]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/thermal/mtk_thermal.c
thermal: mediatek: add calibration item
[mirror_ubuntu-jammy-kernel.git] / drivers / thermal / mtk_thermal.c
CommitLineData
a92db1c8
SH
1/*
2 * Copyright (c) 2015 MediaTek Inc.
3 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
4 * Sascha Hauer <s.hauer@pengutronix.de>
b7cf0053 5 * Dawei Chien <dawei.chien@mediatek.com>
6cf7f002 6 * Louis Yu <louis.yu@mediatek.com>
a92db1c8
SH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/clk.h>
19#include <linux/delay.h>
20#include <linux/interrupt.h>
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/nvmem-consumer.h>
24#include <linux/of.h>
25#include <linux/of_address.h>
b7cf0053 26#include <linux/of_device.h>
a92db1c8
SH
27#include <linux/platform_device.h>
28#include <linux/slab.h>
29#include <linux/io.h>
30#include <linux/thermal.h>
31#include <linux/reset.h>
32#include <linux/types.h>
a92db1c8
SH
33
34/* AUXADC Registers */
a92db1c8
SH
35#define AUXADC_CON1_SET_V 0x008
36#define AUXADC_CON1_CLR_V 0x00c
37#define AUXADC_CON2_V 0x010
38#define AUXADC_DATA(channel) (0x14 + (channel) * 4)
a92db1c8
SH
39
40#define APMIXED_SYS_TS_CON1 0x604
41
42/* Thermal Controller Registers */
43#define TEMP_MONCTL0 0x000
44#define TEMP_MONCTL1 0x004
45#define TEMP_MONCTL2 0x008
46#define TEMP_MONIDET0 0x014
47#define TEMP_MONIDET1 0x018
48#define TEMP_MSRCTL0 0x038
49#define TEMP_AHBPOLL 0x040
50#define TEMP_AHBTO 0x044
51#define TEMP_ADCPNP0 0x048
52#define TEMP_ADCPNP1 0x04c
53#define TEMP_ADCPNP2 0x050
54#define TEMP_ADCPNP3 0x0b4
55
56#define TEMP_ADCMUX 0x054
57#define TEMP_ADCEN 0x060
58#define TEMP_PNPMUXADDR 0x064
59#define TEMP_ADCMUXADDR 0x068
60#define TEMP_ADCENADDR 0x074
61#define TEMP_ADCVALIDADDR 0x078
62#define TEMP_ADCVOLTADDR 0x07c
63#define TEMP_RDCTRL 0x080
64#define TEMP_ADCVALIDMASK 0x084
65#define TEMP_ADCVOLTAGESHIFT 0x088
66#define TEMP_ADCWRITECTRL 0x08c
67#define TEMP_MSR0 0x090
68#define TEMP_MSR1 0x094
69#define TEMP_MSR2 0x098
70#define TEMP_MSR3 0x0B8
71
72#define TEMP_SPARE0 0x0f0
73
74#define PTPCORESEL 0x400
75
76#define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff)
77
eb4fc33e 78#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
a92db1c8
SH
79#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
80
81#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x)
82
83#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0)
84#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1)
85
86#define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5)
87#define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit)
88
b7cf0053 89/* MT8173 thermal sensors */
a92db1c8
SH
90#define MT8173_TS1 0
91#define MT8173_TS2 1
92#define MT8173_TS3 2
93#define MT8173_TS4 3
94#define MT8173_TSABB 4
95
96/* AUXADC channel 11 is used for the temperature sensors */
97#define MT8173_TEMP_AUXADC_CHANNEL 11
98
99/* The total number of temperature sensors in the MT8173 */
100#define MT8173_NUM_SENSORS 5
101
102/* The number of banks in the MT8173 */
103#define MT8173_NUM_ZONES 4
104
105/* The number of sensing points per bank */
106#define MT8173_NUM_SENSORS_PER_ZONE 4
107
f8451476
MK
108/* The calibration coefficient of sensor */
109#define MT8173_CALIBRATION 165
110
b7cf0053 111/*
112 * Layout of the fuses providing the calibration data
0a068993
LY
113 * These macros could be used for MT8173, MT2701, and MT2712.
