]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/thermal/cpu_cooling.c
thermal: cpu_cooling: store cpufreq policy
[mirror_ubuntu-jammy-kernel.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
ae606089 29#include <linux/idr.h>
c36cf071 30#include <linux/pm_opp.h>
02361418
ADK
31#include <linux/slab.h>
32#include <linux/cpu.h>
33#include <linux/cpu_cooling.h>
34
6828a471
JM
35#include <trace/events/thermal.h>
36
07d888d8
VK
37/*
38 * Cooling state <-> CPUFreq frequency
39 *
40 * Cooling states are translated to frequencies throughout this driver and this
41 * is the relation between them.
42 *
43 * Highest cooling state corresponds to lowest possible frequency.
44 *
45 * i.e.
46 * level 0 --> 1st Max Freq
47 * level 1 --> 2nd Max Freq
48 * ...
49 */
50
c36cf071
JM
51/**
52 * struct power_table - frequency to power conversion
53 * @frequency: frequency in KHz
54 * @power: power in mW
55 *
56 * This structure is built when the cooling device registers and helps
57 * in translating frequency to power and viceversa.
58 */
59struct power_table {
60 u32 frequency;
61 u32 power;
62};
63
02361418 64/**
3b3c0748 65 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
66 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * registered.
04bdbdf9 68 * @cdev: thermal_cooling_device pointer to keep track of the
3b3c0748 69 * registered cooling device.
b12b6519 70 * @policy: cpufreq policy.
02361418
ADK
71 * @cpufreq_state: integer value representing the current state of cpufreq
72 * cooling devices.
59f0d218 73 * @clipped_freq: integer value representing the absolute value of the clipped
02361418 74 * frequency.
dcc6c7fd
VK
75 * @max_level: maximum cooling level. One less than total number of valid
76 * cpufreq frequencies.
02361418 77 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 78 * @node: list_head to link all cpufreq_cooling_device together.
0744f130 79 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
c36cf071
JM
80 * @time_in_idle: previous reading of the absolute time that this cpu was idle
81 * @time_in_idle_timestamp: wall time of the last invocation of
82 * get_cpu_idle_time_us()
83 * @dyn_power_table: array of struct power_table for frequency to power
84 * conversion, sorted in ascending order.
85 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
86 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
87 * @plat_get_static_power: callback to calculate the static power
02361418 88 *
beca6053
VK
89 * This structure is required for keeping information of each registered
90 * cpufreq_cooling_device.
02361418
ADK
91 */
92struct cpufreq_cooling_device {
93 int id;
04bdbdf9 94 struct thermal_cooling_device *cdev;
b12b6519 95 struct cpufreq_policy *policy;
02361418 96 unsigned int cpufreq_state;
59f0d218 97 unsigned int clipped_freq;
dcc6c7fd 98 unsigned int max_level;
f6859014 99 unsigned int *freq_table; /* In descending order */
02361418 100 struct cpumask allowed_cpus;
2dcd851f 101 struct list_head node;
c36cf071
JM
102 u32 last_load;
103 u64 *time_in_idle;
104 u64 *time_in_idle_timestamp;
105 struct power_table *dyn_power_table;
106 int dyn_power_table_entries;
107 struct device *cpu_dev;
108 get_static_t plat_get_static_power;
02361418 109};
02361418 110
fb8ea308 111static DEFINE_IDA(cpufreq_ida);
02373d7c 112static DEFINE_MUTEX(cooling_list_lock);
1dea432a 113static LIST_HEAD(cpufreq_cdev_list);
02361418 114
02361418
ADK
115/* Below code defines functions to be used for cpufreq as cooling device */
116
117/**
4843c4a1 118 * get_level: Find the level for a particular frequency
1dea432a 119 * @cpufreq_cdev: cpufreq_cdev for which the property is required
4843c4a1 120 * @freq: Frequency
82b9ee40 121 *
4843c4a1 122 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 123 */
1dea432a 124static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
4843c4a1 125 unsigned int freq)
02361418 126{
4843c4a1 127 unsigned long level;
a116776f 128
1dea432a
VK
129 for (level = 0; level <= cpufreq_cdev->max_level; level++) {
130 if (freq == cpufreq_cdev->freq_table[level])
4843c4a1 131 return level;
02361418 132
1dea432a 133 if (freq > cpufreq_cdev->freq_table[level])
4843c4a1 134 break;
fc35b35c 135 }
02361418 136
4843c4a1 137 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
138}
139
02361418
ADK
140/**
141 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
142 * @nb: struct notifier_block * with callback info.
143 * @event: value showing cpufreq event for which this function invoked.
144 * @data: callback-specific data
bab30554 145 *
9746b6e7 146 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
147 * Every time there is a change in policy, we will intercept and
148 * update the cpufreq policy with thermal constraints.
