]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/staging/rdma/hfi1/sdma.c
IB/hfi1: Do not free hfi1 cdev parent structure early
[mirror_ubuntu-artful-kernel.git] / drivers / staging / rdma / hfi1 / sdma.c
CommitLineData
77241056 1/*
05d6ac1d 2 * Copyright(c) 2015, 2016 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/spinlock.h>
49#include <linux/seqlock.h>
50#include <linux/netdevice.h>
51#include <linux/moduleparam.h>
52#include <linux/bitops.h>
53#include <linux/timer.h>
54#include <linux/vmalloc.h>
f4d26d81 55#include <linux/highmem.h>
77241056
MM
56
57#include "hfi.h"
58#include "common.h"
59#include "qp.h"
60#include "sdma.h"
61#include "iowait.h"
62#include "trace.h"
63
64/* must be a power of 2 >= 64 <= 32768 */
028d7254 65#define SDMA_DESCQ_CNT 2048
ee947859 66#define SDMA_DESC_INTR 64
77241056
MM
67#define INVALID_TAIL 0xffff
68
69static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70module_param(sdma_descq_cnt, uint, S_IRUGO);
71MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73static uint sdma_idle_cnt = 250;
74module_param(sdma_idle_cnt, uint, S_IRUGO);
75MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77uint mod_num_sdma;
78module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
ee947859
MH
81static uint sdma_desct_intr = SDMA_DESC_INTR;
82module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
77241056
MM
85#define SDMA_WAIT_BATCH_SIZE 20
86/* max wait time for a SDMA engine to indicate it has halted */
87#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88/* all SDMA engine errors that cause a halt */
89
90#define SD(name) SEND_DMA_##name
91#define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111/* sdma_sendctrl operations */
349ac71f 112#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114#define SDMA_SENDCTRL_OP_HALT BIT(2)
115#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
77241056
MM
116
117/* handle long defines */
118#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
135};
136
eac71936 137#ifdef CONFIG_SDMA_VERBOSITY
77241056
MM
138static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
153};
eac71936 154#endif
77241056
MM
155
156static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
163 },
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
169 },
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
175 },
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
181 },
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
187 },
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
193 },
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
199 },
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
206 },
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
212 },
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
218 },
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
225 },
226};
227
228#define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230/* declare all statics here rather than keep sorting */
231static void sdma_complete(struct kref *);
232static void sdma_finalput(struct sdma_state *);
233static void sdma_get(struct sdma_state *);
234static void sdma_hw_clean_up_task(unsigned long);
235static void sdma_put(struct sdma_state *);
236static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237static void sdma_start_hw_clean_up(struct sdma_engine *);
77241056
MM
238static void sdma_sw_clean_up_task(unsigned long);
239static void sdma_sendctrl(struct sdma_engine *, unsigned);
240static void init_sdma_regs(struct sdma_engine *, u32, uint);
241static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247static void dump_sdma_state(struct sdma_engine *sde);
248static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
250static void sdma_flush_descq(struct sdma_engine *sde);
251
252/**
253 * sdma_state_name() - return state string from enum
254 * @state: state
255 */
256static const char *sdma_state_name(enum sdma_states state)
257{
258 return sdma_state_names[state];
259}
260
261static void sdma_get(struct sdma_state *ss)
262{
263 kref_get(&ss->kref);
264}
265
266static void sdma_complete(struct kref *kref)
267{
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
270
271 complete(&ss->comp);
272}
273
274static void sdma_put(struct sdma_state *ss)
275{
276 kref_put(&ss->kref, sdma_complete);
277}
278
279static void sdma_finalput(struct sdma_state *ss)
280{
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
283}
284
285static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
289{
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291}
292
293static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
296{
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298}
299
300/*
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
303 */
304static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
306{
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
25d97dd5
VM
310 u64 reg_prev;
311 u64 reg = 0;
77241056
MM
312
313 while (1) {
25d97dd5
VM
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
77241056
MM
316
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
25d97dd5
VM
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
17fb4f29 327 __func__, sde->this_idx, (u32)reg);
25d97dd5 328 queue_work(dd->pport->hfi1_wq,
17fb4f29 329 &dd->pport->link_bounce_work);
77241056
MM
330 break;
331 }
332 udelay(1);
333 }
334}
335
336/*
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
339 */
340void sdma_wait(struct hfi1_devdata *dd)
341{
342 int i;
343
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
346
347 sdma_wait_for_packet_egress(sde, 0);
348 }
349}
350
351static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352{
353 u64 reg;
354
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
361}
362
a545f530
MM
363static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
366{
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
370
371#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
6b5c5213
MM
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
a545f530 374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
6b5c5213 375 sde->head_sn, tx->sn);
a545f530
MM
376 sde->head_sn++;
377#endif
378 sdma_txclean(sde->dd, tx);
379 if (complete)
380 (*complete)(tx, res);
b96b0404 381 if (wait && iowait_sdma_dec(wait))
a545f530
MM
382 iowait_drain_wakeup(wait);
383}
384
77241056
MM
385/*
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387 *
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
391 *
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
394 *
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
399 *
400 * Must be called with head_lock held
401 *
402 */
403static void sdma_flush(struct sdma_engine *sde)
404{
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
b77d713a 407 unsigned long flags;
77241056
MM
408
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
b77d713a 411 spin_lock_irqsave(&sde->flushlist_lock, flags);
77241056
MM
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
416 }
b77d713a 417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
77241056 418 /* flush from flush list */
a545f530
MM
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
77241056
MM
421}
422
423/*
424 * Fields a work request for flushing the descq ring
425 * and the flush list
426 *
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
431 *
432 */
433static void sdma_field_flush(struct work_struct *work)
434{
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
438
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
443}
444
445static void sdma_err_halt_wait(struct work_struct *work)
446{
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
451
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
17fb4f29
JJ
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
77241056
MM
462 /*
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
465 */
466 break;
467 }
468 usleep_range(80, 120);
469 }
470
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472}
473
77241056
MM
474static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475{
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
77241056
MM
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
479
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
486 }
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 }
492}
493
494static void sdma_err_progress_check(unsigned long data)
495{
496 unsigned index;
497 struct sdma_engine *sde = (struct sdma_engine *)data;
498
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
503
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
507 /*
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
511 */
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
514
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
520 }
521
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529 }
530 schedule_work(&sde->err_halt_worker);
531}
532
533static void sdma_hw_clean_up_task(unsigned long opaque)
534{
50e5dcbe 535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
77241056
MM
536 u64 statuscsr;
537
538 while (1) {
539#ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543#endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
549 }
550
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552}
553
554static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555{
556 smp_read_barrier_depends(); /* see sdma_update_tail() */
557 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558}
559
560/*
561 * flush ring for recovery
562 */
563static void sdma_flush_descq(struct sdma_engine *sde)
564{
565 u16 head, tail;
566 int progress = 0;
567 struct sdma_txreq *txp = get_txhead(sde);
568
569 /* The reason for some of the complexity of this code is that
570 * not all descriptors have corresponding txps. So, we have to
571 * be able to skip over descs until we wander into the range of
572 * the next txp on the list.
573 */
574 head = sde->descq_head & sde->sdma_mask;
575 tail = sde->descq_tail & sde->sdma_mask;
576 while (head != tail) {
577 /* advance head, wrap if needed */
578 head = ++sde->descq_head & sde->sdma_mask;
579 /* if now past this txp's descs, do the callback */
580 if (txp && txp->next_descq_idx == head) {
77241056
MM
581 /* remove from list */
582 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
a545f530 583 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
77241056 584 trace_hfi1_sdma_progress(sde, head, tail, txp);
77241056
MM
585 txp = get_txhead(sde);
586 }
587 progress++;
588 }
589 if (progress)
590 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
591}
592
593static void sdma_sw_clean_up_task(unsigned long opaque)
594{
50e5dcbe 595 struct sdma_engine *sde = (struct sdma_engine *)opaque;
77241056
MM
596 unsigned long flags;
597
598 spin_lock_irqsave(&sde->tail_lock, flags);
599 write_seqlock(&sde->head_lock);
600
601 /*
602 * At this point, the following should always be true:
603 * - We are halted, so no more descriptors are getting retired.
604 * - We are not running, so no one is submitting new work.
605 * - Only we can send the e40_sw_cleaned, so we can't start
606 * running again until we say so. So, the active list and
607 * descq are ours to play with.
608 */
609
77241056
MM
610 /*
611 * In the error clean up sequence, software clean must be called
612 * before the hardware clean so we can use the hardware head in
613 * the progress routine. A hardware clean or SPC unfreeze will
614 * reset the hardware head.
615 *
616 * Process all retired requests. The progress routine will use the
617 * latest physical hardware head - we are not running so speed does
618 * not matter.
619 */
620 sdma_make_progress(sde, 0);
621
622 sdma_flush(sde);
623
624 /*
625 * Reset our notion of head and tail.
626 * Note that the HW registers have been reset via an earlier
627 * clean up.
628 */
629 sde->descq_tail = 0;
630 sde->descq_head = 0;
631 sde->desc_avail = sdma_descq_freecnt(sde);
632 *sde->head_dma = 0;
633
634 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635
636 write_sequnlock(&sde->head_lock);
637 spin_unlock_irqrestore(&sde->tail_lock, flags);
638}
639
640static void sdma_sw_tear_down(struct sdma_engine *sde)
641{
642 struct sdma_state *ss = &sde->state;
643
644 /* Releasing this reference means the state machine has stopped. */
645 sdma_put(ss);
646
647 /* stop waiting for all unfreeze events to complete */
648 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
649 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
650}
651
652static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653{
654 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
655}
656
77241056 657static void sdma_set_state(struct sdma_engine *sde,
17fb4f29 658 enum sdma_states next_state)
77241056
MM
659{
660 struct sdma_state *ss = &sde->state;
661 const struct sdma_set_state_action *action = sdma_action_table;
662 unsigned op = 0;
663
664 trace_hfi1_sdma_state(
665 sde,
666 sdma_state_names[ss->current_state],
667 sdma_state_names[next_state]);
668
669 /* debugging bookkeeping */
670 ss->previous_state = ss->current_state;
671 ss->previous_op = ss->current_op;
672 ss->current_state = next_state;
673
d0d236ea
JJ
674 if (ss->previous_state != sdma_state_s99_running &&
675 next_state == sdma_state_s99_running)
77241056
MM
676 sdma_flush(sde);
677
678 if (action[next_state].op_enable)
679 op |= SDMA_SENDCTRL_OP_ENABLE;
680
681 if (action[next_state].op_intenable)
682 op |= SDMA_SENDCTRL_OP_INTENABLE;
683
684 if (action[next_state].op_halt)
685 op |= SDMA_SENDCTRL_OP_HALT;
686
687 if (action[next_state].op_cleanup)
688 op |= SDMA_SENDCTRL_OP_CLEANUP;
689
690 if (action[next_state].go_s99_running_tofalse)
691 ss->go_s99_running = 0;
692
693 if (action[next_state].go_s99_running_totrue)
694 ss->go_s99_running = 1;
695
696 ss->current_op = op;
697 sdma_sendctrl(sde, ss->current_op);
698}
699
700/**
701 * sdma_get_descq_cnt() - called when device probed
702 *
703 * Return a validated descq count.