114 * MT8173 has 5 sensors and needs 5 VTS calibration data.
115 * MT2701 has 3 sensors and needs 3 VTS calibration data.
116 * MT2712 has 4 sensors and needs 4 VTS calibration data.
b7cf0053 117 */
1d081945
MK
118#define CALIB_BUF0_VALID BIT(0)
119#define CALIB_BUF1_ADC_GE(x) (((x) >> 22) & 0x3ff)
120#define CALIB_BUF0_VTS_TS1(x) (((x) >> 17) & 0x1ff)
121#define CALIB_BUF0_VTS_TS2(x) (((x) >> 8) & 0x1ff)
122#define CALIB_BUF1_VTS_TS3(x) (((x) >> 0) & 0x1ff)
123#define CALIB_BUF2_VTS_TS4(x) (((x) >> 23) & 0x1ff)
124#define CALIB_BUF2_VTS_TSABB(x) (((x) >> 14) & 0x1ff)
125#define CALIB_BUF0_DEGC_CALI(x) (((x) >> 1) & 0x3f)
126#define CALIB_BUF0_O_SLOPE(x) (((x) >> 26) & 0x3f)
127#define CALIB_BUF0_O_SLOPE_SIGN(x) (((x) >> 7) & 0x1)
128#define CALIB_BUF1_ID(x) (((x) >> 9) & 0x1)
129
130enum {
131 VTS1,
132 VTS2,
133 VTS3,
134 VTS4,
135 VTSABB,
136 MAX_NUM_VTS,
137};
a92db1c8 138
b7cf0053 139/* MT2701 thermal sensors */
140#define MT2701_TS1 0
141#define MT2701_TS2 1
142#define MT2701_TSABB 2
143
144/* AUXADC channel 11 is used for the temperature sensors */
145#define MT2701_TEMP_AUXADC_CHANNEL 11
146
147/* The total number of temperature sensors in the MT2701 */
148#define MT2701_NUM_SENSORS 3
149
b7cf0053 150/* The number of sensing points per bank */
151#define MT2701_NUM_SENSORS_PER_ZONE 3
152
f8451476
MK
153/* The calibration coefficient of sensor */
154#define MT2701_CALIBRATION 165
155
6cf7f002
LY
156/* MT2712 thermal sensors */
157#define MT2712_TS1 0
158#define MT2712_TS2 1
159#define MT2712_TS3 2
160#define MT2712_TS4 3
161
162/* AUXADC channel 11 is used for the temperature sensors */
163#define MT2712_TEMP_AUXADC_CHANNEL 11
164
165/* The total number of temperature sensors in the MT2712 */
166#define MT2712_NUM_SENSORS 4
167
168/* The number of sensing points per bank */
169#define MT2712_NUM_SENSORS_PER_ZONE 4
170
f8451476
MK
171/* The calibration coefficient of sensor */
172#define MT2712_CALIBRATION 165
173
3966be3c
SW
174#define MT7622_TEMP_AUXADC_CHANNEL 11
175#define MT7622_NUM_SENSORS 1
176#define MT7622_NUM_ZONES 1
177#define MT7622_NUM_SENSORS_PER_ZONE 1
178#define MT7622_TS1 0
179
f8451476
MK
180/* The calibration coefficient of sensor */
181#define MT7622_CALIBRATION 165
182
a92db1c8
SH
183struct mtk_thermal;
184
b7cf0053 185struct thermal_bank_cfg {
186 unsigned int num_sensors;
187 const int *sensors;
188};
189
a92db1c8
SH
190struct mtk_thermal_bank {
191 struct mtk_thermal *mt;
192 int id;
193};
194
b7cf0053 195struct mtk_thermal_data {
196 s32 num_banks;
197 s32 num_sensors;
198 s32 auxadc_channel;
1d081945 199 const int *vts_index;
b7cf0053 200 const int *sensor_mux_values;
201 const int *msr;
202 const int *adcpnp;
f8451476 203 const int cali_val;
b7cf0053 204 struct thermal_bank_cfg bank_data[];
205};
206
a92db1c8
SH
207struct mtk_thermal {
208 struct device *dev;
209 void __iomem *thermal_base;
210
211 struct clk *clk_peri_therm;
212 struct clk *clk_auxadc;
eb4fc33e 213 /* lock: for getting and putting banks */
a92db1c8
SH
214 struct mutex lock;
215
216 /* Calibration values */
217 s32 adc_ge;
218 s32 degc_cali;
219 s32 o_slope;
1d081945 220 s32 vts[MAX_NUM_VTS];
a92db1c8 221
b7cf0053 222 const struct mtk_thermal_data *conf;
223 struct mtk_thermal_bank banks[];
a92db1c8
SH
224};
225
b7cf0053 226/* MT8173 thermal sensor data */
992edf39 227static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
b7cf0053 228 { MT8173_TS2, MT8173_TS3 },
229 { MT8173_TS2, MT8173_TS4 },
230 { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
231 { MT8173_TS2 },
a92db1c8
SH
232};
233
992edf39 234static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
05d7839a 235 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
