]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/tty/serial/msm_serial_hs.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / drivers / tty / serial / msm_serial_hs.c
CommitLineData
55046237
MR
1/*
2 * MSM 7k/8k High speed uart driver
3 *
4 * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved.
5 * Copyright (c) 2008 Google Inc.
6 * Modified: Nick Pelly <npelly@google.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
15 * See the GNU General Public License for more details.
16 *
17 * Has optional support for uart power management independent of linux
18 * suspend/resume:
19 *
20 * RX wakeup.
21 * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
22 * UART RX pin). This should only be used if there is not a wakeup
23 * GPIO on the UART CTS, and the first RX byte is known (for example, with the
24 * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
25 * always be lost. RTS will be asserted even while the UART is off in this mode
26 * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
27 */
28
29#include <linux/module.h>
30
31#include <linux/serial.h>
32#include <linux/serial_core.h>
33#include <linux/slab.h>
34#include <linux/init.h>
35#include <linux/interrupt.h>
36#include <linux/irq.h>
37#include <linux/io.h>
38#include <linux/ioport.h>
39#include <linux/kernel.h>
40#include <linux/timer.h>
41#include <linux/clk.h>
42#include <linux/platform_device.h>
43#include <linux/pm_runtime.h>
44#include <linux/dma-mapping.h>
45#include <linux/dmapool.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48
49#include <linux/atomic.h>
50#include <asm/irq.h>
51#include <asm/system.h>
52
53#include <mach/hardware.h>
54#include <mach/dma.h>
55#include <linux/platform_data/msm_serial_hs.h>
56
57/* HSUART Registers */
58#define UARTDM_MR1_ADDR 0x0
59#define UARTDM_MR2_ADDR 0x4
60
61/* Data Mover result codes */
62#define RSLT_FIFO_CNTR_BMSK (0xE << 28)
63#define RSLT_VLD BIT(1)
64
65/* write only register */
66#define UARTDM_CSR_ADDR 0x8
67#define UARTDM_CSR_115200 0xFF
68#define UARTDM_CSR_57600 0xEE
69#define UARTDM_CSR_38400 0xDD
70#define UARTDM_CSR_28800 0xCC
71#define UARTDM_CSR_19200 0xBB
72#define UARTDM_CSR_14400 0xAA
73#define UARTDM_CSR_9600 0x99
74#define UARTDM_CSR_7200 0x88
75#define UARTDM_CSR_4800 0x77
76#define UARTDM_CSR_3600 0x66
77#define UARTDM_CSR_2400 0x55
78#define UARTDM_CSR_1200 0x44
79#define UARTDM_CSR_600 0x33
80#define UARTDM_CSR_300 0x22
81#define UARTDM_CSR_150 0x11
82#define UARTDM_CSR_75 0x00
83
84/* write only register */
85#define UARTDM_TF_ADDR 0x70
86#define UARTDM_TF2_ADDR 0x74
87#define UARTDM_TF3_ADDR 0x78
88#define UARTDM_TF4_ADDR 0x7C
89
90/* write only register */
91#define UARTDM_CR_ADDR 0x10
92#define UARTDM_IMR_ADDR 0x14
93
94#define UARTDM_IPR_ADDR 0x18
95#define UARTDM_TFWR_ADDR 0x1c
96#define UARTDM_RFWR_ADDR 0x20
97#define UARTDM_HCR_ADDR 0x24
98#define UARTDM_DMRX_ADDR 0x34
99#define UARTDM_IRDA_ADDR 0x38
100#define UARTDM_DMEN_ADDR 0x3c
101
102/* UART_DM_NO_CHARS_FOR_TX */
103#define UARTDM_NCF_TX_ADDR 0x40
104
105#define UARTDM_BADR_ADDR 0x44
106
107#define UARTDM_SIM_CFG_ADDR 0x80
108/* Read Only register */
109#define UARTDM_SR_ADDR 0x8
110
111/* Read Only register */
112#define UARTDM_RF_ADDR 0x70
113#define UARTDM_RF2_ADDR 0x74
114#define UARTDM_RF3_ADDR 0x78
115#define UARTDM_RF4_ADDR 0x7C