704 *
705 * This is currently only used in the verbs initialization to build the tx
706 * list.
707 *
708 * This will probably be deleted in favor of a more scalable approach to
709 * alloc tx's.
710 *
711 */
712u16 sdma_get_descq_cnt(void)
713{
714 u16 count = sdma_descq_cnt;
715
716 if (!count)
717 return SDMA_DESCQ_CNT;
718 /* count must be a power of 2 greater than 64 and less than
719 * 32768. Otherwise return default.
720 */
721 if (!is_power_of_2(count))
722 return SDMA_DESCQ_CNT;
aeef010a 723 if (count < 64 || count > 32768)
77241056
MM
724 return SDMA_DESCQ_CNT;
725 return count;
726}
b91cc573 727
77241056
MM
728/**
729 * sdma_select_engine_vl() - select sdma engine
730 * @dd: devdata
731 * @selector: a spreading factor
732 * @vl: this vl
733 *
734 *
735 * This function returns an engine based on the selector and a vl. The
736 * mapping fields are protected by RCU.
737 */
738struct sdma_engine *sdma_select_engine_vl(
739 struct hfi1_devdata *dd,
740 u32 selector,
741 u8 vl)
742{
743 struct sdma_vl_map *m;
744 struct sdma_map_elem *e;
745 struct sdma_engine *rval;
746
4be81991
IW
747 /* NOTE This should only happen if SC->VL changed after the initial
748 * checks on the QP/AH
749 * Default will return engine 0 below
750 */
751 if (vl >= num_vls) {
752 rval = NULL;
753 goto done;
754 }
77241056
MM
755
756 rcu_read_lock();
757 m = rcu_dereference(dd->sdma_map);
758 if (unlikely(!m)) {
759 rcu_read_unlock();
0a226edd 760 return &dd->per_sdma[0];
77241056
MM
761 }
762 e = m->map[vl & m->mask];
763 rval = e->sde[selector & e->mask];
764 rcu_read_unlock();
765
4be81991 766done:
0a226edd 767 rval = !rval ? &dd->per_sdma[0] : rval;
77241056
MM
768 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
769 return rval;
770}
771
772/**
773 * sdma_select_engine_sc() - select sdma engine
774 * @dd: devdata
775 * @selector: a spreading factor
776 * @sc5: the 5 bit sc
777 *
778 *
779 * This function returns an engine based on the selector and an sc.
780 */
781struct sdma_engine *sdma_select_engine_sc(
782 struct hfi1_devdata *dd,
783 u32 selector,
784 u8 sc5)
785{
786 u8 vl = sc_to_vlt(dd, sc5);
787
788 return sdma_select_engine_vl(dd, selector, vl);
789}
790
791/*
792 * Free the indicated map struct
793 */
794static void sdma_map_free(struct sdma_vl_map *m)
795{
796 int i;
797
798 for (i = 0; m && i < m->actual_vls; i++)
799 kfree(m->map[i]);
800 kfree(m);
801}
802
803/*
804 * Handle RCU callback
805 */
806static void sdma_map_rcu_callback(struct rcu_head *list)
807{
808 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
809
810 sdma_map_free(m);
811}
812
813/**
814 * sdma_map_init - called when # vls change
815 * @dd: hfi1_devdata
816 * @port: port number
817 * @num_vls: number of vls
818 * @vl_engines: per vl engine mapping (optional)
819 *
820 * This routine changes the mapping based on the number of vls.
821 *
822 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
823 * implies auto computing the loading and giving each VLs a uniform
824 * distribution of engines per VL.
825 *
826 * The auto algorithm computes the sde_per_vl and the number of extra
827 * engines. Any extra engines are added from the last VL on down.
828 *
829 * rcu locking is used here to control access to the mapping fields.
830 *
831 * If either the num_vls or num_sdma are non-power of 2, the array sizes
832 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
833 * up to the next highest power of 2 and the first entry is reused
834 * in a round robin fashion.
835 *
836 * If an error occurs the map change is not done and the mapping is
837 * not changed.
838 *
839 */
840int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
841{
842 int i, j;
843 int extra, sde_per_vl;
844 int engine = 0;
845 u8 lvl_engines[OPA_MAX_VLS];
846 struct sdma_vl_map *oldmap, *newmap;
847
848 if (!(dd->flags & HFI1_HAS_SEND_DMA))
849 return 0;
850
851 if (!vl_engines) {
852 /* truncate divide */
853 sde_per_vl = dd->num_sdma / num_vls;
854 /* extras */
855 extra = dd->num_sdma % num_vls;
856 vl_engines = lvl_engines;
857 /* add extras from last vl down */
858 for (i = num_vls - 1; i >= 0; i--, extra--)
859 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
860 }
861 /* build new map */
862 newmap = kzalloc(
863 sizeof(struct sdma_vl_map) +
864 roundup_pow_of_two(num_vls) *
865 sizeof(struct sdma_map_elem *),
866 GFP_KERNEL);
867 if (!newmap)
868 goto bail;
869 newmap->actual_vls = num_vls;
870 newmap->vls = roundup_pow_of_two(num_vls);
871 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
69a00b8e
MM
872 /* initialize back-map */
873 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
874 newmap->engine_to_vl[i] = -1;
77241056
MM
875 for (i = 0; i < newmap->vls; i++) {
876 /* save for wrap around */
877 int first_engine = engine;
878
879 if (i < newmap->actual_vls) {
880 int sz = roundup_pow_of_two(vl_engines[i]);
881
882 /* only allocate once */
883 newmap->map[i] = kzalloc(
884 sizeof(struct sdma_map_elem) +
885 sz * sizeof(struct sdma_engine *),
886 GFP_KERNEL);
887 if (!newmap->map[i])
888 goto bail;
889 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
890 /* assign engines */
891 for (j = 0; j < sz; j++) {
892 newmap->map[i]->sde[j] =
893 &dd->per_sdma[engine];
894 if (++engine >= first_engine + vl_engines[i])
895 /* wrap back to first engine */
896 engine = first_engine;
897 }
69a00b8e
MM
898 /* assign back-map */
899 for (j = 0; j < vl_engines[i]; j++)
900 newmap->engine_to_vl[first_engine + j] = i;
77241056
MM
901 } else {
902 /* just re-use entry without allocating */
903 newmap->map[i] = newmap->map[i % num_vls];
904 }
905 engine = first_engine + vl_engines[i];
906 }
907 /* newmap in hand, save old map */
908 spin_lock_irq(&dd->sde_map_lock);
909 oldmap = rcu_dereference_protected(dd->sdma_map,
17fb4f29 910 lockdep_is_held(&dd->sde_map_lock));
77241056
MM
911
912 /* publish newmap */
913 rcu_assign_pointer(dd->sdma_map, newmap);
914
915 spin_unlock_irq(&dd->sde_map_lock);
916 /* success, free any old map after grace period */
917 if (oldmap)
918 call_rcu(&oldmap->list, sdma_map_rcu_callback);
919 return 0;
920bail:
921 /* free any partial allocation */
922 sdma_map_free(newmap);
923 return -ENOMEM;
924}
925
926/*
927 * Clean up allocated memory.
928 *
929 * This routine is can be called regardless of the success of sdma_init()
930 *
931 */
932static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
933{
934 size_t i;
935 struct sdma_engine *sde;
936
937 if (dd->sdma_pad_dma) {
938 dma_free_coherent(&dd->pcidev->dev, 4,
939 (void *)dd->sdma_pad_dma,
940 dd->sdma_pad_phys);
941 dd->sdma_pad_dma = NULL;
942 dd->sdma_pad_phys = 0;
943 }
944 if (dd->sdma_heads_dma) {
945 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
946 (void *)dd->sdma_heads_dma,
947 dd->sdma_heads_phys);
948 dd->sdma_heads_dma = NULL;
949 dd->sdma_heads_phys = 0;
950 }
951 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
952 sde = &dd->per_sdma[i];
953
954 sde->head_dma = NULL;
955 sde->head_phys = 0;
956
957 if (sde->descq) {
958 dma_free_coherent(
959 &dd->pcidev->dev,
960 sde->descq_cnt * sizeof(u64[2]),
961 sde->descq,
962 sde->descq_phys
963 );
964 sde->descq = NULL;
965 sde->descq_phys = 0;
966 }
60f57ec2 967 kvfree(sde->tx_ring);
77241056
MM
968 sde->tx_ring = NULL;
969 }
970 spin_lock_irq(&dd->sde_map_lock);
79d0c088 971 sdma_map_free(rcu_access_pointer(dd->sdma_map));
77241056
MM
972 RCU_INIT_POINTER(dd->sdma_map, NULL);
973 spin_unlock_irq(&dd->sde_map_lock);
974 synchronize_rcu();
975 kfree(dd->per_sdma);
976 dd->per_sdma = NULL;
977}
978
979/**
980 * sdma_init() - called when device probed
981 * @dd: hfi1_devdata
982 * @port: port number (currently only zero)
983 *
984 * sdma_init initializes the specified number of engines.
985 *
986 * The code initializes each sde, its csrs. Interrupts
987 * are not required to be enabled.
