]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/staging/rdma/hfi1/chip.c
staging/rdma/hfi1: Fix qp.h comments
[mirror_ubuntu-jammy-kernel.git] / drivers / staging / rdma / hfi1 / chip.c
CommitLineData
77241056
MM
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
5d9157aa 66#include "efivar.h"
77241056
MM
67
68#define NUM_IB_PORTS 1
69
70uint kdeth_qp;
71module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73
74uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75module_param(num_vls, uint, S_IRUGO);
76MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77
78/*
79 * Default time to aggregate two 10K packets from the idle state
80 * (timer not running). The timer starts at the end of the first packet,
81 * so only the time for one 10K packet and header plus a bit extra is needed.
82 * 10 * 1024 + 64 header byte = 10304 byte
83 * 10304 byte / 12.5 GB/s = 824.32ns
84 */
85uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86module_param(rcv_intr_timeout, uint, S_IRUGO);
87MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88
89uint rcv_intr_count = 16; /* same as qib */
90module_param(rcv_intr_count, uint, S_IRUGO);
91MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92
93ushort link_crc_mask = SUPPORTED_CRCS;
94module_param(link_crc_mask, ushort, S_IRUGO);
95MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96
97uint loopback;
98module_param_named(loopback, loopback, uint, S_IRUGO);
99MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100
101/* Other driver tunables */
102uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103static ushort crc_14b_sideband = 1;
104static uint use_flr = 1;
105uint quick_linkup; /* skip LNI */
106
107struct flag_table {
108 u64 flag; /* the flag */
109 char *str; /* description string */
110 u16 extra; /* extra information */
111 u16 unused0;
112 u32 unused1;
113};
114
115/* str must be a string constant */
116#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117#define FLAG_ENTRY0(str, flag) {flag, str, 0}
118
119/* Send Error Consequences */
120#define SEC_WRITE_DROPPED 0x1
121#define SEC_PACKET_DROPPED 0x2
122#define SEC_SC_HALTED 0x4 /* per-context only */
123#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
124
77241056 125#define MIN_KERNEL_KCTXTS 2
82c2611d 126#define FIRST_KERNEL_KCTXT 1
77241056
MM
127#define NUM_MAP_REGS 32
128
129/* Bit offset into the GUID which carries HFI id information */
130#define GUID_HFI_INDEX_SHIFT 39
131
132/* extract the emulation revision */
133#define emulator_rev(dd) ((dd)->irev >> 8)
134/* parallel and serial emulation versions are 3 and 4 respectively */
135#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
136#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
137
138/* RSM fields */
139
140/* packet type */
141#define IB_PACKET_TYPE 2ull
142#define QW_SHIFT 6ull
143/* QPN[7..1] */
144#define QPN_WIDTH 7ull
145
146/* LRH.BTH: QW 0, OFFSET 48 - for match */
147#define LRH_BTH_QW 0ull
148#define LRH_BTH_BIT_OFFSET 48ull
149#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
150#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
151#define LRH_BTH_SELECT
152#define LRH_BTH_MASK 3ull
153#define LRH_BTH_VALUE 2ull
154
155/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
156#define LRH_SC_QW 0ull
157#define LRH_SC_BIT_OFFSET 56ull
158#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
159#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
160#define LRH_SC_MASK 128ull
161#define LRH_SC_VALUE 0ull
162
163/* SC[n..0] QW 0, OFFSET 60 - for select */
164#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
165
166/* QPN[m+n:1] QW 1, OFFSET 1 */
167#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
168
169/* defines to build power on SC2VL table */
170#define SC2VL_VAL( \
171 num, \
172 sc0, sc0val, \
173 sc1, sc1val, \
174 sc2, sc2val, \
175 sc3, sc3val, \
176 sc4, sc4val, \
177 sc5, sc5val, \
178 sc6, sc6val, \
179 sc7, sc7val) \
180( \
181 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
182 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
183 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
184 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
185 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
186 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
187 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
188 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
189)
190
191#define DC_SC_VL_VAL( \
192 range, \
193 e0, e0val, \
194 e1, e1val, \
195 e2, e2val, \
196 e3, e3val, \
197 e4, e4val, \
198 e5, e5val, \
199 e6, e6val, \
200 e7, e7val, \
201 e8, e8val, \
202 e9, e9val, \
203 e10, e10val, \
204 e11, e11val, \
205 e12, e12val, \
206 e13, e13val, \
207 e14, e14val, \
208 e15, e15val) \
209( \
210 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
211 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
212 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
213 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
214 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
215 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
216 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
217 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
218 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
219 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
220 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
221 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
222 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
223 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
224 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
225 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
226)
227
228/* all CceStatus sub-block freeze bits */
229#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
230 | CCE_STATUS_RXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_FROZE_SMASK \
232 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
233/* all CceStatus sub-block TXE pause bits */
234#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
235 | CCE_STATUS_TXE_PAUSED_SMASK \
236 | CCE_STATUS_SDMA_PAUSED_SMASK)
237/* all CceStatus sub-block RXE pause bits */
238#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
239
240/*
241 * CCE Error flags.
242 */
243static struct flag_table cce_err_status_flags[] = {
244/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
245 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
246/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
247 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
248/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
249 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
250/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
251 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
252/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
253 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
254/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
255 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
256/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
257 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
258/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
259 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
260/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
261 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
262/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
263 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
264/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
265 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
266/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
267 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
268/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
270/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
271 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
272/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
273 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
274/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
275 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
276/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
277 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
278/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
279 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
280/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
281 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
282/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
283 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
284/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
285 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
286/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
287 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
288/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
289 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
290/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
291 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
292/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
293 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
294/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
295 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
296/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
297 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
298/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
299 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
300/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
301 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
302/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
303 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
304/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
305 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
306/*31*/ FLAG_ENTRY0("LATriggered",
307 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
308/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
309 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
310/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
311 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
312/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
313 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
314/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
315 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
316/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
317 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
318/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
319 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
320/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
321 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
322/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
323 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
324/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
325 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
326/*41-63 reserved*/
327};
328
329/*
330 * Misc Error flags
331 */
332#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
333static struct flag_table misc_err_status_flags[] = {
334/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
335/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
336/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
337/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
338/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
339/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
340/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
341/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
342/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
343/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
344/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
345/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
346/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
347};
348
349/*
350 * TXE PIO Error flags and consequences
351 */
352static struct flag_table pio_err_status_flags[] = {
353/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
354 SEC_WRITE_DROPPED,
355 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
356/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
357 SEC_SPC_FREEZE,
358 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
359/* 2*/ FLAG_ENTRY("PioCsrParity",
360 SEC_SPC_FREEZE,
361 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
362/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
363 SEC_SPC_FREEZE,
364 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
365/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
366 SEC_SPC_FREEZE,
367 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
368/* 5*/ FLAG_ENTRY("PioPccFifoParity",
369 SEC_SPC_FREEZE,
370 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
371/* 6*/ FLAG_ENTRY("PioPecFifoParity",
372 SEC_SPC_FREEZE,
373 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
374/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
375 SEC_SPC_FREEZE,
376 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
377/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
378 SEC_SPC_FREEZE,
379 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
380/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
381 SEC_SPC_FREEZE,
382 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
383/*10*/ FLAG_ENTRY("PioSmPktResetParity",
384 SEC_SPC_FREEZE,
385 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
386/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
387 SEC_SPC_FREEZE,
388 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
389/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
390 SEC_SPC_FREEZE,
391 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
392/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
393 0,
394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
395/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
396 0,
397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
398/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
399 SEC_SPC_FREEZE,
400 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
401/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
402 SEC_SPC_FREEZE,
403 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
404/*17*/ FLAG_ENTRY("PioInitSmIn",
405 0,
406 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
407/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
408 SEC_SPC_FREEZE,
409 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
410/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
411 SEC_SPC_FREEZE,
412 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
413/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
414 0,
415 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
416/*21*/ FLAG_ENTRY("PioWriteDataParity",
417 SEC_SPC_FREEZE,
418 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
419/*22*/ FLAG_ENTRY("PioStateMachine",
420 SEC_SPC_FREEZE,
421 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
422/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
423 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
424 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
425/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
426 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
427 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
428/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
429 SEC_SPC_FREEZE,
430 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
431/*26*/ FLAG_ENTRY("PioVlfSopParity",
432 SEC_SPC_FREEZE,
433 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
434/*27*/ FLAG_ENTRY("PioVlFifoParity",
435 SEC_SPC_FREEZE,
436 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
437/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
438 SEC_SPC_FREEZE,
439 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
440/*29*/ FLAG_ENTRY("PioPpmcSopLen",
441 SEC_SPC_FREEZE,
442 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
443/*30-31 reserved*/
444/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
445 SEC_SPC_FREEZE,
446 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
447/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
448 SEC_SPC_FREEZE,
449 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
450/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
451 SEC_SPC_FREEZE,
452 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
453/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
454 SEC_SPC_FREEZE,
455 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
456/*36-63 reserved*/
457};
458
459/* TXE PIO errors that cause an SPC freeze */
460#define ALL_PIO_FREEZE_ERR \
461 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
490
491/*
492 * TXE SDMA Error flags
493 */
494static struct flag_table sdma_err_status_flags[] = {
495/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
496 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
497/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
498 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
499/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
500 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
501/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
502 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
503/*04-63 reserved*/
504};
505
506/* TXE SDMA errors that cause an SPC freeze */
507#define ALL_SDMA_FREEZE_ERR \
508 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
510 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
511
512/*
513 * TXE Egress Error flags
514 */
515#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
516static struct flag_table egress_err_status_flags[] = {
517/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
518/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
519/* 2 reserved */
520/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
521 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
522/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
523/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
524/* 6 reserved */
525/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
526 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
527/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
528 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
529/* 9-10 reserved */
530/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
531 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
532/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
533/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
534/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
535/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
536/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
537 SEES(TX_SDMA0_DISALLOWED_PACKET)),
538/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
539 SEES(TX_SDMA1_DISALLOWED_PACKET)),
540/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
541 SEES(TX_SDMA2_DISALLOWED_PACKET)),
542/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
543 SEES(TX_SDMA3_DISALLOWED_PACKET)),
544/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
545 SEES(TX_SDMA4_DISALLOWED_PACKET)),
546/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
547 SEES(TX_SDMA5_DISALLOWED_PACKET)),
548/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
549 SEES(TX_SDMA6_DISALLOWED_PACKET)),
550/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
551 SEES(TX_SDMA7_DISALLOWED_PACKET)),
552/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
553 SEES(TX_SDMA8_DISALLOWED_PACKET)),
554/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
555 SEES(TX_SDMA9_DISALLOWED_PACKET)),
556/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
557 SEES(TX_SDMA10_DISALLOWED_PACKET)),
558/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
559 SEES(TX_SDMA11_DISALLOWED_PACKET)),
560/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
561 SEES(TX_SDMA12_DISALLOWED_PACKET)),
562/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
563 SEES(TX_SDMA13_DISALLOWED_PACKET)),
564/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
565 SEES(TX_SDMA14_DISALLOWED_PACKET)),
566/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
567 SEES(TX_SDMA15_DISALLOWED_PACKET)),
568/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
569 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
570/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
571 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
572/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
573 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
574/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
575 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
576/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
577 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
578/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
579 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
580/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
582/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
584/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
586/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
587/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
588/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
589/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
590/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
591/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
592/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
593/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
594/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
595/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
596/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
597/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
598/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
599/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
600/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
601/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
602/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
603/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
604/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
605/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
606/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
607/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
608 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
609/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
610 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
611};
612
613/*
614 * TXE Egress Error Info flags
615 */
616#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
617static struct flag_table egress_err_info_flags[] = {
618/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
619/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
620/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
621/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
622/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
623/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
624/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
625/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
626/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
627/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
628/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
629/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
630/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
631/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
632/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
633/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
634/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
635/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
636/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
637/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
638/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
639/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
640};
641
642/* TXE Egress errors that cause an SPC freeze */
643#define ALL_TXE_EGRESS_FREEZE_ERR \
644 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
645 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
646 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
647 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
648 | SEES(TX_LAUNCH_CSR_PARITY) \
649 | SEES(TX_SBRD_CTL_CSR_PARITY) \
650 | SEES(TX_CONFIG_PARITY) \
651 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
652 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
653 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
654 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
655 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
656 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
659 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
660 | SEES(TX_CREDIT_RETURN_PARITY))
661
662/*
663 * TXE Send error flags
664 */
665#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
666static struct flag_table send_err_status_flags[] = {
667/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", SES(CSR_PARITY)),
668/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
669/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
670};
671
672/*
673 * TXE Send Context Error flags and consequences
674 */
675static struct flag_table sc_err_status_flags[] = {
676/* 0*/ FLAG_ENTRY("InconsistentSop",
677 SEC_PACKET_DROPPED | SEC_SC_HALTED,
678 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
679/* 1*/ FLAG_ENTRY("DisallowedPacket",
680 SEC_PACKET_DROPPED | SEC_SC_HALTED,
681 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
682/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
683 SEC_WRITE_DROPPED | SEC_SC_HALTED,
684 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
685/* 3*/ FLAG_ENTRY("WriteOverflow",
686 SEC_WRITE_DROPPED | SEC_SC_HALTED,
687 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
688/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
689 SEC_WRITE_DROPPED | SEC_SC_HALTED,
690 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
691/* 5-63 reserved*/
692};
693
694/*
695 * RXE Receive Error flags
696 */
697#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
698static struct flag_table rxe_err_status_flags[] = {
699/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
700/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
701/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
702/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
703/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
704/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
705/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
706/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
707/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
708/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
709/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
710/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
711/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
712/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
713/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
714/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
715/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
716 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
717/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
718/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
719/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
720 RXES(RBUF_BLOCK_LIST_READ_UNC)),
721/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
722 RXES(RBUF_BLOCK_LIST_READ_COR)),
723/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
724 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
725/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
726 RXES(RBUF_CSR_QENT_CNT_PARITY)),
727/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
728 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
729/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
730 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
731/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
732/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
733/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
734 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
735/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
736/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
737/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
738/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
739/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
740/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
741/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
742/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
743 RXES(RBUF_FL_INITDONE_PARITY)),
744/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
745 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
746/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
747/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
748/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
749/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
750 RXES(LOOKUP_DES_PART1_UNC_COR)),
751/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
752 RXES(LOOKUP_DES_PART2_PARITY)),
753/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
754/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
755/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
756/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
757/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
758/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
759/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
760/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
761/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
762/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
763/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
764/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
765/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
766/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
767/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
768/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
769/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
770/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
771/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
772/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
773/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
774/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
775};
776
777/* RXE errors that will trigger an SPC freeze */
778#define ALL_RXE_FREEZE_ERR \
779 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
780 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
781 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
782 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
783 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
784 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
823
824#define RXE_FREEZE_ABORT_MASK \
825 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
826 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
827 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
828
829/*
830 * DCC Error Flags
831 */
832#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
833static struct flag_table dcc_err_flags[] = {
834 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
835 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
836 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
837 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
838 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
839 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
840 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
841 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
842 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
843 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
844 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
845 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
846 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
847 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
848 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
849 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
850 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
851 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
852 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
853 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
854 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
855 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
856 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
857 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
858 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
859 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
860 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
861 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
862 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
863 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
864 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
865 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
866 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
867 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
868 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
869 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
870 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
871 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
872 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
873 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
874 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
875 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
876 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
877 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
878 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
879 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
880};
881
882/*
883 * LCB error flags
884 */
885#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
886static struct flag_table lcb_err_flags[] = {
887/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
888/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
889/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
890/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
891 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
892/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
893/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
894/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
895/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
896/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
897/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
898/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
899/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
900/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
901/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
902 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
903/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
904/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
905/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
906/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
907/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
908/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
909 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
910/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
911/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
912/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
913/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
914/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
915/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
916/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
917 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
918/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
919/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
920 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
921/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
922 LCBE(REDUNDANT_FLIT_PARITY_ERR))
923};
924
925/*
926 * DC8051 Error Flags
927 */
928#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
929static struct flag_table dc8051_err_flags[] = {
930 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
931 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
932 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
933 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
934 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
935 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
936 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
937 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
938 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
939 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
940 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
941};
942
943/*
944 * DC8051 Information Error flags
945 *
946 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
947 */
948static struct flag_table dc8051_info_err_flags[] = {
949 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
950 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
951 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
952 FLAG_ENTRY0("Serdes internal loopback failure",
953 FAILED_SERDES_INTERNAL_LOOPBACK),
954 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
955 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
956 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
957 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
958 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
959 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
960 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
961 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
962};
963
964/*
965 * DC8051 Information Host Information flags
966 *
967 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
968 */
969static struct flag_table dc8051_info_host_msg_flags[] = {
970 FLAG_ENTRY0("Host request done", 0x0001),
971 FLAG_ENTRY0("BC SMA message", 0x0002),
972 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
973 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
974 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
975 FLAG_ENTRY0("External device config request", 0x0020),
976 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
977 FLAG_ENTRY0("LinkUp achieved", 0x0080),
978 FLAG_ENTRY0("Link going down", 0x0100),
979};
980
981
982static u32 encoded_size(u32 size);
983static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
984static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
985static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
986 u8 *continuous);
987static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
988 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
989static void read_vc_remote_link_width(struct hfi1_devdata *dd,
990 u8 *remote_tx_rate, u16 *link_widths);
991static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
992 u8 *flag_bits, u16 *link_widths);
993static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
994 u8 *device_rev);
995static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
996static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
997static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
998 u8 *tx_polarity_inversion,
999 u8 *rx_polarity_inversion, u8 *max_rate);
1000static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1001 unsigned int context, u64 err_status);
1002static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1003static void handle_dcc_err(struct hfi1_devdata *dd,
1004 unsigned int context, u64 err_status);
1005static void handle_lcb_err(struct hfi1_devdata *dd,
1006 unsigned int context, u64 err_status);
1007static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1008static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1009static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1010static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1011static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1012static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1015static void set_partition_keys(struct hfi1_pportdata *);
1016static const char *link_state_name(u32 state);
1017static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1018 u32 state);
1019static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1020 u64 *out_data);
1021static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1022static int thermal_init(struct hfi1_devdata *dd);
1023
1024static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1025 int msecs);
1026static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1027static void handle_temp_err(struct hfi1_devdata *);
1028static void dc_shutdown(struct hfi1_devdata *);
1029static void dc_start(struct hfi1_devdata *);
1030
1031/*
1032 * Error interrupt table entry. This is used as input to the interrupt
1033 * "clear down" routine used for all second tier error interrupt register.
1034 * Second tier interrupt registers have a single bit representing them
1035 * in the top-level CceIntStatus.
1036 */
1037struct err_reg_info {
1038 u32 status; /* status CSR offset */
1039 u32 clear; /* clear CSR offset */
1040 u32 mask; /* mask CSR offset */
1041 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1042 const char *desc;
1043};
1044
1045#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1046#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1047#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1048
1049/*
1050 * Helpers for building HFI and DC error interrupt table entries. Different
1051 * helpers are needed because of inconsistent register names.
1052 */
1053#define EE(reg, handler, desc) \
1054 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1055 handler, desc }
1056#define DC_EE1(reg, handler, desc) \
1057 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1058#define DC_EE2(reg, handler, desc) \
1059 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1060
1061/*
1062 * Table of the "misc" grouping of error interrupts. Each entry refers to
1063 * another register containing more information.
1064 */
1065static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1066/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1067/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1068/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1069/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1070/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1071/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1072/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1073/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1074 /* the rest are reserved */
1075};
1076
1077/*
1078 * Index into the Various section of the interrupt sources
1079 * corresponding to the Critical Temperature interrupt.
1080 */
1081#define TCRIT_INT_SOURCE 4
1082
1083/*
1084 * SDMA error interrupt entry - refers to another register containing more
1085 * information.
1086 */
1087static const struct err_reg_info sdma_eng_err =
1088 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1089
1090static const struct err_reg_info various_err[NUM_VARIOUS] = {
1091/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1092/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1093/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1094/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1095/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1096 /* rest are reserved */
1097};
1098
1099/*
1100 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1101 * register can not be derived from the MTU value because 10K is not
1102 * a power of 2. Therefore, we need a constant. Everything else can
1103 * be calculated.
1104 */
1105#define DCC_CFG_PORT_MTU_CAP_10240 7
1106
1107/*
1108 * Table of the DC grouping of error interrupts. Each entry refers to
1109 * another register containing more information.
1110 */
1111static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1112/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1113/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1114/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1115/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1116 /* the rest are reserved */
1117};
1118
1119struct cntr_entry {
1120 /*
1121 * counter name
1122 */
1123 char *name;
1124
1125 /*
1126 * csr to read for name (if applicable)
1127 */
1128 u64 csr;
1129
1130 /*
1131 * offset into dd or ppd to store the counter's value
1132 */
1133 int offset;
1134
1135 /*
1136 * flags
1137 */
1138 u8 flags;
1139
1140 /*
1141 * accessor for stat element, context either dd or ppd
1142 */
1143 u64 (*rw_cntr)(const struct cntr_entry *,
1144 void *context,
1145 int vl,
1146 int mode,
1147 u64 data);
1148};
1149
1150#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1151#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1152
1153#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1154{ \
1155 name, \
1156 csr, \
1157 offset, \
1158 flags, \
1159 accessor \
1160}
1161
1162/* 32bit RXE */
1163#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1164CNTR_ELEM(#name, \
1165 (counter * 8 + RCV_COUNTER_ARRAY32), \
1166 0, flags | CNTR_32BIT, \
1167 port_access_u32_csr)
1168
1169#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1170CNTR_ELEM(#name, \
1171 (counter * 8 + RCV_COUNTER_ARRAY32), \
1172 0, flags | CNTR_32BIT, \
1173 dev_access_u32_csr)
1174
1175/* 64bit RXE */
1176#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1177CNTR_ELEM(#name, \
1178 (counter * 8 + RCV_COUNTER_ARRAY64), \
1179 0, flags, \
1180 port_access_u64_csr)
1181
1182#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1183CNTR_ELEM(#name, \
1184 (counter * 8 + RCV_COUNTER_ARRAY64), \
1185 0, flags, \
1186 dev_access_u64_csr)
1187
1188#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1189#define OVR_ELM(ctx) \
1190CNTR_ELEM("RcvHdrOvr" #ctx, \
1191 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1192 0, CNTR_NORMAL, port_access_u64_csr)
1193
1194/* 32bit TXE */
1195#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1196CNTR_ELEM(#name, \
1197 (counter * 8 + SEND_COUNTER_ARRAY32), \
1198 0, flags | CNTR_32BIT, \
1199 port_access_u32_csr)
1200
1201/* 64bit TXE */
1202#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1203CNTR_ELEM(#name, \
1204 (counter * 8 + SEND_COUNTER_ARRAY64), \
1205 0, flags, \
1206 port_access_u64_csr)
1207
1208# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1209CNTR_ELEM(#name,\
1210 counter * 8 + SEND_COUNTER_ARRAY64, \
1211 0, \
1212 flags, \
1213 dev_access_u64_csr)
1214
1215/* CCE */
1216#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1217CNTR_ELEM(#name, \
1218 (counter * 8 + CCE_COUNTER_ARRAY32), \
1219 0, flags | CNTR_32BIT, \
1220 dev_access_u32_csr)
1221
1222#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1223CNTR_ELEM(#name, \
1224 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1225 0, flags | CNTR_32BIT, \
1226 dev_access_u32_csr)
1227
1228/* DC */
1229#define DC_PERF_CNTR(name, counter, flags) \
1230CNTR_ELEM(#name, \
1231 counter, \
1232 0, \
1233 flags, \
1234 dev_access_u64_csr)
1235
1236#define DC_PERF_CNTR_LCB(name, counter, flags) \
1237CNTR_ELEM(#name, \
1238 counter, \
1239 0, \
1240 flags, \
1241 dc_access_lcb_cntr)
1242
1243/* ibp counters */
1244#define SW_IBP_CNTR(name, cntr) \
1245CNTR_ELEM(#name, \
1246 0, \
1247 0, \
1248 CNTR_SYNTH, \
1249 access_ibp_##cntr)
1250
1251u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1252{
1253 u64 val;
1254
1255 if (dd->flags & HFI1_PRESENT) {
1256 val = readq((void __iomem *)dd->kregbase + offset);
1257 return val;
1258 }
1259 return -1;
1260}
1261
1262void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1263{
1264 if (dd->flags & HFI1_PRESENT)
1265 writeq(value, (void __iomem *)dd->kregbase + offset);
1266}
1267
1268void __iomem *get_csr_addr(
1269 struct hfi1_devdata *dd,
1270 u32 offset)
1271{
1272 return (void __iomem *)dd->kregbase + offset;
1273}
1274
1275static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1276 int mode, u64 value)
1277{
1278 u64 ret;
1279
1280
1281 if (mode == CNTR_MODE_R) {
1282 ret = read_csr(dd, csr);
1283 } else if (mode == CNTR_MODE_W) {
1284 write_csr(dd, csr, value);
1285 ret = value;
1286 } else {
1287 dd_dev_err(dd, "Invalid cntr register access mode");
1288 return 0;
1289 }
1290
1291 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1292 return ret;
1293}
1294
1295/* Dev Access */
1296static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1297 void *context, int vl, int mode, u64 data)
1298{
a787bde8 1299 struct hfi1_devdata *dd = context;
77241056
MM
1300
1301 if (vl != CNTR_INVALID_VL)
1302 return 0;
1303 return read_write_csr(dd, entry->csr, mode, data);
1304}
1305
1306static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1307 int vl, int mode, u64 data)
1308{
a787bde8 1309 struct hfi1_devdata *dd = context;
77241056
MM
1310
1311 u64 val = 0;
1312 u64 csr = entry->csr;
1313
1314 if (entry->flags & CNTR_VL) {
1315 if (vl == CNTR_INVALID_VL)
1316 return 0;
1317 csr += 8 * vl;
1318 } else {
1319 if (vl != CNTR_INVALID_VL)
1320 return 0;
1321 }
1322
1323 val = read_write_csr(dd, csr, mode, data);
1324 return val;
1325}
1326
1327static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1328 int vl, int mode, u64 data)
1329{
a787bde8 1330 struct hfi1_devdata *dd = context;
77241056
MM
1331 u32 csr = entry->csr;
1332 int ret = 0;
1333
1334 if (vl != CNTR_INVALID_VL)
1335 return 0;
1336 if (mode == CNTR_MODE_R)
1337 ret = read_lcb_csr(dd, csr, &data);
1338 else if (mode == CNTR_MODE_W)
1339 ret = write_lcb_csr(dd, csr, data);
1340
1341 if (ret) {
1342 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1343 return 0;
1344 }
1345
1346 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1347 return data;
1348}
1349
1350/* Port Access */
1351static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1352 int vl, int mode, u64 data)
1353{
a787bde8 1354 struct hfi1_pportdata *ppd = context;
77241056
MM
1355
1356 if (vl != CNTR_INVALID_VL)
1357 return 0;
1358 return read_write_csr(ppd->dd, entry->csr, mode, data);
1359}
1360
1361static u64 port_access_u64_csr(const struct cntr_entry *entry,
1362 void *context, int vl, int mode, u64 data)
1363{
a787bde8 1364 struct hfi1_pportdata *ppd = context;
77241056
MM
1365 u64 val;
1366 u64 csr = entry->csr;
1367
1368 if (entry->flags & CNTR_VL) {
1369 if (vl == CNTR_INVALID_VL)
1370 return 0;
1371 csr += 8 * vl;
1372 } else {
1373 if (vl != CNTR_INVALID_VL)
1374 return 0;
1375 }
1376 val = read_write_csr(ppd->dd, csr, mode, data);
1377 return val;
1378}
1379
1380/* Software defined */
1381static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1382 u64 data)
1383{
1384 u64 ret;
1385
1386 if (mode == CNTR_MODE_R) {
1387 ret = *cntr;
1388 } else if (mode == CNTR_MODE_W) {
1389 *cntr = data;
1390 ret = data;
1391 } else {
1392 dd_dev_err(dd, "Invalid cntr sw access mode");
1393 return 0;
1394 }
1395
1396 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1397
1398 return ret;
1399}
1400
1401static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1402 int vl, int mode, u64 data)
1403{
a787bde8 1404 struct hfi1_pportdata *ppd = context;
77241056
MM
1405
1406 if (vl != CNTR_INVALID_VL)
1407 return 0;
1408 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1409}
1410
1411static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1412 int vl, int mode, u64 data)
1413{
a787bde8 1414 struct hfi1_pportdata *ppd = context;
77241056
MM
1415
1416 if (vl != CNTR_INVALID_VL)
1417 return 0;
1418 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1419}
1420
1421static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1422 void *context, int vl, int mode, u64 data)
1423{
a787bde8 1424 struct hfi1_pportdata *ppd = context;
77241056
MM
1425
1426 if (vl != CNTR_INVALID_VL)
1427 return 0;
1428
1429 return read_write_sw(ppd->dd, &ppd->port_xmit_discards, mode, data);
1430}
1431
1432static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1433 void *context, int vl, int mode, u64 data)
1434{
a787bde8 1435 struct hfi1_pportdata *ppd = context;
77241056
MM
1436
1437 if (vl != CNTR_INVALID_VL)
1438 return 0;
1439
1440 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1441 mode, data);
1442}
1443
1444static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1445 void *context, int vl, int mode, u64 data)
1446{
a787bde8 1447 struct hfi1_pportdata *ppd = context;
77241056
MM
1448
1449 if (vl != CNTR_INVALID_VL)
1450 return 0;
1451
1452 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1453 mode, data);
1454}
1455
1456u64 get_all_cpu_total(u64 __percpu *cntr)
1457{
1458 int cpu;
1459 u64 counter = 0;
1460
1461 for_each_possible_cpu(cpu)
1462 counter += *per_cpu_ptr(cntr, cpu);
1463 return counter;
1464}
1465
1466static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1467 u64 __percpu *cntr,
1468 int vl, int mode, u64 data)
1469{
1470
1471 u64 ret = 0;
1472
1473 if (vl != CNTR_INVALID_VL)
1474 return 0;
1475
1476 if (mode == CNTR_MODE_R) {
1477 ret = get_all_cpu_total(cntr) - *z_val;
1478 } else if (mode == CNTR_MODE_W) {
1479 /* A write can only zero the counter */
1480 if (data == 0)
1481 *z_val = get_all_cpu_total(cntr);
1482 else
1483 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1484 } else {
1485 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1486 return 0;
1487 }
1488
1489 return ret;
1490}
1491
1492static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1493 void *context, int vl, int mode, u64 data)
1494{
a787bde8 1495 struct hfi1_devdata *dd = context;
77241056
MM
1496
1497 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1498 mode, data);
1499}
1500
1501static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1502 void *context, int vl, int mode, u64 data)
1503{
a787bde8 1504 struct hfi1_devdata *dd = context;
77241056
MM
1505
1506 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1507 mode, data);
1508}
1509
1510static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1511 void *context, int vl, int mode, u64 data)
1512{
a787bde8 1513 struct hfi1_devdata *dd = context;
77241056
MM
1514
1515 return dd->verbs_dev.n_piowait;
1516}
1517
1518static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1519 void *context, int vl, int mode, u64 data)
1520{
a787bde8 1521 struct hfi1_devdata *dd = context;
77241056
MM
1522
1523 return dd->verbs_dev.n_txwait;
1524}
1525
1526static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1527 void *context, int vl, int mode, u64 data)
1528{
a787bde8 1529 struct hfi1_devdata *dd = context;
77241056
MM
1530
1531 return dd->verbs_dev.n_kmem_wait;
1532}
1533
b421922e
DL
1534static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1535 void *context, int vl, int mode, u64 data)
1536{
1537 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1538
1539 return dd->verbs_dev.n_send_schedule;
1540}
1541
77241056
MM
1542#define def_access_sw_cpu(cntr) \
1543static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
1544 void *context, int vl, int mode, u64 data) \
1545{ \
1546 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1547 return read_write_cpu(ppd->dd, &ppd->ibport_data.z_ ##cntr, \
1548 ppd->ibport_data.cntr, vl, \
1549 mode, data); \
1550}
1551
1552def_access_sw_cpu(rc_acks);
1553def_access_sw_cpu(rc_qacks);
1554def_access_sw_cpu(rc_delayed_comp);
1555
1556#define def_access_ibp_counter(cntr) \
1557static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
1558 void *context, int vl, int mode, u64 data) \
1559{ \
1560 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1561 \
1562 if (vl != CNTR_INVALID_VL) \
1563 return 0; \
1564 \
1565 return read_write_sw(ppd->dd, &ppd->ibport_data.n_ ##cntr, \
1566 mode, data); \
1567}
1568
1569def_access_ibp_counter(loop_pkts);
1570def_access_ibp_counter(rc_resends);
1571def_access_ibp_counter(rnr_naks);
1572def_access_ibp_counter(other_naks);
1573def_access_ibp_counter(rc_timeouts);
1574def_access_ibp_counter(pkt_drops);
1575def_access_ibp_counter(dmawait);
1576def_access_ibp_counter(rc_seqnak);
1577def_access_ibp_counter(rc_dupreq);
1578def_access_ibp_counter(rdma_seq);
1579def_access_ibp_counter(unaligned);
1580def_access_ibp_counter(seq_naks);
1581
1582static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
1583[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
1584[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
1585 CNTR_NORMAL),
1586[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
1587 CNTR_NORMAL),
1588[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
1589 RCV_TID_FLOW_GEN_MISMATCH_CNT,
1590 CNTR_NORMAL),
77241056
MM
1591[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
1592 CNTR_NORMAL),
1593[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
1594 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
1595[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
1596 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
1597[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
1598 CNTR_NORMAL),
1599[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
1600 CNTR_NORMAL),
1601[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
1602 CNTR_NORMAL),
1603[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
1604 CNTR_NORMAL),
1605[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
1606 CNTR_NORMAL),
1607[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
1608 CNTR_NORMAL),
1609[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
1610 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
1611[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
1612 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
1613[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
1614 CNTR_SYNTH),
1615[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
1616[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
1617 CNTR_SYNTH),
1618[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
1619 CNTR_SYNTH),
1620[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
1621 CNTR_SYNTH),
1622[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
1623 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
1624[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
1625 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
1626 CNTR_SYNTH),
1627[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
1628 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
1629[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
1630 CNTR_SYNTH),
1631[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
1632 CNTR_SYNTH),
1633[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
1634 CNTR_SYNTH),
1635[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
1636 CNTR_SYNTH),
1637[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
1638 CNTR_SYNTH),
1639[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
1640 CNTR_SYNTH),
1641[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
1642 CNTR_SYNTH),
1643[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
1644 CNTR_SYNTH | CNTR_VL),
1645[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
1646 CNTR_SYNTH | CNTR_VL),
1647[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
1648[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
1649 CNTR_SYNTH | CNTR_VL),
1650[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
1651[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
1652 CNTR_SYNTH | CNTR_VL),
1653[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
1654 CNTR_SYNTH),
1655[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
1656 CNTR_SYNTH | CNTR_VL),
1657[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
1658 CNTR_SYNTH),
1659[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
1660 CNTR_SYNTH | CNTR_VL),
1661[C_DC_TOTAL_CRC] =
1662 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
1663 CNTR_SYNTH),
1664[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
1665 CNTR_SYNTH),
1666[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
1667 CNTR_SYNTH),
1668[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
1669 CNTR_SYNTH),
1670[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
1671 CNTR_SYNTH),
1672[C_DC_CRC_MULT_LN] =
1673 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
1674 CNTR_SYNTH),
1675[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
1676 CNTR_SYNTH),
1677[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
1678 CNTR_SYNTH),
1679[C_DC_SEQ_CRC_CNT] =
1680 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
1681 CNTR_SYNTH),
1682[C_DC_ESC0_ONLY_CNT] =
1683 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
1684 CNTR_SYNTH),
1685[C_DC_ESC0_PLUS1_CNT] =
1686 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
1687 CNTR_SYNTH),
1688[C_DC_ESC0_PLUS2_CNT] =
1689 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
1690 CNTR_SYNTH),
1691[C_DC_REINIT_FROM_PEER_CNT] =
1692 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
1693 CNTR_SYNTH),
1694[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
1695 CNTR_SYNTH),
1696[C_DC_MISC_FLG_CNT] =
1697 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
1698 CNTR_SYNTH),
1699[C_DC_PRF_GOOD_LTP_CNT] =
1700 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
1701[C_DC_PRF_ACCEPTED_LTP_CNT] =
1702 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
1703 CNTR_SYNTH),
1704[C_DC_PRF_RX_FLIT_CNT] =
1705 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
1706[C_DC_PRF_TX_FLIT_CNT] =
1707 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
1708[C_DC_PRF_CLK_CNTR] =
1709 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
1710[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
1711 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
1712[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
1713 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
1714 CNTR_SYNTH),
1715[C_DC_PG_STS_TX_SBE_CNT] =
1716 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
1717[C_DC_PG_STS_TX_MBE_CNT] =
1718 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
1719 CNTR_SYNTH),
1720[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
1721 access_sw_cpu_intr),
1722[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
1723 access_sw_cpu_rcv_limit),
1724[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
1725 access_sw_vtx_wait),
1726[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
1727 access_sw_pio_wait),
1728[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
1729 access_sw_kmem_wait),
b421922e
DL
1730[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
1731 access_sw_send_schedule),
77241056
MM
1732};
1733
1734static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
1735[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
1736 CNTR_NORMAL),
1737[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
1738 CNTR_NORMAL),
1739[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
1740 CNTR_NORMAL),
1741[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
1742 CNTR_NORMAL),
1743[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
1744 CNTR_NORMAL),
1745[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
1746 CNTR_NORMAL),
1747[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
1748 CNTR_NORMAL),
1749[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
1750[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
1751[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
1752[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
1753 CNTR_SYNTH | CNTR_VL),
1754[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
1755 CNTR_SYNTH | CNTR_VL),
1756[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
1757 CNTR_SYNTH | CNTR_VL),
1758[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
1759[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
1760[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1761 access_sw_link_dn_cnt),
1762[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1763 access_sw_link_up_cnt),
1764[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1765 access_sw_xmit_discards),
1766[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
1767 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
1768 access_sw_xmit_discards),
1769[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
1770 access_xmit_constraint_errs),
1771[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
1772 access_rcv_constraint_errs),
1773[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
1774[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
1775[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
1776[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
1777[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
1778[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
1779[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
1780[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
1781[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
1782[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
1783[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
1784[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
1785[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
1786 access_sw_cpu_rc_acks),
1787[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
1788 access_sw_cpu_rc_qacks),
1789[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
1790 access_sw_cpu_rc_delayed_comp),
1791[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
1792[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
1793[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
1794[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
1795[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
1796[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
1797[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
1798[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
1799[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
1800[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
1801[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
1802[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
1803[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
1804[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
1805[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
1806[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
1807[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
1808[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
1809[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
1810[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
1811[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
1812[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
1813[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
1814[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
1815[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
1816[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
1817[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
1818[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
1819[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
1820[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
1821[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
1822[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
1823[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
1824[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
1825[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
1826[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
1827[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
1828[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
1829[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
1830[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
1831[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
1832[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
1833[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
1834[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
1835[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
1836[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
1837[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
1838[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
1839[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
1840[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
1841[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
1842[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
1843[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
1844[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
1845[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
1846[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
1847[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
1848[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
1849[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
1850[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
1851[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
1852[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
1853[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
1854[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
1855[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
1856[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
1857[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
1858[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
1859[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
1860[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
1861[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
1862[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
1863[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
1864[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
1865[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
1866[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
1867[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
1868[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
1869[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
1870[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
1871};
1872
1873/* ======================================================================== */
1874
77241056
MM
1875/* return true if this is chip revision revision a */
1876int is_ax(struct hfi1_devdata *dd)
1877{
1878 u8 chip_rev_minor =
1879 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1880 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1881 return (chip_rev_minor & 0xf0) == 0;
1882}
1883
1884/* return true if this is chip revision revision b */
1885int is_bx(struct hfi1_devdata *dd)
1886{
1887 u8 chip_rev_minor =
1888 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1889 & CCE_REVISION_CHIP_REV_MINOR_MASK;
995deafa 1890 return (chip_rev_minor & 0xF0) == 0x10;
77241056
MM
1891}
1892
1893/*
1894 * Append string s to buffer buf. Arguments curp and len are the current
1895 * position and remaining length, respectively.