b7cf0053 236};
a92db1c8 237
992edf39 238static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
b7cf0053 239 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
240};
241
992edf39 242static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
b7cf0053 243
1d081945
MK
244static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
245 VTS1, VTS2, VTS3, VTS4, VTSABB
246};
247
b7cf0053 248/* MT2701 thermal sensor data */
992edf39 249static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
b7cf0053 250 MT2701_TS1, MT2701_TS2, MT2701_TSABB
251};
252
992edf39 253static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
b7cf0053 254 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
255};
256
992edf39 257static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
b7cf0053 258 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
259};
260
992edf39 261static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
b7cf0053 262
1d081945
MK
263static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
264 VTS1, VTS2, VTS3
265};
266
6cf7f002
LY
267/* MT2712 thermal sensor data */
268static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
269 MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
270};
271
272static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
273 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
274};
275
276static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
277 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
278};
279
280static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
281
1d081945
MK
282static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
283 VTS1, VTS2, VTS3, VTS4
284};
285
3966be3c
SW
286/* MT7622 thermal sensor data */
287static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
288static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
289static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
290static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
1d081945 291static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
3966be3c 292
b7cf0053 293/**
a92db1c8
SH
294 * The MT8173 thermal controller has four banks. Each bank can read up to
295 * four temperature sensors simultaneously. The MT8173 has a total of 5
296 * temperature sensors. We use each bank to measure a certain area of the
297 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
298 * areas, hence is used in different banks.
299 *
300 * The thermal core only gets the maximum temperature of all banks, so
301 * the bank concept wouldn't be necessary here. However, the SVS (Smart
302 * Voltage Scaling) unit makes its decisions based on the same bank
303 * data, and this indeed needs the temperatures of the individual banks
304 * for making better decisions.
305 */
b7cf0053 306static const struct mtk_thermal_data mt8173_thermal_data = {
307 .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
308 .num_banks = MT8173_NUM_ZONES,
309 .num_sensors = MT8173_NUM_SENSORS,
1d081945 310 .vts_index = mt8173_vts_index,
f8451476 311 .cali_val = MT8173_CALIBRATION,
b7cf0053 312 .bank_data = {
313 {
314 .num_sensors = 2,
315 .sensors = mt8173_bank_data[0],
316 }, {
317 .num_sensors = 2,
318 .sensors = mt8173_bank_data[1],
319 }, {
320 .num_sensors = 3,
321 .sensors = mt8173_bank_data[2],
322 }, {
323 .num_sensors = 1,
324 .sensors = mt8173_bank_data[3],
325 },
a92db1c8 326 },
b7cf0053 327 .msr = mt8173_msr,
328 .adcpnp = mt8173_adcpnp,
329 .sensor_mux_values = mt8173_mux_values,
a92db1c8
SH
330};
331
b7cf0053 332/**
333 * The MT2701 thermal controller has one bank, which can read up to
334 * three temperature sensors simultaneously. The MT2701 has a total of 3
335 * temperature sensors.