116
117/* Read Only register */
118#define UARTDM_MISR_ADDR 0x10
119
120/* Read Only register */
121#define UARTDM_ISR_ADDR 0x14
122#define UARTDM_RX_TOTAL_SNAP_ADDR 0x38
123
124#define UARTDM_RXFS_ADDR 0x50
125
126/* Register field Mask Mapping */
127#define UARTDM_SR_PAR_FRAME_BMSK BIT(5)
128#define UARTDM_SR_OVERRUN_BMSK BIT(4)
129#define UARTDM_SR_TXEMT_BMSK BIT(3)
130#define UARTDM_SR_TXRDY_BMSK BIT(2)
131#define UARTDM_SR_RXRDY_BMSK BIT(0)
132
133#define UARTDM_CR_TX_DISABLE_BMSK BIT(3)
134#define UARTDM_CR_RX_DISABLE_BMSK BIT(1)
135#define UARTDM_CR_TX_EN_BMSK BIT(2)
136#define UARTDM_CR_RX_EN_BMSK BIT(0)
137
138/* UARTDM_CR channel_comman bit value (register field is bits 8:4) */
139#define RESET_RX 0x10
140#define RESET_TX 0x20
141#define RESET_ERROR_STATUS 0x30
142#define RESET_BREAK_INT 0x40
143#define START_BREAK 0x50
144#define STOP_BREAK 0x60
145#define RESET_CTS 0x70
146#define RESET_STALE_INT 0x80
147#define RFR_LOW 0xD0
148#define RFR_HIGH 0xE0
149#define CR_PROTECTION_EN 0x100
150#define STALE_EVENT_ENABLE 0x500
151#define STALE_EVENT_DISABLE 0x600
152#define FORCE_STALE_EVENT 0x400
153#define CLEAR_TX_READY 0x300
154#define RESET_TX_ERROR 0x800
155#define RESET_TX_DONE 0x810
156
157#define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00
158#define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f
159#define UARTDM_MR1_CTS_CTL_BMSK 0x40
160#define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80
161
162#define UARTDM_MR2_ERROR_MODE_BMSK 0x40
163#define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30
164
165/* bits per character configuration */
166#define FIVE_BPC (0 << 4)
167#define SIX_BPC (1 << 4)
168#define SEVEN_BPC (2 << 4)
169#define EIGHT_BPC (3 << 4)
170
171#define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc
172#define STOP_BIT_ONE (1 << 2)
173#define STOP_BIT_TWO (3 << 2)
174
175#define UARTDM_MR2_PARITY_MODE_BMSK 0x3
176
177/* Parity configuration */
178#define NO_PARITY 0x0
179#define EVEN_PARITY 0x1
180#define ODD_PARITY 0x2
181#define SPACE_PARITY 0x3
182
183#define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80
184#define UARTDM_IPR_STALE_LSB_BMSK 0x1f
185
186/* These can be used for both ISR and IMR register */
187#define UARTDM_ISR_TX_READY_BMSK BIT(7)
188#define UARTDM_ISR_CURRENT_CTS_BMSK BIT(6)
189#define UARTDM_ISR_DELTA_CTS_BMSK BIT(5)
190#define UARTDM_ISR_RXLEV_BMSK BIT(4)
191#define UARTDM_ISR_RXSTALE_BMSK BIT(3)
192#define UARTDM_ISR_RXBREAK_BMSK BIT(2)
193#define UARTDM_ISR_RXHUNT_BMSK BIT(1)
194#define UARTDM_ISR_TXLEV_BMSK BIT(0)
195
196/* Field definitions for UART_DM_DMEN*/
197#define UARTDM_TX_DM_EN_BMSK 0x1
198#define UARTDM_RX_DM_EN_BMSK 0x2
199
200#define UART_FIFOSIZE 64
201#define UARTCLK 7372800
202
203/* Rx DMA request states */
204enum flush_reason {
205 FLUSH_NONE,
206 FLUSH_DATA_READY,
207 FLUSH_DATA_INVALID, /* values after this indicate invalid data */
208 FLUSH_IGNORE = FLUSH_DATA_INVALID,
209 FLUSH_STOP,
210 FLUSH_SHUTDOWN,
211};
212
213/* UART clock states */
214enum msm_hs_clk_states_e {
215 MSM_HS_CLK_PORT_OFF, /* port not in use */
216 MSM_HS_CLK_OFF, /* clock disabled */
217 MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */
218 MSM_HS_CLK_ON, /* clock enabled */
219};
220
221/* Track the forced RXSTALE flush during clock off sequence.