988 *
989 * Returns:
990 * 0 - success, -errno on failure
991 */
992int sdma_init(struct hfi1_devdata *dd, u8 port)
993{
994 unsigned this_idx;
995 struct sdma_engine *sde;
996 u16 descq_cnt;
997 void *curr_head;
998 struct hfi1_pportdata *ppd = dd->pport + port;
999 u32 per_sdma_credits;
1000 uint idle_cnt = sdma_idle_cnt;
1001 size_t num_engines = dd->chip_sdma_engines;
1002
1003 if (!HFI1_CAP_IS_KSET(SDMA)) {
1004 HFI1_CAP_CLEAR(SDMA_AHG);
1005 return 0;
1006 }
1007 if (mod_num_sdma &&
17fb4f29
JJ
1008 /* can't exceed chip support */
1009 mod_num_sdma <= dd->chip_sdma_engines &&
1010 /* count must be >= vls */
1011 mod_num_sdma >= num_vls)
77241056
MM
1012 num_engines = mod_num_sdma;
1013
1014 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1015 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1016 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
17fb4f29 1017 dd->chip_sdma_mem_size);
77241056
MM
1018
1019 per_sdma_credits =
8638b77f 1020 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
77241056
MM
1021
1022 /* set up freeze waitqueue */
1023 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1024 atomic_set(&dd->sdma_unfreeze_count, 0);
1025
1026 descq_cnt = sdma_get_descq_cnt();
1027 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
17fb4f29 1028 num_engines, descq_cnt);
77241056
MM
1029
1030 /* alloc memory for array of send engines */
1031 dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1032 if (!dd->per_sdma)
1033 return -ENOMEM;
1034
1035 idle_cnt = ns_to_cclock(dd, idle_cnt);
ee947859
MH
1036 if (!sdma_desct_intr)
1037 sdma_desct_intr = SDMA_DESC_INTR;
1038
77241056
MM
1039 /* Allocate memory for SendDMA descriptor FIFOs */
1040 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1041 sde = &dd->per_sdma[this_idx];
1042 sde->dd = dd;
1043 sde->ppd = ppd;
1044 sde->this_idx = this_idx;
1045 sde->descq_cnt = descq_cnt;
1046 sde->desc_avail = sdma_descq_freecnt(sde);
1047 sde->sdma_shift = ilog2(descq_cnt);
1048 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
a699c6c2
VM
1049
1050 /* Create a mask specifically for each interrupt source */
1051 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1052 this_idx);
1053 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1054 this_idx);
1055 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1056 this_idx);
1057 /* Create a combined mask to cover all 3 interrupt sources */
1058 sde->imask = sde->int_mask | sde->progress_mask |
1059 sde->idle_mask;
1060
77241056
MM
1061 spin_lock_init(&sde->tail_lock);
1062 seqlock_init(&sde->head_lock);
1063 spin_lock_init(&sde->senddmactrl_lock);
1064 spin_lock_init(&sde->flushlist_lock);
1065 /* insure there is always a zero bit */
1066 sde->ahg_bits = 0xfffffffe00000000ULL;
1067
1068 sdma_set_state(sde, sdma_state_s00_hw_down);
1069
1070 /* set up reference counting */
1071 kref_init(&sde->state.kref);
1072 init_completion(&sde->state.comp);
1073
1074 INIT_LIST_HEAD(&sde->flushlist);
1075 INIT_LIST_HEAD(&sde->dmawait);
1076
1077 sde->tail_csr =
1078 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1079
1080 if (idle_cnt)
1081 dd->default_desc1 =
1082 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1083 else
1084 dd->default_desc1 =
1085 SDMA_DESC1_INT_REQ_FLAG;
1086
1087 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
17fb4f29 1088 (unsigned long)sde);
77241056
MM
1089
1090 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
17fb4f29 1091 (unsigned long)sde);
77241056
MM
1092 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1093 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1094
1095 sde->progress_check_head = 0;
1096
daac731b
MFW
1097 setup_timer(&sde->err_progress_check_timer,
1098 sdma_err_progress_check, (unsigned long)sde);
77241056
MM
1099
1100 sde->descq = dma_zalloc_coherent(
1101 &dd->pcidev->dev,
1102 descq_cnt * sizeof(u64[2]),
1103 &sde->descq_phys,
1104 GFP_KERNEL
1105 );
1106 if (!sde->descq)
1107 goto bail;
1108 sde->tx_ring =
1109 kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1110 GFP_KERNEL);
1111 if (!sde->tx_ring)
1112 sde->tx_ring =
1113 vzalloc(
1114 sizeof(struct sdma_txreq *) *
1115 descq_cnt);
1116 if (!sde->tx_ring)
1117 goto bail;
1118 }
1119
1120 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1121 /* Allocate memory for DMA of head registers to memory */
1122 dd->sdma_heads_dma = dma_zalloc_coherent(
1123 &dd->pcidev->dev,
1124 dd->sdma_heads_size,
1125 &dd->sdma_heads_phys,
1126 GFP_KERNEL
1127 );
1128 if (!dd->sdma_heads_dma) {
1129 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1130 goto bail;
1131 }
1132
1133 /* Allocate memory for pad */
1134 dd->sdma_pad_dma = dma_zalloc_coherent(
1135 &dd->pcidev->dev,
1136 sizeof(u32),
1137 &dd->sdma_pad_phys,
1138 GFP_KERNEL
1139 );
1140 if (!dd->sdma_pad_dma) {
1141 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1142 goto bail;
1143 }
1144
1145 /* assign each engine to different cacheline and init registers */
1146 curr_head = (void *)dd->sdma_heads_dma;
1147 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1148 unsigned long phys_offset;
1149
1150 sde = &dd->per_sdma[this_idx];
1151
1152 sde->head_dma = curr_head;
1153 curr_head += L1_CACHE_BYTES;
1154 phys_offset = (unsigned long)sde->head_dma -
1155 (unsigned long)dd->sdma_heads_dma;
1156 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1157 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1158 }
1159 dd->flags |= HFI1_HAS_SEND_DMA;
1160 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1161 dd->num_sdma = num_engines;
1162 if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1163 goto bail;
1164 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1165 return 0;
1166
1167bail:
1168 sdma_clean(dd, num_engines);
1169 return -ENOMEM;
1170}
1171
1172/**
1173 * sdma_all_running() - called when the link goes up
1174 * @dd: hfi1_devdata
1175 *
1176 * This routine moves all engines to the running state.
1177 */
1178void sdma_all_running(struct hfi1_devdata *dd)
1179{
1180 struct sdma_engine *sde;
1181 unsigned int i;
1182
1183 /* move all engines to running */
1184 for (i = 0; i < dd->num_sdma; ++i) {
1185 sde = &dd->per_sdma[i];
1186 sdma_process_event(sde, sdma_event_e30_go_running);
1187 }
1188}
1189
1190/**
1191 * sdma_all_idle() - called when the link goes down
1192 * @dd: hfi1_devdata
1193 *
1194 * This routine moves all engines to the idle state.
1195 */
1196void sdma_all_idle(struct hfi1_devdata *dd)
1197{
1198 struct sdma_engine *sde;
1199 unsigned int i;
1200
1201 /* idle all engines */
1202 for (i = 0; i < dd->num_sdma; ++i) {
1203 sde = &dd->per_sdma[i];
1204 sdma_process_event(sde, sdma_event_e70_go_idle);
1205 }
1206}
1207
1208/**
1209 * sdma_start() - called to kick off state processing for all engines
1210 * @dd: hfi1_devdata
1211 *
1212 * This routine is for kicking off the state processing for all required
1213 * sdma engines. Interrupts need to be working at this point.
1214 *
1215 */
1216void sdma_start(struct hfi1_devdata *dd)
1217{
1218 unsigned i;
1219 struct sdma_engine *sde;
1220
1221 /* kick off the engines state processing */
1222 for (i = 0; i < dd->num_sdma; ++i) {
1223 sde = &dd->per_sdma[i];
1224 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1225 }
1226}
1227
1228/**
1229 * sdma_exit() - used when module is removed
1230 * @dd: hfi1_devdata
1231 */
1232void sdma_exit(struct hfi1_devdata *dd)
1233{
1234 unsigned this_idx;
1235 struct sdma_engine *sde;
1236
1237 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1238 ++this_idx) {
77241056
MM
1239 sde = &dd->per_sdma[this_idx];
1240 if (!list_empty(&sde->dmawait))
1241 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
17fb4f29 1242 sde->this_idx);
77241056
MM
1243 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1244
1245 del_timer_sync(&sde->err_progress_check_timer);
1246
1247 /*
1248 * This waits for the state machine to exit so it is not
1249 * necessary to kill the sdma_sw_clean_up_task to make sure
1250 * it is not running.
1251 */
1252 sdma_finalput(&sde->state);
1253 }
1254 sdma_clean(dd, dd->num_sdma);
1255}
1256
1257/*
1258 * unmap the indicated descriptor
1259 */
1260static inline void sdma_unmap_desc(
1261 struct hfi1_devdata *dd,
1262 struct sdma_desc *descp)
1263{
1264 switch (sdma_mapping_type(descp)) {
1265 case SDMA_MAP_SINGLE:
1266 dma_unmap_single(
1267 &dd->pcidev->dev,
1268 sdma_mapping_addr(descp),
1269 sdma_mapping_len(descp),
1270 DMA_TO_DEVICE);
1271 break;
1272 case SDMA_MAP_PAGE:
1273 dma_unmap_page(
1274 &dd->pcidev->dev,
1275 sdma_mapping_addr(descp),
1276 sdma_mapping_len(descp),
1277 DMA_TO_DEVICE);
1278 break;
1279 }
1280}
1281
1282/*
1283 * return the mode as indicated by the first
1284 * descriptor in the tx.
1285 */
1286static inline u8 ahg_mode(struct sdma_txreq *tx)
1287{
1288 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1289 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1290}
1291
1292/**
1293 * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1294 * @dd: hfi1_devdata for unmapping
1295 * @tx: tx request to clean
1296 *
1297 * This is used in the progress routine to clean the tx or
1298 * by the ULP to toss an in-process tx build.
1299 *
1300 * The code can be called multiple times without issue.
1301 *
1302 */
1303void sdma_txclean(
1304 struct hfi1_devdata *dd,
1305 struct sdma_txreq *tx)
1306{
1307 u16 i;
1308
1309 if (tx->num_desc) {
1310 u8 skip = 0, mode = ahg_mode(tx);
1311
1312 /* unmap first */
1313 sdma_unmap_desc(dd, &tx->descp[0]);
1314 /* determine number of AHG descriptors to skip */
1315 if (mode > SDMA_AHG_APPLY_UPDATE1)
1316 skip = mode >> 1;
1317 for (i = 1 + skip; i < tx->num_desc; i++)
1318 sdma_unmap_desc(dd, &tx->descp[i]);
1319 tx->num_desc = 0;
1320 }
1321 kfree(tx->coalesce_buf);
1322 tx->coalesce_buf = NULL;
1323 /* kmalloc'ed descp */
1324 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1325 tx->desc_limit = ARRAY_SIZE(tx->descs);
1326 kfree(tx->descp);
1327 }
1328}
1329
1330static inline u16 sdma_gethead(struct sdma_engine *sde)
1331{
1332 struct hfi1_devdata *dd = sde->dd;
1333 int use_dmahead;
1334 u16 hwhead;
1335
1336#ifdef CONFIG_SDMA_VERBOSITY
1337 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1338 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1339#endif
1340
1341retry:
1342 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1343 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1344 hwhead = use_dmahead ?
50e5dcbe
JJ
1345 (u16)le64_to_cpu(*sde->head_dma) :
1346 (u16)read_sde_csr(sde, SD(HEAD));
77241056
MM
1347
1348 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1349 u16 cnt;
1350 u16 swtail;
1351 u16 swhead;
1352 int sane;
1353
1354 swhead = sde->descq_head & sde->sdma_mask;
1355 /* this code is really bad for cache line trading */
1356 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1357 cnt = sde->descq_cnt;
1358
1359 if (swhead < swtail)
1360 /* not wrapped */
1361 sane = (hwhead >= swhead) & (hwhead <= swtail);
1362 else if (swhead > swtail)
1363 /* wrapped around */
1364 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1365 (hwhead <= swtail);
1366 else
1367 /* empty */
1368 sane = (hwhead == swhead);
1369
1370 if (unlikely(!sane)) {
1371 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
17fb4f29
JJ
1372 sde->this_idx,
1373 use_dmahead ? "dma" : "kreg",
1374 hwhead, swhead, swtail, cnt);
77241056
MM
1375 if (use_dmahead) {
1376 /* try one more time, using csr */
1377 use_dmahead = 0;
1378 goto retry;
1379 }
1380 /* proceed as if no progress */
1381 hwhead = swhead;
1382 }
1383 }
1384 return hwhead;
1385}
1386
1387/*
1388 * This is called when there are send DMA descriptors that might be
1389 * available.
