]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/staging/rdma/hfi1/chip.c
staging/rdma/hfi1: Properly determine error status of SDMA slots
[mirror_ubuntu-jammy-kernel.git] / drivers / staging / rdma / hfi1 / chip.c
CommitLineData
77241056
MM
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
5d9157aa 66#include "efivar.h"
8ebd4cf1 67#include "platform.h"
affa48de 68#include "aspm.h"
77241056
MM
69
70#define NUM_IB_PORTS 1
71
72uint kdeth_qp;
73module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75
76uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77module_param(num_vls, uint, S_IRUGO);
78MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79
80/*
81 * Default time to aggregate two 10K packets from the idle state
82 * (timer not running). The timer starts at the end of the first packet,
83 * so only the time for one 10K packet and header plus a bit extra is needed.
84 * 10 * 1024 + 64 header byte = 10304 byte
85 * 10304 byte / 12.5 GB/s = 824.32ns
86 */
87uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88module_param(rcv_intr_timeout, uint, S_IRUGO);
89MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90
91uint rcv_intr_count = 16; /* same as qib */
92module_param(rcv_intr_count, uint, S_IRUGO);
93MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94
95ushort link_crc_mask = SUPPORTED_CRCS;
96module_param(link_crc_mask, ushort, S_IRUGO);
97MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98
99uint loopback;
100module_param_named(loopback, loopback, uint, S_IRUGO);
101MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102
103/* Other driver tunables */
104uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105static ushort crc_14b_sideband = 1;
106static uint use_flr = 1;
107uint quick_linkup; /* skip LNI */
108
109struct flag_table {
110 u64 flag; /* the flag */
111 char *str; /* description string */
112 u16 extra; /* extra information */
113 u16 unused0;
114 u32 unused1;
115};
116
117/* str must be a string constant */
118#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119#define FLAG_ENTRY0(str, flag) {flag, str, 0}
120
121/* Send Error Consequences */
122#define SEC_WRITE_DROPPED 0x1
123#define SEC_PACKET_DROPPED 0x2
124#define SEC_SC_HALTED 0x4 /* per-context only */
125#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
126
77241056 127#define MIN_KERNEL_KCTXTS 2
82c2611d 128#define FIRST_KERNEL_KCTXT 1
77241056
MM
129#define NUM_MAP_REGS 32
130
131/* Bit offset into the GUID which carries HFI id information */
132#define GUID_HFI_INDEX_SHIFT 39
133
134/* extract the emulation revision */
135#define emulator_rev(dd) ((dd)->irev >> 8)
136/* parallel and serial emulation versions are 3 and 4 respectively */
137#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
138#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
139
140/* RSM fields */
141
142/* packet type */
143#define IB_PACKET_TYPE 2ull
144#define QW_SHIFT 6ull
145/* QPN[7..1] */
146#define QPN_WIDTH 7ull
147
148/* LRH.BTH: QW 0, OFFSET 48 - for match */
149#define LRH_BTH_QW 0ull
150#define LRH_BTH_BIT_OFFSET 48ull
151#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
152#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
153#define LRH_BTH_SELECT
154#define LRH_BTH_MASK 3ull
155#define LRH_BTH_VALUE 2ull
156
157/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
158#define LRH_SC_QW 0ull
159#define LRH_SC_BIT_OFFSET 56ull
160#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
161#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
162#define LRH_SC_MASK 128ull
163#define LRH_SC_VALUE 0ull
164
165/* SC[n..0] QW 0, OFFSET 60 - for select */
166#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
167
168/* QPN[m+n:1] QW 1, OFFSET 1 */
169#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
170
171/* defines to build power on SC2VL table */
172#define SC2VL_VAL( \
173 num, \
174 sc0, sc0val, \
175 sc1, sc1val, \
176 sc2, sc2val, \
177 sc3, sc3val, \
178 sc4, sc4val, \
179 sc5, sc5val, \
180 sc6, sc6val, \
181 sc7, sc7val) \
182( \
183 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
184 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
185 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
186 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
187 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
188 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
189 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
190 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
191)
192
193#define DC_SC_VL_VAL( \
194 range, \
195 e0, e0val, \
196 e1, e1val, \
197 e2, e2val, \
198 e3, e3val, \
199 e4, e4val, \
200 e5, e5val, \
201 e6, e6val, \
202 e7, e7val, \
203 e8, e8val, \
204 e9, e9val, \
205 e10, e10val, \
206 e11, e11val, \
207 e12, e12val, \
208 e13, e13val, \
209 e14, e14val, \
210 e15, e15val) \
211( \
212 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
213 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
214 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
215 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
216 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
217 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
218 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
219 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
220 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
221 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
222 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
223 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
224 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
225 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
226 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
227 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
228)
229
230/* all CceStatus sub-block freeze bits */
231#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
232 | CCE_STATUS_RXE_FROZE_SMASK \
233 | CCE_STATUS_TXE_FROZE_SMASK \
234 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
235/* all CceStatus sub-block TXE pause bits */
236#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
237 | CCE_STATUS_TXE_PAUSED_SMASK \
238 | CCE_STATUS_SDMA_PAUSED_SMASK)
239/* all CceStatus sub-block RXE pause bits */
240#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
241
242/*
243 * CCE Error flags.
244 */
245static struct flag_table cce_err_status_flags[] = {
246/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
247 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
248/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
249 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
250/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
251 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
252/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
253 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
254/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
255 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
256/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
257 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
258/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
259 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
260/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
261 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
262/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
263 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
264/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
265 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
266/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
267 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
268/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
270/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
272/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
273 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
274/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
275 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
276/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
277 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
278/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
279 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
280/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
281 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
282/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
283 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
284/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
285 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
286/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
287 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
288/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
289 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
290/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
291 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
292/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
293 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
294/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
295 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
296/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
297 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
298/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
299 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
300/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
301 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
302/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
303 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
304/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
305 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
306/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
307 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
308/*31*/ FLAG_ENTRY0("LATriggered",
309 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
310/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
311 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
312/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
313 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
314/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
315 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
316/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
317 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
318/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
319 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
320/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
321 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
322/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
323 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
324/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
325 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
326/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
327 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
328/*41-63 reserved*/
329};
330
331/*
332 * Misc Error flags
333 */
334#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
335static struct flag_table misc_err_status_flags[] = {
336/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
337/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
338/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
339/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
340/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
341/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
342/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
343/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
344/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
345/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
346/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
347/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
348/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
349};
350
351/*
352 * TXE PIO Error flags and consequences
353 */
354static struct flag_table pio_err_status_flags[] = {
355/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
356 SEC_WRITE_DROPPED,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
358/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
361/* 2*/ FLAG_ENTRY("PioCsrParity",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
364/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
367/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
370/* 5*/ FLAG_ENTRY("PioPccFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
373/* 6*/ FLAG_ENTRY("PioPecFifoParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
376/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
379/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
382/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
385/*10*/ FLAG_ENTRY("PioSmPktResetParity",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
388/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
391/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
394/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
397/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
398 0,
399 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
400/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
403/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
406/*17*/ FLAG_ENTRY("PioInitSmIn",
407 0,
408 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
409/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
412/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
415/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
416 0,
417 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
418/*21*/ FLAG_ENTRY("PioWriteDataParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
421/*22*/ FLAG_ENTRY("PioStateMachine",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
424/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
425 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
427/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
428 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
430/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
433/*26*/ FLAG_ENTRY("PioVlfSopParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
436/*27*/ FLAG_ENTRY("PioVlFifoParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
439/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
442/*29*/ FLAG_ENTRY("PioPpmcSopLen",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
445/*30-31 reserved*/
446/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
449/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
452/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
455/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
456 SEC_SPC_FREEZE,
457 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
458/*36-63 reserved*/
459};
460
461/* TXE PIO errors that cause an SPC freeze */
462#define ALL_PIO_FREEZE_ERR \
463 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
490 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
491 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
492
493/*
494 * TXE SDMA Error flags
495 */
496static struct flag_table sdma_err_status_flags[] = {
497/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
498 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
499/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
500 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
501/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
502 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
503/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
504 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
505/*04-63 reserved*/
506};
507
508/* TXE SDMA errors that cause an SPC freeze */
509#define ALL_SDMA_FREEZE_ERR \
510 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
511 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
512 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
513
69a00b8e
MM
514/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
515#define PORT_DISCARD_EGRESS_ERRS \
516 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
517 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
518 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
519
77241056
MM
520/*
521 * TXE Egress Error flags
522 */
523#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
524static struct flag_table egress_err_status_flags[] = {
525/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
526/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
527/* 2 reserved */
528/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
529 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
530/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
531/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
532/* 6 reserved */
533/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
534 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
535/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
536 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
537/* 9-10 reserved */
538/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
539 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
540/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
541/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
542/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
543/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
544/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
545 SEES(TX_SDMA0_DISALLOWED_PACKET)),
546/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
547 SEES(TX_SDMA1_DISALLOWED_PACKET)),
548/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
549 SEES(TX_SDMA2_DISALLOWED_PACKET)),
550/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
551 SEES(TX_SDMA3_DISALLOWED_PACKET)),
552/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
553 SEES(TX_SDMA4_DISALLOWED_PACKET)),
554/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
555 SEES(TX_SDMA5_DISALLOWED_PACKET)),
556/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
557 SEES(TX_SDMA6_DISALLOWED_PACKET)),
558/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
559 SEES(TX_SDMA7_DISALLOWED_PACKET)),
560/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
561 SEES(TX_SDMA8_DISALLOWED_PACKET)),
562/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
563 SEES(TX_SDMA9_DISALLOWED_PACKET)),
564/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
565 SEES(TX_SDMA10_DISALLOWED_PACKET)),
566/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
567 SEES(TX_SDMA11_DISALLOWED_PACKET)),
568/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
569 SEES(TX_SDMA12_DISALLOWED_PACKET)),
570/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
571 SEES(TX_SDMA13_DISALLOWED_PACKET)),
572/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
573 SEES(TX_SDMA14_DISALLOWED_PACKET)),
574/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
575 SEES(TX_SDMA15_DISALLOWED_PACKET)),
576/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
577 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
578/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
579 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
580/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
582/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
584/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
586/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
587 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
588/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
589 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
590/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
591 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
592/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
593 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
594/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
595/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
596/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
597/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
598/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
599/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
600/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
601/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
602/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
603/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
604/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
605/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
606/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
607/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
608/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
609/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
610/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
611/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
612/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
613/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
614/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
615/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
616 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
617/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
618 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
619};
620
621/*
622 * TXE Egress Error Info flags
623 */
624#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
625static struct flag_table egress_err_info_flags[] = {
626/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
627/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
628/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
629/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
630/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
631/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
632/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
633/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
634/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
635/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
636/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
637/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
638/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
639/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
640/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
641/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
642/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
643/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
644/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
645/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
646/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
647/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
648};
649
650/* TXE Egress errors that cause an SPC freeze */
651#define ALL_TXE_EGRESS_FREEZE_ERR \
652 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
653 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
654 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
655 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
656 | SEES(TX_LAUNCH_CSR_PARITY) \
657 | SEES(TX_SBRD_CTL_CSR_PARITY) \
658 | SEES(TX_CONFIG_PARITY) \
659 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
660 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
661 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
662 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
663 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
665 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
666 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
667 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
668 | SEES(TX_CREDIT_RETURN_PARITY))
669
670/*
671 * TXE Send error flags
672 */
673#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
674static struct flag_table send_err_status_flags[] = {
2c5b521a 675/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
77241056
MM
676/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
677/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
678};
679
680/*
681 * TXE Send Context Error flags and consequences
682 */
683static struct flag_table sc_err_status_flags[] = {
684/* 0*/ FLAG_ENTRY("InconsistentSop",
685 SEC_PACKET_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
687/* 1*/ FLAG_ENTRY("DisallowedPacket",
688 SEC_PACKET_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
690/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
691 SEC_WRITE_DROPPED | SEC_SC_HALTED,
692 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
693/* 3*/ FLAG_ENTRY("WriteOverflow",
694 SEC_WRITE_DROPPED | SEC_SC_HALTED,
695 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
696/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
697 SEC_WRITE_DROPPED | SEC_SC_HALTED,
698 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
699/* 5-63 reserved*/
700};
701
702/*
703 * RXE Receive Error flags
704 */
705#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
706static struct flag_table rxe_err_status_flags[] = {
707/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
708/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
709/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
710/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
711/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
712/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
713/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
714/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
715/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
716/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
717/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
718/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
719/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
720/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
721/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
722/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
723/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
724 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
725/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
726/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
727/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
728 RXES(RBUF_BLOCK_LIST_READ_UNC)),
729/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
730 RXES(RBUF_BLOCK_LIST_READ_COR)),
731/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
732 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
733/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
734 RXES(RBUF_CSR_QENT_CNT_PARITY)),
735/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
736 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
737/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
738 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
739/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
740/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
741/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
742 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
743/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
744/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
745/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
746/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
747/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
748/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
749/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
750/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
751 RXES(RBUF_FL_INITDONE_PARITY)),
752/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
753 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
754/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
755/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
756/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
757/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
758 RXES(LOOKUP_DES_PART1_UNC_COR)),
759/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
760 RXES(LOOKUP_DES_PART2_PARITY)),
761/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
762/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
763/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
764/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
765/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
766/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
767/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
768/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
769/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
770/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
771/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
772/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
773/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
774/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
775/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
776/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
777/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
778/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
779/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
780/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
781/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
782/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
783};
784
785/* RXE errors that will trigger an SPC freeze */
786#define ALL_RXE_FREEZE_ERR \
787 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
831
832#define RXE_FREEZE_ABORT_MASK \
833 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
834 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
835 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
836
837/*
838 * DCC Error Flags
839 */
840#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
841static struct flag_table dcc_err_flags[] = {
842 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
843 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
844 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
845 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
846 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
847 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
848 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
849 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
850 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
851 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
852 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
853 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
854 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
855 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
856 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
857 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
858 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
859 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
860 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
861 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
862 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
863 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
864 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
865 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
866 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
867 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
868 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
869 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
870 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
871 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
872 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
873 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
874 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
875 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
876 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
877 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
878 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
879 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
880 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
881 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
882 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
883 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
884 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
885 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
886 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
887 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
888};
889
890/*
891 * LCB error flags
892 */
893#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
894static struct flag_table lcb_err_flags[] = {
895/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
896/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
897/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
898/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
899 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
900/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
901/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
902/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
903/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
904/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
905/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
906/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
907/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
908/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
909/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
910 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
911/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
912/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
913/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
914/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
915/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
916/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
917 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
918/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
919/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
920/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
921/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
922/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
923/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
924/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
925 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
926/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
927/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
928 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
929/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
930 LCBE(REDUNDANT_FLIT_PARITY_ERR))
931};
932
933/*
934 * DC8051 Error Flags
935 */
936#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
937static struct flag_table dc8051_err_flags[] = {
938 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
939 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
940 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
941 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
942 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
943 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
944 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
945 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
946 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
947 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
948 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
949};
950
951/*
952 * DC8051 Information Error flags
953 *
954 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
955 */
956static struct flag_table dc8051_info_err_flags[] = {
957 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
958 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
959 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
960 FLAG_ENTRY0("Serdes internal loopback failure",
961 FAILED_SERDES_INTERNAL_LOOPBACK),
962 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
963 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
964 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
965 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
966 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
967 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
968 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
969 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
970};
971
972/*
973 * DC8051 Information Host Information flags
974 *
975 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
976 */
977static struct flag_table dc8051_info_host_msg_flags[] = {
978 FLAG_ENTRY0("Host request done", 0x0001),
979 FLAG_ENTRY0("BC SMA message", 0x0002),
980 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
981 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
982 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
983 FLAG_ENTRY0("External device config request", 0x0020),
984 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
985 FLAG_ENTRY0("LinkUp achieved", 0x0080),
986 FLAG_ENTRY0("Link going down", 0x0100),
987};
988
989
990static u32 encoded_size(u32 size);
991static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
992static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
993static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
994 u8 *continuous);
995static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
996 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
997static void read_vc_remote_link_width(struct hfi1_devdata *dd,
998 u8 *remote_tx_rate, u16 *link_widths);
999static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1000 u8 *flag_bits, u16 *link_widths);
1001static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1002 u8 *device_rev);
1003static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1004static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1005static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1006 u8 *tx_polarity_inversion,
1007 u8 *rx_polarity_inversion, u8 *max_rate);
1008static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1009 unsigned int context, u64 err_status);
1010static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1011static void handle_dcc_err(struct hfi1_devdata *dd,
1012 unsigned int context, u64 err_status);
1013static void handle_lcb_err(struct hfi1_devdata *dd,
1014 unsigned int context, u64 err_status);
1015static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1016static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1017static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1018static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1019static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023static void set_partition_keys(struct hfi1_pportdata *);
1024static const char *link_state_name(u32 state);
1025static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1026 u32 state);
1027static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1028 u64 *out_data);
1029static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1030static int thermal_init(struct hfi1_devdata *dd);
1031
1032static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1033 int msecs);
1034static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1035static void handle_temp_err(struct hfi1_devdata *);
1036static void dc_shutdown(struct hfi1_devdata *);
1037static void dc_start(struct hfi1_devdata *);
1038
1039/*
1040 * Error interrupt table entry. This is used as input to the interrupt
1041 * "clear down" routine used for all second tier error interrupt register.
1042 * Second tier interrupt registers have a single bit representing them
1043 * in the top-level CceIntStatus.
1044 */
1045struct err_reg_info {
1046 u32 status; /* status CSR offset */
1047 u32 clear; /* clear CSR offset */
1048 u32 mask; /* mask CSR offset */
1049 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1050 const char *desc;
1051};
1052
1053#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1054#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1055#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1056
1057/*
1058 * Helpers for building HFI and DC error interrupt table entries. Different
1059 * helpers are needed because of inconsistent register names.
1060 */
1061#define EE(reg, handler, desc) \
1062 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1063 handler, desc }
1064#define DC_EE1(reg, handler, desc) \
1065 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1066#define DC_EE2(reg, handler, desc) \
1067 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1068
1069/*
1070 * Table of the "misc" grouping of error interrupts. Each entry refers to
1071 * another register containing more information.
1072 */
1073static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1074/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1075/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1076/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1077/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1078/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1079/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1080/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1081/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1082 /* the rest are reserved */
1083};
1084
1085/*
1086 * Index into the Various section of the interrupt sources
1087 * corresponding to the Critical Temperature interrupt.
1088 */
1089#define TCRIT_INT_SOURCE 4
1090
1091/*
1092 * SDMA error interrupt entry - refers to another register containing more
1093 * information.
1094 */
1095static const struct err_reg_info sdma_eng_err =
1096 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1097
1098static const struct err_reg_info various_err[NUM_VARIOUS] = {
1099/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1100/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1101/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1102/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1103/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1104 /* rest are reserved */
1105};
1106
1107/*
1108 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1109 * register can not be derived from the MTU value because 10K is not
1110 * a power of 2. Therefore, we need a constant. Everything else can
1111 * be calculated.
1112 */
1113#define DCC_CFG_PORT_MTU_CAP_10240 7
1114
1115/*
1116 * Table of the DC grouping of error interrupts. Each entry refers to
1117 * another register containing more information.
1118 */
1119static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1120/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1121/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1122/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1123/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1124 /* the rest are reserved */
1125};
1126
1127struct cntr_entry {
1128 /*
1129 * counter name
1130 */
1131 char *name;
1132
1133 /*
1134 * csr to read for name (if applicable)
1135 */
1136 u64 csr;
1137
1138 /*
1139 * offset into dd or ppd to store the counter's value
1140 */
1141 int offset;
1142
1143 /*
1144 * flags
1145 */
1146 u8 flags;
1147
1148 /*
1149 * accessor for stat element, context either dd or ppd
1150 */
1151 u64 (*rw_cntr)(const struct cntr_entry *,
1152 void *context,
1153 int vl,
1154 int mode,
1155 u64 data);
1156};
1157
1158#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1159#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1160
1161#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1162{ \
1163 name, \
1164 csr, \
1165 offset, \
1166 flags, \
1167 accessor \
1168}
1169
1170/* 32bit RXE */
1171#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1172CNTR_ELEM(#name, \
1173 (counter * 8 + RCV_COUNTER_ARRAY32), \
1174 0, flags | CNTR_32BIT, \
1175 port_access_u32_csr)
1176
1177#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1178CNTR_ELEM(#name, \
1179 (counter * 8 + RCV_COUNTER_ARRAY32), \
1180 0, flags | CNTR_32BIT, \
1181 dev_access_u32_csr)
1182
1183/* 64bit RXE */
1184#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1185CNTR_ELEM(#name, \
1186 (counter * 8 + RCV_COUNTER_ARRAY64), \
1187 0, flags, \
1188 port_access_u64_csr)
1189
1190#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1191CNTR_ELEM(#name, \
1192 (counter * 8 + RCV_COUNTER_ARRAY64), \
1193 0, flags, \
1194 dev_access_u64_csr)
1195
1196#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1197#define OVR_ELM(ctx) \
1198CNTR_ELEM("RcvHdrOvr" #ctx, \
1199 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1200 0, CNTR_NORMAL, port_access_u64_csr)
1201
1202/* 32bit TXE */
1203#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1204CNTR_ELEM(#name, \
1205 (counter * 8 + SEND_COUNTER_ARRAY32), \
1206 0, flags | CNTR_32BIT, \
1207 port_access_u32_csr)
1208
1209/* 64bit TXE */
1210#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1211CNTR_ELEM(#name, \
1212 (counter * 8 + SEND_COUNTER_ARRAY64), \
1213 0, flags, \
1214 port_access_u64_csr)
1215
1216# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1217CNTR_ELEM(#name,\
1218 counter * 8 + SEND_COUNTER_ARRAY64, \
1219 0, \
1220 flags, \
1221 dev_access_u64_csr)
1222
1223/* CCE */
1224#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1225CNTR_ELEM(#name, \
1226 (counter * 8 + CCE_COUNTER_ARRAY32), \
1227 0, flags | CNTR_32BIT, \
1228 dev_access_u32_csr)
1229
1230#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1231CNTR_ELEM(#name, \
1232 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1233 0, flags | CNTR_32BIT, \
1234 dev_access_u32_csr)
1235
1236/* DC */
1237#define DC_PERF_CNTR(name, counter, flags) \
1238CNTR_ELEM(#name, \
1239 counter, \
1240 0, \
1241 flags, \
1242 dev_access_u64_csr)
1243
1244#define DC_PERF_CNTR_LCB(name, counter, flags) \
1245CNTR_ELEM(#name, \
1246 counter, \
1247 0, \
1248 flags, \
1249 dc_access_lcb_cntr)
1250
1251/* ibp counters */
1252#define SW_IBP_CNTR(name, cntr) \
1253CNTR_ELEM(#name, \
1254 0, \
1255 0, \
1256 CNTR_SYNTH, \
1257 access_ibp_##cntr)
1258
1259u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1260{
1261 u64 val;
1262
1263 if (dd->flags & HFI1_PRESENT) {
1264 val = readq((void __iomem *)dd->kregbase + offset);
1265 return val;
1266 }
1267 return -1;
1268}
1269
1270void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1271{
1272 if (dd->flags & HFI1_PRESENT)
1273 writeq(value, (void __iomem *)dd->kregbase + offset);
1274}
1275
1276void __iomem *get_csr_addr(
1277 struct hfi1_devdata *dd,
1278 u32 offset)
1279{
1280 return (void __iomem *)dd->kregbase + offset;
1281}
1282
1283static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1284 int mode, u64 value)
1285{
1286 u64 ret;
1287
1288
1289 if (mode == CNTR_MODE_R) {
1290 ret = read_csr(dd, csr);
1291 } else if (mode == CNTR_MODE_W) {
1292 write_csr(dd, csr, value);
1293 ret = value;
1294 } else {
1295 dd_dev_err(dd, "Invalid cntr register access mode");
1296 return 0;
1297 }
1298
1299 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1300 return ret;
1301}
1302
1303/* Dev Access */
1304static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1305 void *context, int vl, int mode, u64 data)
1306{
a787bde8 1307 struct hfi1_devdata *dd = context;
a699c6c2 1308 u64 csr = entry->csr;
77241056 1309
a699c6c2
VM
1310 if (entry->flags & CNTR_SDMA) {
1311 if (vl == CNTR_INVALID_VL)
1312 return 0;
1313 csr += 0x100 * vl;
1314 } else {
1315 if (vl != CNTR_INVALID_VL)
1316 return 0;
1317 }
1318 return read_write_csr(dd, csr, mode, data);
1319}
1320
1321static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1322 void *context, int idx, int mode, u64 data)
1323{
1324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1325
1326 if (dd->per_sdma && idx < dd->num_sdma)
1327 return dd->per_sdma[idx].err_cnt;
1328 return 0;
1329}
1330
1331static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1332 void *context, int idx, int mode, u64 data)
1333{
1334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1335
1336 if (dd->per_sdma && idx < dd->num_sdma)
1337 return dd->per_sdma[idx].sdma_int_cnt;
1338 return 0;
1339}
1340
1341static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1342 void *context, int idx, int mode, u64 data)
1343{
1344 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1345
1346 if (dd->per_sdma && idx < dd->num_sdma)
1347 return dd->per_sdma[idx].idle_int_cnt;
1348 return 0;
1349}
1350
1351static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1352 void *context, int idx, int mode,
1353 u64 data)
1354{
1355 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1356
1357 if (dd->per_sdma && idx < dd->num_sdma)
1358 return dd->per_sdma[idx].progress_int_cnt;
1359 return 0;
77241056
MM
1360}
1361
1362static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1363 int vl, int mode, u64 data)
1364{
a787bde8 1365 struct hfi1_devdata *dd = context;
77241056
MM
1366
1367 u64 val = 0;
1368 u64 csr = entry->csr;
1369
1370 if (entry->flags & CNTR_VL) {
1371 if (vl == CNTR_INVALID_VL)
1372 return 0;
1373 csr += 8 * vl;
1374 } else {
1375 if (vl != CNTR_INVALID_VL)
1376 return 0;
1377 }
1378
1379 val = read_write_csr(dd, csr, mode, data);
1380 return val;
1381}
1382
1383static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1384 int vl, int mode, u64 data)
1385{
a787bde8 1386 struct hfi1_devdata *dd = context;
77241056
MM
1387 u32 csr = entry->csr;
1388 int ret = 0;
1389
1390 if (vl != CNTR_INVALID_VL)
1391 return 0;
1392 if (mode == CNTR_MODE_R)
1393 ret = read_lcb_csr(dd, csr, &data);
1394 else if (mode == CNTR_MODE_W)
1395 ret = write_lcb_csr(dd, csr, data);
1396
1397 if (ret) {
1398 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1399 return 0;
1400 }
1401
1402 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1403 return data;
1404}
1405
1406/* Port Access */
1407static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1408 int vl, int mode, u64 data)
1409{
a787bde8 1410 struct hfi1_pportdata *ppd = context;
77241056
MM
1411
1412 if (vl != CNTR_INVALID_VL)
1413 return 0;
1414 return read_write_csr(ppd->dd, entry->csr, mode, data);
1415}
1416
1417static u64 port_access_u64_csr(const struct cntr_entry *entry,
1418 void *context, int vl, int mode, u64 data)
1419{
a787bde8 1420 struct hfi1_pportdata *ppd = context;
77241056
MM
1421 u64 val;
1422 u64 csr = entry->csr;
1423
1424 if (entry->flags & CNTR_VL) {
1425 if (vl == CNTR_INVALID_VL)
1426 return 0;
1427 csr += 8 * vl;
1428 } else {
1429 if (vl != CNTR_INVALID_VL)
1430 return 0;
1431 }
1432 val = read_write_csr(ppd->dd, csr, mode, data);
1433 return val;
1434}
1435
1436/* Software defined */
1437static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1438 u64 data)
1439{
1440 u64 ret;
1441
1442 if (mode == CNTR_MODE_R) {
1443 ret = *cntr;
1444 } else if (mode == CNTR_MODE_W) {
1445 *cntr = data;
1446 ret = data;
1447 } else {
1448 dd_dev_err(dd, "Invalid cntr sw access mode");
1449 return 0;
1450 }
1451
1452 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1453
1454 return ret;
1455}
1456
1457static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1458 int vl, int mode, u64 data)
1459{
a787bde8 1460 struct hfi1_pportdata *ppd = context;
77241056
MM
1461
1462 if (vl != CNTR_INVALID_VL)
1463 return 0;
1464 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1465}
1466
1467static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1468 int vl, int mode, u64 data)
1469{
a787bde8 1470 struct hfi1_pportdata *ppd = context;
77241056
MM
1471
1472 if (vl != CNTR_INVALID_VL)
1473 return 0;
1474 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1475}
1476
6d014530
DL
1477static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1478 void *context, int vl, int mode,
1479 u64 data)
1480{
1481 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1482
1483 if (vl != CNTR_INVALID_VL)
1484 return 0;
1485 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1486}
1487
77241056
MM
1488static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1489 void *context, int vl, int mode, u64 data)
1490{
69a00b8e
MM
1491 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1492 u64 zero = 0;
1493 u64 *counter;
77241056 1494
69a00b8e
MM
1495 if (vl == CNTR_INVALID_VL)
1496 counter = &ppd->port_xmit_discards;
1497 else if (vl >= 0 && vl < C_VL_COUNT)
1498 counter = &ppd->port_xmit_discards_vl[vl];
1499 else
1500 counter = &zero;
77241056 1501
69a00b8e 1502 return read_write_sw(ppd->dd, counter, mode, data);
77241056
MM
1503}
1504
1505static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1506 void *context, int vl, int mode, u64 data)
1507{
a787bde8 1508 struct hfi1_pportdata *ppd = context;
77241056
MM
1509
1510 if (vl != CNTR_INVALID_VL)
1511 return 0;
1512
1513 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1514 mode, data);
1515}
1516
1517static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1518 void *context, int vl, int mode, u64 data)
1519{
a787bde8 1520 struct hfi1_pportdata *ppd = context;
77241056
MM
1521
1522 if (vl != CNTR_INVALID_VL)
1523 return 0;
1524
1525 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1526 mode, data);
1527}
1528
1529u64 get_all_cpu_total(u64 __percpu *cntr)
1530{
1531 int cpu;
1532 u64 counter = 0;
1533
1534 for_each_possible_cpu(cpu)
1535 counter += *per_cpu_ptr(cntr, cpu);
1536 return counter;
1537}
1538
1539static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1540 u64 __percpu *cntr,
1541 int vl, int mode, u64 data)
1542{
1543
1544 u64 ret = 0;
1545
1546 if (vl != CNTR_INVALID_VL)
1547 return 0;
1548
1549 if (mode == CNTR_MODE_R) {
1550 ret = get_all_cpu_total(cntr) - *z_val;
1551 } else if (mode == CNTR_MODE_W) {
1552 /* A write can only zero the counter */
1553 if (data == 0)
1554 *z_val = get_all_cpu_total(cntr);
1555 else
1556 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1557 } else {
1558 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1559 return 0;
1560 }
1561
1562 return ret;
1563}
1564
1565static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1566 void *context, int vl, int mode, u64 data)
1567{
a787bde8 1568 struct hfi1_devdata *dd = context;
77241056
MM
1569
1570 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1571 mode, data);
1572}
1573
1574static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1575 void *context, int vl, int mode, u64 data)
1576{
a787bde8 1577 struct hfi1_devdata *dd = context;
77241056
MM
1578
1579 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1580 mode, data);
1581}
1582
1583static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1584 void *context, int vl, int mode, u64 data)
1585{
a787bde8 1586 struct hfi1_devdata *dd = context;
77241056
MM
1587
1588 return dd->verbs_dev.n_piowait;
1589}
1590
1591static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1592 void *context, int vl, int mode, u64 data)
1593{
a787bde8 1594 struct hfi1_devdata *dd = context;
77241056
MM
1595
1596 return dd->verbs_dev.n_txwait;
1597}
1598
1599static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1600 void *context, int vl, int mode, u64 data)
1601{
a787bde8 1602 struct hfi1_devdata *dd = context;
77241056
MM
1603
1604 return dd->verbs_dev.n_kmem_wait;
1605}
1606
b421922e
DL
1607static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1608 void *context, int vl, int mode, u64 data)
1609{
1610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1611
89abfc8d
VM
1612 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1613 mode, data);
b421922e
DL
1614}
1615
2c5b521a
JR
1616/* Software counters for the error status bits within MISC_ERR_STATUS */
1617static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1618 void *context, int vl, int mode,
1619 u64 data)
1620{
1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622
1623 return dd->misc_err_status_cnt[12];
1624}
1625
1626static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1627 void *context, int vl, int mode,
1628 u64 data)
1629{
1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632 return dd->misc_err_status_cnt[11];
1633}
1634
1635static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1636 void *context, int vl, int mode,
1637 u64 data)
1638{
1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641 return dd->misc_err_status_cnt[10];
1642}
1643
1644static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1645 void *context, int vl,
1646 int mode, u64 data)
1647{
1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650 return dd->misc_err_status_cnt[9];
1651}
1652
1653static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1654 void *context, int vl, int mode,
1655 u64 data)
1656{
1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659 return dd->misc_err_status_cnt[8];
1660}
1661
1662static u64 access_misc_efuse_read_bad_addr_err_cnt(
1663 const struct cntr_entry *entry,
1664 void *context, int vl, int mode, u64 data)
1665{
1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668 return dd->misc_err_status_cnt[7];
1669}
1670
1671static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1672 void *context, int vl,
1673 int mode, u64 data)
1674{
1675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677 return dd->misc_err_status_cnt[6];
1678}
1679
1680static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1681 void *context, int vl, int mode,
1682 u64 data)
1683{
1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686 return dd->misc_err_status_cnt[5];
1687}
1688
1689static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1690 void *context, int vl, int mode,
1691 u64 data)
1692{
1693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695 return dd->misc_err_status_cnt[4];
1696}
1697
1698static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1699 void *context, int vl,
1700 int mode, u64 data)
1701{
1702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704 return dd->misc_err_status_cnt[3];
1705}
1706
1707static u64 access_misc_csr_write_bad_addr_err_cnt(
1708 const struct cntr_entry *entry,
1709 void *context, int vl, int mode, u64 data)
1710{
1711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713 return dd->misc_err_status_cnt[2];
1714}
1715
1716static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1717 void *context, int vl,
1718 int mode, u64 data)
1719{
1720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722 return dd->misc_err_status_cnt[1];
1723}
1724
1725static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1726 void *context, int vl, int mode,
1727 u64 data)
1728{
1729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731 return dd->misc_err_status_cnt[0];
1732}
1733
1734/*
1735 * Software counter for the aggregate of
1736 * individual CceErrStatus counters
1737 */
1738static u64 access_sw_cce_err_status_aggregated_cnt(
1739 const struct cntr_entry *entry,
1740 void *context, int vl, int mode, u64 data)
1741{
1742 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1743
1744 return dd->sw_cce_err_status_aggregate;
1745}
1746
1747/*
1748 * Software counters corresponding to each of the
1749 * error status bits within CceErrStatus
1750 */
1751static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1752 void *context, int vl, int mode,
1753 u64 data)
1754{
1755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1756
1757 return dd->cce_err_status_cnt[40];
1758}
1759
1760static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1761 void *context, int vl, int mode,
1762 u64 data)
1763{
1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766 return dd->cce_err_status_cnt[39];
1767}
1768
1769static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1770 void *context, int vl, int mode,
1771 u64 data)
1772{
1773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774
1775 return dd->cce_err_status_cnt[38];
1776}
1777
1778static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1779 void *context, int vl, int mode,
1780 u64 data)
1781{
1782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783
1784 return dd->cce_err_status_cnt[37];
1785}
1786
1787static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1788 void *context, int vl, int mode,
1789 u64 data)
1790{
1791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792
1793 return dd->cce_err_status_cnt[36];
1794}
1795
1796static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1797 const struct cntr_entry *entry,
1798 void *context, int vl, int mode, u64 data)
1799{
1800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802 return dd->cce_err_status_cnt[35];
1803}
1804
1805static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1806 const struct cntr_entry *entry,
1807 void *context, int vl, int mode, u64 data)
1808{
1809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811 return dd->cce_err_status_cnt[34];
1812}
1813
1814static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1815 void *context, int vl,
1816 int mode, u64 data)
1817{
1818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820 return dd->cce_err_status_cnt[33];
1821}
1822
1823static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1824 void *context, int vl, int mode,
1825 u64 data)
1826{
1827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829 return dd->cce_err_status_cnt[32];
1830}
1831
1832static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1833 void *context, int vl, int mode, u64 data)
1834{
1835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837 return dd->cce_err_status_cnt[31];
1838}
1839
1840static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1841 void *context, int vl, int mode,
1842 u64 data)
1843{
1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846 return dd->cce_err_status_cnt[30];
1847}
1848
1849static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1850 void *context, int vl, int mode,
1851 u64 data)
1852{
1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855 return dd->cce_err_status_cnt[29];
1856}
1857
1858static u64 access_pcic_transmit_back_parity_err_cnt(
1859 const struct cntr_entry *entry,
1860 void *context, int vl, int mode, u64 data)
1861{
1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864 return dd->cce_err_status_cnt[28];
1865}
1866
1867static u64 access_pcic_transmit_front_parity_err_cnt(
1868 const struct cntr_entry *entry,
1869 void *context, int vl, int mode, u64 data)
1870{
1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873 return dd->cce_err_status_cnt[27];
1874}
1875
1876static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1877 void *context, int vl, int mode,
1878 u64 data)
1879{
1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882 return dd->cce_err_status_cnt[26];
1883}
1884
1885static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1886 void *context, int vl, int mode,
1887 u64 data)
1888{
1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891 return dd->cce_err_status_cnt[25];
1892}
1893
1894static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1895 void *context, int vl, int mode,
1896 u64 data)
1897{
1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900 return dd->cce_err_status_cnt[24];
1901}
1902
1903static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1904 void *context, int vl, int mode,
1905 u64 data)
1906{
1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909 return dd->cce_err_status_cnt[23];
1910}
1911
1912static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1913 void *context, int vl,
1914 int mode, u64 data)
1915{
1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918 return dd->cce_err_status_cnt[22];
1919}
1920
1921static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1922 void *context, int vl, int mode,
1923 u64 data)
1924{
1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927 return dd->cce_err_status_cnt[21];
1928}
1929
1930static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1931 const struct cntr_entry *entry,
1932 void *context, int vl, int mode, u64 data)
1933{
1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936 return dd->cce_err_status_cnt[20];
1937}
1938
1939static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1940 void *context, int vl,
1941 int mode, u64 data)
1942{
1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945 return dd->cce_err_status_cnt[19];
1946}
1947
1948static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1949 void *context, int vl, int mode,
1950 u64 data)
1951{
1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954 return dd->cce_err_status_cnt[18];
1955}
1956
1957static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1958 void *context, int vl, int mode,
1959 u64 data)
1960{
1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963 return dd->cce_err_status_cnt[17];
1964}
1965
1966static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1967 void *context, int vl, int mode,
1968 u64 data)
1969{
1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972 return dd->cce_err_status_cnt[16];
1973}
1974
1975static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1976 void *context, int vl, int mode,
1977 u64 data)
1978{
1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981 return dd->cce_err_status_cnt[15];
1982}
1983
1984static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1985 void *context, int vl,
1986 int mode, u64 data)
1987{
1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990 return dd->cce_err_status_cnt[14];
1991}
1992
1993static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1994 void *context, int vl, int mode,
1995 u64 data)
1996{
1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999 return dd->cce_err_status_cnt[13];
2000}
2001
2002static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2003 const struct cntr_entry *entry,
2004 void *context, int vl, int mode, u64 data)
2005{
2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008 return dd->cce_err_status_cnt[12];
2009}
2010
2011static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2012 const struct cntr_entry *entry,
2013 void *context, int vl, int mode, u64 data)
2014{
2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017 return dd->cce_err_status_cnt[11];
2018}
2019
2020static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2021 const struct cntr_entry *entry,
2022 void *context, int vl, int mode, u64 data)
2023{
2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026 return dd->cce_err_status_cnt[10];
2027}
2028
2029static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2030 const struct cntr_entry *entry,
2031 void *context, int vl, int mode, u64 data)
2032{
2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035 return dd->cce_err_status_cnt[9];
2036}
2037
2038static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2039 const struct cntr_entry *entry,
2040 void *context, int vl, int mode, u64 data)
2041{
2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044 return dd->cce_err_status_cnt[8];
2045}
2046
2047static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2048 void *context, int vl,
2049 int mode, u64 data)
2050{
2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053 return dd->cce_err_status_cnt[7];
2054}
2055