222 * These states are only valid during MSM_HS_CLK_REQUEST_OFF */
223enum msm_hs_clk_req_off_state_e {
224 CLK_REQ_OFF_START,
225 CLK_REQ_OFF_RXSTALE_ISSUED,
226 CLK_REQ_OFF_FLUSH_ISSUED,
227 CLK_REQ_OFF_RXSTALE_FLUSHED,
228};
229
230/**
231 * struct msm_hs_tx
232 * @tx_ready_int_en: ok to dma more tx?
233 * @dma_in_flight: tx dma in progress
234 * @xfer: top level DMA command pointer structure
235 * @command_ptr: third level command struct pointer
236 * @command_ptr_ptr: second level command list struct pointer
237 * @mapped_cmd_ptr: DMA view of third level command struct
238 * @mapped_cmd_ptr_ptr: DMA view of second level command list struct
239 * @tx_count: number of bytes to transfer in DMA transfer
240 * @dma_base: DMA view of UART xmit buffer
241 *
242 * This structure describes a single Tx DMA transaction. MSM DMA
243 * commands have two levels of indirection. The top level command
244 * ptr points to a list of command ptr which in turn points to a
245 * single DMA 'command'. In our case each Tx transaction consists
246 * of a single second level pointer pointing to a 'box type' command.
247 */
248struct msm_hs_tx {
249 unsigned int tx_ready_int_en;
250 unsigned int dma_in_flight;
251 struct msm_dmov_cmd xfer;
252 dmov_box *command_ptr;
253 u32 *command_ptr_ptr;
254 dma_addr_t mapped_cmd_ptr;
255 dma_addr_t mapped_cmd_ptr_ptr;
256 int tx_count;
257 dma_addr_t dma_base;
258};
259
260/**
261 * struct msm_hs_rx
262 * @flush: Rx DMA request state
263 * @xfer: top level DMA command pointer structure
264 * @cmdptr_dmaaddr: DMA view of second level command structure
265 * @command_ptr: third level DMA command pointer structure
266 * @command_ptr_ptr: second level DMA command list pointer
267 * @mapped_cmd_ptr: DMA view of the third level command structure
268 * @wait: wait for DMA completion before shutdown
269 * @buffer: destination buffer for RX DMA
270 * @rbuffer: DMA view of buffer
271 * @pool: dma pool out of which coherent rx buffer is allocated
272 * @tty_work: private work-queue for tty flip buffer push task
273 *
274 * This structure describes a single Rx DMA transaction. Rx DMA
275 * transactions use box mode DMA commands.
276 */
277struct msm_hs_rx {
278 enum flush_reason flush;
279 struct msm_dmov_cmd xfer;
280 dma_addr_t cmdptr_dmaaddr;
281 dmov_box *command_ptr;
282 u32 *command_ptr_ptr;
283 dma_addr_t mapped_cmd_ptr;
284 wait_queue_head_t wait;
285 dma_addr_t rbuffer;
286 unsigned char *buffer;
287 struct dma_pool *pool;
288 struct work_struct tty_work;
289};
290
291/**
292 * struct msm_hs_rx_wakeup
293 * @irq: IRQ line to be configured as interrupt source on Rx activity
294 * @ignore: boolean value. 1 = ignore the wakeup interrupt
295 * @rx_to_inject: extra character to be inserted to Rx tty on wakeup
296 * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character
297 *
298 * This is an optional structure required for UART Rx GPIO IRQ based
299 * wakeup from low power state. UART wakeup can be triggered by RX activity
300 * (using a wakeup GPIO on the UART RX pin). This should only be used if
301 * there is not a wakeup GPIO on the UART CTS, and the first RX byte is
302 * known (eg., with the Bluetooth Texas Instruments HCILL protocol),
303 * since the first RX byte will always be lost. RTS will be asserted even
304 * while the UART is clocked off in this mode of operation.
305 */
306struct msm_hs_rx_wakeup {
307 int irq; /* < 0 indicates low power wakeup disabled */
308 unsigned char ignore;
309 unsigned char inject_rx;
310 char rx_to_inject;
311};
312
313/**
314 * struct msm_hs_port
315 * @uport: embedded uart port structure
316 * @imr_reg: shadow value of UARTDM_IMR
317 * @clk: uart input clock handle
318 * @tx: Tx transaction related data structure
319 * @rx: Rx transaction related data structure
320 * @dma_tx_channel: Tx DMA command channel
321 * @dma_rx_channel Rx DMA command channel
322 * @dma_tx_crci: Tx channel rate control interface number
323 * @dma_rx_crci: Rx channel rate control interface number
324 * @clk_off_timer: Timer to poll DMA event completion before clock off
325 * @clk_off_delay: clk_off_timer poll interval
326 * @clk_state: overall clock state
327 * @clk_req_off_state: post flush clock states
328 * @rx_wakeup: optional rx_wakeup feature related data
329 * @exit_lpm_cb: optional callback to exit low power mode
330 *
331 * Low level serial port structure.