1896 *
1897 * return 0 on success, 1 on out of room
1898 */
1899static int append_str(char *buf, char **curp, int *lenp, const char *s)
1900{
1901 char *p = *curp;
1902 int len = *lenp;
1903 int result = 0; /* success */
1904 char c;
1905
1906 /* add a comma, if first in the buffer */
1907 if (p != buf) {
1908 if (len == 0) {
1909 result = 1; /* out of room */
1910 goto done;
1911 }
1912 *p++ = ',';
1913 len--;
1914 }
1915
1916 /* copy the string */
1917 while ((c = *s++) != 0) {
1918 if (len == 0) {
1919 result = 1; /* out of room */
1920 goto done;
1921 }
1922 *p++ = c;
1923 len--;
1924 }
1925
1926done:
1927 /* write return values */
1928 *curp = p;
1929 *lenp = len;
1930
1931 return result;
1932}
1933
1934/*
1935 * Using the given flag table, print a comma separated string into
1936 * the buffer. End in '*' if the buffer is too short.
1937 */
1938static char *flag_string(char *buf, int buf_len, u64 flags,
1939 struct flag_table *table, int table_size)
1940{
1941 char extra[32];
1942 char *p = buf;
1943 int len = buf_len;
1944 int no_room = 0;
1945 int i;
1946
1947 /* make sure there is at least 2 so we can form "*" */
1948 if (len < 2)
1949 return "";
1950
1951 len--; /* leave room for a nul */
1952 for (i = 0; i < table_size; i++) {
1953 if (flags & table[i].flag) {
1954 no_room = append_str(buf, &p, &len, table[i].str);
1955 if (no_room)
1956 break;
1957 flags &= ~table[i].flag;
1958 }
1959 }
1960
1961 /* any undocumented bits left? */
1962 if (!no_room && flags) {
1963 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
1964 no_room = append_str(buf, &p, &len, extra);
1965 }
1966
1967 /* add * if ran out of room */
1968 if (no_room) {
1969 /* may need to back up to add space for a '*' */
1970 if (len == 0)
1971 --p;
1972 *p++ = '*';
1973 }
1974
1975 /* add final nul - space already allocated above */
1976 *p = 0;
1977 return buf;
1978}
1979
1980/* first 8 CCE error interrupt source names */
1981static const char * const cce_misc_names[] = {
1982 "CceErrInt", /* 0 */
1983 "RxeErrInt", /* 1 */
1984 "MiscErrInt", /* 2 */
1985 "Reserved3", /* 3 */
1986 "PioErrInt", /* 4 */
1987 "SDmaErrInt", /* 5 */
1988 "EgressErrInt", /* 6 */
1989 "TxeErrInt" /* 7 */
1990};
1991
1992/*
1993 * Return the miscellaneous error interrupt name.
1994 */
1995static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
1996{
1997 if (source < ARRAY_SIZE(cce_misc_names))
1998 strncpy(buf, cce_misc_names[source], bsize);
1999 else
2000 snprintf(buf,
2001 bsize,
2002 "Reserved%u",
2003 source + IS_GENERAL_ERR_START);
2004
2005 return buf;
2006}
2007
2008/*
2009 * Return the SDMA engine error interrupt name.
2010 */
2011static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
2012{
2013 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
2014 return buf;
2015}
2016
2017/*
2018 * Return the send context error interrupt name.
2019 */
2020static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
2021{
2022 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
2023 return buf;
2024}
2025
2026static const char * const various_names[] = {
2027 "PbcInt",
2028 "GpioAssertInt",
2029 "Qsfp1Int",
2030 "Qsfp2Int",
2031 "TCritInt"
2032};
2033
2034/*
2035 * Return the various interrupt name.
2036 */
2037static char *is_various_name(char *buf, size_t bsize, unsigned int source)
2038{
2039 if (source < ARRAY_SIZE(various_names))
2040 strncpy(buf, various_names[source], bsize);
2041 else
2042 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
2043 return buf;
2044}
2045
2046/*
2047 * Return the DC interrupt name.
2048 */
2049static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
2050{
2051 static const char * const dc_int_names[] = {
2052 "common",
2053 "lcb",
2054 "8051",
2055 "lbm" /* local block merge */
2056 };
2057
2058 if (source < ARRAY_SIZE(dc_int_names))
2059 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
2060 else
2061 snprintf(buf, bsize, "DCInt%u", source);
2062 return buf;
2063}
2064
2065static const char * const sdma_int_names[] = {
2066 "SDmaInt",
2067 "SdmaIdleInt",
2068 "SdmaProgressInt",
2069};
2070
2071/*
2072 * Return the SDMA engine interrupt name.
2073 */
2074static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
2075{
2076 /* what interrupt */
2077 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
2078 /* which engine */
2079 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
2080
2081 if (likely(what < 3))
2082 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
2083 else
2084 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
2085 return buf;
2086}
2087
2088/*
2089 * Return the receive available interrupt name.
2090 */
2091static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
2092{
2093 snprintf(buf, bsize, "RcvAvailInt%u", source);
2094 return buf;
2095}
2096
2097/*
2098 * Return the receive urgent interrupt name.
2099 */
2100static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
2101{
2102 snprintf(buf, bsize, "RcvUrgentInt%u", source);
2103 return buf;
2104}
2105
2106/*
2107 * Return the send credit interrupt name.
2108 */
2109static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
2110{
2111 snprintf(buf, bsize, "SendCreditInt%u", source);
2112 return buf;
2113}
2114
2115/*
2116 * Return the reserved interrupt name.
2117 */
2118static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
2119{
2120 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
2121 return buf;
2122}
2123
2124static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
2125{
2126 return flag_string(buf, buf_len, flags,
2127 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
2128}
2129
2130static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
2131{
2132 return flag_string(buf, buf_len, flags,
2133 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
2134}
2135
2136static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
2137{
2138 return flag_string(buf, buf_len, flags, misc_err_status_flags,
2139 ARRAY_SIZE(misc_err_status_flags));
2140}
2141
2142static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
2143{
2144 return flag_string(buf, buf_len, flags,
2145 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
2146}
2147
2148static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
2149{
2150 return flag_string(buf, buf_len, flags,
2151 sdma_err_status_flags,
2152 ARRAY_SIZE(sdma_err_status_flags));
2153}
2154
2155static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
2156{
2157 return flag_string(buf, buf_len, flags,
2158 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
2159}
2160
2161static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
2162{
2163 return flag_string(buf, buf_len, flags,
2164 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
2165}
2166
2167static char *send_err_status_string(char *buf, int buf_len, u64 flags)
2168{
2169 return flag_string(buf, buf_len, flags,
2170 send_err_status_flags,
2171 ARRAY_SIZE(send_err_status_flags));
2172}
2173
2174static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2175{
2176 char buf[96];
2177
2178 /*
2179 * For most these errors, there is nothing that can be done except
2180 * report or record it.
2181 */
2182 dd_dev_info(dd, "CCE Error: %s\n",
2183 cce_err_status_string(buf, sizeof(buf), reg));
2184
995deafa
MM
2185 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
2186 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
2187 /* this error requires a manual drop into SPC freeze mode */
2188 /* then a fix up */
2189 start_freeze_handling(dd->pport, FREEZE_SELF);
2190 }
2191}
2192
2193/*
2194 * Check counters for receive errors that do not have an interrupt
2195 * associated with them.
2196 */
2197#define RCVERR_CHECK_TIME 10
2198static void update_rcverr_timer(unsigned long opaque)
2199{
2200 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
2201 struct hfi1_pportdata *ppd = dd->pport;
2202 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
2203
2204 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
2205 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
2206 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
2207 set_link_down_reason(ppd,
2208 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
2209 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
2210 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
2211 }
2212 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
2213
2214 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2215}
2216
2217static int init_rcverr(struct hfi1_devdata *dd)
2218{
24523a94 2219 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
77241056
MM
2220 /* Assume the hardware counter has been reset */
2221 dd->rcv_ovfl_cnt = 0;
2222 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2223}
2224
2225static void free_rcverr(struct hfi1_devdata *dd)
2226{
2227 if (dd->rcverr_timer.data)
2228 del_timer_sync(&dd->rcverr_timer);
2229 dd->rcverr_timer.data = 0;
2230}
2231
2232static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2233{
2234 char buf[96];
2235
2236 dd_dev_info(dd, "Receive Error: %s\n",
2237 rxe_err_status_string(buf, sizeof(buf), reg));
2238
2239 if (reg & ALL_RXE_FREEZE_ERR) {
2240 int flags = 0;
2241
2242 /*
2243 * Freeze mode recovery is disabled for the errors
2244 * in RXE_FREEZE_ABORT_MASK
2245 */
995deafa 2246 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
77241056
MM
2247 flags = FREEZE_ABORT;
2248
2249 start_freeze_handling(dd->pport, flags);
2250 }
2251}
2252
2253static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2254{
2255 char buf[96];
2256
2257 dd_dev_info(dd, "Misc Error: %s",
2258 misc_err_status_string(buf, sizeof(buf), reg));
2259}
2260
2261static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2262{
2263 char buf[96];
2264
2265 dd_dev_info(dd, "PIO Error: %s\n",
2266 pio_err_status_string(buf, sizeof(buf), reg));
2267
2268 if (reg & ALL_PIO_FREEZE_ERR)
2269 start_freeze_handling(dd->pport, 0);
2270}
2271
2272static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2273{
2274 char buf[96];
2275
2276 dd_dev_info(dd, "SDMA Error: %s\n",
2277 sdma_err_status_string(buf, sizeof(buf), reg));
2278
2279 if (reg & ALL_SDMA_FREEZE_ERR)
2280 start_freeze_handling(dd->pport, 0);
2281}
2282
2283static void count_port_inactive(struct hfi1_devdata *dd)
2284{
2285 struct hfi1_pportdata *ppd = dd->pport;
2286
2287 if (ppd->port_xmit_discards < ~(u64)0)
2288 ppd->port_xmit_discards++;
2289}
2290
2291/*
2292 * We have had a "disallowed packet" error during egress. Determine the
2293 * integrity check which failed, and update relevant error counter, etc.
2294 *
2295 * Note that the SEND_EGRESS_ERR_INFO register has only a single
2296 * bit of state per integrity check, and so we can miss the reason for an
2297 * egress error if more than one packet fails the same integrity check
2298 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
2299 */
2300static void handle_send_egress_err_info(struct hfi1_devdata *dd)
2301{
2302 struct hfi1_pportdata *ppd = dd->pport;
2303 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
2304 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
2305 char buf[96];
2306
2307 /* clear down all observed info as quickly as possible after read */
2308 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
2309
2310 dd_dev_info(dd,
2311 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
2312 info, egress_err_info_string(buf, sizeof(buf), info), src);
2313
2314 /* Eventually add other counters for each bit */
2315
2316 if (info & SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK) {
2317 if (ppd->port_xmit_discards < ~(u64)0)
2318 ppd->port_xmit_discards++;
2319 }
2320}
2321
2322/*
2323 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2324 * register. Does it represent a 'port inactive' error?
2325 */
2326static inline int port_inactive_err(u64 posn)
2327{
2328 return (posn >= SEES(TX_LINKDOWN) &&
2329 posn <= SEES(TX_INCORRECT_LINK_STATE));
2330}
2331
2332/*
2333 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2334 * register. Does it represent a 'disallowed packet' error?
2335 */
2336static inline int disallowed_pkt_err(u64 posn)
2337{
2338 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
2339 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
2340}
2341
2342static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2343{
2344 u64 reg_copy = reg, handled = 0;
2345 char buf[96];
2346
2347 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
2348 start_freeze_handling(dd->pport, 0);
995deafa 2349 if (is_ax(dd) && (reg &
77241056
MM
2350 SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK)
2351 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
2352 start_freeze_handling(dd->pport, 0);
2353
2354 while (reg_copy) {
2355 int posn = fls64(reg_copy);
2356 /*
2357 * fls64() returns a 1-based offset, but we generally
2358 * want 0-based offsets.
2359 */
2360 int shift = posn - 1;
2361
2362 if (port_inactive_err(shift)) {
2363 count_port_inactive(dd);
2364 handled |= (1ULL << shift);
2365 } else if (disallowed_pkt_err(shift)) {
2366 handle_send_egress_err_info(dd);
2367 handled |= (1ULL << shift);
2368 }
2369 clear_bit(shift, (unsigned long *)&reg_copy);
2370 }
2371
2372 reg &= ~handled;
2373
2374 if (reg)
2375 dd_dev_info(dd, "Egress Error: %s\n",
2376 egress_err_status_string(buf, sizeof(buf), reg));
2377}
2378
2379static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2380{
2381 char buf[96];
2382
2383 dd_dev_info(dd, "Send Error: %s\n",
2384 send_err_status_string(buf, sizeof(buf), reg));
2385
2386}
2387
2388/*
2389 * The maximum number of times the error clear down will loop before
2390 * blocking a repeating error. This value is arbitrary.
2391 */
2392#define MAX_CLEAR_COUNT 20
2393
2394/*
2395 * Clear and handle an error register. All error interrupts are funneled
2396 * through here to have a central location to correctly handle single-
2397 * or multi-shot errors.
2398 *
2399 * For non per-context registers, call this routine with a context value
2400 * of 0 so the per-context offset is zero.
2401 *
2402 * If the handler loops too many times, assume that something is wrong
2403 * and can't be fixed, so mask the error bits.
2404 */
2405static void interrupt_clear_down(struct hfi1_devdata *dd,
2406 u32 context,
2407 const struct err_reg_info *eri)
2408{
2409 u64 reg;
2410 u32 count;
2411
2412 /* read in a loop until no more errors are seen */
2413 count = 0;
2414 while (1) {
2415 reg = read_kctxt_csr(dd, context, eri->status);
2416 if (reg == 0)
2417 break;
2418 write_kctxt_csr(dd, context, eri->clear, reg);
2419 if (likely(eri->handler))
2420 eri->handler(dd, context, reg);
2421 count++;
2422 if (count > MAX_CLEAR_COUNT) {
2423 u64 mask;
2424
2425 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
2426 eri->desc, reg);
2427 /*
2428 * Read-modify-write so any other masked bits
2429 * remain masked.
2430 */
2431 mask = read_kctxt_csr(dd, context, eri->mask);
2432 mask &= ~reg;
2433 write_kctxt_csr(dd, context, eri->mask, mask);
2434 break;
2435 }
2436 }
2437}
2438
2439/*
2440 * CCE block "misc" interrupt. Source is < 16.
2441 */
2442static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
2443{
2444 const struct err_reg_info *eri = &misc_errs[source];
2445
2446 if (eri->handler) {
2447 interrupt_clear_down(dd, 0, eri);
2448 } else {
2449 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
2450 source);
2451 }
2452}
2453
2454static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
2455{
2456 return flag_string(buf, buf_len, flags,
2457 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
2458}
2459
2460/*
2461 * Send context error interrupt. Source (hw_context) is < 160.
2462 *
2463 * All send context errors cause the send context to halt. The normal
2464 * clear-down mechanism cannot be used because we cannot clear the
2465 * error bits until several other long-running items are done first.
2466 * This is OK because with the context halted, nothing else is going
2467 * to happen on it anyway.
2468 */
2469static void is_sendctxt_err_int(struct hfi1_devdata *dd,
2470 unsigned int hw_context)
2471{
2472 struct send_context_info *sci;
2473 struct send_context *sc;
2474 char flags[96];
2475 u64 status;
2476 u32 sw_index;
2477
2478 sw_index = dd->hw_to_sw[hw_context];
2479 if (sw_index >= dd->num_send_contexts) {
2480 dd_dev_err(dd,
2481 "out of range sw index %u for send context %u\n",
2482 sw_index, hw_context);
2483 return;
2484 }
2485 sci = &dd->send_contexts[sw_index];
2486 sc = sci->sc;
2487 if (!sc) {
2488 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
2489 sw_index, hw_context);
2490 return;
2491 }
2492
2493 /* tell the software that a halt has begun */
2494 sc_stop(sc, SCF_HALTED);
2495
2496 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
2497
2498 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
2499 send_context_err_status_string(flags, sizeof(flags), status));
2500
2501 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
2502 handle_send_egress_err_info(dd);
2503
2504 /*
2505 * Automatically restart halted kernel contexts out of interrupt
2506 * context. User contexts must ask the driver to restart the context.
2507 */
2508 if (sc->type != SC_USER)
2509 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2510}
2511
2512static void handle_sdma_eng_err(struct hfi1_devdata *dd,
2513 unsigned int source, u64 status)
2514{
2515 struct sdma_engine *sde;
2516
2517 sde = &dd->per_sdma[source];
2518#ifdef CONFIG_SDMA_VERBOSITY
2519 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2520 slashstrip(__FILE__), __LINE__, __func__);
2521 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
2522 sde->this_idx, source, (unsigned long long)status);
2523#endif
2524 sdma_engine_error(sde, status);
2525}
2526
2527/*
2528 * CCE block SDMA error interrupt. Source is < 16.
2529 */
2530static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
2531{
2532#ifdef CONFIG_SDMA_VERBOSITY
2533 struct sdma_engine *sde = &dd->per_sdma[source];
2534
2535 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2536 slashstrip(__FILE__), __LINE__, __func__);
2537 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
2538 source);
2539 sdma_dumpstate(sde);
2540#endif
2541 interrupt_clear_down(dd, source, &sdma_eng_err);
2542}
2543
2544/*
2545 * CCE block "various" interrupt. Source is < 8.
2546 */
2547static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
2548{
2549 const struct err_reg_info *eri = &various_err[source];
2550
2551 /*
2552 * TCritInt cannot go through interrupt_clear_down()
2553 * because it is not a second tier interrupt. The handler
2554 * should be called directly.
2555 */
2556 if (source == TCRIT_INT_SOURCE)
2557 handle_temp_err(dd);
2558 else if (eri->handler)
2559 interrupt_clear_down(dd, 0, eri);
2560 else
2561 dd_dev_info(dd,
2562 "%s: Unimplemented/reserved interrupt %d\n",
2563 __func__, source);
2564}
2565
2566static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
2567{
2568 /* source is always zero */
2569 struct hfi1_pportdata *ppd = dd->pport;
2570 unsigned long flags;
2571 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
2572
2573 if (reg & QSFP_HFI0_MODPRST_N) {
2574
2575 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
2576 __func__);
2577
2578 if (!qsfp_mod_present(ppd)) {
2579 ppd->driver_link_ready = 0;
2580 /*
2581 * Cable removed, reset all our information about the
2582 * cache and cable capabilities
2583 */
2584
2585 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2586 /*
2587 * We don't set cache_refresh_required here as we expect
2588 * an interrupt when a cable is inserted
2589 */
2590 ppd->qsfp_info.cache_valid = 0;
2591 ppd->qsfp_info.qsfp_interrupt_functional = 0;
2592 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2593 flags);
2594 write_csr(dd,
2595 dd->hfi1_id ?
2596 ASIC_QSFP2_INVERT :
2597 ASIC_QSFP1_INVERT,
2598 qsfp_int_mgmt);
2599 if (ppd->host_link_state == HLS_DN_POLL) {
2600 /*
2601 * The link is still in POLL. This means
2602 * that the normal link down processing
2603 * will not happen. We have to do it here
2604 * before turning the DC off.
2605 */
2606 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
2607 }
2608 } else {
2609 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2610 ppd->qsfp_info.cache_valid = 0;
2611 ppd->qsfp_info.cache_refresh_required = 1;
2612 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2613 flags);
2614
2615 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
2616 write_csr(dd,
2617 dd->hfi1_id ?
2618 ASIC_QSFP2_INVERT :
2619 ASIC_QSFP1_INVERT,
2620 qsfp_int_mgmt);
2621 }
2622 }
2623
2624 if (reg & QSFP_HFI0_INT_N) {
2625
2626 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
2627 __func__);
2628 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2629 ppd->qsfp_info.check_interrupt_flags = 1;
2630 ppd->qsfp_info.qsfp_interrupt_functional = 1;
2631 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
2632 }
2633
2634 /* Schedule the QSFP work only if there is a cable attached. */
2635 if (qsfp_mod_present(ppd))
2636 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
2637}
2638
2639static int request_host_lcb_access(struct hfi1_devdata *dd)
2640{
2641 int ret;
2642
2643 ret = do_8051_command(dd, HCMD_MISC,
2644 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2645 NULL);
2646 if (ret != HCMD_SUCCESS) {
2647 dd_dev_err(dd, "%s: command failed with error %d\n",
2648 __func__, ret);
2649 }
2650 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2651}
2652
2653static int request_8051_lcb_access(struct hfi1_devdata *dd)
2654{
2655 int ret;
2656
2657 ret = do_8051_command(dd, HCMD_MISC,
2658 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2659 NULL);
2660 if (ret != HCMD_SUCCESS) {
2661 dd_dev_err(dd, "%s: command failed with error %d\n",
2662 __func__, ret);
2663 }
2664 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2665}
2666
2667/*
2668 * Set the LCB selector - allow host access. The DCC selector always
2669 * points to the host.
2670 */
2671static inline void set_host_lcb_access(struct hfi1_devdata *dd)
2672{
2673 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2674 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
2675 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
2676}
2677
2678/*
2679 * Clear the LCB selector - allow 8051 access. The DCC selector always
2680 * points to the host.
2681 */
2682static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
2683{
2684 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2685 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
2686}
2687
2688/*
2689 * Acquire LCB access from the 8051. If the host already has access,
2690 * just increment a counter. Otherwise, inform the 8051 that the
2691 * host is taking access.
2692 *
2693 * Returns:
2694 * 0 on success
2695 * -EBUSY if the 8051 has control and cannot be disturbed
2696 * -errno if unable to acquire access from the 8051
2697 */
2698int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2699{
2700 struct hfi1_pportdata *ppd = dd->pport;
2701 int ret = 0;
2702
2703 /*
2704 * Use the host link state lock so the operation of this routine
2705 * { link state check, selector change, count increment } can occur
2706 * as a unit against a link state change. Otherwise there is a
2707 * race between the state change and the count increment.
2708 */
2709 if (sleep_ok) {
2710 mutex_lock(&ppd->hls_lock);
2711 } else {
951842b0 2712 while (!mutex_trylock(&ppd->hls_lock))
77241056
MM
2713 udelay(1);
2714 }
2715
2716 /* this access is valid only when the link is up */
2717 if ((ppd->host_link_state & HLS_UP) == 0) {
2718 dd_dev_info(dd, "%s: link state %s not up\n",
2719 __func__, link_state_name(ppd->host_link_state));
2720 ret = -EBUSY;
2721 goto done;
2722 }
2723
2724 if (dd->lcb_access_count == 0) {
2725 ret = request_host_lcb_access(dd);
2726 if (ret) {
2727 dd_dev_err(dd,
2728 "%s: unable to acquire LCB access, err %d\n",
2729 __func__, ret);
2730 goto done;
2731 }
2732 set_host_lcb_access(dd);
2733 }
2734 dd->lcb_access_count++;
2735done:
2736 mutex_unlock(&ppd->hls_lock);
2737 return ret;
2738}
2739
2740/*
2741 * Release LCB access by decrementing the use count. If the count is moving
2742 * from 1 to 0, inform 8051 that it has control back.
2743 *
2744 * Returns:
2745 * 0 on success
2746 * -errno if unable to release access to the 8051
2747 */
2748int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2749{
2750 int ret = 0;
2751
2752 /*
2753 * Use the host link state lock because the acquire needed it.
2754 * Here, we only need to keep { selector change, count decrement }
2755 * as a unit.
2756 */
2757 if (sleep_ok) {
2758 mutex_lock(&dd->pport->hls_lock);
2759 } else {
951842b0 2760 while (!mutex_trylock(&dd->pport->hls_lock))
77241056
MM
2761 udelay(1);
2762 }
2763
2764 if (dd->lcb_access_count == 0) {
2765 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
2766 __func__);
2767 goto done;
2768 }
2769
2770 if (dd->lcb_access_count == 1) {
2771 set_8051_lcb_access(dd);
2772 ret = request_8051_lcb_access(dd);
2773 if (ret) {
2774 dd_dev_err(dd,
2775 "%s: unable to release LCB access, err %d\n",
2776 __func__, ret);
2777 /* restore host access if the grant didn't work */
2778 set_host_lcb_access(dd);
2779 goto done;
2780 }
2781 }
2782 dd->lcb_access_count--;
2783done:
2784 mutex_unlock(&dd->pport->hls_lock);
2785 return ret;
2786}
2787
2788/*
2789 * Initialize LCB access variables and state. Called during driver load,
2790 * after most of the initialization is finished.
2791 *
2792 * The DC default is LCB access on for the host. The driver defaults to
2793 * leaving access to the 8051. Assign access now - this constrains the call
2794 * to this routine to be after all LCB set-up is done. In particular, after
2795 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
2796 */
2797static void init_lcb_access(struct hfi1_devdata *dd)
2798{
2799 dd->lcb_access_count = 0;
2800}
2801
2802/*
2803 * Write a response back to a 8051 request.
2804 */
2805static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
2806{
2807 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
2808 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
2809 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
2810 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
2811}
2812
2813/*
2814 * Handle requests from the 8051.
2815 */
2816static void handle_8051_request(struct hfi1_devdata *dd)
2817{
2818 u64 reg;
2819 u16 data;
2820 u8 type;
2821
2822 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
2823 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
2824 return; /* no request */
2825
2826 /* zero out COMPLETED so the response is seen */
2827 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
2828
2829 /* extract request details */
2830 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
2831 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
2832 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
2833 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
2834
2835 switch (type) {
2836 case HREQ_LOAD_CONFIG:
2837 case HREQ_SAVE_CONFIG:
2838 case HREQ_READ_CONFIG:
2839 case HREQ_SET_TX_EQ_ABS:
2840 case HREQ_SET_TX_EQ_REL:
2841 case HREQ_ENABLE:
2842 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
2843 type);
2844 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2845 break;
2846
2847 case HREQ_CONFIG_DONE:
2848 hreq_response(dd, HREQ_SUCCESS, 0);
2849 break;
2850
2851 case HREQ_INTERFACE_TEST:
2852 hreq_response(dd, HREQ_SUCCESS, data);
2853 break;
2854
2855 default:
2856 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
2857 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2858 break;
2859 }
2860}
2861
2862static void write_global_credit(struct hfi1_devdata *dd,
2863 u8 vau, u16 total, u16 shared)
2864{
2865 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
2866 ((u64)total
2867 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
2868 | ((u64)shared
2869 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
2870 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
2871}
2872
2873/*
2874 * Set up initial VL15 credits of the remote. Assumes the rest of
2875 * the CM credit registers are zero from a previous global or credit reset .
2876 */
2877void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
2878{
2879 /* leave shared count at zero for both global and VL15 */
2880 write_global_credit(dd, vau, vl15buf, 0);
2881
2882 /* We may need some credits for another VL when sending packets
2883 * with the snoop interface. Dividing it down the middle for VL15
2884 * and VL0 should suffice.
2885 */
2886 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
2887 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
2888 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2889 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
2890 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
2891 } else {
2892 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
2893 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2894 }
2895}
2896
2897/*
2898 * Zero all credit details from the previous connection and
2899 * reset the CM manager's internal counters.
2900 */
2901void reset_link_credits(struct hfi1_devdata *dd)
2902{
2903 int i;
2904
2905 /* remove all previous VL credit limits */
2906 for (i = 0; i < TXE_NUM_DATA_VL; i++)
2907 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
2908 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
2909 write_global_credit(dd, 0, 0, 0);
2910 /* reset the CM block */
2911 pio_send_control(dd, PSC_CM_RESET);
2912}
2913
2914/* convert a vCU to a CU */
2915static u32 vcu_to_cu(u8 vcu)
2916{
2917 return 1 << vcu;
2918}
2919
2920/* convert a CU to a vCU */
2921static u8 cu_to_vcu(u32 cu)
2922{
2923 return ilog2(cu);
2924}
2925
2926/* convert a vAU to an AU */
2927static u32 vau_to_au(u8 vau)
2928{
2929 return 8 * (1 << vau);
2930}
2931
2932static void set_linkup_defaults(struct hfi1_pportdata *ppd)
2933{
2934 ppd->sm_trap_qp = 0x0;
2935 ppd->sa_qp = 0x1;
2936}
2937
2938/*
2939 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
2940 */
2941static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
2942{
2943 u64 reg;
2944
2945 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
2946 write_csr(dd, DC_LCB_CFG_RUN, 0);
2947 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
2948 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
2949 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
2950 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
2951 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
2952 reg = read_csr(dd, DCC_CFG_RESET);
2953 write_csr(dd, DCC_CFG_RESET,
2954 reg
2955 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
2956 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
2957 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
2958 if (!abort) {
2959 udelay(1); /* must hold for the longer of 16cclks or 20ns */
2960 write_csr(dd, DCC_CFG_RESET, reg);
2961 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
2962 }
2963}
2964
2965/*
2966 * This routine should be called after the link has been transitioned to
2967 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
2968 * reset).
2969 *
2970 * The expectation is that the caller of this routine would have taken
2971 * care of properly transitioning the link into the correct state.
2972 */
2973static void dc_shutdown(struct hfi1_devdata *dd)
2974{
2975 unsigned long flags;
2976
2977 spin_lock_irqsave(&dd->dc8051_lock, flags);
2978 if (dd->dc_shutdown) {
2979 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2980 return;
2981 }
2982 dd->dc_shutdown = 1;
2983 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2984 /* Shutdown the LCB */
2985 lcb_shutdown(dd, 1);
2986 /* Going to OFFLINE would have causes the 8051 to put the
2987 * SerDes into reset already. Just need to shut down the 8051,
2988 * itself. */
2989 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
2990}
2991
2992/* Calling this after the DC has been brought out of reset should not
2993 * do any damage. */
2994static void dc_start(struct hfi1_devdata *dd)
2995{
2996 unsigned long flags;
2997 int ret;
2998
2999 spin_lock_irqsave(&dd->dc8051_lock, flags);
3000 if (!dd->dc_shutdown)
3001 goto done;
3002 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3003 /* Take the 8051 out of reset */
3004 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
3005 /* Wait until 8051 is ready */
3006 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
3007 if (ret) {
3008 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
3009 __func__);
3010 }
3011 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
3012 write_csr(dd, DCC_CFG_RESET, 0x10);
3013 /* lcb_shutdown() with abort=1 does not restore these */
3014 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
3015 spin_lock_irqsave(&dd->dc8051_lock, flags);
3016 dd->dc_shutdown = 0;
3017done:
3018 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3019}
3020
3021/*
3022 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
3023 */
3024static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
3025{
3026 u64 rx_radr, tx_radr;
3027 u32 version;
3028
3029 if (dd->icode != ICODE_FPGA_EMULATION)
3030 return;
3031
3032 /*
3033 * These LCB defaults on emulator _s are good, nothing to do here:
3034 * LCB_CFG_TX_FIFOS_RADR
3035 * LCB_CFG_RX_FIFOS_RADR
3036 * LCB_CFG_LN_DCLK
3037 * LCB_CFG_IGNORE_LOST_RCLK
3038 */
3039 if (is_emulator_s(dd))
3040 return;
3041 /* else this is _p */
3042
3043 version = emulator_rev(dd);
995deafa 3044 if (!is_ax(dd))
77241056
MM
3045 version = 0x2d; /* all B0 use 0x2d or higher settings */
3046
3047 if (version <= 0x12) {
3048 /* release 0x12 and below */
3049
3050 /*
3051 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
3052 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
3053 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
3054 */
3055 rx_radr =
3056 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3057 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3058 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3059 /*
3060 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
3061 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
3062 */
3063 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3064 } else if (version <= 0x18) {
3065 /* release 0x13 up to 0x18 */
3066 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3067 rx_radr =
3068 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3069 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3070 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3071 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3072 } else if (version == 0x19) {
3073 /* release 0x19 */
3074 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
3075 rx_radr =
3076 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3077 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3078 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3079 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3080 } else if (version == 0x1a) {
3081 /* release 0x1a */
3082 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3083 rx_radr =
3084 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3085 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3086 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3087 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3088 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
3089 } else {
3090 /* release 0x1b and higher */
3091 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
3092 rx_radr =
3093 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3094 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3095 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3096 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3097 }
3098
3099 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
3100 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
3101 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
3102 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
3103 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
3104}
3105
3106/*
3107 * Handle a SMA idle message
3108 *
3109 * This is a work-queue function outside of the interrupt.
3110 */
3111void handle_sma_message(struct work_struct *work)
3112{
3113 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3114 sma_message_work);
3115 struct hfi1_devdata *dd = ppd->dd;
3116 u64 msg;
3117 int ret;
3118
3119 /* msg is bytes 1-4 of the 40-bit idle message - the command code
3120 is stripped off */
3121 ret = read_idle_sma(dd, &msg);
3122 if (ret)
3123 return;
3124 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
3125 /*
3126 * React to the SMA message. Byte[1] (0 for us) is the command.
3127 */
3128 switch (msg & 0xff) {
3129 case SMA_IDLE_ARM:
3130 /*
3131 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3132 * State Transitions
3133 *
3134 * Only expected in INIT or ARMED, discard otherwise.
3135 */
3136 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
3137 ppd->neighbor_normal = 1;
3138 break;
3139 case SMA_IDLE_ACTIVE:
3140 /*
3141 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3142 * State Transitions
3143 *
3144 * Can activate the node. Discard otherwise.
3145 */
3146 if (ppd->host_link_state == HLS_UP_ARMED
3147 && ppd->is_active_optimize_enabled) {
3148 ppd->neighbor_normal = 1;
3149 ret = set_link_state(ppd, HLS_UP_ACTIVE);
3150 if (ret)
3151 dd_dev_err(
3152 dd,
3153 "%s: received Active SMA idle message, couldn't set link to Active\n",
3154 __func__);
3155 }
3156 break;
3157 default:
3158 dd_dev_err(dd,
3159 "%s: received unexpected SMA idle message 0x%llx\n",
3160 __func__, msg);
3161 break;
3162 }
3163}
3164
3165static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
3166{
3167 u64 rcvctrl;
3168 unsigned long flags;
3169
3170 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
3171 rcvctrl = read_csr(dd, RCV_CTRL);
3172 rcvctrl |= add;
3173 rcvctrl &= ~clear;
3174 write_csr(dd, RCV_CTRL, rcvctrl);
3175 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
3176}
3177
3178static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
3179{
3180 adjust_rcvctrl(dd, add, 0);
3181}
3182
3183static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
3184{
3185 adjust_rcvctrl(dd, 0, clear);
3186}
3187
3188/*
3189 * Called from all interrupt handlers to start handling an SPC freeze.
3190 */
3191void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
3192{
3193 struct hfi1_devdata *dd = ppd->dd;
3194 struct send_context *sc;
3195 int i;
3196
3197 if (flags & FREEZE_SELF)
3198 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3199
3200 /* enter frozen mode */
3201 dd->flags |= HFI1_FROZEN;
3202
3203 /* notify all SDMA engines that they are going into a freeze */
3204 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
3205
3206 /* do halt pre-handling on all enabled send contexts */
3207 for (i = 0; i < dd->num_send_contexts; i++) {
3208 sc = dd->send_contexts[i].sc;
3209 if (sc && (sc->flags & SCF_ENABLED))
3210 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
3211 }
3212
3213 /* Send context are frozen. Notify user space */
3214 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
3215
3216 if (flags & FREEZE_ABORT) {
3217 dd_dev_err(dd,
3218 "Aborted freeze recovery. Please REBOOT system\n");
3219 return;
3220 }
3221 /* queue non-interrupt handler */
3222 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
3223}
3224
3225/*
3226 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
3227 * depending on the "freeze" parameter.
3228 *
3229 * No need to return an error if it times out, our only option
3230 * is to proceed anyway.
3231 */
3232static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
3233{
3234 unsigned long timeout;
3235 u64 reg;
3236
3237 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
3238 while (1) {
3239 reg = read_csr(dd, CCE_STATUS);
3240 if (freeze) {
3241 /* waiting until all indicators are set */
3242 if ((reg & ALL_FROZE) == ALL_FROZE)
3243 return; /* all done */
3244 } else {
3245 /* waiting until all indicators are clear */
3246 if ((reg & ALL_FROZE) == 0)
3247 return; /* all done */
3248 }
3249
3250 if (time_after(jiffies, timeout)) {
3251 dd_dev_err(dd,
3252 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
3253 freeze ? "" : "un",
3254 reg & ALL_FROZE,
3255 freeze ? ALL_FROZE : 0ull);
3256 return;
3257 }
3258 usleep_range(80, 120);
3259 }
3260}
3261
3262/*
3263 * Do all freeze handling for the RXE block.
3264 */
3265static void rxe_freeze(struct hfi1_devdata *dd)
3266{
3267 int i;
3268
3269 /* disable port */
3270 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3271
3272 /* disable all receive contexts */
3273 for (i = 0; i < dd->num_rcv_contexts; i++)
3274 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
3275}
3276
3277/*
3278 * Unfreeze handling for the RXE block - kernel contexts only.
3279 * This will also enable the port. User contexts will do unfreeze
3280 * handling on a per-context basis as they call into the driver.