2056static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2057 const struct cntr_entry *entry,
2058 void *context, int vl, int mode, u64 data)
2059{
2060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062 return dd->cce_err_status_cnt[6];
2063}
2064
2065static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2066 void *context, int vl, int mode,
2067 u64 data)
2068{
2069 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071 return dd->cce_err_status_cnt[5];
2072}
2073
2074static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2075 void *context, int vl, int mode,
2076 u64 data)
2077{
2078 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080 return dd->cce_err_status_cnt[4];
2081}
2082
2083static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2084 const struct cntr_entry *entry,
2085 void *context, int vl, int mode, u64 data)
2086{
2087 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089 return dd->cce_err_status_cnt[3];
2090}
2091
2092static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2093 void *context, int vl,
2094 int mode, u64 data)
2095{
2096 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098 return dd->cce_err_status_cnt[2];
2099}
2100
2101static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2102 void *context, int vl,
2103 int mode, u64 data)
2104{
2105 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107 return dd->cce_err_status_cnt[1];
2108}
2109
2110static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2111 void *context, int vl, int mode,
2112 u64 data)
2113{
2114 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116 return dd->cce_err_status_cnt[0];
2117}
2118
2119/*
2120 * Software counters corresponding to each of the
2121 * error status bits within RcvErrStatus
2122 */
2123static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2124 void *context, int vl, int mode,
2125 u64 data)
2126{
2127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128
2129 return dd->rcv_err_status_cnt[63];
2130}
2131
2132static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2133 void *context, int vl,
2134 int mode, u64 data)
2135{
2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138 return dd->rcv_err_status_cnt[62];
2139}
2140
2141static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2142 void *context, int vl, int mode,
2143 u64 data)
2144{
2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147 return dd->rcv_err_status_cnt[61];
2148}
2149
2150static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2151 void *context, int vl, int mode,
2152 u64 data)
2153{
2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156 return dd->rcv_err_status_cnt[60];
2157}
2158
2159static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2160 void *context, int vl,
2161 int mode, u64 data)
2162{
2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165 return dd->rcv_err_status_cnt[59];
2166}
2167
2168static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169 void *context, int vl,
2170 int mode, u64 data)
2171{
2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174 return dd->rcv_err_status_cnt[58];
2175}
2176
2177static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2178 void *context, int vl, int mode,
2179 u64 data)
2180{
2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183 return dd->rcv_err_status_cnt[57];
2184}
2185
2186static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2187 void *context, int vl, int mode,
2188 u64 data)
2189{
2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192 return dd->rcv_err_status_cnt[56];
2193}
2194
2195static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2196 void *context, int vl, int mode,
2197 u64 data)
2198{
2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201 return dd->rcv_err_status_cnt[55];
2202}
2203
2204static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2205 const struct cntr_entry *entry,
2206 void *context, int vl, int mode, u64 data)
2207{
2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210 return dd->rcv_err_status_cnt[54];
2211}
2212
2213static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2214 const struct cntr_entry *entry,
2215 void *context, int vl, int mode, u64 data)
2216{
2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219 return dd->rcv_err_status_cnt[53];
2220}
2221
2222static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2223 void *context, int vl,
2224 int mode, u64 data)
2225{
2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228 return dd->rcv_err_status_cnt[52];
2229}
2230
2231static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2232 void *context, int vl,
2233 int mode, u64 data)
2234{
2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237 return dd->rcv_err_status_cnt[51];
2238}
2239
2240static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2241 void *context, int vl,
2242 int mode, u64 data)
2243{
2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246 return dd->rcv_err_status_cnt[50];
2247}
2248
2249static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2250 void *context, int vl,
2251 int mode, u64 data)
2252{
2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255 return dd->rcv_err_status_cnt[49];
2256}
2257
2258static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2259 void *context, int vl,
2260 int mode, u64 data)
2261{
2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264 return dd->rcv_err_status_cnt[48];
2265}
2266
2267static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2268 void *context, int vl,
2269 int mode, u64 data)
2270{
2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273 return dd->rcv_err_status_cnt[47];
2274}
2275
2276static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2277 void *context, int vl, int mode,
2278 u64 data)
2279{
2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282 return dd->rcv_err_status_cnt[46];
2283}
2284
2285static u64 access_rx_hq_intr_csr_parity_err_cnt(
2286 const struct cntr_entry *entry,
2287 void *context, int vl, int mode, u64 data)
2288{
2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291 return dd->rcv_err_status_cnt[45];
2292}
2293
2294static u64 access_rx_lookup_csr_parity_err_cnt(
2295 const struct cntr_entry *entry,
2296 void *context, int vl, int mode, u64 data)
2297{
2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300 return dd->rcv_err_status_cnt[44];
2301}
2302
2303static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2304 const struct cntr_entry *entry,
2305 void *context, int vl, int mode, u64 data)
2306{
2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309 return dd->rcv_err_status_cnt[43];
2310}
2311
2312static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2313 const struct cntr_entry *entry,
2314 void *context, int vl, int mode, u64 data)
2315{
2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318 return dd->rcv_err_status_cnt[42];
2319}
2320
2321static u64 access_rx_lookup_des_part2_parity_err_cnt(
2322 const struct cntr_entry *entry,
2323 void *context, int vl, int mode, u64 data)
2324{
2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327 return dd->rcv_err_status_cnt[41];
2328}
2329
2330static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2331 const struct cntr_entry *entry,
2332 void *context, int vl, int mode, u64 data)
2333{
2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336 return dd->rcv_err_status_cnt[40];
2337}
2338
2339static u64 access_rx_lookup_des_part1_unc_err_cnt(
2340 const struct cntr_entry *entry,
2341 void *context, int vl, int mode, u64 data)
2342{
2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345 return dd->rcv_err_status_cnt[39];
2346}
2347
2348static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2349 const struct cntr_entry *entry,
2350 void *context, int vl, int mode, u64 data)
2351{
2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354 return dd->rcv_err_status_cnt[38];
2355}
2356
2357static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2358 const struct cntr_entry *entry,
2359 void *context, int vl, int mode, u64 data)
2360{
2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363 return dd->rcv_err_status_cnt[37];
2364}
2365
2366static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2367 const struct cntr_entry *entry,
2368 void *context, int vl, int mode, u64 data)
2369{
2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372 return dd->rcv_err_status_cnt[36];
2373}
2374
2375static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2376 const struct cntr_entry *entry,
2377 void *context, int vl, int mode, u64 data)
2378{
2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381 return dd->rcv_err_status_cnt[35];
2382}
2383
2384static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2385 const struct cntr_entry *entry,
2386 void *context, int vl, int mode, u64 data)
2387{
2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390 return dd->rcv_err_status_cnt[34];
2391}
2392
2393static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2394 const struct cntr_entry *entry,
2395 void *context, int vl, int mode, u64 data)
2396{
2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399 return dd->rcv_err_status_cnt[33];
2400}
2401
2402static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2403 void *context, int vl, int mode,
2404 u64 data)
2405{
2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408 return dd->rcv_err_status_cnt[32];
2409}
2410
2411static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2412 void *context, int vl, int mode,
2413 u64 data)
2414{
2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417 return dd->rcv_err_status_cnt[31];
2418}
2419
2420static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2421 void *context, int vl, int mode,
2422 u64 data)
2423{
2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426 return dd->rcv_err_status_cnt[30];
2427}
2428
2429static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2430 void *context, int vl, int mode,
2431 u64 data)
2432{
2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435 return dd->rcv_err_status_cnt[29];
2436}
2437
2438static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2439 void *context, int vl,
2440 int mode, u64 data)
2441{
2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444 return dd->rcv_err_status_cnt[28];
2445}
2446
2447static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2448 const struct cntr_entry *entry,
2449 void *context, int vl, int mode, u64 data)
2450{
2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453 return dd->rcv_err_status_cnt[27];
2454}
2455
2456static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2457 const struct cntr_entry *entry,
2458 void *context, int vl, int mode, u64 data)
2459{
2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462 return dd->rcv_err_status_cnt[26];
2463}
2464
2465static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2466 const struct cntr_entry *entry,
2467 void *context, int vl, int mode, u64 data)
2468{
2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471 return dd->rcv_err_status_cnt[25];
2472}
2473
2474static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2475 const struct cntr_entry *entry,
2476 void *context, int vl, int mode, u64 data)
2477{
2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480 return dd->rcv_err_status_cnt[24];
2481}
2482
2483static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2484 const struct cntr_entry *entry,
2485 void *context, int vl, int mode, u64 data)
2486{
2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489 return dd->rcv_err_status_cnt[23];
2490}
2491
2492static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2493 const struct cntr_entry *entry,
2494 void *context, int vl, int mode, u64 data)
2495{
2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498 return dd->rcv_err_status_cnt[22];
2499}
2500
2501static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2502 const struct cntr_entry *entry,
2503 void *context, int vl, int mode, u64 data)
2504{
2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507 return dd->rcv_err_status_cnt[21];
2508}
2509
2510static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2511 const struct cntr_entry *entry,
2512 void *context, int vl, int mode, u64 data)
2513{
2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516 return dd->rcv_err_status_cnt[20];
2517}
2518
2519static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2520 const struct cntr_entry *entry,
2521 void *context, int vl, int mode, u64 data)
2522{
2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525 return dd->rcv_err_status_cnt[19];
2526}
2527
2528static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2529 void *context, int vl,
2530 int mode, u64 data)
2531{
2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534 return dd->rcv_err_status_cnt[18];
2535}
2536
2537static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2538 void *context, int vl,
2539 int mode, u64 data)
2540{
2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543 return dd->rcv_err_status_cnt[17];
2544}
2545
2546static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2547 const struct cntr_entry *entry,
2548 void *context, int vl, int mode, u64 data)
2549{
2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552 return dd->rcv_err_status_cnt[16];
2553}
2554
2555static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2556 const struct cntr_entry *entry,
2557 void *context, int vl, int mode, u64 data)
2558{
2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561 return dd->rcv_err_status_cnt[15];
2562}
2563
2564static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2565 void *context, int vl,
2566 int mode, u64 data)
2567{
2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570 return dd->rcv_err_status_cnt[14];
2571}
2572
2573static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2574 void *context, int vl,
2575 int mode, u64 data)
2576{
2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579 return dd->rcv_err_status_cnt[13];
2580}
2581
2582static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2583 void *context, int vl, int mode,
2584 u64 data)
2585{
2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588 return dd->rcv_err_status_cnt[12];
2589}
2590
2591static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2592 void *context, int vl, int mode,
2593 u64 data)
2594{
2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597 return dd->rcv_err_status_cnt[11];
2598}
2599
2600static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2601 void *context, int vl, int mode,
2602 u64 data)
2603{
2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606 return dd->rcv_err_status_cnt[10];
2607}
2608
2609static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2610 void *context, int vl, int mode,
2611 u64 data)
2612{
2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615 return dd->rcv_err_status_cnt[9];
2616}
2617
2618static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2619 void *context, int vl, int mode,
2620 u64 data)
2621{
2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624 return dd->rcv_err_status_cnt[8];
2625}
2626
2627static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2628 const struct cntr_entry *entry,
2629 void *context, int vl, int mode, u64 data)
2630{
2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633 return dd->rcv_err_status_cnt[7];
2634}
2635
2636static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2637 const struct cntr_entry *entry,
2638 void *context, int vl, int mode, u64 data)
2639{
2640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642 return dd->rcv_err_status_cnt[6];
2643}
2644
2645static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2646 void *context, int vl, int mode,
2647 u64 data)
2648{
2649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651 return dd->rcv_err_status_cnt[5];
2652}
2653
2654static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2655 void *context, int vl, int mode,
2656 u64 data)
2657{
2658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660 return dd->rcv_err_status_cnt[4];
2661}
2662
2663static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2664 void *context, int vl, int mode,
2665 u64 data)
2666{
2667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669 return dd->rcv_err_status_cnt[3];
2670}
2671
2672static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2673 void *context, int vl, int mode,
2674 u64 data)
2675{
2676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678 return dd->rcv_err_status_cnt[2];
2679}
2680
2681static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2682 void *context, int vl, int mode,
2683 u64 data)
2684{
2685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687 return dd->rcv_err_status_cnt[1];
2688}
2689
2690static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2691 void *context, int vl, int mode,
2692 u64 data)
2693{
2694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696 return dd->rcv_err_status_cnt[0];
2697}
2698
2699/*
2700 * Software counters corresponding to each of the
2701 * error status bits within SendPioErrStatus
2702 */
2703static u64 access_pio_pec_sop_head_parity_err_cnt(
2704 const struct cntr_entry *entry,
2705 void *context, int vl, int mode, u64 data)
2706{
2707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708
2709 return dd->send_pio_err_status_cnt[35];
2710}
2711
2712static u64 access_pio_pcc_sop_head_parity_err_cnt(
2713 const struct cntr_entry *entry,
2714 void *context, int vl, int mode, u64 data)
2715{
2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718 return dd->send_pio_err_status_cnt[34];
2719}
2720
2721static u64 access_pio_last_returned_cnt_parity_err_cnt(
2722 const struct cntr_entry *entry,
2723 void *context, int vl, int mode, u64 data)
2724{
2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727 return dd->send_pio_err_status_cnt[33];
2728}
2729
2730static u64 access_pio_current_free_cnt_parity_err_cnt(
2731 const struct cntr_entry *entry,
2732 void *context, int vl, int mode, u64 data)
2733{
2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736 return dd->send_pio_err_status_cnt[32];
2737}
2738
2739static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2740 void *context, int vl, int mode,
2741 u64 data)
2742{
2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745 return dd->send_pio_err_status_cnt[31];
2746}
2747
2748static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2749 void *context, int vl, int mode,
2750 u64 data)
2751{
2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754 return dd->send_pio_err_status_cnt[30];
2755}
2756
2757static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2758 void *context, int vl, int mode,
2759 u64 data)
2760{
2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763 return dd->send_pio_err_status_cnt[29];
2764}
2765
2766static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2767 const struct cntr_entry *entry,
2768 void *context, int vl, int mode, u64 data)
2769{
2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772 return dd->send_pio_err_status_cnt[28];
2773}
2774
2775static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2776 void *context, int vl, int mode,
2777 u64 data)
2778{
2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781 return dd->send_pio_err_status_cnt[27];
2782}
2783
2784static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2785 void *context, int vl, int mode,
2786 u64 data)
2787{
2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790 return dd->send_pio_err_status_cnt[26];
2791}
2792
2793static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2794 void *context, int vl,
2795 int mode, u64 data)
2796{
2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799 return dd->send_pio_err_status_cnt[25];
2800}
2801
2802static u64 access_pio_block_qw_count_parity_err_cnt(
2803 const struct cntr_entry *entry,
2804 void *context, int vl, int mode, u64 data)
2805{
2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808 return dd->send_pio_err_status_cnt[24];
2809}
2810
2811static u64 access_pio_write_qw_valid_parity_err_cnt(
2812 const struct cntr_entry *entry,
2813 void *context, int vl, int mode, u64 data)
2814{
2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817 return dd->send_pio_err_status_cnt[23];
2818}
2819
2820static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2821 void *context, int vl, int mode,
2822 u64 data)
2823{
2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826 return dd->send_pio_err_status_cnt[22];
2827}
2828
2829static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2830 void *context, int vl,
2831 int mode, u64 data)
2832{
2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835 return dd->send_pio_err_status_cnt[21];
2836}
2837
2838static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2839 void *context, int vl,
2840 int mode, u64 data)
2841{
2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844 return dd->send_pio_err_status_cnt[20];
2845}
2846
2847static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2848 void *context, int vl,
2849 int mode, u64 data)
2850{
2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853 return dd->send_pio_err_status_cnt[19];
2854}
2855
2856static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2857 const struct cntr_entry *entry,
2858 void *context, int vl, int mode, u64 data)
2859{
2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862 return dd->send_pio_err_status_cnt[18];
2863}
2864
2865static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2866 void *context, int vl, int mode,
2867 u64 data)
2868{
2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871 return dd->send_pio_err_status_cnt[17];
2872}
2873
2874static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2875 void *context, int vl, int mode,
2876 u64 data)
2877{
2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880 return dd->send_pio_err_status_cnt[16];
2881}
2882
2883static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2884 const struct cntr_entry *entry,
2885 void *context, int vl, int mode, u64 data)
2886{
2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889 return dd->send_pio_err_status_cnt[15];
2890}
2891
2892static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2893 const struct cntr_entry *entry,
2894 void *context, int vl, int mode, u64 data)
2895{
2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898 return dd->send_pio_err_status_cnt[14];
2899}
2900
2901static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2902 const struct cntr_entry *entry,
2903 void *context, int vl, int mode, u64 data)
2904{
2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907 return dd->send_pio_err_status_cnt[13];
2908}
2909
2910static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2911 const struct cntr_entry *entry,
2912 void *context, int vl, int mode, u64 data)
2913{
2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916 return dd->send_pio_err_status_cnt[12];
2917}
2918
2919static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2920 const struct cntr_entry *entry,
2921 void *context, int vl, int mode, u64 data)
2922{
2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925 return dd->send_pio_err_status_cnt[11];
2926}
2927
2928static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2929 const struct cntr_entry *entry,
2930 void *context, int vl, int mode, u64 data)
2931{
2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934 return dd->send_pio_err_status_cnt[10];
2935}
2936
2937static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2938 const struct cntr_entry *entry,
2939 void *context, int vl, int mode, u64 data)
2940{
2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943 return dd->send_pio_err_status_cnt[9];
2944}
2945
2946static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2947 const struct cntr_entry *entry,
2948 void *context, int vl, int mode, u64 data)
2949{
2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952 return dd->send_pio_err_status_cnt[8];
2953}
2954
2955static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2956 const struct cntr_entry *entry,
2957 void *context, int vl, int mode, u64 data)
2958{
2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961 return dd->send_pio_err_status_cnt[7];
2962}
2963
2964static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2965 void *context, int vl, int mode,
2966 u64 data)
2967{
2968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970 return dd->send_pio_err_status_cnt[6];
2971}
2972
2973static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974 void *context, int vl, int mode,
2975 u64 data)
2976{
2977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979 return dd->send_pio_err_status_cnt[5];
2980}
2981
2982static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2983 void *context, int vl, int mode,
2984 u64 data)
2985{
2986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988 return dd->send_pio_err_status_cnt[4];
2989}
2990
2991static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2992 void *context, int vl, int mode,
2993 u64 data)
2994{
2995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997 return dd->send_pio_err_status_cnt[3];
2998}
2999
3000static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3001 void *context, int vl, int mode,
3002 u64 data)
3003{
3004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006 return dd->send_pio_err_status_cnt[2];
3007}
3008
3009static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3010 void *context, int vl,
3011 int mode, u64 data)
3012{
3013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015 return dd->send_pio_err_status_cnt[1];
3016}
3017
3018static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3019 void *context, int vl, int mode,
3020 u64 data)
3021{
3022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024 return dd->send_pio_err_status_cnt[0];
3025}
3026
3027/*
3028 * Software counters corresponding to each of the
3029 * error status bits within SendDmaErrStatus
3030 */
3031static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3032 const struct cntr_entry *entry,
3033 void *context, int vl, int mode, u64 data)
3034{
3035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3036
3037 return dd->send_dma_err_status_cnt[3];
3038}
3039
3040static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3041 const struct cntr_entry *entry,
3042 void *context, int vl, int mode, u64 data)
3043{
3044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046 return dd->send_dma_err_status_cnt[2];
3047}
3048
3049static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3050 void *context, int vl, int mode,
3051 u64 data)
3052{
3053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055 return dd->send_dma_err_status_cnt[1];
3056}
3057
3058static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3059 void *context, int vl, int mode,
3060 u64 data)
3061{
3062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064 return dd->send_dma_err_status_cnt[0];
3065}
3066
3067/*
3068 * Software counters corresponding to each of the
3069 * error status bits within SendEgressErrStatus
3070 */
3071static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3072 const struct cntr_entry *entry,
3073 void *context, int vl, int mode, u64 data)
3074{
3075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3076
3077 return dd->send_egress_err_status_cnt[63];
3078}
3079
3080static u64 access_tx_read_sdma_memory_csr_err_cnt(
3081 const struct cntr_entry *entry,
3082 void *context, int vl, int mode, u64 data)
3083{
3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086 return dd->send_egress_err_status_cnt[62];
3087}
3088
3089static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3090 void *context, int vl, int mode,
3091 u64 data)
3092{
3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095 return dd->send_egress_err_status_cnt[61];
3096}
3097
3098static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3099 void *context, int vl,
3100 int mode, u64 data)
3101{
3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104 return dd->send_egress_err_status_cnt[60];
3105}
3106
3107static u64 access_tx_read_sdma_memory_cor_err_cnt(
3108 const struct cntr_entry *entry,
3109 void *context, int vl, int mode, u64 data)
3110{
3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113 return dd->send_egress_err_status_cnt[59];
3114}
3115
3116static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3117 void *context, int vl, int mode,
3118 u64 data)
3119{
3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122 return dd->send_egress_err_status_cnt[58];
3123}
3124
3125static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3126 void *context, int vl, int mode,
3127 u64 data)
3128{
3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131 return dd->send_egress_err_status_cnt[57];
3132}
3133
3134static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3135 void *context, int vl, int mode,
3136 u64 data)
3137{
3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140 return dd->send_egress_err_status_cnt[56];
3141}
3142
3143static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3144 void *context, int vl, int mode,
3145 u64 data)
3146{
3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149 return dd->send_egress_err_status_cnt[55];
3150}
3151
3152static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3153 void *context, int vl, int mode,
3154 u64 data)
3155{
3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158 return dd->send_egress_err_status_cnt[54];
3159}
3160
3161static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3162 void *context, int vl, int mode,
3163 u64 data)
3164{
3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167 return dd->send_egress_err_status_cnt[53];
3168}
3169
3170static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3171 void *context, int vl, int mode,
3172 u64 data)
3173{
3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176 return dd->send_egress_err_status_cnt[52];
3177}
3178
3179static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3180 void *context, int vl, int mode,
3181 u64 data)
3182{
3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185 return dd->send_egress_err_status_cnt[51];
3186}
3187
3188static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3189 void *context, int vl, int mode,
3190 u64 data)
3191{
3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194 return dd->send_egress_err_status_cnt[50];
3195}
3196
3197static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3198 void *context, int vl, int mode,
3199 u64 data)
3200{
3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203 return dd->send_egress_err_status_cnt[49];
3204}
3205
3206static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3207 void *context, int vl, int mode,
3208 u64 data)
3209{
3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212 return dd->send_egress_err_status_cnt[48];
3213}
3214
3215static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3216 void *context, int vl, int mode,
3217 u64 data)
3218{
3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221 return dd->send_egress_err_status_cnt[47];
3222}
3223
3224static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3225 void *context, int vl, int mode,
3226 u64 data)
3227{
3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230 return dd->send_egress_err_status_cnt[46];
3231}
3232
3233static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3234 void *context, int vl, int mode,
3235 u64 data)
3236{
3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239 return dd->send_egress_err_status_cnt[45];
3240}
3241
3242static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3243 void *context, int vl,
3244 int mode, u64 data)
3245{
3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248 return dd->send_egress_err_status_cnt[44];
3249}
3250
3251static u64 access_tx_read_sdma_memory_unc_err_cnt(
3252 const struct cntr_entry *entry,
3253 void *context, int vl, int mode, u64 data)
3254{
3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257 return dd->send_egress_err_status_cnt[43];
3258}
3259
3260static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3261 void *context, int vl, int mode,
3262 u64 data)
3263{
3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266 return dd->send_egress_err_status_cnt[42];
3267}
3268
3269static u64 access_tx_credit_return_partiy_err_cnt(
3270 const struct cntr_entry *entry,
3271 void *context, int vl, int mode, u64 data)
3272{
3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275 return dd->send_egress_err_status_cnt[41];
3276}
3277
3278static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3279 const struct cntr_entry *entry,
3280 void *context, int vl, int mode, u64 data)
3281{
3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284 return dd->send_egress_err_status_cnt[40];
3285}
3286
3287static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3288 const struct cntr_entry *entry,
3289 void *context, int vl, int mode, u64 data)
3290{
3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293 return dd->send_egress_err_status_cnt[39];
3294}
3295
3296static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3297 const struct cntr_entry *entry,
3298 void *context, int vl, int mode, u64 data)
3299{
3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302 return dd->send_egress_err_status_cnt[38];
3303}
3304
3305static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3306 const struct cntr_entry *entry,
3307 void *context, int vl, int mode, u64 data)
3308{
3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311 return dd->send_egress_err_status_cnt[37];
3312}
3313
3314static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3315 const struct cntr_entry *entry,
3316 void *context, int vl, int mode, u64 data)
3317{
3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320 return dd->send_egress_err_status_cnt[36];
3321}
3322
3323static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3324 const struct cntr_entry *entry,
3325 void *context, int vl, int mode, u64 data)
3326{
3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329 return dd->send_egress_err_status_cnt[35];
3330}
3331
3332static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3333 const struct cntr_entry *entry,
3334 void *context, int vl, int mode, u64 data)
3335{
3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338 return dd->send_egress_err_status_cnt[34];
3339}
3340
3341static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3342 const struct cntr_entry *entry,
3343 void *context, int vl, int mode, u64 data)
3344{
3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347 return dd->send_egress_err_status_cnt[33];
3348}
3349
3350static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3351 const struct cntr_entry *entry,
3352 void *context, int vl, int mode, u64 data)
3353{
3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356 return dd->send_egress_err_status_cnt[32];
3357}
3358
3359static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3360 const struct cntr_entry *entry,
3361 void *context, int vl, int mode, u64 data)
3362{
3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365 return dd->send_egress_err_status_cnt[31];
3366}
3367
3368static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3369 const struct cntr_entry *entry,
3370 void *context, int vl, int mode, u64 data)
3371{
3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374 return dd->send_egress_err_status_cnt[30];
3375}
3376
3377static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3378 const struct cntr_entry *entry,
3379 void *context, int vl, int mode, u64 data)
3380{
3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383 return dd->send_egress_err_status_cnt[29];
3384}
3385
3386static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3387 const struct cntr_entry *entry,
3388 void *context, int vl, int mode, u64 data)
3389{
3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392 return dd->send_egress_err_status_cnt[28];
3393}
3394
3395static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3396 const struct cntr_entry *entry,
3397 void *context, int vl, int mode, u64 data)
3398{
3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401 return dd->send_egress_err_status_cnt[27];
3402}
3403
3404static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3405 const struct cntr_entry *entry,
3406 void *context, int vl, int mode, u64 data)
3407{
3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410 return dd->send_egress_err_status_cnt[26];
3411}
3412
3413static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3414 const struct cntr_entry *entry,
3415 void *context, int vl, int mode, u64 data)
3416{
3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419 return dd->send_egress_err_status_cnt[25];
3420}
3421
3422static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3423 const struct cntr_entry *entry,
3424 void *context, int vl, int mode, u64 data)
3425{
3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428 return dd->send_egress_err_status_cnt[24];
3429}
3430
3431static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3432 const struct cntr_entry *entry,
3433 void *context, int vl, int mode, u64 data)
3434{
3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437 return dd->send_egress_err_status_cnt[23];
3438}
3439
3440static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3441 const struct cntr_entry *entry,
3442 void *context, int vl, int mode, u64 data)
3443{
3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446 return dd->send_egress_err_status_cnt[22];
3447}
3448
3449static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3450 const struct cntr_entry *entry,
3451 void *context, int vl, int mode, u64 data)
3452{
3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455 return dd->send_egress_err_status_cnt[21];
3456}
3457
3458static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3459 const struct cntr_entry *entry,
3460 void *context, int vl, int mode, u64 data)
3461{
3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464 return dd->send_egress_err_status_cnt[20];
3465}
3466
3467static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3468 const struct cntr_entry *entry,
3469 void *context, int vl, int mode, u64 data)
3470{
3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473 return dd->send_egress_err_status_cnt[19];
3474}
3475
3476static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3477 const struct cntr_entry *entry,
3478 void *context, int vl, int mode, u64 data)
3479{
3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482 return dd->send_egress_err_status_cnt[18];
3483}
3484
3485static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3486 const struct cntr_entry *entry,
3487 void *context, int vl, int mode, u64 data)
3488{
3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491 return dd->send_egress_err_status_cnt[17];
3492}
3493
3494static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3495 const struct cntr_entry *entry,
3496 void *context, int vl, int mode, u64 data)
3497{
3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500 return dd->send_egress_err_status_cnt[16];
3501}
3502
3503static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3504 void *context, int vl, int mode,
3505 u64 data)
3506{
3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509 return dd->send_egress_err_status_cnt[15];
3510}
3511
3512static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3513 void *context, int vl,
3514 int mode, u64 data)
3515{
3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518 return dd->send_egress_err_status_cnt[14];
3519}
3520
3521static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3522 void *context, int vl, int mode,
3523 u64 data)
3524{
3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527 return dd->send_egress_err_status_cnt[13];
3528}
3529
3530static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3531 void *context, int vl, int mode,
3532 u64 data)
3533{
3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536 return dd->send_egress_err_status_cnt[12];
3537}
3538
3539static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3540 const struct cntr_entry *entry,
3541 void *context, int vl, int mode, u64 data)
3542{
3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545 return dd->send_egress_err_status_cnt[11];
3546}
3547
3548static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3549 void *context, int vl, int mode,
3550 u64 data)
3551{
3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554 return dd->send_egress_err_status_cnt[10];
3555}
3556
3557static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3558 void *context, int vl, int mode,
3559 u64 data)
3560{
3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563 return dd->send_egress_err_status_cnt[9];
3564}
3565
3566static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3567 const struct cntr_entry *entry,
3568 void *context, int vl, int mode, u64 data)
3569{
3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572 return dd->send_egress_err_status_cnt[8];
3573}
3574
3575static u64 access_tx_pio_launch_intf_parity_err_cnt(
3576 const struct cntr_entry *entry,
3577 void *context, int vl, int mode, u64 data)
3578{
3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581 return dd->send_egress_err_status_cnt[7];
3582}
3583
3584static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3585 void *context, int vl, int mode,
3586 u64 data)
3587{
3588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590 return dd->send_egress_err_status_cnt[6];
3591}
3592
3593static u64 access_tx_incorrect_link_state_err_cnt(
3594 const struct cntr_entry *entry,
3595 void *context, int vl, int mode, u64 data)
3596{
3597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599 return dd->send_egress_err_status_cnt[5];
3600}
3601
3602static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3603 void *context, int vl, int mode,
3604 u64 data)
3605{
3606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608 return dd->send_egress_err_status_cnt[4];
3609}
3610
3611static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3612 const struct cntr_entry *entry,
3613 void *context, int vl, int mode, u64 data)
3614{
3615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617 return dd->send_egress_err_status_cnt[3];
3618}
3619
3620static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3621 void *context, int vl, int mode,
3622 u64 data)
3623{
3624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626 return dd->send_egress_err_status_cnt[2];
3627}
3628
3629static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3630 const struct cntr_entry *entry,
3631 void *context, int vl, int mode, u64 data)
3632{
3633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635 return dd->send_egress_err_status_cnt[1];
3636}
3637
3638static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3639 const struct cntr_entry *entry,
3640 void *context, int vl, int mode, u64 data)
3641{
3642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644 return dd->send_egress_err_status_cnt[0];
3645}
3646
3647/*
3648 * Software counters corresponding to each of the
3649 * error status bits within SendErrStatus
3650 */
3651static u64 access_send_csr_write_bad_addr_err_cnt(
3652 const struct cntr_entry *entry,
3653 void *context, int vl, int mode, u64 data)
3654{
3655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3656
3657 return dd->send_err_status_cnt[2];
3658}
3659
3660static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3661 void *context, int vl,
3662 int mode, u64 data)
3663{
3664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666 return dd->send_err_status_cnt[1];
3667}
3668
3669static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3670 void *context, int vl, int mode,
3671 u64 data)
3672{
3673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675 return dd->send_err_status_cnt[0];
3676}
3677
3678/*
3679 * Software counters corresponding to each of the
3680 * error status bits within SendCtxtErrStatus
3681 */
3682static u64 access_pio_write_out_of_bounds_err_cnt(
3683 const struct cntr_entry *entry,
3684 void *context, int vl, int mode, u64 data)
3685{
3686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3687
3688 return dd->sw_ctxt_err_status_cnt[4];
3689}
3690
3691static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3692 void *context, int vl, int mode,
3693 u64 data)
3694{
3695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696
3697 return dd->sw_ctxt_err_status_cnt[3];
3698}
3699
3700static u64 access_pio_write_crosses_boundary_err_cnt(
3701 const struct cntr_entry *entry,
3702 void *context, int vl, int mode, u64 data)
3703{
3704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705
3706 return dd->sw_ctxt_err_status_cnt[2];
3707}
3708
3709static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3710 void *context, int vl,
3711 int mode, u64 data)
3712{
3713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714
3715 return dd->sw_ctxt_err_status_cnt[1];
3716}
3717
3718static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3719 void *context, int vl, int mode,
3720 u64 data)
3721{
3722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723
3724 return dd->sw_ctxt_err_status_cnt[0];
3725}
3726
3727/*
3728 * Software counters corresponding to each of the
3729 * error status bits within SendDmaEngErrStatus
3730 */
3731static u64 access_sdma_header_request_fifo_cor_err_cnt(
3732 const struct cntr_entry *entry,
3733 void *context, int vl, int mode, u64 data)
3734{
3735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3736
3737 return dd->sw_send_dma_eng_err_status_cnt[23];
3738}
3739
3740static u64 access_sdma_header_storage_cor_err_cnt(
3741 const struct cntr_entry *entry,
3742 void *context, int vl, int mode, u64 data)
3743{
3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746 return dd->sw_send_dma_eng_err_status_cnt[22];
3747}
3748
3749static u64 access_sdma_packet_tracking_cor_err_cnt(
3750 const struct cntr_entry *entry,
3751 void *context, int vl, int mode, u64 data)
3752{
3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755 return dd->sw_send_dma_eng_err_status_cnt[21];
3756}
3757
3758static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3759 void *context, int vl, int mode,
3760 u64 data)
3761{
3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764 return dd->sw_send_dma_eng_err_status_cnt[20];
3765}
3766
3767static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3768 void *context, int vl, int mode,
3769 u64 data)
3770{
3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773 return dd->sw_send_dma_eng_err_status_cnt[19];
3774}
3775
3776static u64 access_sdma_header_request_fifo_unc_err_cnt(
3777 const struct cntr_entry *entry,
3778 void *context, int vl, int mode, u64 data)
3779{
3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782 return dd->sw_send_dma_eng_err_status_cnt[18];
3783}
3784
3785static u64 access_sdma_header_storage_unc_err_cnt(
3786 const struct cntr_entry *entry,
3787 void *context, int vl, int mode, u64 data)
3788{
3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791 return dd->sw_send_dma_eng_err_status_cnt[17];
3792}
3793
3794static u64 access_sdma_packet_tracking_unc_err_cnt(
3795 const struct cntr_entry *entry,
3796 void *context, int vl, int mode, u64 data)
3797{
3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800 return dd->sw_send_dma_eng_err_status_cnt[16];
3801}
3802
3803static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3804 void *context, int vl, int mode,
3805 u64 data)
3806{
3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809 return dd->sw_send_dma_eng_err_status_cnt[15];
3810}
3811
3812static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3813 void *context, int vl, int mode,
3814 u64 data)
3815{
3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818 return dd->sw_send_dma_eng_err_status_cnt[14];
3819}
3820
3821static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3822 void *context, int vl, int mode,
3823 u64 data)
3824{
3825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827 return dd->sw_send_dma_eng_err_status_cnt[13];
3828}
3829
3830static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3831 void *context, int vl, int mode,
3832 u64 data)
3833{
3834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836 return dd->sw_send_dma_eng_err_status_cnt[12];
3837}
3838
3839static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3840 void *context, int vl, int mode,
3841 u64 data)
3842{
3843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845 return dd->sw_send_dma_eng_err_status_cnt[11];
3846}
3847
3848static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3849 void *context, int vl, int mode,
3850 u64 data)
3851{
3852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854 return dd->sw_send_dma_eng_err_status_cnt[10];
3855}
3856
3857static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3858 void *context, int vl, int mode,
3859 u64 data)
3860{
3861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863 return dd->sw_send_dma_eng_err_status_cnt[9];
3864}
3865
3866static u64 access_sdma_packet_desc_overflow_err_cnt(
3867 const struct cntr_entry *entry,
3868 void *context, int vl, int mode, u64 data)
3869{
3870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872 return dd->sw_send_dma_eng_err_status_cnt[8];
3873}
3874
3875static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3876 void *context, int vl,
3877 int mode, u64 data)
3878{
3879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881 return dd->sw_send_dma_eng_err_status_cnt[7];
3882}
3883
3884static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3885 void *context, int vl, int mode, u64 data)
3886{
3887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3888
3889 return dd->sw_send_dma_eng_err_status_cnt[6];
3890}
3891
3892static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3893 void *context, int vl, int mode,
3894 u64 data)
3895{
3896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897
3898 return dd->sw_send_dma_eng_err_status_cnt[5];
3899}
3900
3901static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3902 void *context, int vl, int mode,
3903 u64 data)
3904{
3905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906
3907 return dd->sw_send_dma_eng_err_status_cnt[4];
3908}
3909
3910static u64 access_sdma_tail_out_of_bounds_err_cnt(
3911 const struct cntr_entry *entry,
3912 void *context, int vl, int mode, u64 data)
3913{
3914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915
3916 return dd->sw_send_dma_eng_err_status_cnt[3];
3917}
3918
3919static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3920 void *context, int vl, int mode,
3921 u64 data)
3922{
3923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924
3925 return dd->sw_send_dma_eng_err_status_cnt[2];
3926}
3927
3928static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3929 void *context, int vl, int mode,
3930 u64 data)
3931{
3932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934 return dd->sw_send_dma_eng_err_status_cnt[1];
3935}
3936
3937static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3938 void *context, int vl, int mode,
3939 u64 data)
3940{
3941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943 return dd->sw_send_dma_eng_err_status_cnt[0];
3944}
3945
77241056
MM
3946#define def_access_sw_cpu(cntr) \
3947static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3948 void *context, int vl, int mode, u64 data) \
3949{ \
3950 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4eb06882
DD
3951 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3952 ppd->ibport_data.rvp.cntr, vl, \
77241056
MM
3953 mode, data); \
3954}
3955
3956def_access_sw_cpu(rc_acks);
3957def_access_sw_cpu(rc_qacks);
3958def_access_sw_cpu(rc_delayed_comp);
3959
3960#define def_access_ibp_counter(cntr) \
3961static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3962 void *context, int vl, int mode, u64 data) \
3963{ \
3964 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3965 \
3966 if (vl != CNTR_INVALID_VL) \
3967 return 0; \
3968 \
4eb06882 3969 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
77241056
MM
3970 mode, data); \
3971}
3972
3973def_access_ibp_counter(loop_pkts);
3974def_access_ibp_counter(rc_resends);
3975def_access_ibp_counter(rnr_naks);
3976def_access_ibp_counter(other_naks);
3977def_access_ibp_counter(rc_timeouts);
3978def_access_ibp_counter(pkt_drops);
3979def_access_ibp_counter(dmawait);
3980def_access_ibp_counter(rc_seqnak);
3981def_access_ibp_counter(rc_dupreq);
3982def_access_ibp_counter(rdma_seq);
3983def_access_ibp_counter(unaligned);
3984def_access_ibp_counter(seq_naks);
3985
3986static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3987[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3988[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3989 CNTR_NORMAL),
3990[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3991 CNTR_NORMAL),
3992[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3993 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3994 CNTR_NORMAL),
77241056
MM
3995[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
3996 CNTR_NORMAL),
3997[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
3998 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
3999[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4000 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4001[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4002 CNTR_NORMAL),
4003[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4004 CNTR_NORMAL),
4005[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4006 CNTR_NORMAL),
4007[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4008 CNTR_NORMAL),
4009[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4010 CNTR_NORMAL),
4011[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4012 CNTR_NORMAL),
4013[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4014 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4015[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4016 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4017[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4018 CNTR_SYNTH),
4019[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
4020[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4021 CNTR_SYNTH),
4022[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4023 CNTR_SYNTH),
4024[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4025 CNTR_SYNTH),
4026[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4027 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4028[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4029 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4030 CNTR_SYNTH),
4031[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4032 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4033[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4034 CNTR_SYNTH),
4035[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4036 CNTR_SYNTH),
4037[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4038 CNTR_SYNTH),
4039[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4040 CNTR_SYNTH),
4041[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4042 CNTR_SYNTH),
4043[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4044 CNTR_SYNTH),
4045[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4046 CNTR_SYNTH),
4047[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4048 CNTR_SYNTH | CNTR_VL),
4049[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4050 CNTR_SYNTH | CNTR_VL),
4051[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4052[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4053 CNTR_SYNTH | CNTR_VL),
4054[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4055[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4056 CNTR_SYNTH | CNTR_VL),
4057[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4058 CNTR_SYNTH),
4059[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4060 CNTR_SYNTH | CNTR_VL),
4061[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4062 CNTR_SYNTH),
4063[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4064 CNTR_SYNTH | CNTR_VL),
4065[C_DC_TOTAL_CRC] =
4066 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4067 CNTR_SYNTH),
4068[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4069 CNTR_SYNTH),
4070[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4071 CNTR_SYNTH),
4072[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4073 CNTR_SYNTH),
4074[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4075 CNTR_SYNTH),
4076[C_DC_CRC_MULT_LN] =
4077 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4078 CNTR_SYNTH),
4079[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4080 CNTR_SYNTH),
4081[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4082 CNTR_SYNTH),
4083[C_DC_SEQ_CRC_CNT] =
4084 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4085 CNTR_SYNTH),
4086[C_DC_ESC0_ONLY_CNT] =
4087 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4088 CNTR_SYNTH),
4089[C_DC_ESC0_PLUS1_CNT] =
4090 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4091 CNTR_SYNTH),
4092[C_DC_ESC0_PLUS2_CNT] =
4093 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4094 CNTR_SYNTH),
4095[C_DC_REINIT_FROM_PEER_CNT] =
4096 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4097 CNTR_SYNTH),
4098[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4099 CNTR_SYNTH),
4100[C_DC_MISC_FLG_CNT] =
4101 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4102 CNTR_SYNTH),
4103[C_DC_PRF_GOOD_LTP_CNT] =
4104 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4105[C_DC_PRF_ACCEPTED_LTP_CNT] =
4106 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4107 CNTR_SYNTH),
4108[C_DC_PRF_RX_FLIT_CNT] =
4109 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4110[C_DC_PRF_TX_FLIT_CNT] =
4111 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4112[C_DC_PRF_CLK_CNTR] =
4113 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4114[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4115 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4116[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4117 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4118 CNTR_SYNTH),
4119[C_DC_PG_STS_TX_SBE_CNT] =
4120 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4121[C_DC_PG_STS_TX_MBE_CNT] =
4122 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4123 CNTR_SYNTH),
4124[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4125 access_sw_cpu_intr),
4126[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4127 access_sw_cpu_rcv_limit),
4128[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4129 access_sw_vtx_wait),
4130[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4131 access_sw_pio_wait),
4132[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4133 access_sw_kmem_wait),
b421922e
DL
4134[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4135 access_sw_send_schedule),
a699c6c2
VM
4136[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4137 SEND_DMA_DESC_FETCHED_CNT, 0,
4138 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4139 dev_access_u32_csr),
4140[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4141 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4142 access_sde_int_cnt),
4143[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4144 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4145 access_sde_err_cnt),
4146[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4147 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4148 access_sde_idle_int_cnt),
4149[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4150 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4151 access_sde_progress_int_cnt),
2c5b521a
JR
4152/* MISC_ERR_STATUS */
4153[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4154 CNTR_NORMAL,
4155 access_misc_pll_lock_fail_err_cnt),
4156[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4157 CNTR_NORMAL,
4158 access_misc_mbist_fail_err_cnt),
4159[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4160 CNTR_NORMAL,
4161 access_misc_invalid_eep_cmd_err_cnt),
4162[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4163 CNTR_NORMAL,
4164 access_misc_efuse_done_parity_err_cnt),
4165[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4166 CNTR_NORMAL,
4167 access_misc_efuse_write_err_cnt),
4168[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4169 0, CNTR_NORMAL,
4170 access_misc_efuse_read_bad_addr_err_cnt),
4171[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4172 CNTR_NORMAL,
4173 access_misc_efuse_csr_parity_err_cnt),
4174[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4175 CNTR_NORMAL,
4176 access_misc_fw_auth_failed_err_cnt),
4177[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4178 CNTR_NORMAL,
4179 access_misc_key_mismatch_err_cnt),
4180[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4181 CNTR_NORMAL,
4182 access_misc_sbus_write_failed_err_cnt),
4183[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4184 CNTR_NORMAL,
4185 access_misc_csr_write_bad_addr_err_cnt),
4186[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4187 CNTR_NORMAL,
4188 access_misc_csr_read_bad_addr_err_cnt),
4189[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4190 CNTR_NORMAL,
4191 access_misc_csr_parity_err_cnt),
4192/* CceErrStatus */
4193[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4194 CNTR_NORMAL,
4195 access_sw_cce_err_status_aggregated_cnt),
4196[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4197 CNTR_NORMAL,
4198 access_cce_msix_csr_parity_err_cnt),
4199[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4200 CNTR_NORMAL,
4201 access_cce_int_map_unc_err_cnt),
4202[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4203 CNTR_NORMAL,
4204 access_cce_int_map_cor_err_cnt),
4205[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4206 CNTR_NORMAL,
4207 access_cce_msix_table_unc_err_cnt),
4208[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4209 CNTR_NORMAL,
4210 access_cce_msix_table_cor_err_cnt),
4211[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4212 0, CNTR_NORMAL,
4213 access_cce_rxdma_conv_fifo_parity_err_cnt),
4214[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4215 0, CNTR_NORMAL,
4216 access_cce_rcpl_async_fifo_parity_err_cnt),
4217[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4218 CNTR_NORMAL,
4219 access_cce_seg_write_bad_addr_err_cnt),
4220[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4221 CNTR_NORMAL,
4222 access_cce_seg_read_bad_addr_err_cnt),
4223[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4224 CNTR_NORMAL,
4225 access_la_triggered_cnt),
4226[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4227 CNTR_NORMAL,
4228 access_cce_trgt_cpl_timeout_err_cnt),
4229[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4230 CNTR_NORMAL,
4231 access_pcic_receive_parity_err_cnt),
4232[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4233 CNTR_NORMAL,
4234 access_pcic_transmit_back_parity_err_cnt),
4235[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4236 0, CNTR_NORMAL,
4237 access_pcic_transmit_front_parity_err_cnt),
4238[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4239 CNTR_NORMAL,
4240 access_pcic_cpl_dat_q_unc_err_cnt),
4241[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4242 CNTR_NORMAL,
4243 access_pcic_cpl_hd_q_unc_err_cnt),
4244[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4245 CNTR_NORMAL,
4246 access_pcic_post_dat_q_unc_err_cnt),
4247[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4248 CNTR_NORMAL,
4249 access_pcic_post_hd_q_unc_err_cnt),
4250[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4251 CNTR_NORMAL,
4252 access_pcic_retry_sot_mem_unc_err_cnt),
4253[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4254 CNTR_NORMAL,
4255 access_pcic_retry_mem_unc_err),
4256[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4257 CNTR_NORMAL,
4258 access_pcic_n_post_dat_q_parity_err_cnt),
4259[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4260 CNTR_NORMAL,
4261 access_pcic_n_post_h_q_parity_err_cnt),
4262[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4263 CNTR_NORMAL,
4264 access_pcic_cpl_dat_q_cor_err_cnt),
4265[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4266 CNTR_NORMAL,
4267 access_pcic_cpl_hd_q_cor_err_cnt),
4268[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4269 CNTR_NORMAL,
4270 access_pcic_post_dat_q_cor_err_cnt),
4271[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4272 CNTR_NORMAL,
4273 access_pcic_post_hd_q_cor_err_cnt),
4274[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4275 CNTR_NORMAL,
4276 access_pcic_retry_sot_mem_cor_err_cnt),
4277[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4278 CNTR_NORMAL,
4279 access_pcic_retry_mem_cor_err_cnt),
4280[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4281 "CceCli1AsyncFifoDbgParityError", 0, 0,
4282 CNTR_NORMAL,
4283 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4284[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4285 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4286 CNTR_NORMAL,
4287 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4288 ),
4289[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4290 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4291 CNTR_NORMAL,
4292 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4293[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4294 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4295 CNTR_NORMAL,
4296 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4297[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4298 0, CNTR_NORMAL,
4299 access_cce_cli2_async_fifo_parity_err_cnt),
4300[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4301 CNTR_NORMAL,
4302 access_cce_csr_cfg_bus_parity_err_cnt),
4303[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4304 0, CNTR_NORMAL,
4305 access_cce_cli0_async_fifo_parity_err_cnt),
4306[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4307 CNTR_NORMAL,
4308 access_cce_rspd_data_parity_err_cnt),
4309[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4310 CNTR_NORMAL,
4311 access_cce_trgt_access_err_cnt),
4312[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4313 0, CNTR_NORMAL,
4314 access_cce_trgt_async_fifo_parity_err_cnt),
4315[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4316 CNTR_NORMAL,
4317 access_cce_csr_write_bad_addr_err_cnt),
4318[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4319 CNTR_NORMAL,
4320 access_cce_csr_read_bad_addr_err_cnt),
4321[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4322 CNTR_NORMAL,
4323 access_ccs_csr_parity_err_cnt),
4324
4325/* RcvErrStatus */
4326[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4327 CNTR_NORMAL,