332 */
333struct msm_hs_port {
334 struct uart_port uport;
335 unsigned long imr_reg;
336 struct clk *clk;
337 struct msm_hs_tx tx;
338 struct msm_hs_rx rx;
339
340 int dma_tx_channel;
341 int dma_rx_channel;
342 int dma_tx_crci;
343 int dma_rx_crci;
344
345 struct hrtimer clk_off_timer;
346 ktime_t clk_off_delay;
347 enum msm_hs_clk_states_e clk_state;
348 enum msm_hs_clk_req_off_state_e clk_req_off_state;
349
350 struct msm_hs_rx_wakeup rx_wakeup;
351 void (*exit_lpm_cb)(struct uart_port *);
352};
353
354#define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */
355#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
356#define UARTDM_RX_BUF_SIZE 512
357
358#define UARTDM_NR 2
359
360static struct msm_hs_port q_uart_port[UARTDM_NR];
361static struct platform_driver msm_serial_hs_platform_driver;
362static struct uart_driver msm_hs_driver;
363static struct uart_ops msm_hs_ops;
364static struct workqueue_struct *msm_hs_workqueue;
365
366#define UARTDM_TO_MSM(uart_port) \
367 container_of((uart_port), struct msm_hs_port, uport)
368
369static unsigned int use_low_power_rx_wakeup(struct msm_hs_port
370 *msm_uport)
371{
372 return (msm_uport->rx_wakeup.irq >= 0);
373}
374
375static unsigned int msm_hs_read(struct uart_port *uport,
376 unsigned int offset)
377{
378 return ioread32(uport->membase + offset);
379}
380
381static void msm_hs_write(struct uart_port *uport, unsigned int offset,
382 unsigned int value)
383{
384 iowrite32(value, uport->membase + offset);
385}
386
387static void msm_hs_release_port(struct uart_port *port)
388{
389 iounmap(port->membase);
390}
391
392static int msm_hs_request_port(struct uart_port *port)
393{
394 port->membase = ioremap(port->mapbase, PAGE_SIZE);
395 if (unlikely(!port->membase))
396 return -ENOMEM;
397
398 /* configure the CR Protection to Enable */
399 msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN);
400 return 0;
401}
402
403static int __devexit msm_hs_remove(struct platform_device *pdev)
404{
405
406 struct msm_hs_port *msm_uport;
407 struct device *dev;
408
409 if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
410 printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
411 return -EINVAL;
412 }
413
414 msm_uport = &q_uart_port[pdev->id];
415 dev = msm_uport->uport.dev;
416
417 dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
418 DMA_TO_DEVICE);
419 dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
420 msm_uport->rx.rbuffer);
421 dma_pool_destroy(msm_uport->rx.pool);
422
423 dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32 *),
424 DMA_TO_DEVICE);
425 dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32 *),
426 DMA_TO_DEVICE);
427 dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
428 DMA_TO_DEVICE);
429
430 uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
431 clk_put(msm_uport->clk);
432
433 /* Free the tx resources */
434 kfree(msm_uport->tx.command_ptr);
435 kfree(msm_uport->tx.command_ptr_ptr);
436
437 /* Free the rx resources */
438 kfree(msm_uport->rx.command_ptr);
439 kfree(msm_uport->rx.command_ptr_ptr);
440
441 iounmap(msm_uport->uport.membase);
442
443 return 0;
444}
445
446static int msm_hs_init_clk_locked(struct uart_port *uport)
447{
448 int ret;
449 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
450
451 ret = clk_enable(msm_uport->clk);
452 if (ret) {
453 printk(KERN_ERR "Error could not turn on UART clk\n");
454 return ret;
455 }
456
457 /* Set up the MREG/NREG/DREG/MNDREG */
458 ret = clk_set_rate(msm_uport->clk, uport->uartclk);
459 if (ret) {
460 printk(KERN_WARNING "Error setting clock rate on UART\n");
461 clk_disable(msm_uport->clk);
462 return ret;
463 }
464
465 msm_uport->clk_state = MSM_HS_CLK_ON;
466 return 0;
467}
468
469/* Enable and Disable clocks (Used for power management) */
470static void msm_hs_pm(struct uart_port *uport, unsigned int state,
471 unsigned int oldstate)
472{
473 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
474
475 if (use_low_power_rx_wakeup(msm_uport) ||
476 msm_uport->exit_lpm_cb)
477 return; /* ignore linux PM states,
478 use msm_hs_request_clock API */
479
480 switch (state) {
481 case 0:
482 clk_enable(msm_uport->clk);
483 break;
484 case 3:
485 clk_disable(msm_uport->clk);
486 break;
487 default:
488 dev_err(uport->dev, "msm_serial: Unknown PM state %d\n",
489 state);
490 }
491}
492
493/*
494 * programs the UARTDM_CSR register with correct bit rates
495 *
496 * Interrupts should be disabled before we are called, as
497 * we modify Set Baud rate
25985edc 498 * Set receive stale interrupt level, dependent on Bit Rate
55046237
MR
499 * Goal is to have around 8 ms before indicate stale.