336 *
337 * The thermal core only gets the maximum temperature of this one bank,
338 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
339 * Voltage Scaling) unit makes its decisions based on the same bank
340 * data.
341 */
342static const struct mtk_thermal_data mt2701_thermal_data = {
343 .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
344 .num_banks = 1,
345 .num_sensors = MT2701_NUM_SENSORS,
1d081945 346 .vts_index = mt2701_vts_index,
f8451476 347 .cali_val = MT2701_CALIBRATION,
b7cf0053 348 .bank_data = {
349 {
350 .num_sensors = 3,
351 .sensors = mt2701_bank_data,
352 },
a92db1c8 353 },
b7cf0053 354 .msr = mt2701_msr,
355 .adcpnp = mt2701_adcpnp,
356 .sensor_mux_values = mt2701_mux_values,
a92db1c8
SH
357};
358
6cf7f002
LY
359/**
360 * The MT2712 thermal controller has one bank, which can read up to
361 * four temperature sensors simultaneously. The MT2712 has a total of 4
362 * temperature sensors.
363 *
364 * The thermal core only gets the maximum temperature of this one bank,
365 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
366 * Voltage Scaling) unit makes its decisions based on the same bank
367 * data.
368 */
369static const struct mtk_thermal_data mt2712_thermal_data = {
370 .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
371 .num_banks = 1,
372 .num_sensors = MT2712_NUM_SENSORS,
1d081945 373 .vts_index = mt2712_vts_index,
f8451476 374 .cali_val = MT2712_CALIBRATION,
6cf7f002
LY
375 .bank_data = {
376 {
377 .num_sensors = 4,
378 .sensors = mt2712_bank_data,
379 },
380 },
381 .msr = mt2712_msr,
382 .adcpnp = mt2712_adcpnp,
383 .sensor_mux_values = mt2712_mux_values,
384};
385
3966be3c
SW
386/*
387 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
388 * access.
389 */
390static const struct mtk_thermal_data mt7622_thermal_data = {
391 .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
392 .num_banks = MT7622_NUM_ZONES,
393 .num_sensors = MT7622_NUM_SENSORS,
1d081945 394 .vts_index = mt7622_vts_index,
f8451476 395 .cali_val = MT7622_CALIBRATION,
3966be3c
SW
396 .bank_data = {
397 {
398 .num_sensors = 1,
399 .sensors = mt7622_bank_data,
400 },
401 },
402 .msr = mt7622_msr,
403 .adcpnp = mt7622_adcpnp,
404 .sensor_mux_values = mt7622_mux_values,
405};
406
a92db1c8
SH
407/**
408 * raw_to_mcelsius - convert a raw ADC value to mcelsius
409 * @mt: The thermal controller
410 * @raw: raw ADC value
411 *
412 * This converts the raw ADC value to mcelsius using the SoC specific
413 * calibration constants
414 */
415static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw)
416{
417 s32 tmp;
418
419 raw &= 0xfff;
420
421 tmp = 203450520 << 3;
f8451476 422 tmp /= mt->conf->cali_val + mt->o_slope;
a92db1c8
SH
423 tmp /= 10000 + mt->adc_ge;
424 tmp *= raw - mt->vts[sensno] - 3350;
425 tmp >>= 3;
426
427 return mt->degc_cali * 500 - tmp;
428}
429
430/**
431 * mtk_thermal_get_bank - get bank
432 * @bank: The bank
433 *
434 * The bank registers are banked, we have to select a bank in the
435 * PTPCORESEL register to access it.