4328 access_rx_csr_parity_err_cnt),
4329[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_rx_csr_write_bad_addr_err_cnt),
4332[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4333 CNTR_NORMAL,
4334 access_rx_csr_read_bad_addr_err_cnt),
4335[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_rx_dma_csr_unc_err_cnt),
4338[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_rx_dma_dq_fsm_encoding_err_cnt),
4341[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_rx_dma_eq_fsm_encoding_err_cnt),
4344[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_rx_dma_csr_parity_err_cnt),
4347[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4348 CNTR_NORMAL,
4349 access_rx_rbuf_data_cor_err_cnt),
4350[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4351 CNTR_NORMAL,
4352 access_rx_rbuf_data_unc_err_cnt),
4353[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4354 CNTR_NORMAL,
4355 access_rx_dma_data_fifo_rd_cor_err_cnt),
4356[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4357 CNTR_NORMAL,
4358 access_rx_dma_data_fifo_rd_unc_err_cnt),
4359[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4360 CNTR_NORMAL,
4361 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4362[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4363 CNTR_NORMAL,
4364 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4365[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4366 CNTR_NORMAL,
4367 access_rx_rbuf_desc_part2_cor_err_cnt),
4368[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4369 CNTR_NORMAL,
4370 access_rx_rbuf_desc_part2_unc_err_cnt),
4371[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4372 CNTR_NORMAL,
4373 access_rx_rbuf_desc_part1_cor_err_cnt),
4374[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4375 CNTR_NORMAL,
4376 access_rx_rbuf_desc_part1_unc_err_cnt),
4377[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_rx_hq_intr_fsm_err_cnt),
4380[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4381 CNTR_NORMAL,
4382 access_rx_hq_intr_csr_parity_err_cnt),
4383[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4384 CNTR_NORMAL,
4385 access_rx_lookup_csr_parity_err_cnt),
4386[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_rx_lookup_rcv_array_cor_err_cnt),
4389[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_rx_lookup_rcv_array_unc_err_cnt),
4392[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4393 0, CNTR_NORMAL,
4394 access_rx_lookup_des_part2_parity_err_cnt),
4395[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4396 0, CNTR_NORMAL,
4397 access_rx_lookup_des_part1_unc_cor_err_cnt),
4398[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4399 CNTR_NORMAL,
4400 access_rx_lookup_des_part1_unc_err_cnt),
4401[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4402 CNTR_NORMAL,
4403 access_rx_rbuf_next_free_buf_cor_err_cnt),
4404[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4405 CNTR_NORMAL,
4406 access_rx_rbuf_next_free_buf_unc_err_cnt),
4407[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4408 "RxRbufFlInitWrAddrParityErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4411[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4412 0, CNTR_NORMAL,
4413 access_rx_rbuf_fl_initdone_parity_err_cnt),
4414[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4415 0, CNTR_NORMAL,
4416 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4417[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4420[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_rbuf_empty_err_cnt),
4423[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_rbuf_full_err_cnt),
4426[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4427 CNTR_NORMAL,
4428 access_rbuf_bad_lookup_err_cnt),
4429[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_rbuf_ctx_id_parity_err_cnt),
4432[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rbuf_csr_qeopdw_parity_err_cnt),
4435[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4436 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4437 CNTR_NORMAL,
4438 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4439[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4440 "RxRbufCsrQTlPtrParityErr", 0, 0,
4441 CNTR_NORMAL,
4442 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4443[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4444 0, CNTR_NORMAL,
4445 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4446[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4447 0, CNTR_NORMAL,
4448 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4449[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4450 0, 0, CNTR_NORMAL,
4451 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4452[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4453 0, CNTR_NORMAL,
4454 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4455[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4456 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4457 CNTR_NORMAL,
4458 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4459[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4460 0, CNTR_NORMAL,
4461 access_rx_rbuf_block_list_read_cor_err_cnt),
4462[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4463 0, CNTR_NORMAL,
4464 access_rx_rbuf_block_list_read_unc_err_cnt),
4465[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_rbuf_lookup_des_cor_err_cnt),
4468[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_rbuf_lookup_des_unc_err_cnt),
4471[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4472 "RxRbufLookupDesRegUncCorErr", 0, 0,
4473 CNTR_NORMAL,
4474 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4475[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4478[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4479 CNTR_NORMAL,
4480 access_rx_rbuf_free_list_cor_err_cnt),
4481[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4482 CNTR_NORMAL,
4483 access_rx_rbuf_free_list_unc_err_cnt),
4484[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_rx_rcv_fsm_encoding_err_cnt),
4487[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_rx_dma_flag_cor_err_cnt),
4490[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_dma_flag_unc_err_cnt),
4493[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_rx_dc_sop_eop_parity_err_cnt),
4496[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_rx_rcv_csr_parity_err_cnt),
4499[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rx_rcv_qp_map_table_cor_err_cnt),
4502[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4503 CNTR_NORMAL,
4504 access_rx_rcv_qp_map_table_unc_err_cnt),
4505[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4506 CNTR_NORMAL,
4507 access_rx_rcv_data_cor_err_cnt),
4508[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4509 CNTR_NORMAL,
4510 access_rx_rcv_data_unc_err_cnt),
4511[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4512 CNTR_NORMAL,
4513 access_rx_rcv_hdr_cor_err_cnt),
4514[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4515 CNTR_NORMAL,
4516 access_rx_rcv_hdr_unc_err_cnt),
4517[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4518 CNTR_NORMAL,
4519 access_rx_dc_intf_parity_err_cnt),
4520[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4521 CNTR_NORMAL,
4522 access_rx_dma_csr_cor_err_cnt),
4523/* SendPioErrStatus */
4524[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4525 CNTR_NORMAL,
4526 access_pio_pec_sop_head_parity_err_cnt),
4527[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4528 CNTR_NORMAL,
4529 access_pio_pcc_sop_head_parity_err_cnt),
4530[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4531 0, 0, CNTR_NORMAL,
4532 access_pio_last_returned_cnt_parity_err_cnt),
4533[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4534 0, CNTR_NORMAL,
4535 access_pio_current_free_cnt_parity_err_cnt),
4536[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4537 CNTR_NORMAL,
4538 access_pio_reserved_31_err_cnt),
4539[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4540 CNTR_NORMAL,
4541 access_pio_reserved_30_err_cnt),
4542[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_pio_ppmc_sop_len_err_cnt),
4545[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_pio_ppmc_bqc_mem_parity_err_cnt),
4548[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_pio_vl_fifo_parity_err_cnt),
4551[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_pio_vlf_sop_parity_err_cnt),
4554[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_pio_vlf_v1_len_parity_err_cnt),
4557[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4558 CNTR_NORMAL,
4559 access_pio_block_qw_count_parity_err_cnt),
4560[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4561 CNTR_NORMAL,
4562 access_pio_write_qw_valid_parity_err_cnt),
4563[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4564 CNTR_NORMAL,
4565 access_pio_state_machine_err_cnt),
4566[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4567 CNTR_NORMAL,
4568 access_pio_write_data_parity_err_cnt),
4569[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4570 CNTR_NORMAL,
4571 access_pio_host_addr_mem_cor_err_cnt),
4572[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4573 CNTR_NORMAL,
4574 access_pio_host_addr_mem_unc_err_cnt),
4575[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4576 CNTR_NORMAL,
4577 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4578[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4579 CNTR_NORMAL,
4580 access_pio_init_sm_in_err_cnt),
4581[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4582 CNTR_NORMAL,
4583 access_pio_ppmc_pbl_fifo_err_cnt),
4584[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4585 0, CNTR_NORMAL,
4586 access_pio_credit_ret_fifo_parity_err_cnt),
4587[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4588 CNTR_NORMAL,
4589 access_pio_v1_len_mem_bank1_cor_err_cnt),
4590[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4591 CNTR_NORMAL,
4592 access_pio_v1_len_mem_bank0_cor_err_cnt),
4593[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4594 CNTR_NORMAL,
4595 access_pio_v1_len_mem_bank1_unc_err_cnt),
4596[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4597 CNTR_NORMAL,
4598 access_pio_v1_len_mem_bank0_unc_err_cnt),
4599[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4600 CNTR_NORMAL,
4601 access_pio_sm_pkt_reset_parity_err_cnt),
4602[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4603 CNTR_NORMAL,
4604 access_pio_pkt_evict_fifo_parity_err_cnt),
4605[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4606 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4609[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_sbrdctl_crrel_parity_err_cnt),
4612[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_pio_pec_fifo_parity_err_cnt),
4615[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_pio_pcc_fifo_parity_err_cnt),
4618[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4619 CNTR_NORMAL,
4620 access_pio_sb_mem_fifo1_err_cnt),
4621[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4622 CNTR_NORMAL,
4623 access_pio_sb_mem_fifo0_err_cnt),
4624[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_pio_csr_parity_err_cnt),
4627[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_pio_write_addr_parity_err_cnt),
4630[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_pio_write_bad_ctxt_err_cnt),
4633/* SendDmaErrStatus */
4634[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4635 0, CNTR_NORMAL,
4636 access_sdma_pcie_req_tracking_cor_err_cnt),
4637[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4638 0, CNTR_NORMAL,
4639 access_sdma_pcie_req_tracking_unc_err_cnt),
4640[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4641 CNTR_NORMAL,
4642 access_sdma_csr_parity_err_cnt),
4643[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4644 CNTR_NORMAL,
4645 access_sdma_rpy_tag_err_cnt),
4646/* SendEgressErrStatus */
4647[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4648 CNTR_NORMAL,
4649 access_tx_read_pio_memory_csr_unc_err_cnt),
4650[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4651 0, CNTR_NORMAL,
4652 access_tx_read_sdma_memory_csr_err_cnt),
4653[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4654 CNTR_NORMAL,
4655 access_tx_egress_fifo_cor_err_cnt),
4656[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4657 CNTR_NORMAL,
4658 access_tx_read_pio_memory_cor_err_cnt),
4659[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4660 CNTR_NORMAL,
4661 access_tx_read_sdma_memory_cor_err_cnt),
4662[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4663 CNTR_NORMAL,
4664 access_tx_sb_hdr_cor_err_cnt),
4665[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4666 CNTR_NORMAL,
4667 access_tx_credit_overrun_err_cnt),
4668[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4669 CNTR_NORMAL,
4670 access_tx_launch_fifo8_cor_err_cnt),
4671[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4672 CNTR_NORMAL,
4673 access_tx_launch_fifo7_cor_err_cnt),
4674[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4675 CNTR_NORMAL,
4676 access_tx_launch_fifo6_cor_err_cnt),
4677[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4678 CNTR_NORMAL,
4679 access_tx_launch_fifo5_cor_err_cnt),
4680[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4681 CNTR_NORMAL,
4682 access_tx_launch_fifo4_cor_err_cnt),
4683[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4684 CNTR_NORMAL,
4685 access_tx_launch_fifo3_cor_err_cnt),
4686[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4687 CNTR_NORMAL,
4688 access_tx_launch_fifo2_cor_err_cnt),
4689[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4690 CNTR_NORMAL,
4691 access_tx_launch_fifo1_cor_err_cnt),
4692[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4693 CNTR_NORMAL,
4694 access_tx_launch_fifo0_cor_err_cnt),
4695[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4696 CNTR_NORMAL,
4697 access_tx_credit_return_vl_err_cnt),
4698[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4699 CNTR_NORMAL,
4700 access_tx_hcrc_insertion_err_cnt),
4701[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4702 CNTR_NORMAL,
4703 access_tx_egress_fifo_unc_err_cnt),
4704[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4705 CNTR_NORMAL,
4706 access_tx_read_pio_memory_unc_err_cnt),
4707[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4708 CNTR_NORMAL,
4709 access_tx_read_sdma_memory_unc_err_cnt),
4710[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4711 CNTR_NORMAL,
4712 access_tx_sb_hdr_unc_err_cnt),
4713[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4714 CNTR_NORMAL,
4715 access_tx_credit_return_partiy_err_cnt),
4716[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4717 0, 0, CNTR_NORMAL,
4718 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4719[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4720 0, 0, CNTR_NORMAL,
4721 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4722[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4723 0, 0, CNTR_NORMAL,
4724 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4725[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4726 0, 0, CNTR_NORMAL,
4727 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4728[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4729 0, 0, CNTR_NORMAL,
4730 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4731[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4732 0, 0, CNTR_NORMAL,
4733 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4734[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4735 0, 0, CNTR_NORMAL,
4736 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4737[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4738 0, 0, CNTR_NORMAL,
4739 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4740[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4741 0, 0, CNTR_NORMAL,
4742 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4743[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4744 0, 0, CNTR_NORMAL,
4745 access_tx_sdma15_disallowed_packet_err_cnt),
4746[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4747 0, 0, CNTR_NORMAL,
4748 access_tx_sdma14_disallowed_packet_err_cnt),
4749[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4750 0, 0, CNTR_NORMAL,
4751 access_tx_sdma13_disallowed_packet_err_cnt),
4752[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4753 0, 0, CNTR_NORMAL,
4754 access_tx_sdma12_disallowed_packet_err_cnt),
4755[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4756 0, 0, CNTR_NORMAL,
4757 access_tx_sdma11_disallowed_packet_err_cnt),
4758[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4759 0, 0, CNTR_NORMAL,
4760 access_tx_sdma10_disallowed_packet_err_cnt),
4761[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4762 0, 0, CNTR_NORMAL,
4763 access_tx_sdma9_disallowed_packet_err_cnt),
4764[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4765 0, 0, CNTR_NORMAL,
4766 access_tx_sdma8_disallowed_packet_err_cnt),
4767[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4768 0, 0, CNTR_NORMAL,
4769 access_tx_sdma7_disallowed_packet_err_cnt),
4770[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4771 0, 0, CNTR_NORMAL,
4772 access_tx_sdma6_disallowed_packet_err_cnt),
4773[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4774 0, 0, CNTR_NORMAL,
4775 access_tx_sdma5_disallowed_packet_err_cnt),
4776[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4777 0, 0, CNTR_NORMAL,
4778 access_tx_sdma4_disallowed_packet_err_cnt),
4779[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4780 0, 0, CNTR_NORMAL,
4781 access_tx_sdma3_disallowed_packet_err_cnt),
4782[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4783 0, 0, CNTR_NORMAL,
4784 access_tx_sdma2_disallowed_packet_err_cnt),
4785[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4786 0, 0, CNTR_NORMAL,
4787 access_tx_sdma1_disallowed_packet_err_cnt),
4788[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4789 0, 0, CNTR_NORMAL,
4790 access_tx_sdma0_disallowed_packet_err_cnt),
4791[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4792 CNTR_NORMAL,
4793 access_tx_config_parity_err_cnt),
4794[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4795 CNTR_NORMAL,
4796 access_tx_sbrd_ctl_csr_parity_err_cnt),
4797[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4798 CNTR_NORMAL,
4799 access_tx_launch_csr_parity_err_cnt),
4800[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4801 CNTR_NORMAL,
4802 access_tx_illegal_vl_err_cnt),
4803[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4804 "TxSbrdCtlStateMachineParityErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4807[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4808 CNTR_NORMAL,
4809 access_egress_reserved_10_err_cnt),
4810[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4811 CNTR_NORMAL,
4812 access_egress_reserved_9_err_cnt),
4813[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4814 0, 0, CNTR_NORMAL,
4815 access_tx_sdma_launch_intf_parity_err_cnt),
4816[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_tx_pio_launch_intf_parity_err_cnt),
4819[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4820 CNTR_NORMAL,
4821 access_egress_reserved_6_err_cnt),
4822[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_tx_incorrect_link_state_err_cnt),
4825[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_linkdown_err_cnt),
4828[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4829 "EgressFifoUnderrunOrParityErr", 0, 0,
4830 CNTR_NORMAL,
4831 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4832[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4833 CNTR_NORMAL,
4834 access_egress_reserved_2_err_cnt),
4835[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4836 CNTR_NORMAL,
4837 access_tx_pkt_integrity_mem_unc_err_cnt),
4838[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4839 CNTR_NORMAL,
4840 access_tx_pkt_integrity_mem_cor_err_cnt),
4841/* SendErrStatus */
4842[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4843 CNTR_NORMAL,
4844 access_send_csr_write_bad_addr_err_cnt),
4845[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4846 CNTR_NORMAL,
4847 access_send_csr_read_bad_addr_err_cnt),
4848[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4849 CNTR_NORMAL,
4850 access_send_csr_parity_cnt),
4851/* SendCtxtErrStatus */
4852[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4853 CNTR_NORMAL,
4854 access_pio_write_out_of_bounds_err_cnt),
4855[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4856 CNTR_NORMAL,
4857 access_pio_write_overflow_err_cnt),
4858[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4859 0, 0, CNTR_NORMAL,
4860 access_pio_write_crosses_boundary_err_cnt),
4861[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4862 CNTR_NORMAL,
4863 access_pio_disallowed_packet_err_cnt),
4864[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4865 CNTR_NORMAL,
4866 access_pio_inconsistent_sop_err_cnt),
4867/* SendDmaEngErrStatus */
4868[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4869 0, 0, CNTR_NORMAL,
4870 access_sdma_header_request_fifo_cor_err_cnt),
4871[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4872 CNTR_NORMAL,
4873 access_sdma_header_storage_cor_err_cnt),
4874[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4875 CNTR_NORMAL,
4876 access_sdma_packet_tracking_cor_err_cnt),
4877[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4878 CNTR_NORMAL,
4879 access_sdma_assembly_cor_err_cnt),
4880[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4881 CNTR_NORMAL,
4882 access_sdma_desc_table_cor_err_cnt),
4883[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4884 0, 0, CNTR_NORMAL,
4885 access_sdma_header_request_fifo_unc_err_cnt),
4886[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4887 CNTR_NORMAL,
4888 access_sdma_header_storage_unc_err_cnt),
4889[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4890 CNTR_NORMAL,
4891 access_sdma_packet_tracking_unc_err_cnt),
4892[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4893 CNTR_NORMAL,
4894 access_sdma_assembly_unc_err_cnt),
4895[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4896 CNTR_NORMAL,
4897 access_sdma_desc_table_unc_err_cnt),
4898[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4899 CNTR_NORMAL,
4900 access_sdma_timeout_err_cnt),
4901[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4902 CNTR_NORMAL,
4903 access_sdma_header_length_err_cnt),
4904[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4905 CNTR_NORMAL,
4906 access_sdma_header_address_err_cnt),
4907[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4908 CNTR_NORMAL,
4909 access_sdma_header_select_err_cnt),
4910[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4911 CNTR_NORMAL,
4912 access_sdma_reserved_9_err_cnt),
4913[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4914 CNTR_NORMAL,
4915 access_sdma_packet_desc_overflow_err_cnt),
4916[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4917 CNTR_NORMAL,
4918 access_sdma_length_mismatch_err_cnt),
4919[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4920 CNTR_NORMAL,
4921 access_sdma_halt_err_cnt),
4922[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4923 CNTR_NORMAL,
4924 access_sdma_mem_read_err_cnt),
4925[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4926 CNTR_NORMAL,
4927 access_sdma_first_desc_err_cnt),
4928[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4929 CNTR_NORMAL,
4930 access_sdma_tail_out_of_bounds_err_cnt),
4931[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4932 CNTR_NORMAL,
4933 access_sdma_too_long_err_cnt),
4934[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4935 CNTR_NORMAL,
4936 access_sdma_gen_mismatch_err_cnt),
4937[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4938 CNTR_NORMAL,
4939 access_sdma_wrong_dw_err_cnt),
77241056
MM
4940};
4941
4942static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4943[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4944 CNTR_NORMAL),
4945[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4946 CNTR_NORMAL),
4947[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4948 CNTR_NORMAL),
4949[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4950 CNTR_NORMAL),
4951[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4952 CNTR_NORMAL),
4953[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4954 CNTR_NORMAL),
4955[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4956 CNTR_NORMAL),
4957[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4958[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4959[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4960[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4961 CNTR_SYNTH | CNTR_VL),
4962[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4963 CNTR_SYNTH | CNTR_VL),
4964[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4965 CNTR_SYNTH | CNTR_VL),
4966[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4967[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4968[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4969 access_sw_link_dn_cnt),
4970[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4971 access_sw_link_up_cnt),
6d014530
DL
4972[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4973 access_sw_unknown_frame_cnt),
77241056
MM
4974[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4975 access_sw_xmit_discards),
4976[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
4977 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4978 access_sw_xmit_discards),
4979[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
4980 access_xmit_constraint_errs),
4981[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
4982 access_rcv_constraint_errs),
4983[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4984[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4985[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4986[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4987[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4988[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4989[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4990[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4991[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4992[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
4993[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
4994[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
4995[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
4996 access_sw_cpu_rc_acks),
4997[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
4998 access_sw_cpu_rc_qacks),
4999[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5000 access_sw_cpu_rc_delayed_comp),
5001[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5002[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5003[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5004[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5005[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5006[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5007[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5008[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5009[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5010[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5011[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5012[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5013[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5014[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5015[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5016[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5017[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5018[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5019[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5020[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5021[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5022[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5023[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5024[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5025[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5026[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5027[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5028[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5029[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5030[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5031[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5032[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5033[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5034[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5035[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5036[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5037[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5038[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5039[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5040[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5041[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5042[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5043[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5044[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5045[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5046[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5047[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5048[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5049[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5050[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5051[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5052[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5053[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5054[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5055[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5056[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5057[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5058[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5059[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5060[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5061[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5062[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5063[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5064[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5065[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5066[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5067[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5068[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5069[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5070[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5071[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5072[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5073[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5074[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5075[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5076[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5077[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5078[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5079[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5080[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5081};
5082
5083/* ======================================================================== */
5084
77241056
MM
5085/* return true if this is chip revision revision a */
5086int is_ax(struct hfi1_devdata *dd)
5087{
5088 u8 chip_rev_minor =
5089 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5090 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5091 return (chip_rev_minor & 0xf0) == 0;
5092}
5093
5094/* return true if this is chip revision revision b */
5095int is_bx(struct hfi1_devdata *dd)
5096{
5097 u8 chip_rev_minor =
5098 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5099 & CCE_REVISION_CHIP_REV_MINOR_MASK;
995deafa 5100 return (chip_rev_minor & 0xF0) == 0x10;
77241056
MM
5101}
5102
5103/*
5104 * Append string s to buffer buf. Arguments curp and len are the current
5105 * position and remaining length, respectively.
5106 *
5107 * return 0 on success, 1 on out of room
5108 */
5109static int append_str(char *buf, char **curp, int *lenp, const char *s)
5110{
5111 char *p = *curp;
5112 int len = *lenp;
5113 int result = 0; /* success */
5114 char c;
5115
5116 /* add a comma, if first in the buffer */
5117 if (p != buf) {
5118 if (len == 0) {
5119 result = 1; /* out of room */
5120 goto done;
5121 }
5122 *p++ = ',';
5123 len--;
5124 }
5125
5126 /* copy the string */
5127 while ((c = *s++) != 0) {
5128 if (len == 0) {
5129 result = 1; /* out of room */
5130 goto done;
5131 }
5132 *p++ = c;
5133 len--;
5134 }
5135
5136done:
5137 /* write return values */
5138 *curp = p;
5139 *lenp = len;
5140
5141 return result;
5142}
5143
5144/*
5145 * Using the given flag table, print a comma separated string into
5146 * the buffer. End in '*' if the buffer is too short.
5147 */
5148static char *flag_string(char *buf, int buf_len, u64 flags,
5149 struct flag_table *table, int table_size)
5150{
5151 char extra[32];
5152 char *p = buf;
5153 int len = buf_len;
5154 int no_room = 0;
5155 int i;
5156
5157 /* make sure there is at least 2 so we can form "*" */
5158 if (len < 2)
5159 return "";
5160
5161 len--; /* leave room for a nul */
5162 for (i = 0; i < table_size; i++) {
5163 if (flags & table[i].flag) {
5164 no_room = append_str(buf, &p, &len, table[i].str);
5165 if (no_room)
5166 break;
5167 flags &= ~table[i].flag;
5168 }
5169 }
5170
5171 /* any undocumented bits left? */
5172 if (!no_room && flags) {
5173 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5174 no_room = append_str(buf, &p, &len, extra);
5175 }
5176
5177 /* add * if ran out of room */
5178 if (no_room) {
5179 /* may need to back up to add space for a '*' */
5180 if (len == 0)
5181 --p;
5182 *p++ = '*';
5183 }
5184
5185 /* add final nul - space already allocated above */
5186 *p = 0;
5187 return buf;
5188}
5189
5190/* first 8 CCE error interrupt source names */
5191static const char * const cce_misc_names[] = {
5192 "CceErrInt", /* 0 */
5193 "RxeErrInt", /* 1 */
5194 "MiscErrInt", /* 2 */
5195 "Reserved3", /* 3 */
5196 "PioErrInt", /* 4 */
5197 "SDmaErrInt", /* 5 */
5198 "EgressErrInt", /* 6 */
5199 "TxeErrInt" /* 7 */
5200};
5201
5202/*
5203 * Return the miscellaneous error interrupt name.
5204 */
5205static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5206{
5207 if (source < ARRAY_SIZE(cce_misc_names))
5208 strncpy(buf, cce_misc_names[source], bsize);
5209 else
5210 snprintf(buf,
5211 bsize,
5212 "Reserved%u",
5213 source + IS_GENERAL_ERR_START);
5214
5215 return buf;
5216}
5217
5218/*
5219 * Return the SDMA engine error interrupt name.
5220 */
5221static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5222{
5223 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5224 return buf;
5225}
5226
5227/*
5228 * Return the send context error interrupt name.
5229 */
5230static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5231{
5232 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5233 return buf;
5234}
5235
5236static const char * const various_names[] = {
5237 "PbcInt",
5238 "GpioAssertInt",
5239 "Qsfp1Int",
5240 "Qsfp2Int",
5241 "TCritInt"
5242};
5243
5244/*
5245 * Return the various interrupt name.
5246 */
5247static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5248{
5249 if (source < ARRAY_SIZE(various_names))
5250 strncpy(buf, various_names[source], bsize);
5251 else
5252 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
5253 return buf;
5254}
5255
5256/*
5257 * Return the DC interrupt name.
5258 */
5259static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5260{
5261 static const char * const dc_int_names[] = {
5262 "common",
5263 "lcb",
5264 "8051",
5265 "lbm" /* local block merge */
5266 };
5267
5268 if (source < ARRAY_SIZE(dc_int_names))
5269 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5270 else
5271 snprintf(buf, bsize, "DCInt%u", source);
5272 return buf;
5273}
5274
5275static const char * const sdma_int_names[] = {
5276 "SDmaInt",
5277 "SdmaIdleInt",
5278 "SdmaProgressInt",
5279};
5280
5281/*
5282 * Return the SDMA engine interrupt name.
5283 */
5284static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5285{
5286 /* what interrupt */
5287 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5288 /* which engine */
5289 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5290
5291 if (likely(what < 3))
5292 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5293 else
5294 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5295 return buf;
5296}
5297
5298/*
5299 * Return the receive available interrupt name.
5300 */
5301static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5302{
5303 snprintf(buf, bsize, "RcvAvailInt%u", source);
5304 return buf;
5305}
5306
5307/*
5308 * Return the receive urgent interrupt name.
5309 */
5310static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5311{
5312 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5313 return buf;
5314}
5315
5316/*
5317 * Return the send credit interrupt name.
5318 */
5319static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5320{
5321 snprintf(buf, bsize, "SendCreditInt%u", source);
5322 return buf;
5323}
5324
5325/*
5326 * Return the reserved interrupt name.
5327 */
5328static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5329{
5330 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5331 return buf;
5332}
5333
5334static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5335{
5336 return flag_string(buf, buf_len, flags,
5337 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
5338}
5339
5340static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5341{
5342 return flag_string(buf, buf_len, flags,
5343 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
5344}
5345
5346static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5347{
5348 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5349 ARRAY_SIZE(misc_err_status_flags));
5350}
5351
5352static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5353{
5354 return flag_string(buf, buf_len, flags,
5355 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
5356}
5357
5358static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5359{
5360 return flag_string(buf, buf_len, flags,
5361 sdma_err_status_flags,
5362 ARRAY_SIZE(sdma_err_status_flags));
5363}
5364
5365static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5366{
5367 return flag_string(buf, buf_len, flags,
5368 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
5369}
5370
5371static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5372{
5373 return flag_string(buf, buf_len, flags,
5374 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
5375}
5376
5377static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5378{
5379 return flag_string(buf, buf_len, flags,
5380 send_err_status_flags,
5381 ARRAY_SIZE(send_err_status_flags));
5382}
5383
5384static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5385{
5386 char buf[96];
2c5b521a 5387 int i = 0;
77241056
MM
5388
5389 /*
5390 * For most these errors, there is nothing that can be done except
5391 * report or record it.
5392 */
5393 dd_dev_info(dd, "CCE Error: %s\n",
5394 cce_err_status_string(buf, sizeof(buf), reg));
5395
995deafa
MM
5396 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5397 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
5398 /* this error requires a manual drop into SPC freeze mode */
5399 /* then a fix up */
5400 start_freeze_handling(dd->pport, FREEZE_SELF);
5401 }
2c5b521a
JR
5402
5403 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5404 if (reg & (1ull << i)) {
5405 incr_cntr64(&dd->cce_err_status_cnt[i]);
5406 /* maintain a counter over all cce_err_status errors */
5407 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5408 }
5409 }
77241056
MM
5410}
5411
5412/*
5413 * Check counters for receive errors that do not have an interrupt
5414 * associated with them.
5415 */
5416#define RCVERR_CHECK_TIME 10
5417static void update_rcverr_timer(unsigned long opaque)
5418{
5419 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5420 struct hfi1_pportdata *ppd = dd->pport;
5421 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5422
5423 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5424 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5425 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5426 set_link_down_reason(ppd,
5427 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5428 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5429 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5430 }
5431 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
5432
5433 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5434}
5435
5436static int init_rcverr(struct hfi1_devdata *dd)
5437{
24523a94 5438 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
77241056
MM
5439 /* Assume the hardware counter has been reset */
5440 dd->rcv_ovfl_cnt = 0;
5441 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5442}
5443
5444static void free_rcverr(struct hfi1_devdata *dd)
5445{
5446 if (dd->rcverr_timer.data)
5447 del_timer_sync(&dd->rcverr_timer);
5448 dd->rcverr_timer.data = 0;
5449}
5450
5451static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5452{
5453 char buf[96];
2c5b521a 5454 int i = 0;
77241056
MM
5455
5456 dd_dev_info(dd, "Receive Error: %s\n",
5457 rxe_err_status_string(buf, sizeof(buf), reg));
5458
5459 if (reg & ALL_RXE_FREEZE_ERR) {
5460 int flags = 0;
5461
5462 /*
5463 * Freeze mode recovery is disabled for the errors
5464 * in RXE_FREEZE_ABORT_MASK
5465 */
995deafa 5466 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
77241056
MM
5467 flags = FREEZE_ABORT;
5468
5469 start_freeze_handling(dd->pport, flags);
5470 }
2c5b521a
JR
5471
5472 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5473 if (reg & (1ull << i))
5474 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5475 }
77241056
MM
5476}
5477
5478static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5479{
5480 char buf[96];
2c5b521a 5481 int i = 0;
77241056
MM
5482
5483 dd_dev_info(dd, "Misc Error: %s",
5484 misc_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5485 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5486 if (reg & (1ull << i))
5487 incr_cntr64(&dd->misc_err_status_cnt[i]);
5488 }
77241056
MM
5489}
5490
5491static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5492{
5493 char buf[96];
2c5b521a 5494 int i = 0;
77241056
MM
5495
5496 dd_dev_info(dd, "PIO Error: %s\n",
5497 pio_err_status_string(buf, sizeof(buf), reg));
5498
5499 if (reg & ALL_PIO_FREEZE_ERR)
5500 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5501
5502 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5503 if (reg & (1ull << i))
5504 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5505 }
77241056
MM
5506}
5507
5508static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509{
5510 char buf[96];
2c5b521a 5511 int i = 0;
77241056
MM
5512
5513 dd_dev_info(dd, "SDMA Error: %s\n",
5514 sdma_err_status_string(buf, sizeof(buf), reg));
5515
5516 if (reg & ALL_SDMA_FREEZE_ERR)
5517 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5518
5519 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5520 if (reg & (1ull << i))
5521 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5522 }
77241056
MM
5523}
5524
69a00b8e 5525static inline void __count_port_discards(struct hfi1_pportdata *ppd)
77241056 5526{
69a00b8e
MM
5527 incr_cntr64(&ppd->port_xmit_discards);
5528}
77241056 5529
69a00b8e
MM
5530static void count_port_inactive(struct hfi1_devdata *dd)
5531{
5532 __count_port_discards(dd->pport);
77241056
MM
5533}
5534
5535/*
5536 * We have had a "disallowed packet" error during egress. Determine the
5537 * integrity check which failed, and update relevant error counter, etc.
5538 *
5539 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5540 * bit of state per integrity check, and so we can miss the reason for an
5541 * egress error if more than one packet fails the same integrity check
5542 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5543 */
69a00b8e
MM
5544static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5545 int vl)
77241056
MM
5546{
5547 struct hfi1_pportdata *ppd = dd->pport;
5548 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5549 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5550 char buf[96];
5551
5552 /* clear down all observed info as quickly as possible after read */
5553 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5554
5555 dd_dev_info(dd,
5556 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5557 info, egress_err_info_string(buf, sizeof(buf), info), src);
5558
5559 /* Eventually add other counters for each bit */
69a00b8e
MM
5560 if (info & PORT_DISCARD_EGRESS_ERRS) {
5561 int weight, i;
77241056 5562
69a00b8e
MM
5563 /*
5564 * Count all, in case multiple bits are set. Reminder:
5565 * since there is only one info register for many sources,
5566 * these may be attributed to the wrong VL if they occur
5567 * too close together.
5568 */
5569 weight = hweight64(info);
5570 for (i = 0; i < weight; i++) {
5571 __count_port_discards(ppd);
5572 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5573 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5574 else if (vl == 15)
5575 incr_cntr64(&ppd->port_xmit_discards_vl
5576 [C_VL_15]);
5577 }
77241056
MM
5578 }
5579}
5580
5581/*
5582 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5583 * register. Does it represent a 'port inactive' error?
5584 */
5585static inline int port_inactive_err(u64 posn)
5586{
5587 return (posn >= SEES(TX_LINKDOWN) &&
5588 posn <= SEES(TX_INCORRECT_LINK_STATE));
5589}
5590
5591/*
5592 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5593 * register. Does it represent a 'disallowed packet' error?
5594 */
69a00b8e 5595static inline int disallowed_pkt_err(int posn)
77241056
MM
5596{
5597 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5598 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5599}
5600
69a00b8e
MM
5601/*
5602 * Input value is a bit position of one of the SDMA engine disallowed
5603 * packet errors. Return which engine. Use of this must be guarded by
5604 * disallowed_pkt_err().
5605 */
5606static inline int disallowed_pkt_engine(int posn)
5607{
5608 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5609}
5610
5611/*
5612 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5613 * be done.
5614 */
5615static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5616{
5617 struct sdma_vl_map *m;
5618 int vl;
5619
5620 /* range check */
5621 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5622 return -1;
5623
5624 rcu_read_lock();
5625 m = rcu_dereference(dd->sdma_map);
5626 vl = m->engine_to_vl[engine];
5627 rcu_read_unlock();
5628
5629 return vl;
5630}
5631
5632/*
5633 * Translate the send context (sofware index) into a VL. Return -1 if the
5634 * translation cannot be done.
5635 */
5636static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5637{
5638 struct send_context_info *sci;
5639 struct send_context *sc;
5640 int i;
5641
5642 sci = &dd->send_contexts[sw_index];
5643
5644 /* there is no information for user (PSM) and ack contexts */
5645 if (sci->type != SC_KERNEL)
5646 return -1;
5647
5648 sc = sci->sc;
5649 if (!sc)
5650 return -1;
5651 if (dd->vld[15].sc == sc)
5652 return 15;
5653 for (i = 0; i < num_vls; i++)
5654 if (dd->vld[i].sc == sc)
5655 return i;
5656
5657 return -1;
5658}
5659
77241056
MM
5660static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5661{
5662 u64 reg_copy = reg, handled = 0;
5663 char buf[96];
2c5b521a 5664 int i = 0;
77241056
MM
5665
5666 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5667 start_freeze_handling(dd->pport, 0);
69a00b8e
MM
5668 else if (is_ax(dd) &&
5669 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5670 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
77241056
MM
5671 start_freeze_handling(dd->pport, 0);
5672
5673 while (reg_copy) {
5674 int posn = fls64(reg_copy);
69a00b8e 5675 /* fls64() returns a 1-based offset, we want it zero based */
77241056 5676 int shift = posn - 1;
69a00b8e 5677 u64 mask = 1ULL << shift;
77241056
MM
5678
5679 if (port_inactive_err(shift)) {
5680 count_port_inactive(dd);
69a00b8e 5681 handled |= mask;
77241056 5682 } else if (disallowed_pkt_err(shift)) {
69a00b8e
MM
5683 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5684
5685 handle_send_egress_err_info(dd, vl);
5686 handled |= mask;
77241056 5687 }
69a00b8e 5688 reg_copy &= ~mask;
77241056
MM
5689 }
5690
5691 reg &= ~handled;
5692
5693 if (reg)
5694 dd_dev_info(dd, "Egress Error: %s\n",
5695 egress_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5696
5697 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5698 if (reg & (1ull << i))
5699 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5700 }
77241056
MM
5701}
5702
5703static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5704{
5705 char buf[96];
2c5b521a 5706 int i = 0;
77241056
MM
5707
5708 dd_dev_info(dd, "Send Error: %s\n",
5709 send_err_status_string(buf, sizeof(buf), reg));
5710
2c5b521a
JR
5711 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5712 if (reg & (1ull << i))
5713 incr_cntr64(&dd->send_err_status_cnt[i]);
5714 }
77241056
MM
5715}
5716
5717/*
5718 * The maximum number of times the error clear down will loop before
5719 * blocking a repeating error. This value is arbitrary.
5720 */
5721#define MAX_CLEAR_COUNT 20
5722
5723/*
5724 * Clear and handle an error register. All error interrupts are funneled
5725 * through here to have a central location to correctly handle single-
5726 * or multi-shot errors.
5727 *
5728 * For non per-context registers, call this routine with a context value
5729 * of 0 so the per-context offset is zero.
5730 *
5731 * If the handler loops too many times, assume that something is wrong
5732 * and can't be fixed, so mask the error bits.
5733 */
5734static void interrupt_clear_down(struct hfi1_devdata *dd,
5735 u32 context,
5736 const struct err_reg_info *eri)
5737{
5738 u64 reg;
5739 u32 count;
5740
5741 /* read in a loop until no more errors are seen */
5742 count = 0;
5743 while (1) {
5744 reg = read_kctxt_csr(dd, context, eri->status);
5745 if (reg == 0)
5746 break;
5747 write_kctxt_csr(dd, context, eri->clear, reg);
5748 if (likely(eri->handler))
5749 eri->handler(dd, context, reg);
5750 count++;
5751 if (count > MAX_CLEAR_COUNT) {
5752 u64 mask;
5753
5754 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5755 eri->desc, reg);
5756 /*
5757 * Read-modify-write so any other masked bits
5758 * remain masked.
5759 */
5760 mask = read_kctxt_csr(dd, context, eri->mask);
5761 mask &= ~reg;
5762 write_kctxt_csr(dd, context, eri->mask, mask);
5763 break;
5764 }
5765 }
5766}
5767
5768/*
5769 * CCE block "misc" interrupt. Source is < 16.
5770 */
5771static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5772{
5773 const struct err_reg_info *eri = &misc_errs[source];
5774
5775 if (eri->handler) {
5776 interrupt_clear_down(dd, 0, eri);
5777 } else {
5778 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5779 source);
5780 }
5781}
5782
5783static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5784{
5785 return flag_string(buf, buf_len, flags,
5786 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
5787}
5788
5789/*
5790 * Send context error interrupt. Source (hw_context) is < 160.
5791 *
5792 * All send context errors cause the send context to halt. The normal
5793 * clear-down mechanism cannot be used because we cannot clear the
5794 * error bits until several other long-running items are done first.
5795 * This is OK because with the context halted, nothing else is going
5796 * to happen on it anyway.
5797 */
5798static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5799 unsigned int hw_context)
5800{
5801 struct send_context_info *sci;
5802 struct send_context *sc;
5803 char flags[96];
5804 u64 status;
5805 u32 sw_index;
2c5b521a 5806 int i = 0;
77241056
MM
5807
5808 sw_index = dd->hw_to_sw[hw_context];
5809 if (sw_index >= dd->num_send_contexts) {
5810 dd_dev_err(dd,
5811 "out of range sw index %u for send context %u\n",
5812 sw_index, hw_context);
5813 return;
5814 }
5815 sci = &dd->send_contexts[sw_index];
5816 sc = sci->sc;
5817 if (!sc) {
5818 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5819 sw_index, hw_context);
5820 return;
5821 }
5822
5823 /* tell the software that a halt has begun */
5824 sc_stop(sc, SCF_HALTED);
5825
5826 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5827
5828 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5829 send_context_err_status_string(flags, sizeof(flags), status));
5830
5831 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
69a00b8e 5832 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
77241056
MM
5833
5834 /*
5835 * Automatically restart halted kernel contexts out of interrupt
5836 * context. User contexts must ask the driver to restart the context.
5837 */
5838 if (sc->type != SC_USER)
5839 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2c5b521a
JR
5840
5841 /*
5842 * Update the counters for the corresponding status bits.
5843 * Note that these particular counters are aggregated over all
5844 * 160 contexts.
5845 */
5846 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5847 if (status & (1ull << i))
5848 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5849 }
77241056
MM
5850}
5851
5852static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5853 unsigned int source, u64 status)
5854{
5855 struct sdma_engine *sde;
2c5b521a 5856 int i = 0;
77241056
MM
5857
5858 sde = &dd->per_sdma[source];
5859#ifdef CONFIG_SDMA_VERBOSITY
5860 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5861 slashstrip(__FILE__), __LINE__, __func__);
5862 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5863 sde->this_idx, source, (unsigned long long)status);
5864#endif
a699c6c2 5865 sde->err_cnt++;
77241056 5866 sdma_engine_error(sde, status);
2c5b521a
JR
5867
5868 /*
5869 * Update the counters for the corresponding status bits.
5870 * Note that these particular counters are aggregated over
5871 * all 16 DMA engines.
5872 */
5873 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5874 if (status & (1ull << i))
5875 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5876 }
77241056
MM
5877}
5878
5879/*
5880 * CCE block SDMA error interrupt. Source is < 16.
5881 */
5882static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5883{
5884#ifdef CONFIG_SDMA_VERBOSITY
5885 struct sdma_engine *sde = &dd->per_sdma[source];
5886
5887 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5888 slashstrip(__FILE__), __LINE__, __func__);
5889 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5890 source);
5891 sdma_dumpstate(sde);
5892#endif
5893 interrupt_clear_down(dd, source, &sdma_eng_err);
5894}
5895
5896/*
5897 * CCE block "various" interrupt. Source is < 8.
5898 */
5899static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5900{
5901 const struct err_reg_info *eri = &various_err[source];
5902
5903 /*
5904 * TCritInt cannot go through interrupt_clear_down()
5905 * because it is not a second tier interrupt. The handler
5906 * should be called directly.
5907 */
5908 if (source == TCRIT_INT_SOURCE)
5909 handle_temp_err(dd);
5910 else if (eri->handler)
5911 interrupt_clear_down(dd, 0, eri);
5912 else
5913 dd_dev_info(dd,
5914 "%s: Unimplemented/reserved interrupt %d\n",
5915 __func__, source);
5916}
5917
5918static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5919{
8ebd4cf1 5920 /* src_ctx is always zero */
77241056
MM
5921 struct hfi1_pportdata *ppd = dd->pport;
5922 unsigned long flags;
5923 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5924
5925 if (reg & QSFP_HFI0_MODPRST_N) {
5926
5927 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
5928 __func__);
5929
5930 if (!qsfp_mod_present(ppd)) {
5931 ppd->driver_link_ready = 0;
5932 /*
5933 * Cable removed, reset all our information about the
5934 * cache and cable capabilities
5935 */
5936
5937 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5938 /*
5939 * We don't set cache_refresh_required here as we expect
5940 * an interrupt when a cable is inserted
5941 */
5942 ppd->qsfp_info.cache_valid = 0;
8ebd4cf1
EH
5943 ppd->qsfp_info.reset_needed = 0;
5944 ppd->qsfp_info.limiting_active = 0;
77241056
MM
5945 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5946 flags);
8ebd4cf1
EH
5947 /* Invert the ModPresent pin now to detect plug-in */
5948 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5949 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
a9c05e35
BM
5950
5951 if ((ppd->offline_disabled_reason >
5952 HFI1_ODR_MASK(
5953 OPA_LINKDOWN_REASONLOCAL_MEDIA_NOT_INSTALLED)) ||
5954 (ppd->offline_disabled_reason ==
5955 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
5956 ppd->offline_disabled_reason =
5957 HFI1_ODR_MASK(
5958 OPA_LINKDOWN_REASONLOCAL_MEDIA_NOT_INSTALLED);
5959
77241056
MM
5960 if (ppd->host_link_state == HLS_DN_POLL) {
5961 /*
5962 * The link is still in POLL. This means
5963 * that the normal link down processing
5964 * will not happen. We have to do it here
5965 * before turning the DC off.
5966 */
5967 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5968 }
5969 } else {
5970 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5971 ppd->qsfp_info.cache_valid = 0;
5972 ppd->qsfp_info.cache_refresh_required = 1;
5973 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5974 flags);
5975
8ebd4cf1
EH
5976 /*
5977 * Stop inversion of ModPresent pin to detect
5978 * removal of the cable
5979 */
77241056 5980 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
8ebd4cf1
EH
5981 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5982 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
5983
5984 ppd->offline_disabled_reason =
5985 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
5986 }
5987 }
5988
5989 if (reg & QSFP_HFI0_INT_N) {
5990
5991 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
5992 __func__);
5993 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5994 ppd->qsfp_info.check_interrupt_flags = 1;
77241056
MM
5995 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
5996 }
5997
5998 /* Schedule the QSFP work only if there is a cable attached. */
5999 if (qsfp_mod_present(ppd))
6000 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6001}
6002
6003static int request_host_lcb_access(struct hfi1_devdata *dd)
6004{
6005 int ret;
6006
6007 ret = do_8051_command(dd, HCMD_MISC,
6008 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
6009 NULL);
6010 if (ret != HCMD_SUCCESS) {
6011 dd_dev_err(dd, "%s: command failed with error %d\n",
6012 __func__, ret);
6013 }
6014 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6015}
6016
6017static int request_8051_lcb_access(struct hfi1_devdata *dd)
6018{
6019 int ret;
6020
6021 ret = do_8051_command(dd, HCMD_MISC,
6022 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
6023 NULL);
6024 if (ret != HCMD_SUCCESS) {
6025 dd_dev_err(dd, "%s: command failed with error %d\n",
6026 __func__, ret);
6027 }
6028 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6029}
6030
6031/*
6032 * Set the LCB selector - allow host access. The DCC selector always
6033 * points to the host.
6034 */
6035static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6036{
6037 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6038 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
6039 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6040}
6041
6042/*
6043 * Clear the LCB selector - allow 8051 access. The DCC selector always
6044 * points to the host.
6045 */
6046static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6047{
6048 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6049 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6050}
6051
6052/*
6053 * Acquire LCB access from the 8051. If the host already has access,
6054 * just increment a counter. Otherwise, inform the 8051 that the
6055 * host is taking access.
6056 *
6057 * Returns:
6058 * 0 on success
6059 * -EBUSY if the 8051 has control and cannot be disturbed
6060 * -errno if unable to acquire access from the 8051
6061 */
6062int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6063{
6064 struct hfi1_pportdata *ppd = dd->pport;
6065 int ret = 0;
6066
6067 /*
6068 * Use the host link state lock so the operation of this routine
6069 * { link state check, selector change, count increment } can occur
6070 * as a unit against a link state change. Otherwise there is a
6071 * race between the state change and the count increment.
6072 */
6073 if (sleep_ok) {
6074 mutex_lock(&ppd->hls_lock);
6075 } else {
951842b0 6076 while (!mutex_trylock(&ppd->hls_lock))
77241056
MM
6077 udelay(1);
6078 }
6079
6080 /* this access is valid only when the link is up */
6081 if ((ppd->host_link_state & HLS_UP) == 0) {
6082 dd_dev_info(dd, "%s: link state %s not up\n",
6083 __func__, link_state_name(ppd->host_link_state));
6084 ret = -EBUSY;
6085 goto done;
6086 }
6087
6088 if (dd->lcb_access_count == 0) {
6089 ret = request_host_lcb_access(dd);
6090 if (ret) {
6091 dd_dev_err(dd,
6092 "%s: unable to acquire LCB access, err %d\n",
6093 __func__, ret);
6094 goto done;
6095 }
6096 set_host_lcb_access(dd);
6097 }
6098 dd->lcb_access_count++;
6099done:
6100 mutex_unlock(&ppd->hls_lock);
6101 return ret;
6102}
6103
6104/*
6105 * Release LCB access by decrementing the use count. If the count is moving
6106 * from 1 to 0, inform 8051 that it has control back.
6107 *
6108 * Returns:
6109 * 0 on success
6110 * -errno if unable to release access to the 8051
6111 */
6112int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6113{
6114 int ret = 0;
6115
6116 /*
6117 * Use the host link state lock because the acquire needed it.
6118 * Here, we only need to keep { selector change, count decrement }
6119 * as a unit.
6120 */
6121 if (sleep_ok) {
6122 mutex_lock(&dd->pport->hls_lock);
6123 } else {
951842b0 6124 while (!mutex_trylock(&dd->pport->hls_lock))
77241056
MM
6125 udelay(1);
6126 }
6127
6128 if (dd->lcb_access_count == 0) {
6129 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6130 __func__);
6131 goto done;
6132 }
6133
6134 if (dd->lcb_access_count == 1) {
6135 set_8051_lcb_access(dd);
6136 ret = request_8051_lcb_access(dd);
6137 if (ret) {
6138 dd_dev_err(dd,
6139 "%s: unable to release LCB access, err %d\n",
6140 __func__, ret);
6141 /* restore host access if the grant didn't work */
6142 set_host_lcb_access(dd);
6143 goto done;
6144 }
6145 }
6146 dd->lcb_access_count--;
6147done:
6148 mutex_unlock(&dd->pport->hls_lock);
6149 return ret;
6150}
6151
6152/*
6153 * Initialize LCB access variables and state. Called during driver load,
6154 * after most of the initialization is finished.
6155 *
6156 * The DC default is LCB access on for the host. The driver defaults to
6157 * leaving access to the 8051. Assign access now - this constrains the call
6158 * to this routine to be after all LCB set-up is done. In particular, after
6159 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6160 */
6161static void init_lcb_access(struct hfi1_devdata *dd)
6162{
6163 dd->lcb_access_count = 0;
6164}
6165
6166/*
6167 * Write a response back to a 8051 request.
6168 */
6169static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6170{
6171 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6172 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
6173 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
6174 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6175}
6176
6177/*
cbac386a
EH
6178 * Handle host requests from the 8051.
6179 *
6180 * This is a work-queue function outside of the interrupt.
77241056 6181 */
cbac386a 6182void handle_8051_request(struct work_struct *work)
77241056 6183{
cbac386a
EH
6184 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6185 dc_host_req_work);
6186 struct hfi1_devdata *dd = ppd->dd;
77241056 6187 u64 reg;
cbac386a
EH
6188 u16 data = 0;
6189 u8 type, i, lanes, *cache = ppd->qsfp_info.cache;
6190 u8 cdr_ctrl_byte = cache[QSFP_CDR_CTRL_BYTE_OFFS];
77241056
MM
6191
6192 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6193 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6194 return; /* no request */
6195
6196 /* zero out COMPLETED so the response is seen */
6197 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6198
6199 /* extract request details */
6200 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6201 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6202 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6203 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6204
6205 switch (type) {
6206 case HREQ_LOAD_CONFIG:
6207 case HREQ_SAVE_CONFIG:
6208 case HREQ_READ_CONFIG:
6209 case HREQ_SET_TX_EQ_ABS:
6210 case HREQ_SET_TX_EQ_REL:
77241056
MM
6211 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6212 type);
6213 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6214 break;
6215
cbac386a
EH
6216 case HREQ_ENABLE:
6217 lanes = data & 0xF;
6218 for (i = 0; lanes; lanes >>= 1, i++) {
6219 if (!(lanes & 1))
6220 continue;
6221 if (data & 0x200) {
6222 /* enable TX CDR */
6223 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6224 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6225 cdr_ctrl_byte |= (1 << (i + 4));
6226 } else {
6227 /* disable TX CDR */
6228 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6229 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6230 cdr_ctrl_byte &= ~(1 << (i + 4));
6231 }
6232
6233 if (data & 0x800) {
6234 /* enable RX CDR */
6235 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6236 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6237 cdr_ctrl_byte |= (1 << i);
6238 } else {
6239 /* disable RX CDR */
6240 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6241 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6242 cdr_ctrl_byte &= ~(1 << i);
6243 }
6244 }
6245 qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_CDR_CTRL_BYTE_OFFS,
6246 &cdr_ctrl_byte, 1);
6247 hreq_response(dd, HREQ_SUCCESS, data);
6248 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
6249 break;
6250
77241056
MM
6251 case HREQ_CONFIG_DONE:
6252 hreq_response(dd, HREQ_SUCCESS, 0);
6253 break;
6254
6255 case HREQ_INTERFACE_TEST:
6256 hreq_response(dd, HREQ_SUCCESS, data);
6257 break;
6258
6259 default:
6260 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6261 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6262 break;
6263 }
6264}
6265
6266static void write_global_credit(struct hfi1_devdata *dd,
6267 u8 vau, u16 total, u16 shared)
6268{
6269 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6270 ((u64)total
6271 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6272 | ((u64)shared
6273 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6274 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6275}
6276
6277/*
6278 * Set up initial VL15 credits of the remote. Assumes the rest of
6279 * the CM credit registers are zero from a previous global or credit reset .