500 * roundup (((Bit Rate * .008) / 10) + 1
501 */
502static void msm_hs_set_bps_locked(struct uart_port *uport,
503 unsigned int bps)
504{
505 unsigned long rxstale;
506 unsigned long data;
507 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
508
509 switch (bps) {
510 case 300:
511 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75);
512 rxstale = 1;
513 break;
514 case 600:
515 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150);
516 rxstale = 1;
517 break;
518 case 1200:
519 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300);
520 rxstale = 1;
521 break;
522 case 2400:
523 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600);
524 rxstale = 1;
525 break;
526 case 4800:
527 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200);
528 rxstale = 1;
529 break;
530 case 9600:
531 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
532 rxstale = 2;
533 break;
534 case 14400:
535 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600);
536 rxstale = 3;
537 break;
538 case 19200:
539 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800);
540 rxstale = 4;
541 break;
542 case 28800:
543 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200);
544 rxstale = 6;
545 break;
546 case 38400:
547 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600);
548 rxstale = 8;
549 break;
550 case 57600:
551 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400);
552 rxstale = 16;
553 break;
554 case 76800:
555 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200);
556 rxstale = 16;
557 break;
558 case 115200:
559 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800);
560 rxstale = 31;
561 break;
562 case 230400:
563 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600);
564 rxstale = 31;
565 break;
566 case 460800:
567 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
568 rxstale = 31;
569 break;
570 case 4000000:
571 case 3686400:
572 case 3200000:
573 case 3500000:
574 case 3000000:
575 case 2500000:
576 case 1500000:
577 case 1152000:
578 case 1000000:
579 case 921600:
580 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
581 rxstale = 31;
582 break;
583 default:
584 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
585 /* default to 9600 */
586 bps = 9600;
587 rxstale = 2;
588 break;
589 }
590 if (bps > 460800)
591 uport->uartclk = bps * 16;
592 else
593 uport->uartclk = UARTCLK;
594
595 if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
596 printk(KERN_WARNING "Error setting clock rate on UART\n");
597 return;
598 }
599
600 data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
601 data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
602
603 msm_hs_write(uport, UARTDM_IPR_ADDR, data);
604}
605
606/*
607 * termios : new ktermios
608 * oldtermios: old ktermios previous setting
609 *
610 * Configure the serial port
611 */
612static void msm_hs_set_termios(struct uart_port *uport,
613 struct ktermios *termios,
614 struct ktermios *oldtermios)
615{
616 unsigned int bps;
617 unsigned long data;
618 unsigned long flags;
619 unsigned int c_cflag = termios->c_cflag;
620 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
621
622 spin_lock_irqsave(&uport->lock, flags);
623 clk_enable(msm_uport->clk);
624
625 /* 300 is the minimum baud support by the driver */
626 bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
627
628 /* Temporary remapping 200 BAUD to 3.2 mbps */
629 if (bps == 200)
630 bps = 3200000;
631
632 msm_hs_set_bps_locked(uport, bps);
633
634 data = msm_hs_read(uport, UARTDM_MR2_ADDR);
635 data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
636 /* set parity */
637 if (PARENB == (c_cflag & PARENB)) {
638 if (PARODD == (c_cflag & PARODD))
639 data |= ODD_PARITY;
640 else if (CMSPAR == (c_cflag & CMSPAR))
641 data |= SPACE_PARITY;
642 else
643 data |= EVEN_PARITY;
644 }
645
646 /* Set bits per char */
647 data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
648
649 switch (c_cflag & CSIZE) {
650 case CS5:
651 data |= FIVE_BPC;
652 break;
653 case CS6:
654 data |= SIX_BPC;
655 break;
656 case CS7:
657 data |= SEVEN_BPC;
658 break;
659 default:
660 data |= EIGHT_BPC;
661 break;
662 }
663 /* stop bits */
664 if (c_cflag & CSTOPB) {
665 data |= STOP_BIT_TWO;
666 } else {
667 /* otherwise 1 stop bit */
668 data |= STOP_BIT_ONE;
669 }
670 data |= UARTDM_MR2_ERROR_MODE_BMSK;
671 /* write parity/bits per char/stop bit configuration */
672 msm_hs_write(uport, UARTDM_MR2_ADDR, data);
673
674 /* Configure HW flow control */
675 data = msm_hs_read(uport, UARTDM_MR1_ADDR);
676
677 data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
678
679 if (c_cflag & CRTSCTS) {
680 data |= UARTDM_MR1_CTS_CTL_BMSK;
681 data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
682 }
683
684 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
685
686 uport->ignore_status_mask = termios->c_iflag & INPCK;
687 uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
688 uport->read_status_mask = (termios->c_cflag & CREAD);
689
690 msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
691
692 /* Set Transmit software time out */
693 uart_update_timeout(uport, c_cflag, bps);
694
695 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
696 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
697
698 if (msm_uport->rx.flush == FLUSH_NONE) {
699 msm_uport->rx.flush = FLUSH_IGNORE;
700 msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
701 }
702
703 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
704
705 clk_disable(msm_uport->clk);
706 spin_unlock_irqrestore(&uport->lock, flags);
707}
708
709/*
710 * Standard API, Transmitter
711 * Any character in the transmit shift register is sent
712 */
713static unsigned int msm_hs_tx_empty(struct uart_port *uport)
714{
715 unsigned int data;
716 unsigned int ret = 0;
717 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
718
719 clk_enable(msm_uport->clk);
720
721 data = msm_hs_read(uport, UARTDM_SR_ADDR);
722 if (data & UARTDM_SR_TXEMT_BMSK)
723 ret = TIOCSER_TEMT;
724
725 clk_disable(msm_uport->clk);
726
727 return ret;
728}
729
730/*
731 * Standard API, Stop transmitter.
732 * Any character in the transmit shift register is sent as
733 * well as the current data mover transfer .
734 */
735static void msm_hs_stop_tx_locked(struct uart_port *uport)
736{
737 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
738
739 msm_uport->tx.tx_ready_int_en = 0;
740}
741
742/*
743 * Standard API, Stop receiver as soon as possible.
744 *
745 * Function immediately terminates the operation of the
746 * channel receiver and any incoming characters are lost. None
747 * of the receiver status bits are affected by this command and
748 * characters that are already in the receive FIFO there.