3281 *
3282 */
3283static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
3284{
3285 int i;
3286
3287 /* enable all kernel contexts */
3288 for (i = 0; i < dd->n_krcv_queues; i++)
3289 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, i);
3290
3291 /* enable port */
3292 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3293}
3294
3295/*
3296 * Non-interrupt SPC freeze handling.
3297 *
3298 * This is a work-queue function outside of the triggering interrupt.
3299 */
3300void handle_freeze(struct work_struct *work)
3301{
3302 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3303 freeze_work);
3304 struct hfi1_devdata *dd = ppd->dd;
3305
3306 /* wait for freeze indicators on all affected blocks */
3307 dd_dev_info(dd, "Entering SPC freeze\n");
3308 wait_for_freeze_status(dd, 1);
3309
3310 /* SPC is now frozen */
3311
3312 /* do send PIO freeze steps */
3313 pio_freeze(dd);
3314
3315 /* do send DMA freeze steps */
3316 sdma_freeze(dd);
3317
3318 /* do send egress freeze steps - nothing to do */
3319
3320 /* do receive freeze steps */
3321 rxe_freeze(dd);
3322
3323 /*
3324 * Unfreeze the hardware - clear the freeze, wait for each
3325 * block's frozen bit to clear, then clear the frozen flag.
3326 */
3327 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3328 wait_for_freeze_status(dd, 0);
3329
995deafa 3330 if (is_ax(dd)) {
77241056
MM
3331 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3332 wait_for_freeze_status(dd, 1);
3333 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3334 wait_for_freeze_status(dd, 0);
3335 }
3336
3337 /* do send PIO unfreeze steps for kernel contexts */
3338 pio_kernel_unfreeze(dd);
3339
3340 /* do send DMA unfreeze steps */
3341 sdma_unfreeze(dd);
3342
3343 /* do send egress unfreeze steps - nothing to do */
3344
3345 /* do receive unfreeze steps for kernel contexts */
3346 rxe_kernel_unfreeze(dd);
3347
3348 /*
3349 * The unfreeze procedure touches global device registers when
3350 * it disables and re-enables RXE. Mark the device unfrozen
3351 * after all that is done so other parts of the driver waiting
3352 * for the device to unfreeze don't do things out of order.
3353 *
3354 * The above implies that the meaning of HFI1_FROZEN flag is
3355 * "Device has gone into freeze mode and freeze mode handling
3356 * is still in progress."
3357 *
3358 * The flag will be removed when freeze mode processing has
3359 * completed.
3360 */
3361 dd->flags &= ~HFI1_FROZEN;
3362 wake_up(&dd->event_queue);
3363
3364 /* no longer frozen */
3365 dd_dev_err(dd, "Exiting SPC freeze\n");
3366}
3367
3368/*
3369 * Handle a link up interrupt from the 8051.
3370 *
3371 * This is a work-queue function outside of the interrupt.
3372 */
3373void handle_link_up(struct work_struct *work)
3374{
3375 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3376 link_up_work);
3377 set_link_state(ppd, HLS_UP_INIT);
3378
3379 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
3380 read_ltp_rtt(ppd->dd);
3381 /*
3382 * OPA specifies that certain counters are cleared on a transition
3383 * to link up, so do that.
3384 */
3385 clear_linkup_counters(ppd->dd);
3386 /*
3387 * And (re)set link up default values.
3388 */
3389 set_linkup_defaults(ppd);
3390
3391 /* enforce link speed enabled */
3392 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
3393 /* oops - current speed is not enabled, bounce */
3394 dd_dev_err(ppd->dd,
3395 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
3396 ppd->link_speed_active, ppd->link_speed_enabled);
3397 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
3398 OPA_LINKDOWN_REASON_SPEED_POLICY);
3399 set_link_state(ppd, HLS_DN_OFFLINE);
3400 start_link(ppd);
3401 }
3402}
3403
3404/* Several pieces of LNI information were cached for SMA in ppd.
3405 * Reset these on link down */
3406static void reset_neighbor_info(struct hfi1_pportdata *ppd)
3407{
3408 ppd->neighbor_guid = 0;
3409 ppd->neighbor_port_number = 0;
3410 ppd->neighbor_type = 0;
3411 ppd->neighbor_fm_security = 0;
3412}
3413
3414/*
3415 * Handle a link down interrupt from the 8051.
3416 *
3417 * This is a work-queue function outside of the interrupt.
3418 */
3419void handle_link_down(struct work_struct *work)
3420{
3421 u8 lcl_reason, neigh_reason = 0;
3422 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3423 link_down_work);
3424
3425 /* go offline first, then deal with reasons */
3426 set_link_state(ppd, HLS_DN_OFFLINE);
3427
3428 lcl_reason = 0;
3429 read_planned_down_reason_code(ppd->dd, &neigh_reason);
3430
3431 /*
3432 * If no reason, assume peer-initiated but missed
3433 * LinkGoingDown idle flits.
3434 */
3435 if (neigh_reason == 0)
3436 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
3437
3438 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
3439
3440 reset_neighbor_info(ppd);
3441
3442 /* disable the port */
3443 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3444
3445 /* If there is no cable attached, turn the DC off. Otherwise,
3446 * start the link bring up. */
3447 if (!qsfp_mod_present(ppd))
3448 dc_shutdown(ppd->dd);
3449 else
3450 start_link(ppd);
3451}
3452
3453void handle_link_bounce(struct work_struct *work)
3454{
3455 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3456 link_bounce_work);
3457
3458 /*
3459 * Only do something if the link is currently up.
3460 */
3461 if (ppd->host_link_state & HLS_UP) {
3462 set_link_state(ppd, HLS_DN_OFFLINE);
3463 start_link(ppd);
3464 } else {
3465 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
3466 __func__, link_state_name(ppd->host_link_state));
3467 }
3468}
3469
3470/*
3471 * Mask conversion: Capability exchange to Port LTP. The capability
3472 * exchange has an implicit 16b CRC that is mandatory.
3473 */
3474static int cap_to_port_ltp(int cap)
3475{
3476 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
3477
3478 if (cap & CAP_CRC_14B)
3479 port_ltp |= PORT_LTP_CRC_MODE_14;
3480 if (cap & CAP_CRC_48B)
3481 port_ltp |= PORT_LTP_CRC_MODE_48;
3482 if (cap & CAP_CRC_12B_16B_PER_LANE)
3483 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
3484
3485 return port_ltp;
3486}
3487
3488/*
3489 * Convert an OPA Port LTP mask to capability mask
3490 */
3491int port_ltp_to_cap(int port_ltp)
3492{
3493 int cap_mask = 0;
3494
3495 if (port_ltp & PORT_LTP_CRC_MODE_14)
3496 cap_mask |= CAP_CRC_14B;
3497 if (port_ltp & PORT_LTP_CRC_MODE_48)
3498 cap_mask |= CAP_CRC_48B;
3499 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
3500 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
3501
3502 return cap_mask;
3503}
3504
3505/*
3506 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
3507 */
3508static int lcb_to_port_ltp(int lcb_crc)
3509{
3510 int port_ltp = 0;
3511
3512 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
3513 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
3514 else if (lcb_crc == LCB_CRC_48B)
3515 port_ltp = PORT_LTP_CRC_MODE_48;
3516 else if (lcb_crc == LCB_CRC_14B)
3517 port_ltp = PORT_LTP_CRC_MODE_14;
3518 else
3519 port_ltp = PORT_LTP_CRC_MODE_16;
3520
3521 return port_ltp;
3522}
3523
3524/*
3525 * Our neighbor has indicated that we are allowed to act as a fabric
3526 * manager, so place the full management partition key in the second
3527 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
3528 * that we should already have the limited management partition key in
3529 * array element 1, and also that the port is not yet up when
3530 * add_full_mgmt_pkey() is invoked.
3531 */
3532static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
3533{
3534 struct hfi1_devdata *dd = ppd->dd;
3535
3536 /* Sanity check - ppd->pkeys[2] should be 0 */
3537 if (ppd->pkeys[2] != 0)
3538 dd_dev_err(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
3539 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
3540 ppd->pkeys[2] = FULL_MGMT_P_KEY;
3541 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
3542}
3543
3544/*
3545 * Convert the given link width to the OPA link width bitmask.
3546 */
3547static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
3548{
3549 switch (width) {
3550 case 0:
3551 /*
3552 * Simulator and quick linkup do not set the width.
3553 * Just set it to 4x without complaint.
3554 */
3555 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
3556 return OPA_LINK_WIDTH_4X;
3557 return 0; /* no lanes up */
3558 case 1: return OPA_LINK_WIDTH_1X;
3559 case 2: return OPA_LINK_WIDTH_2X;
3560 case 3: return OPA_LINK_WIDTH_3X;
3561 default:
3562 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
3563 __func__, width);
3564 /* fall through */
3565 case 4: return OPA_LINK_WIDTH_4X;
3566 }
3567}
3568
3569/*
3570 * Do a population count on the bottom nibble.
3571 */
3572static const u8 bit_counts[16] = {
3573 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
3574};
3575static inline u8 nibble_to_count(u8 nibble)
3576{
3577 return bit_counts[nibble & 0xf];
3578}
3579
3580/*
3581 * Read the active lane information from the 8051 registers and return
3582 * their widths.
3583 *
3584 * Active lane information is found in these 8051 registers:
3585 * enable_lane_tx
3586 * enable_lane_rx
3587 */
3588static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
3589 u16 *rx_width)
3590{
3591 u16 tx, rx;
3592 u8 enable_lane_rx;
3593 u8 enable_lane_tx;
3594 u8 tx_polarity_inversion;
3595 u8 rx_polarity_inversion;
3596 u8 max_rate;
3597
3598 /* read the active lanes */
3599 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
3600 &rx_polarity_inversion, &max_rate);
3601 read_local_lni(dd, &enable_lane_rx);
3602
3603 /* convert to counts */
3604 tx = nibble_to_count(enable_lane_tx);
3605 rx = nibble_to_count(enable_lane_rx);
3606
3607 /*
3608 * Set link_speed_active here, overriding what was set in
3609 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
3610 * set the max_rate field in handle_verify_cap until v0.19.
3611 */
3612 if ((dd->icode == ICODE_RTL_SILICON)
3613 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
3614 /* max_rate: 0 = 12.5G, 1 = 25G */
3615 switch (max_rate) {
3616 case 0:
3617 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
3618 break;
3619 default:
3620 dd_dev_err(dd,
3621 "%s: unexpected max rate %d, using 25Gb\n",
3622 __func__, (int)max_rate);
3623 /* fall through */
3624 case 1:
3625 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
3626 break;
3627 }
3628 }
3629
3630 dd_dev_info(dd,
3631 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
3632 enable_lane_tx, tx, enable_lane_rx, rx);
3633 *tx_width = link_width_to_bits(dd, tx);
3634 *rx_width = link_width_to_bits(dd, rx);
3635}
3636
3637/*
3638 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
3639 * Valid after the end of VerifyCap and during LinkUp. Does not change
3640 * after link up. I.e. look elsewhere for downgrade information.
3641 *
3642 * Bits are:
3643 * + bits [7:4] contain the number of active transmitters
3644 * + bits [3:0] contain the number of active receivers
3645 * These are numbers 1 through 4 and can be different values if the
3646 * link is asymmetric.
3647 *
3648 * verify_cap_local_fm_link_width[0] retains its original value.
3649 */
3650static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
3651 u16 *rx_width)
3652{
3653 u16 widths, tx, rx;
3654 u8 misc_bits, local_flags;
3655 u16 active_tx, active_rx;
3656
3657 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
3658 tx = widths >> 12;
3659 rx = (widths >> 8) & 0xf;
3660
3661 *tx_width = link_width_to_bits(dd, tx);
3662 *rx_width = link_width_to_bits(dd, rx);
3663
3664 /* print the active widths */
3665 get_link_widths(dd, &active_tx, &active_rx);
3666}
3667
3668/*
3669 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
3670 * hardware information when the link first comes up.
3671 *
3672 * The link width is not available until after VerifyCap.AllFramesReceived
3673 * (the trigger for handle_verify_cap), so this is outside that routine
3674 * and should be called when the 8051 signals linkup.
3675 */
3676void get_linkup_link_widths(struct hfi1_pportdata *ppd)
3677{
3678 u16 tx_width, rx_width;
3679
3680 /* get end-of-LNI link widths */
3681 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
3682
3683 /* use tx_width as the link is supposed to be symmetric on link up */
3684 ppd->link_width_active = tx_width;
3685 /* link width downgrade active (LWD.A) starts out matching LW.A */
3686 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
3687 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
3688 /* per OPA spec, on link up LWD.E resets to LWD.S */
3689 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
3690 /* cache the active egress rate (units {10^6 bits/sec]) */
3691 ppd->current_egress_rate = active_egress_rate(ppd);
3692}
3693
3694/*
3695 * Handle a verify capabilities interrupt from the 8051.
3696 *
3697 * This is a work-queue function outside of the interrupt.
3698 */
3699void handle_verify_cap(struct work_struct *work)
3700{
3701 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3702 link_vc_work);
3703 struct hfi1_devdata *dd = ppd->dd;
3704 u64 reg;
3705 u8 power_management;
3706 u8 continious;
3707 u8 vcu;
3708 u8 vau;
3709 u8 z;
3710 u16 vl15buf;
3711 u16 link_widths;
3712 u16 crc_mask;
3713 u16 crc_val;
3714 u16 device_id;
3715 u16 active_tx, active_rx;
3716 u8 partner_supported_crc;
3717 u8 remote_tx_rate;
3718 u8 device_rev;
3719
3720 set_link_state(ppd, HLS_VERIFY_CAP);
3721
3722 lcb_shutdown(dd, 0);
3723 adjust_lcb_for_fpga_serdes(dd);
3724
3725 /*
3726 * These are now valid:
3727 * remote VerifyCap fields in the general LNI config
3728 * CSR DC8051_STS_REMOTE_GUID
3729 * CSR DC8051_STS_REMOTE_NODE_TYPE
3730 * CSR DC8051_STS_REMOTE_FM_SECURITY
3731 * CSR DC8051_STS_REMOTE_PORT_NO
3732 */
3733
3734 read_vc_remote_phy(dd, &power_management, &continious);
3735 read_vc_remote_fabric(
3736 dd,
3737 &vau,
3738 &z,
3739 &vcu,
3740 &vl15buf,
3741 &partner_supported_crc);
3742 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
3743 read_remote_device_id(dd, &device_id, &device_rev);
3744 /*
3745 * And the 'MgmtAllowed' information, which is exchanged during
3746 * LNI, is also be available at this point.
3747 */
3748 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
3749 /* print the active widths */
3750 get_link_widths(dd, &active_tx, &active_rx);
3751 dd_dev_info(dd,
3752 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
3753 (int)power_management, (int)continious);
3754 dd_dev_info(dd,
3755 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
3756 (int)vau,
3757 (int)z,
3758 (int)vcu,
3759 (int)vl15buf,
3760 (int)partner_supported_crc);
3761 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
3762 (u32)remote_tx_rate, (u32)link_widths);
3763 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
3764 (u32)device_id, (u32)device_rev);
3765 /*
3766 * The peer vAU value just read is the peer receiver value. HFI does
3767 * not support a transmit vAU of 0 (AU == 8). We advertised that
3768 * with Z=1 in the fabric capabilities sent to the peer. The peer
3769 * will see our Z=1, and, if it advertised a vAU of 0, will move its
3770 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
3771 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
3772 * subject to the Z value exception.
3773 */
3774 if (vau == 0)
3775 vau = 1;
3776 set_up_vl15(dd, vau, vl15buf);
3777
3778 /* set up the LCB CRC mode */
3779 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
3780
3781 /* order is important: use the lowest bit in common */
3782 if (crc_mask & CAP_CRC_14B)
3783 crc_val = LCB_CRC_14B;
3784 else if (crc_mask & CAP_CRC_48B)
3785 crc_val = LCB_CRC_48B;
3786 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
3787 crc_val = LCB_CRC_12B_16B_PER_LANE;
3788 else
3789 crc_val = LCB_CRC_16B;
3790
3791 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
3792 write_csr(dd, DC_LCB_CFG_CRC_MODE,
3793 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
3794
3795 /* set (14b only) or clear sideband credit */
3796 reg = read_csr(dd, SEND_CM_CTRL);
3797 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
3798 write_csr(dd, SEND_CM_CTRL,
3799 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3800 } else {
3801 write_csr(dd, SEND_CM_CTRL,
3802 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3803 }
3804
3805 ppd->link_speed_active = 0; /* invalid value */
3806 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
3807 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
3808 switch (remote_tx_rate) {
3809 case 0:
3810 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3811 break;
3812 case 1:
3813 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3814 break;
3815 }
3816 } else {
3817 /* actual rate is highest bit of the ANDed rates */
3818 u8 rate = remote_tx_rate & ppd->local_tx_rate;
3819
3820 if (rate & 2)
3821 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3822 else if (rate & 1)
3823 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3824 }
3825 if (ppd->link_speed_active == 0) {
3826 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
3827 __func__, (int)remote_tx_rate);
3828 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3829 }
3830
3831 /*
3832 * Cache the values of the supported, enabled, and active
3833 * LTP CRC modes to return in 'portinfo' queries. But the bit
3834 * flags that are returned in the portinfo query differ from
3835 * what's in the link_crc_mask, crc_sizes, and crc_val
3836 * variables. Convert these here.
3837 */
3838 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
3839 /* supported crc modes */
3840 ppd->port_ltp_crc_mode |=
3841 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
3842 /* enabled crc modes */
3843 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
3844 /* active crc mode */
3845
3846 /* set up the remote credit return table */
3847 assign_remote_cm_au_table(dd, vcu);
3848
3849 /*
3850 * The LCB is reset on entry to handle_verify_cap(), so this must
3851 * be applied on every link up.
3852 *
3853 * Adjust LCB error kill enable to kill the link if
3854 * these RBUF errors are seen:
3855 * REPLAY_BUF_MBE_SMASK
3856 * FLIT_INPUT_BUF_MBE_SMASK
3857 */
995deafa 3858 if (is_ax(dd)) { /* fixed in B0 */
77241056
MM
3859 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
3860 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
3861 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
3862 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
3863 }
3864
3865 /* pull LCB fifos out of reset - all fifo clocks must be stable */
3866 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
3867
3868 /* give 8051 access to the LCB CSRs */
3869 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
3870 set_8051_lcb_access(dd);
3871
3872 ppd->neighbor_guid =
3873 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
3874 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
3875 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
3876 ppd->neighbor_type =
3877 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
3878 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
3879 ppd->neighbor_fm_security =
3880 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
3881 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
3882 dd_dev_info(dd,
3883 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
3884 ppd->neighbor_guid, ppd->neighbor_type,
3885 ppd->mgmt_allowed, ppd->neighbor_fm_security);
3886 if (ppd->mgmt_allowed)
3887 add_full_mgmt_pkey(ppd);
3888
3889 /* tell the 8051 to go to LinkUp */
3890 set_link_state(ppd, HLS_GOING_UP);
3891}
3892
3893/*
3894 * Apply the link width downgrade enabled policy against the current active
3895 * link widths.
3896 *
3897 * Called when the enabled policy changes or the active link widths change.
3898 */
3899void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
3900{
77241056 3901 int do_bounce = 0;
323fd785
DL
3902 int tries;
3903 u16 lwde;
77241056
MM
3904 u16 tx, rx;
3905
323fd785
DL
3906 /* use the hls lock to avoid a race with actual link up */
3907 tries = 0;
3908retry:
77241056
MM
3909 mutex_lock(&ppd->hls_lock);
3910 /* only apply if the link is up */
323fd785
DL
3911 if (!(ppd->host_link_state & HLS_UP)) {
3912 /* still going up..wait and retry */
3913 if (ppd->host_link_state & HLS_GOING_UP) {
3914 if (++tries < 1000) {
3915 mutex_unlock(&ppd->hls_lock);
3916 usleep_range(100, 120); /* arbitrary */
3917 goto retry;
3918 }
3919 dd_dev_err(ppd->dd,
3920 "%s: giving up waiting for link state change\n",
3921 __func__);
3922 }
3923 goto done;
3924 }
3925
3926 lwde = ppd->link_width_downgrade_enabled;
77241056
MM
3927
3928 if (refresh_widths) {
3929 get_link_widths(ppd->dd, &tx, &rx);
3930 ppd->link_width_downgrade_tx_active = tx;
3931 ppd->link_width_downgrade_rx_active = rx;
3932 }
3933
3934 if (lwde == 0) {
3935 /* downgrade is disabled */
3936
3937 /* bounce if not at starting active width */
3938 if ((ppd->link_width_active !=
3939 ppd->link_width_downgrade_tx_active)
3940 || (ppd->link_width_active !=
3941 ppd->link_width_downgrade_rx_active)) {
3942 dd_dev_err(ppd->dd,
3943 "Link downgrade is disabled and link has downgraded, downing link\n");
3944 dd_dev_err(ppd->dd,
3945 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
3946 ppd->link_width_active,
3947 ppd->link_width_downgrade_tx_active,
3948 ppd->link_width_downgrade_rx_active);
3949 do_bounce = 1;
3950 }
3951 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
3952 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
3953 /* Tx or Rx is outside the enabled policy */
3954 dd_dev_err(ppd->dd,
3955 "Link is outside of downgrade allowed, downing link\n");
3956 dd_dev_err(ppd->dd,
3957 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
3958 lwde,
3959 ppd->link_width_downgrade_tx_active,
3960 ppd->link_width_downgrade_rx_active);
3961 do_bounce = 1;
3962 }
3963
323fd785
DL
3964done:
3965 mutex_unlock(&ppd->hls_lock);
3966
77241056
MM
3967 if (do_bounce) {
3968 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
3969 OPA_LINKDOWN_REASON_WIDTH_POLICY);
3970 set_link_state(ppd, HLS_DN_OFFLINE);
3971 start_link(ppd);
3972 }
3973}
3974
3975/*
3976 * Handle a link downgrade interrupt from the 8051.
3977 *
3978 * This is a work-queue function outside of the interrupt.
3979 */
3980void handle_link_downgrade(struct work_struct *work)
3981{
3982 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3983 link_downgrade_work);
3984
3985 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
3986 apply_link_downgrade_policy(ppd, 1);
3987}
3988
3989static char *dcc_err_string(char *buf, int buf_len, u64 flags)
3990{
3991 return flag_string(buf, buf_len, flags, dcc_err_flags,
3992 ARRAY_SIZE(dcc_err_flags));
3993}
3994
3995static char *lcb_err_string(char *buf, int buf_len, u64 flags)
3996{
3997 return flag_string(buf, buf_len, flags, lcb_err_flags,
3998 ARRAY_SIZE(lcb_err_flags));
3999}
4000
4001static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
4002{
4003 return flag_string(buf, buf_len, flags, dc8051_err_flags,
4004 ARRAY_SIZE(dc8051_err_flags));
4005}
4006
4007static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
4008{
4009 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
4010 ARRAY_SIZE(dc8051_info_err_flags));
4011}
4012
4013static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
4014{
4015 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
4016 ARRAY_SIZE(dc8051_info_host_msg_flags));
4017}
4018
4019static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
4020{
4021 struct hfi1_pportdata *ppd = dd->pport;
4022 u64 info, err, host_msg;
4023 int queue_link_down = 0;
4024 char buf[96];
4025
4026 /* look at the flags */
4027 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
4028 /* 8051 information set by firmware */
4029 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
4030 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
4031 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
4032 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
4033 host_msg = (info >>
4034 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
4035 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
4036
4037 /*
4038 * Handle error flags.
4039 */
4040 if (err & FAILED_LNI) {
4041 /*
4042 * LNI error indications are cleared by the 8051
4043 * only when starting polling. Only pay attention
4044 * to them when in the states that occur during
4045 * LNI.
4046 */
4047 if (ppd->host_link_state
4048 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
4049 queue_link_down = 1;
4050 dd_dev_info(dd, "Link error: %s\n",
4051 dc8051_info_err_string(buf,
4052 sizeof(buf),
4053 err & FAILED_LNI));
4054 }
4055 err &= ~(u64)FAILED_LNI;
4056 }
4057 if (err) {
4058 /* report remaining errors, but do not do anything */
4059 dd_dev_err(dd, "8051 info error: %s\n",
4060 dc8051_info_err_string(buf, sizeof(buf), err));
4061 }
4062
4063 /*
4064 * Handle host message flags.
4065 */
4066 if (host_msg & HOST_REQ_DONE) {
4067 /*
4068 * Presently, the driver does a busy wait for
4069 * host requests to complete. This is only an
4070 * informational message.
4071 * NOTE: The 8051 clears the host message
4072 * information *on the next 8051 command*.
4073 * Therefore, when linkup is achieved,
4074 * this flag will still be set.
4075 */
4076 host_msg &= ~(u64)HOST_REQ_DONE;
4077 }
4078 if (host_msg & BC_SMA_MSG) {
4079 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
4080 host_msg &= ~(u64)BC_SMA_MSG;
4081 }
4082 if (host_msg & LINKUP_ACHIEVED) {
4083 dd_dev_info(dd, "8051: Link up\n");
4084 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
4085 host_msg &= ~(u64)LINKUP_ACHIEVED;
4086 }
4087 if (host_msg & EXT_DEVICE_CFG_REQ) {
4088 handle_8051_request(dd);
4089 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
4090 }
4091 if (host_msg & VERIFY_CAP_FRAME) {
4092 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
4093 host_msg &= ~(u64)VERIFY_CAP_FRAME;
4094 }
4095 if (host_msg & LINK_GOING_DOWN) {
4096 const char *extra = "";
4097 /* no downgrade action needed if going down */
4098 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4099 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4100 extra = " (ignoring downgrade)";
4101 }
4102 dd_dev_info(dd, "8051: Link down%s\n", extra);
4103 queue_link_down = 1;
4104 host_msg &= ~(u64)LINK_GOING_DOWN;
4105 }
4106 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4107 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
4108 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4109 }
4110 if (host_msg) {
4111 /* report remaining messages, but do not do anything */
4112 dd_dev_info(dd, "8051 info host message: %s\n",
4113 dc8051_info_host_msg_string(buf, sizeof(buf),
4114 host_msg));
4115 }
4116
4117 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
4118 }
4119 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
4120 /*
4121 * Lost the 8051 heartbeat. If this happens, we
4122 * receive constant interrupts about it. Disable
4123 * the interrupt after the first.
4124 */
4125 dd_dev_err(dd, "Lost 8051 heartbeat\n");
4126 write_csr(dd, DC_DC8051_ERR_EN,
4127 read_csr(dd, DC_DC8051_ERR_EN)
4128 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
4129
4130 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
4131 }
4132 if (reg) {
4133 /* report the error, but do not do anything */
4134 dd_dev_err(dd, "8051 error: %s\n",
4135 dc8051_err_string(buf, sizeof(buf), reg));
4136 }
4137
4138 if (queue_link_down) {
4139 /* if the link is already going down or disabled, do not
4140 * queue another */
4141 if ((ppd->host_link_state
4142 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
4143 || ppd->link_enabled == 0) {
4144 dd_dev_info(dd, "%s: not queuing link down\n",
4145 __func__);
4146 } else {
4147 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
4148 }
4149 }
4150}
4151
4152static const char * const fm_config_txt[] = {
4153[0] =
4154 "BadHeadDist: Distance violation between two head flits",
4155[1] =
4156 "BadTailDist: Distance violation between two tail flits",
4157[2] =
4158 "BadCtrlDist: Distance violation between two credit control flits",
4159[3] =
4160 "BadCrdAck: Credits return for unsupported VL",
4161[4] =
4162 "UnsupportedVLMarker: Received VL Marker",
4163[5] =
4164 "BadPreempt: Exceeded the preemption nesting level",
4165[6] =
4166 "BadControlFlit: Received unsupported control flit",
4167/* no 7 */
4168[8] =
4169 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
4170};
4171
4172static const char * const port_rcv_txt[] = {
4173[1] =
4174 "BadPktLen: Illegal PktLen",
4175[2] =
4176 "PktLenTooLong: Packet longer than PktLen",
4177[3] =
4178 "PktLenTooShort: Packet shorter than PktLen",
4179[4] =
4180 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
4181[5] =
4182 "BadDLID: Illegal DLID (0, doesn't match HFI)",
4183[6] =
4184 "BadL2: Illegal L2 opcode",
4185[7] =
4186 "BadSC: Unsupported SC",
4187[9] =
4188 "BadRC: Illegal RC",
4189[11] =
4190 "PreemptError: Preempting with same VL",
4191[12] =
4192 "PreemptVL15: Preempting a VL15 packet",
4193};
4194
4195#define OPA_LDR_FMCONFIG_OFFSET 16
4196#define OPA_LDR_PORTRCV_OFFSET 0
4197static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4198{
4199 u64 info, hdr0, hdr1;
4200 const char *extra;
4201 char buf[96];
4202 struct hfi1_pportdata *ppd = dd->pport;
4203 u8 lcl_reason = 0;
4204 int do_bounce = 0;
4205
4206 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
4207 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
4208 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
4209 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
4210 /* set status bit */
4211 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
4212 }
4213 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
4214 }
4215
4216 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
4217 struct hfi1_pportdata *ppd = dd->pport;
4218 /* this counter saturates at (2^32) - 1 */
4219 if (ppd->link_downed < (u32)UINT_MAX)
4220 ppd->link_downed++;
4221 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
4222 }
4223
4224 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
4225 u8 reason_valid = 1;
4226
4227 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
4228 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
4229 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
4230 /* set status bit */
4231 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
4232 }
4233 switch (info) {
4234 case 0:
4235 case 1:
4236 case 2:
4237 case 3:
4238 case 4:
4239 case 5:
4240 case 6:
4241 extra = fm_config_txt[info];
4242 break;
4243 case 8:
4244 extra = fm_config_txt[info];
4245 if (ppd->port_error_action &
4246 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
4247 do_bounce = 1;
4248 /*
4249 * lcl_reason cannot be derived from info
4250 * for this error
4251 */
4252 lcl_reason =
4253 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
4254 }
4255 break;
4256 default:
4257 reason_valid = 0;
4258 snprintf(buf, sizeof(buf), "reserved%lld", info);
4259 extra = buf;
4260 break;
4261 }
4262
4263 if (reason_valid && !do_bounce) {
4264 do_bounce = ppd->port_error_action &
4265 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
4266 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
4267 }
4268
4269 /* just report this */
4270 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
4271 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
4272 }
4273
4274 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
4275 u8 reason_valid = 1;
4276
4277 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
4278 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
4279 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
4280 if (!(dd->err_info_rcvport.status_and_code &
4281 OPA_EI_STATUS_SMASK)) {
4282 dd->err_info_rcvport.status_and_code =
4283 info & OPA_EI_CODE_SMASK;
4284 /* set status bit */
4285 dd->err_info_rcvport.status_and_code |=
4286 OPA_EI_STATUS_SMASK;
4287 /* save first 2 flits in the packet that caused
4288 * the error */
4289 dd->err_info_rcvport.packet_flit1 = hdr0;
4290 dd->err_info_rcvport.packet_flit2 = hdr1;
4291 }
4292 switch (info) {
4293 case 1:
4294 case 2:
4295 case 3:
4296 case 4:
4297 case 5:
4298 case 6:
4299 case 7:
4300 case 9:
4301 case 11:
4302 case 12:
4303 extra = port_rcv_txt[info];
4304 break;
4305 default:
4306 reason_valid = 0;
4307 snprintf(buf, sizeof(buf), "reserved%lld", info);
4308 extra = buf;
4309 break;
4310 }
4311
4312 if (reason_valid && !do_bounce) {
4313 do_bounce = ppd->port_error_action &
4314 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
4315 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
4316 }
4317
4318 /* just report this */
4319 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
4320 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
4321 hdr0, hdr1);
4322
4323 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
4324 }
4325
4326 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
4327 /* informative only */
4328 dd_dev_info(dd, "8051 access to LCB blocked\n");
4329 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
4330 }
4331 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
4332 /* informative only */
4333 dd_dev_info(dd, "host access to LCB blocked\n");
4334 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
4335 }
4336
4337 /* report any remaining errors */
4338 if (reg)
4339 dd_dev_info(dd, "DCC Error: %s\n",
4340 dcc_err_string(buf, sizeof(buf), reg));
4341
4342 if (lcl_reason == 0)
4343 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
4344
4345 if (do_bounce) {
4346 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
4347 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
4348 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
4349 }
4350}
4351
4352static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4353{
4354 char buf[96];
4355
4356 dd_dev_info(dd, "LCB Error: %s\n",
4357 lcb_err_string(buf, sizeof(buf), reg));
4358}
4359
4360/*
4361 * CCE block DC interrupt. Source is < 8.
4362 */
4363static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
4364{
4365 const struct err_reg_info *eri = &dc_errs[source];
4366
4367 if (eri->handler) {
4368 interrupt_clear_down(dd, 0, eri);
4369 } else if (source == 3 /* dc_lbm_int */) {
4370 /*
4371 * This indicates that a parity error has occurred on the
4372 * address/control lines presented to the LBM. The error
4373 * is a single pulse, there is no associated error flag,
4374 * and it is non-maskable. This is because if a parity
4375 * error occurs on the request the request is dropped.
4376 * This should never occur, but it is nice to know if it
4377 * ever does.
4378 */
4379 dd_dev_err(dd, "Parity error in DC LBM block\n");
4380 } else {
4381 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
4382 }
4383}
4384
4385/*
4386 * TX block send credit interrupt. Source is < 160.
4387 */
4388static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
4389{
4390 sc_group_release_update(dd, source);
4391}
4392
4393/*
4394 * TX block SDMA interrupt. Source is < 48.
4395 *
4396 * SDMA interrupts are grouped by type:
4397 *
4398 * 0 - N-1 = SDma
4399 * N - 2N-1 = SDmaProgress
4400 * 2N - 3N-1 = SDmaIdle
4401 */
4402static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
4403{
4404 /* what interrupt */
4405 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
4406 /* which engine */
4407 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
4408
4409#ifdef CONFIG_SDMA_VERBOSITY
4410 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
4411 slashstrip(__FILE__), __LINE__, __func__);
4412 sdma_dumpstate(&dd->per_sdma[which]);
4413#endif
4414
4415 if (likely(what < 3 && which < dd->num_sdma)) {
4416 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
4417 } else {
4418 /* should not happen */
4419 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
4420 }
4421}
4422
4423/*
4424 * RX block receive available interrupt. Source is < 160.
4425 */
4426static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
4427{
4428 struct hfi1_ctxtdata *rcd;
4429 char *err_detail;
4430
4431 if (likely(source < dd->num_rcv_contexts)) {
4432 rcd = dd->rcd[source];
4433 if (rcd) {
4434 if (source < dd->first_user_ctxt)
f4f30031 4435 rcd->do_interrupt(rcd, 0);
77241056
MM
4436 else
4437 handle_user_interrupt(rcd);
4438 return; /* OK */
4439 }
4440 /* received an interrupt, but no rcd */
4441 err_detail = "dataless";
4442 } else {
4443 /* received an interrupt, but are not using that context */
4444 err_detail = "out of range";
4445 }
4446 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
4447 err_detail, source);
4448}
4449
4450/*
4451 * RX block receive urgent interrupt. Source is < 160.
4452 */
4453static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
4454{
4455 struct hfi1_ctxtdata *rcd;
4456 char *err_detail;
4457
4458 if (likely(source < dd->num_rcv_contexts)) {
4459 rcd = dd->rcd[source];
4460 if (rcd) {
4461 /* only pay attention to user urgent interrupts */
4462 if (source >= dd->first_user_ctxt)
4463 handle_user_interrupt(rcd);
4464 return; /* OK */
4465 }
4466 /* received an interrupt, but no rcd */
4467 err_detail = "dataless";
4468 } else {
4469 /* received an interrupt, but are not using that context */
4470 err_detail = "out of range";
4471 }
4472 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
4473 err_detail, source);
4474}
4475
4476/*
4477 * Reserved range interrupt. Should not be called in normal operation.
4478 */
4479static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
4480{
4481 char name[64];
4482
4483 dd_dev_err(dd, "unexpected %s interrupt\n",
4484 is_reserved_name(name, sizeof(name), source));
4485}
4486
4487static const struct is_table is_table[] = {
4488/* start end
4489 name func interrupt func */
4490{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
4491 is_misc_err_name, is_misc_err_int },
4492{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
4493 is_sdma_eng_err_name, is_sdma_eng_err_int },
4494{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
4495 is_sendctxt_err_name, is_sendctxt_err_int },
4496{ IS_SDMA_START, IS_SDMA_END,
4497 is_sdma_eng_name, is_sdma_eng_int },
4498{ IS_VARIOUS_START, IS_VARIOUS_END,
4499 is_various_name, is_various_int },
4500{ IS_DC_START, IS_DC_END,
4501 is_dc_name, is_dc_int },
4502{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
4503 is_rcv_avail_name, is_rcv_avail_int },
4504{ IS_RCVURGENT_START, IS_RCVURGENT_END,
4505 is_rcv_urgent_name, is_rcv_urgent_int },
4506{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
4507 is_send_credit_name, is_send_credit_int},
4508{ IS_RESERVED_START, IS_RESERVED_END,
4509 is_reserved_name, is_reserved_int},
4510};
4511
4512/*
4513 * Interrupt source interrupt - called when the given source has an interrupt.
4514 * Source is a bit index into an array of 64-bit integers.
4515 */
4516static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
4517{
4518 const struct is_table *entry;
4519
4520 /* avoids a double compare by walking the table in-order */
4521 for (entry = &is_table[0]; entry->is_name; entry++) {
4522 if (source < entry->end) {
4523 trace_hfi1_interrupt(dd, entry, source);
4524 entry->is_int(dd, source - entry->start);
4525 return;
4526 }
4527 }
4528 /* fell off the end */
4529 dd_dev_err(dd, "invalid interrupt source %u\n", source);
4530}
4531
4532/*
4533 * General interrupt handler. This is able to correctly handle
4534 * all interrupts in case INTx is used.