6280 */
6281void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6282{
6283 /* leave shared count at zero for both global and VL15 */
6284 write_global_credit(dd, vau, vl15buf, 0);
6285
6286 /* We may need some credits for another VL when sending packets
6287 * with the snoop interface. Dividing it down the middle for VL15
6288 * and VL0 should suffice.
6289 */
6290 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6291 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6292 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6293 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6294 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6295 } else {
6296 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6297 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6298 }
6299}
6300
6301/*
6302 * Zero all credit details from the previous connection and
6303 * reset the CM manager's internal counters.
6304 */
6305void reset_link_credits(struct hfi1_devdata *dd)
6306{
6307 int i;
6308
6309 /* remove all previous VL credit limits */
6310 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6311 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
6312 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6313 write_global_credit(dd, 0, 0, 0);
6314 /* reset the CM block */
6315 pio_send_control(dd, PSC_CM_RESET);
6316}
6317
6318/* convert a vCU to a CU */
6319static u32 vcu_to_cu(u8 vcu)
6320{
6321 return 1 << vcu;
6322}
6323
6324/* convert a CU to a vCU */
6325static u8 cu_to_vcu(u32 cu)
6326{
6327 return ilog2(cu);
6328}
6329
6330/* convert a vAU to an AU */
6331static u32 vau_to_au(u8 vau)
6332{
6333 return 8 * (1 << vau);
6334}
6335
6336static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6337{
6338 ppd->sm_trap_qp = 0x0;
6339 ppd->sa_qp = 0x1;
6340}
6341
6342/*
6343 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6344 */
6345static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6346{
6347 u64 reg;
6348
6349 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6350 write_csr(dd, DC_LCB_CFG_RUN, 0);
6351 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6352 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6353 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6354 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6355 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6356 reg = read_csr(dd, DCC_CFG_RESET);
6357 write_csr(dd, DCC_CFG_RESET,
6358 reg
6359 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
6360 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6361 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6362 if (!abort) {
6363 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6364 write_csr(dd, DCC_CFG_RESET, reg);
6365 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6366 }
6367}
6368
6369/*
6370 * This routine should be called after the link has been transitioned to
6371 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6372 * reset).
6373 *
6374 * The expectation is that the caller of this routine would have taken
6375 * care of properly transitioning the link into the correct state.
6376 */
6377static void dc_shutdown(struct hfi1_devdata *dd)
6378{
6379 unsigned long flags;
6380
6381 spin_lock_irqsave(&dd->dc8051_lock, flags);
6382 if (dd->dc_shutdown) {
6383 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6384 return;
6385 }
6386 dd->dc_shutdown = 1;
6387 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6388 /* Shutdown the LCB */
6389 lcb_shutdown(dd, 1);
6390 /* Going to OFFLINE would have causes the 8051 to put the
6391 * SerDes into reset already. Just need to shut down the 8051,
6392 * itself. */
6393 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6394}
6395
6396/* Calling this after the DC has been brought out of reset should not
6397 * do any damage. */
6398static void dc_start(struct hfi1_devdata *dd)
6399{
6400 unsigned long flags;
6401 int ret;
6402
6403 spin_lock_irqsave(&dd->dc8051_lock, flags);
6404 if (!dd->dc_shutdown)
6405 goto done;
6406 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6407 /* Take the 8051 out of reset */
6408 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6409 /* Wait until 8051 is ready */
6410 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6411 if (ret) {
6412 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6413 __func__);
6414 }
6415 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6416 write_csr(dd, DCC_CFG_RESET, 0x10);
6417 /* lcb_shutdown() with abort=1 does not restore these */
6418 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6419 spin_lock_irqsave(&dd->dc8051_lock, flags);
6420 dd->dc_shutdown = 0;
6421done:
6422 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6423}
6424
6425/*
6426 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6427 */
6428static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6429{
6430 u64 rx_radr, tx_radr;
6431 u32 version;
6432
6433 if (dd->icode != ICODE_FPGA_EMULATION)
6434 return;
6435
6436 /*
6437 * These LCB defaults on emulator _s are good, nothing to do here:
6438 * LCB_CFG_TX_FIFOS_RADR
6439 * LCB_CFG_RX_FIFOS_RADR
6440 * LCB_CFG_LN_DCLK
6441 * LCB_CFG_IGNORE_LOST_RCLK
6442 */
6443 if (is_emulator_s(dd))
6444 return;
6445 /* else this is _p */
6446
6447 version = emulator_rev(dd);
995deafa 6448 if (!is_ax(dd))
77241056
MM
6449 version = 0x2d; /* all B0 use 0x2d or higher settings */
6450
6451 if (version <= 0x12) {
6452 /* release 0x12 and below */
6453
6454 /*
6455 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6456 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6457 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6458 */
6459 rx_radr =
6460 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6461 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6462 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6463 /*
6464 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6465 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6466 */
6467 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6468 } else if (version <= 0x18) {
6469 /* release 0x13 up to 0x18 */
6470 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6471 rx_radr =
6472 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6473 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6474 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6475 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6476 } else if (version == 0x19) {
6477 /* release 0x19 */
6478 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6479 rx_radr =
6480 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6481 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6482 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6483 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6484 } else if (version == 0x1a) {
6485 /* release 0x1a */
6486 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6487 rx_radr =
6488 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6489 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6490 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6491 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6492 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6493 } else {
6494 /* release 0x1b and higher */
6495 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6496 rx_radr =
6497 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6498 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6499 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6500 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6501 }
6502
6503 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6504 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6505 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6506 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6507 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6508}
6509
6510/*
6511 * Handle a SMA idle message
6512 *
6513 * This is a work-queue function outside of the interrupt.
6514 */
6515void handle_sma_message(struct work_struct *work)
6516{
6517 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6518 sma_message_work);
6519 struct hfi1_devdata *dd = ppd->dd;
6520 u64 msg;
6521 int ret;
6522
6523 /* msg is bytes 1-4 of the 40-bit idle message - the command code
6524 is stripped off */
6525 ret = read_idle_sma(dd, &msg);
6526 if (ret)
6527 return;
6528 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6529 /*
6530 * React to the SMA message. Byte[1] (0 for us) is the command.
6531 */
6532 switch (msg & 0xff) {
6533 case SMA_IDLE_ARM:
6534 /*
6535 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6536 * State Transitions
6537 *
6538 * Only expected in INIT or ARMED, discard otherwise.
6539 */
6540 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6541 ppd->neighbor_normal = 1;
6542 break;
6543 case SMA_IDLE_ACTIVE:
6544 /*
6545 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6546 * State Transitions
6547 *
6548 * Can activate the node. Discard otherwise.
6549 */
6550 if (ppd->host_link_state == HLS_UP_ARMED
6551 && ppd->is_active_optimize_enabled) {
6552 ppd->neighbor_normal = 1;
6553 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6554 if (ret)
6555 dd_dev_err(
6556 dd,
6557 "%s: received Active SMA idle message, couldn't set link to Active\n",
6558 __func__);
6559 }
6560 break;
6561 default:
6562 dd_dev_err(dd,
6563 "%s: received unexpected SMA idle message 0x%llx\n",
6564 __func__, msg);
6565 break;
6566 }
6567}
6568
6569static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6570{
6571 u64 rcvctrl;
6572 unsigned long flags;
6573
6574 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6575 rcvctrl = read_csr(dd, RCV_CTRL);
6576 rcvctrl |= add;
6577 rcvctrl &= ~clear;
6578 write_csr(dd, RCV_CTRL, rcvctrl);
6579 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6580}
6581
6582static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6583{
6584 adjust_rcvctrl(dd, add, 0);
6585}
6586
6587static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6588{
6589 adjust_rcvctrl(dd, 0, clear);
6590}
6591
6592/*
6593 * Called from all interrupt handlers to start handling an SPC freeze.
6594 */
6595void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6596{
6597 struct hfi1_devdata *dd = ppd->dd;
6598 struct send_context *sc;
6599 int i;
6600
6601 if (flags & FREEZE_SELF)
6602 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6603
6604 /* enter frozen mode */
6605 dd->flags |= HFI1_FROZEN;
6606
6607 /* notify all SDMA engines that they are going into a freeze */
6608 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6609
6610 /* do halt pre-handling on all enabled send contexts */
6611 for (i = 0; i < dd->num_send_contexts; i++) {
6612 sc = dd->send_contexts[i].sc;
6613 if (sc && (sc->flags & SCF_ENABLED))
6614 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6615 }
6616
6617 /* Send context are frozen. Notify user space */
6618 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6619
6620 if (flags & FREEZE_ABORT) {
6621 dd_dev_err(dd,
6622 "Aborted freeze recovery. Please REBOOT system\n");
6623 return;
6624 }
6625 /* queue non-interrupt handler */
6626 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6627}
6628
6629/*
6630 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6631 * depending on the "freeze" parameter.
6632 *
6633 * No need to return an error if it times out, our only option
6634 * is to proceed anyway.
6635 */
6636static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6637{
6638 unsigned long timeout;
6639 u64 reg;
6640
6641 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6642 while (1) {
6643 reg = read_csr(dd, CCE_STATUS);
6644 if (freeze) {
6645 /* waiting until all indicators are set */
6646 if ((reg & ALL_FROZE) == ALL_FROZE)
6647 return; /* all done */
6648 } else {
6649 /* waiting until all indicators are clear */
6650 if ((reg & ALL_FROZE) == 0)
6651 return; /* all done */
6652 }
6653
6654 if (time_after(jiffies, timeout)) {
6655 dd_dev_err(dd,
6656 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6657 freeze ? "" : "un",
6658 reg & ALL_FROZE,
6659 freeze ? ALL_FROZE : 0ull);
6660 return;
6661 }
6662 usleep_range(80, 120);
6663 }
6664}
6665
6666/*
6667 * Do all freeze handling for the RXE block.
6668 */
6669static void rxe_freeze(struct hfi1_devdata *dd)
6670{
6671 int i;
6672
6673 /* disable port */
6674 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6675
6676 /* disable all receive contexts */
6677 for (i = 0; i < dd->num_rcv_contexts; i++)
6678 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6679}
6680
6681/*
6682 * Unfreeze handling for the RXE block - kernel contexts only.
6683 * This will also enable the port. User contexts will do unfreeze
6684 * handling on a per-context basis as they call into the driver.
6685 *
6686 */
6687static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6688{
566c157c 6689 u32 rcvmask;
77241056
MM
6690 int i;
6691
6692 /* enable all kernel contexts */
566c157c
MH
6693 for (i = 0; i < dd->n_krcv_queues; i++) {
6694 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6695 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6696 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6697 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6698 hfi1_rcvctrl(dd, rcvmask, i);
6699 }
77241056
MM
6700
6701 /* enable port */
6702 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6703}
6704
6705/*
6706 * Non-interrupt SPC freeze handling.
6707 *
6708 * This is a work-queue function outside of the triggering interrupt.
6709 */
6710void handle_freeze(struct work_struct *work)
6711{
6712 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6713 freeze_work);
6714 struct hfi1_devdata *dd = ppd->dd;
6715
6716 /* wait for freeze indicators on all affected blocks */
77241056
MM
6717 wait_for_freeze_status(dd, 1);
6718
6719 /* SPC is now frozen */
6720
6721 /* do send PIO freeze steps */
6722 pio_freeze(dd);
6723
6724 /* do send DMA freeze steps */
6725 sdma_freeze(dd);
6726
6727 /* do send egress freeze steps - nothing to do */
6728
6729 /* do receive freeze steps */
6730 rxe_freeze(dd);
6731
6732 /*
6733 * Unfreeze the hardware - clear the freeze, wait for each
6734 * block's frozen bit to clear, then clear the frozen flag.
6735 */
6736 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6737 wait_for_freeze_status(dd, 0);
6738
995deafa 6739 if (is_ax(dd)) {
77241056
MM
6740 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6741 wait_for_freeze_status(dd, 1);
6742 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6743 wait_for_freeze_status(dd, 0);
6744 }
6745
6746 /* do send PIO unfreeze steps for kernel contexts */
6747 pio_kernel_unfreeze(dd);
6748
6749 /* do send DMA unfreeze steps */
6750 sdma_unfreeze(dd);
6751
6752 /* do send egress unfreeze steps - nothing to do */
6753
6754 /* do receive unfreeze steps for kernel contexts */
6755 rxe_kernel_unfreeze(dd);
6756
6757 /*
6758 * The unfreeze procedure touches global device registers when
6759 * it disables and re-enables RXE. Mark the device unfrozen
6760 * after all that is done so other parts of the driver waiting
6761 * for the device to unfreeze don't do things out of order.
6762 *
6763 * The above implies that the meaning of HFI1_FROZEN flag is
6764 * "Device has gone into freeze mode and freeze mode handling
6765 * is still in progress."
6766 *
6767 * The flag will be removed when freeze mode processing has
6768 * completed.
6769 */
6770 dd->flags &= ~HFI1_FROZEN;
6771 wake_up(&dd->event_queue);
6772
6773 /* no longer frozen */
77241056
MM
6774}
6775
6776/*
6777 * Handle a link up interrupt from the 8051.
6778 *
6779 * This is a work-queue function outside of the interrupt.
6780 */
6781void handle_link_up(struct work_struct *work)
6782{
6783 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6784 link_up_work);
6785 set_link_state(ppd, HLS_UP_INIT);
6786
6787 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6788 read_ltp_rtt(ppd->dd);
6789 /*
6790 * OPA specifies that certain counters are cleared on a transition
6791 * to link up, so do that.
6792 */
6793 clear_linkup_counters(ppd->dd);
6794 /*
6795 * And (re)set link up default values.
6796 */
6797 set_linkup_defaults(ppd);
6798
6799 /* enforce link speed enabled */
6800 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6801 /* oops - current speed is not enabled, bounce */
6802 dd_dev_err(ppd->dd,
6803 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6804 ppd->link_speed_active, ppd->link_speed_enabled);
6805 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6806 OPA_LINKDOWN_REASON_SPEED_POLICY);
6807 set_link_state(ppd, HLS_DN_OFFLINE);
8ebd4cf1 6808 tune_serdes(ppd);
77241056
MM
6809 start_link(ppd);
6810 }
6811}
6812
6813/* Several pieces of LNI information were cached for SMA in ppd.
6814 * Reset these on link down */
6815static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6816{
6817 ppd->neighbor_guid = 0;
6818 ppd->neighbor_port_number = 0;
6819 ppd->neighbor_type = 0;
6820 ppd->neighbor_fm_security = 0;
6821}
6822
6823/*
6824 * Handle a link down interrupt from the 8051.
6825 *
6826 * This is a work-queue function outside of the interrupt.
6827 */
6828void handle_link_down(struct work_struct *work)
6829{
6830 u8 lcl_reason, neigh_reason = 0;
6831 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6832 link_down_work);
6833
8ebd4cf1
EH
6834 if ((ppd->host_link_state &
6835 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6836 ppd->port_type == PORT_TYPE_FIXED)
6837 ppd->offline_disabled_reason =
6838 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6839
6840 /* Go offline first, then deal with reading/writing through 8051 */
77241056
MM
6841 set_link_state(ppd, HLS_DN_OFFLINE);
6842
6843 lcl_reason = 0;
6844 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6845
6846 /*
6847 * If no reason, assume peer-initiated but missed
6848 * LinkGoingDown idle flits.
6849 */
6850 if (neigh_reason == 0)
6851 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6852
6853 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6854
6855 reset_neighbor_info(ppd);
6856
6857 /* disable the port */
6858 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6859
6860 /* If there is no cable attached, turn the DC off. Otherwise,
6861 * start the link bring up. */
8ebd4cf1 6862 if (!qsfp_mod_present(ppd)) {
77241056 6863 dc_shutdown(ppd->dd);
8ebd4cf1
EH
6864 } else {
6865 tune_serdes(ppd);
77241056 6866 start_link(ppd);
8ebd4cf1 6867 }
77241056
MM
6868}
6869
6870void handle_link_bounce(struct work_struct *work)
6871{
6872 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6873 link_bounce_work);
6874
6875 /*
6876 * Only do something if the link is currently up.
6877 */
6878 if (ppd->host_link_state & HLS_UP) {
6879 set_link_state(ppd, HLS_DN_OFFLINE);
8ebd4cf1 6880 tune_serdes(ppd);
77241056
MM
6881 start_link(ppd);
6882 } else {
6883 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
6884 __func__, link_state_name(ppd->host_link_state));
6885 }
6886}
6887
6888/*
6889 * Mask conversion: Capability exchange to Port LTP. The capability
6890 * exchange has an implicit 16b CRC that is mandatory.
6891 */
6892static int cap_to_port_ltp(int cap)
6893{
6894 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6895
6896 if (cap & CAP_CRC_14B)
6897 port_ltp |= PORT_LTP_CRC_MODE_14;
6898 if (cap & CAP_CRC_48B)
6899 port_ltp |= PORT_LTP_CRC_MODE_48;
6900 if (cap & CAP_CRC_12B_16B_PER_LANE)
6901 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6902
6903 return port_ltp;
6904}
6905
6906/*
6907 * Convert an OPA Port LTP mask to capability mask
6908 */
6909int port_ltp_to_cap(int port_ltp)
6910{
6911 int cap_mask = 0;
6912
6913 if (port_ltp & PORT_LTP_CRC_MODE_14)
6914 cap_mask |= CAP_CRC_14B;
6915 if (port_ltp & PORT_LTP_CRC_MODE_48)
6916 cap_mask |= CAP_CRC_48B;
6917 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6918 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6919
6920 return cap_mask;
6921}
6922
6923/*
6924 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6925 */
6926static int lcb_to_port_ltp(int lcb_crc)
6927{
6928 int port_ltp = 0;
6929
6930 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6931 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6932 else if (lcb_crc == LCB_CRC_48B)
6933 port_ltp = PORT_LTP_CRC_MODE_48;
6934 else if (lcb_crc == LCB_CRC_14B)
6935 port_ltp = PORT_LTP_CRC_MODE_14;
6936 else
6937 port_ltp = PORT_LTP_CRC_MODE_16;
6938
6939 return port_ltp;
6940}
6941
6942/*
6943 * Our neighbor has indicated that we are allowed to act as a fabric
6944 * manager, so place the full management partition key in the second
6945 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6946 * that we should already have the limited management partition key in
6947 * array element 1, and also that the port is not yet up when
6948 * add_full_mgmt_pkey() is invoked.
6949 */
6950static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6951{
6952 struct hfi1_devdata *dd = ppd->dd;
6953
8764522e
DL
6954 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6955 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6956 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6957 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
77241056
MM
6958 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6959 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6960}
6961
6962/*
6963 * Convert the given link width to the OPA link width bitmask.
6964 */
6965static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6966{
6967 switch (width) {
6968 case 0:
6969 /*
6970 * Simulator and quick linkup do not set the width.
6971 * Just set it to 4x without complaint.
6972 */
6973 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
6974 return OPA_LINK_WIDTH_4X;
6975 return 0; /* no lanes up */
6976 case 1: return OPA_LINK_WIDTH_1X;
6977 case 2: return OPA_LINK_WIDTH_2X;
6978 case 3: return OPA_LINK_WIDTH_3X;
6979 default:
6980 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
6981 __func__, width);
6982 /* fall through */
6983 case 4: return OPA_LINK_WIDTH_4X;
6984 }
6985}
6986
6987/*
6988 * Do a population count on the bottom nibble.
6989 */
6990static const u8 bit_counts[16] = {
6991 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
6992};
6993static inline u8 nibble_to_count(u8 nibble)
6994{
6995 return bit_counts[nibble & 0xf];
6996}
6997
6998/*
6999 * Read the active lane information from the 8051 registers and return
7000 * their widths.
7001 *
7002 * Active lane information is found in these 8051 registers:
7003 * enable_lane_tx
7004 * enable_lane_rx
7005 */
7006static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7007 u16 *rx_width)
7008{
7009 u16 tx, rx;
7010 u8 enable_lane_rx;
7011 u8 enable_lane_tx;
7012 u8 tx_polarity_inversion;
7013 u8 rx_polarity_inversion;
7014 u8 max_rate;
7015
7016 /* read the active lanes */
7017 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7018 &rx_polarity_inversion, &max_rate);
7019 read_local_lni(dd, &enable_lane_rx);
7020
7021 /* convert to counts */
7022 tx = nibble_to_count(enable_lane_tx);
7023 rx = nibble_to_count(enable_lane_rx);
7024
7025 /*
7026 * Set link_speed_active here, overriding what was set in
7027 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7028 * set the max_rate field in handle_verify_cap until v0.19.
7029 */
7030 if ((dd->icode == ICODE_RTL_SILICON)
7031 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
7032 /* max_rate: 0 = 12.5G, 1 = 25G */
7033 switch (max_rate) {
7034 case 0:
7035 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7036 break;
7037 default:
7038 dd_dev_err(dd,
7039 "%s: unexpected max rate %d, using 25Gb\n",
7040 __func__, (int)max_rate);
7041 /* fall through */
7042 case 1:
7043 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7044 break;
7045 }
7046 }
7047
7048 dd_dev_info(dd,
7049 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7050 enable_lane_tx, tx, enable_lane_rx, rx);
7051 *tx_width = link_width_to_bits(dd, tx);
7052 *rx_width = link_width_to_bits(dd, rx);
7053}
7054
7055/*
7056 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7057 * Valid after the end of VerifyCap and during LinkUp. Does not change
7058 * after link up. I.e. look elsewhere for downgrade information.
7059 *
7060 * Bits are:
7061 * + bits [7:4] contain the number of active transmitters
7062 * + bits [3:0] contain the number of active receivers
7063 * These are numbers 1 through 4 and can be different values if the
7064 * link is asymmetric.
7065 *
7066 * verify_cap_local_fm_link_width[0] retains its original value.
7067 */
7068static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7069 u16 *rx_width)
7070{
7071 u16 widths, tx, rx;
7072 u8 misc_bits, local_flags;
7073 u16 active_tx, active_rx;
7074
7075 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7076 tx = widths >> 12;
7077 rx = (widths >> 8) & 0xf;
7078
7079 *tx_width = link_width_to_bits(dd, tx);
7080 *rx_width = link_width_to_bits(dd, rx);
7081
7082 /* print the active widths */
7083 get_link_widths(dd, &active_tx, &active_rx);
7084}
7085
7086/*
7087 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7088 * hardware information when the link first comes up.
7089 *
7090 * The link width is not available until after VerifyCap.AllFramesReceived
7091 * (the trigger for handle_verify_cap), so this is outside that routine
7092 * and should be called when the 8051 signals linkup.
7093 */
7094void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7095{
7096 u16 tx_width, rx_width;
7097
7098 /* get end-of-LNI link widths */
7099 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7100
7101 /* use tx_width as the link is supposed to be symmetric on link up */
7102 ppd->link_width_active = tx_width;
7103 /* link width downgrade active (LWD.A) starts out matching LW.A */
7104 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7105 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7106 /* per OPA spec, on link up LWD.E resets to LWD.S */
7107 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7108 /* cache the active egress rate (units {10^6 bits/sec]) */
7109 ppd->current_egress_rate = active_egress_rate(ppd);
7110}
7111
7112/*
7113 * Handle a verify capabilities interrupt from the 8051.
7114 *
7115 * This is a work-queue function outside of the interrupt.
7116 */
7117void handle_verify_cap(struct work_struct *work)
7118{
7119 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7120 link_vc_work);
7121 struct hfi1_devdata *dd = ppd->dd;
7122 u64 reg;
7123 u8 power_management;
7124 u8 continious;
7125 u8 vcu;
7126 u8 vau;
7127 u8 z;
7128 u16 vl15buf;
7129 u16 link_widths;
7130 u16 crc_mask;
7131 u16 crc_val;
7132 u16 device_id;
7133 u16 active_tx, active_rx;
7134 u8 partner_supported_crc;
7135 u8 remote_tx_rate;
7136 u8 device_rev;
7137
7138 set_link_state(ppd, HLS_VERIFY_CAP);
7139
7140 lcb_shutdown(dd, 0);
7141 adjust_lcb_for_fpga_serdes(dd);
7142
7143 /*
7144 * These are now valid:
7145 * remote VerifyCap fields in the general LNI config
7146 * CSR DC8051_STS_REMOTE_GUID
7147 * CSR DC8051_STS_REMOTE_NODE_TYPE
7148 * CSR DC8051_STS_REMOTE_FM_SECURITY
7149 * CSR DC8051_STS_REMOTE_PORT_NO
7150 */
7151
7152 read_vc_remote_phy(dd, &power_management, &continious);
7153 read_vc_remote_fabric(
7154 dd,
7155 &vau,
7156 &z,
7157 &vcu,
7158 &vl15buf,
7159 &partner_supported_crc);
7160 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7161 read_remote_device_id(dd, &device_id, &device_rev);
7162 /*
7163 * And the 'MgmtAllowed' information, which is exchanged during
7164 * LNI, is also be available at this point.
7165 */
7166 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7167 /* print the active widths */
7168 get_link_widths(dd, &active_tx, &active_rx);
7169 dd_dev_info(dd,
7170 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7171 (int)power_management, (int)continious);
7172 dd_dev_info(dd,
7173 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7174 (int)vau,
7175 (int)z,
7176 (int)vcu,
7177 (int)vl15buf,
7178 (int)partner_supported_crc);
7179 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7180 (u32)remote_tx_rate, (u32)link_widths);
7181 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7182 (u32)device_id, (u32)device_rev);
7183 /*
7184 * The peer vAU value just read is the peer receiver value. HFI does
7185 * not support a transmit vAU of 0 (AU == 8). We advertised that
7186 * with Z=1 in the fabric capabilities sent to the peer. The peer
7187 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7188 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7189 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7190 * subject to the Z value exception.
7191 */
7192 if (vau == 0)
7193 vau = 1;
7194 set_up_vl15(dd, vau, vl15buf);
7195
7196 /* set up the LCB CRC mode */
7197 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7198
7199 /* order is important: use the lowest bit in common */
7200 if (crc_mask & CAP_CRC_14B)
7201 crc_val = LCB_CRC_14B;
7202 else if (crc_mask & CAP_CRC_48B)
7203 crc_val = LCB_CRC_48B;
7204 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7205 crc_val = LCB_CRC_12B_16B_PER_LANE;
7206 else
7207 crc_val = LCB_CRC_16B;
7208
7209 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7210 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7211 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7212
7213 /* set (14b only) or clear sideband credit */
7214 reg = read_csr(dd, SEND_CM_CTRL);
7215 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7216 write_csr(dd, SEND_CM_CTRL,
7217 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7218 } else {
7219 write_csr(dd, SEND_CM_CTRL,
7220 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7221 }
7222
7223 ppd->link_speed_active = 0; /* invalid value */
7224 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7225 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7226 switch (remote_tx_rate) {
7227 case 0:
7228 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7229 break;
7230 case 1:
7231 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7232 break;
7233 }
7234 } else {
7235 /* actual rate is highest bit of the ANDed rates */
7236 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7237
7238 if (rate & 2)
7239 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7240 else if (rate & 1)
7241 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7242 }
7243 if (ppd->link_speed_active == 0) {
7244 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7245 __func__, (int)remote_tx_rate);
7246 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7247 }
7248
7249 /*
7250 * Cache the values of the supported, enabled, and active
7251 * LTP CRC modes to return in 'portinfo' queries. But the bit
7252 * flags that are returned in the portinfo query differ from
7253 * what's in the link_crc_mask, crc_sizes, and crc_val
7254 * variables. Convert these here.
7255 */
7256 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7257 /* supported crc modes */
7258 ppd->port_ltp_crc_mode |=
7259 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7260 /* enabled crc modes */
7261 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7262 /* active crc mode */
7263
7264 /* set up the remote credit return table */
7265 assign_remote_cm_au_table(dd, vcu);
7266
7267 /*
7268 * The LCB is reset on entry to handle_verify_cap(), so this must
7269 * be applied on every link up.
7270 *
7271 * Adjust LCB error kill enable to kill the link if
7272 * these RBUF errors are seen:
7273 * REPLAY_BUF_MBE_SMASK
7274 * FLIT_INPUT_BUF_MBE_SMASK
7275 */
995deafa 7276 if (is_ax(dd)) { /* fixed in B0 */
77241056
MM
7277 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7278 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7279 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7280 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7281 }
7282
7283 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7284 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7285
7286 /* give 8051 access to the LCB CSRs */
7287 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7288 set_8051_lcb_access(dd);
7289
7290 ppd->neighbor_guid =
7291 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7292 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7293 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7294 ppd->neighbor_type =
7295 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7296 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7297 ppd->neighbor_fm_security =
7298 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7299 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7300 dd_dev_info(dd,
7301 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7302 ppd->neighbor_guid, ppd->neighbor_type,
7303 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7304 if (ppd->mgmt_allowed)
7305 add_full_mgmt_pkey(ppd);
7306
7307 /* tell the 8051 to go to LinkUp */
7308 set_link_state(ppd, HLS_GOING_UP);
7309}
7310
7311/*
7312 * Apply the link width downgrade enabled policy against the current active
7313 * link widths.
7314 *
7315 * Called when the enabled policy changes or the active link widths change.
7316 */
7317void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7318{
77241056 7319 int do_bounce = 0;
323fd785
DL
7320 int tries;
7321 u16 lwde;
77241056
MM
7322 u16 tx, rx;
7323
323fd785
DL
7324 /* use the hls lock to avoid a race with actual link up */
7325 tries = 0;
7326retry:
77241056
MM
7327 mutex_lock(&ppd->hls_lock);
7328 /* only apply if the link is up */
323fd785
DL
7329 if (!(ppd->host_link_state & HLS_UP)) {
7330 /* still going up..wait and retry */
7331 if (ppd->host_link_state & HLS_GOING_UP) {
7332 if (++tries < 1000) {
7333 mutex_unlock(&ppd->hls_lock);
7334 usleep_range(100, 120); /* arbitrary */
7335 goto retry;
7336 }
7337 dd_dev_err(ppd->dd,
7338 "%s: giving up waiting for link state change\n",
7339 __func__);
7340 }
7341 goto done;
7342 }
7343
7344 lwde = ppd->link_width_downgrade_enabled;
77241056
MM
7345
7346 if (refresh_widths) {
7347 get_link_widths(ppd->dd, &tx, &rx);
7348 ppd->link_width_downgrade_tx_active = tx;
7349 ppd->link_width_downgrade_rx_active = rx;
7350 }
7351
7352 if (lwde == 0) {
7353 /* downgrade is disabled */
7354
7355 /* bounce if not at starting active width */
7356 if ((ppd->link_width_active !=
7357 ppd->link_width_downgrade_tx_active)
7358 || (ppd->link_width_active !=
7359 ppd->link_width_downgrade_rx_active)) {
7360 dd_dev_err(ppd->dd,
7361 "Link downgrade is disabled and link has downgraded, downing link\n");
7362 dd_dev_err(ppd->dd,
7363 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7364 ppd->link_width_active,
7365 ppd->link_width_downgrade_tx_active,
7366 ppd->link_width_downgrade_rx_active);
7367 do_bounce = 1;
7368 }
7369 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
7370 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7371 /* Tx or Rx is outside the enabled policy */
7372 dd_dev_err(ppd->dd,
7373 "Link is outside of downgrade allowed, downing link\n");
7374 dd_dev_err(ppd->dd,
7375 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7376 lwde,
7377 ppd->link_width_downgrade_tx_active,
7378 ppd->link_width_downgrade_rx_active);
7379 do_bounce = 1;
7380 }
7381
323fd785
DL
7382done:
7383 mutex_unlock(&ppd->hls_lock);
7384
77241056
MM
7385 if (do_bounce) {
7386 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7387 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7388 set_link_state(ppd, HLS_DN_OFFLINE);
8ebd4cf1 7389 tune_serdes(ppd);
77241056
MM
7390 start_link(ppd);
7391 }
7392}
7393
7394/*
7395 * Handle a link downgrade interrupt from the 8051.
7396 *
7397 * This is a work-queue function outside of the interrupt.
7398 */
7399void handle_link_downgrade(struct work_struct *work)
7400{
7401 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7402 link_downgrade_work);
7403
7404 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7405 apply_link_downgrade_policy(ppd, 1);
7406}
7407
7408static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7409{
7410 return flag_string(buf, buf_len, flags, dcc_err_flags,
7411 ARRAY_SIZE(dcc_err_flags));
7412}
7413
7414static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7415{
7416 return flag_string(buf, buf_len, flags, lcb_err_flags,
7417 ARRAY_SIZE(lcb_err_flags));
7418}
7419
7420static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7421{
7422 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7423 ARRAY_SIZE(dc8051_err_flags));
7424}
7425
7426static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7427{
7428 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7429 ARRAY_SIZE(dc8051_info_err_flags));
7430}
7431
7432static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7433{
7434 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7435 ARRAY_SIZE(dc8051_info_host_msg_flags));
7436}
7437
7438static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7439{
7440 struct hfi1_pportdata *ppd = dd->pport;
7441 u64 info, err, host_msg;
7442 int queue_link_down = 0;
7443 char buf[96];
7444
7445 /* look at the flags */
7446 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7447 /* 8051 information set by firmware */
7448 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7449 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7450 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7451 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7452 host_msg = (info >>
7453 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7454 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7455
7456 /*
7457 * Handle error flags.
7458 */
7459 if (err & FAILED_LNI) {
7460 /*
7461 * LNI error indications are cleared by the 8051
7462 * only when starting polling. Only pay attention
7463 * to them when in the states that occur during
7464 * LNI.
7465 */
7466 if (ppd->host_link_state
7467 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7468 queue_link_down = 1;
7469 dd_dev_info(dd, "Link error: %s\n",
7470 dc8051_info_err_string(buf,
7471 sizeof(buf),
7472 err & FAILED_LNI));
7473 }
7474 err &= ~(u64)FAILED_LNI;
7475 }
6d014530
DL
7476 /* unknown frames can happen durning LNI, just count */
7477 if (err & UNKNOWN_FRAME) {
7478 ppd->unknown_frame_count++;
7479 err &= ~(u64)UNKNOWN_FRAME;
7480 }
77241056
MM
7481 if (err) {
7482 /* report remaining errors, but do not do anything */
7483 dd_dev_err(dd, "8051 info error: %s\n",
7484 dc8051_info_err_string(buf, sizeof(buf), err));
7485 }
7486
7487 /*
7488 * Handle host message flags.
7489 */
7490 if (host_msg & HOST_REQ_DONE) {
7491 /*
7492 * Presently, the driver does a busy wait for
7493 * host requests to complete. This is only an
7494 * informational message.
7495 * NOTE: The 8051 clears the host message
7496 * information *on the next 8051 command*.
7497 * Therefore, when linkup is achieved,
7498 * this flag will still be set.
7499 */
7500 host_msg &= ~(u64)HOST_REQ_DONE;
7501 }
7502 if (host_msg & BC_SMA_MSG) {
7503 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7504 host_msg &= ~(u64)BC_SMA_MSG;
7505 }
7506 if (host_msg & LINKUP_ACHIEVED) {
7507 dd_dev_info(dd, "8051: Link up\n");
7508 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7509 host_msg &= ~(u64)LINKUP_ACHIEVED;
7510 }
7511 if (host_msg & EXT_DEVICE_CFG_REQ) {
cbac386a 7512 queue_work(ppd->hfi1_wq, &ppd->dc_host_req_work);
77241056
MM
7513 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7514 }
7515 if (host_msg & VERIFY_CAP_FRAME) {
7516 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7517 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7518 }
7519 if (host_msg & LINK_GOING_DOWN) {
7520 const char *extra = "";
7521 /* no downgrade action needed if going down */
7522 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7523 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7524 extra = " (ignoring downgrade)";
7525 }
7526 dd_dev_info(dd, "8051: Link down%s\n", extra);
7527 queue_link_down = 1;
7528 host_msg &= ~(u64)LINK_GOING_DOWN;
7529 }
7530 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7531 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7532 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7533 }
7534 if (host_msg) {
7535 /* report remaining messages, but do not do anything */
7536 dd_dev_info(dd, "8051 info host message: %s\n",
7537 dc8051_info_host_msg_string(buf, sizeof(buf),
7538 host_msg));
7539 }
7540
7541 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7542 }
7543 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7544 /*
7545 * Lost the 8051 heartbeat. If this happens, we
7546 * receive constant interrupts about it. Disable
7547 * the interrupt after the first.
7548 */
7549 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7550 write_csr(dd, DC_DC8051_ERR_EN,
7551 read_csr(dd, DC_DC8051_ERR_EN)
7552 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7553
7554 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7555 }
7556 if (reg) {
7557 /* report the error, but do not do anything */
7558 dd_dev_err(dd, "8051 error: %s\n",
7559 dc8051_err_string(buf, sizeof(buf), reg));
7560 }
7561
7562 if (queue_link_down) {
7563 /* if the link is already going down or disabled, do not
7564 * queue another */
7565 if ((ppd->host_link_state
7566 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
7567 || ppd->link_enabled == 0) {
7568 dd_dev_info(dd, "%s: not queuing link down\n",
7569 __func__);
7570 } else {
7571 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7572 }
7573 }
7574}
7575
7576static const char * const fm_config_txt[] = {
7577[0] =
7578 "BadHeadDist: Distance violation between two head flits",
7579[1] =
7580 "BadTailDist: Distance violation between two tail flits",
7581[2] =
7582 "BadCtrlDist: Distance violation between two credit control flits",
7583[3] =
7584 "BadCrdAck: Credits return for unsupported VL",
7585[4] =
7586 "UnsupportedVLMarker: Received VL Marker",
7587[5] =
7588 "BadPreempt: Exceeded the preemption nesting level",
7589[6] =
7590 "BadControlFlit: Received unsupported control flit",
7591/* no 7 */
7592[8] =
7593 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7594};
7595
7596static const char * const port_rcv_txt[] = {
7597[1] =
7598 "BadPktLen: Illegal PktLen",
7599[2] =
7600 "PktLenTooLong: Packet longer than PktLen",
7601[3] =
7602 "PktLenTooShort: Packet shorter than PktLen",
7603[4] =
7604 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7605[5] =
7606 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7607[6] =
7608 "BadL2: Illegal L2 opcode",
7609[7] =
7610 "BadSC: Unsupported SC",
7611[9] =
7612 "BadRC: Illegal RC",
7613[11] =
7614 "PreemptError: Preempting with same VL",
7615[12] =
7616 "PreemptVL15: Preempting a VL15 packet",
7617};
7618
7619#define OPA_LDR_FMCONFIG_OFFSET 16
7620#define OPA_LDR_PORTRCV_OFFSET 0
7621static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7622{
7623 u64 info, hdr0, hdr1;
7624 const char *extra;
7625 char buf[96];
7626 struct hfi1_pportdata *ppd = dd->pport;
7627 u8 lcl_reason = 0;
7628 int do_bounce = 0;
7629
7630 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7631 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7632 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7633 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7634 /* set status bit */
7635 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7636 }
7637 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7638 }
7639
7640 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7641 struct hfi1_pportdata *ppd = dd->pport;
7642 /* this counter saturates at (2^32) - 1 */
7643 if (ppd->link_downed < (u32)UINT_MAX)
7644 ppd->link_downed++;
7645 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7646 }
7647
7648 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7649 u8 reason_valid = 1;
7650
7651 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7652 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7653 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7654 /* set status bit */
7655 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7656 }
7657 switch (info) {
7658 case 0:
7659 case 1:
7660 case 2:
7661 case 3:
7662 case 4:
7663 case 5:
7664 case 6:
7665 extra = fm_config_txt[info];
7666 break;
7667 case 8:
7668 extra = fm_config_txt[info];
7669 if (ppd->port_error_action &
7670 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7671 do_bounce = 1;
7672 /*
7673 * lcl_reason cannot be derived from info
7674 * for this error
7675 */
7676 lcl_reason =
7677 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7678 }
7679 break;
7680 default:
7681 reason_valid = 0;
7682 snprintf(buf, sizeof(buf), "reserved%lld", info);
7683 extra = buf;
7684 break;
7685 }
7686
7687 if (reason_valid && !do_bounce) {
7688 do_bounce = ppd->port_error_action &
7689 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7690 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7691 }
7692
7693 /* just report this */
7694 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7695 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7696 }
7697
7698 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7699 u8 reason_valid = 1;
7700
7701 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7702 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7703 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7704 if (!(dd->err_info_rcvport.status_and_code &
7705 OPA_EI_STATUS_SMASK)) {
7706 dd->err_info_rcvport.status_and_code =
7707 info & OPA_EI_CODE_SMASK;
7708 /* set status bit */
7709 dd->err_info_rcvport.status_and_code |=
7710 OPA_EI_STATUS_SMASK;
7711 /* save first 2 flits in the packet that caused
7712 * the error */
7713 dd->err_info_rcvport.packet_flit1 = hdr0;
7714 dd->err_info_rcvport.packet_flit2 = hdr1;
7715 }
7716 switch (info) {
7717 case 1:
7718 case 2:
7719 case 3:
7720 case 4:
7721 case 5:
7722 case 6:
7723 case 7:
7724 case 9:
7725 case 11:
7726 case 12:
7727 extra = port_rcv_txt[info];
7728 break;
7729 default:
7730 reason_valid = 0;
7731 snprintf(buf, sizeof(buf), "reserved%lld", info);
7732 extra = buf;
7733 break;
7734 }
7735
7736 if (reason_valid && !do_bounce) {
7737 do_bounce = ppd->port_error_action &
7738 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7739 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7740 }
7741
7742 /* just report this */
7743 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7744 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7745 hdr0, hdr1);
7746
7747 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7748 }
7749
7750 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7751 /* informative only */
7752 dd_dev_info(dd, "8051 access to LCB blocked\n");
7753 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7754 }
7755 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7756 /* informative only */
7757 dd_dev_info(dd, "host access to LCB blocked\n");
7758 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7759 }
7760
7761 /* report any remaining errors */
7762 if (reg)
7763 dd_dev_info(dd, "DCC Error: %s\n",
7764 dcc_err_string(buf, sizeof(buf), reg));
7765
7766 if (lcl_reason == 0)
7767 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7768
7769 if (do_bounce) {
7770 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7771 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7772 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7773 }
7774}
7775
7776static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7777{
7778 char buf[96];
7779
7780 dd_dev_info(dd, "LCB Error: %s\n",
7781 lcb_err_string(buf, sizeof(buf), reg));
7782}
7783
7784/*
7785 * CCE block DC interrupt. Source is < 8.
7786 */
7787static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7788{
7789 const struct err_reg_info *eri = &dc_errs[source];
7790
7791 if (eri->handler) {
7792 interrupt_clear_down(dd, 0, eri);
7793 } else if (source == 3 /* dc_lbm_int */) {
7794 /*
7795 * This indicates that a parity error has occurred on the
7796 * address/control lines presented to the LBM. The error
7797 * is a single pulse, there is no associated error flag,
7798 * and it is non-maskable. This is because if a parity
7799 * error occurs on the request the request is dropped.
7800 * This should never occur, but it is nice to know if it
7801 * ever does.
7802 */
7803 dd_dev_err(dd, "Parity error in DC LBM block\n");
7804 } else {
7805 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7806 }
7807}
7808
7809/*
7810 * TX block send credit interrupt. Source is < 160.
7811 */
7812static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7813{
7814 sc_group_release_update(dd, source);
7815}
7816
7817/*
7818 * TX block SDMA interrupt. Source is < 48.
7819 *
7820 * SDMA interrupts are grouped by type:
7821 *
7822 * 0 - N-1 = SDma
7823 * N - 2N-1 = SDmaProgress
7824 * 2N - 3N-1 = SDmaIdle
7825 */
7826static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7827{
7828 /* what interrupt */
7829 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7830 /* which engine */
7831 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7832
7833#ifdef CONFIG_SDMA_VERBOSITY
7834 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7835 slashstrip(__FILE__), __LINE__, __func__);
7836 sdma_dumpstate(&dd->per_sdma[which]);
7837#endif
7838
7839 if (likely(what < 3 && which < dd->num_sdma)) {
7840 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7841 } else {
7842 /* should not happen */
7843 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7844 }
7845}
7846
7847/*
7848 * RX block receive available interrupt. Source is < 160.
7849 */
7850static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7851{
7852 struct hfi1_ctxtdata *rcd;
7853 char *err_detail;
7854
7855 if (likely(source < dd->num_rcv_contexts)) {
7856 rcd = dd->rcd[source];
7857 if (rcd) {
7858 if (source < dd->first_user_ctxt)
f4f30031 7859 rcd->do_interrupt(rcd, 0);
77241056
MM
7860 else
7861 handle_user_interrupt(rcd);
7862 return; /* OK */
7863 }
7864 /* received an interrupt, but no rcd */
7865 err_detail = "dataless";
7866 } else {
7867 /* received an interrupt, but are not using that context */
7868 err_detail = "out of range";
7869 }
7870 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
7871 err_detail, source);
7872}
7873
7874/*
7875 * RX block receive urgent interrupt. Source is < 160.
7876 */
7877static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7878{
7879 struct hfi1_ctxtdata *rcd;
7880 char *err_detail;
7881
7882 if (likely(source < dd->num_rcv_contexts)) {
7883 rcd = dd->rcd[source];
7884 if (rcd) {
7885 /* only pay attention to user urgent interrupts */
7886 if (source >= dd->first_user_ctxt)
7887 handle_user_interrupt(rcd);
7888 return; /* OK */
7889 }
7890 /* received an interrupt, but no rcd */
7891 err_detail = "dataless";
7892 } else {
7893 /* received an interrupt, but are not using that context */
7894 err_detail = "out of range";
7895 }
7896 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
7897 err_detail, source);
7898}
7899
7900/*
7901 * Reserved range interrupt. Should not be called in normal operation.