749 */
750static void msm_hs_stop_rx_locked(struct uart_port *uport)
751{
752 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
753 unsigned int data;
754
755 clk_enable(msm_uport->clk);
756
757 /* disable dlink */
758 data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
759 data &= ~UARTDM_RX_DM_EN_BMSK;
760 msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
761
762 /* Disable the receiver */
763 if (msm_uport->rx.flush == FLUSH_NONE)
764 msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
765
766 if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
767 msm_uport->rx.flush = FLUSH_STOP;
768
769 clk_disable(msm_uport->clk);
770}
771
772/* Transmit the next chunk of data */
773static void msm_hs_submit_tx_locked(struct uart_port *uport)
774{
775 int left;
776 int tx_count;
777 dma_addr_t src_addr;
778 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
779 struct msm_hs_tx *tx = &msm_uport->tx;
780 struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
781
782 if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
783 msm_hs_stop_tx_locked(uport);
784 return;
785 }
786
787 tx->dma_in_flight = 1;
788
789 tx_count = uart_circ_chars_pending(tx_buf);
790
791 if (UARTDM_TX_BUF_SIZE < tx_count)
792 tx_count = UARTDM_TX_BUF_SIZE;
793
794 left = UART_XMIT_SIZE - tx_buf->tail;
795
796 if (tx_count > left)
797 tx_count = left;
798
799 src_addr = tx->dma_base + tx_buf->tail;
800 dma_sync_single_for_device(uport->dev, src_addr, tx_count,
801 DMA_TO_DEVICE);
802
803 tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
804 ((tx_count + 15) >> 4);
805 tx->command_ptr->src_row_addr = src_addr;
806
807 dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
808 sizeof(dmov_box), DMA_TO_DEVICE);
809
810 *tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
811
812 dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
813 sizeof(u32 *), DMA_TO_DEVICE);
814
815 /* Save tx_count to use in Callback */
816 tx->tx_count = tx_count;
817 msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
818
819 /* Disable the tx_ready interrupt */
820 msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
821 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
822 msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
823}
824
825/* Start to receive the next chunk of data */
826static void msm_hs_start_rx_locked(struct uart_port *uport)
827{
828 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
829
830 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
831 msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
832 msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
833 msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
834 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
835
836 msm_uport->rx.flush = FLUSH_NONE;
837 msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
838
839 /* might have finished RX and be ready to clock off */
840 hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay,
841 HRTIMER_MODE_REL);
842}
843
844/* Enable the transmitter Interrupt */
845static void msm_hs_start_tx_locked(struct uart_port *uport)
846{
847 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
848
849 clk_enable(msm_uport->clk);
850
851 if (msm_uport->exit_lpm_cb)
852 msm_uport->exit_lpm_cb(uport);
853
854 if (msm_uport->tx.tx_ready_int_en == 0) {
855 msm_uport->tx.tx_ready_int_en = 1;
856 msm_hs_submit_tx_locked(uport);
857 }
858
859 clk_disable(msm_uport->clk);
860}
861
862/*
863 * This routine is called when we are done with a DMA transfer
864 *
865 * This routine is registered with Data mover when we set
866 * up a Data Mover transfer. It is called from Data mover ISR
867 * when the DMA transfer is done.
868 */