1390 *
1391 * This is called with head_lock held.
1392 */
1393static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1394{
1395 struct iowait *wait, *nw;
1396 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1397 unsigned i, n = 0, seq;
1398 struct sdma_txreq *stx;
1399 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1400
1401#ifdef CONFIG_SDMA_VERBOSITY
1402 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1403 slashstrip(__FILE__), __LINE__, __func__);
1404 dd_dev_err(sde->dd, "avail: %u\n", avail);
1405#endif
1406
1407 do {
1408 seq = read_seqbegin(&dev->iowait_lock);
1409 if (!list_empty(&sde->dmawait)) {
1410 /* at least one item */
1411 write_seqlock(&dev->iowait_lock);
1412 /* Harvest waiters wanting DMA descriptors */
1413 list_for_each_entry_safe(
1414 wait,
1415 nw,
1416 &sde->dmawait,
1417 list) {
1418 u16 num_desc = 0;
1419
1420 if (!wait->wakeup)
1421 continue;
1422 if (n == ARRAY_SIZE(waits))
1423 break;
1424 if (!list_empty(&wait->tx_head)) {
1425 stx = list_first_entry(
1426 &wait->tx_head,
1427 struct sdma_txreq,
1428 list);
1429 num_desc = stx->num_desc;
1430 }
1431 if (num_desc > avail)
1432 break;
1433 avail -= num_desc;
1434 list_del_init(&wait->list);
1435 waits[n++] = wait;
1436 }
1437 write_sequnlock(&dev->iowait_lock);
1438 break;
1439 }
1440 } while (read_seqretry(&dev->iowait_lock, seq));
1441
1442 for (i = 0; i < n; i++)
1443 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1444}
1445
1446/* head_lock must be held */
1447static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1448{
1449 struct sdma_txreq *txp = NULL;
1450 int progress = 0;
a545f530 1451 u16 hwhead, swhead;
77241056
MM
1452 int idle_check_done = 0;
1453
1454 hwhead = sdma_gethead(sde);
1455
1456 /* The reason for some of the complexity of this code is that
1457 * not all descriptors have corresponding txps. So, we have to
1458 * be able to skip over descs until we wander into the range of
1459 * the next txp on the list.
1460 */
1461
1462retry:
1463 txp = get_txhead(sde);
1464 swhead = sde->descq_head & sde->sdma_mask;
1465 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1466 while (swhead != hwhead) {
1467 /* advance head, wrap if needed */
1468 swhead = ++sde->descq_head & sde->sdma_mask;
1469
1470 /* if now past this txp's descs, do the callback */
1471 if (txp && txp->next_descq_idx == swhead) {
77241056
MM
1472 /* remove from list */
1473 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
a545f530 1474 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
77241056
MM
1475 /* see if there is another txp */
1476 txp = get_txhead(sde);
1477 }
1478 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1479 progress++;
1480 }
1481
1482 /*
1483 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1484 * to updates to the the dma_head location in host memory. The head
1485 * value read might not be fully up to date. If there are pending
1486 * descriptors and the SDMA idle interrupt fired then read from the
1487 * CSR SDMA head instead to get the latest value from the hardware.
1488 * The hardware SDMA head should be read at most once in this invocation
1489 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1490 */
1491 if ((status & sde->idle_mask) && !idle_check_done) {
a545f530
MM
1492 u16 swtail;
1493
77241056
MM
1494 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1495 if (swtail != hwhead) {
1496 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1497 idle_check_done = 1;
1498 goto retry;
1499 }
1500 }
1501
1502 sde->last_status = status;
1503 if (progress)
1504 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1505}
1506
1507/*
1508 * sdma_engine_interrupt() - interrupt handler for engine
1509 * @sde: sdma engine
1510 * @status: sdma interrupt reason
1511 *
1512 * Status is a mask of the 3 possible interrupts for this engine. It will
1513 * contain bits _only_ for this SDMA engine. It will contain at least one
1514 * bit, it may contain more.
1515 */
1516void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1517{
1518 trace_hfi1_sdma_engine_interrupt(sde, status);
1519 write_seqlock(&sde->head_lock);
ee947859 1520 sdma_set_desc_cnt(sde, sdma_desct_intr);
a699c6c2
VM
1521 if (status & sde->idle_mask)
1522 sde->idle_int_cnt++;
1523 else if (status & sde->progress_mask)
1524 sde->progress_int_cnt++;
1525 else if (status & sde->int_mask)
1526 sde->sdma_int_cnt++;
77241056
MM
1527 sdma_make_progress(sde, status);
1528 write_sequnlock(&sde->head_lock);
1529}
1530
1531/**
1532 * sdma_engine_error() - error handler for engine
1533 * @sde: sdma engine
1534 * @status: sdma interrupt reason
1535 */
1536void sdma_engine_error(struct sdma_engine *sde, u64 status)
1537{
1538 unsigned long flags;
1539
1540#ifdef CONFIG_SDMA_VERBOSITY
1541 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1542 sde->this_idx,
1543 (unsigned long long)status,
1544 sdma_state_names[sde->state.current_state]);
1545#endif
1546 spin_lock_irqsave(&sde->tail_lock, flags);
1547 write_seqlock(&sde->head_lock);
1548 if (status & ALL_SDMA_ENG_HALT_ERRS)
1549 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1550 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1551 dd_dev_err(sde->dd,
17fb4f29
JJ
1552 "SDMA (%u) engine error: 0x%llx state %s\n",
1553 sde->this_idx,
1554 (unsigned long long)status,
1555 sdma_state_names[sde->state.current_state]);
77241056
MM
1556 dump_sdma_state(sde);
1557 }
1558 write_sequnlock(&sde->head_lock);
1559 spin_unlock_irqrestore(&sde->tail_lock, flags);
1560}
1561
1562static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1563{
1564 u64 set_senddmactrl = 0;
1565 u64 clr_senddmactrl = 0;
1566 unsigned long flags;
1567
1568#ifdef CONFIG_SDMA_VERBOSITY
1569 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1570 sde->this_idx,
1571 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1572 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1573 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1574 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1575#endif
1576
1577 if (op & SDMA_SENDCTRL_OP_ENABLE)
1578 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1579 else
1580 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1581
1582 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1583 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1584 else
1585 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1586
1587 if (op & SDMA_SENDCTRL_OP_HALT)
1588 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1589 else
1590 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1591
1592 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1593
1594 sde->p_senddmactrl |= set_senddmactrl;
1595 sde->p_senddmactrl &= ~clr_senddmactrl;
1596
1597 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1598 write_sde_csr(sde, SD(CTRL),
17fb4f29
JJ
1599 sde->p_senddmactrl |
1600 SD(CTRL_SDMA_CLEANUP_SMASK));
77241056
MM
1601 else
1602 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1603
1604 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1605
1606#ifdef CONFIG_SDMA_VERBOSITY
1607 sdma_dumpstate(sde);
1608#endif
1609}
1610
1611static void sdma_setlengen(struct sdma_engine *sde)
1612{
1613#ifdef CONFIG_SDMA_VERBOSITY
1614 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1615 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1616#endif
1617
1618 /*
1619 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1620 * count to enable generation checking and load the internal
1621 * generation counter.
1622 */
1623 write_sde_csr(sde, SD(LEN_GEN),
17fb4f29 1624 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
77241056 1625 write_sde_csr(sde, SD(LEN_GEN),
17fb4f29
JJ
1626 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1627 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
77241056
MM
1628}
1629
1630static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1631{
1632 /* Commit writes to memory and advance the tail on the chip */
1633 smp_wmb(); /* see get_txhead() */
1634 writeq(tail, sde->tail_csr);
1635}
1636
1637/*
1638 * This is called when changing to state s10_hw_start_up_halt_wait as
1639 * a result of send buffer errors or send DMA descriptor errors.
1640 */
1641static void sdma_hw_start_up(struct sdma_engine *sde)
1642{
1643 u64 reg;
1644
1645#ifdef CONFIG_SDMA_VERBOSITY
1646 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1647 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1648#endif
1649
1650 sdma_setlengen(sde);
1651 sdma_update_tail(sde, 0); /* Set SendDmaTail */
1652 *sde->head_dma = 0;
1653
1654 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1655 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1656 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1657}
1658
1659#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1660(r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1661
1662#define SET_STATIC_RATE_CONTROL_SMASK(r) \
1663(r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1664/*
1665 * set_sdma_integrity
1666 *
1667 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1668 */
1669static void set_sdma_integrity(struct sdma_engine *sde)
1670{
1671 struct hfi1_devdata *dd = sde->dd;
1672 u64 reg;
1673
1674 if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1675 return;
1676
1677 reg = hfi1_pkt_base_sdma_integrity(dd);
1678
1679 if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1680 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1681 else
1682 SET_STATIC_RATE_CONTROL_SMASK(reg);
1683
1684 write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1685}
1686
77241056
MM
1687static void init_sdma_regs(
1688 struct sdma_engine *sde,
1689 u32 credits,
1690 uint idle_cnt)
1691{
1692 u8 opval, opmask;
1693#ifdef CONFIG_SDMA_VERBOSITY
1694 struct hfi1_devdata *dd = sde->dd;
1695
1696 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1697 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1698#endif
1699
1700 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1701 sdma_setlengen(sde);
1702 sdma_update_tail(sde, 0); /* Set SendDmaTail */
1703 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1704 write_sde_csr(sde, SD(DESC_CNT), 0);
1705 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1706 write_sde_csr(sde, SD(MEMORY),
17fb4f29
JJ
1707 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1708 ((u64)(credits * sde->this_idx) <<
1709 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
77241056
MM
1710 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1711 set_sdma_integrity(sde);
1712 opmask = OPCODE_CHECK_MASK_DISABLED;
1713 opval = OPCODE_CHECK_VAL_DISABLED;
1714 write_sde_csr(sde, SD(CHECK_OPCODE),
17fb4f29
JJ
1715 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1716 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
77241056
MM
1717}
1718
1719#ifdef CONFIG_SDMA_VERBOSITY
1720
1721#define sdma_dumpstate_helper0(reg) do { \
1722 csr = read_csr(sde->dd, reg); \
1723 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
1724 } while (0)
1725
1726#define sdma_dumpstate_helper(reg) do { \
1727 csr = read_sde_csr(sde, reg); \
1728 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1729 #reg, sde->this_idx, csr); \
1730 } while (0)
1731
1732#define sdma_dumpstate_helper2(reg) do { \
1733 csr = read_csr(sde->dd, reg + (8 * i)); \
1734 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
1735 #reg, i, csr); \
1736 } while (0)
1737
1738void sdma_dumpstate(struct sdma_engine *sde)
1739{
1740 u64 csr;
1741 unsigned i;
1742
1743 sdma_dumpstate_helper(SD(CTRL));
1744 sdma_dumpstate_helper(SD(STATUS));
1745 sdma_dumpstate_helper0(SD(ERR_STATUS));
