]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/thermal/cpu_cooling.c
thermal: cpu_cooling: get rid of a variable in cpufreq_set_cur_state()
[mirror_ubuntu-jammy-kernel.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
ae606089 29#include <linux/idr.h>
c36cf071 30#include <linux/pm_opp.h>
02361418
ADK
31#include <linux/slab.h>
32#include <linux/cpu.h>
33#include <linux/cpu_cooling.h>
34
6828a471
JM
35#include <trace/events/thermal.h>
36
07d888d8
VK
37/*
38 * Cooling state <-> CPUFreq frequency
39 *
40 * Cooling states are translated to frequencies throughout this driver and this
41 * is the relation between them.
42 *
43 * Highest cooling state corresponds to lowest possible frequency.
44 *
45 * i.e.
46 * level 0 --> 1st Max Freq
47 * level 1 --> 2nd Max Freq
48 * ...
49 */
50
c36cf071
JM
51/**
52 * struct power_table - frequency to power conversion
53 * @frequency: frequency in KHz
54 * @power: power in mW
55 *
56 * This structure is built when the cooling device registers and helps
57 * in translating frequency to power and viceversa.
58 */
59struct power_table {
60 u32 frequency;
61 u32 power;
62};
63
02361418 64/**
3b3c0748 65 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
66 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * registered.
04bdbdf9 68 * @cdev: thermal_cooling_device pointer to keep track of the
3b3c0748 69 * registered cooling device.
02361418
ADK
70 * @cpufreq_state: integer value representing the current state of cpufreq
71 * cooling devices.
59f0d218 72 * @clipped_freq: integer value representing the absolute value of the clipped
02361418 73 * frequency.
dcc6c7fd
VK
74 * @max_level: maximum cooling level. One less than total number of valid
75 * cpufreq frequencies.
02361418 76 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 77 * @node: list_head to link all cpufreq_cooling_device together.
0744f130 78 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
c36cf071
JM
79 * @time_in_idle: previous reading of the absolute time that this cpu was idle
80 * @time_in_idle_timestamp: wall time of the last invocation of
81 * get_cpu_idle_time_us()
82 * @dyn_power_table: array of struct power_table for frequency to power
83 * conversion, sorted in ascending order.
84 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
85 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
86 * @plat_get_static_power: callback to calculate the static power
02361418 87 *
beca6053
VK
88 * This structure is required for keeping information of each registered
89 * cpufreq_cooling_device.
02361418
ADK
90 */
91struct cpufreq_cooling_device {
92 int id;
04bdbdf9 93 struct thermal_cooling_device *cdev;
02361418 94 unsigned int cpufreq_state;
59f0d218 95 unsigned int clipped_freq;
dcc6c7fd 96 unsigned int max_level;
f6859014 97 unsigned int *freq_table; /* In descending order */
02361418 98 struct cpumask allowed_cpus;
2dcd851f 99 struct list_head node;
c36cf071
JM
100 u32 last_load;
101 u64 *time_in_idle;
102 u64 *time_in_idle_timestamp;
103 struct power_table *dyn_power_table;
104 int dyn_power_table_entries;
105 struct device *cpu_dev;
106 get_static_t plat_get_static_power;
02361418 107};
02361418 108
fb8ea308 109static DEFINE_IDA(cpufreq_ida);
02373d7c 110static DEFINE_MUTEX(cooling_list_lock);
1dea432a 111static LIST_HEAD(cpufreq_cdev_list);
02361418 112
02361418
ADK
113/* Below code defines functions to be used for cpufreq as cooling device */
114
115/**
4843c4a1 116 * get_level: Find the level for a particular frequency
1dea432a 117 * @cpufreq_cdev: cpufreq_cdev for which the property is required
4843c4a1 118 * @freq: Frequency
82b9ee40 119 *
4843c4a1 120 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 121 */
1dea432a 122static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
4843c4a1 123 unsigned int freq)
02361418 124{
4843c4a1 125 unsigned long level;
a116776f 126
1dea432a
VK
127 for (level = 0; level <= cpufreq_cdev->max_level; level++) {
128 if (freq == cpufreq_cdev->freq_table[level])
4843c4a1 129 return level;
02361418 130
1dea432a 131 if (freq > cpufreq_cdev->freq_table[level])
4843c4a1 132 break;
fc35b35c 133 }
02361418 134
4843c4a1 135 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
136}
137
02361418
ADK
138/**
139 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
140 * @nb: struct notifier_block * with callback info.
141 * @event: value showing cpufreq event for which this function invoked.
142 * @data: callback-specific data
bab30554 143 *
9746b6e7 144 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
145 * Every time there is a change in policy, we will intercept and
146 * update the cpufreq policy with thermal constraints.