436 */
437static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
438{
439 struct mtk_thermal *mt = bank->mt;
440 u32 val;
441
442 mutex_lock(&mt->lock);
443
444 val = readl(mt->thermal_base + PTPCORESEL);
445 val &= ~0xf;
446 val |= bank->id;
447 writel(val, mt->thermal_base + PTPCORESEL);
448}
449
450/**
451 * mtk_thermal_put_bank - release bank
452 * @bank: The bank
453 *
454 * release a bank previously taken with mtk_thermal_get_bank,
455 */
456static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
457{
458 struct mtk_thermal *mt = bank->mt;
459
460 mutex_unlock(&mt->lock);
461}
462
463/**
464 * mtk_thermal_bank_temperature - get the temperature of a bank
465 * @bank: The bank
466 *
467 * The temperature of a bank is considered the maximum temperature of
468 * the sensors associated to the bank.
469 */
470static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
471{
472 struct mtk_thermal *mt = bank->mt;
b7cf0053 473 const struct mtk_thermal_data *conf = mt->conf;
eb4fc33e 474 int i, temp = INT_MIN, max = INT_MIN;
a92db1c8
SH
475 u32 raw;
476
b7cf0053 477 for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
eb9aecd9
MK
478 raw = readl(mt->thermal_base +
479 conf->msr[conf->bank_data[bank->id].sensors[i]]);
a92db1c8 480
b7cf0053 481 temp = raw_to_mcelsius(mt,
482 conf->bank_data[bank->id].sensors[i],
483 raw);
a92db1c8
SH
484
485 /*
486 * The first read of a sensor often contains very high bogus
487 * temperature value. Filter these out so that the system does
488 * not immediately shut down.
489 */
490 if (temp > 200000)
491 temp = 0;
492
493 if (temp > max)
494 max = temp;
495 }
496
497 return max;
498}
499
500static int mtk_read_temp(void *data, int *temperature)
501{
502 struct mtk_thermal *mt = data;
503 int i;
504 int tempmax = INT_MIN;
505
b7cf0053 506 for (i = 0; i < mt->conf->num_banks; i++) {
a92db1c8
SH
507 struct mtk_thermal_bank *bank = &mt->banks[i];
508
509 mtk_thermal_get_bank(bank);
510
511 tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
512
513 mtk_thermal_put_bank(bank);
514 }
515
516 *temperature = tempmax;
517
518 return 0;
519}
520
521static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
522 .get_temp = mtk_read_temp,
523};
524
525static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
eb4fc33e 526 u32 apmixed_phys_base, u32 auxadc_phys_base)
a92db1c8
SH
527{
528 struct mtk_thermal_bank *bank = &mt->banks[num];
b7cf0053 529 const struct mtk_thermal_data *conf = mt->conf;
a92db1c8
SH
530 int i;
531
532 bank->id = num;
533 bank->mt = mt;
534
535 mtk_thermal_get_bank(bank);
536
537 /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
538 writel(TEMP_MONCTL1_PERIOD_UNIT(12), mt->thermal_base + TEMP_MONCTL1);
539
540 /*
541 * filt interval is 1 * 46.540us = 46.54us,
542 * sen interval is 429 * 46.540us = 19.96ms
543 */
544 writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
545 TEMP_MONCTL2_SENSOR_INTERVAL(429),
546 mt->thermal_base + TEMP_MONCTL2);
547
548 /* poll is set to 10u */
549 writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
eb4fc33e 550 mt->thermal_base + TEMP_AHBPOLL);
a92db1c8
SH
551
552 /* temperature sampling control, 1 sample */
553 writel(0x0, mt->thermal_base + TEMP_MSRCTL0);
554
555 /* exceed this polling time, IRQ would be inserted */
556 writel(0xffffffff, mt->thermal_base + TEMP_AHBTO);
557
558 /* number of interrupts per event, 1 is enough */
559 writel(0x0, mt->thermal_base + TEMP_MONIDET0);
560 writel(0x0, mt->thermal_base + TEMP_MONIDET1);
561
562 /*
563 * The MT8173 thermal controller does not have its own ADC. Instead it
564 * uses AHB bus accesses to control the AUXADC. To do this the thermal
565 * controller has to be programmed with the physical addresses of the
566 * AUXADC registers and with the various bit positions in the AUXADC.
