = mt9m114_res[index].height;
1776 fse->max_width = mt9m114_res[index].width;
1777 fse->max_height = mt9m114_res[index].height;
1778
1779 return 0;
1780}
1781
1782static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1783{
1784 int index;
1785 struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1786
1787 if (frames == NULL)
1788 return -EINVAL;
1789
1790 for (index = 0; index < N_RES; index++) {
1791 if (mt9m114_res[index].res == snr->res)
1792 break;
1793 }
1794
1795 if (index >= N_RES)
1796 return -EINVAL;
1797
1798 *frames = mt9m114_res[index].skip_frames;
1799
1800 return 0;
1801}
1802
1803static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1804 .s_parm = mt9m114_s_parm,
1805 .s_stream = mt9m114_s_stream,
1806 .g_frame_interval = mt9m114_g_frame_interval,
1807};
1808
65058214 1809static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
a49d2536
AC
1810 .g_skip_frames = mt9m114_g_skip_frames,
1811};
1812
1813static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1814 .s_power = mt9m114_s_power,
1815 .ioctl = mt9m114_ioctl,
1816};
1817
1818/* REVISIT: Do we need pad operations? */
1819static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1820 .enum_mbus_code = mt9m114_enum_mbus_code,
1821 .enum_frame_size = mt9m114_enum_frame_size,
1822 .get_fmt = mt9m114_get_fmt,
1823 .set_fmt = mt9m114_set_fmt,
1824#ifndef CSS15
1825 .set_selection = mt9m114_s_exposure_selection,
1826#endif
1827};
1828
1829static const struct v4l2_subdev_ops mt9m114_ops = {
1830 .core = &mt9m114_core_ops,
1831 .video = &mt9m114_video_ops,
1832 .pad = &mt9m114_pad_ops,
1833 .sensor = &mt9m114_sensor_ops,
1834};
1835
1836static const struct media_entity_operations mt9m114_entity_ops = {
1837 .link_setup = NULL,
1838};
1839
1840static int mt9m114_remove(struct i2c_client *client)
1841{
1842 struct mt9m114_device *dev;
1843 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1844
1845 dev = container_of(sd, struct mt9m114_device, sd);
1846 dev->platform_data->csi_cfg(sd, 0);
1847 if (dev->platform_data->platform_deinit)
1848 dev->platform_data->platform_deinit();
1849 v4l2_device_unregister_subdev(sd);
1850 media_entity_cleanup(&dev->sd.entity);
1851 v4l2_ctrl_handler_free(&dev->ctrl_handler);
1852 kfree(dev);
1853 return 0;
1854}
1855
1856static int mt9m114_probe(struct i2c_client *client,
1857 const struct i2c_device_id *id)
1858{
1859 struct mt9m114_device *dev;
1860 int ret = 0;
1861 unsigned int i;
1862 void *pdata;
1863
1864 /* Setup sensor configuration structure */
1865 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
309167b9 1866 if (!dev)
a49d2536 1867 return -ENOMEM;
a49d2536
AC
1868
1869 v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1870 pdata = client->dev.platform_data;
1871 if (ACPI_COMPANION(&client->dev))
1872 pdata = gmin_camera_platform_data(&dev->sd,
1873 ATOMISP_INPUT_FORMAT_RAW_10,
1874 atomisp_bayer_order_grbg);
1875 if (pdata)
1876 ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1877 if (!pdata || ret) {
1878 v4l2_device_unregister_subdev(&dev->sd);
1879 kfree(dev);
1880 return ret;
1881 }
1882
1883 ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1884 if (ret) {
1885 v4l2_device_unregister_subdev(&dev->sd);
1886 kfree(dev);
1887 /* Coverity CID 298095 - return on error */
1888 return ret;
1889 }
1890
1891 /*TODO add format code here*/
1892 dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1893 dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1894 dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1895 dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1896
1897 ret =
1898 v4l2_ctrl_handler_init(&dev->ctrl_handler,
1899 ARRAY_SIZE(mt9m114_controls));
1900 if (ret) {
1901 mt9m114_remove(client);
1902 return ret;
1903 }
1904
1905 for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1906 v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1907 NULL);
1908
1909 if (dev->ctrl_handler.error) {
1910 mt9m114_remove(client);
1911 return dev->ctrl_handler.error;
1912 }
1913
1914 /* Use same lock for controls as for everything else. */
1915 dev->ctrl_handler.lock = &dev->input_lock;
1916 dev->sd.ctrl_handler = &dev->ctrl_handler;
1917
1918 /* REVISIT: Do we need media controller? */
1919 ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1920 if (ret) {
1921 mt9m114_remove(client);
1922 return ret;
1923 }
1924 return 0;
1925}
1926
1927MODULE_DEVICE_TABLE(i2c, mt9m114_id);
1928
3f9ae4b9 1929static const struct acpi_device_id mt9m114_acpi_match[] = {
a49d2536
AC
1930 { "INT33F0" },
1931 { "CRMT1040" },
1932 {},
1933};
1934
1935MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1936
1937static struct i2c_driver mt9m114_driver = {
1938 .driver = {
a49d2536
AC
1939 .name = "mt9m114",
1940 .acpi_match_table = ACPI_PTR(mt9m114_acpi_match),
1941 },
1942 .probe = mt9m114_probe,
1943 .remove = mt9m114_remove,
1944 .id_table = mt9m114_id,
1945};
2cb63c4c 1946module_i2c_driver(mt9m114_driver);
a49d2536
AC
1947
1948MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1949MODULE_LICENSE("GPL");