147 *
148 * Return: 0 (success)
02361418
ADK
149 */
150static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 151 unsigned long event, void *data)
02361418
ADK
152{
153 struct cpufreq_policy *policy = data;
abcbcc25 154 unsigned long clipped_freq;
1dea432a 155 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 156
a24af233
VK
157 if (event != CPUFREQ_ADJUST)
158 return NOTIFY_DONE;
02361418 159
a24af233 160 mutex_lock(&cooling_list_lock);
1dea432a
VK
161 list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
162 if (!cpumask_test_cpu(policy->cpu, &cpufreq_cdev->allowed_cpus))
a24af233 163 continue;
c36cf071 164
1afb9c53
VK
165 /*
166 * policy->max is the maximum allowed frequency defined by user
167 * and clipped_freq is the maximum that thermal constraints
168 * allow.
169 *
170 * If clipped_freq is lower than policy->max, then we need to
171 * readjust policy->max.
172 *
173 * But, if clipped_freq is greater than policy->max, we don't
174 * need to do anything.
175 */
1dea432a 176 clipped_freq = cpufreq_cdev->clipped_freq;
c36cf071 177
1afb9c53 178 if (policy->max > clipped_freq)
abcbcc25 179 cpufreq_verify_within_limits(policy, 0, clipped_freq);
c36cf071 180 break;
c36cf071 181 }
a24af233 182 mutex_unlock(&cooling_list_lock);
c36cf071
JM
183
184 return NOTIFY_OK;
185}
186
187/**
188 * build_dyn_power_table() - create a dynamic power to frequency table
1dea432a 189 * @cpufreq_cdev: the cpufreq cooling device in which to store the table
c36cf071
JM
190 * @capacitance: dynamic power coefficient for these cpus
191 *
192 * Build a dynamic power to frequency table for this cpu and store it
1dea432a 193 * in @cpufreq_cdev. This table will be used in cpu_power_to_freq() and
c36cf071
JM
194 * cpu_freq_to_power() to convert between power and frequency
195 * efficiently. Power is stored in mW, frequency in KHz. The
196 * resulting table is in ascending order.
197 *
459ac375
JM
198 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
199 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
200 * added/enabled while the function was executing.
c36cf071 201 */
1dea432a 202static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
203 u32 capacitance)
204{
205 struct power_table *power_table;
206 struct dev_pm_opp *opp;
207 struct device *dev = NULL;
eba4f88d 208 int num_opps = 0, cpu, i, ret = 0;
c36cf071
JM
209 unsigned long freq;
210
1dea432a 211 for_each_cpu(cpu, &cpufreq_cdev->allowed_cpus) {
c36cf071
JM
212 dev = get_cpu_device(cpu);
213 if (!dev) {
04bdbdf9 214 dev_warn(&cpufreq_cdev->cdev->device,
c36cf071 215 "No cpu device for cpu %d\n", cpu);
2dcd851f 216 continue;
c36cf071 217 }
2dcd851f 218
c36cf071 219 num_opps = dev_pm_opp_get_opp_count(dev);
459ac375 220 if (num_opps > 0)
c36cf071 221 break;
459ac375
JM
222 else if (num_opps < 0)
223 return num_opps;
c36cf071 224 }
02361418 225
459ac375
JM
226 if (num_opps == 0)
227 return -EINVAL;
02361418 228
c36cf071 229 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
459ac375
JM
230 if (!power_table)
231 return -ENOMEM;
232
c36cf071
JM
233 for (freq = 0, i = 0;
234 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
235 freq++, i++) {
236 u32 freq_mhz, voltage_mv;
237 u64 power;
238
459ac375 239 if (i >= num_opps) {
eba4f88d
JM
240 ret = -EAGAIN;
241 goto free_power_table;
459ac375
JM
242 }
243
c36cf071
JM
244 freq_mhz = freq / 1000000;
245 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
8a31d9d9 246 dev_pm_opp_put(opp);
c36cf071
JM
247
248 /*
249 * Do the multiplication with MHz and millivolt so as
250 * to not overflow.
251 */
252 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
253 do_div(power, 1000000000);
254
255 /* frequency is stored in power_table in KHz */
256 power_table[i].frequency = freq / 1000;
257
258 /* power is stored in mW */
259 power_table[i].power = power;
260 }
261
eba4f88d
JM
262 if (i != num_opps) {
263 ret = PTR_ERR(opp);
264 goto free_power_table;
265 }
c36cf071 266
1dea432a
VK
267 cpufreq_cdev->cpu_dev = dev;
268 cpufreq_cdev->dyn_power_table = power_table;
269 cpufreq_cdev->dyn_power_table_entries = i;
c36cf071 270
459ac375 271 return 0;
eba4f88d
JM
272
273free_power_table:
274 kfree(power_table);
275
276 return ret;
c36cf071
JM
277}
278
1dea432a 279static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
280 u32 freq)
281{
282 int i;
1dea432a 283 struct power_table *pt = cpufreq_cdev->dyn_power_table;
c36cf071 284
1dea432a 285 for (i = 1; i < cpufreq_cdev->dyn_power_table_entries; i++)
c36cf071
JM
286 if (freq < pt[i].frequency)
287 break;
288
289 return pt[i - 1].power;
290}
291
1dea432a 292static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
293 u32 power)
294{
295 int i;
1dea432a 296 struct power_table *pt = cpufreq_cdev->dyn_power_table;
c36cf071 297
1dea432a 298 for (i = 1; i < cpufreq_cdev->dyn_power_table_entries; i++)
c36cf071
JM
299 if (power < pt[i].power)
300 break;
301
302 return pt[i - 1].frequency;
303}
304
305/**
306 * get_load() - get load for a cpu since last updated
1dea432a 307 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
c36cf071 308 * @cpu: cpu number
1dea432a 309 * @cpu_idx: index of the cpu in cpufreq_cdev->allowed_cpus
c36cf071
JM
310 *
311 * Return: The average load of cpu @cpu in percentage since this
312 * function was last called.