7902 */
7903static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7904{
7905 char name[64];
7906
7907 dd_dev_err(dd, "unexpected %s interrupt\n",
7908 is_reserved_name(name, sizeof(name), source));
7909}
7910
7911static const struct is_table is_table[] = {
7912/* start end
7913 name func interrupt func */
7914{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7915 is_misc_err_name, is_misc_err_int },
7916{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7917 is_sdma_eng_err_name, is_sdma_eng_err_int },
7918{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7919 is_sendctxt_err_name, is_sendctxt_err_int },
7920{ IS_SDMA_START, IS_SDMA_END,
7921 is_sdma_eng_name, is_sdma_eng_int },
7922{ IS_VARIOUS_START, IS_VARIOUS_END,
7923 is_various_name, is_various_int },
7924{ IS_DC_START, IS_DC_END,
7925 is_dc_name, is_dc_int },
7926{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7927 is_rcv_avail_name, is_rcv_avail_int },
7928{ IS_RCVURGENT_START, IS_RCVURGENT_END,
7929 is_rcv_urgent_name, is_rcv_urgent_int },
7930{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7931 is_send_credit_name, is_send_credit_int},
7932{ IS_RESERVED_START, IS_RESERVED_END,
7933 is_reserved_name, is_reserved_int},
7934};
7935
7936/*
7937 * Interrupt source interrupt - called when the given source has an interrupt.
7938 * Source is a bit index into an array of 64-bit integers.
7939 */
7940static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7941{
7942 const struct is_table *entry;
7943
7944 /* avoids a double compare by walking the table in-order */
7945 for (entry = &is_table[0]; entry->is_name; entry++) {
7946 if (source < entry->end) {
7947 trace_hfi1_interrupt(dd, entry, source);
7948 entry->is_int(dd, source - entry->start);
7949 return;
7950 }
7951 }
7952 /* fell off the end */
7953 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7954}
7955
7956/*
7957 * General interrupt handler. This is able to correctly handle
7958 * all interrupts in case INTx is used.
7959 */
7960static irqreturn_t general_interrupt(int irq, void *data)
7961{
7962 struct hfi1_devdata *dd = data;
7963 u64 regs[CCE_NUM_INT_CSRS];
7964 u32 bit;
7965 int i;
7966
7967 this_cpu_inc(*dd->int_counter);
7968
7969 /* phase 1: scan and clear all handled interrupts */
7970 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
7971 if (dd->gi_mask[i] == 0) {
7972 regs[i] = 0; /* used later */
7973 continue;
7974 }
7975 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
7976 dd->gi_mask[i];
7977 /* only clear if anything is set */
7978 if (regs[i])
7979 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
7980 }
7981
7982 /* phase 2: call the appropriate handler */
7983 for_each_set_bit(bit, (unsigned long *)&regs[0],
7984 CCE_NUM_INT_CSRS*64) {
7985 is_interrupt(dd, bit);
7986 }
7987
7988 return IRQ_HANDLED;
7989}
7990
7991static irqreturn_t sdma_interrupt(int irq, void *data)
7992{
7993 struct sdma_engine *sde = data;
7994 struct hfi1_devdata *dd = sde->dd;
7995 u64 status;
7996
7997#ifdef CONFIG_SDMA_VERBOSITY
7998 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
7999 slashstrip(__FILE__), __LINE__, __func__);
8000 sdma_dumpstate(sde);
8001#endif
8002
8003 this_cpu_inc(*dd->int_counter);
8004
8005 /* This read_csr is really bad in the hot path */
8006 status = read_csr(dd,
8007 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
8008 & sde->imask;
8009 if (likely(status)) {
8010 /* clear the interrupt(s) */
8011 write_csr(dd,
8012 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
8013 status);
8014
8015 /* handle the interrupt(s) */
8016 sdma_engine_interrupt(sde, status);
8017 } else
8018 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8019 sde->this_idx);
8020
8021 return IRQ_HANDLED;
8022}
8023
8024/*
ecd42f8d
DL
8025 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8026 * to insure that the write completed. This does NOT guarantee that
8027 * queued DMA writes to memory from the chip are pushed.
f4f30031
DL
8028 */
8029static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8030{
8031 struct hfi1_devdata *dd = rcd->dd;
8032 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8033
8034 mmiowb(); /* make sure everything before is written */
8035 write_csr(dd, addr, rcd->imask);
8036 /* force the above write on the chip and get a value back */
8037 (void)read_csr(dd, addr);
8038}
8039
8040/* force the receive interrupt */
fb9036dd 8041void force_recv_intr(struct hfi1_ctxtdata *rcd)
f4f30031
DL
8042{
8043 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8044}
8045
ecd42f8d
DL
8046/*
8047 * Return non-zero if a packet is present.
8048 *
8049 * This routine is called when rechecking for packets after the RcvAvail
8050 * interrupt has been cleared down. First, do a quick check of memory for
8051 * a packet present. If not found, use an expensive CSR read of the context
8052 * tail to determine the actual tail. The CSR read is necessary because there
8053 * is no method to push pending DMAs to memory other than an interrupt and we
8054 * are trying to determine if we need to force an interrupt.
8055 */
f4f30031
DL
8056static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8057{
ecd42f8d
DL
8058 u32 tail;
8059 int present;
8060
f4f30031 8061 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
ecd42f8d 8062 present = (rcd->seq_cnt ==
f4f30031 8063 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
ecd42f8d
DL
8064 else /* is RDMA rtail */
8065 present = (rcd->head != get_rcvhdrtail(rcd));
8066
8067 if (present)
8068 return 1;
f4f30031 8069
ecd42f8d
DL
8070 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8071 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8072 return rcd->head != tail;
f4f30031
DL
8073}
8074
8075/*
8076 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8077 * This routine will try to handle packets immediately (latency), but if
8078 * it finds too many, it will invoke the thread handler (bandwitdh). The
8079 * chip receive interupt is *not* cleared down until this or the thread (if
8080 * invoked) is finished. The intent is to avoid extra interrupts while we
8081 * are processing packets anyway.
77241056
MM
8082 */
8083static irqreturn_t receive_context_interrupt(int irq, void *data)
8084{
8085 struct hfi1_ctxtdata *rcd = data;
8086 struct hfi1_devdata *dd = rcd->dd;
f4f30031
DL
8087 int disposition;
8088 int present;
77241056
MM
8089
8090 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8091 this_cpu_inc(*dd->int_counter);
affa48de 8092 aspm_ctx_disable(rcd);
77241056 8093
f4f30031
DL
8094 /* receive interrupt remains blocked while processing packets */
8095 disposition = rcd->do_interrupt(rcd, 0);
77241056 8096
f4f30031
DL
8097 /*
8098 * Too many packets were seen while processing packets in this
8099 * IRQ handler. Invoke the handler thread. The receive interrupt
8100 * remains blocked.
8101 */
8102 if (disposition == RCV_PKT_LIMIT)
8103 return IRQ_WAKE_THREAD;
8104
8105 /*
8106 * The packet processor detected no more packets. Clear the receive
8107 * interrupt and recheck for a packet packet that may have arrived
8108 * after the previous check and interrupt clear. If a packet arrived,
8109 * force another interrupt.
8110 */
8111 clear_recv_intr(rcd);
8112 present = check_packet_present(rcd);
8113 if (present)
8114 force_recv_intr(rcd);
8115
8116 return IRQ_HANDLED;
8117}
8118
8119/*
8120 * Receive packet thread handler. This expects to be invoked with the
8121 * receive interrupt still blocked.
8122 */
8123static irqreturn_t receive_context_thread(int irq, void *data)
8124{
8125 struct hfi1_ctxtdata *rcd = data;
8126 int present;
8127
8128 /* receive interrupt is still blocked from the IRQ handler */
8129 (void)rcd->do_interrupt(rcd, 1);
8130
8131 /*
8132 * The packet processor will only return if it detected no more
8133 * packets. Hold IRQs here so we can safely clear the interrupt and
8134 * recheck for a packet that may have arrived after the previous
8135 * check and the interrupt clear. If a packet arrived, force another
8136 * interrupt.
8137 */
8138 local_irq_disable();
8139 clear_recv_intr(rcd);
8140 present = check_packet_present(rcd);
8141 if (present)
8142 force_recv_intr(rcd);
8143 local_irq_enable();
77241056
MM
8144
8145 return IRQ_HANDLED;
8146}
8147
8148/* ========================================================================= */
8149
8150u32 read_physical_state(struct hfi1_devdata *dd)
8151{
8152 u64 reg;
8153
8154 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8155 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8156 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8157}
8158
fb9036dd 8159u32 read_logical_state(struct hfi1_devdata *dd)
77241056
MM
8160{
8161 u64 reg;
8162
8163 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8164 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8165 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8166}
8167
8168static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8169{
8170 u64 reg;
8171
8172 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8173 /* clear current state, set new state */
8174 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8175 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8176 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8177}
8178
8179/*
8180 * Use the 8051 to read a LCB CSR.
8181 */
8182static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8183{
8184 u32 regno;
8185 int ret;
8186
8187 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8188 if (acquire_lcb_access(dd, 0) == 0) {
8189 *data = read_csr(dd, addr);
8190 release_lcb_access(dd, 0);
8191 return 0;
8192 }
8193 return -EBUSY;
8194 }
8195
8196 /* register is an index of LCB registers: (offset - base) / 8 */
8197 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8198 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8199 if (ret != HCMD_SUCCESS)
8200 return -EBUSY;
8201 return 0;
8202}
8203
8204/*
8205 * Read an LCB CSR. Access may not be in host control, so check.
8206 * Return 0 on success, -EBUSY on failure.
8207 */
8208int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8209{
8210 struct hfi1_pportdata *ppd = dd->pport;
8211
8212 /* if up, go through the 8051 for the value */
8213 if (ppd->host_link_state & HLS_UP)
8214 return read_lcb_via_8051(dd, addr, data);
8215 /* if going up or down, no access */
8216 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8217 return -EBUSY;
8218 /* otherwise, host has access */
8219 *data = read_csr(dd, addr);
8220 return 0;
8221}
8222
8223/*
8224 * Use the 8051 to write a LCB CSR.
8225 */
8226static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8227{
3bf40d65
DL
8228 u32 regno;
8229 int ret;
77241056 8230
3bf40d65
DL
8231 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8232 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8233 if (acquire_lcb_access(dd, 0) == 0) {
8234 write_csr(dd, addr, data);
8235 release_lcb_access(dd, 0);
8236 return 0;
8237 }
8238 return -EBUSY;
77241056 8239 }
3bf40d65
DL
8240
8241 /* register is an index of LCB registers: (offset - base) / 8 */
8242 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8243 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8244 if (ret != HCMD_SUCCESS)
8245 return -EBUSY;
8246 return 0;
77241056
MM
8247}
8248
8249/*
8250 * Write an LCB CSR. Access may not be in host control, so check.
8251 * Return 0 on success, -EBUSY on failure.
8252 */
8253int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8254{
8255 struct hfi1_pportdata *ppd = dd->pport;
8256
8257 /* if up, go through the 8051 for the value */
8258 if (ppd->host_link_state & HLS_UP)
8259 return write_lcb_via_8051(dd, addr, data);
8260 /* if going up or down, no access */
8261 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8262 return -EBUSY;
8263 /* otherwise, host has access */
8264 write_csr(dd, addr, data);
8265 return 0;
8266}
8267
8268/*
8269 * Returns:
8270 * < 0 = Linux error, not able to get access
8271 * > 0 = 8051 command RETURN_CODE
8272 */
8273static int do_8051_command(
8274 struct hfi1_devdata *dd,
8275 u32 type,
8276 u64 in_data,
8277 u64 *out_data)
8278{
8279 u64 reg, completed;
8280 int return_code;
8281 unsigned long flags;
8282 unsigned long timeout;
8283
8284 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8285
8286 /*
8287 * Alternative to holding the lock for a long time:
8288 * - keep busy wait - have other users bounce off
8289 */
8290 spin_lock_irqsave(&dd->dc8051_lock, flags);
8291
8292 /* We can't send any commands to the 8051 if it's in reset */
8293 if (dd->dc_shutdown) {
8294 return_code = -ENODEV;
8295 goto fail;
8296 }
8297
8298 /*
8299 * If an 8051 host command timed out previously, then the 8051 is
8300 * stuck.
8301 *
8302 * On first timeout, attempt to reset and restart the entire DC
8303 * block (including 8051). (Is this too big of a hammer?)
8304 *
8305 * If the 8051 times out a second time, the reset did not bring it
8306 * back to healthy life. In that case, fail any subsequent commands.
8307 */
8308 if (dd->dc8051_timed_out) {
8309 if (dd->dc8051_timed_out > 1) {
8310 dd_dev_err(dd,
8311 "Previous 8051 host command timed out, skipping command %u\n",
8312 type);
8313 return_code = -ENXIO;
8314 goto fail;
8315 }
8316 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8317 dc_shutdown(dd);
8318 dc_start(dd);
8319 spin_lock_irqsave(&dd->dc8051_lock, flags);
8320 }
8321
8322 /*
8323 * If there is no timeout, then the 8051 command interface is
8324 * waiting for a command.
8325 */
8326
3bf40d65
DL
8327 /*
8328 * When writing a LCB CSR, out_data contains the full value to
8329 * to be written, while in_data contains the relative LCB
8330 * address in 7:0. Do the work here, rather than the caller,
8331 * of distrubting the write data to where it needs to go:
8332 *
8333 * Write data
8334 * 39:00 -> in_data[47:8]
8335 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8336 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8337 */
8338 if (type == HCMD_WRITE_LCB_CSR) {
8339 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8340 reg = ((((*out_data) >> 40) & 0xff) <<
8341 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8342 | ((((*out_data) >> 48) & 0xffff) <<
8343 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8344 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8345 }
8346
77241056
MM
8347 /*
8348 * Do two writes: the first to stabilize the type and req_data, the
8349 * second to activate.
8350 */
8351 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8352 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8353 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8354 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8355 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8356 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8357 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8358
8359 /* wait for completion, alternate: interrupt */
8360 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8361 while (1) {
8362 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8363 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8364 if (completed)
8365 break;
8366 if (time_after(jiffies, timeout)) {
8367 dd->dc8051_timed_out++;
8368 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8369 if (out_data)
8370 *out_data = 0;
8371 return_code = -ETIMEDOUT;
8372 goto fail;
8373 }
8374 udelay(2);
8375 }
8376
8377 if (out_data) {
8378 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8379 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8380 if (type == HCMD_READ_LCB_CSR) {
8381 /* top 16 bits are in a different register */
8382 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8383 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8384 << (48
8385 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8386 }
8387 }
8388 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8389 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8390 dd->dc8051_timed_out = 0;
8391 /*
8392 * Clear command for next user.
8393 */
8394 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8395
8396fail:
8397 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8398
8399 return return_code;
8400}
8401
8402static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8403{
8404 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8405}
8406
8ebd4cf1
EH
8407int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8408 u8 lane_id, u32 config_data)
77241056
MM
8409{
8410 u64 data;
8411 int ret;
8412
8413 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8414 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8415 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8416 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8417 if (ret != HCMD_SUCCESS) {
8418 dd_dev_err(dd,
8419 "load 8051 config: field id %d, lane %d, err %d\n",
8420 (int)field_id, (int)lane_id, ret);
8421 }
8422 return ret;
8423}
8424
8425/*
8426 * Read the 8051 firmware "registers". Use the RAM directly. Always
8427 * set the result, even on error.
8428 * Return 0 on success, -errno on failure
8429 */
8ebd4cf1
EH
8430int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8431 u32 *result)
77241056
MM
8432{
8433 u64 big_data;
8434 u32 addr;
8435 int ret;
8436
8437 /* address start depends on the lane_id */
8438 if (lane_id < 4)
8439 addr = (4 * NUM_GENERAL_FIELDS)
8440 + (lane_id * 4 * NUM_LANE_FIELDS);
8441 else
8442 addr = 0;
8443 addr += field_id * 4;
8444
8445 /* read is in 8-byte chunks, hardware will truncate the address down */
8446 ret = read_8051_data(dd, addr, 8, &big_data);
8447
8448 if (ret == 0) {
8449 /* extract the 4 bytes we want */
8450 if (addr & 0x4)
8451 *result = (u32)(big_data >> 32);
8452 else
8453 *result = (u32)big_data;
8454 } else {
8455 *result = 0;
8456 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8457 __func__, lane_id, field_id);
8458 }
8459
8460 return ret;
8461}
8462
8463static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8464 u8 continuous)
8465{
8466 u32 frame;
8467
8468 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8469 | power_management << POWER_MANAGEMENT_SHIFT;
8470 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8471 GENERAL_CONFIG, frame);
8472}
8473
8474static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8475 u16 vl15buf, u8 crc_sizes)
8476{
8477 u32 frame;
8478
8479 frame = (u32)vau << VAU_SHIFT
8480 | (u32)z << Z_SHIFT
8481 | (u32)vcu << VCU_SHIFT
8482 | (u32)vl15buf << VL15BUF_SHIFT
8483 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8484 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8485 GENERAL_CONFIG, frame);
8486}
8487
8488static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8489 u8 *flag_bits, u16 *link_widths)
8490{
8491 u32 frame;
8492
8493 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8494 &frame);
8495 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8496 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8497 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8498}
8499
8500static int write_vc_local_link_width(struct hfi1_devdata *dd,
8501 u8 misc_bits,
8502 u8 flag_bits,
8503 u16 link_widths)
8504{
8505 u32 frame;
8506
8507 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8508 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8509 | (u32)link_widths << LINK_WIDTH_SHIFT;
8510 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8511 frame);
8512}
8513
8514static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8515 u8 device_rev)
8516{
8517 u32 frame;
8518
8519 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8520 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8521 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8522}
8523
8524static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8525 u8 *device_rev)
8526{
8527 u32 frame;
8528
8529 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8530 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8531 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8532 & REMOTE_DEVICE_REV_MASK;
8533}
8534
8535void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8536{
8537 u32 frame;
8538
8539 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8540 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8541 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8542}
8543
8544static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8545 u8 *continuous)
8546{
8547 u32 frame;
8548
8549 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8550 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8551 & POWER_MANAGEMENT_MASK;
8552 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8553 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8554}
8555
8556static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8557 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8558{
8559 u32 frame;
8560
8561 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8562 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8563 *z = (frame >> Z_SHIFT) & Z_MASK;
8564 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8565 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8566 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8567}
8568
8569static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8570 u8 *remote_tx_rate,
8571 u16 *link_widths)
8572{
8573 u32 frame;
8574
8575 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8576 &frame);
8577 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8578 & REMOTE_TX_RATE_MASK;
8579 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8580}
8581
8582static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8583{
8584 u32 frame;
8585
8586 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8587 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8588}
8589
8590static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8591{
8592 u32 frame;
8593
8594 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8595 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8596}
8597
8598static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8599{
8600 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8601}
8602
8603static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8604{
8605 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8606}
8607
8608void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8609{
8610 u32 frame;
8611 int ret;
8612
8613 *link_quality = 0;
8614 if (dd->pport->host_link_state & HLS_UP) {
8615 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8616 &frame);
8617 if (ret == 0)
8618 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8619 & LINK_QUALITY_MASK;
8620 }
8621}
8622
8623static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8624{
8625 u32 frame;
8626
8627 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8628 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8629}
8630
8631static int read_tx_settings(struct hfi1_devdata *dd,
8632 u8 *enable_lane_tx,
8633 u8 *tx_polarity_inversion,
8634 u8 *rx_polarity_inversion,
8635 u8 *max_rate)
8636{
8637 u32 frame;
8638 int ret;
8639
8640 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8641 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8642 & ENABLE_LANE_TX_MASK;
8643 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8644 & TX_POLARITY_INVERSION_MASK;
8645 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8646 & RX_POLARITY_INVERSION_MASK;
8647 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8648 return ret;
8649}
8650
8651static int write_tx_settings(struct hfi1_devdata *dd,
8652 u8 enable_lane_tx,
8653 u8 tx_polarity_inversion,
8654 u8 rx_polarity_inversion,
8655 u8 max_rate)
8656{
8657 u32 frame;
8658
8659 /* no need to mask, all variable sizes match field widths */
8660 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8661 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8662 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8663 | max_rate << MAX_RATE_SHIFT;
8664 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8665}
8666
8667static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8668{
8669 u32 frame, version, prod_id;
8670 int ret, lane;
8671
8672 /* 4 lanes */
8673 for (lane = 0; lane < 4; lane++) {
8674 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8675 if (ret) {
8676 dd_dev_err(
8677 dd,
8678 "Unable to read lane %d firmware details\n",
8679 lane);
8680 continue;
8681 }
8682 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8683 & SPICO_ROM_VERSION_MASK;
8684 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8685 & SPICO_ROM_PROD_ID_MASK;
8686 dd_dev_info(dd,
8687 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8688 lane, version, prod_id);
8689 }
8690}
8691
8692/*
8693 * Read an idle LCB message.
8694 *
8695 * Returns 0 on success, -EINVAL on error
8696 */
8697static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8698{
8699 int ret;
8700
8701 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
8702 type, data_out);
8703 if (ret != HCMD_SUCCESS) {
8704 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8705 (u32)type, ret);
8706 return -EINVAL;
8707 }
8708 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8709 /* return only the payload as we already know the type */
8710 *data_out >>= IDLE_PAYLOAD_SHIFT;
8711 return 0;
8712}
8713
8714/*
8715 * Read an idle SMA message. To be done in response to a notification from
8716 * the 8051.
8717 *
8718 * Returns 0 on success, -EINVAL on error
8719 */
8720static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8721{
8722 return read_idle_message(dd,
8723 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
8724}
8725
8726/*
8727 * Send an idle LCB message.
8728 *
8729 * Returns 0 on success, -EINVAL on error
8730 */
8731static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8732{
8733 int ret;
8734
8735 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8736 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8737 if (ret != HCMD_SUCCESS) {
8738 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8739 data, ret);
8740 return -EINVAL;
8741 }
8742 return 0;
8743}
8744
8745/*
8746 * Send an idle SMA message.
8747 *
8748 * Returns 0 on success, -EINVAL on error
8749 */
8750int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8751{
8752 u64 data;
8753
8754 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
8755 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8756 return send_idle_message(dd, data);
8757}
8758
8759/*
8760 * Initialize the LCB then do a quick link up. This may or may not be
8761 * in loopback.
8762 *
8763 * return 0 on success, -errno on error
8764 */
8765static int do_quick_linkup(struct hfi1_devdata *dd)
8766{
8767 u64 reg;
8768 unsigned long timeout;
8769 int ret;
8770
8771 lcb_shutdown(dd, 0);
8772
8773 if (loopback) {
8774 /* LCB_CFG_LOOPBACK.VAL = 2 */
8775 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8776 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8777 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8778 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8779 }
8780
8781 /* start the LCBs */
8782 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8783 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8784
8785 /* simulator only loopback steps */
8786 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8787 /* LCB_CFG_RUN.EN = 1 */
8788 write_csr(dd, DC_LCB_CFG_RUN,
8789 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8790
8791 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8792 timeout = jiffies + msecs_to_jiffies(10);
8793 while (1) {
8794 reg = read_csr(dd,
8795 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8796 if (reg)
8797 break;
8798 if (time_after(jiffies, timeout)) {
8799 dd_dev_err(dd,
8800 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8801 return -ETIMEDOUT;
8802 }
8803 udelay(2);
8804 }
8805
8806 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8807 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8808 }
8809
8810 if (!loopback) {
8811 /*
8812 * When doing quick linkup and not in loopback, both
8813 * sides must be done with LCB set-up before either
8814 * starts the quick linkup. Put a delay here so that
8815 * both sides can be started and have a chance to be
8816 * done with LCB set up before resuming.
8817 */
8818 dd_dev_err(dd,
8819 "Pausing for peer to be finished with LCB set up\n");
8820 msleep(5000);
8821 dd_dev_err(dd,
8822 "Continuing with quick linkup\n");
8823 }
8824
8825 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8826 set_8051_lcb_access(dd);
8827
8828 /*
8829 * State "quick" LinkUp request sets the physical link state to
8830 * LinkUp without a verify capability sequence.
8831 * This state is in simulator v37 and later.
8832 */
8833 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8834 if (ret != HCMD_SUCCESS) {
8835 dd_dev_err(dd,
8836 "%s: set physical link state to quick LinkUp failed with return %d\n",
8837 __func__, ret);
8838
8839 set_host_lcb_access(dd);
8840 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8841
8842 if (ret >= 0)
8843 ret = -EINVAL;
8844 return ret;
8845 }
8846
8847 return 0; /* success */
8848}
8849
8850/*
8851 * Set the SerDes to internal loopback mode.
8852 * Returns 0 on success, -errno on error.
8853 */
8854static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8855{
8856 int ret;
8857
8858 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8859 if (ret == HCMD_SUCCESS)
8860 return 0;
8861 dd_dev_err(dd,
8862 "Set physical link state to SerDes Loopback failed with return %d\n",
8863 ret);
8864 if (ret >= 0)
8865 ret = -EINVAL;
8866 return ret;
8867}
8868
8869/*
8870 * Do all special steps to set up loopback.
8871 */
8872static int init_loopback(struct hfi1_devdata *dd)
8873{
8874 dd_dev_info(dd, "Entering loopback mode\n");
8875
8876 /* all loopbacks should disable self GUID check */
8877 write_csr(dd, DC_DC8051_CFG_MODE,
8878 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8879
8880 /*
8881 * The simulator has only one loopback option - LCB. Switch
8882 * to that option, which includes quick link up.
8883 *
8884 * Accept all valid loopback values.
8885 */
8886 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
8887 && (loopback == LOOPBACK_SERDES
8888 || loopback == LOOPBACK_LCB
8889 || loopback == LOOPBACK_CABLE)) {
8890 loopback = LOOPBACK_LCB;
8891 quick_linkup = 1;
8892 return 0;
8893 }
8894
8895 /* handle serdes loopback */
8896 if (loopback == LOOPBACK_SERDES) {
8897 /* internal serdes loopack needs quick linkup on RTL */
8898 if (dd->icode == ICODE_RTL_SILICON)
8899 quick_linkup = 1;
8900 return set_serdes_loopback_mode(dd);
8901 }
8902
8903 /* LCB loopback - handled at poll time */
8904 if (loopback == LOOPBACK_LCB) {
8905 quick_linkup = 1; /* LCB is always quick linkup */
8906
8907 /* not supported in emulation due to emulation RTL changes */
8908 if (dd->icode == ICODE_FPGA_EMULATION) {
8909 dd_dev_err(dd,
8910 "LCB loopback not supported in emulation\n");
8911 return -EINVAL;
8912 }
8913 return 0;
8914 }
8915
8916 /* external cable loopback requires no extra steps */
8917 if (loopback == LOOPBACK_CABLE)
8918 return 0;
8919
8920 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8921 return -EINVAL;
8922}
8923
8924/*
8925 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8926 * used in the Verify Capability link width attribute.
8927 */
8928static u16 opa_to_vc_link_widths(u16 opa_widths)
8929{
8930 int i;
8931 u16 result = 0;
8932
8933 static const struct link_bits {
8934 u16 from;
8935 u16 to;
8936 } opa_link_xlate[] = {
8937 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
8938 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
8939 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
8940 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
8941 };
8942
8943 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8944 if (opa_widths & opa_link_xlate[i].from)
8945 result |= opa_link_xlate[i].to;
8946 }
8947 return result;
8948}
8949
8950/*
8951 * Set link attributes before moving to polling.
8952 */
8953static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8954{
8955 struct hfi1_devdata *dd = ppd->dd;
8956 u8 enable_lane_tx;
8957 u8 tx_polarity_inversion;
8958 u8 rx_polarity_inversion;
8959 int ret;
8960
8961 /* reset our fabric serdes to clear any lingering problems */
8962 fabric_serdes_reset(dd);
8963
8964 /* set the local tx rate - need to read-modify-write */
8965 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
8966 &rx_polarity_inversion, &ppd->local_tx_rate);
8967 if (ret)
8968 goto set_local_link_attributes_fail;
8969
8970 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
8971 /* set the tx rate to the fastest enabled */
8972 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8973 ppd->local_tx_rate = 1;
8974 else
8975 ppd->local_tx_rate = 0;
8976 } else {
8977 /* set the tx rate to all enabled */
8978 ppd->local_tx_rate = 0;
8979 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8980 ppd->local_tx_rate |= 2;
8981 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
8982 ppd->local_tx_rate |= 1;
8983 }
febffe2c
EH
8984
8985 enable_lane_tx = 0xF; /* enable all four lanes */
77241056
MM
8986 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
8987 rx_polarity_inversion, ppd->local_tx_rate);
8988 if (ret != HCMD_SUCCESS)
8989 goto set_local_link_attributes_fail;
8990
8991 /*
8992 * DC supports continuous updates.
8993 */
8994 ret = write_vc_local_phy(dd, 0 /* no power management */,
8995 1 /* continuous updates */);
8996 if (ret != HCMD_SUCCESS)
8997 goto set_local_link_attributes_fail;
8998
8999 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9000 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9001 ppd->port_crc_mode_enabled);
9002 if (ret != HCMD_SUCCESS)
9003 goto set_local_link_attributes_fail;
9004
9005 ret = write_vc_local_link_width(dd, 0, 0,
9006 opa_to_vc_link_widths(ppd->link_width_enabled));
9007 if (ret != HCMD_SUCCESS)
9008 goto set_local_link_attributes_fail;
9009
9010 /* let peer know who we are */
9011 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9012 if (ret == HCMD_SUCCESS)
9013 return 0;
9014
9015set_local_link_attributes_fail:
9016 dd_dev_err(dd,
9017 "Failed to set local link attributes, return 0x%x\n",
9018 ret);
9019 return ret;
9020}
9021
9022/*
9023 * Call this to start the link. Schedule a retry if the cable is not
9024 * present or if unable to start polling. Do not do anything if the
9025 * link is disabled. Returns 0 if link is disabled or moved to polling
9026 */
9027int start_link(struct hfi1_pportdata *ppd)
9028{
9029 if (!ppd->link_enabled) {
9030 dd_dev_info(ppd->dd,
9031 "%s: stopping link start because link is disabled\n",
9032 __func__);
9033 return 0;
9034 }
9035 if (!ppd->driver_link_ready) {
9036 dd_dev_info(ppd->dd,
9037 "%s: stopping link start because driver is not ready\n",
9038 __func__);
9039 return 0;
9040 }
9041
9042 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
9043 loopback == LOOPBACK_LCB ||
9044 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9045 return set_link_state(ppd, HLS_DN_POLL);
9046
9047 dd_dev_info(ppd->dd,
9048 "%s: stopping link start because no cable is present\n",
9049 __func__);
9050 return -EAGAIN;
9051}
9052
8ebd4cf1
EH
9053static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9054{
9055 struct hfi1_devdata *dd = ppd->dd;
9056 u64 mask;
9057 unsigned long timeout;
9058
9059 /*
9060 * Check for QSFP interrupt for t_init (SFF 8679)
9061 */
9062 timeout = jiffies + msecs_to_jiffies(2000);
9063 while (1) {
9064 mask = read_csr(dd, dd->hfi1_id ?
9065 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9066 if (!(mask & QSFP_HFI0_INT_N)) {
9067 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
9068 ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
9069 break;
9070 }
9071 if (time_after(jiffies, timeout)) {
9072 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9073 __func__);
9074 break;
9075 }
9076 udelay(2);
9077 }
9078}
9079
9080static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9081{
9082 struct hfi1_devdata *dd = ppd->dd;
9083 u64 mask;
9084
9085 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9086 if (enable)
9087 mask |= (u64)QSFP_HFI0_INT_N;
9088 else
9089 mask &= ~(u64)QSFP_HFI0_INT_N;
9090 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9091}
9092
9093void reset_qsfp(struct hfi1_pportdata *ppd)
77241056
MM
9094{
9095 struct hfi1_devdata *dd = ppd->dd;
9096 u64 mask, qsfp_mask;
9097
8ebd4cf1
EH
9098 /* Disable INT_N from triggering QSFP interrupts */
9099 set_qsfp_int_n(ppd, 0);
9100
9101 /* Reset the QSFP */
77241056 9102 mask = (u64)QSFP_HFI0_RESET_N;
8ebd4cf1 9103 qsfp_mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
77241056
MM
9104 qsfp_mask |= mask;
9105 write_csr(dd,
8ebd4cf1 9106 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE, qsfp_mask);
77241056 9107
8ebd4cf1
EH
9108 qsfp_mask = read_csr(dd, dd->hfi1_id ?
9109 ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
77241056
MM
9110 qsfp_mask &= ~mask;
9111 write_csr(dd,
8ebd4cf1 9112 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
77241056
MM
9113
9114 udelay(10);
9115
9116 qsfp_mask |= mask;
9117 write_csr(dd,
8ebd4cf1
EH
9118 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9119
9120 wait_for_qsfp_init(ppd);
9121
9122 /*
9123 * Allow INT_N to trigger the QSFP interrupt to watch
9124 * for alarms and warnings
9125 */
9126 set_qsfp_int_n(ppd, 1);
77241056
MM
9127}
9128
9129static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9130 u8 *qsfp_interrupt_status)
9131{
9132 struct hfi1_devdata *dd = ppd->dd;
9133
9134 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9135 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9136 dd_dev_info(dd,
9137 "%s: QSFP cable on fire\n",
9138 __func__);
9139
9140 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9141 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9142 dd_dev_info(dd,
9143 "%s: QSFP cable temperature too low\n",
9144 __func__);
9145
9146 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9147 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9148 dd_dev_info(dd,
9149 "%s: QSFP supply voltage too high\n",
9150 __func__);
9151
9152 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9153 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9154 dd_dev_info(dd,
9155 "%s: QSFP supply voltage too low\n",
9156 __func__);
9157
9158 /* Byte 2 is vendor specific */
9159
9160 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9161 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9162 dd_dev_info(dd,
9163 "%s: Cable RX channel 1/2 power too high\n",
9164 __func__);
9165
9166 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9167 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9168 dd_dev_info(dd,
9169 "%s: Cable RX channel 1/2 power too low\n",
9170 __func__);
9171
9172 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9173 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9174 dd_dev_info(dd,
9175 "%s: Cable RX channel 3/4 power too high\n",
9176 __func__);
9177
9178 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9179 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9180 dd_dev_info(dd,
9181 "%s: Cable RX channel 3/4 power too low\n",
9182 __func__);
9183
9184 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9185 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9186 dd_dev_info(dd,
9187 "%s: Cable TX channel 1/2 bias too high\n",
9188 __func__);
9189
9190 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9191 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9192 dd_dev_info(dd,
9193 "%s: Cable TX channel 1/2 bias too low\n",
9194 __func__);
9195
9196 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9197 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9198 dd_dev_info(dd,
9199 "%s: Cable TX channel 3/4 bias too high\n",
9200 __func__);
9201
9202 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9203 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9204 dd_dev_info(dd,
9205 "%s: Cable TX channel 3/4 bias too low\n",
9206 __func__);
9207
9208 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9209 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9210 dd_dev_info(dd,
9211 "%s: Cable TX channel 1/2 power too high\n",
9212 __func__);
9213
9214 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9215 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9216 dd_dev_info(dd,
9217 "%s: Cable TX channel 1/2 power too low\n",
9218 __func__);
9219
9220 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9221 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9222 dd_dev_info(dd,
9223 "%s: Cable TX channel 3/4 power too high\n",
9224 __func__);
9225
9226 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9227 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9228 dd_dev_info(dd,
9229 "%s: Cable TX channel 3/4 power too low\n",
9230 __func__);
9231
9232 /* Bytes 9-10 and 11-12 are reserved */
9233 /* Bytes 13-15 are vendor specific */
9234
9235 return 0;
9236}
9237
77241056 9238/* This routine will only be scheduled if the QSFP module is present */
8ebd4cf1 9239void qsfp_event(struct work_struct *work)
77241056
MM
9240{
9241 struct qsfp_data *qd;
9242 struct hfi1_pportdata *ppd;
9243 struct hfi1_devdata *dd;
9244
9245 qd = container_of(work, struct qsfp_data, qsfp_work);
9246 ppd = qd->ppd;
9247 dd = ppd->dd;
9248
9249 /* Sanity check */
9250 if (!qsfp_mod_present(ppd))
9251 return;
9252
9253 /*
9254 * Turn DC back on after cables has been
9255 * re-inserted. Up until now, the DC has been in
9256 * reset to save power.
9257 */
9258 dc_start(dd);
9259
9260 if (qd->cache_refresh_required) {
77241056 9261
8ebd4cf1
EH
9262 set_qsfp_int_n(ppd, 0);
9263
9264 wait_for_qsfp_init(ppd);
9265
9266 /*
9267 * Allow INT_N to trigger the QSFP interrupt to watch
9268 * for alarms and warnings
77241056 9269 */
8ebd4cf1
EH
9270 set_qsfp_int_n(ppd, 1);
9271
9272 tune_serdes(ppd);
9273
9274 start_link(ppd);
77241056
MM
9275 }
9276
9277 if (qd->check_interrupt_flags) {
9278 u8 qsfp_interrupt_status[16] = {0,};
9279
9280 if (qsfp_read(ppd, dd->hfi1_id, 6,
9281 &qsfp_interrupt_status[0], 16) != 16) {
9282 dd_dev_info(dd,
9283 "%s: Failed to read status of QSFP module\n",
9284 __func__);
9285 } else {
9286 unsigned long flags;
77241056 9287
8ebd4cf1
EH
9288 handle_qsfp_error_conditions(
9289 ppd, qsfp_interrupt_status);
77241056
MM
9290 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9291 ppd->qsfp_info.check_interrupt_flags = 0;
9292 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9293 flags);
77241056
MM
9294 }
9295 }
9296}
9297
8ebd4cf1 9298static void init_qsfp_int(struct hfi1_devdata *dd)
77241056 9299{
8ebd4cf1
EH
9300 struct hfi1_pportdata *ppd = dd->pport;
9301 u64 qsfp_mask, cce_int_mask;
9302 const int qsfp1_int_smask = QSFP1_INT % 64;
9303 const int qsfp2_int_smask = QSFP2_INT % 64;
77241056 9304
8ebd4cf1
EH
9305 /*
9306 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9307 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9308 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9309 * the index of the appropriate CSR in the CCEIntMask CSR array
9310 */
9311 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9312 (8 * (QSFP1_INT / 64)));
9313 if (dd->hfi1_id) {
9314 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9315 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9316 cce_int_mask);
9317 } else {
9318 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9319 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9320 cce_int_mask);
77241056
MM
9321 }
9322
77241056
MM
9323 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9324 /* Clear current status to avoid spurious interrupts */
8ebd4cf1
EH
9325 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9326 qsfp_mask);
9327 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9328 qsfp_mask);
9329
9330 set_qsfp_int_n(ppd, 0);
77241056
MM
9331
9332 /* Handle active low nature of INT_N and MODPRST_N pins */
9333 if (qsfp_mod_present(ppd))
9334 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9335 write_csr(dd,
9336 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9337 qsfp_mask);
77241056
MM
9338}
9339
bbdeb33d
DL
9340/*
9341 * Do a one-time initialize of the LCB block.
9342 */
9343static void init_lcb(struct hfi1_devdata *dd)
9344{
a59329d5
DL
9345 /* simulator does not correctly handle LCB cclk loopback, skip */
9346 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9347 return;
9348
bbdeb33d
DL
9349 /* the DC has been reset earlier in the driver load */
9350
9351 /* set LCB for cclk loopback on the port */
9352 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9353 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9354 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9355 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9356 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9357 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9358 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9359}
9360
77241056
MM
9361int bringup_serdes(struct hfi1_pportdata *ppd)
9362{
9363 struct hfi1_devdata *dd = ppd->dd;
9364 u64 guid;
9365 int ret;
9366
9367 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9368 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9369
9370 guid = ppd->guid;
9371 if (!guid) {
9372 if (dd->base_guid)
9373 guid = dd->base_guid + ppd->port - 1;
9374 ppd->guid = guid;
9375 }
9376
77241056
MM
9377 /* Set linkinit_reason on power up per OPA spec */
9378 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9379
bbdeb33d
DL
9380 /* one-time init of the LCB */
9381 init_lcb(dd);
9382
77241056
MM
9383 if (loopback) {
9384 ret = init_loopback(dd);
9385 if (ret < 0)
9386 return ret;
9387 }
9388
8ebd4cf1
EH
9389 /* tune the SERDES to a ballpark setting for
9390 * optimal signal and bit error rate
9391 * Needs to be done before starting the link
9392 */
9393 tune_serdes(ppd);
9394
77241056
MM
9395 return start_link(ppd);
9396}
9397
9398void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9399{
9400 struct hfi1_devdata *dd = ppd->dd;
9401
9402 /*
9403 * Shut down the link and keep it down. First turn off that the
9404 * driver wants to allow the link to be up (driver_link_ready).
9405 * Then make sure the link is not automatically restarted
9406 * (link_enabled). Cancel any pending restart. And finally
9407 * go offline.
9408 */
9409 ppd->driver_link_ready = 0;
9410 ppd->link_enabled = 0;
9411
8ebd4cf1
EH
9412 ppd->offline_disabled_reason =
9413 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056
MM
9414 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9415 OPA_LINKDOWN_REASON_SMA_DISABLED);
9416 set_link_state(ppd, HLS_DN_OFFLINE);
9417
9418 /* disable the port */
9419 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9420}
9421
9422static inline int init_cpu_counters(struct hfi1_devdata *dd)
9423{
9424 struct hfi1_pportdata *ppd;
9425 int i;
9426
9427 ppd = (struct hfi1_pportdata *)(dd + 1);
9428 for (i = 0; i < dd->num_pports; i++, ppd++) {
4eb06882
DD
9429 ppd->ibport_data.rvp.rc_acks = NULL;
9430 ppd->ibport_data.rvp.rc_qacks = NULL;
9431 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9432 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9433 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9434 if (!ppd->ibport_data.rvp.rc_acks ||
9435 !ppd->ibport_data.rvp.rc_delayed_comp ||
9436 !ppd->ibport_data.rvp.rc_qacks)
77241056
MM
9437 return -ENOMEM;
9438 }
9439
9440 return 0;
9441}
9442
9443static const char * const pt_names[] = {
9444 "expected",
9445 "eager",
9446 "invalid"
9447};
9448
9449static const char *pt_name(u32 type)
9450{
9451 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9452}
9453
9454/*
9455 * index is the index into the receive array
9456 */
9457void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9458 u32 type, unsigned long pa, u16 order)
9459{
9460 u64 reg;
9461 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9462 (dd->kregbase + RCV_ARRAY));
9463
9464 if (!(dd->flags & HFI1_PRESENT))
9465 goto done;
9466
9467 if (type == PT_INVALID) {
9468 pa = 0;
9469 } else if (type > PT_INVALID) {
9470 dd_dev_err(dd,
9471 "unexpected receive array type %u for index %u, not handled\n",
9472 type, index);
9473 goto done;
9474 }
9475
9476 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9477 pt_name(type), index, pa, (unsigned long)order);
9478
9479#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9480 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9481 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9482 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9483 << RCV_ARRAY_RT_ADDR_SHIFT;
9484 writeq(reg, base + (index * 8));
9485
9486 if (type == PT_EAGER)
9487 /*
9488 * Eager entries are written one-by-one so we have to push them
9489 * after we write the entry.
9490 */
9491 flush_wc();
9492done:
9493 return;
9494}
9495
9496void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9497{
9498 struct hfi1_devdata *dd = rcd->dd;
9499 u32 i;
9500
9501 /* this could be optimized */
9502 for (i = rcd->eager_base; i < rcd->eager_base +
9503 rcd->egrbufs.alloced; i++)
9504 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9505
9506 for (i = rcd->expected_base;
9507 i < rcd->expected_base + rcd->expected_count; i++)
9508 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9509}
9510
9511int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9512 struct hfi1_ctxt_info *kinfo)
9513{
9514 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9515 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9516 return 0;
9517}
9518
9519struct hfi1_message_header *hfi1_get_msgheader(
9520 struct hfi1_devdata *dd, __le32 *rhf_addr)
9521{
9522 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9523
9524 return (struct hfi1_message_header *)
9525 (rhf_addr - dd->rhf_offset + offset);
9526}
9527
9528static const char * const ib_cfg_name_strings[] = {
9529 "HFI1_IB_CFG_LIDLMC",
9530 "HFI1_IB_CFG_LWID_DG_ENB",
9531 "HFI1_IB_CFG_LWID_ENB",
9532 "HFI1_IB_CFG_LWID",
9533 "HFI1_IB_CFG_SPD_ENB",
9534 "HFI1_IB_CFG_SPD",
9535 "HFI1_IB_CFG_RXPOL_ENB",
9536 "HFI1_IB_CFG_LREV_ENB",
9537 "HFI1_IB_CFG_LINKLATENCY",
9538 "HFI1_IB_CFG_HRTBT",
9539 "HFI1_IB_CFG_OP_VLS",
9540 "HFI1_IB_CFG_VL_HIGH_CAP",
9541 "HFI1_IB_CFG_VL_LOW_CAP",
9542 "HFI1_IB_CFG_OVERRUN_THRESH",
9543 "HFI1_IB_CFG_PHYERR_THRESH",
9544 "HFI1_IB_CFG_LINKDEFAULT",
9545 "HFI1_IB_CFG_PKEYS",
9546 "HFI1_IB_CFG_MTU",
9547 "HFI1_IB_CFG_LSTATE",
9548 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9549 "HFI1_IB_CFG_PMA_TICKS",
9550 "HFI1_IB_CFG_PORT"
9551};
9552
9553static const char *ib_cfg_name(int which)
9554{
9555 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9556 return "invalid";
9557 return ib_cfg_name_strings[which];
9558}
9559
9560int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9561{
9562 struct hfi1_devdata *dd = ppd->dd;
9563 int val = 0;
9564
9565 switch (which) {
9566 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9567 val = ppd->link_width_enabled;
9568 break;
9569 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9570 val = ppd->link_width_active;
9571 break;
9572 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9573 val = ppd->link_speed_enabled;
9574 break;
9575 case HFI1_IB_CFG_SPD: /* current Link speed */
9576 val = ppd->link_speed_active;
9577 break;
9578
9579 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9580 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9581 case HFI1_IB_CFG_LINKLATENCY:
9582 goto unimplemented;
9583
9584 case HFI1_IB_CFG_OP_VLS:
9585 val = ppd->vls_operational;
9586 break;
9587 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9588 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9589 break;
9590 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9591 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9592 break;
9593 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9594 val = ppd->overrun_threshold;
9595 break;
9596 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9597 val = ppd->phy_error_threshold;
9598 break;
9599 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9600 val = dd->link_default;
9601 break;
9602
9603 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9604 case HFI1_IB_CFG_PMA_TICKS:
9605 default:
9606unimplemented:
9607 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9608 dd_dev_info(
9609 dd,
9610 "%s: which %s: not implemented\n",
9611 __func__,
9612 ib_cfg_name(which));
9613 break;
9614 }
9615
9616 return val;
9617}
9618
9619/*
9620 * The largest MAD packet size.
9621 */
9622#define MAX_MAD_PACKET 2048
9623
9624/*
9625 * Return the maximum header bytes that can go on the _wire_
9626 * for this device. This count includes the ICRC which is
9627 * not part of the packet held in memory but it is appended
9628 * by the HW.
9629 * This is dependent on the device's receive header entry size.
9630 * HFI allows this to be set per-receive context, but the
9631 * driver presently enforces a global value.
9632 */
9633u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9634{
9635 /*
9636 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9637 * the Receive Header Entry Size minus the PBC (or RHF) size
9638 * plus one DW for the ICRC appended by HW.
9639 *
9640 * dd->rcd[0].rcvhdrqentsize is in DW.
9641 * We use rcd[0] as all context will have the same value. Also,
9642 * the first kernel context would have been allocated by now so
9643 * we are guaranteed a valid value.
9644 */
9645 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9646}
9647
9648/*
9649 * Set Send Length
9650 * @ppd - per port data
9651 *
9652 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9653 * registers compare against LRH.PktLen, so use the max bytes included
9654 * in the LRH.
9655 *
9656 * This routine changes all VL values except VL15, which it maintains at
9657 * the same value.