567 * Also the thermal controller controls a mux in the APMIXEDSYS register
568 * space.
569 */
570
571 /*
572 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
573 * automatically by hw
574 */
b7cf0053 575 writel(BIT(conf->auxadc_channel), mt->thermal_base + TEMP_ADCMUX);
a92db1c8
SH
576
577 /* AHB address for auxadc mux selection */
578 writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
eb4fc33e 579 mt->thermal_base + TEMP_ADCMUXADDR);
a92db1c8
SH
580
581 /* AHB address for pnp sensor mux selection */
582 writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
eb4fc33e 583 mt->thermal_base + TEMP_PNPMUXADDR);
a92db1c8
SH
584
585 /* AHB value for auxadc enable */
b7cf0053 586 writel(BIT(conf->auxadc_channel), mt->thermal_base + TEMP_ADCEN);
a92db1c8
SH
587
588 /* AHB address for auxadc enable (channel 0 immediate mode selected) */
589 writel(auxadc_phys_base + AUXADC_CON1_SET_V,
eb4fc33e 590 mt->thermal_base + TEMP_ADCENADDR);
a92db1c8
SH
591
592 /* AHB address for auxadc valid bit */
b7cf0053 593 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
eb4fc33e 594 mt->thermal_base + TEMP_ADCVALIDADDR);
a92db1c8
SH
595
596 /* AHB address for auxadc voltage output */
b7cf0053 597 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
eb4fc33e 598 mt->thermal_base + TEMP_ADCVOLTADDR);
a92db1c8
SH
599
600 /* read valid & voltage are at the same register */
601 writel(0x0, mt->thermal_base + TEMP_RDCTRL);
602
603 /* indicate where the valid bit is */
604 writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
eb4fc33e 605 mt->thermal_base + TEMP_ADCVALIDMASK);
a92db1c8
SH
606
607 /* no shift */
608 writel(0x0, mt->thermal_base + TEMP_ADCVOLTAGESHIFT);
609
610 /* enable auxadc mux write transaction */
611 writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
eb4fc33e 612 mt->thermal_base + TEMP_ADCWRITECTRL);
a92db1c8 613
b7cf0053 614 for (i = 0; i < conf->bank_data[num].num_sensors; i++)
615 writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
eb9aecd9
MK
616 mt->thermal_base +
617 conf->adcpnp[conf->bank_data[num].sensors[i]]);
a92db1c8 618
b7cf0053 619 writel((1 << conf->bank_data[num].num_sensors) - 1,
620 mt->thermal_base + TEMP_MONCTL0);
a92db1c8 621
eb4fc33e
EV
622 writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
623 TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
624 mt->thermal_base + TEMP_ADCWRITECTRL);
a92db1c8
SH
625
626 mtk_thermal_put_bank(bank);
627}
628
629static u64 of_get_phys_base(struct device_node *np)
630{
631 u64 size64;
632 const __be32 *regaddr_p;
633
634 regaddr_p = of_get_address(np, 0, &size64, NULL);
635 if (!regaddr_p)
636 return OF_BAD_ADDR;
637
638 return of_translate_address(np, regaddr_p);
639}
640
eb4fc33e
EV
641static int mtk_thermal_get_calibration_data(struct device *dev,
642 struct mtk_thermal *mt)
a92db1c8
SH
643{
644 struct nvmem_cell *cell;
645 u32 *buf;
646 size_t len;
647 int i, ret = 0;
648
649 /* Start with default values */
650 mt->adc_ge = 512;