313 */
1dea432a 314static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
a53b8394 315 int cpu_idx)
c36cf071
JM
316{
317 u32 load;
318 u64 now, now_idle, delta_time, delta_idle;
319
320 now_idle = get_cpu_idle_time(cpu, &now, 0);
1dea432a
VK
321 delta_idle = now_idle - cpufreq_cdev->time_in_idle[cpu_idx];
322 delta_time = now - cpufreq_cdev->time_in_idle_timestamp[cpu_idx];
c36cf071
JM
323
324 if (delta_time <= delta_idle)
325 load = 0;
326 else
327 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
328
1dea432a
VK
329 cpufreq_cdev->time_in_idle[cpu_idx] = now_idle;
330 cpufreq_cdev->time_in_idle_timestamp[cpu_idx] = now;
c36cf071
JM
331
332 return load;
333}
334
335/**
336 * get_static_power() - calculate the static power consumed by the cpus
1dea432a 337 * @cpufreq_cdev: struct &cpufreq_cooling_device for this cpu cdev
c36cf071
JM
338 * @tz: thermal zone device in which we're operating
339 * @freq: frequency in KHz
340 * @power: pointer in which to store the calculated static power
341 *
342 * Calculate the static power consumed by the cpus described by
343 * @cpu_actor running at frequency @freq. This function relies on a
344 * platform specific function that should have been provided when the
345 * actor was registered. If it wasn't, the static power is assumed to
346 * be negligible. The calculated static power is stored in @power.
347 *
348 * Return: 0 on success, -E* on failure.
349 */
1dea432a 350static int get_static_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
351 struct thermal_zone_device *tz, unsigned long freq,
352 u32 *power)
353{
354 struct dev_pm_opp *opp;
355 unsigned long voltage;
1dea432a 356 struct cpumask *cpumask = &cpufreq_cdev->allowed_cpus;
c36cf071
JM
357 unsigned long freq_hz = freq * 1000;
358
1dea432a 359 if (!cpufreq_cdev->plat_get_static_power || !cpufreq_cdev->cpu_dev) {
c36cf071
JM
360 *power = 0;
361 return 0;
362 }
363
1dea432a 364 opp = dev_pm_opp_find_freq_exact(cpufreq_cdev->cpu_dev, freq_hz,
c36cf071 365 true);
3ea3217c 366 if (IS_ERR(opp)) {
1dea432a 367 dev_warn_ratelimited(cpufreq_cdev->cpu_dev,
3ea3217c
VK
368 "Failed to find OPP for frequency %lu: %ld\n",
369 freq_hz, PTR_ERR(opp));
370 return -EINVAL;
371 }
372
c36cf071 373 voltage = dev_pm_opp_get_voltage(opp);
8a31d9d9 374 dev_pm_opp_put(opp);
c36cf071
JM
375
376 if (voltage == 0) {
1dea432a 377 dev_err_ratelimited(cpufreq_cdev->cpu_dev,
3ea3217c
VK
378 "Failed to get voltage for frequency %lu\n",
379 freq_hz);
c36cf071
JM
380 return -EINVAL;
381 }
382
1dea432a
VK
383 return cpufreq_cdev->plat_get_static_power(cpumask, tz->passive_delay,
384 voltage, power);
c36cf071
JM
385}
386
387/**
388 * get_dynamic_power() - calculate the dynamic power
1dea432a 389 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
c36cf071
JM
390 * @freq: current frequency
391 *
392 * Return: the dynamic power consumed by the cpus described by
1dea432a 393 * @cpufreq_cdev.
c36cf071 394 */
1dea432a 395static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
396 unsigned long freq)
397{
398 u32 raw_cpu_power;
399
1dea432a
VK
400 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
401 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
02361418
ADK
402}
403
1b9e3526 404/* cpufreq cooling device callback functions are defined below */
02361418
ADK
405
406/**
407 * cpufreq_get_max_state - callback function to get the max cooling state.