9658 */
9659static void set_send_length(struct hfi1_pportdata *ppd)
9660{
9661 struct hfi1_devdata *dd = ppd->dd;
6cc6ad2e
HC
9662 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9663 u32 maxvlmtu = dd->vld[15].mtu;
77241056
MM
9664 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9665 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9666 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9667 int i;
9668
9669 for (i = 0; i < ppd->vls_supported; i++) {
9670 if (dd->vld[i].mtu > maxvlmtu)
9671 maxvlmtu = dd->vld[i].mtu;
9672 if (i <= 3)
9673 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9674 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9675 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9676 else
9677 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9678 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9679 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9680 }
9681 write_csr(dd, SEND_LEN_CHECK0, len1);
9682 write_csr(dd, SEND_LEN_CHECK1, len2);
9683 /* adjust kernel credit return thresholds based on new MTUs */
9684 /* all kernel receive contexts have the same hdrqentsize */
9685 for (i = 0; i < ppd->vls_supported; i++) {
9686 sc_set_cr_threshold(dd->vld[i].sc,
9687 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
9688 dd->rcd[0]->rcvhdrqentsize));
9689 }
9690 sc_set_cr_threshold(dd->vld[15].sc,
9691 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
9692 dd->rcd[0]->rcvhdrqentsize));
9693
9694 /* Adjust maximum MTU for the port in DC */
9695 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9696 (ilog2(maxvlmtu >> 8) + 1);
9697 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9698 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9699 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9700 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9701 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9702}
9703
9704static void set_lidlmc(struct hfi1_pportdata *ppd)
9705{
9706 int i;
9707 u64 sreg = 0;
9708 struct hfi1_devdata *dd = ppd->dd;
9709 u32 mask = ~((1U << ppd->lmc) - 1);
9710 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9711
9712 if (dd->hfi1_snoop.mode_flag)
9713 dd_dev_info(dd, "Set lid/lmc while snooping");
9714
9715 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9716 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9717 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9718 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
9719 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9720 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9721 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9722
9723 /*
9724 * Iterate over all the send contexts and set their SLID check
9725 */
9726 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9727 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9728 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9729 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9730
9731 for (i = 0; i < dd->chip_send_contexts; i++) {
9732 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9733 i, (u32)sreg);
9734 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9735 }
9736
9737 /* Now we have to do the same thing for the sdma engines */
9738 sdma_update_lmc(dd, mask, ppd->lid);
9739}
9740
9741static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9742{
9743 unsigned long timeout;
9744 u32 curr_state;
9745
9746 timeout = jiffies + msecs_to_jiffies(msecs);
9747 while (1) {
9748 curr_state = read_physical_state(dd);
9749 if (curr_state == state)
9750 break;
9751 if (time_after(jiffies, timeout)) {
9752 dd_dev_err(dd,
9753 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9754 state, curr_state);
9755 return -ETIMEDOUT;
9756 }
9757 usleep_range(1950, 2050); /* sleep 2ms-ish */
9758 }
9759
9760 return 0;
9761}
9762
9763/*
9764 * Helper for set_link_state(). Do not call except from that routine.
9765 * Expects ppd->hls_mutex to be held.
9766 *
9767 * @rem_reason value to be sent to the neighbor
9768 *
9769 * LinkDownReasons only set if transition succeeds.
9770 */
9771static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9772{
9773 struct hfi1_devdata *dd = ppd->dd;
9774 u32 pstate, previous_state;
9775 u32 last_local_state;
9776 u32 last_remote_state;
9777 int ret;
9778 int do_transition;
9779 int do_wait;
9780
9781 previous_state = ppd->host_link_state;
9782 ppd->host_link_state = HLS_GOING_OFFLINE;
9783 pstate = read_physical_state(dd);
9784 if (pstate == PLS_OFFLINE) {
9785 do_transition = 0; /* in right state */
9786 do_wait = 0; /* ...no need to wait */
9787 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9788 do_transition = 0; /* in an offline transient state */
9789 do_wait = 1; /* ...wait for it to settle */
9790 } else {
9791 do_transition = 1; /* need to move to offline */
9792 do_wait = 1; /* ...will need to wait */
9793 }
9794
9795 if (do_transition) {
9796 ret = set_physical_link_state(dd,
9797 PLS_OFFLINE | (rem_reason << 8));
9798
9799 if (ret != HCMD_SUCCESS) {
9800 dd_dev_err(dd,
9801 "Failed to transition to Offline link state, return %d\n",
9802 ret);
9803 return -EINVAL;
9804 }
a9c05e35
BM
9805 if (ppd->offline_disabled_reason ==
9806 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
77241056 9807 ppd->offline_disabled_reason =
a9c05e35 9808 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
9809 }
9810
9811 if (do_wait) {
9812 /* it can take a while for the link to go down */
dc060245 9813 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
77241056
MM
9814 if (ret < 0)
9815 return ret;
9816 }
9817
9818 /* make sure the logical state is also down */
9819 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9820
9821 /*
9822 * Now in charge of LCB - must be after the physical state is
9823 * offline.quiet and before host_link_state is changed.
9824 */
9825 set_host_lcb_access(dd);
9826 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9827 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9828
8ebd4cf1
EH
9829 if (ppd->port_type == PORT_TYPE_QSFP &&
9830 ppd->qsfp_info.limiting_active &&
9831 qsfp_mod_present(ppd)) {
9832 set_qsfp_tx(ppd, 0);
9833 }
9834
77241056
MM
9835 /*
9836 * The LNI has a mandatory wait time after the physical state
9837 * moves to Offline.Quiet. The wait time may be different
9838 * depending on how the link went down. The 8051 firmware
9839 * will observe the needed wait time and only move to ready
9840 * when that is completed. The largest of the quiet timeouts
05087f3b
DL
9841 * is 6s, so wait that long and then at least 0.5s more for
9842 * other transitions, and another 0.5s for a buffer.
77241056 9843 */
05087f3b 9844 ret = wait_fm_ready(dd, 7000);
77241056
MM
9845 if (ret) {
9846 dd_dev_err(dd,
9847 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
9848 /* state is really offline, so make it so */
9849 ppd->host_link_state = HLS_DN_OFFLINE;
9850 return ret;
9851 }
9852
9853 /*
9854 * The state is now offline and the 8051 is ready to accept host
9855 * requests.
9856 * - change our state
9857 * - notify others if we were previously in a linkup state
9858 */
9859 ppd->host_link_state = HLS_DN_OFFLINE;
9860 if (previous_state & HLS_UP) {
9861 /* went down while link was up */
9862 handle_linkup_change(dd, 0);
9863 } else if (previous_state
9864 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9865 /* went down while attempting link up */
9866 /* byte 1 of last_*_state is the failure reason */
9867 read_last_local_state(dd, &last_local_state);
9868 read_last_remote_state(dd, &last_remote_state);
9869 dd_dev_err(dd,
9870 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9871 last_local_state, last_remote_state);
9872 }
9873
9874 /* the active link width (downgrade) is 0 on link down */
9875 ppd->link_width_active = 0;
9876 ppd->link_width_downgrade_tx_active = 0;
9877 ppd->link_width_downgrade_rx_active = 0;
9878 ppd->current_egress_rate = 0;
9879 return 0;
9880}
9881
9882/* return the link state name */
9883static const char *link_state_name(u32 state)
9884{
9885 const char *name;
9886 int n = ilog2(state);
9887 static const char * const names[] = {
9888 [__HLS_UP_INIT_BP] = "INIT",
9889 [__HLS_UP_ARMED_BP] = "ARMED",
9890 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9891 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9892 [__HLS_DN_POLL_BP] = "POLL",
9893 [__HLS_DN_DISABLE_BP] = "DISABLE",
9894 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9895 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9896 [__HLS_GOING_UP_BP] = "GOING_UP",
9897 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9898 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9899 };
9900
9901 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9902 return name ? name : "unknown";
9903}
9904
9905/* return the link state reason name */
9906static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9907{
9908 if (state == HLS_UP_INIT) {
9909 switch (ppd->linkinit_reason) {
9910 case OPA_LINKINIT_REASON_LINKUP:
9911 return "(LINKUP)";
9912 case OPA_LINKINIT_REASON_FLAPPING:
9913 return "(FLAPPING)";
9914 case OPA_LINKINIT_OUTSIDE_POLICY:
9915 return "(OUTSIDE_POLICY)";
9916 case OPA_LINKINIT_QUARANTINED:
9917 return "(QUARANTINED)";
9918 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9919 return "(INSUFIC_CAPABILITY)";
9920 default:
9921 break;
9922 }
9923 }
9924 return "";
9925}
9926
9927/*
9928 * driver_physical_state - convert the driver's notion of a port's
9929 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9930 * Return -1 (converted to a u32) to indicate error.
9931 */
9932u32 driver_physical_state(struct hfi1_pportdata *ppd)
9933{
9934 switch (ppd->host_link_state) {
9935 case HLS_UP_INIT:
9936 case HLS_UP_ARMED:
9937 case HLS_UP_ACTIVE:
9938 return IB_PORTPHYSSTATE_LINKUP;
9939 case HLS_DN_POLL:
9940 return IB_PORTPHYSSTATE_POLLING;
9941 case HLS_DN_DISABLE:
9942 return IB_PORTPHYSSTATE_DISABLED;
9943 case HLS_DN_OFFLINE:
9944 return OPA_PORTPHYSSTATE_OFFLINE;
9945 case HLS_VERIFY_CAP:
9946 return IB_PORTPHYSSTATE_POLLING;
9947 case HLS_GOING_UP:
9948 return IB_PORTPHYSSTATE_POLLING;
9949 case HLS_GOING_OFFLINE:
9950 return OPA_PORTPHYSSTATE_OFFLINE;
9951 case HLS_LINK_COOLDOWN:
9952 return OPA_PORTPHYSSTATE_OFFLINE;
9953 case HLS_DN_DOWNDEF:
9954 default:
9955 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9956 ppd->host_link_state);
9957 return -1;
9958 }
9959}
9960
9961/*
9962 * driver_logical_state - convert the driver's notion of a port's
9963 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9964 * (converted to a u32) to indicate error.
9965 */
9966u32 driver_logical_state(struct hfi1_pportdata *ppd)
9967{
9968 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9969 return IB_PORT_DOWN;
9970
9971 switch (ppd->host_link_state & HLS_UP) {
9972 case HLS_UP_INIT:
9973 return IB_PORT_INIT;
9974 case HLS_UP_ARMED:
9975 return IB_PORT_ARMED;
9976 case HLS_UP_ACTIVE:
9977 return IB_PORT_ACTIVE;
9978 default:
9979 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9980 ppd->host_link_state);
9981 return -1;
9982 }
9983}
9984
9985void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
9986 u8 neigh_reason, u8 rem_reason)
9987{
9988 if (ppd->local_link_down_reason.latest == 0 &&
9989 ppd->neigh_link_down_reason.latest == 0) {
9990 ppd->local_link_down_reason.latest = lcl_reason;
9991 ppd->neigh_link_down_reason.latest = neigh_reason;
9992 ppd->remote_link_down_reason = rem_reason;
9993 }
9994}
9995
9996/*
9997 * Change the physical and/or logical link state.
9998 *
9999 * Do not call this routine while inside an interrupt. It contains
10000 * calls to routines that can take multiple seconds to finish.
10001 *
10002 * Returns 0 on success, -errno on failure.
10003 */
10004int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10005{
10006 struct hfi1_devdata *dd = ppd->dd;
10007 struct ib_event event = {.device = NULL};
10008 int ret1, ret = 0;
10009 int was_up, is_down;
10010 int orig_new_state, poll_bounce;
10011
10012 mutex_lock(&ppd->hls_lock);
10013
10014 orig_new_state = state;
10015 if (state == HLS_DN_DOWNDEF)
10016 state = dd->link_default;
10017
10018 /* interpret poll -> poll as a link bounce */
10019 poll_bounce = ppd->host_link_state == HLS_DN_POLL
10020 && state == HLS_DN_POLL;
10021
10022 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10023 link_state_name(ppd->host_link_state),
10024 link_state_name(orig_new_state),
10025 poll_bounce ? "(bounce) " : "",
10026 link_state_reason_name(ppd, state));
10027
10028 was_up = !!(ppd->host_link_state & HLS_UP);
10029
10030 /*
10031 * If we're going to a (HLS_*) link state that implies the logical
10032 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10033 * reset is_sm_config_started to 0.
10034 */
10035 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10036 ppd->is_sm_config_started = 0;
10037
10038 /*
10039 * Do nothing if the states match. Let a poll to poll link bounce
10040 * go through.
10041 */
10042 if (ppd->host_link_state == state && !poll_bounce)
10043 goto done;
10044
10045 switch (state) {
10046 case HLS_UP_INIT:
10047 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
10048 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10049 /*
10050 * Quick link up jumps from polling to here.
10051 *
10052 * Whether in normal or loopback mode, the
10053 * simulator jumps from polling to link up.
10054 * Accept that here.
10055 */
10056 /* OK */;
10057 } else if (ppd->host_link_state != HLS_GOING_UP) {
10058 goto unexpected;
10059 }
10060
10061 ppd->host_link_state = HLS_UP_INIT;
10062 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10063 if (ret) {
10064 /* logical state didn't change, stay at going_up */
10065 ppd->host_link_state = HLS_GOING_UP;
10066 dd_dev_err(dd,
10067 "%s: logical state did not change to INIT\n",
10068 __func__);
10069 } else {
10070 /* clear old transient LINKINIT_REASON code */
10071 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10072 ppd->linkinit_reason =
10073 OPA_LINKINIT_REASON_LINKUP;
10074
10075 /* enable the port */
10076 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10077
10078 handle_linkup_change(dd, 1);
10079 }
10080 break;
10081 case HLS_UP_ARMED:
10082 if (ppd->host_link_state != HLS_UP_INIT)
10083 goto unexpected;
10084
10085 ppd->host_link_state = HLS_UP_ARMED;
10086 set_logical_state(dd, LSTATE_ARMED);
10087 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10088 if (ret) {
10089 /* logical state didn't change, stay at init */
10090 ppd->host_link_state = HLS_UP_INIT;
10091 dd_dev_err(dd,
10092 "%s: logical state did not change to ARMED\n",
10093 __func__);
10094 }
10095 /*
10096 * The simulator does not currently implement SMA messages,
10097 * so neighbor_normal is not set. Set it here when we first
10098 * move to Armed.
10099 */
10100 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10101 ppd->neighbor_normal = 1;
10102 break;
10103 case HLS_UP_ACTIVE:
10104 if (ppd->host_link_state != HLS_UP_ARMED)
10105 goto unexpected;
10106
10107 ppd->host_link_state = HLS_UP_ACTIVE;
10108 set_logical_state(dd, LSTATE_ACTIVE);
10109 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10110 if (ret) {
10111 /* logical state didn't change, stay at armed */
10112 ppd->host_link_state = HLS_UP_ARMED;
10113 dd_dev_err(dd,
10114 "%s: logical state did not change to ACTIVE\n",
10115 __func__);
10116 } else {
10117
10118 /* tell all engines to go running */
10119 sdma_all_running(dd);
10120
10121 /* Signal the IB layer that the port has went active */
ec3f2c12 10122 event.device = &dd->verbs_dev.rdi.ibdev;
77241056
MM
10123 event.element.port_num = ppd->port;
10124 event.event = IB_EVENT_PORT_ACTIVE;
10125 }
10126 break;
10127 case HLS_DN_POLL:
10128 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10129 ppd->host_link_state == HLS_DN_OFFLINE) &&
10130 dd->dc_shutdown)
10131 dc_start(dd);
10132 /* Hand LED control to the DC */
10133 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10134
10135 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10136 u8 tmp = ppd->link_enabled;
10137
10138 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10139 if (ret) {
10140 ppd->link_enabled = tmp;
10141 break;
10142 }
10143 ppd->remote_link_down_reason = 0;
10144
10145 if (ppd->driver_link_ready)
10146 ppd->link_enabled = 1;
10147 }
10148
fb9036dd 10149 set_all_slowpath(ppd->dd);
77241056
MM
10150 ret = set_local_link_attributes(ppd);
10151 if (ret)
10152 break;
10153
10154 ppd->port_error_action = 0;
10155 ppd->host_link_state = HLS_DN_POLL;
10156
10157 if (quick_linkup) {
10158 /* quick linkup does not go into polling */
10159 ret = do_quick_linkup(dd);
10160 } else {
10161 ret1 = set_physical_link_state(dd, PLS_POLLING);
10162 if (ret1 != HCMD_SUCCESS) {
10163 dd_dev_err(dd,
10164 "Failed to transition to Polling link state, return 0x%x\n",
10165 ret1);
10166 ret = -EINVAL;
10167 }
10168 }
a9c05e35
BM
10169 ppd->offline_disabled_reason =
10170 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
77241056
MM
10171 /*
10172 * If an error occurred above, go back to offline. The
10173 * caller may reschedule another attempt.
10174 */
10175 if (ret)
10176 goto_offline(ppd, 0);
10177 break;
10178 case HLS_DN_DISABLE:
10179 /* link is disabled */
10180 ppd->link_enabled = 0;
10181
10182 /* allow any state to transition to disabled */
10183
10184 /* must transition to offline first */
10185 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10186 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10187 if (ret)
10188 break;
10189 ppd->remote_link_down_reason = 0;
10190 }
10191
10192 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10193 if (ret1 != HCMD_SUCCESS) {
10194 dd_dev_err(dd,
10195 "Failed to transition to Disabled link state, return 0x%x\n",
10196 ret1);
10197 ret = -EINVAL;
10198 break;
10199 }
10200 ppd->host_link_state = HLS_DN_DISABLE;
10201 dc_shutdown(dd);
10202 break;
10203 case HLS_DN_OFFLINE:
10204 if (ppd->host_link_state == HLS_DN_DISABLE)
10205 dc_start(dd);
10206
10207 /* allow any state to transition to offline */
10208 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10209 if (!ret)
10210 ppd->remote_link_down_reason = 0;
10211 break;
10212 case HLS_VERIFY_CAP:
10213 if (ppd->host_link_state != HLS_DN_POLL)
10214 goto unexpected;
10215 ppd->host_link_state = HLS_VERIFY_CAP;
10216 break;
10217 case HLS_GOING_UP:
10218 if (ppd->host_link_state != HLS_VERIFY_CAP)
10219 goto unexpected;
10220
10221 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10222 if (ret1 != HCMD_SUCCESS) {
10223 dd_dev_err(dd,
10224 "Failed to transition to link up state, return 0x%x\n",
10225 ret1);
10226 ret = -EINVAL;
10227 break;
10228 }
10229 ppd->host_link_state = HLS_GOING_UP;
10230 break;
10231
10232 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10233 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10234 default:
10235 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10236 __func__, state);
10237 ret = -EINVAL;
10238 break;
10239 }
10240
10241 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
10242 HLS_DN_DISABLE | HLS_DN_OFFLINE));
10243
10244 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
10245 ppd->neigh_link_down_reason.sma == 0) {
10246 ppd->local_link_down_reason.sma =
10247 ppd->local_link_down_reason.latest;
10248 ppd->neigh_link_down_reason.sma =
10249 ppd->neigh_link_down_reason.latest;
10250 }
10251
10252 goto done;
10253
10254unexpected:
10255 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10256 __func__, link_state_name(ppd->host_link_state),
10257 link_state_name(state));
10258 ret = -EINVAL;
10259
10260done:
10261 mutex_unlock(&ppd->hls_lock);
10262
10263 if (event.device)
10264 ib_dispatch_event(&event);
10265
10266 return ret;
10267}
10268
10269int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10270{
10271 u64 reg;
10272 int ret = 0;
10273
10274 switch (which) {
10275 case HFI1_IB_CFG_LIDLMC:
10276 set_lidlmc(ppd);
10277 break;
10278 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10279 /*
10280 * The VL Arbitrator high limit is sent in units of 4k
10281 * bytes, while HFI stores it in units of 64 bytes.
10282 */
10283 val *= 4096/64;
10284 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10285 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10286 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10287 break;
10288 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10289 /* HFI only supports POLL as the default link down state */
10290 if (val != HLS_DN_POLL)
10291 ret = -EINVAL;
10292 break;
10293 case HFI1_IB_CFG_OP_VLS:
10294 if (ppd->vls_operational != val) {
10295 ppd->vls_operational = val;
10296 if (!ppd->port)
10297 ret = -EINVAL;
10298 else
10299 ret = sdma_map_init(
10300 ppd->dd,
10301 ppd->port - 1,
10302 val,
10303 NULL);
10304 }
10305 break;
10306 /*
10307 * For link width, link width downgrade, and speed enable, always AND
10308 * the setting with what is actually supported. This has two benefits.
10309 * First, enabled can't have unsupported values, no matter what the
10310 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10311 * "fill in with your supported value" have all the bits in the
10312 * field set, so simply ANDing with supported has the desired result.
10313 */
10314 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10315 ppd->link_width_enabled = val & ppd->link_width_supported;
10316 break;
10317 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10318 ppd->link_width_downgrade_enabled =
10319 val & ppd->link_width_downgrade_supported;
10320 break;
10321 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10322 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10323 break;
10324 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10325 /*
10326 * HFI does not follow IB specs, save this value
10327 * so we can report it, if asked.
10328 */
10329 ppd->overrun_threshold = val;
10330 break;
10331 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10332 /*
10333 * HFI does not follow IB specs, save this value
10334 * so we can report it, if asked.
10335 */
10336 ppd->phy_error_threshold = val;
10337 break;
10338
10339 case HFI1_IB_CFG_MTU:
10340 set_send_length(ppd);
10341 break;
10342
10343 case HFI1_IB_CFG_PKEYS:
10344 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10345 set_partition_keys(ppd);
10346 break;
10347
10348 default:
10349 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10350 dd_dev_info(ppd->dd,
10351 "%s: which %s, val 0x%x: not implemented\n",
10352 __func__, ib_cfg_name(which), val);
10353 break;
10354 }
10355 return ret;
10356}
10357
10358/* begin functions related to vl arbitration table caching */
10359static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10360{
10361 int i;
10362
10363 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10364 VL_ARB_LOW_PRIO_TABLE_SIZE);
10365 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10366 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10367
10368 /*
10369 * Note that we always return values directly from the
10370 * 'vl_arb_cache' (and do no CSR reads) in response to a
10371 * 'Get(VLArbTable)'. This is obviously correct after a
10372 * 'Set(VLArbTable)', since the cache will then be up to
10373 * date. But it's also correct prior to any 'Set(VLArbTable)'
10374 * since then both the cache, and the relevant h/w registers
10375 * will be zeroed.
10376 */
10377
10378 for (i = 0; i < MAX_PRIO_TABLE; i++)
10379 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10380}
10381
10382/*
10383 * vl_arb_lock_cache
10384 *
10385 * All other vl_arb_* functions should be called only after locking
10386 * the cache.
10387 */
10388static inline struct vl_arb_cache *
10389vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10390{
10391 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10392 return NULL;
10393 spin_lock(&ppd->vl_arb_cache[idx].lock);
10394 return &ppd->vl_arb_cache[idx];
10395}
10396
10397static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10398{
10399 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10400}
10401
10402static void vl_arb_get_cache(struct vl_arb_cache *cache,
10403 struct ib_vl_weight_elem *vl)
10404{
10405 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10406}
10407
10408static void vl_arb_set_cache(struct vl_arb_cache *cache,
10409 struct ib_vl_weight_elem *vl)
10410{
10411 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10412}
10413
10414static int vl_arb_match_cache(struct vl_arb_cache *cache,
10415 struct ib_vl_weight_elem *vl)
10416{
10417 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10418}
10419/* end functions related to vl arbitration table caching */
10420
10421static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10422 u32 size, struct ib_vl_weight_elem *vl)
10423{
10424 struct hfi1_devdata *dd = ppd->dd;
10425 u64 reg;
10426 unsigned int i, is_up = 0;
10427 int drain, ret = 0;
10428
10429 mutex_lock(&ppd->hls_lock);
10430
10431 if (ppd->host_link_state & HLS_UP)
10432 is_up = 1;
10433
10434 drain = !is_ax(dd) && is_up;
10435
10436 if (drain)
10437 /*
10438 * Before adjusting VL arbitration weights, empty per-VL
10439 * FIFOs, otherwise a packet whose VL weight is being
10440 * set to 0 could get stuck in a FIFO with no chance to
10441 * egress.
10442 */
10443 ret = stop_drain_data_vls(dd);
10444
10445 if (ret) {
10446 dd_dev_err(
10447 dd,
10448 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10449 __func__);
10450 goto err;
10451 }
10452
10453 for (i = 0; i < size; i++, vl++) {
10454 /*
10455 * NOTE: The low priority shift and mask are used here, but
10456 * they are the same for both the low and high registers.
10457 */
10458 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10459 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10460 | (((u64)vl->weight
10461 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10462 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10463 write_csr(dd, target + (i * 8), reg);
10464 }
10465 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10466
10467 if (drain)
10468 open_fill_data_vls(dd); /* reopen all VLs */
10469
10470err:
10471 mutex_unlock(&ppd->hls_lock);
10472
10473 return ret;
10474}
10475
10476/*
10477 * Read one credit merge VL register.
10478 */
10479static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10480 struct vl_limit *vll)
10481{
10482 u64 reg = read_csr(dd, csr);
10483
10484 vll->dedicated = cpu_to_be16(
10485 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10486 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10487 vll->shared = cpu_to_be16(
10488 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10489 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10490}
10491
10492/*
10493 * Read the current credit merge limits.
10494 */
10495static int get_buffer_control(struct hfi1_devdata *dd,
10496 struct buffer_control *bc, u16 *overall_limit)
10497{
10498 u64 reg;
10499 int i;
10500
10501 /* not all entries are filled in */
10502 memset(bc, 0, sizeof(*bc));
10503
10504 /* OPA and HFI have a 1-1 mapping */
10505 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10506 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
10507
10508 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10509 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10510
10511 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10512 bc->overall_shared_limit = cpu_to_be16(
10513 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10514 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10515 if (overall_limit)
10516 *overall_limit = (reg
10517 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10518 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10519 return sizeof(struct buffer_control);
10520}
10521
10522static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10523{
10524 u64 reg;
10525 int i;
10526
10527 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10528 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10529 for (i = 0; i < sizeof(u64); i++) {
10530 u8 byte = *(((u8 *)&reg) + i);
10531
10532 dp->vlnt[2 * i] = byte & 0xf;
10533 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10534 }
10535
10536 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10537 for (i = 0; i < sizeof(u64); i++) {
10538 u8 byte = *(((u8 *)&reg) + i);
10539
10540 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10541 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10542 }
10543 return sizeof(struct sc2vlnt);
10544}
10545
10546static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10547 struct ib_vl_weight_elem *vl)
10548{
10549 unsigned int i;
10550
10551 for (i = 0; i < nelems; i++, vl++) {
10552 vl->vl = 0xf;
10553 vl->weight = 0;
10554 }
10555}
10556
10557static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10558{
10559 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10560 DC_SC_VL_VAL(15_0,
10561 0, dp->vlnt[0] & 0xf,
10562 1, dp->vlnt[1] & 0xf,
10563 2, dp->vlnt[2] & 0xf,
10564 3, dp->vlnt[3] & 0xf,
10565 4, dp->vlnt[4] & 0xf,
10566 5, dp->vlnt[5] & 0xf,
10567 6, dp->vlnt[6] & 0xf,
10568 7, dp->vlnt[7] & 0xf,
10569 8, dp->vlnt[8] & 0xf,
10570 9, dp->vlnt[9] & 0xf,
10571 10, dp->vlnt[10] & 0xf,
10572 11, dp->vlnt[11] & 0xf,
10573 12, dp->vlnt[12] & 0xf,
10574 13, dp->vlnt[13] & 0xf,
10575 14, dp->vlnt[14] & 0xf,
10576 15, dp->vlnt[15] & 0xf));
10577 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10578 DC_SC_VL_VAL(31_16,
10579 16, dp->vlnt[16] & 0xf,
10580 17, dp->vlnt[17] & 0xf,
10581 18, dp->vlnt[18] & 0xf,
10582 19, dp->vlnt[19] & 0xf,
10583 20, dp->vlnt[20] & 0xf,
10584 21, dp->vlnt[21] & 0xf,
10585 22, dp->vlnt[22] & 0xf,
10586 23, dp->vlnt[23] & 0xf,
10587 24, dp->vlnt[24] & 0xf,
10588 25, dp->vlnt[25] & 0xf,
10589 26, dp->vlnt[26] & 0xf,
10590 27, dp->vlnt[27] & 0xf,
10591 28, dp->vlnt[28] & 0xf,
10592 29, dp->vlnt[29] & 0xf,
10593 30, dp->vlnt[30] & 0xf,
10594 31, dp->vlnt[31] & 0xf));
10595}
10596
10597static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10598 u16 limit)
10599{
10600 if (limit != 0)
10601 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10602 what, (int)limit, idx);
10603}
10604
10605/* change only the shared limit portion of SendCmGLobalCredit */
10606static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10607{
10608 u64 reg;
10609
10610 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10611 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10612 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10613 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10614}
10615
10616/* change only the total credit limit portion of SendCmGLobalCredit */
10617static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10618{
10619 u64 reg;
10620
10621 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10622 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10623 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10624 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10625}
10626
10627/* set the given per-VL shared limit */
10628static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10629{
10630 u64 reg;
10631 u32 addr;
10632
10633 if (vl < TXE_NUM_DATA_VL)
10634 addr = SEND_CM_CREDIT_VL + (8 * vl);
10635 else
10636 addr = SEND_CM_CREDIT_VL15;
10637
10638 reg = read_csr(dd, addr);
10639 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10640 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10641 write_csr(dd, addr, reg);
10642}
10643
10644/* set the given per-VL dedicated limit */
10645static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10646{
10647 u64 reg;
10648 u32 addr;
10649
10650 if (vl < TXE_NUM_DATA_VL)
10651 addr = SEND_CM_CREDIT_VL + (8 * vl);
10652 else
10653 addr = SEND_CM_CREDIT_VL15;
10654
10655 reg = read_csr(dd, addr);
10656 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10657 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10658 write_csr(dd, addr, reg);
10659}
10660
10661/* spin until the given per-VL status mask bits clear */
10662static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10663 const char *which)
10664{
10665 unsigned long timeout;
10666 u64 reg;
10667
10668 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10669 while (1) {
10670 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10671
10672 if (reg == 0)
10673 return; /* success */
10674 if (time_after(jiffies, timeout))
10675 break; /* timed out */
10676 udelay(1);
10677 }
10678
10679 dd_dev_err(dd,
10680 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10681 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10682 /*
10683 * If this occurs, it is likely there was a credit loss on the link.
10684 * The only recovery from that is a link bounce.
10685 */
10686 dd_dev_err(dd,
10687 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
10688}
10689
10690/*
10691 * The number of credits on the VLs may be changed while everything
10692 * is "live", but the following algorithm must be followed due to
10693 * how the hardware is actually implemented. In particular,
10694 * Return_Credit_Status[] is the only correct status check.
10695 *
10696 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10697 * set Global_Shared_Credit_Limit = 0
10698 * use_all_vl = 1
10699 * mask0 = all VLs that are changing either dedicated or shared limits
10700 * set Shared_Limit[mask0] = 0
10701 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10702 * if (changing any dedicated limit)
10703 * mask1 = all VLs that are lowering dedicated limits
10704 * lower Dedicated_Limit[mask1]
10705 * spin until Return_Credit_Status[mask1] == 0
10706 * raise Dedicated_Limits
10707 * raise Shared_Limits
10708 * raise Global_Shared_Credit_Limit
10709 *
10710 * lower = if the new limit is lower, set the limit to the new value
10711 * raise = if the new limit is higher than the current value (may be changed
10712 * earlier in the algorithm), set the new limit to the new value
10713 */
10714static int set_buffer_control(struct hfi1_devdata *dd,
10715 struct buffer_control *new_bc)
10716{
10717 u64 changing_mask, ld_mask, stat_mask;
10718 int change_count;
10719 int i, use_all_mask;
10720 int this_shared_changing;
10721 /*
10722 * A0: add the variable any_shared_limit_changing below and in the
10723 * algorithm above. If removing A0 support, it can be removed.
10724 */
10725 int any_shared_limit_changing;
10726 struct buffer_control cur_bc;
10727 u8 changing[OPA_MAX_VLS];
10728 u8 lowering_dedicated[OPA_MAX_VLS];
10729 u16 cur_total;
10730 u32 new_total = 0;
10731 const u64 all_mask =
10732 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10733 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10734 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10735 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10736 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10737 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10738 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10739 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10740 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10741
10742#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10743#define NUM_USABLE_VLS 16 /* look at VL15 and less */
10744
10745
10746 /* find the new total credits, do sanity check on unused VLs */
10747 for (i = 0; i < OPA_MAX_VLS; i++) {
10748 if (valid_vl(i)) {
10749 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10750 continue;
10751 }
10752 nonzero_msg(dd, i, "dedicated",
10753 be16_to_cpu(new_bc->vl[i].dedicated));
10754 nonzero_msg(dd, i, "shared",
10755 be16_to_cpu(new_bc->vl[i].shared));
10756 new_bc->vl[i].dedicated = 0;
10757 new_bc->vl[i].shared = 0;
10758 }
10759 new_total += be16_to_cpu(new_bc->overall_shared_limit);
bff14bb6 10760
77241056
MM
10761 /* fetch the current values */
10762 get_buffer_control(dd, &cur_bc, &cur_total);
10763
10764 /*
10765 * Create the masks we will use.
10766 */
10767 memset(changing, 0, sizeof(changing));
10768 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
10769 /* NOTE: Assumes that the individual VL bits are adjacent and in
10770 increasing order */
10771 stat_mask =
10772 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10773 changing_mask = 0;
10774 ld_mask = 0;
10775 change_count = 0;
10776 any_shared_limit_changing = 0;
10777 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10778 if (!valid_vl(i))
10779 continue;
10780 this_shared_changing = new_bc->vl[i].shared
10781 != cur_bc.vl[i].shared;
10782 if (this_shared_changing)
10783 any_shared_limit_changing = 1;
10784 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
10785 || this_shared_changing) {
10786 changing[i] = 1;
10787 changing_mask |= stat_mask;
10788 change_count++;
10789 }
10790 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10791 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10792 lowering_dedicated[i] = 1;
10793 ld_mask |= stat_mask;
10794 }
10795 }
10796
10797 /* bracket the credit change with a total adjustment */
10798 if (new_total > cur_total)
10799 set_global_limit(dd, new_total);
10800
10801 /*
10802 * Start the credit change algorithm.
10803 */
10804 use_all_mask = 0;
10805 if ((be16_to_cpu(new_bc->overall_shared_limit) <
995deafa
MM
10806 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10807 (is_ax(dd) && any_shared_limit_changing)) {
77241056
MM
10808 set_global_shared(dd, 0);
10809 cur_bc.overall_shared_limit = 0;
10810 use_all_mask = 1;
10811 }
10812
10813 for (i = 0; i < NUM_USABLE_VLS; i++) {
10814 if (!valid_vl(i))
10815 continue;
10816
10817 if (changing[i]) {
10818 set_vl_shared(dd, i, 0);
10819 cur_bc.vl[i].shared = 0;
10820 }
10821 }
10822
10823 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
10824 "shared");
10825
10826 if (change_count > 0) {
10827 for (i = 0; i < NUM_USABLE_VLS; i++) {
10828 if (!valid_vl(i))
10829 continue;
10830
10831 if (lowering_dedicated[i]) {
10832 set_vl_dedicated(dd, i,
10833 be16_to_cpu(new_bc->vl[i].dedicated));
10834 cur_bc.vl[i].dedicated =
10835 new_bc->vl[i].dedicated;
10836 }
10837 }
10838
10839 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10840
10841 /* now raise all dedicated that are going up */
10842 for (i = 0; i < NUM_USABLE_VLS; i++) {
10843 if (!valid_vl(i))
10844 continue;
10845
10846 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10847 be16_to_cpu(cur_bc.vl[i].dedicated))
10848 set_vl_dedicated(dd, i,
10849 be16_to_cpu(new_bc->vl[i].dedicated));
10850 }
10851 }
10852
10853 /* next raise all shared that are going up */
10854 for (i = 0; i < NUM_USABLE_VLS; i++) {
10855 if (!valid_vl(i))
10856 continue;
10857
10858 if (be16_to_cpu(new_bc->vl[i].shared) >
10859 be16_to_cpu(cur_bc.vl[i].shared))
10860 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10861 }
10862
10863 /* finally raise the global shared */
10864 if (be16_to_cpu(new_bc->overall_shared_limit) >
10865 be16_to_cpu(cur_bc.overall_shared_limit))
10866 set_global_shared(dd,
10867 be16_to_cpu(new_bc->overall_shared_limit));
10868
10869 /* bracket the credit change with a total adjustment */
10870 if (new_total < cur_total)
10871 set_global_limit(dd, new_total);
10872 return 0;
10873}
10874
10875/*
10876 * Read the given fabric manager table. Return the size of the
10877 * table (in bytes) on success, and a negative error code on
10878 * failure.
10879 */
10880int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10881
10882{
10883 int size;
10884 struct vl_arb_cache *vlc;
10885
10886 switch (which) {
10887 case FM_TBL_VL_HIGH_ARB:
10888 size = 256;
10889 /*
10890 * OPA specifies 128 elements (of 2 bytes each), though
10891 * HFI supports only 16 elements in h/w.
10892 */
10893 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10894 vl_arb_get_cache(vlc, t);
10895 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10896 break;
10897 case FM_TBL_VL_LOW_ARB:
10898 size = 256;
10899 /*
10900 * OPA specifies 128 elements (of 2 bytes each), though
10901 * HFI supports only 16 elements in h/w.
10902 */
10903 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10904 vl_arb_get_cache(vlc, t);
10905 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10906 break;
10907 case FM_TBL_BUFFER_CONTROL:
10908 size = get_buffer_control(ppd->dd, t, NULL);
10909 break;
10910 case FM_TBL_SC2VLNT:
10911 size = get_sc2vlnt(ppd->dd, t);
10912 break;
10913 case FM_TBL_VL_PREEMPT_ELEMS:
10914 size = 256;
10915 /* OPA specifies 128 elements, of 2 bytes each */
10916 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10917 break;
10918 case FM_TBL_VL_PREEMPT_MATRIX:
10919 size = 256;
10920 /*
10921 * OPA specifies that this is the same size as the VL
10922 * arbitration tables (i.e., 256 bytes).
10923 */
10924 break;
10925 default:
10926 return -EINVAL;
10927 }
10928 return size;
10929}
10930
10931/*
10932 * Write the given fabric manager table.
10933 */
10934int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10935{
10936 int ret = 0;
10937 struct vl_arb_cache *vlc;
10938
10939 switch (which) {
10940 case FM_TBL_VL_HIGH_ARB:
10941 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10942 if (vl_arb_match_cache(vlc, t)) {
10943 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10944 break;
10945 }
10946 vl_arb_set_cache(vlc, t);
10947 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10948 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10949 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10950 break;
10951 case FM_TBL_VL_LOW_ARB:
10952 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10953 if (vl_arb_match_cache(vlc, t)) {
10954 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10955 break;
10956 }
10957 vl_arb_set_cache(vlc, t);
10958 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10959 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
10960 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
10961 break;
10962 case FM_TBL_BUFFER_CONTROL:
10963 ret = set_buffer_control(ppd->dd, t);
10964 break;
10965 case FM_TBL_SC2VLNT:
10966 set_sc2vlnt(ppd->dd, t);
10967 break;
10968 default:
10969 ret = -EINVAL;
10970 }
10971 return ret;
10972}
10973
10974/*
10975 * Disable all data VLs.
10976 *
10977 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
10978 */
10979static int disable_data_vls(struct hfi1_devdata *dd)
10980{
995deafa 10981 if (is_ax(dd))
77241056
MM
10982 return 1;
10983
10984 pio_send_control(dd, PSC_DATA_VL_DISABLE);
10985
10986 return 0;
10987}
10988
10989/*
10990 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
10991 * Just re-enables all data VLs (the "fill" part happens
10992 * automatically - the name was chosen for symmetry with
10993 * stop_drain_data_vls()).
10994 *
10995 * Return 0 if successful, non-zero if the VLs cannot be enabled.
10996 */
10997int open_fill_data_vls(struct hfi1_devdata *dd)
10998{
995deafa 10999 if (is_ax(dd))
77241056
MM
11000 return 1;
11001
11002 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11003
11004 return 0;
11005}
11006
11007/*
11008 * drain_data_vls() - assumes that disable_data_vls() has been called,
11009 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11010 * engines to drop to 0.
11011 */
11012static void drain_data_vls(struct hfi1_devdata *dd)
11013{
11014 sc_wait(dd);
11015 sdma_wait(dd);
11016 pause_for_credit_return(dd);
11017}
11018
11019/*
11020 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11021 *
11022 * Use open_fill_data_vls() to resume using data VLs. This pair is
11023 * meant to be used like this:
11024 *
11025 * stop_drain_data_vls(dd);
11026 * // do things with per-VL resources
11027 * open_fill_data_vls(dd);
11028 */
11029int stop_drain_data_vls(struct hfi1_devdata *dd)
11030{
11031 int ret;
11032
11033 ret = disable_data_vls(dd);
11034 if (ret == 0)
11035 drain_data_vls(dd);
11036
11037 return ret;
11038}
11039
11040/*
11041 * Convert a nanosecond time to a cclock count. No matter how slow
11042 * the cclock, a non-zero ns will always have a non-zero result.
11043 */
11044u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11045{
11046 u32 cclocks;
11047
11048 if (dd->icode == ICODE_FPGA_EMULATION)
11049 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11050 else /* simulation pretends to be ASIC */
11051 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11052 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11053 cclocks = 1;
11054 return cclocks;
11055}
11056
11057/*
11058 * Convert a cclock count to nanoseconds. Not matter how slow
11059 * the cclock, a non-zero cclocks will always have a non-zero result.
11060 */
11061u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11062{
11063 u32 ns;
11064
11065 if (dd->icode == ICODE_FPGA_EMULATION)
11066 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11067 else /* simulation pretends to be ASIC */
11068 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11069 if (cclocks && !ns)
11070 ns = 1;
11071 return ns;
11072}
11073
11074/*
11075 * Dynamically adjust the receive interrupt timeout for a context based on
11076 * incoming packet rate.
11077 *
11078 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11079 */
11080static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11081{
11082 struct hfi1_devdata *dd = rcd->dd;
11083 u32 timeout = rcd->rcvavail_timeout;
11084
11085 /*
11086 * This algorithm doubles or halves the timeout depending on whether
11087 * the number of packets received in this interrupt were less than or
11088 * greater equal the interrupt count.
11089 *
11090 * The calculations below do not allow a steady state to be achieved.
11091 * Only at the endpoints it is possible to have an unchanging
11092 * timeout.
11093 */
11094 if (npkts < rcv_intr_count) {
11095 /*
11096 * Not enough packets arrived before the timeout, adjust
11097 * timeout downward.
11098 */
11099 if (timeout < 2) /* already at minimum? */
11100 return;
11101 timeout >>= 1;
11102 } else {
11103 /*
11104 * More than enough packets arrived before the timeout, adjust
11105 * timeout upward.
11106 */
11107 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11108 return;
11109 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11110 }
11111
11112 rcd->rcvavail_timeout = timeout;
11113 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
11114 been verified to be in range */
11115 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11116 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11117}
11118
11119void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11120 u32 intr_adjust, u32 npkts)
11121{
11122 struct hfi1_devdata *dd = rcd->dd;
11123 u64 reg;
11124 u32 ctxt = rcd->ctxt;
11125
11126 /*
11127 * Need to write timeout register before updating RcvHdrHead to ensure
11128 * that a new value is used when the HW decides to restart counting.
11129 */
11130 if (intr_adjust)
11131 adjust_rcv_timeout(rcd, npkts);
11132 if (updegr) {
11133 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11134 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11135 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11136 }
11137 mmiowb();
11138 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11139 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11140 << RCV_HDR_HEAD_HEAD_SHIFT);
11141 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11142 mmiowb();
11143}
11144
11145u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11146{
11147 u32 head, tail;
11148
11149 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11150 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11151
11152 if (rcd->rcvhdrtail_kvaddr)
11153 tail = get_rcvhdrtail(rcd);
11154 else
11155 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11156
11157 return head == tail;
11158}
11159
11160/*
11161 * Context Control and Receive Array encoding for buffer size:
11162 * 0x0 invalid
11163 * 0x1 4 KB
11164 * 0x2 8 KB
11165 * 0x3 16 KB
11166 * 0x4 32 KB
11167 * 0x5 64 KB
11168 * 0x6 128 KB
11169 * 0x7 256 KB
11170 * 0x8 512 KB (Receive Array only)
11171 * 0x9 1 MB (Receive Array only)
11172 * 0xa 2 MB (Receive Array only)
11173 *
11174 * 0xB-0xF - reserved (Receive Array only)
11175 *
11176 *
11177 * This routine assumes that the value has already been sanity checked.
11178 */
11179static u32 encoded_size(u32 size)
11180{
11181 switch (size) {
11182 case 4*1024: return 0x1;
11183 case 8*1024: return 0x2;
11184 case 16*1024: return 0x3;
11185 case 32*1024: return 0x4;
11186 case 64*1024: return 0x5;
11187 case 128*1024: return 0x6;
11188 case 256*1024: return 0x7;
11189 case 512*1024: return 0x8;
11190 case 1*1024*1024: return 0x9;
11191 case 2*1024*1024: return 0xa;
11192 }
11193 return 0x1; /* if invalid, go with the minimum size */
11194}
11195
11196void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11197{
11198 struct hfi1_ctxtdata *rcd;
11199 u64 rcvctrl, reg;
11200 int did_enable = 0;
11201
11202 rcd = dd->rcd[ctxt];
11203 if (!rcd)
11204 return;
11205
11206 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11207
11208 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11209 /* if the context already enabled, don't do the extra steps */
11210 if ((op & HFI1_RCVCTRL_CTXT_ENB)
11211 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11212 /* reset the tail and hdr addresses, and sequence count */
11213 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11214 rcd->rcvhdrq_phys);
11215 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11216 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11217 rcd->rcvhdrqtailaddr_phys);
11218 rcd->seq_cnt = 1;
11219
11220 /* reset the cached receive header queue head value */
11221 rcd->head = 0;
11222
11223 /*
11224 * Zero the receive header queue so we don't get false
11225 * positives when checking the sequence number. The
11226 * sequence numbers could land exactly on the same spot.
11227 * E.g. a rcd restart before the receive header wrapped.
11228 */
11229 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11230
11231 /* starting timeout */
11232 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11233
11234 /* enable the context */
11235 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11236
11237 /* clean the egr buffer size first */
11238 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11239 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11240 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11241 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11242
11243 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11244 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11245 did_enable = 1;
11246
11247 /* zero RcvEgrIndexHead */
11248 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11249
11250 /* set eager count and base index */
11251 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11252 & RCV_EGR_CTRL_EGR_CNT_MASK)
11253 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11254 (((rcd->eager_base >> RCV_SHIFT)
11255 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11256 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11257 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11258
11259 /*
11260 * Set TID (expected) count and base index.
11261 * rcd->expected_count is set to individual RcvArray entries,
11262 * not pairs, and the CSR takes a pair-count in groups of
11263 * four, so divide by 8.
11264 */
11265 reg = (((rcd->expected_count >> RCV_SHIFT)
11266 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11267 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11268 (((rcd->expected_base >> RCV_SHIFT)
11269 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11270 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11271 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
82c2611d
NV
11272 if (ctxt == HFI1_CTRL_CTXT)
11273 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
77241056
MM
11274 }
11275 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11276 write_csr(dd, RCV_VL15, 0);
46b010d3
MB
11277 /*
11278 * When receive context is being disabled turn on tail
11279 * update with a dummy tail address and then disable
11280 * receive context.