1746 sdma_dumpstate_helper0(SD(ERR_MASK));
1747 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1748 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1749
1750 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
6fd8edab 1751 sdma_dumpstate_helper2(CCE_INT_STATUS);
77241056
MM
1752 sdma_dumpstate_helper2(CCE_INT_MASK);
1753 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1754 }
1755
1756 sdma_dumpstate_helper(SD(TAIL));
1757 sdma_dumpstate_helper(SD(HEAD));
1758 sdma_dumpstate_helper(SD(PRIORITY_THLD));
6fd8edab 1759 sdma_dumpstate_helper(SD(IDLE_CNT));
77241056
MM
1760 sdma_dumpstate_helper(SD(RELOAD_CNT));
1761 sdma_dumpstate_helper(SD(DESC_CNT));
1762 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1763 sdma_dumpstate_helper(SD(MEMORY));
1764 sdma_dumpstate_helper0(SD(ENGINES));
1765 sdma_dumpstate_helper0(SD(MEM_SIZE));
1766 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
1767 sdma_dumpstate_helper(SD(BASE_ADDR));
1768 sdma_dumpstate_helper(SD(LEN_GEN));
1769 sdma_dumpstate_helper(SD(HEAD_ADDR));
1770 sdma_dumpstate_helper(SD(CHECK_ENABLE));
1771 sdma_dumpstate_helper(SD(CHECK_VL));
1772 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1773 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1774 sdma_dumpstate_helper(SD(CHECK_SLID));
1775 sdma_dumpstate_helper(SD(CHECK_OPCODE));
1776}
1777#endif
1778
1779static void dump_sdma_state(struct sdma_engine *sde)
1780{
1781 struct hw_sdma_desc *descq;
1782 struct hw_sdma_desc *descqp;
1783 u64 desc[2];
1784 u64 addr;
1785 u8 gen;
1786 u16 len;
1787 u16 head, tail, cnt;
1788
1789 head = sde->descq_head & sde->sdma_mask;
1790 tail = sde->descq_tail & sde->sdma_mask;
1791 cnt = sdma_descq_freecnt(sde);
1792 descq = sde->descq;
1793
1794 dd_dev_err(sde->dd,
17fb4f29
JJ
1795 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1796 sde->this_idx, head, tail, cnt,
1797 !list_empty(&sde->flushlist));
77241056
MM
1798
1799 /* print info for each entry in the descriptor queue */
1800 while (head != tail) {
1801 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1802
1803 descqp = &sde->descq[head];
1804 desc[0] = le64_to_cpu(descqp->qw[0]);
1805 desc[1] = le64_to_cpu(descqp->qw[1]);
1806 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1807 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1808 'H' : '-';
1809 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1810 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1811 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1812 & SDMA_DESC0_PHY_ADDR_MASK;
1813 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1814 & SDMA_DESC1_GENERATION_MASK;
1815 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1816 & SDMA_DESC0_BYTE_COUNT_MASK;
1817 dd_dev_err(sde->dd,
17fb4f29
JJ
1818 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1819 head, flags, addr, gen, len);
77241056 1820 dd_dev_err(sde->dd,
17fb4f29
JJ
1821 "\tdesc0:0x%016llx desc1 0x%016llx\n",
1822 desc[0], desc[1]);
77241056
MM
1823 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1824 dd_dev_err(sde->dd,
17fb4f29
JJ
1825 "\taidx: %u amode: %u alen: %u\n",
1826 (u8)((desc[1] &
1827 SDMA_DESC1_HEADER_INDEX_SMASK) >>
1828 SDMA_DESC1_HEADER_INDEX_SHIFT),
1829 (u8)((desc[1] &
1830 SDMA_DESC1_HEADER_MODE_SMASK) >>
1831 SDMA_DESC1_HEADER_MODE_SHIFT),
1832 (u8)((desc[1] &
1833 SDMA_DESC1_HEADER_DWS_SMASK) >>
1834 SDMA_DESC1_HEADER_DWS_SHIFT));
77241056
MM
1835 head++;
1836 head &= sde->sdma_mask;
1837 }
1838}
1839
1840#define SDE_FMT \
0a226edd 1841 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
77241056
MM
1842/**
1843 * sdma_seqfile_dump_sde() - debugfs dump of sde
1844 * @s: seq file
1845 * @sde: send dma engine to dump
1846 *
1847 * This routine dumps the sde to the indicated seq file.
1848 */
1849void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1850{
1851 u16 head, tail;
1852 struct hw_sdma_desc *descqp;
1853 u64 desc[2];
1854 u64 addr;
1855 u8 gen;
1856 u16 len;
1857
1858 head = sde->descq_head & sde->sdma_mask;
1859 tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1860 seq_printf(s, SDE_FMT, sde->this_idx,
17fb4f29
JJ
1861 sde->cpu,
1862 sdma_state_name(sde->state.current_state),
1863 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1864 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1865 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
1866 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
1867 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
1868 (unsigned long long)le64_to_cpu(*sde->head_dma),
1869 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1870 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1871 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1872 (unsigned long long)sde->last_status,
1873 (unsigned long long)sde->ahg_bits,
1874 sde->tx_tail,
1875 sde->tx_head,
1876 sde->descq_tail,
1877 sde->descq_head,
77241056 1878 !list_empty(&sde->flushlist),
17fb4f29
JJ
1879 sde->descq_full_count,
1880 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
77241056
MM
1881
1882 /* print info for each entry in the descriptor queue */
1883 while (head != tail) {
1884 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1885
1886 descqp = &sde->descq[head];
1887 desc[0] = le64_to_cpu(descqp->qw[0]);
1888 desc[1] = le64_to_cpu(descqp->qw[1]);
1889 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1890 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1891 'H' : '-';
1892 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1893 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1894 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1895 & SDMA_DESC0_PHY_ADDR_MASK;
1896 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1897 & SDMA_DESC1_GENERATION_MASK;
1898 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1899 & SDMA_DESC0_BYTE_COUNT_MASK;
1900 seq_printf(s,
17fb4f29
JJ
1901 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1902 head, flags, addr, gen, len);
77241056
MM
1903 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1904 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
17fb4f29
JJ
1905 (u8)((desc[1] &
1906 SDMA_DESC1_HEADER_INDEX_SMASK) >>
1907 SDMA_DESC1_HEADER_INDEX_SHIFT),
1908 (u8)((desc[1] &
1909 SDMA_DESC1_HEADER_MODE_SMASK) >>
1910 SDMA_DESC1_HEADER_MODE_SHIFT));
77241056
MM
1911 head = (head + 1) & sde->sdma_mask;
1912 }
1913}
1914
1915/*
1916 * add the generation number into
1917 * the qw1 and return
1918 */
1919static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1920{
1921 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1922
1923 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1924 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1925 << SDMA_DESC1_GENERATION_SHIFT;
1926 return qw1;
1927}
1928
1929/*
1930 * This routine submits the indicated tx
1931 *
1932 * Space has already been guaranteed and
1933 * tail side of ring is locked.
1934 *
1935 * The hardware tail update is done
1936 * in the caller and that is facilitated
1937 * by returning the new tail.
1938 *
1939 * There is special case logic for ahg
1940 * to not add the generation number for
1941 * up to 2 descriptors that follow the
1942 * first descriptor.
1943 *
1944 */
1945static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1946{
1947 int i;
1948 u16 tail;
1949 struct sdma_desc *descp = tx->descp;
1950 u8 skip = 0, mode = ahg_mode(tx);
1951
1952 tail = sde->descq_tail & sde->sdma_mask;
1953 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1954 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1955 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1956 tail, &sde->descq[tail]);
1957 tail = ++sde->descq_tail & sde->sdma_mask;
1958 descp++;
1959 if (mode > SDMA_AHG_APPLY_UPDATE1)
1960 skip = mode >> 1;
1961 for (i = 1; i < tx->num_desc; i++, descp++) {
1962 u64 qw1;
1963
1964 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1965 if (skip) {
1966 /* edits don't have generation */
1967 qw1 = descp->qw[1];
1968 skip--;
1969 } else {
1970 /* replace generation with real one for non-edits */
1971 qw1 = add_gen(sde, descp->qw[1]);
1972 }
1973 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
1974 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
1975 tail, &sde->descq[tail]);
1976 tail = ++sde->descq_tail & sde->sdma_mask;
1977 }
1978 tx->next_descq_idx = tail;
1979#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1980 tx->sn = sde->tail_sn++;
1981 trace_hfi1_sdma_in_sn(sde, tx->sn);
1982 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
1983#endif
1984 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
1985 sde->desc_avail -= tx->num_desc;
1986 return tail;
1987}
1988
1989/*
1990 * Check for progress
1991 */
1992static int sdma_check_progress(
1993 struct sdma_engine *sde,
1994 struct iowait *wait,
1995 struct sdma_txreq *tx)
1996{
1997 int ret;
1998
1999 sde->desc_avail = sdma_descq_freecnt(sde);
2000 if (tx->num_desc <= sde->desc_avail)
2001 return -EAGAIN;
2002 /* pulse the head_lock */
2003 if (wait && wait->sleep) {
2004 unsigned seq;
2005
2006 seq = raw_seqcount_begin(
2007 (const seqcount_t *)&sde->head_lock.seqcount);
2008 ret = wait->sleep(sde, wait, tx, seq);
2009 if (ret == -EAGAIN)
2010 sde->desc_avail = sdma_descq_freecnt(sde);
e490974e 2011 } else {
77241056 2012 ret = -EBUSY;
e490974e 2013 }
77241056
MM
2014 return ret;
2015}
2016
2017/**
2018 * sdma_send_txreq() - submit a tx req to ring
2019 * @sde: sdma engine to use
2020 * @wait: wait structure to use when full (may be NULL)
2021 * @tx: sdma_txreq to submit
2022 *
2023 * The call submits the tx into the ring. If a iowait structure is non-NULL
2024 * the packet will be queued to the list in wait.
2025 *
2026 * Return:
2027 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2028 * ring (wait == NULL)
2029 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2030 */
2031int sdma_send_txreq(struct sdma_engine *sde,
2032 struct iowait *wait,
2033 struct sdma_txreq *tx)
2034{
2035 int ret = 0;
2036 u16 tail;
2037 unsigned long flags;
2038
2039 /* user should have supplied entire packet */
2040 if (unlikely(tx->tlen))
2041 return -EINVAL;
2042 tx->wait = wait;
2043 spin_lock_irqsave(&sde->tail_lock, flags);
2044retry:
2045 if (unlikely(!__sdma_running(sde)))
2046 goto unlock_noconn;
2047 if (unlikely(tx->num_desc > sde->desc_avail))
2048 goto nodesc;
2049 tail = submit_tx(sde, tx);
2050 if (wait)
14553ca1 2051 iowait_sdma_inc(wait);
77241056
MM
2052 sdma_update_tail(sde, tail);
2053unlock:
2054 spin_unlock_irqrestore(&sde->tail_lock, flags);
2055 return ret;
2056unlock_noconn:
2057 if (wait)
14553ca1 2058 iowait_sdma_inc(wait);
77241056
MM
2059 tx->next_descq_idx = 0;
2060#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2061 tx->sn = sde->tail_sn++;
2062 trace_hfi1_sdma_in_sn(sde, tx->sn);
2063#endif
f4f30031 2064 spin_lock(&sde->flushlist_lock);
77241056 2065 list_add_tail(&tx->list, &sde->flushlist);
f4f30031 2066 spin_unlock(&sde->flushlist_lock);
77241056
MM
2067 if (wait) {
2068 wait->tx_count++;
2069 wait->count += tx->num_desc;
2070 }
2071 schedule_work(&sde->flush_worker);
2072 ret = -ECOMM;
2073 goto unlock;
2074nodesc:
2075 ret = sdma_check_progress(sde, wait, tx);
2076 if (ret == -EAGAIN) {
2077 ret = 0;
2078 goto retry;
2079 }
2080 sde->descq_full_count++;
2081 goto unlock;
2082}
2083
2084/**
2085 * sdma_send_txlist() - submit a list of tx req to ring
2086 * @sde: sdma engine to use
2087 * @wait: wait structure to use when full (may be NULL)
2088 * @tx_list: list of sdma_txreqs to submit
2089 *
2090 * The call submits the list into the ring.