408 * @cdev: thermal cooling device pointer.
409 * @state: fill this variable with the max cooling state.
62c00421
EV
410 *
411 * Callback for the thermal cooling device to return the cpufreq
412 * max cooling state.
413 *
414 * Return: 0 on success, an error code otherwise.
02361418
ADK
415 */
416static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
417 unsigned long *state)
418{
1dea432a 419 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
9c51b05a 420
1dea432a 421 *state = cpufreq_cdev->max_level;
dcc6c7fd 422 return 0;
02361418
ADK
423}
424
425/**
426 * cpufreq_get_cur_state - callback function to get the current cooling state.
427 * @cdev: thermal cooling device pointer.
428 * @state: fill this variable with the current cooling state.
3672552d
EV
429 *
430 * Callback for the thermal cooling device to return the cpufreq
431 * current cooling state.
432 *
433 * Return: 0 on success, an error code otherwise.
02361418
ADK
434 */
435static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
436 unsigned long *state)
437{
1dea432a 438 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
02361418 439
1dea432a 440 *state = cpufreq_cdev->cpufreq_state;
79491e53 441
160b7d80 442 return 0;
02361418
ADK
443}
444
445/**
446 * cpufreq_set_cur_state - callback function to set the current cooling state.
447 * @cdev: thermal cooling device pointer.
448 * @state: set this variable to the current cooling state.
56e05fdb
EV
449 *
450 * Callback for the thermal cooling device to change the cpufreq
451 * current cooling state.
452 *
453 * Return: 0 on success, an error code otherwise.
02361418
ADK
454 */
455static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
456 unsigned long state)
457{
1dea432a 458 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
5194fe46 459 unsigned int clip_freq;
4843c4a1
VK
460
461 /* Request state should be less than max_level */
1dea432a 462 if (WARN_ON(state > cpufreq_cdev->max_level))
4843c4a1 463 return -EINVAL;
5194fe46
VK
464
465 /* Check if the old cooling action is same as new cooling action */
1dea432a 466 if (cpufreq_cdev->cpufreq_state == state)
5194fe46 467 return 0;
02361418 468
1dea432a
VK
469 clip_freq = cpufreq_cdev->freq_table[state];
470 cpufreq_cdev->cpufreq_state = state;
471 cpufreq_cdev->clipped_freq = clip_freq;
5194fe46 472
18f301c9 473 cpufreq_update_policy(cpumask_any(&cpufreq_cdev->allowed_cpus));
5194fe46
VK
474
475 return 0;
02361418
ADK
476}
477
c36cf071
JM
478/**
479 * cpufreq_get_requested_power() - get the current power
480 * @cdev: &thermal_cooling_device pointer
481 * @tz: a valid thermal zone device pointer
482 * @power: pointer in which to store the resulting power
483 *
484 * Calculate the current power consumption of the cpus in milliwatts
485 * and store it in @power. This function should actually calculate
486 * the requested power, but it's hard to get the frequency that
487 * cpufreq would have assigned if there were no thermal limits.
488 * Instead, we calculate the current power on the assumption that the
489 * immediate future will look like the immediate past.
490 *
491 * We use the current frequency and the average load since this
492 * function was last called. In reality, there could have been
493 * multiple opps since this function was last called and that affects
494 * the load calculation. While it's not perfectly accurate, this
495 * simplification is good enough and works. REVISIT this, as more
496 * complex code may be needed if experiments show that it's not
497 * accurate enough.
498 *
499 * Return: 0 on success, -E* if getting the static power failed.
500 */
501static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
502 struct thermal_zone_device *tz,
503 u32 *power)
504{
505 unsigned long freq;
6828a471 506 int i = 0, cpu, ret;
c36cf071 507 u32 static_power, dynamic_power, total_load = 0;
1dea432a 508 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
6828a471 509 u32 *load_cpu = NULL;
c36cf071 510
1dea432a 511 cpu = cpumask_any_and(&cpufreq_cdev->allowed_cpus, cpu_online_mask);
dd658e02
KS
512
513 /*
514 * All the CPUs are offline, thus the requested power by
515 * the cdev is 0
516 */
517 if (cpu >= nr_cpu_ids) {
518 *power = 0;
519 return 0;
520 }
521
522 freq = cpufreq_quick_get(cpu);
c36cf071 523
6828a471 524 if (trace_thermal_power_cpu_get_power_enabled()) {
1dea432a 525 u32 ncpus = cpumask_weight(&cpufreq_cdev->allowed_cpus);
6828a471 526
a71544cd 527 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
528 }
529
1dea432a 530 for_each_cpu(cpu, &cpufreq_cdev->allowed_cpus) {
c36cf071
JM
531 u32 load;
532
533 if (cpu_online(cpu))
1dea432a 534 load = get_load(cpufreq_cdev, cpu, i);
c36cf071
JM
535 else
536 load = 0;
537
538 total_load += load;
6828a471
JM
539 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
540 load_cpu[i] = load;
541
542 i++;
c36cf071
JM
543 }
544
1dea432a 545 cpufreq_cdev->last_load = total_load;
c36cf071 546
1dea432a
VK
547 dynamic_power = get_dynamic_power(cpufreq_cdev, freq);
548 ret = get_static_power(cpufreq_cdev, tz, freq, &static_power);
6828a471 549 if (ret) {
a71544cd 550 kfree(load_cpu);
c36cf071 551 return ret;
6828a471
JM
552 }
553
554 if (load_cpu) {
555 trace_thermal_power_cpu_get_power(
1dea432a 556 &cpufreq_cdev->allowed_cpus,
6828a471
JM
557 freq, load_cpu, i, dynamic_power, static_power);
558
a71544cd 559 kfree(load_cpu);
6828a471 560 }
c36cf071
JM
561
562 *power = static_power + dynamic_power;
563 return 0;
564}
565
566/**
567 * cpufreq_state2power() - convert a cpu cdev state to power consumed
568 * @cdev: &thermal_cooling_device pointer
569 * @tz: a valid thermal zone device pointer
570 * @state: cooling device state to be converted
571 * @power: pointer in which to store the resulting power
572 *
573 * Convert cooling device state @state into power consumption in
574 * milliwatts assuming 100% load. Store the calculated power in
575 * @power.