11281 */
11282 if (dd->rcvhdrtail_dummy_physaddr) {
11283 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11284 dd->rcvhdrtail_dummy_physaddr);
566c157c 11285 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
46b010d3
MB
11286 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11287 }
11288
77241056
MM
11289 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11290 }
11291 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11292 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11293 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11294 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11295 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11296 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
566c157c
MH
11297 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11298 /* See comment on RcvCtxtCtrl.TailUpd above */
11299 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11300 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11301 }
77241056
MM
11302 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11303 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11304 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11305 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11306 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11307 /* In one-packet-per-eager mode, the size comes from
11308 the RcvArray entry. */
11309 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11310 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11311 }
11312 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11313 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11314 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11315 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11316 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11317 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11318 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11319 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11320 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11321 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11322 rcd->rcvctrl = rcvctrl;
11323 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11324 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11325
11326 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11327 if (did_enable
11328 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11329 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11330 if (reg != 0) {
11331 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11332 ctxt, reg);
11333 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11334 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11335 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11336 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11337 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11338 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11339 ctxt, reg, reg == 0 ? "not" : "still");
11340 }
11341 }
11342
11343 if (did_enable) {
11344 /*
11345 * The interrupt timeout and count must be set after
11346 * the context is enabled to take effect.
11347 */
11348 /* set interrupt timeout */
11349 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11350 (u64)rcd->rcvavail_timeout <<
11351 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11352
11353 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11354 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11355 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11356 }
11357
11358 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11359 /*
11360 * If the context has been disabled and the Tail Update has
46b010d3
MB
11361 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11362 * so it doesn't contain an address that is invalid.
77241056 11363 */
46b010d3
MB
11364 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11365 dd->rcvhdrtail_dummy_physaddr);
77241056
MM
11366}
11367
11368u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
11369 u64 **cntrp)
11370{
11371 int ret;
11372 u64 val = 0;
11373
11374 if (namep) {
11375 ret = dd->cntrnameslen;
11376 if (pos != 0) {
11377 dd_dev_err(dd, "read_cntrs does not support indexing");
11378 return 0;
11379 }
11380 *namep = dd->cntrnames;
11381 } else {
11382 const struct cntr_entry *entry;
11383 int i, j;
11384
11385 ret = (dd->ndevcntrs) * sizeof(u64);
11386 if (pos != 0) {
11387 dd_dev_err(dd, "read_cntrs does not support indexing");
11388 return 0;
11389 }
11390
11391 /* Get the start of the block of counters */
11392 *cntrp = dd->cntrs;
11393
11394 /*
11395 * Now go and fill in each counter in the block.
11396 */
11397 for (i = 0; i < DEV_CNTR_LAST; i++) {
11398 entry = &dev_cntrs[i];
11399 hfi1_cdbg(CNTR, "reading %s", entry->name);
11400 if (entry->flags & CNTR_DISABLED) {
11401 /* Nothing */
11402 hfi1_cdbg(CNTR, "\tDisabled\n");
11403 } else {
11404 if (entry->flags & CNTR_VL) {
11405 hfi1_cdbg(CNTR, "\tPer VL\n");
11406 for (j = 0; j < C_VL_COUNT; j++) {
11407 val = entry->rw_cntr(entry,
11408 dd, j,
11409 CNTR_MODE_R,
11410 0);
11411 hfi1_cdbg(
11412 CNTR,
11413 "\t\tRead 0x%llx for %d\n",
11414 val, j);
11415 dd->cntrs[entry->offset + j] =
11416 val;
11417 }
a699c6c2
VM
11418 } else if (entry->flags & CNTR_SDMA) {
11419 hfi1_cdbg(CNTR,
11420 "\t Per SDMA Engine\n");
11421 for (j = 0; j < dd->chip_sdma_engines;
11422 j++) {
11423 val =
11424 entry->rw_cntr(entry, dd, j,
11425 CNTR_MODE_R, 0);
11426 hfi1_cdbg(CNTR,
11427 "\t\tRead 0x%llx for %d\n",
11428 val, j);
11429 dd->cntrs[entry->offset + j] =
11430 val;
11431 }
77241056
MM
11432 } else {
11433 val = entry->rw_cntr(entry, dd,
11434 CNTR_INVALID_VL,
11435 CNTR_MODE_R, 0);
11436 dd->cntrs[entry->offset] = val;
11437 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11438 }
11439 }
11440 }
11441 }
11442 return ret;
11443}
11444
11445/*
11446 * Used by sysfs to create files for hfi stats to read
11447 */
11448u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
11449 char **namep, u64 **cntrp)
11450{
11451 int ret;
11452 u64 val = 0;
11453
11454 if (namep) {
11455 ret = dd->portcntrnameslen;
11456 if (pos != 0) {
11457 dd_dev_err(dd, "index not supported");
11458 return 0;
11459 }
11460 *namep = dd->portcntrnames;
11461 } else {
11462 const struct cntr_entry *entry;
11463 struct hfi1_pportdata *ppd;
11464 int i, j;
11465
11466 ret = (dd->nportcntrs) * sizeof(u64);
11467 if (pos != 0) {
11468 dd_dev_err(dd, "indexing not supported");
11469 return 0;
11470 }
11471 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
11472 *cntrp = ppd->cntrs;
11473
11474 for (i = 0; i < PORT_CNTR_LAST; i++) {
11475 entry = &port_cntrs[i];
11476 hfi1_cdbg(CNTR, "reading %s", entry->name);
11477 if (entry->flags & CNTR_DISABLED) {
11478 /* Nothing */
11479 hfi1_cdbg(CNTR, "\tDisabled\n");
11480 continue;
11481 }
11482
11483 if (entry->flags & CNTR_VL) {
11484 hfi1_cdbg(CNTR, "\tPer VL");
11485 for (j = 0; j < C_VL_COUNT; j++) {
11486 val = entry->rw_cntr(entry, ppd, j,
11487 CNTR_MODE_R,
11488 0);
11489 hfi1_cdbg(
11490 CNTR,
11491 "\t\tRead 0x%llx for %d",
11492 val, j);
11493 ppd->cntrs[entry->offset + j] = val;
11494 }
11495 } else {
11496 val = entry->rw_cntr(entry, ppd,
11497 CNTR_INVALID_VL,
11498 CNTR_MODE_R,
11499 0);
11500 ppd->cntrs[entry->offset] = val;
11501 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11502 }
11503 }
11504 }
11505 return ret;
11506}
11507
11508static void free_cntrs(struct hfi1_devdata *dd)
11509{
11510 struct hfi1_pportdata *ppd;
11511 int i;
11512
11513 if (dd->synth_stats_timer.data)
11514 del_timer_sync(&dd->synth_stats_timer);
11515 dd->synth_stats_timer.data = 0;
11516 ppd = (struct hfi1_pportdata *)(dd + 1);
11517 for (i = 0; i < dd->num_pports; i++, ppd++) {
11518 kfree(ppd->cntrs);
11519 kfree(ppd->scntrs);
4eb06882
DD
11520 free_percpu(ppd->ibport_data.rvp.rc_acks);
11521 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11522 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
77241056
MM
11523 ppd->cntrs = NULL;
11524 ppd->scntrs = NULL;
4eb06882
DD
11525 ppd->ibport_data.rvp.rc_acks = NULL;
11526 ppd->ibport_data.rvp.rc_qacks = NULL;
11527 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
77241056
MM
11528 }
11529 kfree(dd->portcntrnames);
11530 dd->portcntrnames = NULL;
11531 kfree(dd->cntrs);
11532 dd->cntrs = NULL;
11533 kfree(dd->scntrs);
11534 dd->scntrs = NULL;
11535 kfree(dd->cntrnames);
11536 dd->cntrnames = NULL;
11537}
11538
11539#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11540#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11541
11542static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11543 u64 *psval, void *context, int vl)
11544{
11545 u64 val;
11546 u64 sval = *psval;
11547
11548 if (entry->flags & CNTR_DISABLED) {
11549 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11550 return 0;
11551 }
11552
11553 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11554
11555 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11556
11557 /* If its a synthetic counter there is more work we need to do */
11558 if (entry->flags & CNTR_SYNTH) {
11559 if (sval == CNTR_MAX) {
11560 /* No need to read already saturated */
11561 return CNTR_MAX;
11562 }
11563
11564 if (entry->flags & CNTR_32BIT) {
11565 /* 32bit counters can wrap multiple times */
11566 u64 upper = sval >> 32;
11567 u64 lower = (sval << 32) >> 32;
11568
11569 if (lower > val) { /* hw wrapped */
11570 if (upper == CNTR_32BIT_MAX)
11571 val = CNTR_MAX;
11572 else
11573 upper++;
11574 }
11575
11576 if (val != CNTR_MAX)
11577 val = (upper << 32) | val;
11578
11579 } else {
11580 /* If we rolled we are saturated */
11581 if ((val < sval) || (val > CNTR_MAX))
11582 val = CNTR_MAX;
11583 }
11584 }
11585
11586 *psval = val;
11587
11588 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11589
11590 return val;
11591}
11592
11593static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11594 struct cntr_entry *entry,
11595 u64 *psval, void *context, int vl, u64 data)
11596{
11597 u64 val;
11598
11599 if (entry->flags & CNTR_DISABLED) {
11600 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11601 return 0;
11602 }
11603
11604 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11605
11606 if (entry->flags & CNTR_SYNTH) {
11607 *psval = data;
11608 if (entry->flags & CNTR_32BIT) {
11609 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11610 (data << 32) >> 32);
11611 val = data; /* return the full 64bit value */
11612 } else {
11613 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11614 data);
11615 }
11616 } else {
11617 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11618 }
11619
11620 *psval = val;
11621
11622 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11623
11624 return val;
11625}
11626
11627u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11628{
11629 struct cntr_entry *entry;
11630 u64 *sval;
11631
11632 entry = &dev_cntrs[index];
11633 sval = dd->scntrs + entry->offset;
11634
11635 if (vl != CNTR_INVALID_VL)
11636 sval += vl;
11637
11638 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11639}
11640
11641u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11642{
11643 struct cntr_entry *entry;
11644 u64 *sval;
11645
11646 entry = &dev_cntrs[index];
11647 sval = dd->scntrs + entry->offset;
11648
11649 if (vl != CNTR_INVALID_VL)
11650 sval += vl;
11651
11652 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11653}
11654
11655u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11656{
11657 struct cntr_entry *entry;
11658 u64 *sval;
11659
11660 entry = &port_cntrs[index];
11661 sval = ppd->scntrs + entry->offset;
11662
11663 if (vl != CNTR_INVALID_VL)
11664 sval += vl;
11665
11666 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11667 (index <= C_RCV_HDR_OVF_LAST)) {
11668 /* We do not want to bother for disabled contexts */
11669 return 0;
11670 }
11671
11672 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11673}
11674
11675u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11676{
11677 struct cntr_entry *entry;
11678 u64 *sval;
11679
11680 entry = &port_cntrs[index];
11681 sval = ppd->scntrs + entry->offset;
11682
11683 if (vl != CNTR_INVALID_VL)
11684 sval += vl;
11685
11686 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11687 (index <= C_RCV_HDR_OVF_LAST)) {
11688 /* We do not want to bother for disabled contexts */
11689 return 0;
11690 }
11691
11692 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11693}
11694
11695static void update_synth_timer(unsigned long opaque)
11696{
11697 u64 cur_tx;
11698 u64 cur_rx;
11699 u64 total_flits;
11700 u8 update = 0;
11701 int i, j, vl;
11702 struct hfi1_pportdata *ppd;
11703 struct cntr_entry *entry;
11704
11705 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11706
11707 /*
11708 * Rather than keep beating on the CSRs pick a minimal set that we can
11709 * check to watch for potential roll over. We can do this by looking at
11710 * the number of flits sent/recv. If the total flits exceeds 32bits then
11711 * we have to iterate all the counters and update.
11712 */
11713 entry = &dev_cntrs[C_DC_RCV_FLITS];
11714 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11715
11716 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11717 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11718
11719 hfi1_cdbg(
11720 CNTR,
11721 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11722 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11723
11724 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11725 /*
11726 * May not be strictly necessary to update but it won't hurt and
11727 * simplifies the logic here.
11728 */
11729 update = 1;
11730 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11731 dd->unit);
11732 } else {
11733 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11734 hfi1_cdbg(CNTR,
11735 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11736 total_flits, (u64)CNTR_32BIT_MAX);
11737 if (total_flits >= CNTR_32BIT_MAX) {
11738 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11739 dd->unit);
11740 update = 1;
11741 }
11742 }
11743
11744 if (update) {
11745 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11746 for (i = 0; i < DEV_CNTR_LAST; i++) {
11747 entry = &dev_cntrs[i];
11748 if (entry->flags & CNTR_VL) {
11749 for (vl = 0; vl < C_VL_COUNT; vl++)
11750 read_dev_cntr(dd, i, vl);
11751 } else {
11752 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11753 }
11754 }
11755 ppd = (struct hfi1_pportdata *)(dd + 1);
11756 for (i = 0; i < dd->num_pports; i++, ppd++) {
11757 for (j = 0; j < PORT_CNTR_LAST; j++) {
11758 entry = &port_cntrs[j];
11759 if (entry->flags & CNTR_VL) {
11760 for (vl = 0; vl < C_VL_COUNT; vl++)
11761 read_port_cntr(ppd, j, vl);
11762 } else {
11763 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11764 }
11765 }
11766 }
11767
11768 /*
11769 * We want the value in the register. The goal is to keep track
11770 * of the number of "ticks" not the counter value. In other
11771 * words if the register rolls we want to notice it and go ahead
11772 * and force an update.
11773 */
11774 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11775 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11776 CNTR_MODE_R, 0);
11777
11778 entry = &dev_cntrs[C_DC_RCV_FLITS];
11779 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11780 CNTR_MODE_R, 0);
11781
11782 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11783 dd->unit, dd->last_tx, dd->last_rx);
11784
11785 } else {
11786 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11787 }
11788
11789mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11790}
11791
11792#define C_MAX_NAME 13 /* 12 chars + one for /0 */
11793static int init_cntrs(struct hfi1_devdata *dd)
11794{
c024c554 11795 int i, rcv_ctxts, j;
77241056
MM
11796 size_t sz;
11797 char *p;
11798 char name[C_MAX_NAME];
11799 struct hfi1_pportdata *ppd;
11d2b114
SS
11800 const char *bit_type_32 = ",32";
11801 const int bit_type_32_sz = strlen(bit_type_32);
77241056
MM
11802
11803 /* set up the stats timer; the add_timer is done at the end */
24523a94
MFW
11804 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11805 (unsigned long)dd);
77241056
MM
11806
11807 /***********************/
11808 /* per device counters */
11809 /***********************/
11810
11811 /* size names and determine how many we have*/
11812 dd->ndevcntrs = 0;
11813 sz = 0;
77241056
MM
11814
11815 for (i = 0; i < DEV_CNTR_LAST; i++) {
11816 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
11817 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11818 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11819 continue;
11820 }
11821
11822 if (dev_cntrs[i].flags & CNTR_VL) {
11823 hfi1_dbg_early("\tProcessing VL cntr\n");
c024c554 11824 dev_cntrs[i].offset = dd->ndevcntrs;
77241056
MM
11825 for (j = 0; j < C_VL_COUNT; j++) {
11826 memset(name, '\0', C_MAX_NAME);
11827 snprintf(name, C_MAX_NAME, "%s%d",
11828 dev_cntrs[i].name,
11829 vl_from_idx(j));
11830 sz += strlen(name);
11d2b114
SS
11831 /* Add ",32" for 32-bit counters */
11832 if (dev_cntrs[i].flags & CNTR_32BIT)
11833 sz += bit_type_32_sz;
77241056
MM
11834 sz++;
11835 hfi1_dbg_early("\t\t%s\n", name);
11836 dd->ndevcntrs++;
77241056 11837 }
a699c6c2
VM
11838 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11839 hfi1_dbg_early(
11840 "\tProcessing per SDE counters chip enginers %u\n",
11841 dd->chip_sdma_engines);
c024c554 11842 dev_cntrs[i].offset = dd->ndevcntrs;
a699c6c2
VM
11843 for (j = 0; j < dd->chip_sdma_engines; j++) {
11844 memset(name, '\0', C_MAX_NAME);
11845 snprintf(name, C_MAX_NAME, "%s%d",
11846 dev_cntrs[i].name, j);
11847 sz += strlen(name);
11d2b114
SS
11848 /* Add ",32" for 32-bit counters */
11849 if (dev_cntrs[i].flags & CNTR_32BIT)
11850 sz += bit_type_32_sz;
a699c6c2
VM
11851 sz++;
11852 hfi1_dbg_early("\t\t%s\n", name);
11853 dd->ndevcntrs++;
a699c6c2 11854 }
77241056 11855 } else {
11d2b114 11856 /* +1 for newline. */
77241056 11857 sz += strlen(dev_cntrs[i].name) + 1;
11d2b114
SS
11858 /* Add ",32" for 32-bit counters */
11859 if (dev_cntrs[i].flags & CNTR_32BIT)
11860 sz += bit_type_32_sz;
c024c554 11861 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 11862 dd->ndevcntrs++;
77241056
MM
11863 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
11864 }
11865 }
11866
11867 /* allocate space for the counter values */
c024c554 11868 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
11869 if (!dd->cntrs)
11870 goto bail;
11871
c024c554 11872 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
11873 if (!dd->scntrs)
11874 goto bail;
11875
11876
11877 /* allocate space for the counter names */
11878 dd->cntrnameslen = sz;
11879 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11880 if (!dd->cntrnames)
11881 goto bail;
11882
11883 /* fill in the names */
c024c554 11884 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
11885 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11886 /* Nothing */
11d2b114
SS
11887 } else if (dev_cntrs[i].flags & CNTR_VL) {
11888 for (j = 0; j < C_VL_COUNT; j++) {
11889 memset(name, '\0', C_MAX_NAME);
11890 snprintf(name, C_MAX_NAME, "%s%d",
11891 dev_cntrs[i].name,
11892 vl_from_idx(j));
11893 memcpy(p, name, strlen(name));
11894 p += strlen(name);
11895
11896 /* Counter is 32 bits */
11897 if (dev_cntrs[i].flags & CNTR_32BIT) {
11898 memcpy(p, bit_type_32, bit_type_32_sz);
11899 p += bit_type_32_sz;
77241056 11900 }
11d2b114
SS
11901
11902 *p++ = '\n';
11903 }
11904 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11905 for (j = 0; j < dd->chip_sdma_engines; j++) {
11906 memset(name, '\0', C_MAX_NAME);
11907 snprintf(name, C_MAX_NAME, "%s%d",
11908 dev_cntrs[i].name, j);
11909 memcpy(p, name, strlen(name));
11910 p += strlen(name);
11911
11912 /* Counter is 32 bits */
11913 if (dev_cntrs[i].flags & CNTR_32BIT) {
11914 memcpy(p, bit_type_32, bit_type_32_sz);
11915 p += bit_type_32_sz;
a699c6c2 11916 }
11d2b114 11917
77241056
MM
11918 *p++ = '\n';
11919 }
11d2b114
SS
11920 } else {
11921 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
11922 p += strlen(dev_cntrs[i].name);
11923
11924 /* Counter is 32 bits */
11925 if (dev_cntrs[i].flags & CNTR_32BIT) {
11926 memcpy(p, bit_type_32, bit_type_32_sz);
11927 p += bit_type_32_sz;
11928 }
11929
11930 *p++ = '\n';
77241056
MM
11931 }
11932 }
11933
11934 /*********************/
11935 /* per port counters */
11936 /*********************/
11937
11938 /*
11939 * Go through the counters for the overflows and disable the ones we
11940 * don't need. This varies based on platform so we need to do it
11941 * dynamically here.
11942 */
11943 rcv_ctxts = dd->num_rcv_contexts;
11944 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11945 i <= C_RCV_HDR_OVF_LAST; i++) {
11946 port_cntrs[i].flags |= CNTR_DISABLED;
11947 }
11948
11949 /* size port counter names and determine how many we have*/
11950 sz = 0;
11951 dd->nportcntrs = 0;
11952 for (i = 0; i < PORT_CNTR_LAST; i++) {
11953 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
11954 if (port_cntrs[i].flags & CNTR_DISABLED) {
11955 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11956 continue;
11957 }
11958
11959 if (port_cntrs[i].flags & CNTR_VL) {
11960 hfi1_dbg_early("\tProcessing VL cntr\n");
11961 port_cntrs[i].offset = dd->nportcntrs;
11962 for (j = 0; j < C_VL_COUNT; j++) {
11963 memset(name, '\0', C_MAX_NAME);
11964 snprintf(name, C_MAX_NAME, "%s%d",
11965 port_cntrs[i].name,
11966 vl_from_idx(j));
11967 sz += strlen(name);
11d2b114
SS
11968 /* Add ",32" for 32-bit counters */
11969 if (port_cntrs[i].flags & CNTR_32BIT)
11970 sz += bit_type_32_sz;
77241056
MM
11971 sz++;
11972 hfi1_dbg_early("\t\t%s\n", name);
11973 dd->nportcntrs++;
11974 }
11975 } else {
11d2b114 11976 /* +1 for newline */
77241056 11977 sz += strlen(port_cntrs[i].name) + 1;
11d2b114
SS
11978 /* Add ",32" for 32-bit counters */
11979 if (port_cntrs[i].flags & CNTR_32BIT)
11980 sz += bit_type_32_sz;
77241056
MM
11981 port_cntrs[i].offset = dd->nportcntrs;
11982 dd->nportcntrs++;
11983 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
11984 }
11985 }
11986
11987 /* allocate space for the counter names */
11988 dd->portcntrnameslen = sz;
11989 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
11990 if (!dd->portcntrnames)
11991 goto bail;
11992
11993 /* fill in port cntr names */
11994 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
11995 if (port_cntrs[i].flags & CNTR_DISABLED)
11996 continue;
11997
11998 if (port_cntrs[i].flags & CNTR_VL) {
11999 for (j = 0; j < C_VL_COUNT; j++) {
12000 memset(name, '\0', C_MAX_NAME);
12001 snprintf(name, C_MAX_NAME, "%s%d",
12002 port_cntrs[i].name,
12003 vl_from_idx(j));
12004 memcpy(p, name, strlen(name));
12005 p += strlen(name);
11d2b114
SS
12006
12007 /* Counter is 32 bits */
12008 if (port_cntrs[i].flags & CNTR_32BIT) {
12009 memcpy(p, bit_type_32, bit_type_32_sz);
12010 p += bit_type_32_sz;
12011 }
12012
77241056
MM
12013 *p++ = '\n';
12014 }
12015 } else {
12016 memcpy(p, port_cntrs[i].name,
12017 strlen(port_cntrs[i].name));
12018 p += strlen(port_cntrs[i].name);
11d2b114
SS
12019
12020 /* Counter is 32 bits */
12021 if (port_cntrs[i].flags & CNTR_32BIT) {
12022 memcpy(p, bit_type_32, bit_type_32_sz);
12023 p += bit_type_32_sz;
12024 }
12025
77241056
MM
12026 *p++ = '\n';
12027 }
12028 }
12029
12030 /* allocate per port storage for counter values */
12031 ppd = (struct hfi1_pportdata *)(dd + 1);
12032 for (i = 0; i < dd->num_pports; i++, ppd++) {
12033 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12034 if (!ppd->cntrs)
12035 goto bail;
12036
12037 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12038 if (!ppd->scntrs)
12039 goto bail;
12040 }
12041
12042 /* CPU counters need to be allocated and zeroed */
12043 if (init_cpu_counters(dd))
12044 goto bail;
12045
12046 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12047 return 0;
12048bail:
12049 free_cntrs(dd);
12050 return -ENOMEM;
12051}
12052
12053
12054static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12055{
12056 switch (chip_lstate) {
12057 default:
12058 dd_dev_err(dd,
12059 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12060 chip_lstate);
12061 /* fall through */
12062 case LSTATE_DOWN:
12063 return IB_PORT_DOWN;
12064 case LSTATE_INIT:
12065 return IB_PORT_INIT;
12066 case LSTATE_ARMED:
12067 return IB_PORT_ARMED;
12068 case LSTATE_ACTIVE:
12069 return IB_PORT_ACTIVE;
12070 }
12071}
12072
12073u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12074{
12075 /* look at the HFI meta-states only */
12076 switch (chip_pstate & 0xf0) {
12077 default:
12078 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12079 chip_pstate);
12080 /* fall through */
12081 case PLS_DISABLED:
12082 return IB_PORTPHYSSTATE_DISABLED;
12083 case PLS_OFFLINE:
12084 return OPA_PORTPHYSSTATE_OFFLINE;
12085 case PLS_POLLING:
12086 return IB_PORTPHYSSTATE_POLLING;
12087 case PLS_CONFIGPHY:
12088 return IB_PORTPHYSSTATE_TRAINING;
12089 case PLS_LINKUP:
12090 return IB_PORTPHYSSTATE_LINKUP;
12091 case PLS_PHYTEST:
12092 return IB_PORTPHYSSTATE_PHY_TEST;
12093 }
12094}
12095
12096/* return the OPA port logical state name */
12097const char *opa_lstate_name(u32 lstate)
12098{
12099 static const char * const port_logical_names[] = {
12100 "PORT_NOP",
12101 "PORT_DOWN",
12102 "PORT_INIT",
12103 "PORT_ARMED",
12104 "PORT_ACTIVE",
12105 "PORT_ACTIVE_DEFER",
12106 };
12107 if (lstate < ARRAY_SIZE(port_logical_names))
12108 return port_logical_names[lstate];
12109 return "unknown";
12110}
12111
12112/* return the OPA port physical state name */
12113const char *opa_pstate_name(u32 pstate)
12114{
12115 static const char * const port_physical_names[] = {
12116 "PHYS_NOP",
12117 "reserved1",
12118 "PHYS_POLL",
12119 "PHYS_DISABLED",
12120 "PHYS_TRAINING",
12121 "PHYS_LINKUP",
12122 "PHYS_LINK_ERR_RECOVER",
12123 "PHYS_PHY_TEST",
12124 "reserved8",
12125 "PHYS_OFFLINE",
12126 "PHYS_GANGED",
12127 "PHYS_TEST",
12128 };
12129 if (pstate < ARRAY_SIZE(port_physical_names))
12130 return port_physical_names[pstate];
12131 return "unknown";
12132}
12133
12134/*
12135 * Read the hardware link state and set the driver's cached value of it.
12136 * Return the (new) current value.
12137 */
12138u32 get_logical_state(struct hfi1_pportdata *ppd)
12139{
12140 u32 new_state;
12141
12142 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12143 if (new_state != ppd->lstate) {
12144 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12145 opa_lstate_name(new_state), new_state);
12146 ppd->lstate = new_state;
12147 }
12148 /*
12149 * Set port status flags in the page mapped into userspace
12150 * memory. Do it here to ensure a reliable state - this is
12151 * the only function called by all state handling code.
12152 * Always set the flags due to the fact that the cache value
12153 * might have been changed explicitly outside of this
12154 * function.
12155 */
12156 if (ppd->statusp) {
12157 switch (ppd->lstate) {
12158 case IB_PORT_DOWN:
12159 case IB_PORT_INIT:
12160 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12161 HFI1_STATUS_IB_READY);
12162 break;
12163 case IB_PORT_ARMED:
12164 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12165 break;
12166 case IB_PORT_ACTIVE:
12167 *ppd->statusp |= HFI1_STATUS_IB_READY;
12168 break;
12169 }
12170 }
12171 return ppd->lstate;
12172}
12173
12174/**
12175 * wait_logical_linkstate - wait for an IB link state change to occur
12176 * @ppd: port device
12177 * @state: the state to wait for
12178 * @msecs: the number of milliseconds to wait
12179 *
12180 * Wait up to msecs milliseconds for IB link state change to occur.
12181 * For now, take the easy polling route.
12182 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12183 */
12184static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12185 int msecs)
12186{
12187 unsigned long timeout;
12188
12189 timeout = jiffies + msecs_to_jiffies(msecs);
12190 while (1) {
12191 if (get_logical_state(ppd) == state)
12192 return 0;
12193 if (time_after(jiffies, timeout))
12194 break;
12195 msleep(20);
12196 }
12197 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12198
12199 return -ETIMEDOUT;
12200}
12201
12202u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12203{
12204 static u32 remembered_state = 0xff;
12205 u32 pstate;
12206 u32 ib_pstate;
12207
12208 pstate = read_physical_state(ppd->dd);
12209 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12210 if (remembered_state != ib_pstate) {
12211 dd_dev_info(ppd->dd,
12212 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12213 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12214 pstate);
12215 remembered_state = ib_pstate;
12216 }
12217 return ib_pstate;
12218}
12219
12220/*
12221 * Read/modify/write ASIC_QSFP register bits as selected by mask
12222 * data: 0 or 1 in the positions depending on what needs to be written
12223 * dir: 0 for read, 1 for write
12224 * mask: select by setting
12225 * I2CCLK (bit 0)
12226 * I2CDATA (bit 1)
12227 */
12228u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
12229 u32 mask)
12230{
12231 u64 qsfp_oe, target_oe;
12232
12233 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
12234 if (mask) {
12235 /* We are writing register bits, so lock access */
12236 dir &= mask;
12237 data &= mask;
12238
12239 qsfp_oe = read_csr(dd, target_oe);
12240 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
12241 write_csr(dd, target_oe, qsfp_oe);
12242 }
12243 /* We are exclusively reading bits here, but it is unlikely
12244 * we'll get valid data when we set the direction of the pin
12245 * in the same call, so read should call this function again
12246 * to get valid data
12247 */
12248 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
12249}
12250
12251#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12252(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12253
12254#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12255(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12256
12257int hfi1_init_ctxt(struct send_context *sc)
12258{
12259 if (sc != NULL) {
12260 struct hfi1_devdata *dd = sc->dd;
12261 u64 reg;
12262 u8 set = (sc->type == SC_USER ?
12263 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12264 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12265 reg = read_kctxt_csr(dd, sc->hw_context,
12266 SEND_CTXT_CHECK_ENABLE);
12267 if (set)
12268 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12269 else
12270 SET_STATIC_RATE_CONTROL_SMASK(reg);
12271 write_kctxt_csr(dd, sc->hw_context,
12272 SEND_CTXT_CHECK_ENABLE, reg);
12273 }
12274 return 0;
12275}
12276
12277int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12278{
12279 int ret = 0;
12280 u64 reg;
12281
12282 if (dd->icode != ICODE_RTL_SILICON) {
12283 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12284 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12285 __func__);
12286 return -EINVAL;
12287 }
12288 reg = read_csr(dd, ASIC_STS_THERM);
12289 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12290 ASIC_STS_THERM_CURR_TEMP_MASK);
12291 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12292 ASIC_STS_THERM_LO_TEMP_MASK);
12293 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12294 ASIC_STS_THERM_HI_TEMP_MASK);
12295 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12296 ASIC_STS_THERM_CRIT_TEMP_MASK);
12297 /* triggers is a 3-bit value - 1 bit per trigger. */
12298 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12299
12300 return ret;
12301}
12302
12303/* ========================================================================= */
12304
12305/*
12306 * Enable/disable chip from delivering interrupts.
12307 */
12308void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12309{
12310 int i;
12311
12312 /*
12313 * In HFI, the mask needs to be 1 to allow interrupts.
12314 */
12315 if (enable) {
77241056
MM
12316 /* enable all interrupts */
12317 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12318 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
12319
8ebd4cf1 12320 init_qsfp_int(dd);
77241056
MM
12321 } else {
12322 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12323 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
12324 }
12325}
12326
12327/*
12328 * Clear all interrupt sources on the chip.
12329 */
12330static void clear_all_interrupts(struct hfi1_devdata *dd)
12331{
12332 int i;
12333
12334 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12335 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
12336
12337 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12338 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12339 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12340 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12341 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12342 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12343 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12344 for (i = 0; i < dd->chip_send_contexts; i++)
12345 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12346 for (i = 0; i < dd->chip_sdma_engines; i++)
12347 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12348
12349 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12350 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12351 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12352}
12353
12354/* Move to pcie.c? */
12355static void disable_intx(struct pci_dev *pdev)
12356{
12357 pci_intx(pdev, 0);
12358}
12359
12360static void clean_up_interrupts(struct hfi1_devdata *dd)
12361{
12362 int i;
12363
12364 /* remove irqs - must happen before disabling/turning off */
12365 if (dd->num_msix_entries) {
12366 /* MSI-X */
12367 struct hfi1_msix_entry *me = dd->msix_entries;
12368
12369 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12370 if (me->arg == NULL) /* => no irq, no affinity */
957558c9
MH
12371 continue;
12372 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
77241056
MM
12373 free_irq(me->msix.vector, me->arg);
12374 }
12375 } else {
12376 /* INTx */
12377 if (dd->requested_intx_irq) {
12378 free_irq(dd->pcidev->irq, dd);
12379 dd->requested_intx_irq = 0;
12380 }
12381 }
12382
12383 /* turn off interrupts */
12384 if (dd->num_msix_entries) {
12385 /* MSI-X */
6e5b6131 12386 pci_disable_msix(dd->pcidev);
77241056
MM
12387 } else {
12388 /* INTx */
12389 disable_intx(dd->pcidev);
12390 }
12391
12392 /* clean structures */
77241056
MM
12393 kfree(dd->msix_entries);
12394 dd->msix_entries = NULL;
12395 dd->num_msix_entries = 0;
12396}
12397
12398/*
12399 * Remap the interrupt source from the general handler to the given MSI-X
12400 * interrupt.
12401 */
12402static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12403{
12404 u64 reg;
12405 int m, n;
12406
12407 /* clear from the handled mask of the general interrupt */
12408 m = isrc / 64;
12409 n = isrc % 64;
12410 dd->gi_mask[m] &= ~((u64)1 << n);
12411
12412 /* direct the chip source to the given MSI-X interrupt */
12413 m = isrc / 8;
12414 n = isrc % 8;
12415 reg = read_csr(dd, CCE_INT_MAP + (8*m));
12416 reg &= ~((u64)0xff << (8*n));
12417 reg |= ((u64)msix_intr & 0xff) << (8*n);
12418 write_csr(dd, CCE_INT_MAP + (8*m), reg);
12419}
12420
12421static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12422 int engine, int msix_intr)
12423{
12424 /*
12425 * SDMA engine interrupt sources grouped by type, rather than
12426 * engine. Per-engine interrupts are as follows:
12427 * SDMA
12428 * SDMAProgress
12429 * SDMAIdle
12430 */
12431 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
12432 msix_intr);
12433 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
12434 msix_intr);
12435 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
12436 msix_intr);
12437}
12438
77241056
MM
12439static int request_intx_irq(struct hfi1_devdata *dd)
12440{
12441 int ret;
12442
9805071e
JJ
12443 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12444 dd->unit);
77241056
MM
12445 ret = request_irq(dd->pcidev->irq, general_interrupt,
12446 IRQF_SHARED, dd->intx_name, dd);
12447 if (ret)
12448 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12449 ret);
12450 else
12451 dd->requested_intx_irq = 1;
12452 return ret;
12453}
12454
12455static int request_msix_irqs(struct hfi1_devdata *dd)
12456{
77241056
MM
12457 int first_general, last_general;
12458 int first_sdma, last_sdma;
12459 int first_rx, last_rx;
957558c9 12460 int i, ret = 0;
77241056
MM
12461
12462 /* calculate the ranges we are going to use */
12463 first_general = 0;
12464 first_sdma = last_general = first_general + 1;
12465 first_rx = last_sdma = first_sdma + dd->num_sdma;
12466 last_rx = first_rx + dd->n_krcv_queues;
12467
77241056
MM
12468 /*
12469 * Sanity check - the code expects all SDMA chip source
12470 * interrupts to be in the same CSR, starting at bit 0. Verify
12471 * that this is true by checking the bit location of the start.
12472 */
12473 BUILD_BUG_ON(IS_SDMA_START % 64);
12474
12475 for (i = 0; i < dd->num_msix_entries; i++) {
12476 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12477 const char *err_info;
12478 irq_handler_t handler;
f4f30031 12479 irq_handler_t thread = NULL;
77241056
MM
12480 void *arg;
12481 int idx;
12482 struct hfi1_ctxtdata *rcd = NULL;
12483 struct sdma_engine *sde = NULL;
12484
12485 /* obtain the arguments to request_irq */
12486 if (first_general <= i && i < last_general) {
12487 idx = i - first_general;
12488 handler = general_interrupt;
12489 arg = dd;
12490 snprintf(me->name, sizeof(me->name),
9805071e 12491 DRIVER_NAME "_%d", dd->unit);
77241056 12492 err_info = "general";
957558c9 12493 me->type = IRQ_GENERAL;
77241056
MM
12494 } else if (first_sdma <= i && i < last_sdma) {
12495 idx = i - first_sdma;
12496 sde = &dd->per_sdma[idx];
12497 handler = sdma_interrupt;
12498 arg = sde;
12499 snprintf(me->name, sizeof(me->name),
9805071e 12500 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
77241056
MM
12501 err_info = "sdma";
12502 remap_sdma_interrupts(dd, idx, i);
957558c9 12503 me->type = IRQ_SDMA;
77241056
MM
12504 } else if (first_rx <= i && i < last_rx) {
12505 idx = i - first_rx;
12506 rcd = dd->rcd[idx];
12507 /* no interrupt if no rcd */
12508 if (!rcd)
12509 continue;
12510 /*
12511 * Set the interrupt register and mask for this
12512 * context's interrupt.
12513 */
12514 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
12515 rcd->imask = ((u64)1) <<
12516 ((IS_RCVAVAIL_START+idx) % 64);
12517 handler = receive_context_interrupt;
f4f30031 12518 thread = receive_context_thread;
77241056
MM
12519 arg = rcd;
12520 snprintf(me->name, sizeof(me->name),
9805071e 12521 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
77241056 12522 err_info = "receive context";
66c0933b 12523 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
957558c9 12524 me->type = IRQ_RCVCTXT;
77241056
MM
12525 } else {
12526 /* not in our expected range - complain, then
12527 ignore it */
12528 dd_dev_err(dd,
12529 "Unexpected extra MSI-X interrupt %d\n", i);
12530 continue;
12531 }
12532 /* no argument, no interrupt */
12533 if (arg == NULL)
12534 continue;
12535 /* make sure the name is terminated */
12536 me->name[sizeof(me->name)-1] = 0;
12537
f4f30031
DL
12538 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12539 me->name, arg);
77241056
MM
12540 if (ret) {
12541 dd_dev_err(dd,
12542 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12543 err_info, me->msix.vector, idx, ret);
12544 return ret;
12545 }
12546 /*
12547 * assign arg after request_irq call, so it will be
12548 * cleaned up
12549 */
12550 me->arg = arg;
12551
957558c9
MH
12552 ret = hfi1_get_irq_affinity(dd, me);
12553 if (ret)
12554 dd_dev_err(dd,
12555 "unable to pin IRQ %d\n", ret);
77241056
MM
12556 }
12557
77241056 12558 return ret;
77241056
MM
12559}
12560
12561/*
12562 * Set the general handler to accept all interrupts, remap all
12563 * chip interrupts back to MSI-X 0.
12564 */
12565static void reset_interrupts(struct hfi1_devdata *dd)
12566{
12567 int i;
12568
12569 /* all interrupts handled by the general handler */
12570 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12571 dd->gi_mask[i] = ~(u64)0;
12572
12573 /* all chip interrupts map to MSI-X 0 */
12574 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12575 write_csr(dd, CCE_INT_MAP + (8*i), 0);
12576}
12577
12578static int set_up_interrupts(struct hfi1_devdata *dd)
12579{
12580 struct hfi1_msix_entry *entries;
12581 u32 total, request;
12582 int i, ret;
12583 int single_interrupt = 0; /* we expect to have all the interrupts */
12584
12585 /*
12586 * Interrupt count:
12587 * 1 general, "slow path" interrupt (includes the SDMA engines
12588 * slow source, SDMACleanupDone)
12589 * N interrupts - one per used SDMA engine
12590 * M interrupt - one per kernel receive context
12591 */
12592 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12593
12594 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12595 if (!entries) {
77241056
MM
12596 ret = -ENOMEM;
12597 goto fail;
12598 }
12599 /* 1-1 MSI-X entry assignment */
12600 for (i = 0; i < total; i++)
12601 entries[i].msix.entry = i;
12602
12603 /* ask for MSI-X interrupts */
12604 request = total;
12605 request_msix(dd, &request, entries);
12606
12607 if (request == 0) {
12608 /* using INTx */
12609 /* dd->num_msix_entries already zero */
12610 kfree(entries);
12611 single_interrupt = 1;
12612 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12613 } else {
12614 /* using MSI-X */
12615 dd->num_msix_entries = request;
12616 dd->msix_entries = entries;
12617
12618 if (request != total) {
12619 /* using MSI-X, with reduced interrupts */
12620 dd_dev_err(
12621 dd,
12622 "cannot handle reduced interrupt case, want %u, got %u\n",
12623 total, request);
12624 ret = -EINVAL;
12625 goto fail;
12626 }
12627 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12628 }
12629
12630 /* mask all interrupts */
12631 set_intr_state(dd, 0);
12632 /* clear all pending interrupts */
12633 clear_all_interrupts(dd);
12634
12635 /* reset general handler mask, chip MSI-X mappings */
12636 reset_interrupts(dd);
12637
12638 if (single_interrupt)
12639 ret = request_intx_irq(dd);
12640 else
12641 ret = request_msix_irqs(dd);
12642 if (ret)
12643 goto fail;
12644
12645 return 0;
12646
12647fail:
12648 clean_up_interrupts(dd);
12649 return ret;
12650}
12651
12652/*
12653 * Set up context values in dd. Sets:
12654 *
12655 * num_rcv_contexts - number of contexts being used
12656 * n_krcv_queues - number of kernel contexts
12657 * first_user_ctxt - first non-kernel context in array of contexts
12658 * freectxts - number of free user contexts
12659 * num_send_contexts - number of PIO send contexts being used
12660 */
12661static int set_up_context_variables(struct hfi1_devdata *dd)
12662{
12663 int num_kernel_contexts;
77241056
MM
12664 int total_contexts;
12665 int ret;
12666 unsigned ngroups;
12667
12668 /*
12669 * Kernel contexts: (to be fixed later):
12670 * - min or 2 or 1 context/numa
82c2611d
NV
12671 * - Context 0 - control context (VL15/multicast/error)
12672 * - Context 1 - default context
77241056
MM
12673 */
12674 if (n_krcvqs)
82c2611d
NV
12675 /*
12676 * Don't count context 0 in n_krcvqs since
12677 * is isn't used for normal verbs traffic.
12678 *
12679 * krcvqs will reflect number of kernel
12680 * receive contexts above 0.
12681 */
12682 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
77241056 12683 else
0edf80ea 12684 num_kernel_contexts = num_online_nodes() + 1;
77241056
MM
12685 num_kernel_contexts =
12686 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12687 /*
12688 * Every kernel receive context needs an ACK send context.
12689 * one send context is allocated for each VL{0-7} and VL15
12690 */
12691 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12692 dd_dev_err(dd,
12693 "Reducing # kernel rcv contexts to: %d, from %d\n",
12694 (int)(dd->chip_send_contexts - num_vls - 1),
12695 (int)num_kernel_contexts);
12696 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12697 }
12698 /*
12699 * User contexts: (to be fixed later)
2ce6bf22
SS
12700 * - default to 1 user context per CPU if num_user_contexts is
12701 * negative
77241056 12702 */
2ce6bf22 12703 if (num_user_contexts < 0)
77241056
MM
12704 num_user_contexts = num_online_cpus();
12705
12706 total_contexts = num_kernel_contexts + num_user_contexts;
12707
12708 /*
12709 * Adjust the counts given a global max.
12710 */
12711 if (total_contexts > dd->chip_rcv_contexts) {
12712 dd_dev_err(dd,
12713 "Reducing # user receive contexts to: %d, from %d\n",
12714 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12715 (int)num_user_contexts);
12716 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12717 /* recalculate */
12718 total_contexts = num_kernel_contexts + num_user_contexts;
12719 }
12720
12721 /* the first N are kernel contexts, the rest are user contexts */
12722 dd->num_rcv_contexts = total_contexts;
12723 dd->n_krcv_queues = num_kernel_contexts;
12724 dd->first_user_ctxt = num_kernel_contexts;
affa48de 12725 dd->num_user_contexts = num_user_contexts;
77241056
MM
12726 dd->freectxts = num_user_contexts;
12727 dd_dev_info(dd,
12728 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12729 (int)dd->chip_rcv_contexts,
12730 (int)dd->num_rcv_contexts,
12731 (int)dd->n_krcv_queues,
12732 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12733
12734 /*
12735 * Receive array allocation:
12736 * All RcvArray entries are divided into groups of 8. This
12737 * is required by the hardware and will speed up writes to
12738 * consecutive entries by using write-combining of the entire
12739 * cacheline.
12740 *
12741 * The number of groups are evenly divided among all contexts.
12742 * any left over groups will be given to the first N user
12743 * contexts.
12744 */
12745 dd->rcv_entries.group_size = RCV_INCREMENT;
12746 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12747 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12748 dd->rcv_entries.nctxt_extra = ngroups -
12749 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12750 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12751 dd->rcv_entries.ngroups,
12752 dd->rcv_entries.nctxt_extra);
12753 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12754 MAX_EAGER_ENTRIES * 2) {
12755 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12756 dd->rcv_entries.group_size;
12757 dd_dev_info(dd,
12758 "RcvArray group count too high, change to %u\n",
12759 dd->rcv_entries.ngroups);
12760 dd->rcv_entries.nctxt_extra = 0;
12761 }
12762 /*
12763 * PIO send contexts
12764 */
12765 ret = init_sc_pools_and_sizes(dd);
12766 if (ret >= 0) { /* success */
12767 dd->num_send_contexts = ret;
12768 dd_dev_info(
12769 dd,
12770 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
12771 dd->chip_send_contexts,
12772 dd->num_send_contexts,
12773 dd->sc_sizes[SC_KERNEL].count,
12774 dd->sc_sizes[SC_ACK].count,
12775 dd->sc_sizes[SC_USER].count);
12776 ret = 0; /* success */
12777 }
12778
12779 return ret;
12780}
12781
12782/*
12783 * Set the device/port partition key table. The MAD code
12784 * will ensure that, at least, the partial management
12785 * partition key is present in the table.
12786 */
12787static void set_partition_keys(struct hfi1_pportdata *ppd)
12788{
12789 struct hfi1_devdata *dd = ppd->dd;
12790 u64 reg = 0;
12791 int i;
12792
12793 dd_dev_info(dd, "Setting partition keys\n");
12794 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12795 reg |= (ppd->pkeys[i] &
12796 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12797 ((i % 4) *
12798 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12799 /* Each register holds 4 PKey values. */
12800 if ((i % 4) == 3) {
12801 write_csr(dd, RCV_PARTITION_KEY +
12802 ((i - 3) * 2), reg);
12803 reg = 0;
12804 }
12805 }
12806
12807 /* Always enable HW pkeys check when pkeys table is set */
12808 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12809}
12810
12811/*
12812 * These CSRs and memories are uninitialized on reset and must be
12813 * written before reading to set the ECC/parity bits.
12814 *
12815 * NOTE: All user context CSRs that are not mmaped write-only
12816 * (e.g. the TID flows) must be initialized even if the driver never
12817 * reads them.