2091 *
2092 * If the iowait structure is non-NULL and not equal to the iowait list
2093 * the unprocessed part of the list will be appended to the list in wait.
2094 *
2095 * In all cases, the tx_list will be updated so the head of the tx_list is
2096 * the list of descriptors that have yet to be transmitted.
2097 *
2098 * The intent of this call is to provide a more efficient
2099 * way of submitting multiple packets to SDMA while holding the tail
2100 * side locking.
2101 *
2102 * Return:
c7cbf2fa
MH
2103 * > 0 - Success (value is number of sdma_txreq's submitted),
2104 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
77241056
MM
2105 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2106 */
17fb4f29
JJ
2107int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2108 struct list_head *tx_list)
77241056
MM
2109{
2110 struct sdma_txreq *tx, *tx_next;
2111 int ret = 0;
2112 unsigned long flags;
2113 u16 tail = INVALID_TAIL;
2114 int count = 0;
2115
2116 spin_lock_irqsave(&sde->tail_lock, flags);
2117retry:
2118 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2119 tx->wait = wait;
2120 if (unlikely(!__sdma_running(sde)))
2121 goto unlock_noconn;
2122 if (unlikely(tx->num_desc > sde->desc_avail))
2123 goto nodesc;
2124 if (unlikely(tx->tlen)) {
2125 ret = -EINVAL;
2126 goto update_tail;
2127 }
2128 list_del_init(&tx->list);
2129 tail = submit_tx(sde, tx);
2130 count++;
2131 if (tail != INVALID_TAIL &&
2132 (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2133 sdma_update_tail(sde, tail);
2134 tail = INVALID_TAIL;
2135 }
2136 }
2137update_tail:
2138 if (wait)
14553ca1 2139 iowait_sdma_add(wait, count);
77241056
MM
2140 if (tail != INVALID_TAIL)
2141 sdma_update_tail(sde, tail);
2142 spin_unlock_irqrestore(&sde->tail_lock, flags);
c7cbf2fa 2143 return ret == 0 ? count : ret;
77241056
MM
2144unlock_noconn:
2145 spin_lock(&sde->flushlist_lock);
2146 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2147 tx->wait = wait;
2148 list_del_init(&tx->list);
2149 if (wait)
14553ca1 2150 iowait_sdma_inc(wait);
77241056
MM
2151 tx->next_descq_idx = 0;
2152#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2153 tx->sn = sde->tail_sn++;
2154 trace_hfi1_sdma_in_sn(sde, tx->sn);
2155#endif
2156 list_add_tail(&tx->list, &sde->flushlist);
2157 if (wait) {
2158 wait->tx_count++;
2159 wait->count += tx->num_desc;
2160 }
2161 }
2162 spin_unlock(&sde->flushlist_lock);
2163 schedule_work(&sde->flush_worker);
2164 ret = -ECOMM;
2165 goto update_tail;
2166nodesc:
2167 ret = sdma_check_progress(sde, wait, tx);
2168 if (ret == -EAGAIN) {
2169 ret = 0;
2170 goto retry;
2171 }
2172 sde->descq_full_count++;
2173 goto update_tail;
2174}
2175
17fb4f29 2176static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
77241056
MM
2177{
2178 unsigned long flags;
2179
2180 spin_lock_irqsave(&sde->tail_lock, flags);
2181 write_seqlock(&sde->head_lock);
2182
2183 __sdma_process_event(sde, event);
2184
2185 if (sde->state.current_state == sdma_state_s99_running)
2186 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2187
2188 write_sequnlock(&sde->head_lock);
2189 spin_unlock_irqrestore(&sde->tail_lock, flags);
2190}
2191
2192static void __sdma_process_event(struct sdma_engine *sde,
17fb4f29 2193 enum sdma_events event)
77241056
MM
2194{
2195 struct sdma_state *ss = &sde->state;
2196 int need_progress = 0;
2197
2198 /* CONFIG SDMA temporary */
2199#ifdef CONFIG_SDMA_VERBOSITY
2200 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2201 sdma_state_names[ss->current_state],
2202 sdma_event_names[event]);
2203#endif
2204
2205 switch (ss->current_state) {
2206 case sdma_state_s00_hw_down:
2207 switch (event) {
2208 case sdma_event_e00_go_hw_down:
2209 break;
2210 case sdma_event_e30_go_running:
2211 /*
2212 * If down, but running requested (usually result
2213 * of link up, then we need to start up.
2214 * This can happen when hw down is requested while
2215 * bringing the link up with traffic active on
4d114fdd
JJ
2216 * 7220, e.g.
2217 */
77241056
MM
2218 ss->go_s99_running = 1;
2219 /* fall through and start dma engine */
2220 case sdma_event_e10_go_hw_start:
2221 /* This reference means the state machine is started */
2222 sdma_get(&sde->state);
2223 sdma_set_state(sde,
17fb4f29 2224 sdma_state_s10_hw_start_up_halt_wait);
77241056
MM
2225 break;
2226 case sdma_event_e15_hw_halt_done:
2227 break;
2228 case sdma_event_e25_hw_clean_up_done:
2229 break;
2230 case sdma_event_e40_sw_cleaned:
2231 sdma_sw_tear_down(sde);
2232 break;
2233 case sdma_event_e50_hw_cleaned:
2234 break;
2235 case sdma_event_e60_hw_halted:
2236 break;
2237 case sdma_event_e70_go_idle:
2238 break;
2239 case sdma_event_e80_hw_freeze:
2240 break;
2241 case sdma_event_e81_hw_frozen:
2242 break;
2243 case sdma_event_e82_hw_unfreeze:
2244 break;
2245 case sdma_event_e85_link_down:
2246 break;
2247 case sdma_event_e90_sw_halted:
2248 break;
2249 }
2250 break;
2251
2252 case sdma_state_s10_hw_start_up_halt_wait:
2253 switch (event) {
2254 case sdma_event_e00_go_hw_down:
2255 sdma_set_state(sde, sdma_state_s00_hw_down);
2256 sdma_sw_tear_down(sde);
2257 break;
2258 case sdma_event_e10_go_hw_start:
2259 break;
2260 case sdma_event_e15_hw_halt_done:
2261 sdma_set_state(sde,
17fb4f29 2262 sdma_state_s15_hw_start_up_clean_wait);
77241056
MM
2263 sdma_start_hw_clean_up(sde);
2264 break;
2265 case sdma_event_e25_hw_clean_up_done:
2266 break;
2267 case sdma_event_e30_go_running:
2268 ss->go_s99_running = 1;
2269 break;
2270 case sdma_event_e40_sw_cleaned:
2271 break;
2272 case sdma_event_e50_hw_cleaned:
2273 break;
2274 case sdma_event_e60_hw_halted:
8edf7502 2275 schedule_work(&sde->err_halt_worker);
77241056
MM
2276 break;
2277 case sdma_event_e70_go_idle:
2278 ss->go_s99_running = 0;
2279 break;
2280 case sdma_event_e80_hw_freeze:
2281 break;
2282 case sdma_event_e81_hw_frozen:
2283 break;
2284 case sdma_event_e82_hw_unfreeze:
2285 break;
2286 case sdma_event_e85_link_down:
2287 break;
2288 case sdma_event_e90_sw_halted:
2289 break;
2290 }
2291 break;
2292
2293 case sdma_state_s15_hw_start_up_clean_wait:
2294 switch (event) {
2295 case sdma_event_e00_go_hw_down:
2296 sdma_set_state(sde, sdma_state_s00_hw_down);
2297 sdma_sw_tear_down(sde);
2298 break;
2299 case sdma_event_e10_go_hw_start:
2300 break;
2301 case sdma_event_e15_hw_halt_done:
2302 break;
2303 case sdma_event_e25_hw_clean_up_done:
2304 sdma_hw_start_up(sde);
2305 sdma_set_state(sde, ss->go_s99_running ?
2306 sdma_state_s99_running :
2307 sdma_state_s20_idle);
2308 break;
2309 case sdma_event_e30_go_running:
2310 ss->go_s99_running = 1;
2311 break;
2312 case sdma_event_e40_sw_cleaned:
2313 break;
2314 case sdma_event_e50_hw_cleaned:
2315 break;
2316 case sdma_event_e60_hw_halted:
2317 break;
2318 case sdma_event_e70_go_idle:
2319 ss->go_s99_running = 0;
2320 break;
2321 case sdma_event_e80_hw_freeze:
2322 break;
2323 case sdma_event_e81_hw_frozen:
2324 break;
2325 case sdma_event_e82_hw_unfreeze:
2326 break;
2327 case sdma_event_e85_link_down:
2328 break;
2329 case sdma_event_e90_sw_halted:
2330 break;
2331 }
2332 break;
2333
2334 case sdma_state_s20_idle:
2335 switch (event) {
2336 case sdma_event_e00_go_hw_down:
2337 sdma_set_state(sde, sdma_state_s00_hw_down);
2338 sdma_sw_tear_down(sde);
2339 break;
2340 case sdma_event_e10_go_hw_start:
2341 break;
2342 case sdma_event_e15_hw_halt_done:
2343 break;
2344 case sdma_event_e25_hw_clean_up_done:
2345 break;
2346 case sdma_event_e30_go_running:
2347 sdma_set_state(sde, sdma_state_s99_running);
2348 ss->go_s99_running = 1;
2349 break;
2350 case sdma_event_e40_sw_cleaned:
2351 break;
2352 case sdma_event_e50_hw_cleaned:
2353 break;
2354 case sdma_event_e60_hw_halted:
2355 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
8edf7502 2356 schedule_work(&sde->err_halt_worker);
77241056
MM
2357 break;
2358 case sdma_event_e70_go_idle:
2359 break;
2360 case sdma_event_e85_link_down:
2361 /* fall through */
2362 case sdma_event_e80_hw_freeze:
2363 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2364 atomic_dec(&sde->dd->sdma_unfreeze_count);
2365 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2366 break;
2367 case sdma_event_e81_hw_frozen:
2368 break;
2369 case sdma_event_e82_hw_unfreeze:
2370 break;
2371 case sdma_event_e90_sw_halted:
2372 break;
2373 }
2374 break;
2375
2376 case sdma_state_s30_sw_clean_up_wait:
2377 switch (event) {
2378 case sdma_event_e00_go_hw_down:
2379 sdma_set_state(sde, sdma_state_s00_hw_down);
2380 break;
2381 case sdma_event_e10_go_hw_start:
2382 break;
2383 case sdma_event_e15_hw_halt_done:
2384 break;
2385 case sdma_event_e25_hw_clean_up_done:
2386 break;
2387 case sdma_event_e30_go_running:
2388 ss->go_s99_running = 1;
2389 break;
2390 case sdma_event_e40_sw_cleaned:
2391 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2392 sdma_start_hw_clean_up(sde);
2393 break;
2394 case sdma_event_e50_hw_cleaned:
2395 break;
2396 case sdma_event_e60_hw_halted:
2397 break;
2398 case sdma_event_e70_go_idle:
2399 ss->go_s99_running = 0;
2400 break;
2401 case sdma_event_e80_hw_freeze:
2402 break;
2403 case sdma_event_e81_hw_frozen:
2404 break;
2405 case sdma_event_e82_hw_unfreeze:
2406 break;
2407 case sdma_event_e85_link_down:
2408 ss->go_s99_running = 0;
2409 break;
2410 case sdma_event_e90_sw_halted:
2411 break;
2412 }
2413 break;
2414
2415 case sdma_state_s40_hw_clean_up_wait:
2416 switch (event) {
2417 case sdma_event_e00_go_hw_down:
2418 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2419 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2420 break;
2421 case sdma_event_e10_go_hw_start:
2422 break;
2423 case sdma_event_e15_hw_halt_done:
2424 break;
2425 case sdma_event_e25_hw_clean_up_done:
2426 sdma_hw_start_up(sde);
2427 sdma_set_state(sde, ss->go_s99_running ?