576 *
577 * Return: 0 on success, -EINVAL if the cooling device state could not
578 * be converted into a frequency or other -E* if there was an error
579 * when calculating the static power.
580 */
581static int cpufreq_state2power(struct thermal_cooling_device *cdev,
582 struct thermal_zone_device *tz,
583 unsigned long state, u32 *power)
584{
585 unsigned int freq, num_cpus;
d9cc34a6 586 cpumask_var_t cpumask;
c36cf071
JM
587 u32 static_power, dynamic_power;
588 int ret;
1dea432a 589 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 590
d9cc34a6
AB
591 if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
592 return -ENOMEM;
593
1dea432a 594 cpumask_and(cpumask, &cpufreq_cdev->allowed_cpus, cpu_online_mask);
d9cc34a6 595 num_cpus = cpumask_weight(cpumask);
c36cf071
JM
596
597 /* None of our cpus are online, so no power */
598 if (num_cpus == 0) {
599 *power = 0;
d9cc34a6
AB
600 ret = 0;
601 goto out;
c36cf071
JM
602 }
603
1dea432a 604 freq = cpufreq_cdev->freq_table[state];
d9cc34a6
AB
605 if (!freq) {
606 ret = -EINVAL;
607 goto out;
608 }
c36cf071 609
1dea432a
VK
610 dynamic_power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
611 ret = get_static_power(cpufreq_cdev, tz, freq, &static_power);
c36cf071 612 if (ret)
d9cc34a6 613 goto out;
c36cf071
JM
614
615 *power = static_power + dynamic_power;
d9cc34a6
AB
616out:
617 free_cpumask_var(cpumask);
618 return ret;
c36cf071
JM
619}
620
621/**
622 * cpufreq_power2state() - convert power to a cooling device state
623 * @cdev: &thermal_cooling_device pointer
624 * @tz: a valid thermal zone device pointer
625 * @power: power in milliwatts to be converted
626 * @state: pointer in which to store the resulting state
627 *
628 * Calculate a cooling device state for the cpus described by @cdev
629 * that would allow them to consume at most @power mW and store it in
630 * @state. Note that this calculation depends on external factors
631 * such as the cpu load or the current static power. Calling this
632 * function with the same power as input can yield different cooling
633 * device states depending on those external factors.
634 *
635 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
636 * the calculated frequency could not be converted to a valid state.
637 * The latter should not happen unless the frequencies available to
638 * cpufreq have changed since the initialization of the cpu cooling
639 * device.