4535 */
4536static irqreturn_t general_interrupt(int irq, void *data)
4537{
4538 struct hfi1_devdata *dd = data;
4539 u64 regs[CCE_NUM_INT_CSRS];
4540 u32 bit;
4541 int i;
4542
4543 this_cpu_inc(*dd->int_counter);
4544
4545 /* phase 1: scan and clear all handled interrupts */
4546 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
4547 if (dd->gi_mask[i] == 0) {
4548 regs[i] = 0; /* used later */
4549 continue;
4550 }
4551 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
4552 dd->gi_mask[i];
4553 /* only clear if anything is set */
4554 if (regs[i])
4555 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
4556 }
4557
4558 /* phase 2: call the appropriate handler */
4559 for_each_set_bit(bit, (unsigned long *)&regs[0],
4560 CCE_NUM_INT_CSRS*64) {
4561 is_interrupt(dd, bit);
4562 }
4563
4564 return IRQ_HANDLED;
4565}
4566
4567static irqreturn_t sdma_interrupt(int irq, void *data)
4568{
4569 struct sdma_engine *sde = data;
4570 struct hfi1_devdata *dd = sde->dd;
4571 u64 status;
4572
4573#ifdef CONFIG_SDMA_VERBOSITY
4574 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
4575 slashstrip(__FILE__), __LINE__, __func__);
4576 sdma_dumpstate(sde);
4577#endif
4578
4579 this_cpu_inc(*dd->int_counter);
4580
4581 /* This read_csr is really bad in the hot path */
4582 status = read_csr(dd,
4583 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
4584 & sde->imask;
4585 if (likely(status)) {
4586 /* clear the interrupt(s) */
4587 write_csr(dd,
4588 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
4589 status);
4590
4591 /* handle the interrupt(s) */
4592 sdma_engine_interrupt(sde, status);
4593 } else
4594 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
4595 sde->this_idx);
4596
4597 return IRQ_HANDLED;
4598}
4599
4600/*
f4f30031
DL
4601 * Clear the receive interrupt, forcing the write and making sure
4602 * we have data from the chip, pushing everything in front of it
4603 * back to the host.
4604 */
4605static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
4606{
4607 struct hfi1_devdata *dd = rcd->dd;
4608 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
4609
4610 mmiowb(); /* make sure everything before is written */
4611 write_csr(dd, addr, rcd->imask);
4612 /* force the above write on the chip and get a value back */
4613 (void)read_csr(dd, addr);
4614}
4615
4616/* force the receive interrupt */
4617static inline void force_recv_intr(struct hfi1_ctxtdata *rcd)
4618{
4619 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
4620}
4621
4622/* return non-zero if a packet is present */
4623static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
4624{
4625 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
4626 return (rcd->seq_cnt ==
4627 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
4628
4629 /* else is RDMA rtail */
4630 return (rcd->head != get_rcvhdrtail(rcd));
4631}
4632
4633/*
4634 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
4635 * This routine will try to handle packets immediately (latency), but if
4636 * it finds too many, it will invoke the thread handler (bandwitdh). The
4637 * chip receive interupt is *not* cleared down until this or the thread (if
4638 * invoked) is finished. The intent is to avoid extra interrupts while we
4639 * are processing packets anyway.
77241056
MM
4640 */
4641static irqreturn_t receive_context_interrupt(int irq, void *data)
4642{
4643 struct hfi1_ctxtdata *rcd = data;
4644 struct hfi1_devdata *dd = rcd->dd;
f4f30031
DL
4645 int disposition;
4646 int present;
77241056
MM
4647
4648 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
4649 this_cpu_inc(*dd->int_counter);
4650
f4f30031
DL
4651 /* receive interrupt remains blocked while processing packets */
4652 disposition = rcd->do_interrupt(rcd, 0);
77241056 4653
f4f30031
DL
4654 /*
4655 * Too many packets were seen while processing packets in this
4656 * IRQ handler. Invoke the handler thread. The receive interrupt
4657 * remains blocked.
4658 */
4659 if (disposition == RCV_PKT_LIMIT)
4660 return IRQ_WAKE_THREAD;
4661
4662 /*
4663 * The packet processor detected no more packets. Clear the receive
4664 * interrupt and recheck for a packet packet that may have arrived
4665 * after the previous check and interrupt clear. If a packet arrived,
4666 * force another interrupt.
4667 */
4668 clear_recv_intr(rcd);
4669 present = check_packet_present(rcd);
4670 if (present)
4671 force_recv_intr(rcd);
4672
4673 return IRQ_HANDLED;
4674}
4675
4676/*
4677 * Receive packet thread handler. This expects to be invoked with the
4678 * receive interrupt still blocked.
4679 */
4680static irqreturn_t receive_context_thread(int irq, void *data)
4681{
4682 struct hfi1_ctxtdata *rcd = data;
4683 int present;
4684
4685 /* receive interrupt is still blocked from the IRQ handler */
4686 (void)rcd->do_interrupt(rcd, 1);
4687
4688 /*
4689 * The packet processor will only return if it detected no more
4690 * packets. Hold IRQs here so we can safely clear the interrupt and
4691 * recheck for a packet that may have arrived after the previous
4692 * check and the interrupt clear. If a packet arrived, force another
4693 * interrupt.
4694 */
4695 local_irq_disable();
4696 clear_recv_intr(rcd);
4697 present = check_packet_present(rcd);
4698 if (present)
4699 force_recv_intr(rcd);
4700 local_irq_enable();
77241056
MM
4701
4702 return IRQ_HANDLED;
4703}
4704
4705/* ========================================================================= */
4706
4707u32 read_physical_state(struct hfi1_devdata *dd)
4708{
4709 u64 reg;
4710
4711 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
4712 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
4713 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
4714}
4715
4716static u32 read_logical_state(struct hfi1_devdata *dd)
4717{
4718 u64 reg;
4719
4720 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4721 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
4722 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
4723}
4724
4725static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
4726{
4727 u64 reg;
4728
4729 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4730 /* clear current state, set new state */
4731 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
4732 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
4733 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
4734}
4735
4736/*
4737 * Use the 8051 to read a LCB CSR.
4738 */
4739static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
4740{
4741 u32 regno;
4742 int ret;
4743
4744 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
4745 if (acquire_lcb_access(dd, 0) == 0) {
4746 *data = read_csr(dd, addr);
4747 release_lcb_access(dd, 0);
4748 return 0;
4749 }
4750 return -EBUSY;
4751 }
4752
4753 /* register is an index of LCB registers: (offset - base) / 8 */
4754 regno = (addr - DC_LCB_CFG_RUN) >> 3;
4755 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
4756 if (ret != HCMD_SUCCESS)
4757 return -EBUSY;
4758 return 0;
4759}
4760
4761/*
4762 * Read an LCB CSR. Access may not be in host control, so check.
4763 * Return 0 on success, -EBUSY on failure.
4764 */
4765int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
4766{
4767 struct hfi1_pportdata *ppd = dd->pport;
4768
4769 /* if up, go through the 8051 for the value */
4770 if (ppd->host_link_state & HLS_UP)
4771 return read_lcb_via_8051(dd, addr, data);
4772 /* if going up or down, no access */
4773 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4774 return -EBUSY;
4775 /* otherwise, host has access */
4776 *data = read_csr(dd, addr);
4777 return 0;
4778}
4779
4780/*
4781 * Use the 8051 to write a LCB CSR.
4782 */
4783static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
4784{
3bf40d65
DL
4785 u32 regno;
4786 int ret;
77241056 4787
3bf40d65
DL
4788 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
4789 (dd->dc8051_ver < dc8051_ver(0, 20))) {
4790 if (acquire_lcb_access(dd, 0) == 0) {
4791 write_csr(dd, addr, data);
4792 release_lcb_access(dd, 0);
4793 return 0;
4794 }
4795 return -EBUSY;
77241056 4796 }
3bf40d65
DL
4797
4798 /* register is an index of LCB registers: (offset - base) / 8 */
4799 regno = (addr - DC_LCB_CFG_RUN) >> 3;
4800 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
4801 if (ret != HCMD_SUCCESS)
4802 return -EBUSY;
4803 return 0;
77241056
MM
4804}
4805
4806/*
4807 * Write an LCB CSR. Access may not be in host control, so check.
4808 * Return 0 on success, -EBUSY on failure.
4809 */
4810int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
4811{
4812 struct hfi1_pportdata *ppd = dd->pport;
4813
4814 /* if up, go through the 8051 for the value */
4815 if (ppd->host_link_state & HLS_UP)
4816 return write_lcb_via_8051(dd, addr, data);
4817 /* if going up or down, no access */
4818 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4819 return -EBUSY;
4820 /* otherwise, host has access */
4821 write_csr(dd, addr, data);
4822 return 0;
4823}
4824
4825/*
4826 * Returns:
4827 * < 0 = Linux error, not able to get access
4828 * > 0 = 8051 command RETURN_CODE
4829 */
4830static int do_8051_command(
4831 struct hfi1_devdata *dd,
4832 u32 type,
4833 u64 in_data,
4834 u64 *out_data)
4835{
4836 u64 reg, completed;
4837 int return_code;
4838 unsigned long flags;
4839 unsigned long timeout;
4840
4841 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
4842
4843 /*
4844 * Alternative to holding the lock for a long time:
4845 * - keep busy wait - have other users bounce off
4846 */
4847 spin_lock_irqsave(&dd->dc8051_lock, flags);
4848
4849 /* We can't send any commands to the 8051 if it's in reset */
4850 if (dd->dc_shutdown) {
4851 return_code = -ENODEV;
4852 goto fail;
4853 }
4854
4855 /*
4856 * If an 8051 host command timed out previously, then the 8051 is
4857 * stuck.
4858 *
4859 * On first timeout, attempt to reset and restart the entire DC
4860 * block (including 8051). (Is this too big of a hammer?)
4861 *
4862 * If the 8051 times out a second time, the reset did not bring it
4863 * back to healthy life. In that case, fail any subsequent commands.
4864 */
4865 if (dd->dc8051_timed_out) {
4866 if (dd->dc8051_timed_out > 1) {
4867 dd_dev_err(dd,
4868 "Previous 8051 host command timed out, skipping command %u\n",
4869 type);
4870 return_code = -ENXIO;
4871 goto fail;
4872 }
4873 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4874 dc_shutdown(dd);
4875 dc_start(dd);
4876 spin_lock_irqsave(&dd->dc8051_lock, flags);
4877 }
4878
4879 /*
4880 * If there is no timeout, then the 8051 command interface is
4881 * waiting for a command.
4882 */
4883
3bf40d65
DL
4884 /*
4885 * When writing a LCB CSR, out_data contains the full value to
4886 * to be written, while in_data contains the relative LCB
4887 * address in 7:0. Do the work here, rather than the caller,
4888 * of distrubting the write data to where it needs to go:
4889 *
4890 * Write data
4891 * 39:00 -> in_data[47:8]
4892 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
4893 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
4894 */
4895 if (type == HCMD_WRITE_LCB_CSR) {
4896 in_data |= ((*out_data) & 0xffffffffffull) << 8;
4897 reg = ((((*out_data) >> 40) & 0xff) <<
4898 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
4899 | ((((*out_data) >> 48) & 0xffff) <<
4900 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
4901 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
4902 }
4903
77241056
MM
4904 /*
4905 * Do two writes: the first to stabilize the type and req_data, the
4906 * second to activate.
4907 */
4908 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
4909 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
4910 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
4911 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
4912 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4913 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
4914 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4915
4916 /* wait for completion, alternate: interrupt */
4917 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
4918 while (1) {
4919 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
4920 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
4921 if (completed)
4922 break;
4923 if (time_after(jiffies, timeout)) {
4924 dd->dc8051_timed_out++;
4925 dd_dev_err(dd, "8051 host command %u timeout\n", type);
4926 if (out_data)
4927 *out_data = 0;
4928 return_code = -ETIMEDOUT;
4929 goto fail;
4930 }
4931 udelay(2);
4932 }
4933
4934 if (out_data) {
4935 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
4936 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
4937 if (type == HCMD_READ_LCB_CSR) {
4938 /* top 16 bits are in a different register */
4939 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
4940 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
4941 << (48
4942 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
4943 }
4944 }
4945 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
4946 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
4947 dd->dc8051_timed_out = 0;
4948 /*
4949 * Clear command for next user.
4950 */
4951 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
4952
4953fail:
4954 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4955
4956 return return_code;
4957}
4958
4959static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
4960{
4961 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
4962}
4963
4964static int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
4965 u8 lane_id, u32 config_data)
4966{
4967 u64 data;
4968 int ret;
4969
4970 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
4971 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
4972 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
4973 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
4974 if (ret != HCMD_SUCCESS) {
4975 dd_dev_err(dd,
4976 "load 8051 config: field id %d, lane %d, err %d\n",
4977 (int)field_id, (int)lane_id, ret);
4978 }
4979 return ret;
4980}
4981
4982/*
4983 * Read the 8051 firmware "registers". Use the RAM directly. Always
4984 * set the result, even on error.
4985 * Return 0 on success, -errno on failure
4986 */
4987static int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
4988 u32 *result)
4989{
4990 u64 big_data;
4991 u32 addr;
4992 int ret;
4993
4994 /* address start depends on the lane_id */
4995 if (lane_id < 4)
4996 addr = (4 * NUM_GENERAL_FIELDS)
4997 + (lane_id * 4 * NUM_LANE_FIELDS);
4998 else
4999 addr = 0;
5000 addr += field_id * 4;
5001
5002 /* read is in 8-byte chunks, hardware will truncate the address down */
5003 ret = read_8051_data(dd, addr, 8, &big_data);
5004
5005 if (ret == 0) {
5006 /* extract the 4 bytes we want */
5007 if (addr & 0x4)
5008 *result = (u32)(big_data >> 32);
5009 else
5010 *result = (u32)big_data;
5011 } else {
5012 *result = 0;
5013 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
5014 __func__, lane_id, field_id);
5015 }
5016
5017 return ret;
5018}
5019
5020static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
5021 u8 continuous)
5022{
5023 u32 frame;
5024
5025 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
5026 | power_management << POWER_MANAGEMENT_SHIFT;
5027 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
5028 GENERAL_CONFIG, frame);
5029}
5030
5031static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
5032 u16 vl15buf, u8 crc_sizes)
5033{
5034 u32 frame;
5035
5036 frame = (u32)vau << VAU_SHIFT
5037 | (u32)z << Z_SHIFT
5038 | (u32)vcu << VCU_SHIFT
5039 | (u32)vl15buf << VL15BUF_SHIFT
5040 | (u32)crc_sizes << CRC_SIZES_SHIFT;
5041 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
5042 GENERAL_CONFIG, frame);
5043}
5044
5045static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
5046 u8 *flag_bits, u16 *link_widths)
5047{
5048 u32 frame;
5049
5050 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
5051 &frame);
5052 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
5053 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
5054 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
5055}
5056
5057static int write_vc_local_link_width(struct hfi1_devdata *dd,
5058 u8 misc_bits,
5059 u8 flag_bits,
5060 u16 link_widths)
5061{
5062 u32 frame;
5063
5064 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
5065 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
5066 | (u32)link_widths << LINK_WIDTH_SHIFT;
5067 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
5068 frame);
5069}
5070
5071static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
5072 u8 device_rev)
5073{
5074 u32 frame;
5075
5076 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
5077 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
5078 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
5079}
5080
5081static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
5082 u8 *device_rev)
5083{
5084 u32 frame;
5085
5086 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
5087 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
5088 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
5089 & REMOTE_DEVICE_REV_MASK;
5090}
5091
5092void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
5093{
5094 u32 frame;
5095
5096 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
5097 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
5098 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
5099}
5100
5101static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
5102 u8 *continuous)
5103{
5104 u32 frame;
5105
5106 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
5107 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
5108 & POWER_MANAGEMENT_MASK;
5109 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
5110 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
5111}
5112
5113static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
5114 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
5115{
5116 u32 frame;
5117
5118 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
5119 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
5120 *z = (frame >> Z_SHIFT) & Z_MASK;
5121 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
5122 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
5123 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
5124}
5125
5126static void read_vc_remote_link_width(struct hfi1_devdata *dd,
5127 u8 *remote_tx_rate,
5128 u16 *link_widths)
5129{
5130 u32 frame;
5131
5132 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
5133 &frame);
5134 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
5135 & REMOTE_TX_RATE_MASK;
5136 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
5137}
5138
5139static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
5140{
5141 u32 frame;
5142
5143 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
5144 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
5145}
5146
5147static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
5148{
5149 u32 frame;
5150
5151 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
5152 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
5153}
5154
5155static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
5156{
5157 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
5158}
5159
5160static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
5161{
5162 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
5163}
5164
5165void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
5166{
5167 u32 frame;
5168 int ret;
5169
5170 *link_quality = 0;
5171 if (dd->pport->host_link_state & HLS_UP) {
5172 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
5173 &frame);
5174 if (ret == 0)
5175 *link_quality = (frame >> LINK_QUALITY_SHIFT)
5176 & LINK_QUALITY_MASK;
5177 }
5178}
5179
5180static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
5181{
5182 u32 frame;
5183
5184 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
5185 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
5186}
5187
5188static int read_tx_settings(struct hfi1_devdata *dd,
5189 u8 *enable_lane_tx,
5190 u8 *tx_polarity_inversion,
5191 u8 *rx_polarity_inversion,
5192 u8 *max_rate)
5193{
5194 u32 frame;
5195 int ret;
5196
5197 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
5198 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
5199 & ENABLE_LANE_TX_MASK;
5200 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
5201 & TX_POLARITY_INVERSION_MASK;
5202 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
5203 & RX_POLARITY_INVERSION_MASK;
5204 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
5205 return ret;
5206}
5207
5208static int write_tx_settings(struct hfi1_devdata *dd,
5209 u8 enable_lane_tx,
5210 u8 tx_polarity_inversion,
5211 u8 rx_polarity_inversion,
5212 u8 max_rate)
5213{
5214 u32 frame;
5215
5216 /* no need to mask, all variable sizes match field widths */
5217 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
5218 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
5219 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
5220 | max_rate << MAX_RATE_SHIFT;
5221 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
5222}
5223
5224static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
5225{
5226 u32 frame, version, prod_id;
5227 int ret, lane;
5228
5229 /* 4 lanes */
5230 for (lane = 0; lane < 4; lane++) {
5231 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
5232 if (ret) {
5233 dd_dev_err(
5234 dd,
5235 "Unable to read lane %d firmware details\n",
5236 lane);
5237 continue;
5238 }
5239 version = (frame >> SPICO_ROM_VERSION_SHIFT)
5240 & SPICO_ROM_VERSION_MASK;
5241 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
5242 & SPICO_ROM_PROD_ID_MASK;
5243 dd_dev_info(dd,
5244 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
5245 lane, version, prod_id);
5246 }
5247}
5248
5249/*
5250 * Read an idle LCB message.
5251 *
5252 * Returns 0 on success, -EINVAL on error
5253 */
5254static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
5255{
5256 int ret;
5257
5258 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
5259 type, data_out);
5260 if (ret != HCMD_SUCCESS) {
5261 dd_dev_err(dd, "read idle message: type %d, err %d\n",
5262 (u32)type, ret);
5263 return -EINVAL;
5264 }
5265 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
5266 /* return only the payload as we already know the type */
5267 *data_out >>= IDLE_PAYLOAD_SHIFT;
5268 return 0;
5269}
5270
5271/*
5272 * Read an idle SMA message. To be done in response to a notification from
5273 * the 8051.
5274 *
5275 * Returns 0 on success, -EINVAL on error
5276 */
5277static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
5278{
5279 return read_idle_message(dd,
5280 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
5281}
5282
5283/*
5284 * Send an idle LCB message.
5285 *
5286 * Returns 0 on success, -EINVAL on error
5287 */
5288static int send_idle_message(struct hfi1_devdata *dd, u64 data)
5289{
5290 int ret;
5291
5292 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
5293 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
5294 if (ret != HCMD_SUCCESS) {
5295 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
5296 data, ret);
5297 return -EINVAL;
5298 }
5299 return 0;
5300}
5301
5302/*
5303 * Send an idle SMA message.
5304 *
5305 * Returns 0 on success, -EINVAL on error
5306 */
5307int send_idle_sma(struct hfi1_devdata *dd, u64 message)
5308{
5309 u64 data;
5310
5311 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
5312 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
5313 return send_idle_message(dd, data);
5314}
5315
5316/*
5317 * Initialize the LCB then do a quick link up. This may or may not be
5318 * in loopback.
5319 *
5320 * return 0 on success, -errno on error
5321 */
5322static int do_quick_linkup(struct hfi1_devdata *dd)
5323{
5324 u64 reg;
5325 unsigned long timeout;
5326 int ret;
5327
5328 lcb_shutdown(dd, 0);
5329
5330 if (loopback) {
5331 /* LCB_CFG_LOOPBACK.VAL = 2 */
5332 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
5333 write_csr(dd, DC_LCB_CFG_LOOPBACK,
5334 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
5335 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
5336 }
5337
5338 /* start the LCBs */
5339 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
5340 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
5341
5342 /* simulator only loopback steps */
5343 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
5344 /* LCB_CFG_RUN.EN = 1 */
5345 write_csr(dd, DC_LCB_CFG_RUN,
5346 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
5347
5348 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
5349 timeout = jiffies + msecs_to_jiffies(10);
5350 while (1) {
5351 reg = read_csr(dd,
5352 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
5353 if (reg)
5354 break;
5355 if (time_after(jiffies, timeout)) {
5356 dd_dev_err(dd,
5357 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
5358 return -ETIMEDOUT;
5359 }
5360 udelay(2);
5361 }
5362
5363 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
5364 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
5365 }
5366
5367 if (!loopback) {
5368 /*
5369 * When doing quick linkup and not in loopback, both
5370 * sides must be done with LCB set-up before either
5371 * starts the quick linkup. Put a delay here so that
5372 * both sides can be started and have a chance to be
5373 * done with LCB set up before resuming.
5374 */
5375 dd_dev_err(dd,
5376 "Pausing for peer to be finished with LCB set up\n");
5377 msleep(5000);
5378 dd_dev_err(dd,
5379 "Continuing with quick linkup\n");
5380 }
5381
5382 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
5383 set_8051_lcb_access(dd);
5384
5385 /*
5386 * State "quick" LinkUp request sets the physical link state to
5387 * LinkUp without a verify capability sequence.
5388 * This state is in simulator v37 and later.
5389 */
5390 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
5391 if (ret != HCMD_SUCCESS) {
5392 dd_dev_err(dd,
5393 "%s: set physical link state to quick LinkUp failed with return %d\n",
5394 __func__, ret);
5395
5396 set_host_lcb_access(dd);
5397 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
5398
5399 if (ret >= 0)
5400 ret = -EINVAL;
5401 return ret;
5402 }
5403
5404 return 0; /* success */
5405}
5406
5407/*
5408 * Set the SerDes to internal loopback mode.
5409 * Returns 0 on success, -errno on error.
5410 */
5411static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
5412{
5413 int ret;
5414
5415 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
5416 if (ret == HCMD_SUCCESS)
5417 return 0;
5418 dd_dev_err(dd,
5419 "Set physical link state to SerDes Loopback failed with return %d\n",
5420 ret);
5421 if (ret >= 0)
5422 ret = -EINVAL;
5423 return ret;
5424}
5425
5426/*
5427 * Do all special steps to set up loopback.
5428 */
5429static int init_loopback(struct hfi1_devdata *dd)
5430{
5431 dd_dev_info(dd, "Entering loopback mode\n");
5432
5433 /* all loopbacks should disable self GUID check */
5434 write_csr(dd, DC_DC8051_CFG_MODE,
5435 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
5436
5437 /*
5438 * The simulator has only one loopback option - LCB. Switch
5439 * to that option, which includes quick link up.
5440 *
5441 * Accept all valid loopback values.
5442 */
5443 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5444 && (loopback == LOOPBACK_SERDES
5445 || loopback == LOOPBACK_LCB
5446 || loopback == LOOPBACK_CABLE)) {
5447 loopback = LOOPBACK_LCB;
5448 quick_linkup = 1;
5449 return 0;
5450 }
5451
5452 /* handle serdes loopback */
5453 if (loopback == LOOPBACK_SERDES) {
5454 /* internal serdes loopack needs quick linkup on RTL */
5455 if (dd->icode == ICODE_RTL_SILICON)
5456 quick_linkup = 1;
5457 return set_serdes_loopback_mode(dd);
5458 }
5459
5460 /* LCB loopback - handled at poll time */
5461 if (loopback == LOOPBACK_LCB) {
5462 quick_linkup = 1; /* LCB is always quick linkup */
5463
5464 /* not supported in emulation due to emulation RTL changes */
5465 if (dd->icode == ICODE_FPGA_EMULATION) {
5466 dd_dev_err(dd,
5467 "LCB loopback not supported in emulation\n");
5468 return -EINVAL;
5469 }
5470 return 0;
5471 }
5472
5473 /* external cable loopback requires no extra steps */
5474 if (loopback == LOOPBACK_CABLE)
5475 return 0;
5476
5477 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
5478 return -EINVAL;
5479}
5480
5481/*
5482 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
5483 * used in the Verify Capability link width attribute.
5484 */
5485static u16 opa_to_vc_link_widths(u16 opa_widths)
5486{
5487 int i;
5488 u16 result = 0;
5489
5490 static const struct link_bits {
5491 u16 from;
5492 u16 to;
5493 } opa_link_xlate[] = {
5494 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
5495 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
5496 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
5497 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
5498 };
5499
5500 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
5501 if (opa_widths & opa_link_xlate[i].from)
5502 result |= opa_link_xlate[i].to;
5503 }
5504 return result;
5505}
5506
5507/*
5508 * Set link attributes before moving to polling.
5509 */
5510static int set_local_link_attributes(struct hfi1_pportdata *ppd)
5511{
5512 struct hfi1_devdata *dd = ppd->dd;
5513 u8 enable_lane_tx;
5514 u8 tx_polarity_inversion;
5515 u8 rx_polarity_inversion;
5516 int ret;
5517
5518 /* reset our fabric serdes to clear any lingering problems */
5519 fabric_serdes_reset(dd);
5520
5521 /* set the local tx rate - need to read-modify-write */
5522 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
5523 &rx_polarity_inversion, &ppd->local_tx_rate);
5524 if (ret)
5525 goto set_local_link_attributes_fail;
5526
5527 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
5528 /* set the tx rate to the fastest enabled */
5529 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5530 ppd->local_tx_rate = 1;
5531 else
5532 ppd->local_tx_rate = 0;
5533 } else {
5534 /* set the tx rate to all enabled */
5535 ppd->local_tx_rate = 0;
5536 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5537 ppd->local_tx_rate |= 2;
5538 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
5539 ppd->local_tx_rate |= 1;
5540 }
febffe2c
EH
5541
5542 enable_lane_tx = 0xF; /* enable all four lanes */
77241056
MM
5543 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
5544 rx_polarity_inversion, ppd->local_tx_rate);
5545 if (ret != HCMD_SUCCESS)
5546 goto set_local_link_attributes_fail;
5547
5548 /*
5549 * DC supports continuous updates.
5550 */
5551 ret = write_vc_local_phy(dd, 0 /* no power management */,
5552 1 /* continuous updates */);
5553 if (ret != HCMD_SUCCESS)
5554 goto set_local_link_attributes_fail;
5555
5556 /* z=1 in the next call: AU of 0 is not supported by the hardware */
5557 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
5558 ppd->port_crc_mode_enabled);
5559 if (ret != HCMD_SUCCESS)
5560 goto set_local_link_attributes_fail;
5561
5562 ret = write_vc_local_link_width(dd, 0, 0,
5563 opa_to_vc_link_widths(ppd->link_width_enabled));
5564 if (ret != HCMD_SUCCESS)
5565 goto set_local_link_attributes_fail;
5566
5567 /* let peer know who we are */
5568 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
5569 if (ret == HCMD_SUCCESS)
5570 return 0;
5571
5572set_local_link_attributes_fail:
5573 dd_dev_err(dd,
5574 "Failed to set local link attributes, return 0x%x\n",
5575 ret);
5576 return ret;
5577}
5578
5579/*
5580 * Call this to start the link. Schedule a retry if the cable is not
5581 * present or if unable to start polling. Do not do anything if the
5582 * link is disabled. Returns 0 if link is disabled or moved to polling
5583 */
5584int start_link(struct hfi1_pportdata *ppd)
5585{
5586 if (!ppd->link_enabled) {
5587 dd_dev_info(ppd->dd,
5588 "%s: stopping link start because link is disabled\n",
5589 __func__);
5590 return 0;
5591 }
5592 if (!ppd->driver_link_ready) {
5593 dd_dev_info(ppd->dd,
5594 "%s: stopping link start because driver is not ready\n",
5595 __func__);
5596 return 0;
5597 }
5598
5599 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
5600 loopback == LOOPBACK_LCB ||
5601 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5602 return set_link_state(ppd, HLS_DN_POLL);
5603
5604 dd_dev_info(ppd->dd,
5605 "%s: stopping link start because no cable is present\n",
5606 __func__);
5607 return -EAGAIN;
5608}
5609
5610static void reset_qsfp(struct hfi1_pportdata *ppd)
5611{
5612 struct hfi1_devdata *dd = ppd->dd;
5613 u64 mask, qsfp_mask;
5614
5615 mask = (u64)QSFP_HFI0_RESET_N;
5616 qsfp_mask = read_csr(dd,
5617 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
5618 qsfp_mask |= mask;
5619 write_csr(dd,
5620 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE,
5621 qsfp_mask);
5622
5623 qsfp_mask = read_csr(dd,
5624 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
5625 qsfp_mask &= ~mask;
5626 write_csr(dd,
5627 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5628 qsfp_mask);
5629
5630 udelay(10);
5631
5632 qsfp_mask |= mask;
5633 write_csr(dd,
5634 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5635 qsfp_mask);
5636}
5637
5638static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
5639 u8 *qsfp_interrupt_status)
5640{
5641 struct hfi1_devdata *dd = ppd->dd;
5642
5643 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
5644 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
5645 dd_dev_info(dd,
5646 "%s: QSFP cable on fire\n",
5647 __func__);
5648
5649 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
5650 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
5651 dd_dev_info(dd,
5652 "%s: QSFP cable temperature too low\n",
5653 __func__);
5654
5655 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
5656 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
5657 dd_dev_info(dd,
5658 "%s: QSFP supply voltage too high\n",
5659 __func__);
5660
5661 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
5662 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
5663 dd_dev_info(dd,
5664 "%s: QSFP supply voltage too low\n",
5665 __func__);
5666
5667 /* Byte 2 is vendor specific */
5668
5669 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
5670 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
5671 dd_dev_info(dd,
5672 "%s: Cable RX channel 1/2 power too high\n",
5673 __func__);
5674
5675 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
5676 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
5677 dd_dev_info(dd,
5678 "%s: Cable RX channel 1/2 power too low\n",
5679 __func__);
5680
5681 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
5682 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
5683 dd_dev_info(dd,
5684 "%s: Cable RX channel 3/4 power too high\n",
5685 __func__);
5686
5687 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
5688 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
5689 dd_dev_info(dd,
5690 "%s: Cable RX channel 3/4 power too low\n",
5691 __func__);
5692
5693 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
5694 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
5695 dd_dev_info(dd,
5696 "%s: Cable TX channel 1/2 bias too high\n",
5697 __func__);
5698
5699 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
5700 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
5701 dd_dev_info(dd,
5702 "%s: Cable TX channel 1/2 bias too low\n",
5703 __func__);
5704
5705 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
5706 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
5707 dd_dev_info(dd,
5708 "%s: Cable TX channel 3/4 bias too high\n",
5709 __func__);
5710
5711 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
5712 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
5713 dd_dev_info(dd,
5714 "%s: Cable TX channel 3/4 bias too low\n",
5715 __func__);
5716
5717 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
5718 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
5719 dd_dev_info(dd,
5720 "%s: Cable TX channel 1/2 power too high\n",
5721 __func__);
5722
5723 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
5724 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
5725 dd_dev_info(dd,
5726 "%s: Cable TX channel 1/2 power too low\n",
5727 __func__);
5728
5729 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
5730 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
5731 dd_dev_info(dd,
5732 "%s: Cable TX channel 3/4 power too high\n",
5733 __func__);
5734
5735 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
5736 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
5737 dd_dev_info(dd,
5738 "%s: Cable TX channel 3/4 power too low\n",
5739 __func__);
5740
5741 /* Bytes 9-10 and 11-12 are reserved */
5742 /* Bytes 13-15 are vendor specific */
5743
5744 return 0;
5745}
5746
5747static int do_pre_lni_host_behaviors(struct hfi1_pportdata *ppd)
5748{
5749 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
5750
5751 return 0;
5752}
5753
5754static int do_qsfp_intr_fallback(struct hfi1_pportdata *ppd)
5755{
5756 struct hfi1_devdata *dd = ppd->dd;
5757 u8 qsfp_interrupt_status = 0;
5758
5759 if (qsfp_read(ppd, dd->hfi1_id, 2, &qsfp_interrupt_status, 1)
5760 != 1) {
5761 dd_dev_info(dd,
5762 "%s: Failed to read status of QSFP module\n",
5763 __func__);
5764 return -EIO;
5765 }
5766
5767 /* We don't care about alarms & warnings with a non-functional INT_N */
5768 if (!(qsfp_interrupt_status & QSFP_DATA_NOT_READY))
5769 do_pre_lni_host_behaviors(ppd);
5770
5771 return 0;
5772}
5773
5774/* This routine will only be scheduled if the QSFP module is present */
5775static void qsfp_event(struct work_struct *work)
5776{
5777 struct qsfp_data *qd;
5778 struct hfi1_pportdata *ppd;
5779 struct hfi1_devdata *dd;
5780
5781 qd = container_of(work, struct qsfp_data, qsfp_work);
5782 ppd = qd->ppd;
5783 dd = ppd->dd;
5784
5785 /* Sanity check */
5786 if (!qsfp_mod_present(ppd))
5787 return;
5788
5789 /*
5790 * Turn DC back on after cables has been
5791 * re-inserted. Up until now, the DC has been in
5792 * reset to save power.
5793 */
5794 dc_start(dd);
5795
5796 if (qd->cache_refresh_required) {
5797 msleep(3000);
5798 reset_qsfp(ppd);
5799
5800 /* Check for QSFP interrupt after t_init (SFF 8679)
5801 * + extra
5802 */
5803 msleep(3000);
5804 if (!qd->qsfp_interrupt_functional) {
5805 if (do_qsfp_intr_fallback(ppd) < 0)
5806 dd_dev_info(dd, "%s: QSFP fallback failed\n",
5807 __func__);
5808 ppd->driver_link_ready = 1;
5809 start_link(ppd);
5810 }
5811 }
5812
5813 if (qd->check_interrupt_flags) {
5814 u8 qsfp_interrupt_status[16] = {0,};
5815
5816 if (qsfp_read(ppd, dd->hfi1_id, 6,
5817 &qsfp_interrupt_status[0], 16) != 16) {
5818 dd_dev_info(dd,
5819 "%s: Failed to read status of QSFP module\n",
5820 __func__);
5821 } else {
5822 unsigned long flags;
5823 u8 data_status;
5824
5825 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5826 ppd->qsfp_info.check_interrupt_flags = 0;
5827 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5828 flags);
5829
5830 if (qsfp_read(ppd, dd->hfi1_id, 2, &data_status, 1)
5831 != 1) {
5832 dd_dev_info(dd,
5833 "%s: Failed to read status of QSFP module\n",
5834 __func__);
5835 }
5836 if (!(data_status & QSFP_DATA_NOT_READY)) {
5837 do_pre_lni_host_behaviors(ppd);
5838 start_link(ppd);
5839 } else
5840 handle_qsfp_error_conditions(ppd,
5841 qsfp_interrupt_status);
5842 }
5843 }
5844}
5845
5846void init_qsfp(struct hfi1_pportdata *ppd)
5847{
5848 struct hfi1_devdata *dd = ppd->dd;
5849 u64 qsfp_mask;
5850
5851 if (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
3c2f85b8 5852 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
77241056
MM
5853 ppd->driver_link_ready = 1;
5854 return;
5855 }
5856
5857 ppd->qsfp_info.ppd = ppd;
5858 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
5859
5860 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5861 /* Clear current status to avoid spurious interrupts */
5862 write_csr(dd,
5863 dd->hfi1_id ?
5864 ASIC_QSFP2_CLEAR :
5865 ASIC_QSFP1_CLEAR,
5866 qsfp_mask);
5867
5868 /* Handle active low nature of INT_N and MODPRST_N pins */
5869 if (qsfp_mod_present(ppd))
5870 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
5871 write_csr(dd,
5872 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
5873 qsfp_mask);
5874
5875 /* Allow only INT_N and MODPRST_N to trigger QSFP interrupts */
5876 qsfp_mask |= (u64)QSFP_HFI0_MODPRST_N;
5877 write_csr(dd,
5878 dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
5879 qsfp_mask);
5880
5881 if (qsfp_mod_present(ppd)) {
5882 msleep(3000);
5883 reset_qsfp(ppd);
5884
5885 /* Check for QSFP interrupt after t_init (SFF 8679)
5886 * + extra
5887 */
5888 msleep(3000);
5889 if (!ppd->qsfp_info.qsfp_interrupt_functional) {
5890 if (do_qsfp_intr_fallback(ppd) < 0)
5891 dd_dev_info(dd,
5892 "%s: QSFP fallback failed\n",
5893 __func__);
5894 ppd->driver_link_ready = 1;
5895 }
5896 }
5897}
5898
5899int bringup_serdes(struct hfi1_pportdata *ppd)
5900{
5901 struct hfi1_devdata *dd = ppd->dd;
5902 u64 guid;
5903 int ret;
5904
5905 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
5906 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
5907
5908 guid = ppd->guid;
5909 if (!guid) {
5910 if (dd->base_guid)
5911 guid = dd->base_guid + ppd->port - 1;
5912 ppd->guid = guid;
5913 }
5914
5915 /* the link defaults to enabled */
5916 ppd->link_enabled = 1;
5917 /* Set linkinit_reason on power up per OPA spec */
5918 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
5919
5920 if (loopback) {
5921 ret = init_loopback(dd);
5922 if (ret < 0)
5923 return ret;
5924 }
5925
5926 return start_link(ppd);
5927}
5928
5929void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
5930{
5931 struct hfi1_devdata *dd = ppd->dd;
5932
5933 /*
5934 * Shut down the link and keep it down. First turn off that the
5935 * driver wants to allow the link to be up (driver_link_ready).
5936 * Then make sure the link is not automatically restarted
5937 * (link_enabled). Cancel any pending restart. And finally
5938 * go offline.