149 *
150 * Return: 0 (success)
02361418
ADK
151 */
152static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 153 unsigned long event, void *data)
02361418
ADK
154{
155 struct cpufreq_policy *policy = data;
abcbcc25 156 unsigned long clipped_freq;
1dea432a 157 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 158
a24af233
VK
159 if (event != CPUFREQ_ADJUST)
160 return NOTIFY_DONE;
02361418 161
a24af233 162 mutex_lock(&cooling_list_lock);
1dea432a
VK
163 list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
164 if (!cpumask_test_cpu(policy->cpu, &cpufreq_cdev->allowed_cpus))
a24af233 165 continue;
c36cf071 166
1afb9c53
VK
167 /*
168 * policy->max is the maximum allowed frequency defined by user
169 * and clipped_freq is the maximum that thermal constraints
170 * allow.
171 *
172 * If clipped_freq is lower than policy->max, then we need to
173 * readjust policy->max.
174 *
175 * But, if clipped_freq is greater than policy->max, we don't
176 * need to do anything.
177 */
1dea432a 178 clipped_freq = cpufreq_cdev->clipped_freq;
c36cf071 179
1afb9c53 180 if (policy->max > clipped_freq)
abcbcc25 181 cpufreq_verify_within_limits(policy, 0, clipped_freq);
c36cf071 182 break;
c36cf071 183 }
a24af233 184 mutex_unlock(&cooling_list_lock);
c36cf071
JM
185
186 return NOTIFY_OK;
187}
188
189/**
190 * build_dyn_power_table() - create a dynamic power to frequency table
1dea432a 191 * @cpufreq_cdev: the cpufreq cooling device in which to store the table
c36cf071
JM
192 * @capacitance: dynamic power coefficient for these cpus
193 *
194 * Build a dynamic power to frequency table for this cpu and store it
1dea432a 195 * in @cpufreq_cdev. This table will be used in cpu_power_to_freq() and
c36cf071
JM
196 * cpu_freq_to_power() to convert between power and frequency
197 * efficiently. Power is stored in mW, frequency in KHz. The
198 * resulting table is in ascending order.
199 *
459ac375
JM
200 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
201 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
202 * added/enabled while the function was executing.
c36cf071 203 */
1dea432a 204static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
205 u32 capacitance)
206{
207 struct power_table *power_table;
208 struct dev_pm_opp *opp;
209 struct device *dev = NULL;
eba4f88d 210 int num_opps = 0, cpu, i, ret = 0;
c36cf071
JM
211 unsigned long freq;
212
1dea432a 213 for_each_cpu(cpu, &cpufreq_cdev->allowed_cpus) {
c36cf071
JM
214 dev = get_cpu_device(cpu);
215 if (!dev) {
04bdbdf9 216 dev_warn(&cpufreq_cdev->cdev->device,
c36cf071 217 "No cpu device for cpu %d\n", cpu);
2dcd851f 218 continue;
c36cf071 219 }
2dcd851f 220
c36cf071 221 num_opps = dev_pm_opp_get_opp_count(dev);
459ac375 222 if (num_opps > 0)
c36cf071 223 break;
459ac375
JM
224 else if (num_opps < 0)
225 return num_opps;
c36cf071 226 }
02361418 227
459ac375
JM
228 if (num_opps == 0)
229 return -EINVAL;
02361418 230
c36cf071 231 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
459ac375
JM
232 if (!power_table)
233 return -ENOMEM;
234
c36cf071
JM
235 for (freq = 0, i = 0;
236 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
237 freq++, i++) {
238 u32 freq_mhz, voltage_mv;
239 u64 power;
240
459ac375 241 if (i >= num_opps) {
eba4f88d
JM
242 ret = -EAGAIN;
243 goto free_power_table;
459ac375
JM
244 }
245
c36cf071
JM
246 freq_mhz = freq / 1000000;
247 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
8a31d9d9 248 dev_pm_opp_put(opp);
c36cf071
JM
249
250 /*
251 * Do the multiplication with MHz and millivolt so as
252 * to not overflow.