640 */
641static int cpufreq_power2state(struct thermal_cooling_device *cdev,
642 struct thermal_zone_device *tz, u32 power,
643 unsigned long *state)
644{
645 unsigned int cpu, cur_freq, target_freq;
646 int ret;
647 s32 dyn_power;
648 u32 last_load, normalised_power, static_power;
1dea432a 649 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 650
1dea432a 651 cpu = cpumask_any_and(&cpufreq_cdev->allowed_cpus, cpu_online_mask);
c36cf071
JM
652
653 /* None of our cpus are online */
654 if (cpu >= nr_cpu_ids)
655 return -ENODEV;
656
657 cur_freq = cpufreq_quick_get(cpu);
1dea432a 658 ret = get_static_power(cpufreq_cdev, tz, cur_freq, &static_power);
c36cf071
JM
659 if (ret)
660 return ret;
661
662 dyn_power = power - static_power;
663 dyn_power = dyn_power > 0 ? dyn_power : 0;
1dea432a 664 last_load = cpufreq_cdev->last_load ?: 1;
c36cf071 665 normalised_power = (dyn_power * 100) / last_load;
1dea432a 666 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
c36cf071 667
3e08b2df 668 *state = get_level(cpufreq_cdev, target_freq);
c36cf071 669 if (*state == THERMAL_CSTATE_INVALID) {
9aec9082
VK
670 dev_err_ratelimited(&cdev->device,
671 "Failed to convert %dKHz for cpu %d into a cdev state\n",
672 target_freq, cpu);
c36cf071
JM
673 return -EINVAL;
674 }
675
1dea432a 676 trace_thermal_power_cpu_limit(&cpufreq_cdev->allowed_cpus,
6828a471 677 target_freq, *state, power);
c36cf071
JM
678 return 0;
679}
680
02361418 681/* Bind cpufreq callbacks to thermal cooling device ops */
a305a438 682
c36cf071 683static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
684 .get_max_state = cpufreq_get_max_state,
685 .get_cur_state = cpufreq_get_cur_state,
686 .set_cur_state = cpufreq_set_cur_state,
687};
688
a305a438
BJ
689static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
690 .get_max_state = cpufreq_get_max_state,
691 .get_cur_state = cpufreq_get_cur_state,
692 .set_cur_state = cpufreq_set_cur_state,
693 .get_requested_power = cpufreq_get_requested_power,
694 .state2power = cpufreq_state2power,
695 .power2state = cpufreq_power2state,
696};
697
02361418
ADK
698/* Notifier for cpufreq policy change */
699static struct notifier_block thermal_cpufreq_notifier_block = {
700 .notifier_call = cpufreq_thermal_notifier,
701};
702
f6859014
VK
703static unsigned int find_next_max(struct cpufreq_frequency_table *table,
704 unsigned int prev_max)
705{
706 struct cpufreq_frequency_table *pos;
707 unsigned int max = 0;
708
709 cpufreq_for_each_valid_entry(pos, table) {
710 if (pos->frequency > max && pos->frequency < prev_max)
711 max = pos->frequency;
712 }
713
714 return max;
715}
716
02361418 717/**
39d99cff
EV
718 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
719 * @np: a valid struct device_node to the cooling device device tree node
02361418 720 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
405fb825 721 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
722 * @capacitance: dynamic power coefficient for these cpus
723 * @plat_static_func: function to calculate the static power consumed by these
724 * cpus (optional)
12cb08ba
EV
725 *
726 * This interface function registers the cpufreq cooling device with the name
727 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
728 * cooling devices. It also gives the opportunity to link the cooling device
729 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
730 *
731 * Return: a valid struct thermal_cooling_device pointer on success,
732 * on failure, it returns a corresponding ERR_PTR().
02361418 733 */
39d99cff
EV
734static struct thermal_cooling_device *
735__cpufreq_cooling_register(struct device_node *np,
c36cf071
JM
736 const struct cpumask *clip_cpus, u32 capacitance,
737 get_static_t plat_static_func)
02361418 738{
f8bfc116 739 struct cpufreq_policy *policy;
04bdbdf9 740 struct thermal_cooling_device *cdev;
1dea432a 741 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 742 char dev_name[THERMAL_NAME_LENGTH];
dcc6c7fd 743 struct cpufreq_frequency_table *pos, *table;
d9cc34a6 744 cpumask_var_t temp_mask;
c36cf071 745 unsigned int freq, i, num_cpus;
405fb825 746 int ret;
a305a438 747 struct thermal_cooling_device_ops *cooling_ops;
088db931 748 bool first;
02361418 749
d9cc34a6
AB
750 if (!alloc_cpumask_var(&temp_mask, GFP_KERNEL))
751 return ERR_PTR(-ENOMEM);
752
753 cpumask_and(temp_mask, clip_cpus, cpu_online_mask);
754 policy = cpufreq_cpu_get(cpumask_first(temp_mask));
f8bfc116
VK
755 if (!policy) {
756 pr_debug("%s: CPUFreq policy not found\n", __func__);
04bdbdf9 757 cdev = ERR_PTR(-EPROBE_DEFER);
d9cc34a6 758 goto free_cpumask;