5939 */
5940 ppd->driver_link_ready = 0;
5941 ppd->link_enabled = 0;
5942
5943 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
5944 OPA_LINKDOWN_REASON_SMA_DISABLED);
5945 set_link_state(ppd, HLS_DN_OFFLINE);
5946
5947 /* disable the port */
5948 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
5949}
5950
5951static inline int init_cpu_counters(struct hfi1_devdata *dd)
5952{
5953 struct hfi1_pportdata *ppd;
5954 int i;
5955
5956 ppd = (struct hfi1_pportdata *)(dd + 1);
5957 for (i = 0; i < dd->num_pports; i++, ppd++) {
5958 ppd->ibport_data.rc_acks = NULL;
5959 ppd->ibport_data.rc_qacks = NULL;
5960 ppd->ibport_data.rc_acks = alloc_percpu(u64);
5961 ppd->ibport_data.rc_qacks = alloc_percpu(u64);
5962 ppd->ibport_data.rc_delayed_comp = alloc_percpu(u64);
5963 if ((ppd->ibport_data.rc_acks == NULL) ||
5964 (ppd->ibport_data.rc_delayed_comp == NULL) ||
5965 (ppd->ibport_data.rc_qacks == NULL))
5966 return -ENOMEM;
5967 }
5968
5969 return 0;
5970}
5971
5972static const char * const pt_names[] = {
5973 "expected",
5974 "eager",
5975 "invalid"
5976};
5977
5978static const char *pt_name(u32 type)
5979{
5980 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
5981}
5982
5983/*
5984 * index is the index into the receive array
5985 */
5986void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
5987 u32 type, unsigned long pa, u16 order)
5988{
5989 u64 reg;
5990 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
5991 (dd->kregbase + RCV_ARRAY));
5992
5993 if (!(dd->flags & HFI1_PRESENT))
5994 goto done;
5995
5996 if (type == PT_INVALID) {
5997 pa = 0;
5998 } else if (type > PT_INVALID) {
5999 dd_dev_err(dd,
6000 "unexpected receive array type %u for index %u, not handled\n",
6001 type, index);
6002 goto done;
6003 }
6004
6005 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
6006 pt_name(type), index, pa, (unsigned long)order);
6007
6008#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
6009 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
6010 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
6011 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
6012 << RCV_ARRAY_RT_ADDR_SHIFT;
6013 writeq(reg, base + (index * 8));
6014
6015 if (type == PT_EAGER)
6016 /*
6017 * Eager entries are written one-by-one so we have to push them
6018 * after we write the entry.
6019 */
6020 flush_wc();
6021done:
6022 return;
6023}
6024
6025void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
6026{
6027 struct hfi1_devdata *dd = rcd->dd;
6028 u32 i;
6029
6030 /* this could be optimized */
6031 for (i = rcd->eager_base; i < rcd->eager_base +
6032 rcd->egrbufs.alloced; i++)
6033 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
6034
6035 for (i = rcd->expected_base;
6036 i < rcd->expected_base + rcd->expected_count; i++)
6037 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
6038}
6039
6040int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
6041 struct hfi1_ctxt_info *kinfo)
6042{
6043 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
6044 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
6045 return 0;
6046}
6047
6048struct hfi1_message_header *hfi1_get_msgheader(
6049 struct hfi1_devdata *dd, __le32 *rhf_addr)
6050{
6051 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
6052
6053 return (struct hfi1_message_header *)
6054 (rhf_addr - dd->rhf_offset + offset);
6055}
6056
6057static const char * const ib_cfg_name_strings[] = {
6058 "HFI1_IB_CFG_LIDLMC",
6059 "HFI1_IB_CFG_LWID_DG_ENB",
6060 "HFI1_IB_CFG_LWID_ENB",
6061 "HFI1_IB_CFG_LWID",
6062 "HFI1_IB_CFG_SPD_ENB",
6063 "HFI1_IB_CFG_SPD",
6064 "HFI1_IB_CFG_RXPOL_ENB",
6065 "HFI1_IB_CFG_LREV_ENB",
6066 "HFI1_IB_CFG_LINKLATENCY",
6067 "HFI1_IB_CFG_HRTBT",
6068 "HFI1_IB_CFG_OP_VLS",
6069 "HFI1_IB_CFG_VL_HIGH_CAP",
6070 "HFI1_IB_CFG_VL_LOW_CAP",
6071 "HFI1_IB_CFG_OVERRUN_THRESH",
6072 "HFI1_IB_CFG_PHYERR_THRESH",
6073 "HFI1_IB_CFG_LINKDEFAULT",
6074 "HFI1_IB_CFG_PKEYS",
6075 "HFI1_IB_CFG_MTU",
6076 "HFI1_IB_CFG_LSTATE",
6077 "HFI1_IB_CFG_VL_HIGH_LIMIT",
6078 "HFI1_IB_CFG_PMA_TICKS",
6079 "HFI1_IB_CFG_PORT"
6080};
6081
6082static const char *ib_cfg_name(int which)
6083{
6084 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
6085 return "invalid";
6086 return ib_cfg_name_strings[which];
6087}
6088
6089int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
6090{
6091 struct hfi1_devdata *dd = ppd->dd;
6092 int val = 0;
6093
6094 switch (which) {
6095 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
6096 val = ppd->link_width_enabled;
6097 break;
6098 case HFI1_IB_CFG_LWID: /* currently active Link-width */
6099 val = ppd->link_width_active;
6100 break;
6101 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
6102 val = ppd->link_speed_enabled;
6103 break;
6104 case HFI1_IB_CFG_SPD: /* current Link speed */
6105 val = ppd->link_speed_active;
6106 break;
6107
6108 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
6109 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
6110 case HFI1_IB_CFG_LINKLATENCY:
6111 goto unimplemented;
6112
6113 case HFI1_IB_CFG_OP_VLS:
6114 val = ppd->vls_operational;
6115 break;
6116 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
6117 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
6118 break;
6119 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
6120 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
6121 break;
6122 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6123 val = ppd->overrun_threshold;
6124 break;
6125 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6126 val = ppd->phy_error_threshold;
6127 break;
6128 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6129 val = dd->link_default;
6130 break;
6131
6132 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
6133 case HFI1_IB_CFG_PMA_TICKS:
6134 default:
6135unimplemented:
6136 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6137 dd_dev_info(
6138 dd,
6139 "%s: which %s: not implemented\n",
6140 __func__,
6141 ib_cfg_name(which));
6142 break;
6143 }
6144
6145 return val;
6146}
6147
6148/*
6149 * The largest MAD packet size.
6150 */
6151#define MAX_MAD_PACKET 2048
6152
6153/*
6154 * Return the maximum header bytes that can go on the _wire_
6155 * for this device. This count includes the ICRC which is
6156 * not part of the packet held in memory but it is appended
6157 * by the HW.
6158 * This is dependent on the device's receive header entry size.
6159 * HFI allows this to be set per-receive context, but the
6160 * driver presently enforces a global value.
6161 */
6162u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
6163{
6164 /*
6165 * The maximum non-payload (MTU) bytes in LRH.PktLen are
6166 * the Receive Header Entry Size minus the PBC (or RHF) size
6167 * plus one DW for the ICRC appended by HW.
6168 *
6169 * dd->rcd[0].rcvhdrqentsize is in DW.
6170 * We use rcd[0] as all context will have the same value. Also,
6171 * the first kernel context would have been allocated by now so
6172 * we are guaranteed a valid value.
6173 */
6174 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
6175}
6176
6177/*
6178 * Set Send Length
6179 * @ppd - per port data
6180 *
6181 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
6182 * registers compare against LRH.PktLen, so use the max bytes included
6183 * in the LRH.
6184 *
6185 * This routine changes all VL values except VL15, which it maintains at
6186 * the same value.
6187 */
6188static void set_send_length(struct hfi1_pportdata *ppd)
6189{
6190 struct hfi1_devdata *dd = ppd->dd;
6191 u32 max_hb = lrh_max_header_bytes(dd), maxvlmtu = 0, dcmtu;
6192 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
6193 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
6194 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
6195 int i;
6196
6197 for (i = 0; i < ppd->vls_supported; i++) {
6198 if (dd->vld[i].mtu > maxvlmtu)
6199 maxvlmtu = dd->vld[i].mtu;
6200 if (i <= 3)
6201 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
6202 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
6203 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
6204 else
6205 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
6206 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
6207 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
6208 }
6209 write_csr(dd, SEND_LEN_CHECK0, len1);
6210 write_csr(dd, SEND_LEN_CHECK1, len2);
6211 /* adjust kernel credit return thresholds based on new MTUs */
6212 /* all kernel receive contexts have the same hdrqentsize */
6213 for (i = 0; i < ppd->vls_supported; i++) {
6214 sc_set_cr_threshold(dd->vld[i].sc,
6215 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
6216 dd->rcd[0]->rcvhdrqentsize));
6217 }
6218 sc_set_cr_threshold(dd->vld[15].sc,
6219 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
6220 dd->rcd[0]->rcvhdrqentsize));
6221
6222 /* Adjust maximum MTU for the port in DC */
6223 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
6224 (ilog2(maxvlmtu >> 8) + 1);
6225 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
6226 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
6227 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
6228 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
6229 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
6230}
6231
6232static void set_lidlmc(struct hfi1_pportdata *ppd)
6233{
6234 int i;
6235 u64 sreg = 0;
6236 struct hfi1_devdata *dd = ppd->dd;
6237 u32 mask = ~((1U << ppd->lmc) - 1);
6238 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
6239
6240 if (dd->hfi1_snoop.mode_flag)
6241 dd_dev_info(dd, "Set lid/lmc while snooping");
6242
6243 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
6244 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
6245 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
6246 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
6247 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
6248 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
6249 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
6250
6251 /*
6252 * Iterate over all the send contexts and set their SLID check
6253 */
6254 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
6255 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
6256 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
6257 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
6258
6259 for (i = 0; i < dd->chip_send_contexts; i++) {
6260 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
6261 i, (u32)sreg);
6262 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
6263 }
6264
6265 /* Now we have to do the same thing for the sdma engines */
6266 sdma_update_lmc(dd, mask, ppd->lid);
6267}
6268
6269static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
6270{
6271 unsigned long timeout;
6272 u32 curr_state;
6273
6274 timeout = jiffies + msecs_to_jiffies(msecs);
6275 while (1) {
6276 curr_state = read_physical_state(dd);
6277 if (curr_state == state)
6278 break;
6279 if (time_after(jiffies, timeout)) {
6280 dd_dev_err(dd,
6281 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
6282 state, curr_state);
6283 return -ETIMEDOUT;
6284 }
6285 usleep_range(1950, 2050); /* sleep 2ms-ish */
6286 }
6287
6288 return 0;
6289}
6290
6291/*
6292 * Helper for set_link_state(). Do not call except from that routine.
6293 * Expects ppd->hls_mutex to be held.
6294 *
6295 * @rem_reason value to be sent to the neighbor
6296 *
6297 * LinkDownReasons only set if transition succeeds.
6298 */
6299static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
6300{
6301 struct hfi1_devdata *dd = ppd->dd;
6302 u32 pstate, previous_state;
6303 u32 last_local_state;
6304 u32 last_remote_state;
6305 int ret;
6306 int do_transition;
6307 int do_wait;
6308
6309 previous_state = ppd->host_link_state;
6310 ppd->host_link_state = HLS_GOING_OFFLINE;
6311 pstate = read_physical_state(dd);
6312 if (pstate == PLS_OFFLINE) {
6313 do_transition = 0; /* in right state */
6314 do_wait = 0; /* ...no need to wait */
6315 } else if ((pstate & 0xff) == PLS_OFFLINE) {
6316 do_transition = 0; /* in an offline transient state */
6317 do_wait = 1; /* ...wait for it to settle */
6318 } else {
6319 do_transition = 1; /* need to move to offline */
6320 do_wait = 1; /* ...will need to wait */
6321 }
6322
6323 if (do_transition) {
6324 ret = set_physical_link_state(dd,
6325 PLS_OFFLINE | (rem_reason << 8));
6326
6327 if (ret != HCMD_SUCCESS) {
6328 dd_dev_err(dd,
6329 "Failed to transition to Offline link state, return %d\n",
6330 ret);
6331 return -EINVAL;
6332 }
6333 if (ppd->offline_disabled_reason == OPA_LINKDOWN_REASON_NONE)
6334 ppd->offline_disabled_reason =
6335 OPA_LINKDOWN_REASON_TRANSIENT;
6336 }
6337
6338 if (do_wait) {
6339 /* it can take a while for the link to go down */
dc060245 6340 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
77241056
MM
6341 if (ret < 0)
6342 return ret;
6343 }
6344
6345 /* make sure the logical state is also down */
6346 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
6347
6348 /*
6349 * Now in charge of LCB - must be after the physical state is
6350 * offline.quiet and before host_link_state is changed.
6351 */
6352 set_host_lcb_access(dd);
6353 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
6354 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
6355
6356 /*
6357 * The LNI has a mandatory wait time after the physical state
6358 * moves to Offline.Quiet. The wait time may be different
6359 * depending on how the link went down. The 8051 firmware
6360 * will observe the needed wait time and only move to ready
6361 * when that is completed. The largest of the quiet timeouts
6362 * is 2.5s, so wait that long and then a bit more.
6363 */
6364 ret = wait_fm_ready(dd, 3000);
6365 if (ret) {
6366 dd_dev_err(dd,
6367 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
6368 /* state is really offline, so make it so */
6369 ppd->host_link_state = HLS_DN_OFFLINE;
6370 return ret;
6371 }
6372
6373 /*
6374 * The state is now offline and the 8051 is ready to accept host
6375 * requests.
6376 * - change our state
6377 * - notify others if we were previously in a linkup state
6378 */
6379 ppd->host_link_state = HLS_DN_OFFLINE;
6380 if (previous_state & HLS_UP) {
6381 /* went down while link was up */
6382 handle_linkup_change(dd, 0);
6383 } else if (previous_state
6384 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
6385 /* went down while attempting link up */
6386 /* byte 1 of last_*_state is the failure reason */
6387 read_last_local_state(dd, &last_local_state);
6388 read_last_remote_state(dd, &last_remote_state);
6389 dd_dev_err(dd,
6390 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
6391 last_local_state, last_remote_state);
6392 }
6393
6394 /* the active link width (downgrade) is 0 on link down */
6395 ppd->link_width_active = 0;
6396 ppd->link_width_downgrade_tx_active = 0;
6397 ppd->link_width_downgrade_rx_active = 0;
6398 ppd->current_egress_rate = 0;
6399 return 0;
6400}
6401
6402/* return the link state name */
6403static const char *link_state_name(u32 state)
6404{
6405 const char *name;
6406 int n = ilog2(state);
6407 static const char * const names[] = {
6408 [__HLS_UP_INIT_BP] = "INIT",
6409 [__HLS_UP_ARMED_BP] = "ARMED",
6410 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
6411 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
6412 [__HLS_DN_POLL_BP] = "POLL",
6413 [__HLS_DN_DISABLE_BP] = "DISABLE",
6414 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
6415 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
6416 [__HLS_GOING_UP_BP] = "GOING_UP",
6417 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
6418 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
6419 };
6420
6421 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
6422 return name ? name : "unknown";
6423}
6424
6425/* return the link state reason name */
6426static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
6427{
6428 if (state == HLS_UP_INIT) {
6429 switch (ppd->linkinit_reason) {
6430 case OPA_LINKINIT_REASON_LINKUP:
6431 return "(LINKUP)";
6432 case OPA_LINKINIT_REASON_FLAPPING:
6433 return "(FLAPPING)";
6434 case OPA_LINKINIT_OUTSIDE_POLICY:
6435 return "(OUTSIDE_POLICY)";
6436 case OPA_LINKINIT_QUARANTINED:
6437 return "(QUARANTINED)";
6438 case OPA_LINKINIT_INSUFIC_CAPABILITY:
6439 return "(INSUFIC_CAPABILITY)";
6440 default:
6441 break;
6442 }
6443 }
6444 return "";
6445}
6446
6447/*
6448 * driver_physical_state - convert the driver's notion of a port's
6449 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
6450 * Return -1 (converted to a u32) to indicate error.
6451 */
6452u32 driver_physical_state(struct hfi1_pportdata *ppd)
6453{
6454 switch (ppd->host_link_state) {
6455 case HLS_UP_INIT:
6456 case HLS_UP_ARMED:
6457 case HLS_UP_ACTIVE:
6458 return IB_PORTPHYSSTATE_LINKUP;
6459 case HLS_DN_POLL:
6460 return IB_PORTPHYSSTATE_POLLING;
6461 case HLS_DN_DISABLE:
6462 return IB_PORTPHYSSTATE_DISABLED;
6463 case HLS_DN_OFFLINE:
6464 return OPA_PORTPHYSSTATE_OFFLINE;
6465 case HLS_VERIFY_CAP:
6466 return IB_PORTPHYSSTATE_POLLING;
6467 case HLS_GOING_UP:
6468 return IB_PORTPHYSSTATE_POLLING;
6469 case HLS_GOING_OFFLINE:
6470 return OPA_PORTPHYSSTATE_OFFLINE;
6471 case HLS_LINK_COOLDOWN:
6472 return OPA_PORTPHYSSTATE_OFFLINE;
6473 case HLS_DN_DOWNDEF:
6474 default:
6475 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6476 ppd->host_link_state);
6477 return -1;
6478 }
6479}
6480
6481/*
6482 * driver_logical_state - convert the driver's notion of a port's
6483 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
6484 * (converted to a u32) to indicate error.
6485 */
6486u32 driver_logical_state(struct hfi1_pportdata *ppd)
6487{
6488 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
6489 return IB_PORT_DOWN;
6490
6491 switch (ppd->host_link_state & HLS_UP) {
6492 case HLS_UP_INIT:
6493 return IB_PORT_INIT;
6494 case HLS_UP_ARMED:
6495 return IB_PORT_ARMED;
6496 case HLS_UP_ACTIVE:
6497 return IB_PORT_ACTIVE;
6498 default:
6499 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6500 ppd->host_link_state);
6501 return -1;
6502 }
6503}
6504
6505void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
6506 u8 neigh_reason, u8 rem_reason)
6507{
6508 if (ppd->local_link_down_reason.latest == 0 &&
6509 ppd->neigh_link_down_reason.latest == 0) {
6510 ppd->local_link_down_reason.latest = lcl_reason;
6511 ppd->neigh_link_down_reason.latest = neigh_reason;
6512 ppd->remote_link_down_reason = rem_reason;
6513 }
6514}
6515
6516/*
6517 * Change the physical and/or logical link state.
6518 *
6519 * Do not call this routine while inside an interrupt. It contains
6520 * calls to routines that can take multiple seconds to finish.
6521 *
6522 * Returns 0 on success, -errno on failure.
6523 */
6524int set_link_state(struct hfi1_pportdata *ppd, u32 state)
6525{
6526 struct hfi1_devdata *dd = ppd->dd;
6527 struct ib_event event = {.device = NULL};
6528 int ret1, ret = 0;
6529 int was_up, is_down;
6530 int orig_new_state, poll_bounce;
6531
6532 mutex_lock(&ppd->hls_lock);
6533
6534 orig_new_state = state;
6535 if (state == HLS_DN_DOWNDEF)
6536 state = dd->link_default;
6537
6538 /* interpret poll -> poll as a link bounce */
6539 poll_bounce = ppd->host_link_state == HLS_DN_POLL
6540 && state == HLS_DN_POLL;
6541
6542 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
6543 link_state_name(ppd->host_link_state),
6544 link_state_name(orig_new_state),
6545 poll_bounce ? "(bounce) " : "",
6546 link_state_reason_name(ppd, state));
6547
6548 was_up = !!(ppd->host_link_state & HLS_UP);
6549
6550 /*
6551 * If we're going to a (HLS_*) link state that implies the logical
6552 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
6553 * reset is_sm_config_started to 0.
6554 */
6555 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
6556 ppd->is_sm_config_started = 0;
6557
6558 /*
6559 * Do nothing if the states match. Let a poll to poll link bounce
6560 * go through.
6561 */
6562 if (ppd->host_link_state == state && !poll_bounce)
6563 goto done;
6564
6565 switch (state) {
6566 case HLS_UP_INIT:
6567 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
6568 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
6569 /*
6570 * Quick link up jumps from polling to here.
6571 *
6572 * Whether in normal or loopback mode, the
6573 * simulator jumps from polling to link up.
6574 * Accept that here.
6575 */
6576 /* OK */;
6577 } else if (ppd->host_link_state != HLS_GOING_UP) {
6578 goto unexpected;
6579 }
6580
6581 ppd->host_link_state = HLS_UP_INIT;
6582 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
6583 if (ret) {
6584 /* logical state didn't change, stay at going_up */
6585 ppd->host_link_state = HLS_GOING_UP;
6586 dd_dev_err(dd,
6587 "%s: logical state did not change to INIT\n",
6588 __func__);
6589 } else {
6590 /* clear old transient LINKINIT_REASON code */
6591 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
6592 ppd->linkinit_reason =
6593 OPA_LINKINIT_REASON_LINKUP;
6594
6595 /* enable the port */
6596 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6597
6598 handle_linkup_change(dd, 1);
6599 }
6600 break;
6601 case HLS_UP_ARMED:
6602 if (ppd->host_link_state != HLS_UP_INIT)
6603 goto unexpected;
6604
6605 ppd->host_link_state = HLS_UP_ARMED;
6606 set_logical_state(dd, LSTATE_ARMED);
6607 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
6608 if (ret) {
6609 /* logical state didn't change, stay at init */
6610 ppd->host_link_state = HLS_UP_INIT;
6611 dd_dev_err(dd,
6612 "%s: logical state did not change to ARMED\n",
6613 __func__);
6614 }
6615 /*
6616 * The simulator does not currently implement SMA messages,
6617 * so neighbor_normal is not set. Set it here when we first
6618 * move to Armed.
6619 */
6620 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
6621 ppd->neighbor_normal = 1;
6622 break;
6623 case HLS_UP_ACTIVE:
6624 if (ppd->host_link_state != HLS_UP_ARMED)
6625 goto unexpected;
6626
6627 ppd->host_link_state = HLS_UP_ACTIVE;
6628 set_logical_state(dd, LSTATE_ACTIVE);
6629 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
6630 if (ret) {
6631 /* logical state didn't change, stay at armed */
6632 ppd->host_link_state = HLS_UP_ARMED;
6633 dd_dev_err(dd,
6634 "%s: logical state did not change to ACTIVE\n",
6635 __func__);
6636 } else {
6637
6638 /* tell all engines to go running */
6639 sdma_all_running(dd);
6640
6641 /* Signal the IB layer that the port has went active */
6642 event.device = &dd->verbs_dev.ibdev;
6643 event.element.port_num = ppd->port;
6644 event.event = IB_EVENT_PORT_ACTIVE;
6645 }
6646 break;
6647 case HLS_DN_POLL:
6648 if ((ppd->host_link_state == HLS_DN_DISABLE ||
6649 ppd->host_link_state == HLS_DN_OFFLINE) &&
6650 dd->dc_shutdown)
6651 dc_start(dd);
6652 /* Hand LED control to the DC */
6653 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
6654
6655 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6656 u8 tmp = ppd->link_enabled;
6657
6658 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6659 if (ret) {
6660 ppd->link_enabled = tmp;
6661 break;
6662 }
6663 ppd->remote_link_down_reason = 0;
6664
6665 if (ppd->driver_link_ready)
6666 ppd->link_enabled = 1;
6667 }
6668
6669 ret = set_local_link_attributes(ppd);
6670 if (ret)
6671 break;
6672
6673 ppd->port_error_action = 0;
6674 ppd->host_link_state = HLS_DN_POLL;
6675
6676 if (quick_linkup) {
6677 /* quick linkup does not go into polling */
6678 ret = do_quick_linkup(dd);
6679 } else {
6680 ret1 = set_physical_link_state(dd, PLS_POLLING);
6681 if (ret1 != HCMD_SUCCESS) {
6682 dd_dev_err(dd,
6683 "Failed to transition to Polling link state, return 0x%x\n",
6684 ret1);
6685 ret = -EINVAL;
6686 }
6687 }
6688 ppd->offline_disabled_reason = OPA_LINKDOWN_REASON_NONE;
6689 /*
6690 * If an error occurred above, go back to offline. The
6691 * caller may reschedule another attempt.
6692 */
6693 if (ret)
6694 goto_offline(ppd, 0);
6695 break;
6696 case HLS_DN_DISABLE:
6697 /* link is disabled */
6698 ppd->link_enabled = 0;
6699
6700 /* allow any state to transition to disabled */
6701
6702 /* must transition to offline first */
6703 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6704 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6705 if (ret)
6706 break;
6707 ppd->remote_link_down_reason = 0;
6708 }
6709
6710 ret1 = set_physical_link_state(dd, PLS_DISABLED);
6711 if (ret1 != HCMD_SUCCESS) {
6712 dd_dev_err(dd,
6713 "Failed to transition to Disabled link state, return 0x%x\n",
6714 ret1);
6715 ret = -EINVAL;
6716 break;
6717 }
6718 ppd->host_link_state = HLS_DN_DISABLE;
6719 dc_shutdown(dd);
6720 break;
6721 case HLS_DN_OFFLINE:
6722 if (ppd->host_link_state == HLS_DN_DISABLE)
6723 dc_start(dd);
6724
6725 /* allow any state to transition to offline */
6726 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6727 if (!ret)
6728 ppd->remote_link_down_reason = 0;
6729 break;
6730 case HLS_VERIFY_CAP:
6731 if (ppd->host_link_state != HLS_DN_POLL)
6732 goto unexpected;
6733 ppd->host_link_state = HLS_VERIFY_CAP;
6734 break;
6735 case HLS_GOING_UP:
6736 if (ppd->host_link_state != HLS_VERIFY_CAP)
6737 goto unexpected;
6738
6739 ret1 = set_physical_link_state(dd, PLS_LINKUP);
6740 if (ret1 != HCMD_SUCCESS) {
6741 dd_dev_err(dd,
6742 "Failed to transition to link up state, return 0x%x\n",
6743 ret1);
6744 ret = -EINVAL;
6745 break;
6746 }
6747 ppd->host_link_state = HLS_GOING_UP;
6748 break;
6749
6750 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
6751 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
6752 default:
6753 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
6754 __func__, state);
6755 ret = -EINVAL;
6756 break;
6757 }
6758
6759 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
6760 HLS_DN_DISABLE | HLS_DN_OFFLINE));
6761
6762 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
6763 ppd->neigh_link_down_reason.sma == 0) {
6764 ppd->local_link_down_reason.sma =
6765 ppd->local_link_down_reason.latest;
6766 ppd->neigh_link_down_reason.sma =
6767 ppd->neigh_link_down_reason.latest;
6768 }
6769
6770 goto done;
6771
6772unexpected:
6773 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
6774 __func__, link_state_name(ppd->host_link_state),
6775 link_state_name(state));
6776 ret = -EINVAL;
6777
6778done:
6779 mutex_unlock(&ppd->hls_lock);
6780
6781 if (event.device)
6782 ib_dispatch_event(&event);
6783
6784 return ret;
6785}
6786
6787int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
6788{
6789 u64 reg;
6790 int ret = 0;
6791
6792 switch (which) {
6793 case HFI1_IB_CFG_LIDLMC:
6794 set_lidlmc(ppd);
6795 break;
6796 case HFI1_IB_CFG_VL_HIGH_LIMIT:
6797 /*
6798 * The VL Arbitrator high limit is sent in units of 4k
6799 * bytes, while HFI stores it in units of 64 bytes.
6800 */
6801 val *= 4096/64;
6802 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
6803 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
6804 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
6805 break;
6806 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6807 /* HFI only supports POLL as the default link down state */
6808 if (val != HLS_DN_POLL)
6809 ret = -EINVAL;
6810 break;
6811 case HFI1_IB_CFG_OP_VLS:
6812 if (ppd->vls_operational != val) {
6813 ppd->vls_operational = val;
6814 if (!ppd->port)
6815 ret = -EINVAL;
6816 else
6817 ret = sdma_map_init(
6818 ppd->dd,
6819 ppd->port - 1,
6820 val,
6821 NULL);
6822 }
6823 break;
6824 /*
6825 * For link width, link width downgrade, and speed enable, always AND
6826 * the setting with what is actually supported. This has two benefits.
6827 * First, enabled can't have unsupported values, no matter what the
6828 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
6829 * "fill in with your supported value" have all the bits in the
6830 * field set, so simply ANDing with supported has the desired result.
6831 */
6832 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
6833 ppd->link_width_enabled = val & ppd->link_width_supported;
6834 break;
6835 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
6836 ppd->link_width_downgrade_enabled =
6837 val & ppd->link_width_downgrade_supported;
6838 break;
6839 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
6840 ppd->link_speed_enabled = val & ppd->link_speed_supported;
6841 break;
6842 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6843 /*
6844 * HFI does not follow IB specs, save this value
6845 * so we can report it, if asked.
6846 */
6847 ppd->overrun_threshold = val;
6848 break;
6849 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6850 /*
6851 * HFI does not follow IB specs, save this value
6852 * so we can report it, if asked.
6853 */
6854 ppd->phy_error_threshold = val;
6855 break;
6856
6857 case HFI1_IB_CFG_MTU:
6858 set_send_length(ppd);
6859 break;
6860
6861 case HFI1_IB_CFG_PKEYS:
6862 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
6863 set_partition_keys(ppd);
6864 break;
6865
6866 default:
6867 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6868 dd_dev_info(ppd->dd,
6869 "%s: which %s, val 0x%x: not implemented\n",
6870 __func__, ib_cfg_name(which), val);
6871 break;
6872 }
6873 return ret;
6874}
6875
6876/* begin functions related to vl arbitration table caching */
6877static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
6878{
6879 int i;
6880
6881 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6882 VL_ARB_LOW_PRIO_TABLE_SIZE);
6883 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6884 VL_ARB_HIGH_PRIO_TABLE_SIZE);
6885
6886 /*
6887 * Note that we always return values directly from the
6888 * 'vl_arb_cache' (and do no CSR reads) in response to a
6889 * 'Get(VLArbTable)'. This is obviously correct after a
6890 * 'Set(VLArbTable)', since the cache will then be up to
6891 * date. But it's also correct prior to any 'Set(VLArbTable)'
6892 * since then both the cache, and the relevant h/w registers
6893 * will be zeroed.
6894 */
6895
6896 for (i = 0; i < MAX_PRIO_TABLE; i++)
6897 spin_lock_init(&ppd->vl_arb_cache[i].lock);
6898}
6899
6900/*
6901 * vl_arb_lock_cache
6902 *
6903 * All other vl_arb_* functions should be called only after locking
6904 * the cache.
6905 */
6906static inline struct vl_arb_cache *
6907vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
6908{
6909 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
6910 return NULL;
6911 spin_lock(&ppd->vl_arb_cache[idx].lock);
6912 return &ppd->vl_arb_cache[idx];
6913}
6914
6915static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
6916{
6917 spin_unlock(&ppd->vl_arb_cache[idx].lock);
6918}
6919
6920static void vl_arb_get_cache(struct vl_arb_cache *cache,
6921 struct ib_vl_weight_elem *vl)
6922{
6923 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
6924}
6925
6926static void vl_arb_set_cache(struct vl_arb_cache *cache,
6927 struct ib_vl_weight_elem *vl)
6928{
6929 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6930}
6931
6932static int vl_arb_match_cache(struct vl_arb_cache *cache,
6933 struct ib_vl_weight_elem *vl)
6934{
6935 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6936}
6937/* end functions related to vl arbitration table caching */
6938
6939static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
6940 u32 size, struct ib_vl_weight_elem *vl)
6941{
6942 struct hfi1_devdata *dd = ppd->dd;
6943 u64 reg;
6944 unsigned int i, is_up = 0;
6945 int drain, ret = 0;
6946
6947 mutex_lock(&ppd->hls_lock);
6948
6949 if (ppd->host_link_state & HLS_UP)
6950 is_up = 1;
6951
6952 drain = !is_ax(dd) && is_up;
6953
6954 if (drain)
6955 /*
6956 * Before adjusting VL arbitration weights, empty per-VL
6957 * FIFOs, otherwise a packet whose VL weight is being
6958 * set to 0 could get stuck in a FIFO with no chance to
6959 * egress.
6960 */
6961 ret = stop_drain_data_vls(dd);
6962
6963 if (ret) {
6964 dd_dev_err(
6965 dd,
6966 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
6967 __func__);
6968 goto err;
6969 }
6970
6971 for (i = 0; i < size; i++, vl++) {
6972 /*
6973 * NOTE: The low priority shift and mask are used here, but
6974 * they are the same for both the low and high registers.
6975 */
6976 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
6977 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
6978 | (((u64)vl->weight
6979 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
6980 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
6981 write_csr(dd, target + (i * 8), reg);
6982 }
6983 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
6984
6985 if (drain)
6986 open_fill_data_vls(dd); /* reopen all VLs */
6987
6988err:
6989 mutex_unlock(&ppd->hls_lock);
6990
6991 return ret;
6992}
6993
6994/*
6995 * Read one credit merge VL register.
6996 */
6997static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
6998 struct vl_limit *vll)
6999{
7000 u64 reg = read_csr(dd, csr);
7001
7002 vll->dedicated = cpu_to_be16(
7003 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
7004 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
7005 vll->shared = cpu_to_be16(
7006 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
7007 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
7008}
7009
7010/*
7011 * Read the current credit merge limits.
7012 */
7013static int get_buffer_control(struct hfi1_devdata *dd,
7014 struct buffer_control *bc, u16 *overall_limit)
7015{
7016 u64 reg;
7017 int i;
7018
7019 /* not all entries are filled in */
7020 memset(bc, 0, sizeof(*bc));
7021
7022 /* OPA and HFI have a 1-1 mapping */
7023 for (i = 0; i < TXE_NUM_DATA_VL; i++)
7024 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
7025
7026 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
7027 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
7028
7029 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7030 bc->overall_shared_limit = cpu_to_be16(
7031 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
7032 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
7033 if (overall_limit)
7034 *overall_limit = (reg
7035 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
7036 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
7037 return sizeof(struct buffer_control);
7038}
7039
7040static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
7041{
7042 u64 reg;
7043 int i;
7044
7045 /* each register contains 16 SC->VLnt mappings, 4 bits each */
7046 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
7047 for (i = 0; i < sizeof(u64); i++) {
7048 u8 byte = *(((u8 *)&reg) + i);
7049
7050 dp->vlnt[2 * i] = byte & 0xf;
7051 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
7052 }
7053
7054 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
7055 for (i = 0; i < sizeof(u64); i++) {
7056 u8 byte = *(((u8 *)&reg) + i);
7057
7058 dp->vlnt[16 + (2 * i)] = byte & 0xf;
7059 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
7060 }
7061 return sizeof(struct sc2vlnt);
7062}
7063
7064static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
7065 struct ib_vl_weight_elem *vl)
7066{
7067 unsigned int i;
7068
7069 for (i = 0; i < nelems; i++, vl++) {
7070 vl->vl = 0xf;
7071 vl->weight = 0;
7072 }
7073}
7074
7075static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
7076{
7077 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
7078 DC_SC_VL_VAL(15_0,
7079 0, dp->vlnt[0] & 0xf,
7080 1, dp->vlnt[1] & 0xf,
7081 2, dp->vlnt[2] & 0xf,
7082 3, dp->vlnt[3] & 0xf,
7083 4, dp->vlnt[4] & 0xf,
7084 5, dp->vlnt[5] & 0xf,
7085 6, dp->vlnt[6] & 0xf,
7086 7, dp->vlnt[7] & 0xf,
7087 8, dp->vlnt[8] & 0xf,
7088 9, dp->vlnt[9] & 0xf,
7089 10, dp->vlnt[10] & 0xf,
7090 11, dp->vlnt[11] & 0xf,
7091 12, dp->vlnt[12] & 0xf,
7092 13, dp->vlnt[13] & 0xf,
7093 14, dp->vlnt[14] & 0xf,
7094 15, dp->vlnt[15] & 0xf));
7095 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
7096 DC_SC_VL_VAL(31_16,
7097 16, dp->vlnt[16] & 0xf,
7098 17, dp->vlnt[17] & 0xf,
7099 18, dp->vlnt[18] & 0xf,
7100 19, dp->vlnt[19] & 0xf,
7101 20, dp->vlnt[20] & 0xf,
7102 21, dp->vlnt[21] & 0xf,
7103 22, dp->vlnt[22] & 0xf,
7104 23, dp->vlnt[23] & 0xf,
7105 24, dp->vlnt[24] & 0xf,
7106 25, dp->vlnt[25] & 0xf,
7107 26, dp->vlnt[26] & 0xf,
7108 27, dp->vlnt[27] & 0xf,
7109 28, dp->vlnt[28] & 0xf,
7110 29, dp->vlnt[29] & 0xf,
7111 30, dp->vlnt[30] & 0xf,
7112 31, dp->vlnt[31] & 0xf));
7113}
7114
7115static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
7116 u16 limit)
7117{
7118 if (limit != 0)
7119 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
7120 what, (int)limit, idx);
7121}
7122
7123/* change only the shared limit portion of SendCmGLobalCredit */
7124static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
7125{
7126 u64 reg;
7127
7128 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7129 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
7130 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
7131 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7132}
7133
7134/* change only the total credit limit portion of SendCmGLobalCredit */
7135static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
7136{
7137 u64 reg;
7138
7139 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7140 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
7141 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
7142 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7143}
7144
7145/* set the given per-VL shared limit */
7146static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
7147{
7148 u64 reg;
7149 u32 addr;
7150
7151 if (vl < TXE_NUM_DATA_VL)
7152 addr = SEND_CM_CREDIT_VL + (8 * vl);
7153 else
7154 addr = SEND_CM_CREDIT_VL15;
7155
7156 reg = read_csr(dd, addr);
7157 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
7158 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
7159 write_csr(dd, addr, reg);
7160}
7161
7162/* set the given per-VL dedicated limit */
7163static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
7164{
7165 u64 reg;
7166 u32 addr;
7167
7168 if (vl < TXE_NUM_DATA_VL)
7169 addr = SEND_CM_CREDIT_VL + (8 * vl);
7170 else
7171 addr = SEND_CM_CREDIT_VL15;
7172
7173 reg = read_csr(dd, addr);
7174 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
7175 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
7176 write_csr(dd, addr, reg);
7177}
7178
7179/* spin until the given per-VL status mask bits clear */
7180static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
7181 const char *which)
7182{
7183 unsigned long timeout;
7184 u64 reg;
7185
7186 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
7187 while (1) {
7188 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
7189
7190 if (reg == 0)
7191 return; /* success */
7192 if (time_after(jiffies, timeout))
7193 break; /* timed out */
7194 udelay(1);
7195 }
7196
7197 dd_dev_err(dd,
7198 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
7199 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
7200 /*
7201 * If this occurs, it is likely there was a credit loss on the link.
7202 * The only recovery from that is a link bounce.
7203 */
7204 dd_dev_err(dd,
7205 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
7206}
7207
7208/*
7209 * The number of credits on the VLs may be changed while everything
7210 * is "live", but the following algorithm must be followed due to
7211 * how the hardware is actually implemented. In particular,
7212 * Return_Credit_Status[] is the only correct status check.