2428 sdma_state_s99_running :
2429 sdma_state_s20_idle);
2430 break;
2431 case sdma_event_e30_go_running:
2432 ss->go_s99_running = 1;
2433 break;
2434 case sdma_event_e40_sw_cleaned:
2435 break;
2436 case sdma_event_e50_hw_cleaned:
2437 break;
2438 case sdma_event_e60_hw_halted:
2439 break;
2440 case sdma_event_e70_go_idle:
2441 ss->go_s99_running = 0;
2442 break;
2443 case sdma_event_e80_hw_freeze:
2444 break;
2445 case sdma_event_e81_hw_frozen:
2446 break;
2447 case sdma_event_e82_hw_unfreeze:
2448 break;
2449 case sdma_event_e85_link_down:
2450 ss->go_s99_running = 0;
2451 break;
2452 case sdma_event_e90_sw_halted:
2453 break;
2454 }
2455 break;
2456
2457 case sdma_state_s50_hw_halt_wait:
2458 switch (event) {
2459 case sdma_event_e00_go_hw_down:
2460 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2461 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2462 break;
2463 case sdma_event_e10_go_hw_start:
2464 break;
2465 case sdma_event_e15_hw_halt_done:
2466 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
8edf7502 2467 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2468 break;
2469 case sdma_event_e25_hw_clean_up_done:
2470 break;
2471 case sdma_event_e30_go_running:
2472 ss->go_s99_running = 1;
2473 break;
2474 case sdma_event_e40_sw_cleaned:
2475 break;
2476 case sdma_event_e50_hw_cleaned:
2477 break;
2478 case sdma_event_e60_hw_halted:
8edf7502 2479 schedule_work(&sde->err_halt_worker);
77241056
MM
2480 break;
2481 case sdma_event_e70_go_idle:
2482 ss->go_s99_running = 0;
2483 break;
2484 case sdma_event_e80_hw_freeze:
2485 break;
2486 case sdma_event_e81_hw_frozen:
2487 break;
2488 case sdma_event_e82_hw_unfreeze:
2489 break;
2490 case sdma_event_e85_link_down:
2491 ss->go_s99_running = 0;
2492 break;
2493 case sdma_event_e90_sw_halted:
2494 break;
2495 }
2496 break;
2497
2498 case sdma_state_s60_idle_halt_wait:
2499 switch (event) {
2500 case sdma_event_e00_go_hw_down:
2501 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2502 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2503 break;
2504 case sdma_event_e10_go_hw_start:
2505 break;
2506 case sdma_event_e15_hw_halt_done:
2507 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
8edf7502 2508 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2509 break;
2510 case sdma_event_e25_hw_clean_up_done:
2511 break;
2512 case sdma_event_e30_go_running:
2513 ss->go_s99_running = 1;
2514 break;
2515 case sdma_event_e40_sw_cleaned:
2516 break;
2517 case sdma_event_e50_hw_cleaned:
2518 break;
2519 case sdma_event_e60_hw_halted:
8edf7502 2520 schedule_work(&sde->err_halt_worker);
77241056
MM
2521 break;
2522 case sdma_event_e70_go_idle:
2523 ss->go_s99_running = 0;
2524 break;
2525 case sdma_event_e80_hw_freeze:
2526 break;
2527 case sdma_event_e81_hw_frozen:
2528 break;
2529 case sdma_event_e82_hw_unfreeze:
2530 break;
2531 case sdma_event_e85_link_down:
2532 break;
2533 case sdma_event_e90_sw_halted:
2534 break;
2535 }
2536 break;
2537
2538 case sdma_state_s80_hw_freeze:
2539 switch (event) {
2540 case sdma_event_e00_go_hw_down:
2541 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2542 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2543 break;
2544 case sdma_event_e10_go_hw_start:
2545 break;
2546 case sdma_event_e15_hw_halt_done:
2547 break;
2548 case sdma_event_e25_hw_clean_up_done:
2549 break;
2550 case sdma_event_e30_go_running:
2551 ss->go_s99_running = 1;
2552 break;
2553 case sdma_event_e40_sw_cleaned:
2554 break;
2555 case sdma_event_e50_hw_cleaned:
2556 break;
2557 case sdma_event_e60_hw_halted:
2558 break;
2559 case sdma_event_e70_go_idle:
2560 ss->go_s99_running = 0;
2561 break;
2562 case sdma_event_e80_hw_freeze:
2563 break;
2564 case sdma_event_e81_hw_frozen:
2565 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
8edf7502 2566 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2567 break;
2568 case sdma_event_e82_hw_unfreeze:
2569 break;
2570 case sdma_event_e85_link_down:
2571 break;
2572 case sdma_event_e90_sw_halted:
2573 break;
2574 }
2575 break;
2576
2577 case sdma_state_s82_freeze_sw_clean:
2578 switch (event) {
2579 case sdma_event_e00_go_hw_down:
2580 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2581 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2582 break;
2583 case sdma_event_e10_go_hw_start:
2584 break;
2585 case sdma_event_e15_hw_halt_done:
2586 break;
2587 case sdma_event_e25_hw_clean_up_done:
2588 break;
2589 case sdma_event_e30_go_running:
2590 ss->go_s99_running = 1;
2591 break;
2592 case sdma_event_e40_sw_cleaned:
2593 /* notify caller this engine is done cleaning */
2594 atomic_dec(&sde->dd->sdma_unfreeze_count);
2595 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2596 break;
2597 case sdma_event_e50_hw_cleaned:
2598 break;
2599 case sdma_event_e60_hw_halted:
2600 break;
2601 case sdma_event_e70_go_idle:
2602 ss->go_s99_running = 0;
2603 break;
2604 case sdma_event_e80_hw_freeze:
2605 break;
2606 case sdma_event_e81_hw_frozen:
2607 break;
2608 case sdma_event_e82_hw_unfreeze:
2609 sdma_hw_start_up(sde);
2610 sdma_set_state(sde, ss->go_s99_running ?
2611 sdma_state_s99_running :
2612 sdma_state_s20_idle);
2613 break;
2614 case sdma_event_e85_link_down:
2615 break;
2616 case sdma_event_e90_sw_halted:
2617 break;
2618 }
2619 break;
2620
2621 case sdma_state_s99_running:
2622 switch (event) {
2623 case sdma_event_e00_go_hw_down:
2624 sdma_set_state(sde, sdma_state_s00_hw_down);
8edf7502 2625 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
77241056
MM
2626 break;
2627 case sdma_event_e10_go_hw_start:
2628 break;
2629 case sdma_event_e15_hw_halt_done:
2630 break;
2631 case sdma_event_e25_hw_clean_up_done:
2632 break;
2633 case sdma_event_e30_go_running:
2634 break;
2635 case sdma_event_e40_sw_cleaned:
2636 break;
2637 case sdma_event_e50_hw_cleaned:
2638 break;
2639 case sdma_event_e60_hw_halted:
2640 need_progress = 1;
2641 sdma_err_progress_check_schedule(sde);
2642 case sdma_event_e90_sw_halted:
2643 /*
2644 * SW initiated halt does not perform engines
2645 * progress check
2646 */
2647 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
8edf7502 2648 schedule_work(&sde->err_halt_worker);
77241056
MM
2649 break;
2650 case sdma_event_e70_go_idle:
2651 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2652 break;
2653 case sdma_event_e85_link_down:
2654 ss->go_s99_running = 0;
2655 /* fall through */
2656 case sdma_event_e80_hw_freeze:
2657 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2658 atomic_dec(&sde->dd->sdma_unfreeze_count);
2659 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2660 break;
2661 case sdma_event_e81_hw_frozen:
2662 break;
2663 case sdma_event_e82_hw_unfreeze:
2664 break;
2665 }
2666 break;
2667 }
2668
2669 ss->last_event = event;
2670 if (need_progress)
2671 sdma_make_progress(sde, 0);
2672}
2673
2674/*
2675 * _extend_sdma_tx_descs() - helper to extend txreq
2676 *
2677 * This is called once the initial nominal allocation
2678 * of descriptors in the sdma_txreq is exhausted.
2679 *
2680 * The code will bump the allocation up to the max
f4d26d81
NV
2681 * of MAX_DESC (64) descriptors. There doesn't seem
2682 * much point in an interim step. The last descriptor
2683 * is reserved for coalesce buffer in order to support
2684 * cases where input packet has >MAX_DESC iovecs.
77241056
MM
2685 *
2686 */
f4d26d81 2687static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
77241056
MM
2688{
2689 int i;
2690
f4d26d81
NV
2691 /* Handle last descriptor */
2692 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2693 /* if tlen is 0, it is for padding, release last descriptor */
2694 if (!tx->tlen) {
2695 tx->desc_limit = MAX_DESC;
2696 } else if (!tx->coalesce_buf) {
2697 /* allocate coalesce buffer with space for padding */
2698 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2699 GFP_ATOMIC);
2700 if (!tx->coalesce_buf)
a5a9e8cc 2701 goto enomem;
f4d26d81
NV
2702 tx->coalesce_idx = 0;
2703 }
2704 return 0;
2705 }
2706
2707 if (unlikely(tx->num_desc == MAX_DESC))
a5a9e8cc 2708 goto enomem;
f4d26d81 2709
77241056
MM
2710 tx->descp = kmalloc_array(
2711 MAX_DESC,
2712 sizeof(struct sdma_desc),
2713 GFP_ATOMIC);
2714 if (!tx->descp)
a5a9e8cc 2715 goto enomem;
f4d26d81
NV
2716
2717 /* reserve last descriptor for coalescing */
2718 tx->desc_limit = MAX_DESC - 1;
77241056
MM
2719 /* copy ones already built */
2720 for (i = 0; i < tx->num_desc; i++)
2721 tx->descp[i] = tx->descs[i];
2722 return 0;
a5a9e8cc
MM
2723enomem:
2724 sdma_txclean(dd, tx);
2725 return -ENOMEM;
77241056
MM
2726}
2727
f4d26d81
NV
2728/*
2729 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2730 *
2731 * This is called once the initial nominal allocation of descriptors
2732 * in the sdma_txreq is exhausted.