253 */
254 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
255 do_div(power, 1000000000);
256
257 /* frequency is stored in power_table in KHz */
258 power_table[i].frequency = freq / 1000;
259
260 /* power is stored in mW */
261 power_table[i].power = power;
262 }
263
eba4f88d
JM
264 if (i != num_opps) {
265 ret = PTR_ERR(opp);
266 goto free_power_table;
267 }
c36cf071 268
1dea432a
VK
269 cpufreq_cdev->cpu_dev = dev;
270 cpufreq_cdev->dyn_power_table = power_table;
271 cpufreq_cdev->dyn_power_table_entries = i;
c36cf071 272
459ac375 273 return 0;
eba4f88d
JM
274
275free_power_table:
276 kfree(power_table);
277
278 return ret;
c36cf071
JM
279}
280
1dea432a 281static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
282 u32 freq)
283{
284 int i;
1dea432a 285 struct power_table *pt = cpufreq_cdev->dyn_power_table;
c36cf071 286
1dea432a 287 for (i = 1; i < cpufreq_cdev->dyn_power_table_entries; i++)
c36cf071
JM
288 if (freq < pt[i].frequency)
289 break;
290
291 return pt[i - 1].power;
292}
293
1dea432a 294static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
295 u32 power)
296{
297 int i;
1dea432a 298 struct power_table *pt = cpufreq_cdev->dyn_power_table;
c36cf071 299
1dea432a 300 for (i = 1; i < cpufreq_cdev->dyn_power_table_entries; i++)
c36cf071
JM
301 if (power < pt[i].power)
302 break;
303
304 return pt[i - 1].frequency;
305}
306
307/**
308 * get_load() - get load for a cpu since last updated
1dea432a 309 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
c36cf071 310 * @cpu: cpu number
1dea432a 311 * @cpu_idx: index of the cpu in cpufreq_cdev->allowed_cpus
c36cf071
JM
312 *
313 * Return: The average load of cpu @cpu in percentage since this
314 * function was last called.
315 */
1dea432a 316static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
a53b8394 317 int cpu_idx)
c36cf071
JM
318{
319 u32 load;
320 u64 now, now_idle, delta_time, delta_idle;
321
322 now_idle = get_cpu_idle_time(cpu, &now, 0);
1dea432a
VK
323 delta_idle = now_idle - cpufreq_cdev->time_in_idle[cpu_idx];
324 delta_time = now - cpufreq_cdev->time_in_idle_timestamp[cpu_idx];
c36cf071
JM
325
326 if (delta_time <= delta_idle)
327 load = 0;
328 else
329 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
330
1dea432a
VK
331 cpufreq_cdev->time_in_idle[cpu_idx] = now_idle;
332 cpufreq_cdev->time_in_idle_timestamp[cpu_idx] = now;
c36cf071
JM
333
334 return load;
335}
336
337/**
338 * get_static_power() - calculate the static power consumed by the cpus
1dea432a 339 * @cpufreq_cdev: struct &cpufreq_cooling_device for this cpu cdev
c36cf071
JM
340 * @tz: thermal zone device in which we're operating
341 * @freq: frequency in KHz
342 * @power: pointer in which to store the calculated static power
343 *
344 * Calculate the static power consumed by the cpus described by
345 * @cpu_actor running at frequency @freq. This function relies on a
346 * platform specific function that should have been provided when the
347 * actor was registered. If it wasn't, the static power is assumed to
348 * be negligible. The calculated static power is stored in @power.
349 *
350 * Return: 0 on success, -E* on failure.
351 */
1dea432a 352static int get_static_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
353 struct thermal_zone_device *tz, unsigned long freq,
354 u32 *power)
355{
356 struct dev_pm_opp *opp;
357 unsigned long voltage;
1dea432a 358 struct cpumask *cpumask = &cpufreq_cdev->allowed_cpus;
c36cf071
JM
359 unsigned long freq_hz = freq * 1000;
360
1dea432a 361 if (!cpufreq_cdev->plat_get_static_power || !cpufreq_cdev->cpu_dev) {
c36cf071
JM
362 *power = 0;
363 return 0;
364 }
365
1dea432a 366 opp = dev_pm_opp_find_freq_exact(cpufreq_cdev->cpu_dev, freq_hz,
c36cf071 367 true);
3ea3217c 368 if (IS_ERR(opp)) {
1dea432a 369 dev_warn_ratelimited(cpufreq_cdev->cpu_dev,
3ea3217c
VK
370 "Failed to find OPP for frequency %lu: %ld\n",
371 freq_hz, PTR_ERR(opp));
372 return -EINVAL;
373 }
374
c36cf071 375 voltage = dev_pm_opp_get_voltage(opp);
8a31d9d9 376 dev_pm_opp_put(opp);
c36cf071
JM
377
378 if (voltage == 0) {
1dea432a 379 dev_err_ratelimited(cpufreq_cdev->cpu_dev,
3ea3217c
VK
380 "Failed to get voltage for frequency %lu\n",
381 freq_hz);
c36cf071
JM
382 return -EINVAL;
383 }
384
1dea432a
VK
385 return cpufreq_cdev->plat_get_static_power(cpumask, tz->passive_delay,
386 voltage, power);
c36cf071
JM
387}
388
389/**
390 * get_dynamic_power() - calculate the dynamic power
1dea432a 391 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
c36cf071
JM
392 * @freq: current frequency
393 *
394 * Return: the dynamic power consumed by the cpus described by
1dea432a 395 * @cpufreq_cdev.
c36cf071 396 */
1dea432a 397static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
398 unsigned long freq)
399{
400 u32 raw_cpu_power;
401
1dea432a
VK
402 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
403 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
02361418
ADK
404}
405
1b9e3526 406/* cpufreq cooling device callback functions are defined below */
02361418
ADK
407
408/**
409 * cpufreq_get_max_state - callback function to get the max cooling state.