7213 *
7214 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
7215 * set Global_Shared_Credit_Limit = 0
7216 * use_all_vl = 1
7217 * mask0 = all VLs that are changing either dedicated or shared limits
7218 * set Shared_Limit[mask0] = 0
7219 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
7220 * if (changing any dedicated limit)
7221 * mask1 = all VLs that are lowering dedicated limits
7222 * lower Dedicated_Limit[mask1]
7223 * spin until Return_Credit_Status[mask1] == 0
7224 * raise Dedicated_Limits
7225 * raise Shared_Limits
7226 * raise Global_Shared_Credit_Limit
7227 *
7228 * lower = if the new limit is lower, set the limit to the new value
7229 * raise = if the new limit is higher than the current value (may be changed
7230 * earlier in the algorithm), set the new limit to the new value
7231 */
7232static int set_buffer_control(struct hfi1_devdata *dd,
7233 struct buffer_control *new_bc)
7234{
7235 u64 changing_mask, ld_mask, stat_mask;
7236 int change_count;
7237 int i, use_all_mask;
7238 int this_shared_changing;
7239 /*
7240 * A0: add the variable any_shared_limit_changing below and in the
7241 * algorithm above. If removing A0 support, it can be removed.
7242 */
7243 int any_shared_limit_changing;
7244 struct buffer_control cur_bc;
7245 u8 changing[OPA_MAX_VLS];
7246 u8 lowering_dedicated[OPA_MAX_VLS];
7247 u16 cur_total;
7248 u32 new_total = 0;
7249 const u64 all_mask =
7250 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
7251 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
7252 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
7253 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
7254 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
7255 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
7256 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
7257 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
7258 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
7259
7260#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
7261#define NUM_USABLE_VLS 16 /* look at VL15 and less */
7262
7263
7264 /* find the new total credits, do sanity check on unused VLs */
7265 for (i = 0; i < OPA_MAX_VLS; i++) {
7266 if (valid_vl(i)) {
7267 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
7268 continue;
7269 }
7270 nonzero_msg(dd, i, "dedicated",
7271 be16_to_cpu(new_bc->vl[i].dedicated));
7272 nonzero_msg(dd, i, "shared",
7273 be16_to_cpu(new_bc->vl[i].shared));
7274 new_bc->vl[i].dedicated = 0;
7275 new_bc->vl[i].shared = 0;
7276 }
7277 new_total += be16_to_cpu(new_bc->overall_shared_limit);
7278 if (new_total > (u32)dd->link_credits)
7279 return -EINVAL;
7280 /* fetch the current values */
7281 get_buffer_control(dd, &cur_bc, &cur_total);
7282
7283 /*
7284 * Create the masks we will use.
7285 */
7286 memset(changing, 0, sizeof(changing));
7287 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
7288 /* NOTE: Assumes that the individual VL bits are adjacent and in
7289 increasing order */
7290 stat_mask =
7291 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
7292 changing_mask = 0;
7293 ld_mask = 0;
7294 change_count = 0;
7295 any_shared_limit_changing = 0;
7296 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
7297 if (!valid_vl(i))
7298 continue;
7299 this_shared_changing = new_bc->vl[i].shared
7300 != cur_bc.vl[i].shared;
7301 if (this_shared_changing)
7302 any_shared_limit_changing = 1;
7303 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
7304 || this_shared_changing) {
7305 changing[i] = 1;
7306 changing_mask |= stat_mask;
7307 change_count++;
7308 }
7309 if (be16_to_cpu(new_bc->vl[i].dedicated) <
7310 be16_to_cpu(cur_bc.vl[i].dedicated)) {
7311 lowering_dedicated[i] = 1;
7312 ld_mask |= stat_mask;
7313 }
7314 }
7315
7316 /* bracket the credit change with a total adjustment */
7317 if (new_total > cur_total)
7318 set_global_limit(dd, new_total);
7319
7320 /*
7321 * Start the credit change algorithm.
7322 */
7323 use_all_mask = 0;
7324 if ((be16_to_cpu(new_bc->overall_shared_limit) <
995deafa
MM
7325 be16_to_cpu(cur_bc.overall_shared_limit)) ||
7326 (is_ax(dd) && any_shared_limit_changing)) {
77241056
MM
7327 set_global_shared(dd, 0);
7328 cur_bc.overall_shared_limit = 0;
7329 use_all_mask = 1;
7330 }
7331
7332 for (i = 0; i < NUM_USABLE_VLS; i++) {
7333 if (!valid_vl(i))
7334 continue;
7335
7336 if (changing[i]) {
7337 set_vl_shared(dd, i, 0);
7338 cur_bc.vl[i].shared = 0;
7339 }
7340 }
7341
7342 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
7343 "shared");
7344
7345 if (change_count > 0) {
7346 for (i = 0; i < NUM_USABLE_VLS; i++) {
7347 if (!valid_vl(i))
7348 continue;
7349
7350 if (lowering_dedicated[i]) {
7351 set_vl_dedicated(dd, i,
7352 be16_to_cpu(new_bc->vl[i].dedicated));
7353 cur_bc.vl[i].dedicated =
7354 new_bc->vl[i].dedicated;
7355 }
7356 }
7357
7358 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
7359
7360 /* now raise all dedicated that are going up */
7361 for (i = 0; i < NUM_USABLE_VLS; i++) {
7362 if (!valid_vl(i))
7363 continue;
7364
7365 if (be16_to_cpu(new_bc->vl[i].dedicated) >
7366 be16_to_cpu(cur_bc.vl[i].dedicated))
7367 set_vl_dedicated(dd, i,
7368 be16_to_cpu(new_bc->vl[i].dedicated));
7369 }
7370 }
7371
7372 /* next raise all shared that are going up */
7373 for (i = 0; i < NUM_USABLE_VLS; i++) {
7374 if (!valid_vl(i))
7375 continue;
7376
7377 if (be16_to_cpu(new_bc->vl[i].shared) >
7378 be16_to_cpu(cur_bc.vl[i].shared))
7379 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
7380 }
7381
7382 /* finally raise the global shared */
7383 if (be16_to_cpu(new_bc->overall_shared_limit) >
7384 be16_to_cpu(cur_bc.overall_shared_limit))
7385 set_global_shared(dd,
7386 be16_to_cpu(new_bc->overall_shared_limit));
7387
7388 /* bracket the credit change with a total adjustment */
7389 if (new_total < cur_total)
7390 set_global_limit(dd, new_total);
7391 return 0;
7392}
7393
7394/*
7395 * Read the given fabric manager table. Return the size of the
7396 * table (in bytes) on success, and a negative error code on
7397 * failure.
7398 */
7399int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
7400
7401{
7402 int size;
7403 struct vl_arb_cache *vlc;
7404
7405 switch (which) {
7406 case FM_TBL_VL_HIGH_ARB:
7407 size = 256;
7408 /*
7409 * OPA specifies 128 elements (of 2 bytes each), though
7410 * HFI supports only 16 elements in h/w.
7411 */
7412 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7413 vl_arb_get_cache(vlc, t);
7414 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7415 break;
7416 case FM_TBL_VL_LOW_ARB:
7417 size = 256;
7418 /*
7419 * OPA specifies 128 elements (of 2 bytes each), though
7420 * HFI supports only 16 elements in h/w.
7421 */
7422 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7423 vl_arb_get_cache(vlc, t);
7424 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7425 break;
7426 case FM_TBL_BUFFER_CONTROL:
7427 size = get_buffer_control(ppd->dd, t, NULL);
7428 break;
7429 case FM_TBL_SC2VLNT:
7430 size = get_sc2vlnt(ppd->dd, t);
7431 break;
7432 case FM_TBL_VL_PREEMPT_ELEMS:
7433 size = 256;
7434 /* OPA specifies 128 elements, of 2 bytes each */
7435 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
7436 break;
7437 case FM_TBL_VL_PREEMPT_MATRIX:
7438 size = 256;
7439 /*
7440 * OPA specifies that this is the same size as the VL
7441 * arbitration tables (i.e., 256 bytes).
7442 */
7443 break;
7444 default:
7445 return -EINVAL;
7446 }
7447 return size;
7448}
7449
7450/*
7451 * Write the given fabric manager table.
7452 */
7453int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
7454{
7455 int ret = 0;
7456 struct vl_arb_cache *vlc;
7457
7458 switch (which) {
7459 case FM_TBL_VL_HIGH_ARB:
7460 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7461 if (vl_arb_match_cache(vlc, t)) {
7462 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7463 break;
7464 }
7465 vl_arb_set_cache(vlc, t);
7466 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7467 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
7468 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
7469 break;
7470 case FM_TBL_VL_LOW_ARB:
7471 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7472 if (vl_arb_match_cache(vlc, t)) {
7473 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7474 break;
7475 }
7476 vl_arb_set_cache(vlc, t);
7477 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7478 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
7479 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
7480 break;
7481 case FM_TBL_BUFFER_CONTROL:
7482 ret = set_buffer_control(ppd->dd, t);
7483 break;
7484 case FM_TBL_SC2VLNT:
7485 set_sc2vlnt(ppd->dd, t);
7486 break;
7487 default:
7488 ret = -EINVAL;
7489 }
7490 return ret;
7491}
7492
7493/*
7494 * Disable all data VLs.
7495 *
7496 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
7497 */
7498static int disable_data_vls(struct hfi1_devdata *dd)
7499{
995deafa 7500 if (is_ax(dd))
77241056
MM
7501 return 1;
7502
7503 pio_send_control(dd, PSC_DATA_VL_DISABLE);
7504
7505 return 0;
7506}
7507
7508/*
7509 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
7510 * Just re-enables all data VLs (the "fill" part happens
7511 * automatically - the name was chosen for symmetry with
7512 * stop_drain_data_vls()).
7513 *
7514 * Return 0 if successful, non-zero if the VLs cannot be enabled.
7515 */
7516int open_fill_data_vls(struct hfi1_devdata *dd)
7517{
995deafa 7518 if (is_ax(dd))
77241056
MM
7519 return 1;
7520
7521 pio_send_control(dd, PSC_DATA_VL_ENABLE);
7522
7523 return 0;
7524}
7525
7526/*
7527 * drain_data_vls() - assumes that disable_data_vls() has been called,
7528 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
7529 * engines to drop to 0.
7530 */
7531static void drain_data_vls(struct hfi1_devdata *dd)
7532{
7533 sc_wait(dd);
7534 sdma_wait(dd);
7535 pause_for_credit_return(dd);
7536}
7537
7538/*
7539 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
7540 *
7541 * Use open_fill_data_vls() to resume using data VLs. This pair is
7542 * meant to be used like this:
7543 *
7544 * stop_drain_data_vls(dd);
7545 * // do things with per-VL resources
7546 * open_fill_data_vls(dd);
7547 */
7548int stop_drain_data_vls(struct hfi1_devdata *dd)
7549{
7550 int ret;
7551
7552 ret = disable_data_vls(dd);
7553 if (ret == 0)
7554 drain_data_vls(dd);
7555
7556 return ret;
7557}
7558
7559/*
7560 * Convert a nanosecond time to a cclock count. No matter how slow
7561 * the cclock, a non-zero ns will always have a non-zero result.
7562 */
7563u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
7564{
7565 u32 cclocks;
7566
7567 if (dd->icode == ICODE_FPGA_EMULATION)
7568 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
7569 else /* simulation pretends to be ASIC */
7570 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
7571 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
7572 cclocks = 1;
7573 return cclocks;
7574}
7575
7576/*
7577 * Convert a cclock count to nanoseconds. Not matter how slow
7578 * the cclock, a non-zero cclocks will always have a non-zero result.
7579 */
7580u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
7581{
7582 u32 ns;
7583
7584 if (dd->icode == ICODE_FPGA_EMULATION)
7585 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
7586 else /* simulation pretends to be ASIC */
7587 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
7588 if (cclocks && !ns)
7589 ns = 1;
7590 return ns;
7591}
7592
7593/*
7594 * Dynamically adjust the receive interrupt timeout for a context based on
7595 * incoming packet rate.
7596 *
7597 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
7598 */
7599static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
7600{
7601 struct hfi1_devdata *dd = rcd->dd;
7602 u32 timeout = rcd->rcvavail_timeout;
7603
7604 /*
7605 * This algorithm doubles or halves the timeout depending on whether
7606 * the number of packets received in this interrupt were less than or
7607 * greater equal the interrupt count.
7608 *
7609 * The calculations below do not allow a steady state to be achieved.
7610 * Only at the endpoints it is possible to have an unchanging
7611 * timeout.
7612 */
7613 if (npkts < rcv_intr_count) {
7614 /*
7615 * Not enough packets arrived before the timeout, adjust
7616 * timeout downward.
7617 */
7618 if (timeout < 2) /* already at minimum? */
7619 return;
7620 timeout >>= 1;
7621 } else {
7622 /*
7623 * More than enough packets arrived before the timeout, adjust
7624 * timeout upward.
7625 */
7626 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
7627 return;
7628 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
7629 }
7630
7631 rcd->rcvavail_timeout = timeout;
7632 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
7633 been verified to be in range */
7634 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
7635 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7636}
7637
7638void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
7639 u32 intr_adjust, u32 npkts)
7640{
7641 struct hfi1_devdata *dd = rcd->dd;
7642 u64 reg;
7643 u32 ctxt = rcd->ctxt;
7644
7645 /*
7646 * Need to write timeout register before updating RcvHdrHead to ensure
7647 * that a new value is used when the HW decides to restart counting.
7648 */
7649 if (intr_adjust)
7650 adjust_rcv_timeout(rcd, npkts);
7651 if (updegr) {
7652 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
7653 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
7654 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
7655 }
7656 mmiowb();
7657 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
7658 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
7659 << RCV_HDR_HEAD_HEAD_SHIFT);
7660 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7661 mmiowb();
7662}
7663
7664u32 hdrqempty(struct hfi1_ctxtdata *rcd)
7665{
7666 u32 head, tail;
7667
7668 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
7669 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
7670
7671 if (rcd->rcvhdrtail_kvaddr)
7672 tail = get_rcvhdrtail(rcd);
7673 else
7674 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
7675
7676 return head == tail;
7677}
7678
7679/*
7680 * Context Control and Receive Array encoding for buffer size:
7681 * 0x0 invalid
7682 * 0x1 4 KB
7683 * 0x2 8 KB
7684 * 0x3 16 KB
7685 * 0x4 32 KB
7686 * 0x5 64 KB
7687 * 0x6 128 KB
7688 * 0x7 256 KB
7689 * 0x8 512 KB (Receive Array only)
7690 * 0x9 1 MB (Receive Array only)
7691 * 0xa 2 MB (Receive Array only)
7692 *
7693 * 0xB-0xF - reserved (Receive Array only)
7694 *
7695 *
7696 * This routine assumes that the value has already been sanity checked.
7697 */
7698static u32 encoded_size(u32 size)
7699{
7700 switch (size) {
7701 case 4*1024: return 0x1;
7702 case 8*1024: return 0x2;
7703 case 16*1024: return 0x3;
7704 case 32*1024: return 0x4;
7705 case 64*1024: return 0x5;
7706 case 128*1024: return 0x6;
7707 case 256*1024: return 0x7;
7708 case 512*1024: return 0x8;
7709 case 1*1024*1024: return 0x9;
7710 case 2*1024*1024: return 0xa;
7711 }
7712 return 0x1; /* if invalid, go with the minimum size */
7713}
7714
7715void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
7716{
7717 struct hfi1_ctxtdata *rcd;
7718 u64 rcvctrl, reg;
7719 int did_enable = 0;
7720
7721 rcd = dd->rcd[ctxt];
7722 if (!rcd)
7723 return;
7724
7725 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
7726
7727 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
7728 /* if the context already enabled, don't do the extra steps */
7729 if ((op & HFI1_RCVCTRL_CTXT_ENB)
7730 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
7731 /* reset the tail and hdr addresses, and sequence count */
7732 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
7733 rcd->rcvhdrq_phys);
7734 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
7735 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
7736 rcd->rcvhdrqtailaddr_phys);
7737 rcd->seq_cnt = 1;
7738
7739 /* reset the cached receive header queue head value */
7740 rcd->head = 0;
7741
7742 /*
7743 * Zero the receive header queue so we don't get false
7744 * positives when checking the sequence number. The
7745 * sequence numbers could land exactly on the same spot.
7746 * E.g. a rcd restart before the receive header wrapped.
7747 */
7748 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
7749
7750 /* starting timeout */
7751 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
7752
7753 /* enable the context */
7754 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
7755
7756 /* clean the egr buffer size first */
7757 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7758 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
7759 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
7760 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
7761
7762 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
7763 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
7764 did_enable = 1;
7765
7766 /* zero RcvEgrIndexHead */
7767 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
7768
7769 /* set eager count and base index */
7770 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
7771 & RCV_EGR_CTRL_EGR_CNT_MASK)
7772 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
7773 (((rcd->eager_base >> RCV_SHIFT)
7774 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
7775 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
7776 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
7777
7778 /*
7779 * Set TID (expected) count and base index.
7780 * rcd->expected_count is set to individual RcvArray entries,
7781 * not pairs, and the CSR takes a pair-count in groups of
7782 * four, so divide by 8.
7783 */
7784 reg = (((rcd->expected_count >> RCV_SHIFT)
7785 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
7786 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
7787 (((rcd->expected_base >> RCV_SHIFT)
7788 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
7789 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
7790 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
82c2611d
NV
7791 if (ctxt == HFI1_CTRL_CTXT)
7792 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
77241056
MM
7793 }
7794 if (op & HFI1_RCVCTRL_CTXT_DIS) {
7795 write_csr(dd, RCV_VL15, 0);
46b010d3
MB
7796 /*
7797 * When receive context is being disabled turn on tail
7798 * update with a dummy tail address and then disable
7799 * receive context.
7800 */
7801 if (dd->rcvhdrtail_dummy_physaddr) {
7802 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
7803 dd->rcvhdrtail_dummy_physaddr);
7804 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7805 }
7806
77241056
MM
7807 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
7808 }
7809 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
7810 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7811 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
7812 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7813 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
7814 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7815 if (op & HFI1_RCVCTRL_TAILUPD_DIS)
7816 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7817 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
7818 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7819 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
7820 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7821 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
7822 /* In one-packet-per-eager mode, the size comes from
7823 the RcvArray entry. */
7824 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7825 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7826 }
7827 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
7828 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7829 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
7830 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7831 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
7832 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7833 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
7834 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7835 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
7836 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7837 rcd->rcvctrl = rcvctrl;
7838 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
7839 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
7840
7841 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
7842 if (did_enable
7843 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
7844 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7845 if (reg != 0) {
7846 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
7847 ctxt, reg);
7848 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7849 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
7850 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
7851 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7852 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7853 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
7854 ctxt, reg, reg == 0 ? "not" : "still");
7855 }
7856 }
7857
7858 if (did_enable) {
7859 /*
7860 * The interrupt timeout and count must be set after
7861 * the context is enabled to take effect.
7862 */
7863 /* set interrupt timeout */
7864 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
7865 (u64)rcd->rcvavail_timeout <<
7866 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7867
7868 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
7869 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
7870 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7871 }
7872
7873 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
7874 /*
7875 * If the context has been disabled and the Tail Update has
46b010d3
MB
7876 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
7877 * so it doesn't contain an address that is invalid.
77241056 7878 */
46b010d3
MB
7879 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
7880 dd->rcvhdrtail_dummy_physaddr);
77241056
MM
7881}
7882
7883u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
7884 u64 **cntrp)
7885{
7886 int ret;
7887 u64 val = 0;
7888
7889 if (namep) {
7890 ret = dd->cntrnameslen;
7891 if (pos != 0) {
7892 dd_dev_err(dd, "read_cntrs does not support indexing");
7893 return 0;
7894 }
7895 *namep = dd->cntrnames;
7896 } else {
7897 const struct cntr_entry *entry;
7898 int i, j;
7899
7900 ret = (dd->ndevcntrs) * sizeof(u64);
7901 if (pos != 0) {
7902 dd_dev_err(dd, "read_cntrs does not support indexing");
7903 return 0;
7904 }
7905
7906 /* Get the start of the block of counters */
7907 *cntrp = dd->cntrs;
7908
7909 /*
7910 * Now go and fill in each counter in the block.
7911 */
7912 for (i = 0; i < DEV_CNTR_LAST; i++) {
7913 entry = &dev_cntrs[i];
7914 hfi1_cdbg(CNTR, "reading %s", entry->name);
7915 if (entry->flags & CNTR_DISABLED) {
7916 /* Nothing */
7917 hfi1_cdbg(CNTR, "\tDisabled\n");
7918 } else {
7919 if (entry->flags & CNTR_VL) {
7920 hfi1_cdbg(CNTR, "\tPer VL\n");
7921 for (j = 0; j < C_VL_COUNT; j++) {
7922 val = entry->rw_cntr(entry,
7923 dd, j,
7924 CNTR_MODE_R,
7925 0);
7926 hfi1_cdbg(
7927 CNTR,
7928 "\t\tRead 0x%llx for %d\n",
7929 val, j);
7930 dd->cntrs[entry->offset + j] =
7931 val;
7932 }
7933 } else {
7934 val = entry->rw_cntr(entry, dd,
7935 CNTR_INVALID_VL,
7936 CNTR_MODE_R, 0);
7937 dd->cntrs[entry->offset] = val;
7938 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7939 }
7940 }
7941 }
7942 }
7943 return ret;
7944}
7945
7946/*
7947 * Used by sysfs to create files for hfi stats to read
7948 */
7949u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
7950 char **namep, u64 **cntrp)
7951{
7952 int ret;
7953 u64 val = 0;
7954
7955 if (namep) {
7956 ret = dd->portcntrnameslen;
7957 if (pos != 0) {
7958 dd_dev_err(dd, "index not supported");
7959 return 0;
7960 }
7961 *namep = dd->portcntrnames;
7962 } else {
7963 const struct cntr_entry *entry;
7964 struct hfi1_pportdata *ppd;
7965 int i, j;
7966
7967 ret = (dd->nportcntrs) * sizeof(u64);
7968 if (pos != 0) {
7969 dd_dev_err(dd, "indexing not supported");
7970 return 0;
7971 }
7972 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
7973 *cntrp = ppd->cntrs;
7974
7975 for (i = 0; i < PORT_CNTR_LAST; i++) {
7976 entry = &port_cntrs[i];
7977 hfi1_cdbg(CNTR, "reading %s", entry->name);
7978 if (entry->flags & CNTR_DISABLED) {
7979 /* Nothing */
7980 hfi1_cdbg(CNTR, "\tDisabled\n");
7981 continue;
7982 }
7983
7984 if (entry->flags & CNTR_VL) {
7985 hfi1_cdbg(CNTR, "\tPer VL");
7986 for (j = 0; j < C_VL_COUNT; j++) {
7987 val = entry->rw_cntr(entry, ppd, j,
7988 CNTR_MODE_R,
7989 0);
7990 hfi1_cdbg(
7991 CNTR,
7992 "\t\tRead 0x%llx for %d",
7993 val, j);
7994 ppd->cntrs[entry->offset + j] = val;
7995 }
7996 } else {
7997 val = entry->rw_cntr(entry, ppd,
7998 CNTR_INVALID_VL,
7999 CNTR_MODE_R,
8000 0);
8001 ppd->cntrs[entry->offset] = val;
8002 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
8003 }
8004 }
8005 }
8006 return ret;
8007}
8008
8009static void free_cntrs(struct hfi1_devdata *dd)
8010{
8011 struct hfi1_pportdata *ppd;
8012 int i;
8013
8014 if (dd->synth_stats_timer.data)
8015 del_timer_sync(&dd->synth_stats_timer);
8016 dd->synth_stats_timer.data = 0;
8017 ppd = (struct hfi1_pportdata *)(dd + 1);
8018 for (i = 0; i < dd->num_pports; i++, ppd++) {
8019 kfree(ppd->cntrs);
8020 kfree(ppd->scntrs);
8021 free_percpu(ppd->ibport_data.rc_acks);
8022 free_percpu(ppd->ibport_data.rc_qacks);
8023 free_percpu(ppd->ibport_data.rc_delayed_comp);
8024 ppd->cntrs = NULL;
8025 ppd->scntrs = NULL;
8026 ppd->ibport_data.rc_acks = NULL;
8027 ppd->ibport_data.rc_qacks = NULL;
8028 ppd->ibport_data.rc_delayed_comp = NULL;
8029 }
8030 kfree(dd->portcntrnames);
8031 dd->portcntrnames = NULL;
8032 kfree(dd->cntrs);
8033 dd->cntrs = NULL;
8034 kfree(dd->scntrs);
8035 dd->scntrs = NULL;
8036 kfree(dd->cntrnames);
8037 dd->cntrnames = NULL;
8038}
8039
8040#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
8041#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
8042
8043static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
8044 u64 *psval, void *context, int vl)
8045{
8046 u64 val;
8047 u64 sval = *psval;
8048
8049 if (entry->flags & CNTR_DISABLED) {
8050 dd_dev_err(dd, "Counter %s not enabled", entry->name);
8051 return 0;
8052 }
8053
8054 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
8055
8056 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
8057
8058 /* If its a synthetic counter there is more work we need to do */
8059 if (entry->flags & CNTR_SYNTH) {
8060 if (sval == CNTR_MAX) {
8061 /* No need to read already saturated */
8062 return CNTR_MAX;
8063 }
8064
8065 if (entry->flags & CNTR_32BIT) {
8066 /* 32bit counters can wrap multiple times */
8067 u64 upper = sval >> 32;
8068 u64 lower = (sval << 32) >> 32;
8069
8070 if (lower > val) { /* hw wrapped */
8071 if (upper == CNTR_32BIT_MAX)
8072 val = CNTR_MAX;
8073 else
8074 upper++;
8075 }
8076
8077 if (val != CNTR_MAX)
8078 val = (upper << 32) | val;
8079
8080 } else {
8081 /* If we rolled we are saturated */
8082 if ((val < sval) || (val > CNTR_MAX))
8083 val = CNTR_MAX;
8084 }
8085 }
8086
8087 *psval = val;
8088
8089 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
8090
8091 return val;
8092}
8093
8094static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
8095 struct cntr_entry *entry,
8096 u64 *psval, void *context, int vl, u64 data)
8097{
8098 u64 val;
8099
8100 if (entry->flags & CNTR_DISABLED) {
8101 dd_dev_err(dd, "Counter %s not enabled", entry->name);
8102 return 0;
8103 }
8104
8105 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
8106
8107 if (entry->flags & CNTR_SYNTH) {
8108 *psval = data;
8109 if (entry->flags & CNTR_32BIT) {
8110 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
8111 (data << 32) >> 32);
8112 val = data; /* return the full 64bit value */
8113 } else {
8114 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
8115 data);
8116 }
8117 } else {
8118 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
8119 }
8120
8121 *psval = val;
8122
8123 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
8124
8125 return val;
8126}
8127
8128u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
8129{
8130 struct cntr_entry *entry;
8131 u64 *sval;
8132
8133 entry = &dev_cntrs[index];
8134 sval = dd->scntrs + entry->offset;
8135
8136 if (vl != CNTR_INVALID_VL)
8137 sval += vl;
8138
8139 return read_dev_port_cntr(dd, entry, sval, dd, vl);
8140}
8141
8142u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
8143{
8144 struct cntr_entry *entry;
8145 u64 *sval;
8146
8147 entry = &dev_cntrs[index];
8148 sval = dd->scntrs + entry->offset;
8149
8150 if (vl != CNTR_INVALID_VL)
8151 sval += vl;
8152
8153 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
8154}
8155
8156u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
8157{
8158 struct cntr_entry *entry;
8159 u64 *sval;
8160
8161 entry = &port_cntrs[index];
8162 sval = ppd->scntrs + entry->offset;
8163
8164 if (vl != CNTR_INVALID_VL)
8165 sval += vl;
8166
8167 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8168 (index <= C_RCV_HDR_OVF_LAST)) {
8169 /* We do not want to bother for disabled contexts */
8170 return 0;
8171 }
8172
8173 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
8174}
8175
8176u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
8177{
8178 struct cntr_entry *entry;
8179 u64 *sval;
8180
8181 entry = &port_cntrs[index];
8182 sval = ppd->scntrs + entry->offset;
8183
8184 if (vl != CNTR_INVALID_VL)
8185 sval += vl;
8186
8187 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8188 (index <= C_RCV_HDR_OVF_LAST)) {
8189 /* We do not want to bother for disabled contexts */
8190 return 0;
8191 }
8192
8193 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
8194}
8195
8196static void update_synth_timer(unsigned long opaque)
8197{
8198 u64 cur_tx;
8199 u64 cur_rx;
8200 u64 total_flits;
8201 u8 update = 0;
8202 int i, j, vl;
8203 struct hfi1_pportdata *ppd;
8204 struct cntr_entry *entry;
8205
8206 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
8207
8208 /*
8209 * Rather than keep beating on the CSRs pick a minimal set that we can
8210 * check to watch for potential roll over. We can do this by looking at
8211 * the number of flits sent/recv. If the total flits exceeds 32bits then
8212 * we have to iterate all the counters and update.
8213 */
8214 entry = &dev_cntrs[C_DC_RCV_FLITS];
8215 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8216
8217 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8218 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8219
8220 hfi1_cdbg(
8221 CNTR,
8222 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
8223 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
8224
8225 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
8226 /*
8227 * May not be strictly necessary to update but it won't hurt and
8228 * simplifies the logic here.
8229 */
8230 update = 1;
8231 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
8232 dd->unit);
8233 } else {
8234 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
8235 hfi1_cdbg(CNTR,
8236 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
8237 total_flits, (u64)CNTR_32BIT_MAX);
8238 if (total_flits >= CNTR_32BIT_MAX) {
8239 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
8240 dd->unit);
8241 update = 1;
8242 }
8243 }
8244
8245 if (update) {
8246 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
8247 for (i = 0; i < DEV_CNTR_LAST; i++) {
8248 entry = &dev_cntrs[i];
8249 if (entry->flags & CNTR_VL) {
8250 for (vl = 0; vl < C_VL_COUNT; vl++)
8251 read_dev_cntr(dd, i, vl);
8252 } else {
8253 read_dev_cntr(dd, i, CNTR_INVALID_VL);
8254 }
8255 }
8256 ppd = (struct hfi1_pportdata *)(dd + 1);
8257 for (i = 0; i < dd->num_pports; i++, ppd++) {
8258 for (j = 0; j < PORT_CNTR_LAST; j++) {
8259 entry = &port_cntrs[j];
8260 if (entry->flags & CNTR_VL) {
8261 for (vl = 0; vl < C_VL_COUNT; vl++)
8262 read_port_cntr(ppd, j, vl);
8263 } else {
8264 read_port_cntr(ppd, j, CNTR_INVALID_VL);
8265 }
8266 }
8267 }
8268
8269 /*
8270 * We want the value in the register. The goal is to keep track
8271 * of the number of "ticks" not the counter value. In other
8272 * words if the register rolls we want to notice it and go ahead
8273 * and force an update.
8274 */
8275 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8276 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8277 CNTR_MODE_R, 0);
8278
8279 entry = &dev_cntrs[C_DC_RCV_FLITS];
8280 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8281 CNTR_MODE_R, 0);
8282
8283 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
8284 dd->unit, dd->last_tx, dd->last_rx);
8285
8286 } else {
8287 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
8288 }
8289
8290mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8291}
8292
8293#define C_MAX_NAME 13 /* 12 chars + one for /0 */
8294static int init_cntrs(struct hfi1_devdata *dd)
8295{
8296 int i, rcv_ctxts, index, j;
8297 size_t sz;
8298 char *p;
8299 char name[C_MAX_NAME];
8300 struct hfi1_pportdata *ppd;
8301
8302 /* set up the stats timer; the add_timer is done at the end */
24523a94
MFW
8303 setup_timer(&dd->synth_stats_timer, update_synth_timer,
8304 (unsigned long)dd);
77241056
MM
8305
8306 /***********************/
8307 /* per device counters */
8308 /***********************/
8309
8310 /* size names and determine how many we have*/
8311 dd->ndevcntrs = 0;
8312 sz = 0;
8313 index = 0;
8314
8315 for (i = 0; i < DEV_CNTR_LAST; i++) {
8316 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
8317 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8318 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
8319 continue;
8320 }
8321
8322 if (dev_cntrs[i].flags & CNTR_VL) {
8323 hfi1_dbg_early("\tProcessing VL cntr\n");
8324 dev_cntrs[i].offset = index;
8325 for (j = 0; j < C_VL_COUNT; j++) {
8326 memset(name, '\0', C_MAX_NAME);
8327 snprintf(name, C_MAX_NAME, "%s%d",
8328 dev_cntrs[i].name,
8329 vl_from_idx(j));
8330 sz += strlen(name);
8331 sz++;
8332 hfi1_dbg_early("\t\t%s\n", name);
8333 dd->ndevcntrs++;
8334 index++;
8335 }
8336 } else {
8337 /* +1 for newline */
8338 sz += strlen(dev_cntrs[i].name) + 1;
8339 dd->ndevcntrs++;
8340 dev_cntrs[i].offset = index;
8341 index++;
8342 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
8343 }
8344 }
8345
8346 /* allocate space for the counter values */
8347 dd->cntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8348 if (!dd->cntrs)
8349 goto bail;
8350
8351 dd->scntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8352 if (!dd->scntrs)
8353 goto bail;
8354
8355
8356 /* allocate space for the counter names */
8357 dd->cntrnameslen = sz;
8358 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
8359 if (!dd->cntrnames)
8360 goto bail;
8361
8362 /* fill in the names */
8363 for (p = dd->cntrnames, i = 0, index = 0; i < DEV_CNTR_LAST; i++) {
8364 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8365 /* Nothing */
8366 } else {
8367 if (dev_cntrs[i].flags & CNTR_VL) {
8368 for (j = 0; j < C_VL_COUNT; j++) {
8369 memset(name, '\0', C_MAX_NAME);
8370 snprintf(name, C_MAX_NAME, "%s%d",
8371 dev_cntrs[i].name,
8372 vl_from_idx(j));
8373 memcpy(p, name, strlen(name));
8374 p += strlen(name);
8375 *p++ = '\n';
8376 }
8377 } else {
8378 memcpy(p, dev_cntrs[i].name,
8379 strlen(dev_cntrs[i].name));
8380 p += strlen(dev_cntrs[i].name);
8381 *p++ = '\n';
8382 }
8383 index++;
8384 }
8385 }
8386
8387 /*********************/
8388 /* per port counters */
8389 /*********************/
8390
8391 /*
8392 * Go through the counters for the overflows and disable the ones we
8393 * don't need. This varies based on platform so we need to do it
8394 * dynamically here.
8395 */
8396 rcv_ctxts = dd->num_rcv_contexts;
8397 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
8398 i <= C_RCV_HDR_OVF_LAST; i++) {
8399 port_cntrs[i].flags |= CNTR_DISABLED;
8400 }
8401
8402 /* size port counter names and determine how many we have*/
8403 sz = 0;
8404 dd->nportcntrs = 0;
8405 for (i = 0; i < PORT_CNTR_LAST; i++) {
8406 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
8407 if (port_cntrs[i].flags & CNTR_DISABLED) {
8408 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
8409 continue;
8410 }
8411
8412 if (port_cntrs[i].flags & CNTR_VL) {
8413 hfi1_dbg_early("\tProcessing VL cntr\n");
8414 port_cntrs[i].offset = dd->nportcntrs;
8415 for (j = 0; j < C_VL_COUNT; j++) {
8416 memset(name, '\0', C_MAX_NAME);
8417 snprintf(name, C_MAX_NAME, "%s%d",
8418 port_cntrs[i].name,
8419 vl_from_idx(j));
8420 sz += strlen(name);
8421 sz++;
8422 hfi1_dbg_early("\t\t%s\n", name);
8423 dd->nportcntrs++;
8424 }
8425 } else {
8426 /* +1 for newline */
8427 sz += strlen(port_cntrs[i].name) + 1;
8428 port_cntrs[i].offset = dd->nportcntrs;
8429 dd->nportcntrs++;
8430 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
8431 }
8432 }
8433
8434 /* allocate space for the counter names */
8435 dd->portcntrnameslen = sz;
8436 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
8437 if (!dd->portcntrnames)
8438 goto bail;
8439
8440 /* fill in port cntr names */
8441 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
8442 if (port_cntrs[i].flags & CNTR_DISABLED)
8443 continue;
8444
8445 if (port_cntrs[i].flags & CNTR_VL) {
8446 for (j = 0; j < C_VL_COUNT; j++) {
8447 memset(name, '\0', C_MAX_NAME);
8448 snprintf(name, C_MAX_NAME, "%s%d",
8449 port_cntrs[i].name,
8450 vl_from_idx(j));
8451 memcpy(p, name, strlen(name));
8452 p += strlen(name);
8453 *p++ = '\n';
8454 }
8455 } else {
8456 memcpy(p, port_cntrs[i].name,
8457 strlen(port_cntrs[i].name));
8458 p += strlen(port_cntrs[i].name);
8459 *p++ = '\n';
8460 }
8461 }
8462
8463 /* allocate per port storage for counter values */
8464 ppd = (struct hfi1_pportdata *)(dd + 1);
8465 for (i = 0; i < dd->num_pports; i++, ppd++) {
8466 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8467 if (!ppd->cntrs)
8468 goto bail;
8469
8470 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8471 if (!ppd->scntrs)
8472 goto bail;
8473 }
8474
8475 /* CPU counters need to be allocated and zeroed */
8476 if (init_cpu_counters(dd))
8477 goto bail;
8478
8479 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8480 return 0;
8481bail:
8482 free_cntrs(dd);
8483 return -ENOMEM;
8484}
8485
8486
8487static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
8488{
8489 switch (chip_lstate) {
8490 default:
8491 dd_dev_err(dd,
8492 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
8493 chip_lstate);
8494 /* fall through */
8495 case LSTATE_DOWN:
8496 return IB_PORT_DOWN;
8497 case LSTATE_INIT:
8498 return IB_PORT_INIT;
8499 case LSTATE_ARMED:
8500 return IB_PORT_ARMED;
8501 case LSTATE_ACTIVE:
8502 return IB_PORT_ACTIVE;
8503 }
8504}
8505
8506u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
8507{
8508 /* look at the HFI meta-states only */
8509 switch (chip_pstate & 0xf0) {
8510 default:
8511 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
8512 chip_pstate);
8513 /* fall through */
8514 case PLS_DISABLED:
8515 return IB_PORTPHYSSTATE_DISABLED;
8516 case PLS_OFFLINE:
8517 return OPA_PORTPHYSSTATE_OFFLINE;
8518 case PLS_POLLING:
8519 return IB_PORTPHYSSTATE_POLLING;
8520 case PLS_CONFIGPHY:
8521 return IB_PORTPHYSSTATE_TRAINING;
8522 case PLS_LINKUP:
8523 return IB_PORTPHYSSTATE_LINKUP;
8524 case PLS_PHYTEST:
8525 return IB_PORTPHYSSTATE_PHY_TEST;
8526 }
8527}
8528
8529/* return the OPA port logical state name */
8530const char *opa_lstate_name(u32 lstate)
8531{
8532 static const char * const port_logical_names[] = {
8533 "PORT_NOP",
8534 "PORT_DOWN",
8535 "PORT_INIT",
8536 "PORT_ARMED",
8537 "PORT_ACTIVE",
8538 "PORT_ACTIVE_DEFER",
8539 };
8540 if (lstate < ARRAY_SIZE(port_logical_names))
8541 return port_logical_names[lstate];
8542 return "unknown";
8543}
8544
8545/* return the OPA port physical state name */
8546const char *opa_pstate_name(u32 pstate)
8547{
8548 static const char * const port_physical_names[] = {
8549 "PHYS_NOP",
8550 "reserved1",
8551 "PHYS_POLL",
8552 "PHYS_DISABLED",
8553 "PHYS_TRAINING",
8554 "PHYS_LINKUP",
8555 "PHYS_LINK_ERR_RECOVER",
8556 "PHYS_PHY_TEST",
8557 "reserved8",
8558 "PHYS_OFFLINE",
8559 "PHYS_GANGED",
8560 "PHYS_TEST",
8561 };
8562 if (pstate < ARRAY_SIZE(port_physical_names))
8563 return port_physical_names[pstate];
8564 return "unknown";
8565}
8566
8567/*
8568 * Read the hardware link state and set the driver's cached value of it.