f8bfc116
VK
759 }
760
761 table = policy->freq_table;
dcc6c7fd 762 if (!table) {
0f1be51c 763 pr_debug("%s: CPUFreq table not found\n", __func__);
04bdbdf9 764 cdev = ERR_PTR(-ENODEV);
f8bfc116 765 goto put_policy;
02361418 766 }
0f1be51c 767
1dea432a
VK
768 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
769 if (!cpufreq_cdev) {
04bdbdf9 770 cdev = ERR_PTR(-ENOMEM);
f8bfc116
VK
771 goto put_policy;
772 }
02361418 773
c36cf071 774 num_cpus = cpumask_weight(clip_cpus);
1dea432a
VK
775 cpufreq_cdev->time_in_idle = kcalloc(num_cpus,
776 sizeof(*cpufreq_cdev->time_in_idle),
c36cf071 777 GFP_KERNEL);
1dea432a 778 if (!cpufreq_cdev->time_in_idle) {
04bdbdf9 779 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
780 goto free_cdev;
781 }
782
1dea432a
VK
783 cpufreq_cdev->time_in_idle_timestamp =
784 kcalloc(num_cpus, sizeof(*cpufreq_cdev->time_in_idle_timestamp),
c36cf071 785 GFP_KERNEL);
1dea432a 786 if (!cpufreq_cdev->time_in_idle_timestamp) {
04bdbdf9 787 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
788 goto free_time_in_idle;
789 }
790
dcc6c7fd
VK
791 /* Find max levels */
792 cpufreq_for_each_valid_entry(pos, table)
1dea432a 793 cpufreq_cdev->max_level++;
dcc6c7fd 794
1dea432a
VK
795 cpufreq_cdev->freq_table = kmalloc(sizeof(*cpufreq_cdev->freq_table) *
796 cpufreq_cdev->max_level, GFP_KERNEL);
797 if (!cpufreq_cdev->freq_table) {
04bdbdf9 798 cdev = ERR_PTR(-ENOMEM);
c36cf071 799 goto free_time_in_idle_timestamp;
f6859014
VK
800 }
801
dcc6c7fd 802 /* max_level is an index, not a counter */
1dea432a 803 cpufreq_cdev->max_level--;
dcc6c7fd 804
1dea432a 805 cpumask_copy(&cpufreq_cdev->allowed_cpus, clip_cpus);
02361418 806
c36cf071 807 if (capacitance) {
1dea432a 808 cpufreq_cdev->plat_get_static_power = plat_static_func;
c36cf071 809
1dea432a 810 ret = build_dyn_power_table(cpufreq_cdev, capacitance);
c36cf071 811 if (ret) {
04bdbdf9 812 cdev = ERR_PTR(ret);
c36cf071
JM
813 goto free_table;
814 }
a305a438
BJ
815
816 cooling_ops = &cpufreq_power_cooling_ops;
817 } else {
818 cooling_ops = &cpufreq_cooling_ops;
c36cf071
JM
819 }
820
ae606089
MW
821 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
822 if (ret < 0) {
04bdbdf9 823 cdev = ERR_PTR(ret);
eba4f88d 824 goto free_power_table;
02361418 825 }
1dea432a 826 cpufreq_cdev->id = ret;
02361418 827
f6859014 828 /* Fill freq-table in descending order of frequencies */
1dea432a 829 for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
f6859014 830 freq = find_next_max(table, freq);
1dea432a 831 cpufreq_cdev->freq_table[i] = freq;
f6859014
VK
832
833 /* Warn for duplicate entries */
834 if (!freq)
835 pr_warn("%s: table has duplicate entries\n", __func__);
836 else
837 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 838 }
f6859014 839
f840ab18 840 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
1dea432a 841 cpufreq_cdev->id);
f840ab18 842
04bdbdf9
VK
843 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
844 cooling_ops);
845 if (IS_ERR(cdev))
ae606089 846 goto remove_ida;
f840ab18 847
1dea432a 848 cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0];
04bdbdf9 849 cpufreq_cdev->cdev = cdev;
92e615ec 850
02373d7c 851 mutex_lock(&cooling_list_lock);
088db931 852 /* Register the notifier for first cpufreq cooling device */
1dea432a
VK
853 first = list_empty(&cpufreq_cdev_list);
854 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
088db931 855 mutex_unlock(&cooling_list_lock);
02373d7c 856
088db931 857 if (first)
02361418 858 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 859 CPUFREQ_POLICY_NOTIFIER);
79491e53 860
f8bfc116 861 goto put_policy;
730abe06 862
ae606089 863remove_ida:
1dea432a 864 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
eba4f88d 865free_power_table:
1dea432a 866 kfree(cpufreq_cdev->dyn_power_table);
f6859014 867free_table:
1dea432a 868 kfree(cpufreq_cdev->freq_table);
c36cf071 869free_time_in_idle_timestamp:
1dea432a 870 kfree(cpufreq_cdev->time_in_idle_timestamp);
c36cf071 871free_time_in_idle:
1dea432a 872 kfree(cpufreq_cdev->time_in_idle);
730abe06 873free_cdev:
1dea432a 874 kfree(cpufreq_cdev);
f8bfc116
VK
875put_policy:
876 cpufreq_cpu_put(policy);
d9cc34a6
AB
877free_cpumask:
878 free_cpumask_var(temp_mask);
04bdbdf9 879 return cdev;
02361418 880}
39d99cff
EV
881
882/**
883 * cpufreq_cooling_register - function to create cpufreq cooling device.
884 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
885 *
886 * This interface function registers the cpufreq cooling device with the name
887 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
888 * cooling devices.