12818 */
12819static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12820{
12821 int i, j;
12822
12823 /* CceIntMap */
12824 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12825 write_csr(dd, CCE_INT_MAP+(8*i), 0);
12826
12827 /* SendCtxtCreditReturnAddr */
12828 for (i = 0; i < dd->chip_send_contexts; i++)
12829 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12830
12831 /* PIO Send buffers */
12832 /* SDMA Send buffers */
12833 /* These are not normally read, and (presently) have no method
12834 to be read, so are not pre-initialized */
12835
12836 /* RcvHdrAddr */
12837 /* RcvHdrTailAddr */
12838 /* RcvTidFlowTable */
12839 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12840 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12841 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12842 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
12843 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
12844 }
12845
12846 /* RcvArray */
12847 for (i = 0; i < dd->chip_rcv_array_count; i++)
12848 write_csr(dd, RCV_ARRAY + (8*i),
12849 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
12850
12851 /* RcvQPMapTable */
12852 for (i = 0; i < 32; i++)
12853 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12854}
12855
12856/*
12857 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12858 */
12859static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12860 u64 ctrl_bits)
12861{
12862 unsigned long timeout;
12863 u64 reg;
12864
12865 /* is the condition present? */
12866 reg = read_csr(dd, CCE_STATUS);
12867 if ((reg & status_bits) == 0)
12868 return;
12869
12870 /* clear the condition */
12871 write_csr(dd, CCE_CTRL, ctrl_bits);
12872
12873 /* wait for the condition to clear */
12874 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12875 while (1) {
12876 reg = read_csr(dd, CCE_STATUS);
12877 if ((reg & status_bits) == 0)
12878 return;
12879 if (time_after(jiffies, timeout)) {
12880 dd_dev_err(dd,
12881 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12882 status_bits, reg & status_bits);
12883 return;
12884 }
12885 udelay(1);
12886 }
12887}
12888
12889/* set CCE CSRs to chip reset defaults */
12890static void reset_cce_csrs(struct hfi1_devdata *dd)
12891{
12892 int i;
12893
12894 /* CCE_REVISION read-only */
12895 /* CCE_REVISION2 read-only */
12896 /* CCE_CTRL - bits clear automatically */
12897 /* CCE_STATUS read-only, use CceCtrl to clear */
12898 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12899 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12900 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12901 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12902 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12903 /* CCE_ERR_STATUS read-only */
12904 write_csr(dd, CCE_ERR_MASK, 0);
12905 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12906 /* CCE_ERR_FORCE leave alone */
12907 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12908 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12909 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12910 /* CCE_PCIE_CTRL leave alone */
12911 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12912 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12913 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
12914 CCE_MSIX_TABLE_UPPER_RESETCSR);
12915 }
12916 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12917 /* CCE_MSIX_PBA read-only */
12918 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12919 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12920 }
12921 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12922 write_csr(dd, CCE_INT_MAP, 0);
12923 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12924 /* CCE_INT_STATUS read-only */
12925 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12926 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12927 /* CCE_INT_FORCE leave alone */
12928 /* CCE_INT_BLOCKED read-only */
12929 }
12930 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12931 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12932}
12933
12934/* set ASIC CSRs to chip reset defaults */
12935static void reset_asic_csrs(struct hfi1_devdata *dd)
12936{
77241056
MM
12937 int i;
12938
12939 /*
12940 * If the HFIs are shared between separate nodes or VMs,
12941 * then more will need to be done here. One idea is a module
12942 * parameter that returns early, letting the first power-on or
12943 * a known first load do the reset and blocking all others.
12944 */
12945
7c03ed85
EH
12946 if (!(dd->flags & HFI1_DO_INIT_ASIC))
12947 return;
77241056
MM
12948
12949 if (dd->icode != ICODE_FPGA_EMULATION) {
12950 /* emulation does not have an SBus - leave these alone */
12951 /*
12952 * All writes to ASIC_CFG_SBUS_REQUEST do something.
12953 * Notes:
12954 * o The reset is not zero if aimed at the core. See the
12955 * SBus documentation for details.
12956 * o If the SBus firmware has been updated (e.g. by the BIOS),
12957 * will the reset revert that?
12958 */
12959 /* ASIC_CFG_SBUS_REQUEST leave alone */
12960 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
12961 }
12962 /* ASIC_SBUS_RESULT read-only */
12963 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
12964 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
12965 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
12966 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
7c03ed85
EH
12967
12968 /* We might want to retain this state across FLR if we ever use it */
77241056 12969 write_csr(dd, ASIC_CFG_DRV_STR, 0);
7c03ed85 12970
4ef98989 12971 /* ASIC_CFG_THERM_POLL_EN leave alone */
77241056
MM
12972 /* ASIC_STS_THERM read-only */
12973 /* ASIC_CFG_RESET leave alone */
12974
12975 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
12976 /* ASIC_PCIE_SD_HOST_STATUS read-only */
12977 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
12978 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
12979 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
12980 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
12981 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
12982 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
12983 for (i = 0; i < 16; i++)
12984 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
12985
12986 /* ASIC_GPIO_IN read-only */
12987 write_csr(dd, ASIC_GPIO_OE, 0);
12988 write_csr(dd, ASIC_GPIO_INVERT, 0);
12989 write_csr(dd, ASIC_GPIO_OUT, 0);
12990 write_csr(dd, ASIC_GPIO_MASK, 0);
12991 /* ASIC_GPIO_STATUS read-only */
12992 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
12993 /* ASIC_GPIO_FORCE leave alone */
12994
12995 /* ASIC_QSFP1_IN read-only */
12996 write_csr(dd, ASIC_QSFP1_OE, 0);
12997 write_csr(dd, ASIC_QSFP1_INVERT, 0);
12998 write_csr(dd, ASIC_QSFP1_OUT, 0);
12999 write_csr(dd, ASIC_QSFP1_MASK, 0);
13000 /* ASIC_QSFP1_STATUS read-only */
13001 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
13002 /* ASIC_QSFP1_FORCE leave alone */
13003
13004 /* ASIC_QSFP2_IN read-only */
13005 write_csr(dd, ASIC_QSFP2_OE, 0);
13006 write_csr(dd, ASIC_QSFP2_INVERT, 0);
13007 write_csr(dd, ASIC_QSFP2_OUT, 0);
13008 write_csr(dd, ASIC_QSFP2_MASK, 0);
13009 /* ASIC_QSFP2_STATUS read-only */
13010 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
13011 /* ASIC_QSFP2_FORCE leave alone */
13012
13013 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
13014 /* this also writes a NOP command, clearing paging mode */
13015 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
13016 write_csr(dd, ASIC_EEP_DATA, 0);
77241056
MM
13017}
13018
13019/* set MISC CSRs to chip reset defaults */
13020static void reset_misc_csrs(struct hfi1_devdata *dd)
13021{
13022 int i;
13023
13024 for (i = 0; i < 32; i++) {
13025 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13026 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13027 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13028 }
13029 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13030 only be written 128-byte chunks */
13031 /* init RSA engine to clear lingering errors */
13032 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13033 write_csr(dd, MISC_CFG_RSA_MU, 0);
13034 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13035 /* MISC_STS_8051_DIGEST read-only */
13036 /* MISC_STS_SBM_DIGEST read-only */
13037 /* MISC_STS_PCIE_DIGEST read-only */
13038 /* MISC_STS_FAB_DIGEST read-only */
13039 /* MISC_ERR_STATUS read-only */
13040 write_csr(dd, MISC_ERR_MASK, 0);
13041 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13042 /* MISC_ERR_FORCE leave alone */
13043}
13044
13045/* set TXE CSRs to chip reset defaults */
13046static void reset_txe_csrs(struct hfi1_devdata *dd)
13047{
13048 int i;
13049
13050 /*
13051 * TXE Kernel CSRs
13052 */
13053 write_csr(dd, SEND_CTRL, 0);
13054 __cm_reset(dd, 0); /* reset CM internal state */
13055 /* SEND_CONTEXTS read-only */
13056 /* SEND_DMA_ENGINES read-only */
13057 /* SEND_PIO_MEM_SIZE read-only */
13058 /* SEND_DMA_MEM_SIZE read-only */
13059 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13060 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13061 /* SEND_PIO_ERR_STATUS read-only */
13062 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13063 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13064 /* SEND_PIO_ERR_FORCE leave alone */
13065 /* SEND_DMA_ERR_STATUS read-only */
13066 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13067 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13068 /* SEND_DMA_ERR_FORCE leave alone */
13069 /* SEND_EGRESS_ERR_STATUS read-only */
13070 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13071 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13072 /* SEND_EGRESS_ERR_FORCE leave alone */
13073 write_csr(dd, SEND_BTH_QP, 0);
13074 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13075 write_csr(dd, SEND_SC2VLT0, 0);
13076 write_csr(dd, SEND_SC2VLT1, 0);
13077 write_csr(dd, SEND_SC2VLT2, 0);
13078 write_csr(dd, SEND_SC2VLT3, 0);
13079 write_csr(dd, SEND_LEN_CHECK0, 0);
13080 write_csr(dd, SEND_LEN_CHECK1, 0);
13081 /* SEND_ERR_STATUS read-only */
13082 write_csr(dd, SEND_ERR_MASK, 0);
13083 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13084 /* SEND_ERR_FORCE read-only */
13085 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13086 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
13087 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13088 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
13089 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
13090 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
13091 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13092 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
13093 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13094 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
13095 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13096 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
13097 SEND_CM_GLOBAL_CREDIT_RESETCSR);
13098 /* SEND_CM_CREDIT_USED_STATUS read-only */
13099 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13100 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13101 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13102 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13103 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13104 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13105 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
13106 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13107 /* SEND_CM_CREDIT_USED_VL read-only */
13108 /* SEND_CM_CREDIT_USED_VL15 read-only */
13109 /* SEND_EGRESS_CTXT_STATUS read-only */
13110 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13111 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13112 /* SEND_EGRESS_ERR_INFO read-only */
13113 /* SEND_EGRESS_ERR_SOURCE read-only */
13114
13115 /*
13116 * TXE Per-Context CSRs
13117 */
13118 for (i = 0; i < dd->chip_send_contexts; i++) {
13119 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13120 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13121 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13122 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13123 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13124 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13125 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13126 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13127 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13128 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13129 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13130 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13131 }
13132
13133 /*
13134 * TXE Per-SDMA CSRs
13135 */
13136 for (i = 0; i < dd->chip_sdma_engines; i++) {
13137 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13138 /* SEND_DMA_STATUS read-only */
13139 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13140 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13141 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13142 /* SEND_DMA_HEAD read-only */
13143 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13144 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13145 /* SEND_DMA_IDLE_CNT read-only */
13146 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13147 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13148 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13149 /* SEND_DMA_ENG_ERR_STATUS read-only */
13150 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13151 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13152 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13153 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13154 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13155 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13156 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13157 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13158 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13159 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13160 }
13161}
13162
13163/*
13164 * Expect on entry:
13165 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13166 */
13167static void init_rbufs(struct hfi1_devdata *dd)
13168{
13169 u64 reg;
13170 int count;
13171
13172 /*
13173 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13174 * clear.
13175 */
13176 count = 0;
13177 while (1) {
13178 reg = read_csr(dd, RCV_STATUS);
13179 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13180 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13181 break;
13182 /*
13183 * Give up after 1ms - maximum wait time.
13184 *
13185 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13186 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13187 * 148 KB / (66% * 250MB/s) = 920us
13188 */
13189 if (count++ > 500) {
13190 dd_dev_err(dd,
13191 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13192 __func__, reg);
13193 break;
13194 }
13195 udelay(2); /* do not busy-wait the CSR */
13196 }
13197
13198 /* start the init - expect RcvCtrl to be 0 */
13199 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13200
13201 /*
13202 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13203 * period after the write before RcvStatus.RxRbufInitDone is valid.
13204 * The delay in the first run through the loop below is sufficient and
13205 * required before the first read of RcvStatus.RxRbufInintDone.
13206 */
13207 read_csr(dd, RCV_CTRL);
13208
13209 /* wait for the init to finish */
13210 count = 0;
13211 while (1) {
13212 /* delay is required first time through - see above */
13213 udelay(2); /* do not busy-wait the CSR */
13214 reg = read_csr(dd, RCV_STATUS);
13215 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13216 break;
13217
13218 /* give up after 100us - slowest possible at 33MHz is 73us */
13219 if (count++ > 50) {
13220 dd_dev_err(dd,
13221 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13222 __func__);
13223 break;
13224 }
13225 }
13226}
13227
13228/* set RXE CSRs to chip reset defaults */
13229static void reset_rxe_csrs(struct hfi1_devdata *dd)
13230{
13231 int i, j;
13232
13233 /*
13234 * RXE Kernel CSRs
13235 */
13236 write_csr(dd, RCV_CTRL, 0);
13237 init_rbufs(dd);
13238 /* RCV_STATUS read-only */
13239 /* RCV_CONTEXTS read-only */
13240 /* RCV_ARRAY_CNT read-only */
13241 /* RCV_BUF_SIZE read-only */
13242 write_csr(dd, RCV_BTH_QP, 0);
13243 write_csr(dd, RCV_MULTICAST, 0);
13244 write_csr(dd, RCV_BYPASS, 0);
13245 write_csr(dd, RCV_VL15, 0);
13246 /* this is a clear-down */
13247 write_csr(dd, RCV_ERR_INFO,
13248 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13249 /* RCV_ERR_STATUS read-only */
13250 write_csr(dd, RCV_ERR_MASK, 0);
13251 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13252 /* RCV_ERR_FORCE leave alone */
13253 for (i = 0; i < 32; i++)
13254 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13255 for (i = 0; i < 4; i++)
13256 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13257 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13258 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13259 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13260 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13261 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13262 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13263 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13264 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13265 }
13266 for (i = 0; i < 32; i++)
13267 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13268
13269 /*
13270 * RXE Kernel and User Per-Context CSRs
13271 */
13272 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13273 /* kernel */
13274 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13275 /* RCV_CTXT_STATUS read-only */
13276 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13277 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13278 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13279 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13280 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13281 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13282 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13283 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13284 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13285 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13286
13287 /* user */
13288 /* RCV_HDR_TAIL read-only */
13289 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13290 /* RCV_EGR_INDEX_TAIL read-only */
13291 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13292 /* RCV_EGR_OFFSET_TAIL read-only */
13293 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13294 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
13295 0);
13296 }
13297 }
13298}
13299
13300/*
13301 * Set sc2vl tables.
13302 *
13303 * They power on to zeros, so to avoid send context errors
13304 * they need to be set:
13305 *
13306 * SC 0-7 -> VL 0-7 (respectively)
13307 * SC 15 -> VL 15
13308 * otherwise
13309 * -> VL 0
13310 */
13311static void init_sc2vl_tables(struct hfi1_devdata *dd)
13312{
13313 int i;
13314 /* init per architecture spec, constrained by hardware capability */
13315
13316 /* HFI maps sent packets */
13317 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13318 0,
13319 0, 0, 1, 1,
13320 2, 2, 3, 3,
13321 4, 4, 5, 5,
13322 6, 6, 7, 7));
13323 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13324 1,
13325 8, 0, 9, 0,
13326 10, 0, 11, 0,
13327 12, 0, 13, 0,
13328 14, 0, 15, 15));
13329 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13330 2,
13331 16, 0, 17, 0,
13332 18, 0, 19, 0,
13333 20, 0, 21, 0,
13334 22, 0, 23, 0));
13335 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13336 3,
13337 24, 0, 25, 0,
13338 26, 0, 27, 0,
13339 28, 0, 29, 0,
13340 30, 0, 31, 0));
13341
13342 /* DC maps received packets */
13343 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13344 15_0,
13345 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13346 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13347 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13348 31_16,
13349 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13350 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13351
13352 /* initialize the cached sc2vl values consistently with h/w */
13353 for (i = 0; i < 32; i++) {
13354 if (i < 8 || i == 15)
13355 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13356 else
13357 *((u8 *)(dd->sc2vl) + i) = 0;
13358 }
13359}
13360
13361/*
13362 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13363 * depend on the chip going through a power-on reset - a driver may be loaded
13364 * and unloaded many times.
13365 *
13366 * Do not write any CSR values to the chip in this routine - there may be
13367 * a reset following the (possible) FLR in this routine.
13368 *
13369 */
13370static void init_chip(struct hfi1_devdata *dd)
13371{
13372 int i;
13373
13374 /*
13375 * Put the HFI CSRs in a known state.
13376 * Combine this with a DC reset.
13377 *
13378 * Stop the device from doing anything while we do a
13379 * reset. We know there are no other active users of
13380 * the device since we are now in charge. Turn off
13381 * off all outbound and inbound traffic and make sure
13382 * the device does not generate any interrupts.
13383 */
13384
13385 /* disable send contexts and SDMA engines */
13386 write_csr(dd, SEND_CTRL, 0);
13387 for (i = 0; i < dd->chip_send_contexts; i++)
13388 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13389 for (i = 0; i < dd->chip_sdma_engines; i++)
13390 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13391 /* disable port (turn off RXE inbound traffic) and contexts */
13392 write_csr(dd, RCV_CTRL, 0);
13393 for (i = 0; i < dd->chip_rcv_contexts; i++)
13394 write_csr(dd, RCV_CTXT_CTRL, 0);
13395 /* mask all interrupt sources */
13396 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13397 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
13398
13399 /*
13400 * DC Reset: do a full DC reset before the register clear.
13401 * A recommended length of time to hold is one CSR read,
13402 * so reread the CceDcCtrl. Then, hold the DC in reset
13403 * across the clear.
13404 */
13405 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13406 (void) read_csr(dd, CCE_DC_CTRL);
13407
13408 if (use_flr) {
13409 /*
13410 * A FLR will reset the SPC core and part of the PCIe.
13411 * The parts that need to be restored have already been
13412 * saved.
13413 */
13414 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13415
13416 /* do the FLR, the DC reset will remain */
13417 hfi1_pcie_flr(dd);
13418
13419 /* restore command and BARs */
13420 restore_pci_variables(dd);
13421
995deafa 13422 if (is_ax(dd)) {
77241056
MM
13423 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13424 hfi1_pcie_flr(dd);
13425 restore_pci_variables(dd);
13426 }
13427
7c03ed85 13428 reset_asic_csrs(dd);
77241056
MM
13429 } else {
13430 dd_dev_info(dd, "Resetting CSRs with writes\n");
13431 reset_cce_csrs(dd);
13432 reset_txe_csrs(dd);
13433 reset_rxe_csrs(dd);
13434 reset_asic_csrs(dd);
13435 reset_misc_csrs(dd);
13436 }
13437 /* clear the DC reset */
13438 write_csr(dd, CCE_DC_CTRL, 0);
7c03ed85 13439
77241056 13440 /* Set the LED off */
995deafa 13441 if (is_ax(dd))
77241056
MM
13442 setextled(dd, 0);
13443 /*
13444 * Clear the QSFP reset.
72a67ba2 13445 * An FLR enforces a 0 on all out pins. The driver does not touch
77241056 13446 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
72a67ba2 13447 * anything plugged constantly in reset, if it pays attention
77241056 13448 * to RESET_N.
72a67ba2 13449 * Prime examples of this are optical cables. Set all pins high.
77241056
MM
13450 * I2CCLK and I2CDAT will change per direction, and INT_N and
13451 * MODPRS_N are input only and their value is ignored.
13452 */
72a67ba2
EH
13453 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13454 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
77241056
MM
13455}
13456
13457static void init_early_variables(struct hfi1_devdata *dd)
13458{
13459 int i;
13460
13461 /* assign link credit variables */
13462 dd->vau = CM_VAU;
13463 dd->link_credits = CM_GLOBAL_CREDITS;
995deafa 13464 if (is_ax(dd))
77241056
MM
13465 dd->link_credits--;
13466 dd->vcu = cu_to_vcu(hfi1_cu);
13467 /* enough room for 8 MAD packets plus header - 17K */
13468 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13469 if (dd->vl15_init > dd->link_credits)
13470 dd->vl15_init = dd->link_credits;
13471
13472 write_uninitialized_csrs_and_memories(dd);
13473
13474 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13475 for (i = 0; i < dd->num_pports; i++) {
13476 struct hfi1_pportdata *ppd = &dd->pport[i];
13477
13478 set_partition_keys(ppd);
13479 }
13480 init_sc2vl_tables(dd);
13481}
13482
13483static void init_kdeth_qp(struct hfi1_devdata *dd)
13484{
13485 /* user changed the KDETH_QP */
13486 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13487 /* out of range or illegal value */
13488 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13489 kdeth_qp = 0;
13490 }
13491 if (kdeth_qp == 0) /* not set, or failed range check */
13492 kdeth_qp = DEFAULT_KDETH_QP;
13493
13494 write_csr(dd, SEND_BTH_QP,
13495 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
13496 << SEND_BTH_QP_KDETH_QP_SHIFT);
13497
13498 write_csr(dd, RCV_BTH_QP,
13499 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
13500 << RCV_BTH_QP_KDETH_QP_SHIFT);
13501}
13502
13503/**
13504 * init_qpmap_table
13505 * @dd - device data
13506 * @first_ctxt - first context
13507 * @last_ctxt - first context
13508 *
13509 * This return sets the qpn mapping table that
13510 * is indexed by qpn[8:1].
13511 *
13512 * The routine will round robin the 256 settings
13513 * from first_ctxt to last_ctxt.
13514 *
13515 * The first/last looks ahead to having specialized
13516 * receive contexts for mgmt and bypass. Normal
13517 * verbs traffic will assumed to be on a range
13518 * of receive contexts.
13519 */
13520static void init_qpmap_table(struct hfi1_devdata *dd,
13521 u32 first_ctxt,
13522 u32 last_ctxt)
13523{
13524 u64 reg = 0;
13525 u64 regno = RCV_QP_MAP_TABLE;
13526 int i;
13527 u64 ctxt = first_ctxt;
13528
13529 for (i = 0; i < 256;) {
77241056
MM
13530 reg |= ctxt << (8 * (i % 8));
13531 i++;
13532 ctxt++;
13533 if (ctxt > last_ctxt)
13534 ctxt = first_ctxt;
13535 if (i % 8 == 0) {
13536 write_csr(dd, regno, reg);
13537 reg = 0;
13538 regno += 8;
13539 }
13540 }
13541 if (i % 8)
13542 write_csr(dd, regno, reg);
13543
13544 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13545 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13546}
13547
13548/**
13549 * init_qos - init RX qos
13550 * @dd - device data
13551 * @first_context
13552 *
13553 * This routine initializes Rule 0 and the
13554 * RSM map table to implement qos.
13555 *
13556 * If all of the limit tests succeed,
13557 * qos is applied based on the array
13558 * interpretation of krcvqs where
13559 * entry 0 is VL0.
13560 *
13561 * The number of vl bits (n) and the number of qpn
13562 * bits (m) are computed to feed both the RSM map table
13563 * and the single rule.
13564 *
13565 */
13566static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
13567{
13568 u8 max_by_vl = 0;
13569 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13570 u64 *rsmmap;
13571 u64 reg;
995deafa 13572 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
77241056
MM
13573
13574 /* validate */
13575 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13576 num_vls == 1 ||
13577 krcvqsset <= 1)
13578 goto bail;
13579 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
13580 if (krcvqs[i] > max_by_vl)
13581 max_by_vl = krcvqs[i];
13582 if (max_by_vl > 32)
13583 goto bail;
13584 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
13585 /* determine bits vl */
13586 n = ilog2(num_vls);
13587 /* determine bits for qpn */
13588 m = ilog2(qpns_per_vl);
13589 if ((m + n) > 7)
13590 goto bail;
13591 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
13592 goto bail;
13593 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
859bcad9
EH
13594 if (!rsmmap)
13595 goto bail;
77241056
MM
13596 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
13597 /* init the local copy of the table */
13598 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
13599 unsigned tctxt;
13600
13601 for (qpn = 0, tctxt = ctxt;
13602 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13603 unsigned idx, regoff, regidx;
13604
13605 /* generate index <= 128 */
13606 idx = (qpn << n) ^ i;
13607 regoff = (idx % 8) * 8;
13608 regidx = idx / 8;
13609 reg = rsmmap[regidx];
13610 /* replace 0xff with context number */
13611 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13612 << regoff);
13613 reg |= (u64)(tctxt++) << regoff;
13614 rsmmap[regidx] = reg;
13615 if (tctxt == ctxt + krcvqs[i])
13616 tctxt = ctxt;
13617 }
13618 ctxt += krcvqs[i];
13619 }
13620 /* flush cached copies to chip */
13621 for (i = 0; i < NUM_MAP_REGS; i++)
13622 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
13623 /* add rule0 */
13624 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
13625 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
13626 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
13627 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13628 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
13629 LRH_BTH_MATCH_OFFSET
13630 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13631 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13632 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13633 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13634 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13635 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13636 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
13637 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
13638 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
13639 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
13640 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
13641 /* Enable RSM */
13642 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13643 kfree(rsmmap);
82c2611d
NV
13644 /* map everything else to first context */
13645 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
77241056
MM
13646 dd->qos_shift = n + 1;
13647 return;
13648bail:
13649 dd->qos_shift = 1;
82c2611d 13650 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
77241056
MM
13651}
13652
13653static void init_rxe(struct hfi1_devdata *dd)
13654{
13655 /* enable all receive errors */
13656 write_csr(dd, RCV_ERR_MASK, ~0ull);
13657 /* setup QPN map table - start where VL15 context leaves off */
13658 init_qos(
13659 dd,
13660 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
13661 /*
13662 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13663 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13664 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13665 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13666 * Max_PayLoad_Size set to its minimum of 128.
13667 *
13668 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13669 * (64 bytes). Max_Payload_Size is possibly modified upward in
13670 * tune_pcie_caps() which is called after this routine.
13671 */
13672}
13673
13674static void init_other(struct hfi1_devdata *dd)
13675{
13676 /* enable all CCE errors */
13677 write_csr(dd, CCE_ERR_MASK, ~0ull);
13678 /* enable *some* Misc errors */
13679 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13680 /* enable all DC errors, except LCB */
13681 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13682 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13683}
13684
13685/*
13686 * Fill out the given AU table using the given CU. A CU is defined in terms
13687 * AUs. The table is a an encoding: given the index, how many AUs does that
13688 * represent?
13689 *
13690 * NOTE: Assumes that the register layout is the same for the
13691 * local and remote tables.
13692 */
13693static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13694 u32 csr0to3, u32 csr4to7)
13695{
13696 write_csr(dd, csr0to3,
13697 0ull <<
13698 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
13699 | 1ull <<
13700 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
13701 | 2ull * cu <<
13702 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
13703 | 4ull * cu <<
13704 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
13705 write_csr(dd, csr4to7,
13706 8ull * cu <<
13707 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
13708 | 16ull * cu <<
13709 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
13710 | 32ull * cu <<
13711 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
13712 | 64ull * cu <<
13713 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
13714
13715}
13716
13717static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13718{
13719 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
13720 SEND_CM_LOCAL_AU_TABLE4_TO7);
13721}
13722
13723void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13724{
13725 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
13726 SEND_CM_REMOTE_AU_TABLE4_TO7);
13727}
13728
13729static void init_txe(struct hfi1_devdata *dd)
13730{
13731 int i;
13732
13733 /* enable all PIO, SDMA, general, and Egress errors */
13734 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13735 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13736 write_csr(dd, SEND_ERR_MASK, ~0ull);
13737 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13738
13739 /* enable all per-context and per-SDMA engine errors */
13740 for (i = 0; i < dd->chip_send_contexts; i++)
13741 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13742 for (i = 0; i < dd->chip_sdma_engines; i++)
13743 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13744
13745 /* set the local CU to AU mapping */
13746 assign_local_cm_au_table(dd, dd->vcu);
13747
13748 /*
13749 * Set reasonable default for Credit Return Timer
13750 * Don't set on Simulator - causes it to choke.
13751 */
13752 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13753 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13754}
13755
13756int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13757{
13758 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13759 unsigned sctxt;
13760 int ret = 0;
13761 u64 reg;
13762
13763 if (!rcd || !rcd->sc) {
13764 ret = -EINVAL;
13765 goto done;
13766 }
13767 sctxt = rcd->sc->hw_context;
13768 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13769 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13770 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13771 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13772 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13773 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13774 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13775 /*
13776 * Enable send-side J_KEY integrity check, unless this is A0 h/w
77241056 13777 */
995deafa 13778 if (!is_ax(dd)) {
77241056
MM
13779 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13780 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13781 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13782 }
13783
13784 /* Enable J_KEY check on receive context. */
13785 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13786 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13787 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13788 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13789done:
13790 return ret;
13791}
13792
13793int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13794{
13795 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13796 unsigned sctxt;
13797 int ret = 0;
13798 u64 reg;
13799
13800 if (!rcd || !rcd->sc) {
13801 ret = -EINVAL;
13802 goto done;
13803 }
13804 sctxt = rcd->sc->hw_context;
13805 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13806 /*
13807 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13808 * This check would not have been enabled for A0 h/w, see
13809 * set_ctxt_jkey().
13810 */
995deafa 13811 if (!is_ax(dd)) {
77241056
MM
13812 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13813 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13814 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13815 }
13816 /* Turn off the J_KEY on the receive side */
13817 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13818done:
13819 return ret;
13820}
13821
13822int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13823{
13824 struct hfi1_ctxtdata *rcd;
13825 unsigned sctxt;
13826 int ret = 0;
13827 u64 reg;
13828
13829 if (ctxt < dd->num_rcv_contexts)
13830 rcd = dd->rcd[ctxt];
13831 else {
13832 ret = -EINVAL;
13833 goto done;
13834 }
13835 if (!rcd || !rcd->sc) {
13836 ret = -EINVAL;
13837 goto done;
13838 }
13839 sctxt = rcd->sc->hw_context;
13840 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13841 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13842 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13843 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13844 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13845 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13846done:
13847 return ret;
13848}
13849
13850int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13851{
13852 struct hfi1_ctxtdata *rcd;
13853 unsigned sctxt;
13854 int ret = 0;
13855 u64 reg;
13856
13857 if (ctxt < dd->num_rcv_contexts)
13858 rcd = dd->rcd[ctxt];
13859 else {
13860 ret = -EINVAL;
13861 goto done;
13862 }
13863 if (!rcd || !rcd->sc) {
13864 ret = -EINVAL;
13865 goto done;
13866 }
13867 sctxt = rcd->sc->hw_context;
13868 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13869 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13870 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13871 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13872done:
13873 return ret;
13874}
13875
13876/*
13877 * Start doing the clean up the the chip. Our clean up happens in multiple
13878 * stages and this is just the first.
13879 */
13880void hfi1_start_cleanup(struct hfi1_devdata *dd)
13881{
affa48de 13882 aspm_exit(dd);
77241056
MM
13883 free_cntrs(dd);
13884 free_rcverr(dd);
13885 clean_up_interrupts(dd);
13886}
13887
13888#define HFI_BASE_GUID(dev) \
13889 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13890
13891/*
13892 * Certain chip functions need to be initialized only once per asic
13893 * instead of per-device. This function finds the peer device and
13894 * checks whether that chip initialization needs to be done by this
13895 * device.
13896 */
13897static void asic_should_init(struct hfi1_devdata *dd)
13898{
13899 unsigned long flags;
13900 struct hfi1_devdata *tmp, *peer = NULL;
13901
13902 spin_lock_irqsave(&hfi1_devs_lock, flags);
13903 /* Find our peer device */
13904 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13905 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13906 dd->unit != tmp->unit) {
13907 peer = tmp;
13908 break;
13909 }
13910 }
13911
13912 /*
13913 * "Claim" the ASIC for initialization if it hasn't been
13914 " "claimed" yet.
13915 */
13916 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
13917 dd->flags |= HFI1_DO_INIT_ASIC;
13918 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
13919}
13920
5d9157aa
DL
13921/*
13922 * Set dd->boardname. Use a generic name if a name is not returned from
13923 * EFI variable space.
13924 *
13925 * Return 0 on success, -ENOMEM if space could not be allocated.
13926 */
13927static int obtain_boardname(struct hfi1_devdata *dd)
13928{
13929 /* generic board description */
13930 const char generic[] =
13931 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13932 unsigned long size;
13933 int ret;
13934
13935 ret = read_hfi1_efi_var(dd, "description", &size,
13936 (void **)&dd->boardname);
13937 if (ret) {
845f876d 13938 dd_dev_info(dd, "Board description not found\n");
5d9157aa
DL
13939 /* use generic description */
13940 dd->boardname = kstrdup(generic, GFP_KERNEL);
13941 if (!dd->boardname)
13942 return -ENOMEM;
13943 }
13944 return 0;
13945}
13946
77241056 13947/**
7c03ed85 13948 * Allocate and initialize the device structure for the hfi.
77241056
MM
13949 * @dev: the pci_dev for hfi1_ib device
13950 * @ent: pci_device_id struct for this dev
13951 *
13952 * Also allocates, initializes, and returns the devdata struct for this
13953 * device instance
13954 *
13955 * This is global, and is called directly at init to set up the
13956 * chip-specific function pointers for later use.
13957 */
13958struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13959 const struct pci_device_id *ent)
13960{
13961 struct hfi1_devdata *dd;
13962 struct hfi1_pportdata *ppd;
13963 u64 reg;
13964 int i, ret;
13965 static const char * const inames[] = { /* implementation names */
13966 "RTL silicon",
13967 "RTL VCS simulation",
13968 "RTL FPGA emulation",
13969 "Functional simulator"
13970 };
13971
13972 dd = hfi1_alloc_devdata(pdev,
13973 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
13974 if (IS_ERR(dd))
13975 goto bail;
13976 ppd = dd->pport;
13977 for (i = 0; i < dd->num_pports; i++, ppd++) {
13978 int vl;
13979 /* init common fields */
13980 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
13981 /* DC supports 4 link widths */
13982 ppd->link_width_supported =
13983 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
13984 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
13985 ppd->link_width_downgrade_supported =
13986 ppd->link_width_supported;
13987 /* start out enabling only 4X */
13988 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
13989 ppd->link_width_downgrade_enabled =
13990 ppd->link_width_downgrade_supported;
13991 /* link width active is 0 when link is down */
13992 /* link width downgrade active is 0 when link is down */
13993
13994 if (num_vls < HFI1_MIN_VLS_SUPPORTED
13995 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
13996 hfi1_early_err(&pdev->dev,
13997 "Invalid num_vls %u, using %u VLs\n",
13998 num_vls, HFI1_MAX_VLS_SUPPORTED);
13999 num_vls = HFI1_MAX_VLS_SUPPORTED;
14000 }
14001 ppd->vls_supported = num_vls;
14002 ppd->vls_operational = ppd->vls_supported;
14003 /* Set the default MTU. */
14004 for (vl = 0; vl < num_vls; vl++)
14005 dd->vld[vl].mtu = hfi1_max_mtu;
14006 dd->vld[15].mtu = MAX_MAD_PACKET;
14007 /*
14008 * Set the initial values to reasonable default, will be set
14009 * for real when link is up.
14010 */
14011 ppd->lstate = IB_PORT_DOWN;
14012 ppd->overrun_threshold = 0x4;
14013 ppd->phy_error_threshold = 0xf;
14014 ppd->port_crc_mode_enabled = link_crc_mask;
14015 /* initialize supported LTP CRC mode */
14016 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14017 /* initialize enabled LTP CRC mode */
14018 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14019 /* start in offline */
14020 ppd->host_link_state = HLS_DN_OFFLINE;
14021 init_vl_arb_caches(ppd);
14022 }
14023
14024 dd->link_default = HLS_DN_POLL;
14025
14026 /*
14027 * Do remaining PCIe setup and save PCIe values in dd.
14028 * Any error printing is already done by the init code.
14029 * On return, we have the chip mapped.
14030 */
14031 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14032 if (ret < 0)
14033 goto bail_free;
14034
14035 /* verify that reads actually work, save revision for reset check */
14036 dd->revision = read_csr(dd, CCE_REVISION);
14037 if (dd->revision == ~(u64)0) {
14038 dd_dev_err(dd, "cannot read chip CSRs\n");
14039 ret = -EINVAL;
14040 goto bail_cleanup;
14041 }
14042 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14043 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14044 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14045 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14046
14047 /* obtain the hardware ID - NOT related to unit, which is a
14048 software enumeration */
14049 reg = read_csr(dd, CCE_REVISION2);
14050 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14051 & CCE_REVISION2_HFI_ID_MASK;
14052 /* the variable size will remove unwanted bits */
14053 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14054 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14055 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14056 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
14057 (int)dd->irev);
14058
14059 /* speeds the hardware can support */
14060 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14061 /* speeds allowed to run at */
14062 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14063 /* give a reasonable active value, will be set on link up */
14064 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14065
14066 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14067 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14068 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14069 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14070 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14071 /* fix up link widths for emulation _p */
14072 ppd = dd->pport;
14073 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14074 ppd->link_width_supported =
14075 ppd->link_width_enabled =
14076 ppd->link_width_downgrade_supported =
14077 ppd->link_width_downgrade_enabled =
14078 OPA_LINK_WIDTH_1X;
14079 }
14080 /* insure num_vls isn't larger than number of sdma engines */
14081 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14082 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
11a5909b
DL
14083 num_vls, dd->chip_sdma_engines);
14084 num_vls = dd->chip_sdma_engines;
14085 ppd->vls_supported = dd->chip_sdma_engines;
77241056
MM
14086 }
14087
14088 /*
14089 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14090 * Limit the max if larger than the field holds. If timeout is
14091 * non-zero, then the calculated field will be at least 1.
14092 *
14093 * Must be after icode is set up - the cclock rate depends
14094 * on knowing the hardware being used.
14095 */
14096 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14097 if (dd->rcv_intr_timeout_csr >
14098 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14099 dd->rcv_intr_timeout_csr =
14100 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14101 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14102 dd->rcv_intr_timeout_csr = 1;
14103
7c03ed85
EH
14104 /* needs to be done before we look for the peer device */
14105 read_guid(dd);
14106
14107 /* should this device init the ASIC block? */
14108 asic_should_init(dd);
14109
77241056
MM
14110 /* obtain chip sizes, reset chip CSRs */
14111 init_chip(dd);
14112
14113 /* read in the PCIe link speed information */
14114 ret = pcie_speeds(dd);
14115 if (ret)
14116 goto bail_cleanup;
14117
77241056
MM
14118 /* read in firmware */
14119 ret = hfi1_firmware_init(dd);
14120 if (ret)
14121 goto bail_cleanup;
14122
14123 /*
14124 * In general, the PCIe Gen3 transition must occur after the
14125 * chip has been idled (so it won't initiate any PCIe transactions
14126 * e.g. an interrupt) and before the driver changes any registers
14127 * (the transition will reset the registers).
14128 *
14129 * In particular, place this call after:
14130 * - init_chip() - the chip will not initiate any PCIe transactions
14131 * - pcie_speeds() - reads the current link speed
14132 * - hfi1_firmware_init() - the needed firmware is ready to be
14133 * downloaded
14134 */
14135 ret = do_pcie_gen3_transition(dd);
14136 if (ret)
14137 goto bail_cleanup;
14138
14139 /* start setting dd values and adjusting CSRs */
14140 init_early_variables(dd);
14141
14142 parse_platform_config(dd);
14143
5d9157aa
DL
14144 ret = obtain_boardname(dd);
14145 if (ret)
77241056 14146 goto bail_cleanup;
77241056
MM
14147
14148 snprintf(dd->boardversion, BOARD_VERS_MAX,
5d9157aa 14149 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
77241056 14150 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
77241056
MM
14151 (u32)dd->majrev,
14152 (u32)dd->minrev,
14153 (dd->revision >> CCE_REVISION_SW_SHIFT)
14154 & CCE_REVISION_SW_MASK);
14155
14156 ret = set_up_context_variables(dd);
14157 if (ret)
14158 goto bail_cleanup;
14159
14160 /* set initial RXE CSRs */
14161 init_rxe(dd);
14162 /* set initial TXE CSRs */
14163 init_txe(dd);
14164 /* set initial non-RXE, non-TXE CSRs */
14165 init_other(dd);
14166 /* set up KDETH QP prefix in both RX and TX CSRs */
14167 init_kdeth_qp(dd);
14168
957558c9
MH
14169 ret = hfi1_dev_affinity_init(dd);
14170 if (ret)
14171 goto bail_cleanup;
14172
77241056
MM
14173 /* send contexts must be set up before receive contexts */
14174 ret = init_send_contexts(dd);
14175 if (ret)
14176 goto bail_cleanup;
14177
14178 ret = hfi1_create_ctxts(dd);
14179 if (ret)
14180 goto bail_cleanup;
14181
14182 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14183 /*
14184 * rcd[0] is guaranteed to be valid by this point. Also, all
14185 * context are using the same value, as per the module parameter.
14186 */
14187 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14188
14189 ret = init_pervl_scs(dd);
14190 if (ret)
14191 goto bail_cleanup;
14192
14193 /* sdma init */
14194 for (i = 0; i < dd->num_pports; ++i) {
14195 ret = sdma_init(dd, i);
14196 if (ret)
14197 goto bail_cleanup;
14198 }
14199
14200 /* use contexts created by hfi1_create_ctxts */
14201 ret = set_up_interrupts(dd);
14202 if (ret)
14203 goto bail_cleanup;
14204
14205 /* set up LCB access - must be after set_up_interrupts() */
14206 init_lcb_access(dd);
14207
14208 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14209 dd->base_guid & 0xFFFFFF);
14210
14211 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14212 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14213 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14214
14215 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14216 if (ret)
14217 goto bail_clear_intr;
14218 check_fabric_firmware_versions(dd);
14219
14220 thermal_init(dd);
14221
14222 ret = init_cntrs(dd);
14223 if (ret)
14224 goto bail_clear_intr;
14225
14226 ret = init_rcverr(dd);
14227 if (ret)
14228 goto bail_free_cntrs;
14229
14230 ret = eprom_init(dd);
14231 if (ret)
14232 goto bail_free_rcverr;
14233
14234 goto bail;
14235
14236bail_free_rcverr:
14237 free_rcverr(dd);
14238bail_free_cntrs:
14239 free_cntrs(dd);
14240bail_clear_intr:
14241 clean_up_interrupts(dd);
14242bail_cleanup:
14243 hfi1_pcie_ddcleanup(dd);
14244bail_free:
14245 hfi1_free_devdata(dd);
14246 dd = ERR_PTR(ret);
14247bail:
14248 return dd;
14249}
14250
14251static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14252 u32 dw_len)
14253{
14254 u32 delta_cycles;
14255 u32 current_egress_rate = ppd->current_egress_rate;
14256 /* rates here are in units of 10^6 bits/sec */
14257
14258 if (desired_egress_rate == -1)
14259 return 0; /* shouldn't happen */
14260
14261 if (desired_egress_rate >= current_egress_rate)
14262 return 0; /* we can't help go faster, only slower */
14263
14264 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14265 egress_cycles(dw_len * 4, current_egress_rate);
14266
14267 return (u16)delta_cycles;
14268}
14269
14270
14271/**
14272 * create_pbc - build a pbc for transmission
14273 * @flags: special case flags or-ed in built pbc
14274 * @srate: static rate
14275 * @vl: vl
14276 * @dwlen: dword length (header words + data words + pbc words)
14277 *
14278 * Create a PBC with the given flags, rate, VL, and length.
14279 *
14280 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14281 * for verbs, which does not use this PSM feature. The lone other caller
14282 * is for the diagnostic interface which calls this if the user does not
14283 * supply their own PBC.
14284 */
14285u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14286 u32 dw_len)
14287{
14288 u64 pbc, delay = 0;
14289
14290 if (unlikely(srate_mbs))
14291 delay = delay_cycles(ppd, srate_mbs, dw_len);
14292
14293 pbc = flags
14294 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14295 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14296 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14297 | (dw_len & PBC_LENGTH_DWS_MASK)
14298 << PBC_LENGTH_DWS_SHIFT;
14299
14300 return pbc;
14301}
14302
14303#define SBUS_THERMAL 0x4f
14304#define SBUS_THERM_MONITOR_MODE 0x1
14305
14306#define THERM_FAILURE(dev, ret, reason) \
14307 dd_dev_err((dd), \
14308 "Thermal sensor initialization failed: %s (%d)\n", \
14309 (reason), (ret))
14310
14311/*
14312 * Initialize the Avago Thermal sensor.
14313 *
14314 * After initialization, enable polling of thermal sensor through
14315 * SBus interface. In order for this to work, the SBus Master
14316 * firmware has to be loaded due to the fact that the HW polling
14317 * logic uses SBus interrupts, which are not supported with
14318 * default firmware. Otherwise, no data will be returned through
14319 * the ASIC_STS_THERM CSR.
14320 */
14321static int thermal_init(struct hfi1_devdata *dd)
14322{
14323 int ret = 0;
14324
14325 if (dd->icode != ICODE_RTL_SILICON ||
14326 !(dd->flags & HFI1_DO_INIT_ASIC))
14327 return ret;
14328
14329 acquire_hw_mutex(dd);
14330 dd_dev_info(dd, "Initializing thermal sensor\n");
4ef98989
JAQ
14331 /* Disable polling of thermal readings */
14332 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14333 msleep(100);
77241056
MM
14334 /* Thermal Sensor Initialization */
14335 /* Step 1: Reset the Thermal SBus Receiver */
14336 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14337 RESET_SBUS_RECEIVER, 0);
14338 if (ret) {
14339 THERM_FAILURE(dd, ret, "Bus Reset");
14340 goto done;
14341 }
14342 /* Step 2: Set Reset bit in Thermal block */
14343 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14344 WRITE_SBUS_RECEIVER, 0x1);
14345 if (ret) {
14346 THERM_FAILURE(dd, ret, "Therm Block Reset");
14347 goto done;
14348 }
14349 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14350 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14351 WRITE_SBUS_RECEIVER, 0x32);
14352 if (ret) {
14353 THERM_FAILURE(dd, ret, "Write Clock Div");
14354 goto done;
14355 }
14356 /* Step 4: Select temperature mode */
14357 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14358 WRITE_SBUS_RECEIVER,
14359 SBUS_THERM_MONITOR_MODE);
14360 if (ret) {
14361 THERM_FAILURE(dd, ret, "Write Mode Sel");
14362 goto done;
14363 }
14364 /* Step 5: De-assert block reset and start conversion */
14365 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14366 WRITE_SBUS_RECEIVER, 0x2);
14367 if (ret) {
14368 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14369 goto done;
14370 }
14371 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14372 msleep(22);
14373
14374 /* Enable polling of thermal readings */
14375 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14376done:
14377 release_hw_mutex(dd);
14378 return ret;
14379}
14380
14381static void handle_temp_err(struct hfi1_devdata *dd)
14382{
14383 struct hfi1_pportdata *ppd = &dd->pport[0];
14384 /*
14385 * Thermal Critical Interrupt
14386 * Put the device into forced freeze mode, take link down to
14387 * offline, and put DC into reset.
14388 */
14389 dd_dev_emerg(dd,
14390 "Critical temperature reached! Forcing device into freeze mode!\n");
14391 dd->flags |= HFI1_FORCED_FREEZE;
14392 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
14393 /*
14394 * Shut DC down as much and as quickly as possible.
14395 *
14396 * Step 1: Take the link down to OFFLINE. This will cause the
14397 * 8051 to put the Serdes in reset. However, we don't want to
14398 * go through the entire link state machine since we want to
14399 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14400 * but rather an attempt to save the chip.
14401 * Code below is almost the same as quiet_serdes() but avoids
14402 * all the extra work and the sleeps.
14403 */
14404 ppd->driver_link_ready = 0;
14405 ppd->link_enabled = 0;
14406 set_physical_link_state(dd, PLS_OFFLINE |
14407 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
14408 /*
14409 * Step 2: Shutdown LCB and 8051
14410 * After shutdown, do not restore DC_CFG_RESET value.
14411 */
14412 dc_shutdown(dd);
14413}