b7cf0053 651 for (i = 0; i < mt->conf->num_sensors; i++)
a92db1c8
SH
652 mt->vts[i] = 260;
653 mt->degc_cali = 40;
654 mt->o_slope = 0;
655
656 cell = nvmem_cell_get(dev, "calibration-data");
657 if (IS_ERR(cell)) {
658 if (PTR_ERR(cell) == -EPROBE_DEFER)
659 return PTR_ERR(cell);
660 return 0;
661 }
662
663 buf = (u32 *)nvmem_cell_read(cell, &len);
664
665 nvmem_cell_put(cell);
666
667 if (IS_ERR(buf))
668 return PTR_ERR(buf);
669
670 if (len < 3 * sizeof(u32)) {
671 dev_warn(dev, "invalid calibration data\n");
672 ret = -EINVAL;
673 goto out;
674 }
675
1d081945
MK
676 if (buf[0] & CALIB_BUF0_VALID) {
677 mt->adc_ge = CALIB_BUF1_ADC_GE(buf[1]);
678
679 for (i = 0; i < mt->conf->num_sensors; i++) {
680 switch (mt->conf->vts_index[i]) {
681 case VTS1:
682 mt->vts[VTS1] = CALIB_BUF0_VTS_TS1(buf[0]);
683 break;
684 case VTS2:
685 mt->vts[VTS2] = CALIB_BUF0_VTS_TS2(buf[0]);
686 break;
687 case VTS3:
688 mt->vts[VTS3] = CALIB_BUF1_VTS_TS3(buf[1]);
689 break;
690 case VTS4:
691 mt->vts[VTS4] = CALIB_BUF2_VTS_TS4(buf[2]);
692 break;
693 case VTSABB:
694 mt->vts[VTSABB] = CALIB_BUF2_VTS_TSABB(buf[2]);
695 break;
696 default:
697 break;
698 }
699 }
700
701 mt->degc_cali = CALIB_BUF0_DEGC_CALI(buf[0]);
702 if (CALIB_BUF1_ID(buf[1]) &
703 CALIB_BUF0_O_SLOPE_SIGN(buf[0]))
704 mt->o_slope = -CALIB_BUF0_O_SLOPE(buf[0]);
0a068993 705 else
1d081945 706 mt->o_slope = CALIB_BUF0_O_SLOPE(buf[0]);
a92db1c8
SH
707 } else {
708 dev_info(dev, "Device not calibrated, using default calibration values\n");
709 }
710
711out:
712 kfree(buf);
713
714 return ret;
715}
716
b7cf0053 717static const struct of_device_id mtk_thermal_of_match[] = {
718 {
719 .compatible = "mediatek,mt8173-thermal",
720 .data = (void *)&mt8173_thermal_data,
721 },
722 {
723 .compatible = "mediatek,mt2701-thermal",
724 .data = (void *)&mt2701_thermal_data,
6cf7f002
LY
725 },
726 {
727 .compatible = "mediatek,mt2712-thermal",
728 .data = (void *)&mt2712_thermal_data,
3966be3c
SW
729 },
730 {
731 .compatible = "mediatek,mt7622-thermal",
732 .data = (void *)&mt7622_thermal_data,
b7cf0053 733 }, {
734 },
735};
736MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
737
a92db1c8
SH
738static int mtk_thermal_probe(struct platform_device *pdev)
739{
740 int ret, i;
741 struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
742 struct mtk_thermal *mt;
743 struct resource *res;
744 u64 auxadc_phys_base, apmixed_phys_base;
1f6b0889 745 struct thermal_zone_device *tzdev;
a92db1c8
SH
746
747 mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
748 if (!mt)
749 return -ENOMEM;
750
9efc58df 751 mt->conf = of_device_get_match_data(&pdev->dev);
b7cf0053 752
a92db1c8
SH
753 mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
754 if (IS_ERR(mt->clk_peri_therm))
755 return PTR_ERR(mt->clk_peri_therm);
756
757 mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
758 if (IS_ERR(mt->clk_auxadc))
759 return PTR_ERR(mt->clk_auxadc);
760
761 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