410 * @cdev: thermal cooling device pointer.
411 * @state: fill this variable with the max cooling state.
62c00421
EV
412 *
413 * Callback for the thermal cooling device to return the cpufreq
414 * max cooling state.
415 *
416 * Return: 0 on success, an error code otherwise.
02361418
ADK
417 */
418static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
419 unsigned long *state)
420{
1dea432a 421 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
9c51b05a 422
1dea432a 423 *state = cpufreq_cdev->max_level;
dcc6c7fd 424 return 0;
02361418
ADK
425}
426
427/**
428 * cpufreq_get_cur_state - callback function to get the current cooling state.
429 * @cdev: thermal cooling device pointer.
430 * @state: fill this variable with the current cooling state.
3672552d
EV
431 *
432 * Callback for the thermal cooling device to return the cpufreq
433 * current cooling state.
434 *
435 * Return: 0 on success, an error code otherwise.
02361418
ADK
436 */
437static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
438 unsigned long *state)
439{
1dea432a 440 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
02361418 441
1dea432a 442 *state = cpufreq_cdev->cpufreq_state;
79491e53 443
160b7d80 444 return 0;
02361418
ADK
445}
446
447/**
448 * cpufreq_set_cur_state - callback function to set the current cooling state.
449 * @cdev: thermal cooling device pointer.
450 * @state: set this variable to the current cooling state.
56e05fdb
EV
451 *
452 * Callback for the thermal cooling device to change the cpufreq
453 * current cooling state.
454 *
455 * Return: 0 on success, an error code otherwise.
02361418
ADK
456 */
457static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
458 unsigned long state)
459{
1dea432a 460 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
5194fe46 461 unsigned int clip_freq;
4843c4a1
VK
462
463 /* Request state should be less than max_level */
1dea432a 464 if (WARN_ON(state > cpufreq_cdev->max_level))
4843c4a1 465 return -EINVAL;
5194fe46
VK
466
467 /* Check if the old cooling action is same as new cooling action */
1dea432a 468 if (cpufreq_cdev->cpufreq_state == state)
5194fe46 469 return 0;
02361418 470
1dea432a
VK
471 clip_freq = cpufreq_cdev->freq_table[state];
472 cpufreq_cdev->cpufreq_state = state;
473 cpufreq_cdev->clipped_freq = clip_freq;
5194fe46 474
18f301c9 475 cpufreq_update_policy(cpumask_any(&cpufreq_cdev->allowed_cpus));
5194fe46
VK
476
477 return 0;
02361418
ADK
478}
479
c36cf071
JM
480/**
481 * cpufreq_get_requested_power() - get the current power
482 * @cdev: &thermal_cooling_device pointer
483 * @tz: a valid thermal zone device pointer
484 * @power: pointer in which to store the resulting power
485 *
486 * Calculate the current power consumption of the cpus in milliwatts
487 * and store it in @power. This function should actually calculate
488 * the requested power, but it's hard to get the frequency that
489 * cpufreq would have assigned if there were no thermal limits.
490 * Instead, we calculate the current power on the assumption that the
491 * immediate future will look like the immediate past.
492 *
493 * We use the current frequency and the average load since this
494 * function was last called. In reality, there could have been
495 * multiple opps since this function was last called and that affects
496 * the load calculation. While it's not perfectly accurate, this
497 * simplification is good enough and works. REVISIT this, as more
498 * complex code may be needed if experiments show that it's not
499 * accurate enough.
500 *
501 * Return: 0 on success, -E* if getting the static power failed.