869static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
870 unsigned int result,
871 struct msm_dmov_errdata *err)
872{
873 unsigned long flags;
874 struct msm_hs_port *msm_uport;
875
876 /* DMA did not finish properly */
877 WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) &&
878 !(result & RSLT_VLD));
879
880 msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
881
882 spin_lock_irqsave(&msm_uport->uport.lock, flags);
883 clk_enable(msm_uport->clk);
884
885 msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
886 msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
887
888 clk_disable(msm_uport->clk);
889 spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
890}
891
892/*
893 * This routine is called when we are done with a DMA transfer or the
894 * a flush has been sent to the data mover driver.
895 *
896 * This routine is registered with Data mover when we set up a Data Mover
897 * transfer. It is called from Data mover ISR when the DMA transfer is done.
898 */
899static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
900 unsigned int result,
901 struct msm_dmov_errdata *err)
902{
903 int retval;
904 int rx_count;
905 unsigned long status;
906 unsigned int error_f = 0;
907 unsigned long flags;
908 unsigned int flush;
909 struct tty_struct *tty;
910 struct uart_port *uport;
911 struct msm_hs_port *msm_uport;
912
913 msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
914 uport = &msm_uport->uport;
915
916 spin_lock_irqsave(&uport->lock, flags);
917 clk_enable(msm_uport->clk);
918
919 tty = uport->state->port.tty;
920
921 msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
922
923 status = msm_hs_read(uport, UARTDM_SR_ADDR);
924
925 /* overflow is not connect to data in a FIFO */
926 if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
927 (uport->read_status_mask & CREAD))) {
928 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
929 uport->icount.buf_overrun++;
930 error_f = 1;
931 }
932
933 if (!(uport->ignore_status_mask & INPCK))
934 status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
935
936 if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
937 /* Can not tell difference between parity & frame error */
938 uport->icount.parity++;
939 error_f = 1;
940 if (uport->ignore_status_mask & IGNPAR)
941 tty_insert_flip_char(tty, 0, TTY_PARITY);
942 }
943
944 if (error_f)
945 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
946
947 if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
948 msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
949
950 flush = msm_uport->rx.flush;
951 if (flush == FLUSH_IGNORE)
952 msm_hs_start_rx_locked(uport);
953 if (flush == FLUSH_STOP)
954 msm_uport->rx.flush = FLUSH_SHUTDOWN;
955 if (flush >= FLUSH_DATA_INVALID)
956 goto out;
957
958 rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
959
960 if (0 != (uport->read_status_mask & CREAD)) {
961 retval = tty_insert_flip_string(tty, msm_uport->rx.buffer,
962 rx_count);
963 BUG_ON(retval != rx_count);
964 }
965
966 msm_hs_start_rx_locked(uport);
967
968out:
969 clk_disable(msm_uport->clk);
970
971 spin_unlock_irqrestore(&uport->lock, flags);
972
973 if (flush < FLUSH_DATA_INVALID)
974 queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
975}
976
977static void msm_hs_tty_flip_buffer_work(struct work_struct *work)
978{
979 struct msm_hs_port *msm_uport =
980 container_of(work, struct msm_hs_port, rx.tty_work);
981 struct tty_struct *tty = msm_uport->uport.state->port.tty;
982
983 tty_flip_buffer_push(tty);
984}
985
986/*
987 * Standard API, Current states of modem control inputs
988 *
989 * Since CTS can be handled entirely by HARDWARE we always
990 * indicate clear to send and count on the TX FIFO to block when
991 * it fills up.