889 *
890 * Return: a valid struct thermal_cooling_device pointer on success,
891 * on failure, it returns a corresponding ERR_PTR().
892 */
893struct thermal_cooling_device *
894cpufreq_cooling_register(const struct cpumask *clip_cpus)
895{
c36cf071 896 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
39d99cff 897}
243dbd9c 898EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 899
39d99cff
EV
900/**
901 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
902 * @np: a valid struct device_node to the cooling device device tree node
903 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
904 *
905 * This interface function registers the cpufreq cooling device with the name
906 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
907 * cooling devices. Using this API, the cpufreq cooling device will be
908 * linked to the device tree node provided.
909 *
910 * Return: a valid struct thermal_cooling_device pointer on success,
911 * on failure, it returns a corresponding ERR_PTR().
912 */
913struct thermal_cooling_device *
914of_cpufreq_cooling_register(struct device_node *np,
915 const struct cpumask *clip_cpus)
916{
917 if (!np)
918 return ERR_PTR(-EINVAL);
919
c36cf071 920 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
39d99cff
EV
921}
922EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
923
c36cf071
JM
924/**
925 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
926 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
927 * @capacitance: dynamic power coefficient for these cpus
928 * @plat_static_func: function to calculate the static power consumed by these
929 * cpus (optional)
930 *
931 * This interface function registers the cpufreq cooling device with
932 * the name "thermal-cpufreq-%x". This api can support multiple
933 * instances of cpufreq cooling devices. Using this function, the
934 * cooling device will implement the power extensions by using a
935 * simple cpu power model. The cpus must have registered their OPPs
936 * using the OPP library.
937 *
938 * An optional @plat_static_func may be provided to calculate the
939 * static power consumed by these cpus. If the platform's static
940 * power consumption is unknown or negligible, make it NULL.
941 *
942 * Return: a valid struct thermal_cooling_device pointer on success,
943 * on failure, it returns a corresponding ERR_PTR().
944 */
945struct thermal_cooling_device *
946cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
947 get_static_t plat_static_func)
948{
949 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
950 plat_static_func);
951}
952EXPORT_SYMBOL(cpufreq_power_cooling_register);
953
954/**
955 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
956 * @np: a valid struct device_node to the cooling device device tree node
957 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
958 * @capacitance: dynamic power coefficient for these cpus
959 * @plat_static_func: function to calculate the static power consumed by these
960 * cpus (optional)
961 *
962 * This interface function registers the cpufreq cooling device with
963 * the name "thermal-cpufreq-%x". This api can support multiple
964 * instances of cpufreq cooling devices. Using this API, the cpufreq
965 * cooling device will be linked to the device tree node provided.
966 * Using this function, the cooling device will implement the power
967 * extensions by using a simple cpu power model. The cpus must have
968 * registered their OPPs using the OPP library.
969 *
970 * An optional @plat_static_func may be provided to calculate the
971 * static power consumed by these cpus. If the platform's static
972 * power consumption is unknown or negligible, make it NULL.
973 *
974 * Return: a valid struct thermal_cooling_device pointer on success,
975 * on failure, it returns a corresponding ERR_PTR().
976 */
977struct thermal_cooling_device *
978of_cpufreq_power_cooling_register(struct device_node *np,
979 const struct cpumask *clip_cpus,
980 u32 capacitance,
981 get_static_t plat_static_func)
982{
983 if (!np)
984 return ERR_PTR(-EINVAL);
985
986 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
987 plat_static_func);
988}
989EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
990
02361418
ADK
991/**
992 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
993 * @cdev: thermal cooling device pointer.
135266b4
EV
994 *
995 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
996 */
997void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
998{
1dea432a 999 struct cpufreq_cooling_device *cpufreq_cdev;
088db931 1000 bool last;
02361418 1001
50e66c7e
EV
1002 if (!cdev)
1003 return;
1004
1dea432a 1005 cpufreq_cdev = cdev->devdata;
02361418 1006
ae606089 1007 mutex_lock(&cooling_list_lock);
1dea432a 1008 list_del(&cpufreq_cdev->node);
02361418 1009 /* Unregister the notifier for the last cpufreq cooling device */
1dea432a 1010 last = list_empty(&cpufreq_cdev_list);
088db931
MW
1011 mutex_unlock(&cooling_list_lock);
1012
1013 if (last)
02361418 1014 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 1015 CPUFREQ_POLICY_NOTIFIER);
02373d7c 1016
04bdbdf9 1017 thermal_cooling_device_unregister(cpufreq_cdev->cdev);
1dea432a
VK
1018 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
1019 kfree(cpufreq_cdev->dyn_power_table);
1020 kfree(cpufreq_cdev->time_in_idle_timestamp);
1021 kfree(cpufreq_cdev->time_in_idle);
1022 kfree(cpufreq_cdev->freq_table);
1023 kfree(cpufreq_cdev);
02361418 1024}
243dbd9c 1025EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);