502 */
503static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
504 struct thermal_zone_device *tz,
505 u32 *power)
506{
507 unsigned long freq;
6828a471 508 int i = 0, cpu, ret;
c36cf071 509 u32 static_power, dynamic_power, total_load = 0;
1dea432a 510 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
6828a471 511 u32 *load_cpu = NULL;
c36cf071 512
1dea432a 513 cpu = cpumask_any_and(&cpufreq_cdev->allowed_cpus, cpu_online_mask);
dd658e02
KS
514
515 /*
516 * All the CPUs are offline, thus the requested power by
517 * the cdev is 0
518 */
519 if (cpu >= nr_cpu_ids) {
520 *power = 0;
521 return 0;
522 }
523
524 freq = cpufreq_quick_get(cpu);
c36cf071 525
6828a471 526 if (trace_thermal_power_cpu_get_power_enabled()) {
1dea432a 527 u32 ncpus = cpumask_weight(&cpufreq_cdev->allowed_cpus);
6828a471 528
a71544cd 529 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
530 }
531
1dea432a 532 for_each_cpu(cpu, &cpufreq_cdev->allowed_cpus) {
c36cf071
JM
533 u32 load;
534
535 if (cpu_online(cpu))
1dea432a 536 load = get_load(cpufreq_cdev, cpu, i);
c36cf071
JM
537 else
538 load = 0;
539
540 total_load += load;
6828a471
JM
541 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
542 load_cpu[i] = load;
543
544 i++;
c36cf071
JM
545 }
546
1dea432a 547 cpufreq_cdev->last_load = total_load;
c36cf071 548
1dea432a
VK
549 dynamic_power = get_dynamic_power(cpufreq_cdev, freq);
550 ret = get_static_power(cpufreq_cdev, tz, freq, &static_power);
6828a471 551 if (ret) {
a71544cd 552 kfree(load_cpu);
c36cf071 553 return ret;
6828a471
JM
554 }
555
556 if (load_cpu) {
557 trace_thermal_power_cpu_get_power(
1dea432a 558 &cpufreq_cdev->allowed_cpus,
6828a471
JM
559 freq, load_cpu, i, dynamic_power, static_power);
560
a71544cd 561 kfree(load_cpu);
6828a471 562 }
c36cf071
JM
563
564 *power = static_power + dynamic_power;
565 return 0;
566}
567
568/**
569 * cpufreq_state2power() - convert a cpu cdev state to power consumed
570 * @cdev: &thermal_cooling_device pointer
571 * @tz: a valid thermal zone device pointer
572 * @state: cooling device state to be converted
573 * @power: pointer in which to store the resulting power
574 *
575 * Convert cooling device state @state into power consumption in
576 * milliwatts assuming 100% load. Store the calculated power in
577 * @power.
578 *
579 * Return: 0 on success, -EINVAL if the cooling device state could not
580 * be converted into a frequency or other -E* if there was an error
581 * when calculating the static power.
582 */
583static int cpufreq_state2power(struct thermal_cooling_device *cdev,
584 struct thermal_zone_device *tz,
585 unsigned long state, u32 *power)
586{
587 unsigned int freq, num_cpus;
d9cc34a6 588 cpumask_var_t cpumask;
c36cf071
JM
589 u32 static_power, dynamic_power;
590 int ret;
1dea432a 591 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 592
d9cc34a6
AB
593 if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
594 return -ENOMEM;
595
1dea432a 596 cpumask_and(cpumask, &cpufreq_cdev->allowed_cpus, cpu_online_mask);
d9cc34a6 597 num_cpus = cpumask_weight(cpumask);
c36cf071
JM
598
599 /* None of our cpus are online, so no power */
600 if (num_cpus == 0) {
601 *power = 0;
d9cc34a6
AB
602 ret = 0;
603 goto out;
c36cf071
JM
604 }
605
1dea432a 606 freq = cpufreq_cdev->freq_table[state];
d9cc34a6
AB
607 if (!freq) {
608 ret = -EINVAL;
609 goto out;
610 }
c36cf071 611
1dea432a
VK
612 dynamic_power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
613 ret = get_static_power(cpufreq_cdev, tz, freq, &static_power);
c36cf071 614 if (ret)
d9cc34a6 615 goto out;
c36cf071
JM
616
617 *power = static_power + dynamic_power;
d9cc34a6
AB
618out:
619 free_cpumask_var(cpumask);
620 return ret;
c36cf071
JM
621}
622
623/**
624 * cpufreq_power2state() - convert power to a cooling device state
625 * @cdev: &thermal_cooling_device pointer
626 * @tz: a valid thermal zone device pointer
627 * @power: power in milliwatts to be converted
628 * @state: pointer in which to store the resulting state
629 *
630 * Calculate a cooling device state for the cpus described by @cdev
631 * that would allow them to consume at most @power mW and store it in
632 * @state. Note that this calculation depends on external factors
633 * such as the cpu load or the current static power. Calling this
634 * function with the same power as input can yield different cooling
635 * device states depending on those external factors.
636 *
637 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
638 * the calculated frequency could not be converted to a valid state.
639 * The latter should not happen unless the frequencies available to
640 * cpufreq have changed since the initialization of the cpu cooling
641 * device.