8569 * Return the (new) current value.
8570 */
8571u32 get_logical_state(struct hfi1_pportdata *ppd)
8572{
8573 u32 new_state;
8574
8575 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
8576 if (new_state != ppd->lstate) {
8577 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
8578 opa_lstate_name(new_state), new_state);
8579 ppd->lstate = new_state;
8580 }
8581 /*
8582 * Set port status flags in the page mapped into userspace
8583 * memory. Do it here to ensure a reliable state - this is
8584 * the only function called by all state handling code.
8585 * Always set the flags due to the fact that the cache value
8586 * might have been changed explicitly outside of this
8587 * function.
8588 */
8589 if (ppd->statusp) {
8590 switch (ppd->lstate) {
8591 case IB_PORT_DOWN:
8592 case IB_PORT_INIT:
8593 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
8594 HFI1_STATUS_IB_READY);
8595 break;
8596 case IB_PORT_ARMED:
8597 *ppd->statusp |= HFI1_STATUS_IB_CONF;
8598 break;
8599 case IB_PORT_ACTIVE:
8600 *ppd->statusp |= HFI1_STATUS_IB_READY;
8601 break;
8602 }
8603 }
8604 return ppd->lstate;
8605}
8606
8607/**
8608 * wait_logical_linkstate - wait for an IB link state change to occur
8609 * @ppd: port device
8610 * @state: the state to wait for
8611 * @msecs: the number of milliseconds to wait
8612 *
8613 * Wait up to msecs milliseconds for IB link state change to occur.
8614 * For now, take the easy polling route.
8615 * Returns 0 if state reached, otherwise -ETIMEDOUT.
8616 */
8617static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
8618 int msecs)
8619{
8620 unsigned long timeout;
8621
8622 timeout = jiffies + msecs_to_jiffies(msecs);
8623 while (1) {
8624 if (get_logical_state(ppd) == state)
8625 return 0;
8626 if (time_after(jiffies, timeout))
8627 break;
8628 msleep(20);
8629 }
8630 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
8631
8632 return -ETIMEDOUT;
8633}
8634
8635u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
8636{
8637 static u32 remembered_state = 0xff;
8638 u32 pstate;
8639 u32 ib_pstate;
8640
8641 pstate = read_physical_state(ppd->dd);
8642 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
8643 if (remembered_state != ib_pstate) {
8644 dd_dev_info(ppd->dd,
8645 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
8646 __func__, opa_pstate_name(ib_pstate), ib_pstate,
8647 pstate);
8648 remembered_state = ib_pstate;
8649 }
8650 return ib_pstate;
8651}
8652
8653/*
8654 * Read/modify/write ASIC_QSFP register bits as selected by mask
8655 * data: 0 or 1 in the positions depending on what needs to be written
8656 * dir: 0 for read, 1 for write
8657 * mask: select by setting
8658 * I2CCLK (bit 0)
8659 * I2CDATA (bit 1)
8660 */
8661u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
8662 u32 mask)
8663{
8664 u64 qsfp_oe, target_oe;
8665
8666 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
8667 if (mask) {
8668 /* We are writing register bits, so lock access */
8669 dir &= mask;
8670 data &= mask;
8671
8672 qsfp_oe = read_csr(dd, target_oe);
8673 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
8674 write_csr(dd, target_oe, qsfp_oe);
8675 }
8676 /* We are exclusively reading bits here, but it is unlikely
8677 * we'll get valid data when we set the direction of the pin
8678 * in the same call, so read should call this function again
8679 * to get valid data
8680 */
8681 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
8682}
8683
8684#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
8685(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8686
8687#define SET_STATIC_RATE_CONTROL_SMASK(r) \
8688(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8689
8690int hfi1_init_ctxt(struct send_context *sc)
8691{
8692 if (sc != NULL) {
8693 struct hfi1_devdata *dd = sc->dd;
8694 u64 reg;
8695 u8 set = (sc->type == SC_USER ?
8696 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
8697 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
8698 reg = read_kctxt_csr(dd, sc->hw_context,
8699 SEND_CTXT_CHECK_ENABLE);
8700 if (set)
8701 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
8702 else
8703 SET_STATIC_RATE_CONTROL_SMASK(reg);
8704 write_kctxt_csr(dd, sc->hw_context,
8705 SEND_CTXT_CHECK_ENABLE, reg);
8706 }
8707 return 0;
8708}
8709
8710int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
8711{
8712 int ret = 0;
8713 u64 reg;
8714
8715 if (dd->icode != ICODE_RTL_SILICON) {
8716 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
8717 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
8718 __func__);
8719 return -EINVAL;
8720 }
8721 reg = read_csr(dd, ASIC_STS_THERM);
8722 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
8723 ASIC_STS_THERM_CURR_TEMP_MASK);
8724 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
8725 ASIC_STS_THERM_LO_TEMP_MASK);
8726 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
8727 ASIC_STS_THERM_HI_TEMP_MASK);
8728 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
8729 ASIC_STS_THERM_CRIT_TEMP_MASK);
8730 /* triggers is a 3-bit value - 1 bit per trigger. */
8731 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
8732
8733 return ret;
8734}
8735
8736/* ========================================================================= */
8737
8738/*
8739 * Enable/disable chip from delivering interrupts.
8740 */
8741void set_intr_state(struct hfi1_devdata *dd, u32 enable)
8742{
8743 int i;
8744
8745 /*
8746 * In HFI, the mask needs to be 1 to allow interrupts.
8747 */
8748 if (enable) {
8749 u64 cce_int_mask;
8750 const int qsfp1_int_smask = QSFP1_INT % 64;
8751 const int qsfp2_int_smask = QSFP2_INT % 64;
8752
8753 /* enable all interrupts */
8754 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8755 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
8756
8757 /*
8758 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
8759 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
8760 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
8761 * the index of the appropriate CSR in the CCEIntMask CSR array
8762 */
8763 cce_int_mask = read_csr(dd, CCE_INT_MASK +
8764 (8*(QSFP1_INT/64)));
8765 if (dd->hfi1_id) {
8766 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
8767 write_csr(dd, CCE_INT_MASK + (8*(QSFP1_INT/64)),
8768 cce_int_mask);
8769 } else {
8770 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
8771 write_csr(dd, CCE_INT_MASK + (8*(QSFP2_INT/64)),
8772 cce_int_mask);
8773 }
8774 } else {
8775 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8776 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
8777 }
8778}
8779
8780/*
8781 * Clear all interrupt sources on the chip.
8782 */
8783static void clear_all_interrupts(struct hfi1_devdata *dd)
8784{
8785 int i;
8786
8787 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8788 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
8789
8790 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
8791 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
8792 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
8793 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
8794 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
8795 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
8796 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
8797 for (i = 0; i < dd->chip_send_contexts; i++)
8798 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
8799 for (i = 0; i < dd->chip_sdma_engines; i++)
8800 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
8801
8802 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
8803 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
8804 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
8805}
8806
8807/* Move to pcie.c? */
8808static void disable_intx(struct pci_dev *pdev)
8809{
8810 pci_intx(pdev, 0);
8811}
8812
8813static void clean_up_interrupts(struct hfi1_devdata *dd)
8814{
8815 int i;
8816
8817 /* remove irqs - must happen before disabling/turning off */
8818 if (dd->num_msix_entries) {
8819 /* MSI-X */
8820 struct hfi1_msix_entry *me = dd->msix_entries;
8821
8822 for (i = 0; i < dd->num_msix_entries; i++, me++) {
8823 if (me->arg == NULL) /* => no irq, no affinity */
8824 break;
8825 irq_set_affinity_hint(dd->msix_entries[i].msix.vector,
8826 NULL);
8827 free_irq(me->msix.vector, me->arg);
8828 }
8829 } else {
8830 /* INTx */
8831 if (dd->requested_intx_irq) {
8832 free_irq(dd->pcidev->irq, dd);
8833 dd->requested_intx_irq = 0;
8834 }
8835 }
8836
8837 /* turn off interrupts */
8838 if (dd->num_msix_entries) {
8839 /* MSI-X */
6e5b6131 8840 pci_disable_msix(dd->pcidev);
77241056
MM
8841 } else {
8842 /* INTx */
8843 disable_intx(dd->pcidev);
8844 }
8845
8846 /* clean structures */
8847 for (i = 0; i < dd->num_msix_entries; i++)
8848 free_cpumask_var(dd->msix_entries[i].mask);
8849 kfree(dd->msix_entries);
8850 dd->msix_entries = NULL;
8851 dd->num_msix_entries = 0;
8852}
8853
8854/*
8855 * Remap the interrupt source from the general handler to the given MSI-X
8856 * interrupt.
8857 */
8858static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
8859{
8860 u64 reg;
8861 int m, n;
8862
8863 /* clear from the handled mask of the general interrupt */
8864 m = isrc / 64;
8865 n = isrc % 64;
8866 dd->gi_mask[m] &= ~((u64)1 << n);
8867
8868 /* direct the chip source to the given MSI-X interrupt */
8869 m = isrc / 8;
8870 n = isrc % 8;
8871 reg = read_csr(dd, CCE_INT_MAP + (8*m));
8872 reg &= ~((u64)0xff << (8*n));
8873 reg |= ((u64)msix_intr & 0xff) << (8*n);
8874 write_csr(dd, CCE_INT_MAP + (8*m), reg);
8875}
8876
8877static void remap_sdma_interrupts(struct hfi1_devdata *dd,
8878 int engine, int msix_intr)
8879{
8880 /*
8881 * SDMA engine interrupt sources grouped by type, rather than
8882 * engine. Per-engine interrupts are as follows:
8883 * SDMA
8884 * SDMAProgress
8885 * SDMAIdle
8886 */
8887 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
8888 msix_intr);
8889 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
8890 msix_intr);
8891 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
8892 msix_intr);
8893}
8894
77241056
MM
8895static int request_intx_irq(struct hfi1_devdata *dd)
8896{
8897 int ret;
8898
9805071e
JJ
8899 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
8900 dd->unit);
77241056
MM
8901 ret = request_irq(dd->pcidev->irq, general_interrupt,
8902 IRQF_SHARED, dd->intx_name, dd);
8903 if (ret)
8904 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
8905 ret);
8906 else
8907 dd->requested_intx_irq = 1;
8908 return ret;
8909}
8910
8911static int request_msix_irqs(struct hfi1_devdata *dd)
8912{
8913 const struct cpumask *local_mask;
8914 cpumask_var_t def, rcv;
8915 bool def_ret, rcv_ret;
8916 int first_general, last_general;
8917 int first_sdma, last_sdma;
8918 int first_rx, last_rx;
82c2611d 8919 int first_cpu, curr_cpu;
77241056
MM
8920 int rcv_cpu, sdma_cpu;
8921 int i, ret = 0, possible;
8922 int ht;
8923
8924 /* calculate the ranges we are going to use */
8925 first_general = 0;
8926 first_sdma = last_general = first_general + 1;
8927 first_rx = last_sdma = first_sdma + dd->num_sdma;
8928 last_rx = first_rx + dd->n_krcv_queues;
8929
8930 /*
8931 * Interrupt affinity.
8932 *
8933 * non-rcv avail gets a default mask that
8934 * starts as possible cpus with threads reset
8935 * and each rcv avail reset.
8936 *
8937 * rcv avail gets node relative 1 wrapping back
8938 * to the node relative 1 as necessary.
8939 *
8940 */
8941 local_mask = cpumask_of_pcibus(dd->pcidev->bus);
8942 /* if first cpu is invalid, use NUMA 0 */
8943 if (cpumask_first(local_mask) >= nr_cpu_ids)
8944 local_mask = topology_core_cpumask(0);
8945
8946 def_ret = zalloc_cpumask_var(&def, GFP_KERNEL);
8947 rcv_ret = zalloc_cpumask_var(&rcv, GFP_KERNEL);
8948 if (!def_ret || !rcv_ret)
8949 goto bail;
8950 /* use local mask as default */
8951 cpumask_copy(def, local_mask);
8952 possible = cpumask_weight(def);
8953 /* disarm threads from default */
8954 ht = cpumask_weight(
8955 topology_sibling_cpumask(cpumask_first(local_mask)));
8956 for (i = possible/ht; i < possible; i++)
8957 cpumask_clear_cpu(i, def);
77241056
MM
8958 /* def now has full cores on chosen node*/
8959 first_cpu = cpumask_first(def);
8960 if (nr_cpu_ids >= first_cpu)
8961 first_cpu++;
82c2611d 8962 curr_cpu = first_cpu;
77241056 8963
82c2611d
NV
8964 /* One context is reserved as control context */
8965 for (i = first_cpu; i < dd->n_krcv_queues + first_cpu - 1; i++) {
77241056
MM
8966 cpumask_clear_cpu(curr_cpu, def);
8967 cpumask_set_cpu(curr_cpu, rcv);
82c2611d
NV
8968 curr_cpu = cpumask_next(curr_cpu, def);
8969 if (curr_cpu >= nr_cpu_ids)
8970 break;
77241056
MM
8971 }
8972 /* def mask has non-rcv, rcv has recv mask */
8973 rcv_cpu = cpumask_first(rcv);
8974 sdma_cpu = cpumask_first(def);
8975
8976 /*
8977 * Sanity check - the code expects all SDMA chip source
8978 * interrupts to be in the same CSR, starting at bit 0. Verify
8979 * that this is true by checking the bit location of the start.
8980 */
8981 BUILD_BUG_ON(IS_SDMA_START % 64);
8982
8983 for (i = 0; i < dd->num_msix_entries; i++) {
8984 struct hfi1_msix_entry *me = &dd->msix_entries[i];
8985 const char *err_info;
8986 irq_handler_t handler;
f4f30031 8987 irq_handler_t thread = NULL;
77241056
MM
8988 void *arg;
8989 int idx;
8990 struct hfi1_ctxtdata *rcd = NULL;
8991 struct sdma_engine *sde = NULL;
8992
8993 /* obtain the arguments to request_irq */
8994 if (first_general <= i && i < last_general) {
8995 idx = i - first_general;
8996 handler = general_interrupt;
8997 arg = dd;
8998 snprintf(me->name, sizeof(me->name),
9805071e 8999 DRIVER_NAME "_%d", dd->unit);
77241056
MM
9000 err_info = "general";
9001 } else if (first_sdma <= i && i < last_sdma) {
9002 idx = i - first_sdma;
9003 sde = &dd->per_sdma[idx];
9004 handler = sdma_interrupt;
9005 arg = sde;
9006 snprintf(me->name, sizeof(me->name),
9805071e 9007 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
77241056
MM
9008 err_info = "sdma";
9009 remap_sdma_interrupts(dd, idx, i);
9010 } else if (first_rx <= i && i < last_rx) {
9011 idx = i - first_rx;
9012 rcd = dd->rcd[idx];
9013 /* no interrupt if no rcd */
9014 if (!rcd)
9015 continue;
9016 /*
9017 * Set the interrupt register and mask for this
9018 * context's interrupt.
9019 */
9020 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
9021 rcd->imask = ((u64)1) <<
9022 ((IS_RCVAVAIL_START+idx) % 64);
9023 handler = receive_context_interrupt;
f4f30031 9024 thread = receive_context_thread;
77241056
MM
9025 arg = rcd;
9026 snprintf(me->name, sizeof(me->name),
9805071e 9027 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
77241056 9028 err_info = "receive context";
66c0933b 9029 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
77241056
MM
9030 } else {
9031 /* not in our expected range - complain, then
9032 ignore it */
9033 dd_dev_err(dd,
9034 "Unexpected extra MSI-X interrupt %d\n", i);
9035 continue;
9036 }
9037 /* no argument, no interrupt */
9038 if (arg == NULL)
9039 continue;
9040 /* make sure the name is terminated */
9041 me->name[sizeof(me->name)-1] = 0;
9042
f4f30031
DL
9043 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
9044 me->name, arg);
77241056
MM
9045 if (ret) {
9046 dd_dev_err(dd,
9047 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
9048 err_info, me->msix.vector, idx, ret);
9049 return ret;
9050 }
9051 /*
9052 * assign arg after request_irq call, so it will be
9053 * cleaned up
9054 */
9055 me->arg = arg;
9056
9057 if (!zalloc_cpumask_var(
9058 &dd->msix_entries[i].mask,
9059 GFP_KERNEL))
9060 goto bail;
9061 if (handler == sdma_interrupt) {
9062 dd_dev_info(dd, "sdma engine %d cpu %d\n",
9063 sde->this_idx, sdma_cpu);
0a226edd 9064 sde->cpu = sdma_cpu;
77241056
MM
9065 cpumask_set_cpu(sdma_cpu, dd->msix_entries[i].mask);
9066 sdma_cpu = cpumask_next(sdma_cpu, def);
9067 if (sdma_cpu >= nr_cpu_ids)
9068 sdma_cpu = cpumask_first(def);
9069 } else if (handler == receive_context_interrupt) {
82c2611d
NV
9070 dd_dev_info(dd, "rcv ctxt %d cpu %d\n", rcd->ctxt,
9071 (rcd->ctxt == HFI1_CTRL_CTXT) ?
9072 cpumask_first(def) : rcv_cpu);
9073 if (rcd->ctxt == HFI1_CTRL_CTXT) {
9074 /* map to first default */
9075 cpumask_set_cpu(cpumask_first(def),
9076 dd->msix_entries[i].mask);
9077 } else {
9078 cpumask_set_cpu(rcv_cpu,
9079 dd->msix_entries[i].mask);
9080 rcv_cpu = cpumask_next(rcv_cpu, rcv);
9081 if (rcv_cpu >= nr_cpu_ids)
9082 rcv_cpu = cpumask_first(rcv);
9083 }
77241056
MM
9084 } else {
9085 /* otherwise first def */
9086 dd_dev_info(dd, "%s cpu %d\n",
9087 err_info, cpumask_first(def));
9088 cpumask_set_cpu(
9089 cpumask_first(def), dd->msix_entries[i].mask);
9090 }
9091 irq_set_affinity_hint(
9092 dd->msix_entries[i].msix.vector,
9093 dd->msix_entries[i].mask);
9094 }
9095
9096out:
9097 free_cpumask_var(def);
9098 free_cpumask_var(rcv);
9099 return ret;
9100bail:
9101 ret = -ENOMEM;
9102 goto out;
9103}
9104
9105/*
9106 * Set the general handler to accept all interrupts, remap all
9107 * chip interrupts back to MSI-X 0.
9108 */
9109static void reset_interrupts(struct hfi1_devdata *dd)
9110{
9111 int i;
9112
9113 /* all interrupts handled by the general handler */
9114 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
9115 dd->gi_mask[i] = ~(u64)0;
9116
9117 /* all chip interrupts map to MSI-X 0 */
9118 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9119 write_csr(dd, CCE_INT_MAP + (8*i), 0);
9120}
9121
9122static int set_up_interrupts(struct hfi1_devdata *dd)
9123{
9124 struct hfi1_msix_entry *entries;
9125 u32 total, request;
9126 int i, ret;
9127 int single_interrupt = 0; /* we expect to have all the interrupts */
9128
9129 /*
9130 * Interrupt count:
9131 * 1 general, "slow path" interrupt (includes the SDMA engines
9132 * slow source, SDMACleanupDone)
9133 * N interrupts - one per used SDMA engine
9134 * M interrupt - one per kernel receive context
9135 */
9136 total = 1 + dd->num_sdma + dd->n_krcv_queues;
9137
9138 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
9139 if (!entries) {
77241056
MM
9140 ret = -ENOMEM;
9141 goto fail;
9142 }
9143 /* 1-1 MSI-X entry assignment */
9144 for (i = 0; i < total; i++)
9145 entries[i].msix.entry = i;
9146
9147 /* ask for MSI-X interrupts */
9148 request = total;
9149 request_msix(dd, &request, entries);
9150
9151 if (request == 0) {
9152 /* using INTx */
9153 /* dd->num_msix_entries already zero */
9154 kfree(entries);
9155 single_interrupt = 1;
9156 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
9157 } else {
9158 /* using MSI-X */
9159 dd->num_msix_entries = request;
9160 dd->msix_entries = entries;
9161
9162 if (request != total) {
9163 /* using MSI-X, with reduced interrupts */
9164 dd_dev_err(
9165 dd,
9166 "cannot handle reduced interrupt case, want %u, got %u\n",
9167 total, request);
9168 ret = -EINVAL;
9169 goto fail;
9170 }
9171 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
9172 }
9173
9174 /* mask all interrupts */
9175 set_intr_state(dd, 0);
9176 /* clear all pending interrupts */
9177 clear_all_interrupts(dd);
9178
9179 /* reset general handler mask, chip MSI-X mappings */
9180 reset_interrupts(dd);
9181
9182 if (single_interrupt)
9183 ret = request_intx_irq(dd);
9184 else
9185 ret = request_msix_irqs(dd);
9186 if (ret)
9187 goto fail;
9188
9189 return 0;
9190
9191fail:
9192 clean_up_interrupts(dd);
9193 return ret;
9194}
9195
9196/*
9197 * Set up context values in dd. Sets:
9198 *
9199 * num_rcv_contexts - number of contexts being used
9200 * n_krcv_queues - number of kernel contexts
9201 * first_user_ctxt - first non-kernel context in array of contexts
9202 * freectxts - number of free user contexts
9203 * num_send_contexts - number of PIO send contexts being used
9204 */
9205static int set_up_context_variables(struct hfi1_devdata *dd)
9206{
9207 int num_kernel_contexts;
9208 int num_user_contexts;
9209 int total_contexts;
9210 int ret;
9211 unsigned ngroups;
9212
9213 /*
9214 * Kernel contexts: (to be fixed later):
9215 * - min or 2 or 1 context/numa
82c2611d
NV
9216 * - Context 0 - control context (VL15/multicast/error)
9217 * - Context 1 - default context
77241056
MM
9218 */
9219 if (n_krcvqs)
82c2611d
NV
9220 /*
9221 * Don't count context 0 in n_krcvqs since
9222 * is isn't used for normal verbs traffic.
9223 *
9224 * krcvqs will reflect number of kernel
9225 * receive contexts above 0.
9226 */
9227 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
77241056
MM
9228 else
9229 num_kernel_contexts = num_online_nodes();
9230 num_kernel_contexts =
9231 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
9232 /*
9233 * Every kernel receive context needs an ACK send context.
9234 * one send context is allocated for each VL{0-7} and VL15
9235 */
9236 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
9237 dd_dev_err(dd,
9238 "Reducing # kernel rcv contexts to: %d, from %d\n",
9239 (int)(dd->chip_send_contexts - num_vls - 1),
9240 (int)num_kernel_contexts);
9241 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
9242 }
9243 /*
9244 * User contexts: (to be fixed later)
9245 * - set to num_rcv_contexts if non-zero
9246 * - default to 1 user context per CPU
9247 */
9248 if (num_rcv_contexts)
9249 num_user_contexts = num_rcv_contexts;
9250 else
9251 num_user_contexts = num_online_cpus();
9252
9253 total_contexts = num_kernel_contexts + num_user_contexts;
9254
9255 /*
9256 * Adjust the counts given a global max.
9257 */
9258 if (total_contexts > dd->chip_rcv_contexts) {
9259 dd_dev_err(dd,
9260 "Reducing # user receive contexts to: %d, from %d\n",
9261 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
9262 (int)num_user_contexts);
9263 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
9264 /* recalculate */
9265 total_contexts = num_kernel_contexts + num_user_contexts;
9266 }
9267
9268 /* the first N are kernel contexts, the rest are user contexts */
9269 dd->num_rcv_contexts = total_contexts;
9270 dd->n_krcv_queues = num_kernel_contexts;
9271 dd->first_user_ctxt = num_kernel_contexts;
9272 dd->freectxts = num_user_contexts;
9273 dd_dev_info(dd,
9274 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
9275 (int)dd->chip_rcv_contexts,
9276 (int)dd->num_rcv_contexts,
9277 (int)dd->n_krcv_queues,
9278 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
9279
9280 /*
9281 * Receive array allocation:
9282 * All RcvArray entries are divided into groups of 8. This
9283 * is required by the hardware and will speed up writes to
9284 * consecutive entries by using write-combining of the entire
9285 * cacheline.
9286 *
9287 * The number of groups are evenly divided among all contexts.
9288 * any left over groups will be given to the first N user
9289 * contexts.
9290 */
9291 dd->rcv_entries.group_size = RCV_INCREMENT;
9292 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
9293 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
9294 dd->rcv_entries.nctxt_extra = ngroups -
9295 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
9296 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
9297 dd->rcv_entries.ngroups,
9298 dd->rcv_entries.nctxt_extra);
9299 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
9300 MAX_EAGER_ENTRIES * 2) {
9301 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
9302 dd->rcv_entries.group_size;
9303 dd_dev_info(dd,
9304 "RcvArray group count too high, change to %u\n",
9305 dd->rcv_entries.ngroups);
9306 dd->rcv_entries.nctxt_extra = 0;
9307 }
9308 /*
9309 * PIO send contexts
9310 */
9311 ret = init_sc_pools_and_sizes(dd);
9312 if (ret >= 0) { /* success */
9313 dd->num_send_contexts = ret;
9314 dd_dev_info(
9315 dd,
9316 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
9317 dd->chip_send_contexts,
9318 dd->num_send_contexts,
9319 dd->sc_sizes[SC_KERNEL].count,
9320 dd->sc_sizes[SC_ACK].count,
9321 dd->sc_sizes[SC_USER].count);
9322 ret = 0; /* success */
9323 }
9324
9325 return ret;
9326}
9327
9328/*
9329 * Set the device/port partition key table. The MAD code
9330 * will ensure that, at least, the partial management
9331 * partition key is present in the table.
9332 */
9333static void set_partition_keys(struct hfi1_pportdata *ppd)
9334{
9335 struct hfi1_devdata *dd = ppd->dd;
9336 u64 reg = 0;
9337 int i;
9338
9339 dd_dev_info(dd, "Setting partition keys\n");
9340 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
9341 reg |= (ppd->pkeys[i] &
9342 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
9343 ((i % 4) *
9344 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
9345 /* Each register holds 4 PKey values. */
9346 if ((i % 4) == 3) {
9347 write_csr(dd, RCV_PARTITION_KEY +
9348 ((i - 3) * 2), reg);
9349 reg = 0;
9350 }
9351 }
9352
9353 /* Always enable HW pkeys check when pkeys table is set */
9354 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
9355}
9356
9357/*
9358 * These CSRs and memories are uninitialized on reset and must be
9359 * written before reading to set the ECC/parity bits.
9360 *
9361 * NOTE: All user context CSRs that are not mmaped write-only
9362 * (e.g. the TID flows) must be initialized even if the driver never
9363 * reads them.
9364 */
9365static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
9366{
9367 int i, j;
9368
9369 /* CceIntMap */
9370 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9371 write_csr(dd, CCE_INT_MAP+(8*i), 0);
9372
9373 /* SendCtxtCreditReturnAddr */
9374 for (i = 0; i < dd->chip_send_contexts; i++)
9375 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9376
9377 /* PIO Send buffers */
9378 /* SDMA Send buffers */
9379 /* These are not normally read, and (presently) have no method
9380 to be read, so are not pre-initialized */
9381
9382 /* RcvHdrAddr */
9383 /* RcvHdrTailAddr */
9384 /* RcvTidFlowTable */
9385 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9386 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9387 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9388 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
9389 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
9390 }
9391
9392 /* RcvArray */
9393 for (i = 0; i < dd->chip_rcv_array_count; i++)
9394 write_csr(dd, RCV_ARRAY + (8*i),
9395 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
9396
9397 /* RcvQPMapTable */
9398 for (i = 0; i < 32; i++)
9399 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9400}
9401
9402/*
9403 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
9404 */
9405static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
9406 u64 ctrl_bits)
9407{
9408 unsigned long timeout;
9409 u64 reg;
9410
9411 /* is the condition present? */
9412 reg = read_csr(dd, CCE_STATUS);
9413 if ((reg & status_bits) == 0)
9414 return;
9415
9416 /* clear the condition */
9417 write_csr(dd, CCE_CTRL, ctrl_bits);
9418
9419 /* wait for the condition to clear */
9420 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
9421 while (1) {
9422 reg = read_csr(dd, CCE_STATUS);
9423 if ((reg & status_bits) == 0)
9424 return;
9425 if (time_after(jiffies, timeout)) {
9426 dd_dev_err(dd,
9427 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
9428 status_bits, reg & status_bits);
9429 return;
9430 }
9431 udelay(1);
9432 }
9433}
9434
9435/* set CCE CSRs to chip reset defaults */
9436static void reset_cce_csrs(struct hfi1_devdata *dd)
9437{
9438 int i;
9439
9440 /* CCE_REVISION read-only */
9441 /* CCE_REVISION2 read-only */
9442 /* CCE_CTRL - bits clear automatically */
9443 /* CCE_STATUS read-only, use CceCtrl to clear */
9444 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
9445 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
9446 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
9447 for (i = 0; i < CCE_NUM_SCRATCH; i++)
9448 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
9449 /* CCE_ERR_STATUS read-only */
9450 write_csr(dd, CCE_ERR_MASK, 0);
9451 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
9452 /* CCE_ERR_FORCE leave alone */
9453 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
9454 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
9455 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
9456 /* CCE_PCIE_CTRL leave alone */
9457 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
9458 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
9459 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
9460 CCE_MSIX_TABLE_UPPER_RESETCSR);
9461 }
9462 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
9463 /* CCE_MSIX_PBA read-only */
9464 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
9465 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
9466 }
9467 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9468 write_csr(dd, CCE_INT_MAP, 0);
9469 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
9470 /* CCE_INT_STATUS read-only */
9471 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
9472 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
9473 /* CCE_INT_FORCE leave alone */
9474 /* CCE_INT_BLOCKED read-only */
9475 }
9476 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
9477 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
9478}
9479
9480/* set ASIC CSRs to chip reset defaults */
9481static void reset_asic_csrs(struct hfi1_devdata *dd)
9482{
77241056
MM
9483 int i;
9484
9485 /*
9486 * If the HFIs are shared between separate nodes or VMs,
9487 * then more will need to be done here. One idea is a module
9488 * parameter that returns early, letting the first power-on or
9489 * a known first load do the reset and blocking all others.
9490 */
9491
7c03ed85
EH
9492 if (!(dd->flags & HFI1_DO_INIT_ASIC))
9493 return;
77241056
MM
9494
9495 if (dd->icode != ICODE_FPGA_EMULATION) {
9496 /* emulation does not have an SBus - leave these alone */
9497 /*
9498 * All writes to ASIC_CFG_SBUS_REQUEST do something.
9499 * Notes:
9500 * o The reset is not zero if aimed at the core. See the
9501 * SBus documentation for details.
9502 * o If the SBus firmware has been updated (e.g. by the BIOS),
9503 * will the reset revert that?
9504 */
9505 /* ASIC_CFG_SBUS_REQUEST leave alone */
9506 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
9507 }
9508 /* ASIC_SBUS_RESULT read-only */
9509 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
9510 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
9511 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
9512 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
7c03ed85
EH
9513
9514 /* We might want to retain this state across FLR if we ever use it */
77241056 9515 write_csr(dd, ASIC_CFG_DRV_STR, 0);
7c03ed85 9516
4ef98989 9517 /* ASIC_CFG_THERM_POLL_EN leave alone */
77241056
MM
9518 /* ASIC_STS_THERM read-only */
9519 /* ASIC_CFG_RESET leave alone */
9520
9521 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
9522 /* ASIC_PCIE_SD_HOST_STATUS read-only */
9523 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
9524 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
9525 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
9526 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
9527 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
9528 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
9529 for (i = 0; i < 16; i++)
9530 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
9531
9532 /* ASIC_GPIO_IN read-only */
9533 write_csr(dd, ASIC_GPIO_OE, 0);
9534 write_csr(dd, ASIC_GPIO_INVERT, 0);
9535 write_csr(dd, ASIC_GPIO_OUT, 0);
9536 write_csr(dd, ASIC_GPIO_MASK, 0);
9537 /* ASIC_GPIO_STATUS read-only */
9538 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
9539 /* ASIC_GPIO_FORCE leave alone */
9540
9541 /* ASIC_QSFP1_IN read-only */
9542 write_csr(dd, ASIC_QSFP1_OE, 0);
9543 write_csr(dd, ASIC_QSFP1_INVERT, 0);
9544 write_csr(dd, ASIC_QSFP1_OUT, 0);
9545 write_csr(dd, ASIC_QSFP1_MASK, 0);
9546 /* ASIC_QSFP1_STATUS read-only */
9547 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
9548 /* ASIC_QSFP1_FORCE leave alone */
9549
9550 /* ASIC_QSFP2_IN read-only */
9551 write_csr(dd, ASIC_QSFP2_OE, 0);
9552 write_csr(dd, ASIC_QSFP2_INVERT, 0);
9553 write_csr(dd, ASIC_QSFP2_OUT, 0);
9554 write_csr(dd, ASIC_QSFP2_MASK, 0);
9555 /* ASIC_QSFP2_STATUS read-only */
9556 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
9557 /* ASIC_QSFP2_FORCE leave alone */
9558
9559 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
9560 /* this also writes a NOP command, clearing paging mode */
9561 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
9562 write_csr(dd, ASIC_EEP_DATA, 0);
77241056
MM
9563}
9564
9565/* set MISC CSRs to chip reset defaults */
9566static void reset_misc_csrs(struct hfi1_devdata *dd)
9567{
9568 int i;
9569
9570 for (i = 0; i < 32; i++) {
9571 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
9572 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
9573 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
9574 }
9575 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
9576 only be written 128-byte chunks */
9577 /* init RSA engine to clear lingering errors */
9578 write_csr(dd, MISC_CFG_RSA_CMD, 1);
9579 write_csr(dd, MISC_CFG_RSA_MU, 0);
9580 write_csr(dd, MISC_CFG_FW_CTRL, 0);
9581 /* MISC_STS_8051_DIGEST read-only */
9582 /* MISC_STS_SBM_DIGEST read-only */
9583 /* MISC_STS_PCIE_DIGEST read-only */
9584 /* MISC_STS_FAB_DIGEST read-only */
9585 /* MISC_ERR_STATUS read-only */
9586 write_csr(dd, MISC_ERR_MASK, 0);
9587 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
9588 /* MISC_ERR_FORCE leave alone */
9589}
9590
9591/* set TXE CSRs to chip reset defaults */
9592static void reset_txe_csrs(struct hfi1_devdata *dd)
9593{
9594 int i;
9595
9596 /*
9597 * TXE Kernel CSRs
9598 */
9599 write_csr(dd, SEND_CTRL, 0);
9600 __cm_reset(dd, 0); /* reset CM internal state */
9601 /* SEND_CONTEXTS read-only */
9602 /* SEND_DMA_ENGINES read-only */
9603 /* SEND_PIO_MEM_SIZE read-only */
9604 /* SEND_DMA_MEM_SIZE read-only */
9605 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
9606 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
9607 /* SEND_PIO_ERR_STATUS read-only */
9608 write_csr(dd, SEND_PIO_ERR_MASK, 0);
9609 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
9610 /* SEND_PIO_ERR_FORCE leave alone */
9611 /* SEND_DMA_ERR_STATUS read-only */
9612 write_csr(dd, SEND_DMA_ERR_MASK, 0);
9613 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
9614 /* SEND_DMA_ERR_FORCE leave alone */
9615 /* SEND_EGRESS_ERR_STATUS read-only */
9616 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
9617 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
9618 /* SEND_EGRESS_ERR_FORCE leave alone */
9619 write_csr(dd, SEND_BTH_QP, 0);
9620 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
9621 write_csr(dd, SEND_SC2VLT0, 0);
9622 write_csr(dd, SEND_SC2VLT1, 0);
9623 write_csr(dd, SEND_SC2VLT2, 0);
9624 write_csr(dd, SEND_SC2VLT3, 0);
9625 write_csr(dd, SEND_LEN_CHECK0, 0);
9626 write_csr(dd, SEND_LEN_CHECK1, 0);
9627 /* SEND_ERR_STATUS read-only */
9628 write_csr(dd, SEND_ERR_MASK, 0);
9629 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
9630 /* SEND_ERR_FORCE read-only */
9631 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
9632 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
9633 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
9634 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
9635 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
9636 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
9637 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
9638 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
9639 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
9640 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
9641 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
9642 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
9643 SEND_CM_GLOBAL_CREDIT_RESETCSR);
9644 /* SEND_CM_CREDIT_USED_STATUS read-only */
9645 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
9646 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
9647 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
9648 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
9649 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
9650 for (i = 0; i < TXE_NUM_DATA_VL; i++)
9651 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
9652 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
9653 /* SEND_CM_CREDIT_USED_VL read-only */
9654 /* SEND_CM_CREDIT_USED_VL15 read-only */
9655 /* SEND_EGRESS_CTXT_STATUS read-only */
9656 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
9657 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
9658 /* SEND_EGRESS_ERR_INFO read-only */
9659 /* SEND_EGRESS_ERR_SOURCE read-only */
9660
9661 /*
9662 * TXE Per-Context CSRs
9663 */
9664 for (i = 0; i < dd->chip_send_contexts; i++) {
9665 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9666 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
9667 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9668 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
9669 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
9670 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
9671 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
9672 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
9673 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
9674 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
9675 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
9676 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
9677 }
9678
9679 /*
9680 * TXE Per-SDMA CSRs
9681 */
9682 for (i = 0; i < dd->chip_sdma_engines; i++) {
9683 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9684 /* SEND_DMA_STATUS read-only */
9685 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
9686 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
9687 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
9688 /* SEND_DMA_HEAD read-only */
9689 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
9690 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
9691 /* SEND_DMA_IDLE_CNT read-only */
9692 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
9693 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
9694 /* SEND_DMA_DESC_FETCHED_CNT read-only */
9695 /* SEND_DMA_ENG_ERR_STATUS read-only */
9696 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
9697 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
9698 /* SEND_DMA_ENG_ERR_FORCE leave alone */
9699 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
9700 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
9701 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
9702 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
9703 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
9704 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
9705 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
9706 }
9707}
9708
9709/*
9710 * Expect on entry:
9711 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
9712 */
9713static void init_rbufs(struct hfi1_devdata *dd)
9714{
9715 u64 reg;
9716 int count;
9717
9718 /*
9719 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
9720 * clear.