2733 *
2734 * This function calls _extend_sdma_tx_descs to extend or allocate
2735 * coalesce buffer. If there is a allocated coalesce buffer, it will
2736 * copy the input packet data into the coalesce buffer. It also adds
16733b88 2737 * coalesce buffer descriptor once when whole packet is received.
f4d26d81
NV
2738 *
2739 * Return:
2740 * <0 - error
2741 * 0 - coalescing, don't populate descriptor
2742 * 1 - continue with populating descriptor
2743 */
2744int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2745 int type, void *kvaddr, struct page *page,
2746 unsigned long offset, u16 len)
2747{
2748 int pad_len, rval;
2749 dma_addr_t addr;
2750
2751 rval = _extend_sdma_tx_descs(dd, tx);
2752 if (rval) {
2753 sdma_txclean(dd, tx);
2754 return rval;
2755 }
2756
2757 /* If coalesce buffer is allocated, copy data into it */
2758 if (tx->coalesce_buf) {
2759 if (type == SDMA_MAP_NONE) {
2760 sdma_txclean(dd, tx);
2761 return -EINVAL;
2762 }
2763
2764 if (type == SDMA_MAP_PAGE) {
2765 kvaddr = kmap(page);
2766 kvaddr += offset;
2767 } else if (WARN_ON(!kvaddr)) {
2768 sdma_txclean(dd, tx);
2769 return -EINVAL;
2770 }
2771
2772 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2773 tx->coalesce_idx += len;
2774 if (type == SDMA_MAP_PAGE)
2775 kunmap(page);
2776
2777 /* If there is more data, return */
2778 if (tx->tlen - tx->coalesce_idx)
2779 return 0;
2780
2781 /* Whole packet is received; add any padding */
2782 pad_len = tx->packet_len & (sizeof(u32) - 1);
2783 if (pad_len) {
2784 pad_len = sizeof(u32) - pad_len;
2785 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2786 /* padding is taken care of for coalescing case */
2787 tx->packet_len += pad_len;
2788 tx->tlen += pad_len;
2789 }
2790
2791 /* dma map the coalesce buffer */
2792 addr = dma_map_single(&dd->pcidev->dev,
2793 tx->coalesce_buf,
2794 tx->tlen,
2795 DMA_TO_DEVICE);
2796
2797 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2798 sdma_txclean(dd, tx);
2799 return -ENOSPC;
2800 }
2801
2802 /* Add descriptor for coalesce buffer */
2803 tx->desc_limit = MAX_DESC;
2804 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2805 addr, tx->tlen);
2806 }
2807
2808 return 1;
2809}
2810
77241056
MM
2811/* Update sdes when the lmc changes */
2812void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2813{
2814 struct sdma_engine *sde;
2815 int i;
2816 u64 sreg;
2817
2818 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2819 SD(CHECK_SLID_MASK_SHIFT)) |
2820 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2821 SD(CHECK_SLID_VALUE_SHIFT));
2822
2823 for (i = 0; i < dd->num_sdma; i++) {
2824 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2825 i, (u32)sreg);
2826 sde = &dd->per_sdma[i];
2827 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2828 }
2829}
2830
2831/* tx not dword sized - pad */
2832int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2833{
2834 int rval = 0;
2835
f4d26d81 2836 tx->num_desc++;
77241056
MM
2837 if ((unlikely(tx->num_desc == tx->desc_limit))) {
2838 rval = _extend_sdma_tx_descs(dd, tx);
f4d26d81
NV
2839 if (rval) {
2840 sdma_txclean(dd, tx);
77241056 2841 return rval;
f4d26d81 2842 }
77241056 2843 }
f4d26d81 2844 /* finish the one just added */
77241056
MM
2845 make_tx_sdma_desc(
2846 tx,
2847 SDMA_MAP_NONE,
2848 dd->sdma_pad_phys,
2849 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2850 _sdma_close_tx(dd, tx);
2851 return rval;
2852}
2853
2854/*
2855 * Add ahg to the sdma_txreq
2856 *
2857 * The logic will consume up to 3
2858 * descriptors at the beginning of
2859 * sdma_txreq.
2860 */
2861void _sdma_txreq_ahgadd(
2862 struct sdma_txreq *tx,
2863 u8 num_ahg,
2864 u8 ahg_entry,
2865 u32 *ahg,
2866 u8 ahg_hlen)
2867{
2868 u32 i, shift = 0, desc = 0;
2869 u8 mode;
2870
2871 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2872 /* compute mode */
2873 if (num_ahg == 1)
2874 mode = SDMA_AHG_APPLY_UPDATE1;
2875 else if (num_ahg <= 5)
2876 mode = SDMA_AHG_APPLY_UPDATE2;
2877 else
2878 mode = SDMA_AHG_APPLY_UPDATE3;
2879 tx->num_desc++;
2880 /* initialize to consumed descriptors to zero */
2881 switch (mode) {
2882 case SDMA_AHG_APPLY_UPDATE3:
2883 tx->num_desc++;
2884 tx->descs[2].qw[0] = 0;
2885 tx->descs[2].qw[1] = 0;
2886 /* FALLTHROUGH */
2887 case SDMA_AHG_APPLY_UPDATE2:
2888 tx->num_desc++;
2889 tx->descs[1].qw[0] = 0;
2890 tx->descs[1].qw[1] = 0;
2891 break;
2892 }
2893 ahg_hlen >>= 2;
2894 tx->descs[0].qw[1] |=
2895 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2896 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2897 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2898 << SDMA_DESC1_HEADER_DWS_SHIFT) |
2899 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2900 << SDMA_DESC1_HEADER_MODE_SHIFT) |
2901 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2902 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2903 for (i = 0; i < (num_ahg - 1); i++) {
2904 if (!shift && !(i & 2))
2905 desc++;
2906 tx->descs[desc].qw[!!(i & 2)] |=
2907 (((u64)ahg[i + 1])
2908 << shift);
2909 shift = (shift + 32) & 63;
2910 }
2911}
2912
2913/**
2914 * sdma_ahg_alloc - allocate an AHG entry
2915 * @sde: engine to allocate from
2916 *
2917 * Return:
2918 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2919 * -ENOSPC if an entry is not available
2920 */
2921int sdma_ahg_alloc(struct sdma_engine *sde)
2922{
2923 int nr;
2924 int oldbit;
2925
2926 if (!sde) {
2927 trace_hfi1_ahg_allocate(sde, -EINVAL);
2928 return -EINVAL;
2929 }
2930 while (1) {
2931 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2932 if (nr > 31) {
2933 trace_hfi1_ahg_allocate(sde, -ENOSPC);
2934 return -ENOSPC;
2935 }
2936 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2937 if (!oldbit)
2938 break;
2939 cpu_relax();
2940 }
2941 trace_hfi1_ahg_allocate(sde, nr);
2942 return nr;
2943}
2944
2945/**
2946 * sdma_ahg_free - free an AHG entry
2947 * @sde: engine to return AHG entry
2948 * @ahg_index: index to free
2949 *
2950 * This routine frees the indicate AHG entry.
2951 */
2952void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2953{
2954 if (!sde)
2955 return;
2956 trace_hfi1_ahg_deallocate(sde, ahg_index);
2957 if (ahg_index < 0 || ahg_index > 31)
2958 return;
2959 clear_bit(ahg_index, &sde->ahg_bits);
2960}
2961
2962/*
2963 * SPC freeze handling for SDMA engines. Called when the driver knows
2964 * the SPC is going into a freeze but before the freeze is fully
2965 * settled. Generally an error interrupt.
2966 *
2967 * This event will pull the engine out of running so no more entries can be
2968 * added to the engine's queue.
2969 */
2970void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
2971{
2972 int i;
2973 enum sdma_events event = link_down ? sdma_event_e85_link_down :
2974 sdma_event_e80_hw_freeze;
2975
2976 /* set up the wait but do not wait here */
2977 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
2978
2979 /* tell all engines to stop running and wait */
2980 for (i = 0; i < dd->num_sdma; i++)
2981 sdma_process_event(&dd->per_sdma[i], event);
2982
2983 /* sdma_freeze() will wait for all engines to have stopped */
2984}
2985
2986/*
2987 * SPC freeze handling for SDMA engines. Called when the driver knows
2988 * the SPC is fully frozen.
2989 */
2990void sdma_freeze(struct hfi1_devdata *dd)
2991{
2992 int i;
2993 int ret;
2994
2995 /*
2996 * Make sure all engines have moved out of the running state before
2997 * continuing.
2998 */
2999 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
17fb4f29
JJ
3000 atomic_read(&dd->sdma_unfreeze_count) <=
3001 0);
77241056
MM
3002 /* interrupted or count is negative, then unloading - just exit */
3003 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3004 return;
3005
3006 /* set up the count for the next wait */
3007 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3008
3009 /* tell all engines that the SPC is frozen, they can start cleaning */
3010 for (i = 0; i < dd->num_sdma; i++)
3011 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3012
3013 /*
3014 * Wait for everyone to finish software clean before exiting. The
3015 * software clean will read engine CSRs, so must be completed before
3016 * the next step, which will clear the engine CSRs.
3017 */
50e5dcbe 3018 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
77241056
MM
3019 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3020 /* no need to check results - done no matter what */
3021}
3022
3023/*
3024 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3025 *
3026 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3027 * that is left is a software clean. We could do it after the SPC is fully
3028 * frozen, but then we'd have to add another state to wait for the unfreeze.
3029 * Instead, just defer the software clean until the unfreeze step.
3030 */
3031void sdma_unfreeze(struct hfi1_devdata *dd)
3032{
3033 int i;
3034
3035 /* tell all engines start freeze clean up */
3036 for (i = 0; i < dd->num_sdma; i++)
3037 sdma_process_event(&dd->per_sdma[i],
17fb4f29 3038 sdma_event_e82_hw_unfreeze);
77241056
MM
3039}
3040
3041/**
3042 * _sdma_engine_progress_schedule() - schedule progress on engine
3043 * @sde: sdma_engine to schedule progress
3044 *
3045 */
3046void _sdma_engine_progress_schedule(
3047 struct sdma_engine *sde)
3048{
3049 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3050 /* assume we have selected a good cpu */
3051 write_csr(sde->dd,
17fb4f29
JJ
3052 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3053 sde->progress_mask);
77241056 3054}