642 */
643static int cpufreq_power2state(struct thermal_cooling_device *cdev,
644 struct thermal_zone_device *tz, u32 power,
645 unsigned long *state)
646{
647 unsigned int cpu, cur_freq, target_freq;
648 int ret;
649 s32 dyn_power;
650 u32 last_load, normalised_power, static_power;
1dea432a 651 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 652
1dea432a 653 cpu = cpumask_any_and(&cpufreq_cdev->allowed_cpus, cpu_online_mask);
c36cf071
JM
654
655 /* None of our cpus are online */
656 if (cpu >= nr_cpu_ids)
657 return -ENODEV;
658
659 cur_freq = cpufreq_quick_get(cpu);
1dea432a 660 ret = get_static_power(cpufreq_cdev, tz, cur_freq, &static_power);
c36cf071
JM
661 if (ret)
662 return ret;
663
664 dyn_power = power - static_power;
665 dyn_power = dyn_power > 0 ? dyn_power : 0;
1dea432a 666 last_load = cpufreq_cdev->last_load ?: 1;
c36cf071 667 normalised_power = (dyn_power * 100) / last_load;
1dea432a 668 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
c36cf071 669
3e08b2df 670 *state = get_level(cpufreq_cdev, target_freq);
c36cf071 671 if (*state == THERMAL_CSTATE_INVALID) {
9aec9082
VK
672 dev_err_ratelimited(&cdev->device,
673 "Failed to convert %dKHz for cpu %d into a cdev state\n",
674 target_freq, cpu);
c36cf071
JM
675 return -EINVAL;
676 }
677
1dea432a 678 trace_thermal_power_cpu_limit(&cpufreq_cdev->allowed_cpus,
6828a471 679 target_freq, *state, power);
c36cf071
JM
680 return 0;
681}
682
02361418 683/* Bind cpufreq callbacks to thermal cooling device ops */
a305a438 684
c36cf071 685static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
686 .get_max_state = cpufreq_get_max_state,
687 .get_cur_state = cpufreq_get_cur_state,
688 .set_cur_state = cpufreq_set_cur_state,
689};
690
a305a438
BJ
691static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
692 .get_max_state = cpufreq_get_max_state,
693 .get_cur_state = cpufreq_get_cur_state,
694 .set_cur_state = cpufreq_set_cur_state,
695 .get_requested_power = cpufreq_get_requested_power,
696 .state2power = cpufreq_state2power,
697 .power2state = cpufreq_power2state,
698};
699
02361418
ADK
700/* Notifier for cpufreq policy change */
701static struct notifier_block thermal_cpufreq_notifier_block = {
702 .notifier_call = cpufreq_thermal_notifier,
703};
704
f6859014
VK
705static unsigned int find_next_max(struct cpufreq_frequency_table *table,
706 unsigned int prev_max)
707{
708 struct cpufreq_frequency_table *pos;
709 unsigned int max = 0;
710
711 cpufreq_for_each_valid_entry(pos, table) {
712 if (pos->frequency > max && pos->frequency < prev_max)
713 max = pos->frequency;
714 }
715
716 return max;
717}
718
02361418 719/**
39d99cff
EV
720 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
721 * @np: a valid struct device_node to the cooling device device tree node
4d753aa7 722 * @policy: cpufreq policy
405fb825 723 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
724 * @capacitance: dynamic power coefficient for these cpus
725 * @plat_static_func: function to calculate the static power consumed by these
726 * cpus (optional)
12cb08ba
EV
727 *
728 * This interface function registers the cpufreq cooling device with the name
729 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
730 * cooling devices. It also gives the opportunity to link the cooling device
731 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
732 *
733 * Return: a valid struct thermal_cooling_device pointer on success,
734 * on failure, it returns a corresponding ERR_PTR().
02361418 735 */
39d99cff
EV
736static struct thermal_cooling_device *
737__cpufreq_cooling_register(struct device_node *np,
4d753aa7 738 struct cpufreq_policy *policy, u32 capacitance,
c36cf071 739 get_static_t plat_static_func)
02361418 740{
04bdbdf9 741 struct thermal_cooling_device *cdev;
1dea432a 742 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 743 char dev_name[THERMAL_NAME_LENGTH];
c36cf071 744 unsigned int freq, i, num_cpus;
405fb825 745 int ret;
a305a438 746 struct thermal_cooling_device_ops *cooling_ops;
088db931 747 bool first;
02361418 748
4d753aa7
VK
749 if (IS_ERR_OR_NULL(policy)) {
750 pr_err("%s: cpufreq policy isn't valid: %p", __func__, policy);
751 return ERR_PTR(-EINVAL);
f8bfc116
VK
752 }
753
55d85293
VK
754 i = cpufreq_table_count_valid_entries(policy);
755 if (!i) {
756 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
757 __func__);
4d753aa7 758 return ERR_PTR(-ENODEV);
02361418 759 }
0f1be51c 760
1dea432a 761 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
4d753aa7
VK
762 if (!cpufreq_cdev)
763 return ERR_PTR(-ENOMEM);
02361418 764
b12b6519 765 cpufreq_cdev->policy = policy;
4d753aa7 766 num_cpus = cpumask_weight(policy->related_cpus);
1dea432a
VK