9721 */
9722 count = 0;
9723 while (1) {
9724 reg = read_csr(dd, RCV_STATUS);
9725 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
9726 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
9727 break;
9728 /*
9729 * Give up after 1ms - maximum wait time.
9730 *
9731 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
9732 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
9733 * 148 KB / (66% * 250MB/s) = 920us
9734 */
9735 if (count++ > 500) {
9736 dd_dev_err(dd,
9737 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
9738 __func__, reg);
9739 break;
9740 }
9741 udelay(2); /* do not busy-wait the CSR */
9742 }
9743
9744 /* start the init - expect RcvCtrl to be 0 */
9745 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
9746
9747 /*
9748 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
9749 * period after the write before RcvStatus.RxRbufInitDone is valid.
9750 * The delay in the first run through the loop below is sufficient and
9751 * required before the first read of RcvStatus.RxRbufInintDone.
9752 */
9753 read_csr(dd, RCV_CTRL);
9754
9755 /* wait for the init to finish */
9756 count = 0;
9757 while (1) {
9758 /* delay is required first time through - see above */
9759 udelay(2); /* do not busy-wait the CSR */
9760 reg = read_csr(dd, RCV_STATUS);
9761 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
9762 break;
9763
9764 /* give up after 100us - slowest possible at 33MHz is 73us */
9765 if (count++ > 50) {
9766 dd_dev_err(dd,
9767 "%s: RcvStatus.RxRbufInit not set, continuing\n",
9768 __func__);
9769 break;
9770 }
9771 }
9772}
9773
9774/* set RXE CSRs to chip reset defaults */
9775static void reset_rxe_csrs(struct hfi1_devdata *dd)
9776{
9777 int i, j;
9778
9779 /*
9780 * RXE Kernel CSRs
9781 */
9782 write_csr(dd, RCV_CTRL, 0);
9783 init_rbufs(dd);
9784 /* RCV_STATUS read-only */
9785 /* RCV_CONTEXTS read-only */
9786 /* RCV_ARRAY_CNT read-only */
9787 /* RCV_BUF_SIZE read-only */
9788 write_csr(dd, RCV_BTH_QP, 0);
9789 write_csr(dd, RCV_MULTICAST, 0);
9790 write_csr(dd, RCV_BYPASS, 0);
9791 write_csr(dd, RCV_VL15, 0);
9792 /* this is a clear-down */
9793 write_csr(dd, RCV_ERR_INFO,
9794 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
9795 /* RCV_ERR_STATUS read-only */
9796 write_csr(dd, RCV_ERR_MASK, 0);
9797 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
9798 /* RCV_ERR_FORCE leave alone */
9799 for (i = 0; i < 32; i++)
9800 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9801 for (i = 0; i < 4; i++)
9802 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
9803 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
9804 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
9805 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
9806 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
9807 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
9808 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
9809 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
9810 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
9811 }
9812 for (i = 0; i < 32; i++)
9813 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
9814
9815 /*
9816 * RXE Kernel and User Per-Context CSRs
9817 */
9818 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9819 /* kernel */
9820 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
9821 /* RCV_CTXT_STATUS read-only */
9822 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
9823 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
9824 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
9825 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9826 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
9827 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
9828 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
9829 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9830 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
9831 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
9832
9833 /* user */
9834 /* RCV_HDR_TAIL read-only */
9835 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
9836 /* RCV_EGR_INDEX_TAIL read-only */
9837 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
9838 /* RCV_EGR_OFFSET_TAIL read-only */
9839 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
9840 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
9841 0);
9842 }
9843 }
9844}
9845
9846/*
9847 * Set sc2vl tables.
9848 *
9849 * They power on to zeros, so to avoid send context errors
9850 * they need to be set:
9851 *
9852 * SC 0-7 -> VL 0-7 (respectively)
9853 * SC 15 -> VL 15
9854 * otherwise
9855 * -> VL 0
9856 */
9857static void init_sc2vl_tables(struct hfi1_devdata *dd)
9858{
9859 int i;
9860 /* init per architecture spec, constrained by hardware capability */
9861
9862 /* HFI maps sent packets */
9863 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
9864 0,
9865 0, 0, 1, 1,
9866 2, 2, 3, 3,
9867 4, 4, 5, 5,
9868 6, 6, 7, 7));
9869 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
9870 1,
9871 8, 0, 9, 0,
9872 10, 0, 11, 0,
9873 12, 0, 13, 0,
9874 14, 0, 15, 15));
9875 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
9876 2,
9877 16, 0, 17, 0,
9878 18, 0, 19, 0,
9879 20, 0, 21, 0,
9880 22, 0, 23, 0));
9881 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
9882 3,
9883 24, 0, 25, 0,
9884 26, 0, 27, 0,
9885 28, 0, 29, 0,
9886 30, 0, 31, 0));
9887
9888 /* DC maps received packets */
9889 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
9890 15_0,
9891 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
9892 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
9893 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
9894 31_16,
9895 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
9896 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
9897
9898 /* initialize the cached sc2vl values consistently with h/w */
9899 for (i = 0; i < 32; i++) {
9900 if (i < 8 || i == 15)
9901 *((u8 *)(dd->sc2vl) + i) = (u8)i;
9902 else
9903 *((u8 *)(dd->sc2vl) + i) = 0;
9904 }
9905}
9906
9907/*
9908 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
9909 * depend on the chip going through a power-on reset - a driver may be loaded
9910 * and unloaded many times.
9911 *
9912 * Do not write any CSR values to the chip in this routine - there may be
9913 * a reset following the (possible) FLR in this routine.
9914 *
9915 */
9916static void init_chip(struct hfi1_devdata *dd)
9917{
9918 int i;
9919
9920 /*
9921 * Put the HFI CSRs in a known state.
9922 * Combine this with a DC reset.
9923 *
9924 * Stop the device from doing anything while we do a
9925 * reset. We know there are no other active users of
9926 * the device since we are now in charge. Turn off
9927 * off all outbound and inbound traffic and make sure
9928 * the device does not generate any interrupts.
9929 */
9930
9931 /* disable send contexts and SDMA engines */
9932 write_csr(dd, SEND_CTRL, 0);
9933 for (i = 0; i < dd->chip_send_contexts; i++)
9934 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9935 for (i = 0; i < dd->chip_sdma_engines; i++)
9936 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9937 /* disable port (turn off RXE inbound traffic) and contexts */
9938 write_csr(dd, RCV_CTRL, 0);
9939 for (i = 0; i < dd->chip_rcv_contexts; i++)
9940 write_csr(dd, RCV_CTXT_CTRL, 0);
9941 /* mask all interrupt sources */
9942 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
9943 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
9944
9945 /*
9946 * DC Reset: do a full DC reset before the register clear.
9947 * A recommended length of time to hold is one CSR read,
9948 * so reread the CceDcCtrl. Then, hold the DC in reset
9949 * across the clear.
9950 */
9951 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
9952 (void) read_csr(dd, CCE_DC_CTRL);
9953
9954 if (use_flr) {
9955 /*
9956 * A FLR will reset the SPC core and part of the PCIe.
9957 * The parts that need to be restored have already been
9958 * saved.
9959 */
9960 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9961
9962 /* do the FLR, the DC reset will remain */
9963 hfi1_pcie_flr(dd);
9964
9965 /* restore command and BARs */
9966 restore_pci_variables(dd);
9967
995deafa 9968 if (is_ax(dd)) {
77241056
MM
9969 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9970 hfi1_pcie_flr(dd);
9971 restore_pci_variables(dd);
9972 }
9973
7c03ed85 9974 reset_asic_csrs(dd);
77241056
MM
9975 } else {
9976 dd_dev_info(dd, "Resetting CSRs with writes\n");
9977 reset_cce_csrs(dd);
9978 reset_txe_csrs(dd);
9979 reset_rxe_csrs(dd);
9980 reset_asic_csrs(dd);
9981 reset_misc_csrs(dd);
9982 }
9983 /* clear the DC reset */
9984 write_csr(dd, CCE_DC_CTRL, 0);
7c03ed85 9985
77241056 9986 /* Set the LED off */
995deafa 9987 if (is_ax(dd))
77241056
MM
9988 setextled(dd, 0);
9989 /*
9990 * Clear the QSFP reset.
72a67ba2 9991 * An FLR enforces a 0 on all out pins. The driver does not touch
77241056 9992 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
72a67ba2 9993 * anything plugged constantly in reset, if it pays attention
77241056 9994 * to RESET_N.
72a67ba2 9995 * Prime examples of this are optical cables. Set all pins high.
77241056
MM
9996 * I2CCLK and I2CDAT will change per direction, and INT_N and
9997 * MODPRS_N are input only and their value is ignored.
9998 */
72a67ba2
EH
9999 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
10000 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
77241056
MM
10001}
10002
10003static void init_early_variables(struct hfi1_devdata *dd)
10004{
10005 int i;
10006
10007 /* assign link credit variables */
10008 dd->vau = CM_VAU;
10009 dd->link_credits = CM_GLOBAL_CREDITS;
995deafa 10010 if (is_ax(dd))
77241056
MM
10011 dd->link_credits--;
10012 dd->vcu = cu_to_vcu(hfi1_cu);
10013 /* enough room for 8 MAD packets plus header - 17K */
10014 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
10015 if (dd->vl15_init > dd->link_credits)
10016 dd->vl15_init = dd->link_credits;
10017
10018 write_uninitialized_csrs_and_memories(dd);
10019
10020 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10021 for (i = 0; i < dd->num_pports; i++) {
10022 struct hfi1_pportdata *ppd = &dd->pport[i];
10023
10024 set_partition_keys(ppd);
10025 }
10026 init_sc2vl_tables(dd);
10027}
10028
10029static void init_kdeth_qp(struct hfi1_devdata *dd)
10030{
10031 /* user changed the KDETH_QP */
10032 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
10033 /* out of range or illegal value */
10034 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
10035 kdeth_qp = 0;
10036 }
10037 if (kdeth_qp == 0) /* not set, or failed range check */
10038 kdeth_qp = DEFAULT_KDETH_QP;
10039
10040 write_csr(dd, SEND_BTH_QP,
10041 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
10042 << SEND_BTH_QP_KDETH_QP_SHIFT);
10043
10044 write_csr(dd, RCV_BTH_QP,
10045 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
10046 << RCV_BTH_QP_KDETH_QP_SHIFT);
10047}
10048
10049/**
10050 * init_qpmap_table
10051 * @dd - device data
10052 * @first_ctxt - first context
10053 * @last_ctxt - first context
10054 *
10055 * This return sets the qpn mapping table that
10056 * is indexed by qpn[8:1].
10057 *
10058 * The routine will round robin the 256 settings
10059 * from first_ctxt to last_ctxt.
10060 *
10061 * The first/last looks ahead to having specialized
10062 * receive contexts for mgmt and bypass. Normal
10063 * verbs traffic will assumed to be on a range
10064 * of receive contexts.
10065 */
10066static void init_qpmap_table(struct hfi1_devdata *dd,
10067 u32 first_ctxt,
10068 u32 last_ctxt)
10069{
10070 u64 reg = 0;
10071 u64 regno = RCV_QP_MAP_TABLE;
10072 int i;
10073 u64 ctxt = first_ctxt;
10074
10075 for (i = 0; i < 256;) {
77241056
MM
10076 reg |= ctxt << (8 * (i % 8));
10077 i++;
10078 ctxt++;
10079 if (ctxt > last_ctxt)
10080 ctxt = first_ctxt;
10081 if (i % 8 == 0) {
10082 write_csr(dd, regno, reg);
10083 reg = 0;
10084 regno += 8;
10085 }
10086 }
10087 if (i % 8)
10088 write_csr(dd, regno, reg);
10089
10090 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
10091 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
10092}
10093
10094/**
10095 * init_qos - init RX qos
10096 * @dd - device data
10097 * @first_context
10098 *
10099 * This routine initializes Rule 0 and the
10100 * RSM map table to implement qos.
10101 *
10102 * If all of the limit tests succeed,
10103 * qos is applied based on the array
10104 * interpretation of krcvqs where
10105 * entry 0 is VL0.
10106 *
10107 * The number of vl bits (n) and the number of qpn
10108 * bits (m) are computed to feed both the RSM map table
10109 * and the single rule.
10110 *
10111 */
10112static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
10113{
10114 u8 max_by_vl = 0;
10115 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
10116 u64 *rsmmap;
10117 u64 reg;
995deafa 10118 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
77241056
MM
10119
10120 /* validate */
10121 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
10122 num_vls == 1 ||
10123 krcvqsset <= 1)
10124 goto bail;
10125 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
10126 if (krcvqs[i] > max_by_vl)
10127 max_by_vl = krcvqs[i];
10128 if (max_by_vl > 32)
10129 goto bail;
10130 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
10131 /* determine bits vl */
10132 n = ilog2(num_vls);
10133 /* determine bits for qpn */
10134 m = ilog2(qpns_per_vl);
10135 if ((m + n) > 7)
10136 goto bail;
10137 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
10138 goto bail;
10139 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
10140 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
10141 /* init the local copy of the table */
10142 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
10143 unsigned tctxt;
10144
10145 for (qpn = 0, tctxt = ctxt;
10146 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
10147 unsigned idx, regoff, regidx;
10148
10149 /* generate index <= 128 */
10150 idx = (qpn << n) ^ i;
10151 regoff = (idx % 8) * 8;
10152 regidx = idx / 8;
10153 reg = rsmmap[regidx];
10154 /* replace 0xff with context number */
10155 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
10156 << regoff);
10157 reg |= (u64)(tctxt++) << regoff;
10158 rsmmap[regidx] = reg;
10159 if (tctxt == ctxt + krcvqs[i])
10160 tctxt = ctxt;
10161 }
10162 ctxt += krcvqs[i];
10163 }
10164 /* flush cached copies to chip */
10165 for (i = 0; i < NUM_MAP_REGS; i++)
10166 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
10167 /* add rule0 */
10168 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
10169 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
10170 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
10171 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
10172 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
10173 LRH_BTH_MATCH_OFFSET
10174 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
10175 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
10176 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
10177 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
10178 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
10179 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
10180 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
10181 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
10182 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
10183 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
10184 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
10185 /* Enable RSM */
10186 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
10187 kfree(rsmmap);
82c2611d
NV
10188 /* map everything else to first context */
10189 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
77241056
MM
10190 dd->qos_shift = n + 1;
10191 return;
10192bail:
10193 dd->qos_shift = 1;
82c2611d 10194 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
77241056
MM
10195}
10196
10197static void init_rxe(struct hfi1_devdata *dd)
10198{
10199 /* enable all receive errors */
10200 write_csr(dd, RCV_ERR_MASK, ~0ull);
10201 /* setup QPN map table - start where VL15 context leaves off */
10202 init_qos(
10203 dd,
10204 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
10205 /*
10206 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
10207 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
10208 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
10209 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
10210 * Max_PayLoad_Size set to its minimum of 128.
10211 *
10212 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
10213 * (64 bytes). Max_Payload_Size is possibly modified upward in
10214 * tune_pcie_caps() which is called after this routine.
10215 */
10216}
10217
10218static void init_other(struct hfi1_devdata *dd)
10219{
10220 /* enable all CCE errors */
10221 write_csr(dd, CCE_ERR_MASK, ~0ull);
10222 /* enable *some* Misc errors */
10223 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
10224 /* enable all DC errors, except LCB */
10225 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
10226 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
10227}
10228
10229/*
10230 * Fill out the given AU table using the given CU. A CU is defined in terms
10231 * AUs. The table is a an encoding: given the index, how many AUs does that
10232 * represent?
10233 *
10234 * NOTE: Assumes that the register layout is the same for the
10235 * local and remote tables.
10236 */
10237static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
10238 u32 csr0to3, u32 csr4to7)
10239{
10240 write_csr(dd, csr0to3,
10241 0ull <<
10242 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
10243 | 1ull <<
10244 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
10245 | 2ull * cu <<
10246 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
10247 | 4ull * cu <<
10248 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
10249 write_csr(dd, csr4to7,
10250 8ull * cu <<
10251 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
10252 | 16ull * cu <<
10253 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
10254 | 32ull * cu <<
10255 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
10256 | 64ull * cu <<
10257 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
10258
10259}
10260
10261static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10262{
10263 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
10264 SEND_CM_LOCAL_AU_TABLE4_TO7);
10265}
10266
10267void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10268{
10269 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
10270 SEND_CM_REMOTE_AU_TABLE4_TO7);
10271}
10272
10273static void init_txe(struct hfi1_devdata *dd)
10274{
10275 int i;
10276
10277 /* enable all PIO, SDMA, general, and Egress errors */
10278 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
10279 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
10280 write_csr(dd, SEND_ERR_MASK, ~0ull);
10281 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
10282
10283 /* enable all per-context and per-SDMA engine errors */
10284 for (i = 0; i < dd->chip_send_contexts; i++)
10285 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
10286 for (i = 0; i < dd->chip_sdma_engines; i++)
10287 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
10288
10289 /* set the local CU to AU mapping */
10290 assign_local_cm_au_table(dd, dd->vcu);
10291
10292 /*
10293 * Set reasonable default for Credit Return Timer
10294 * Don't set on Simulator - causes it to choke.
10295 */
10296 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
10297 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
10298}
10299
10300int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
10301{
10302 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10303 unsigned sctxt;
10304 int ret = 0;
10305 u64 reg;
10306
10307 if (!rcd || !rcd->sc) {
10308 ret = -EINVAL;
10309 goto done;
10310 }
10311 sctxt = rcd->sc->hw_context;
10312 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
10313 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
10314 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
10315 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
10316 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
10317 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
10318 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
10319 /*
10320 * Enable send-side J_KEY integrity check, unless this is A0 h/w
10321 * (due to A0 erratum).
10322 */
995deafa 10323 if (!is_ax(dd)) {
77241056
MM
10324 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10325 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10326 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10327 }
10328
10329 /* Enable J_KEY check on receive context. */
10330 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
10331 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
10332 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
10333 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
10334done:
10335 return ret;
10336}
10337
10338int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
10339{
10340 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10341 unsigned sctxt;
10342 int ret = 0;
10343 u64 reg;
10344
10345 if (!rcd || !rcd->sc) {
10346 ret = -EINVAL;
10347 goto done;
10348 }
10349 sctxt = rcd->sc->hw_context;
10350 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
10351 /*
10352 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
10353 * This check would not have been enabled for A0 h/w, see
10354 * set_ctxt_jkey().
10355 */
995deafa 10356 if (!is_ax(dd)) {
77241056
MM
10357 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10358 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10359 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10360 }
10361 /* Turn off the J_KEY on the receive side */
10362 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
10363done:
10364 return ret;
10365}
10366
10367int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
10368{
10369 struct hfi1_ctxtdata *rcd;
10370 unsigned sctxt;
10371 int ret = 0;
10372 u64 reg;
10373
10374 if (ctxt < dd->num_rcv_contexts)
10375 rcd = dd->rcd[ctxt];
10376 else {
10377 ret = -EINVAL;
10378 goto done;
10379 }
10380 if (!rcd || !rcd->sc) {
10381 ret = -EINVAL;
10382 goto done;
10383 }
10384 sctxt = rcd->sc->hw_context;
10385 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
10386 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
10387 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
10388 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10389 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10390 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10391done:
10392 return ret;
10393}
10394
10395int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
10396{
10397 struct hfi1_ctxtdata *rcd;
10398 unsigned sctxt;
10399 int ret = 0;
10400 u64 reg;
10401
10402 if (ctxt < dd->num_rcv_contexts)
10403 rcd = dd->rcd[ctxt];
10404 else {
10405 ret = -EINVAL;
10406 goto done;
10407 }
10408 if (!rcd || !rcd->sc) {
10409 ret = -EINVAL;
10410 goto done;
10411 }
10412 sctxt = rcd->sc->hw_context;
10413 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10414 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10415 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10416 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
10417done:
10418 return ret;
10419}
10420
10421/*
10422 * Start doing the clean up the the chip. Our clean up happens in multiple
10423 * stages and this is just the first.
10424 */
10425void hfi1_start_cleanup(struct hfi1_devdata *dd)
10426{
10427 free_cntrs(dd);
10428 free_rcverr(dd);
10429 clean_up_interrupts(dd);
10430}
10431
10432#define HFI_BASE_GUID(dev) \
10433 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
10434
10435/*
10436 * Certain chip functions need to be initialized only once per asic
10437 * instead of per-device. This function finds the peer device and
10438 * checks whether that chip initialization needs to be done by this
10439 * device.
10440 */
10441static void asic_should_init(struct hfi1_devdata *dd)
10442{
10443 unsigned long flags;
10444 struct hfi1_devdata *tmp, *peer = NULL;
10445
10446 spin_lock_irqsave(&hfi1_devs_lock, flags);
10447 /* Find our peer device */
10448 list_for_each_entry(tmp, &hfi1_dev_list, list) {
10449 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
10450 dd->unit != tmp->unit) {
10451 peer = tmp;
10452 break;
10453 }
10454 }
10455
10456 /*
10457 * "Claim" the ASIC for initialization if it hasn't been
10458 " "claimed" yet.
10459 */
10460 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
10461 dd->flags |= HFI1_DO_INIT_ASIC;
10462 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
10463}
10464
5d9157aa
DL
10465/*
10466 * Set dd->boardname. Use a generic name if a name is not returned from
10467 * EFI variable space.
10468 *
10469 * Return 0 on success, -ENOMEM if space could not be allocated.
10470 */
10471static int obtain_boardname(struct hfi1_devdata *dd)
10472{
10473 /* generic board description */
10474 const char generic[] =
10475 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
10476 unsigned long size;
10477 int ret;
10478
10479 ret = read_hfi1_efi_var(dd, "description", &size,
10480 (void **)&dd->boardname);
10481 if (ret) {
10482 dd_dev_err(dd, "Board description not found\n");
10483 /* use generic description */
10484 dd->boardname = kstrdup(generic, GFP_KERNEL);
10485 if (!dd->boardname)
10486 return -ENOMEM;
10487 }
10488 return 0;
10489}
10490
77241056 10491/**
7c03ed85 10492 * Allocate and initialize the device structure for the hfi.
77241056
MM
10493 * @dev: the pci_dev for hfi1_ib device
10494 * @ent: pci_device_id struct for this dev
10495 *
10496 * Also allocates, initializes, and returns the devdata struct for this
10497 * device instance
10498 *
10499 * This is global, and is called directly at init to set up the
10500 * chip-specific function pointers for later use.
10501 */
10502struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
10503 const struct pci_device_id *ent)
10504{
10505 struct hfi1_devdata *dd;
10506 struct hfi1_pportdata *ppd;
10507 u64 reg;
10508 int i, ret;
10509 static const char * const inames[] = { /* implementation names */
10510 "RTL silicon",
10511 "RTL VCS simulation",
10512 "RTL FPGA emulation",
10513 "Functional simulator"
10514 };
10515
10516 dd = hfi1_alloc_devdata(pdev,
10517 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
10518 if (IS_ERR(dd))
10519 goto bail;
10520 ppd = dd->pport;
10521 for (i = 0; i < dd->num_pports; i++, ppd++) {
10522 int vl;
10523 /* init common fields */
10524 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
10525 /* DC supports 4 link widths */
10526 ppd->link_width_supported =
10527 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
10528 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
10529 ppd->link_width_downgrade_supported =
10530 ppd->link_width_supported;
10531 /* start out enabling only 4X */
10532 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
10533 ppd->link_width_downgrade_enabled =
10534 ppd->link_width_downgrade_supported;
10535 /* link width active is 0 when link is down */
10536 /* link width downgrade active is 0 when link is down */
10537
10538 if (num_vls < HFI1_MIN_VLS_SUPPORTED
10539 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
10540 hfi1_early_err(&pdev->dev,
10541 "Invalid num_vls %u, using %u VLs\n",
10542 num_vls, HFI1_MAX_VLS_SUPPORTED);
10543 num_vls = HFI1_MAX_VLS_SUPPORTED;
10544 }
10545 ppd->vls_supported = num_vls;
10546 ppd->vls_operational = ppd->vls_supported;
10547 /* Set the default MTU. */
10548 for (vl = 0; vl < num_vls; vl++)
10549 dd->vld[vl].mtu = hfi1_max_mtu;
10550 dd->vld[15].mtu = MAX_MAD_PACKET;
10551 /*
10552 * Set the initial values to reasonable default, will be set
10553 * for real when link is up.
10554 */
10555 ppd->lstate = IB_PORT_DOWN;
10556 ppd->overrun_threshold = 0x4;
10557 ppd->phy_error_threshold = 0xf;
10558 ppd->port_crc_mode_enabled = link_crc_mask;
10559 /* initialize supported LTP CRC mode */
10560 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
10561 /* initialize enabled LTP CRC mode */
10562 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
10563 /* start in offline */
10564 ppd->host_link_state = HLS_DN_OFFLINE;
10565 init_vl_arb_caches(ppd);
10566 }
10567
10568 dd->link_default = HLS_DN_POLL;
10569
10570 /*
10571 * Do remaining PCIe setup and save PCIe values in dd.
10572 * Any error printing is already done by the init code.
10573 * On return, we have the chip mapped.
10574 */
10575 ret = hfi1_pcie_ddinit(dd, pdev, ent);
10576 if (ret < 0)
10577 goto bail_free;
10578
10579 /* verify that reads actually work, save revision for reset check */
10580 dd->revision = read_csr(dd, CCE_REVISION);
10581 if (dd->revision == ~(u64)0) {
10582 dd_dev_err(dd, "cannot read chip CSRs\n");
10583 ret = -EINVAL;
10584 goto bail_cleanup;
10585 }
10586 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
10587 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
10588 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
10589 & CCE_REVISION_CHIP_REV_MINOR_MASK;
10590
10591 /* obtain the hardware ID - NOT related to unit, which is a
10592 software enumeration */
10593 reg = read_csr(dd, CCE_REVISION2);
10594 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
10595 & CCE_REVISION2_HFI_ID_MASK;
10596 /* the variable size will remove unwanted bits */
10597 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
10598 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
10599 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
10600 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
10601 (int)dd->irev);
10602
10603 /* speeds the hardware can support */
10604 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
10605 /* speeds allowed to run at */
10606 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
10607 /* give a reasonable active value, will be set on link up */
10608 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
10609
10610 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
10611 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
10612 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
10613 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
10614 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
10615 /* fix up link widths for emulation _p */
10616 ppd = dd->pport;
10617 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
10618 ppd->link_width_supported =
10619 ppd->link_width_enabled =
10620 ppd->link_width_downgrade_supported =
10621 ppd->link_width_downgrade_enabled =
10622 OPA_LINK_WIDTH_1X;
10623 }
10624 /* insure num_vls isn't larger than number of sdma engines */
10625 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
10626 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
10627 num_vls, HFI1_MAX_VLS_SUPPORTED);
10628 ppd->vls_supported = num_vls = HFI1_MAX_VLS_SUPPORTED;
10629 ppd->vls_operational = ppd->vls_supported;
10630 }
10631
10632 /*
10633 * Convert the ns parameter to the 64 * cclocks used in the CSR.
10634 * Limit the max if larger than the field holds. If timeout is
10635 * non-zero, then the calculated field will be at least 1.
10636 *
10637 * Must be after icode is set up - the cclock rate depends
10638 * on knowing the hardware being used.
10639 */
10640 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
10641 if (dd->rcv_intr_timeout_csr >
10642 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
10643 dd->rcv_intr_timeout_csr =
10644 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
10645 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
10646 dd->rcv_intr_timeout_csr = 1;
10647
7c03ed85
EH
10648 /* needs to be done before we look for the peer device */
10649 read_guid(dd);
10650
10651 /* should this device init the ASIC block? */
10652 asic_should_init(dd);
10653
77241056
MM
10654 /* obtain chip sizes, reset chip CSRs */
10655 init_chip(dd);
10656
10657 /* read in the PCIe link speed information */
10658 ret = pcie_speeds(dd);
10659 if (ret)
10660 goto bail_cleanup;
10661
77241056
MM
10662 /* read in firmware */
10663 ret = hfi1_firmware_init(dd);
10664 if (ret)
10665 goto bail_cleanup;
10666
10667 /*
10668 * In general, the PCIe Gen3 transition must occur after the
10669 * chip has been idled (so it won't initiate any PCIe transactions
10670 * e.g. an interrupt) and before the driver changes any registers
10671 * (the transition will reset the registers).
10672 *
10673 * In particular, place this call after:
10674 * - init_chip() - the chip will not initiate any PCIe transactions
10675 * - pcie_speeds() - reads the current link speed
10676 * - hfi1_firmware_init() - the needed firmware is ready to be
10677 * downloaded
10678 */
10679 ret = do_pcie_gen3_transition(dd);
10680 if (ret)
10681 goto bail_cleanup;
10682
10683 /* start setting dd values and adjusting CSRs */
10684 init_early_variables(dd);
10685
10686 parse_platform_config(dd);
10687
5d9157aa
DL
10688 ret = obtain_boardname(dd);
10689 if (ret)
77241056 10690 goto bail_cleanup;
77241056
MM
10691
10692 snprintf(dd->boardversion, BOARD_VERS_MAX,
5d9157aa 10693 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
77241056 10694 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
77241056
MM
10695 (u32)dd->majrev,
10696 (u32)dd->minrev,
10697 (dd->revision >> CCE_REVISION_SW_SHIFT)
10698 & CCE_REVISION_SW_MASK);
10699
10700 ret = set_up_context_variables(dd);
10701 if (ret)
10702 goto bail_cleanup;
10703
10704 /* set initial RXE CSRs */
10705 init_rxe(dd);
10706 /* set initial TXE CSRs */
10707 init_txe(dd);
10708 /* set initial non-RXE, non-TXE CSRs */
10709 init_other(dd);
10710 /* set up KDETH QP prefix in both RX and TX CSRs */
10711 init_kdeth_qp(dd);
10712
10713 /* send contexts must be set up before receive contexts */
10714 ret = init_send_contexts(dd);
10715 if (ret)
10716 goto bail_cleanup;
10717
10718 ret = hfi1_create_ctxts(dd);
10719 if (ret)
10720 goto bail_cleanup;
10721
10722 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
10723 /*
10724 * rcd[0] is guaranteed to be valid by this point. Also, all
10725 * context are using the same value, as per the module parameter.
10726 */
10727 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
10728
10729 ret = init_pervl_scs(dd);
10730 if (ret)
10731 goto bail_cleanup;
10732
10733 /* sdma init */
10734 for (i = 0; i < dd->num_pports; ++i) {
10735 ret = sdma_init(dd, i);
10736 if (ret)
10737 goto bail_cleanup;
10738 }
10739
10740 /* use contexts created by hfi1_create_ctxts */
10741 ret = set_up_interrupts(dd);
10742 if (ret)
10743 goto bail_cleanup;
10744
10745 /* set up LCB access - must be after set_up_interrupts() */
10746 init_lcb_access(dd);
10747
10748 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
10749 dd->base_guid & 0xFFFFFF);
10750
10751 dd->oui1 = dd->base_guid >> 56 & 0xFF;
10752 dd->oui2 = dd->base_guid >> 48 & 0xFF;
10753 dd->oui3 = dd->base_guid >> 40 & 0xFF;
10754
10755 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
10756 if (ret)
10757 goto bail_clear_intr;
10758 check_fabric_firmware_versions(dd);
10759
10760 thermal_init(dd);
10761
10762 ret = init_cntrs(dd);
10763 if (ret)
10764 goto bail_clear_intr;
10765
10766 ret = init_rcverr(dd);
10767 if (ret)
10768 goto bail_free_cntrs;
10769
10770 ret = eprom_init(dd);
10771 if (ret)
10772 goto bail_free_rcverr;
10773
10774 goto bail;
10775
10776bail_free_rcverr:
10777 free_rcverr(dd);
10778bail_free_cntrs:
10779 free_cntrs(dd);
10780bail_clear_intr:
10781 clean_up_interrupts(dd);
10782bail_cleanup:
10783 hfi1_pcie_ddcleanup(dd);
10784bail_free:
10785 hfi1_free_devdata(dd);
10786 dd = ERR_PTR(ret);
10787bail:
10788 return dd;
10789}
10790
10791static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
10792 u32 dw_len)
10793{
10794 u32 delta_cycles;
10795 u32 current_egress_rate = ppd->current_egress_rate;
10796 /* rates here are in units of 10^6 bits/sec */
10797
10798 if (desired_egress_rate == -1)
10799 return 0; /* shouldn't happen */
10800
10801 if (desired_egress_rate >= current_egress_rate)
10802 return 0; /* we can't help go faster, only slower */
10803
10804 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
10805 egress_cycles(dw_len * 4, current_egress_rate);
10806
10807 return (u16)delta_cycles;
10808}
10809
10810
10811/**
10812 * create_pbc - build a pbc for transmission
10813 * @flags: special case flags or-ed in built pbc
10814 * @srate: static rate
10815 * @vl: vl
10816 * @dwlen: dword length (header words + data words + pbc words)
10817 *
10818 * Create a PBC with the given flags, rate, VL, and length.
10819 *
10820 * NOTE: The PBC created will not insert any HCRC - all callers but one are
10821 * for verbs, which does not use this PSM feature. The lone other caller
10822 * is for the diagnostic interface which calls this if the user does not
10823 * supply their own PBC.
10824 */
10825u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
10826 u32 dw_len)
10827{
10828 u64 pbc, delay = 0;
10829
10830 if (unlikely(srate_mbs))
10831 delay = delay_cycles(ppd, srate_mbs, dw_len);
10832
10833 pbc = flags
10834 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
10835 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
10836 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
10837 | (dw_len & PBC_LENGTH_DWS_MASK)
10838 << PBC_LENGTH_DWS_SHIFT;
10839
10840 return pbc;
10841}
10842
10843#define SBUS_THERMAL 0x4f
10844#define SBUS_THERM_MONITOR_MODE 0x1
10845
10846#define THERM_FAILURE(dev, ret, reason) \
10847 dd_dev_err((dd), \
10848 "Thermal sensor initialization failed: %s (%d)\n", \
10849 (reason), (ret))
10850
10851/*
10852 * Initialize the Avago Thermal sensor.
10853 *
10854 * After initialization, enable polling of thermal sensor through
10855 * SBus interface. In order for this to work, the SBus Master
10856 * firmware has to be loaded due to the fact that the HW polling
10857 * logic uses SBus interrupts, which are not supported with
10858 * default firmware. Otherwise, no data will be returned through
10859 * the ASIC_STS_THERM CSR.
10860 */
10861static int thermal_init(struct hfi1_devdata *dd)
10862{
10863 int ret = 0;
10864
10865 if (dd->icode != ICODE_RTL_SILICON ||
10866 !(dd->flags & HFI1_DO_INIT_ASIC))
10867 return ret;
10868
10869 acquire_hw_mutex(dd);
10870 dd_dev_info(dd, "Initializing thermal sensor\n");
4ef98989
JAQ
10871 /* Disable polling of thermal readings */
10872 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
10873 msleep(100);
77241056
MM
10874 /* Thermal Sensor Initialization */
10875 /* Step 1: Reset the Thermal SBus Receiver */
10876 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10877 RESET_SBUS_RECEIVER, 0);
10878 if (ret) {
10879 THERM_FAILURE(dd, ret, "Bus Reset");
10880 goto done;
10881 }
10882 /* Step 2: Set Reset bit in Thermal block */
10883 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10884 WRITE_SBUS_RECEIVER, 0x1);
10885 if (ret) {
10886 THERM_FAILURE(dd, ret, "Therm Block Reset");
10887 goto done;
10888 }
10889 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
10890 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
10891 WRITE_SBUS_RECEIVER, 0x32);
10892 if (ret) {
10893 THERM_FAILURE(dd, ret, "Write Clock Div");
10894 goto done;
10895 }
10896 /* Step 4: Select temperature mode */
10897 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
10898 WRITE_SBUS_RECEIVER,
10899 SBUS_THERM_MONITOR_MODE);
10900 if (ret) {
10901 THERM_FAILURE(dd, ret, "Write Mode Sel");
10902 goto done;
10903 }
10904 /* Step 5: De-assert block reset and start conversion */
10905 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10906 WRITE_SBUS_RECEIVER, 0x2);
10907 if (ret) {
10908 THERM_FAILURE(dd, ret, "Write Reset Deassert");
10909 goto done;
10910 }
10911 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
10912 msleep(22);
10913
10914 /* Enable polling of thermal readings */
10915 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
10916done:
10917 release_hw_mutex(dd);
10918 return ret;
10919}
10920
10921static void handle_temp_err(struct hfi1_devdata *dd)
10922{
10923 struct hfi1_pportdata *ppd = &dd->pport[0];
10924 /*
10925 * Thermal Critical Interrupt
10926 * Put the device into forced freeze mode, take link down to
10927 * offline, and put DC into reset.
10928 */
10929 dd_dev_emerg(dd,
10930 "Critical temperature reached! Forcing device into freeze mode!\n");
10931 dd->flags |= HFI1_FORCED_FREEZE;
10932 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
10933 /*
10934 * Shut DC down as much and as quickly as possible.
10935 *
10936 * Step 1: Take the link down to OFFLINE. This will cause the
10937 * 8051 to put the Serdes in reset. However, we don't want to
10938 * go through the entire link state machine since we want to
10939 * shutdown ASAP. Furthermore, this is not a graceful shutdown
10940 * but rather an attempt to save the chip.
10941 * Code below is almost the same as quiet_serdes() but avoids
10942 * all the extra work and the sleeps.
10943 */
10944 ppd->driver_link_ready = 0;
10945 ppd->link_enabled = 0;
10946 set_physical_link_state(dd, PLS_OFFLINE |
10947 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
10948 /*
10949 * Step 2: Shutdown LCB and 8051
10950 * After shutdown, do not restore DC_CFG_RESET value.
10951 */
10952 dc_shutdown(dd);
10953}