762 mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
763 if (IS_ERR(mt->thermal_base))
764 return PTR_ERR(mt->thermal_base);
765
766 ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
767 if (ret)
768 return ret;
769
770 mutex_init(&mt->lock);
771
772 mt->dev = &pdev->dev;
773
774 auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
775 if (!auxadc) {
776 dev_err(&pdev->dev, "missing auxadc node\n");
777 return -ENODEV;
778 }
779
780 auxadc_phys_base = of_get_phys_base(auxadc);
781
782 of_node_put(auxadc);
783
784 if (auxadc_phys_base == OF_BAD_ADDR) {
785 dev_err(&pdev->dev, "Can't get auxadc phys address\n");
786 return -EINVAL;
787 }
788
789 apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
790 if (!apmixedsys) {
791 dev_err(&pdev->dev, "missing apmixedsys node\n");
792 return -ENODEV;
793 }
794
795 apmixed_phys_base = of_get_phys_base(apmixedsys);
796
797 of_node_put(apmixedsys);
798
799 if (apmixed_phys_base == OF_BAD_ADDR) {
800 dev_err(&pdev->dev, "Can't get auxadc phys address\n");
801 return -EINVAL;
802 }
803
6760f3f7
LY
804 ret = device_reset(&pdev->dev);
805 if (ret)
806 return ret;
807
a92db1c8
SH
808 ret = clk_prepare_enable(mt->clk_auxadc);
809 if (ret) {
810 dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
811 return ret;
812 }
813
a92db1c8
SH
814 ret = clk_prepare_enable(mt->clk_peri_therm);
815 if (ret) {
816 dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
817 goto err_disable_clk_auxadc;
818 }
819
b7cf0053 820 for (i = 0; i < mt->conf->num_banks; i++)
eb4fc33e
EV
821 mtk_thermal_init_bank(mt, i, apmixed_phys_base,
822 auxadc_phys_base);
a92db1c8
SH
823
824 platform_set_drvdata(pdev, mt);
825
1f6b0889
AL
826 tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
827 &mtk_thermal_ops);
828 if (IS_ERR(tzdev)) {
829 ret = PTR_ERR(tzdev);
830 goto err_disable_clk_peri_therm;
831 }
a92db1c8
SH
832
833 return 0;
834
1f6b0889
AL
835err_disable_clk_peri_therm:
836 clk_disable_unprepare(mt->clk_peri_therm);
a92db1c8
SH
837err_disable_clk_auxadc:
838 clk_disable_unprepare(mt->clk_auxadc);
839
840 return ret;
841}
842
843static int mtk_thermal_remove(struct platform_device *pdev)
844{
845 struct mtk_thermal *mt = platform_get_drvdata(pdev);
846
a92db1c8
SH
847 clk_disable_unprepare(mt->clk_peri_therm);
848 clk_disable_unprepare(mt->clk_auxadc);
849
850 return 0;
851}
852
a92db1c8
SH
853static struct platform_driver mtk_thermal_driver = {
854 .probe = mtk_thermal_probe,
855 .remove = mtk_thermal_remove,
856 .driver = {
f45ce7ee 857 .name = "mtk-thermal",
a92db1c8
SH
858 .of_match_table = mtk_thermal_of_match,
859 },
860};
861
862module_platform_driver(mtk_thermal_driver);
863
6cf7f002 864MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
b7cf0053 865MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
9ebfb4e0 866MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
a92db1c8
SH
867MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
868MODULE_DESCRIPTION("Mediatek thermal driver");
869MODULE_LICENSE("GPL v2");