767 cpufreq_cdev->time_in_idle = kcalloc(num_cpus,
768 sizeof(*cpufreq_cdev->time_in_idle),
c36cf071 769 GFP_KERNEL);
1dea432a 770 if (!cpufreq_cdev->time_in_idle) {
04bdbdf9 771 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
772 goto free_cdev;
773 }
774
1dea432a
VK
775 cpufreq_cdev->time_in_idle_timestamp =
776 kcalloc(num_cpus, sizeof(*cpufreq_cdev->time_in_idle_timestamp),
c36cf071 777 GFP_KERNEL);
1dea432a 778 if (!cpufreq_cdev->time_in_idle_timestamp) {
04bdbdf9 779 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
780 goto free_time_in_idle;
781 }
782
55d85293
VK
783 /* max_level is an index, not a counter */
784 cpufreq_cdev->max_level = i - 1;
dcc6c7fd 785
55d85293
VK
786 cpufreq_cdev->freq_table = kmalloc(sizeof(*cpufreq_cdev->freq_table) * i,
787 GFP_KERNEL);
1dea432a 788 if (!cpufreq_cdev->freq_table) {
04bdbdf9 789 cdev = ERR_PTR(-ENOMEM);
c36cf071 790 goto free_time_in_idle_timestamp;
f6859014
VK
791 }
792
4d753aa7 793 cpumask_copy(&cpufreq_cdev->allowed_cpus, policy->related_cpus);
02361418 794
c36cf071 795 if (capacitance) {
1dea432a 796 cpufreq_cdev->plat_get_static_power = plat_static_func;
c36cf071 797
1dea432a 798 ret = build_dyn_power_table(cpufreq_cdev, capacitance);
c36cf071 799 if (ret) {
04bdbdf9 800 cdev = ERR_PTR(ret);
c36cf071
JM
801 goto free_table;
802 }
a305a438
BJ
803
804 cooling_ops = &cpufreq_power_cooling_ops;
805 } else {
806 cooling_ops = &cpufreq_cooling_ops;
c36cf071
JM
807 }
808
ae606089
MW
809 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
810 if (ret < 0) {
04bdbdf9 811 cdev = ERR_PTR(ret);
eba4f88d 812 goto free_power_table;
02361418 813 }
1dea432a 814 cpufreq_cdev->id = ret;
02361418 815
f6859014 816 /* Fill freq-table in descending order of frequencies */
1dea432a 817 for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
55d85293 818 freq = find_next_max(policy->freq_table, freq);
1dea432a 819 cpufreq_cdev->freq_table[i] = freq;
f6859014
VK
820
821 /* Warn for duplicate entries */
822 if (!freq)
823 pr_warn("%s: table has duplicate entries\n", __func__);
824 else
825 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 826 }
f6859014 827
f840ab18 828 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
1dea432a 829 cpufreq_cdev->id);
f840ab18 830
04bdbdf9
VK
831 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
832 cooling_ops);
833 if (IS_ERR(cdev))
ae606089 834 goto remove_ida;
f840ab18 835
1dea432a 836 cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0];
04bdbdf9 837 cpufreq_cdev->cdev = cdev;
92e615ec 838
02373d7c 839 mutex_lock(&cooling_list_lock);
088db931 840 /* Register the notifier for first cpufreq cooling device */
1dea432a
VK
841 first = list_empty(&cpufreq_cdev_list);
842 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
088db931 843 mutex_unlock(&cooling_list_lock);
02373d7c 844
088db931 845 if (first)
02361418 846 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 847 CPUFREQ_POLICY_NOTIFIER);
79491e53 848
4d753aa7 849 return cdev;
730abe06 850
ae606089 851remove_ida:
1dea432a 852 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
eba4f88d 853free_power_table:
1dea432a 854 kfree(cpufreq_cdev->dyn_power_table);
f6859014 855free_table:
1dea432a 856 kfree(cpufreq_cdev->freq_table);
c36cf071 857free_time_in_idle_timestamp:
1dea432a 858 kfree(cpufreq_cdev->time_in_idle_timestamp);
c36cf071 859free_time_in_idle:
1dea432a 860 kfree(cpufreq_cdev->time_in_idle);
730abe06 861free_cdev:
1dea432a 862 kfree(cpufreq_cdev);
04bdbdf9 863 return cdev;
02361418 864}
39d99cff
EV
865
866/**
867 * cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 868 * @policy: cpufreq policy
39d99cff
EV
869 *
870 * This interface function registers the cpufreq cooling device with the name
871 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
872 * cooling devices.
873 *
874 * Return: a valid struct thermal_cooling_device pointer on success,
875 * on failure, it returns a corresponding ERR_PTR().
876 */
877struct thermal_cooling_device *
4d753aa7 878cpufreq_cooling_register(struct cpufreq_policy *policy)
39d99cff 879{
4d753aa7 880 return __cpufreq_cooling_register(NULL, policy, 0, NULL);
39d99cff 881}
243dbd9c 882EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 883
39d99cff
EV
884/**
885 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
886 * @np: a valid struct device_node to the cooling device device tree node
4d753aa7 887 * @policy: cpufreq policy
39d99cff
EV
888 *
889 * This interface function registers the cpufreq cooling device with the name
890 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
891 * cooling devices. Using this API, the cpufreq cooling device will be
892 * linked to the device tree node provided.
893 *
894 * Return: a valid struct thermal_cooling_device pointer on success,
895 * on failure, it returns a corresponding ERR_PTR().
896 */
897struct thermal_cooling_device *
898of_cpufreq_cooling_register(struct device_node *np,
4d753aa7 899 struct cpufreq_policy *policy)
39d99cff
EV
900{
901 if (!np)
902 return ERR_PTR(-EINVAL);
903
4d753aa7 904 return __cpufreq_cooling_register(np, policy, 0, NULL);
39d99cff
EV
905}
906EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
907
c36cf071
JM
908/**
909 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
4d753aa7 910 * @policy: cpufreq policy
c36cf071
JM
911 * @capacitance: dynamic power coefficient for these cpus
912 * @plat_static_func: function to calculate the static power consumed by these
913 * cpus (optional)
914 *
915 * This interface function registers the cpufreq cooling device with
916 * the name "thermal-cpufreq-%x". This api can support multiple
917 * instances of cpufreq cooling devices. Using this function, the
918 * cooling device will implement the power extensions by using a
919 * simple cpu power model. The cpus must have registered their OPPs
920 * using the OPP library.
921 *
922 * An optional @plat_static_func may be provided to calculate the
923 * static power consumed by these cpus. If the platform's static
924 * power consumption is unknown or negligible, make it NULL.
925 *
926 * Return: a valid struct thermal_cooling_device pointer on success,
927 * on failure, it returns a corresponding ERR_PTR().
928 */
929struct thermal_cooling_device *
4d753aa7 930cpufreq_power_cooling_register(struct cpufreq_policy *policy, u32 capacitance,
c36cf071
JM
931 get_static_t plat_static_func)
932{
4d753aa7 933 return __cpufreq_cooling_register(NULL, policy, capacitance,
c36cf071
JM
934 plat_static_func);
935}
936EXPORT_SYMBOL(cpufreq_power_cooling_register);
937
938/**
939 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
940 * @np: a valid struct device_node to the cooling device device tree node
4d753aa7 941 * @policy: cpufreq policy
c36cf071
JM
942 * @capacitance: dynamic power coefficient for these cpus
943 * @plat_static_func: function to calculate the static power consumed by these
944 * cpus (optional)
945 *
946 * This interface function registers the cpufreq cooling device with
947 * the name "thermal-cpufreq-%x". This api can support multiple
948 * instances of cpufreq cooling devices. Using this API, the cpufreq
949 * cooling device will be linked to the device tree node provided.
950 * Using this function, the cooling device will implement the power
951 * extensions by using a simple cpu power model. The cpus must have
952 * registered their OPPs using the OPP library.
953 *
954 * An optional @plat_static_func may be provided to calculate the
955 * static power consumed by these cpus. If the platform's static
956 * power consumption is unknown or negligible, make it NULL.
957 *
958 * Return: a valid struct thermal_cooling_device pointer on success,
959 * on failure, it returns a corresponding ERR_PTR().
960 */
961struct thermal_cooling_device *
962of_cpufreq_power_cooling_register(struct device_node *np,
4d753aa7 963 struct cpufreq_policy *policy,
c36cf071
JM
964 u32 capacitance,
965 get_static_t plat_static_func)
966{
967 if (!np)
968 return ERR_PTR(-EINVAL);
969
4d753aa7 970 return __cpufreq_cooling_register(np, policy, capacitance,
c36cf071
JM
971 plat_static_func);
972}
973EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
974
02361418
ADK
975/**
976 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
977 * @cdev: thermal cooling device pointer.
135266b4
EV
978 *
979 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
980 */
981void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
982{
1dea432a 983 struct cpufreq_cooling_device *cpufreq_cdev;
088db931 984 bool last;
02361418 985
50e66c7e
EV
986 if (!cdev)
987 return;
988
1dea432a 989 cpufreq_cdev = cdev->devdata;
02361418 990
ae606089 991 mutex_lock(&cooling_list_lock);
1dea432a 992 list_del(&cpufreq_cdev->node);
02361418 993 /* Unregister the notifier for the last cpufreq cooling device */
1dea432a 994 last = list_empty(&cpufreq_cdev_list);
088db931
MW
995 mutex_unlock(&cooling_list_lock);
996
997 if (last)
02361418 998 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 999 CPUFREQ_POLICY_NOTIFIER);
02373d7c 1000
04bdbdf9 1001 thermal_cooling_device_unregister(cpufreq_cdev->cdev);
1dea432a
VK
1002 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
1003 kfree(cpufreq_cdev->dyn_power_table);
1004 kfree(cpufreq_cdev->time_in_idle_timestamp);
1005 kfree(cpufreq_cdev->time_in_idle);
1006 kfree(cpufreq_cdev->freq_table);
1007 kfree(cpufreq_cdev);
02361418 1008}
243dbd9c 1009EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);