992 *
993 * - TIOCM_DCD
994 * - TIOCM_CTS
995 * - TIOCM_DSR
996 * - TIOCM_RI
997 * (Unsupported) DCD and DSR will return them high. RI will return low.
998 */
999static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
1000{
1001 return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
1002}
1003
1004/*
1005 * True enables UART auto RFR, which indicates we are ready for data if the RX
1006 * buffer is not full. False disables auto RFR, and deasserts RFR to indicate
1007 * we are not ready for data. Must be called with UART clock on.
1008 */
1009static void set_rfr_locked(struct uart_port *uport, int auto_rfr)
1010{
1011 unsigned int data;
1012
1013 data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1014
1015 if (auto_rfr) {
1016 /* enable auto ready-for-receiving */
1017 data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
1018 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1019 } else {
1020 /* disable auto ready-for-receiving */
1021 data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
1022 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1023 /* RFR is active low, set high */
1024 msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
1025 }
1026}
1027
1028/*
1029 * Standard API, used to set or clear RFR
1030 */
1031static void msm_hs_set_mctrl_locked(struct uart_port *uport,
1032 unsigned int mctrl)
1033{
1034 unsigned int auto_rfr;
1035 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1036
1037 clk_enable(msm_uport->clk);
1038
1039 auto_rfr = TIOCM_RTS & mctrl ? 1 : 0;
1040 set_rfr_locked(uport, auto_rfr);
1041
1042 clk_disable(msm_uport->clk);
1043}
1044
1045/* Standard API, Enable modem status (CTS) interrupt */
1046static void msm_hs_enable_ms_locked(struct uart_port *uport)
1047{
1048 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1049
1050 clk_enable(msm_uport->clk);
1051
1052 /* Enable DELTA_CTS Interrupt */
1053 msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
1054 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1055
1056 clk_disable(msm_uport->clk);
1057
1058}
1059
1060/*
1061 * Standard API, Break Signal
1062 *
1063 * Control the transmission of a break signal. ctl eq 0 => break
1064 * signal terminate ctl ne 0 => start break signal
1065 */
1066static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
1067{
1068 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1069
1070 clk_enable(msm_uport->clk);
1071 msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
1072 clk_disable(msm_uport->clk);
1073}
1074
1075static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
1076{
1077 unsigned long flags;
1078
1079 spin_lock_irqsave(&uport->lock, flags);
1080 if (cfg_flags & UART_CONFIG_TYPE) {
1081 uport->type = PORT_MSM;
1082 msm_hs_request_port(uport);
1083 }
1084 spin_unlock_irqrestore(&uport->lock, flags);
1085}
1086
1087/* Handle CTS changes (Called from interrupt handler) */
1088static void msm_hs_handle_delta_cts(struct uart_port *uport)
1089{
1090 unsigned long flags;
1091 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1092
1093 spin_lock_irqsave(&uport->lock, flags);
1094 clk_enable(msm_uport->clk);
1095
1096 /* clear interrupt */
1097 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1098 uport->icount.cts++;
1099
1100 clk_disable(msm_uport->clk);
1101 spin_unlock_irqrestore(&uport->lock, flags);
1102
1103 /* clear the IOCTL TIOCMIWAIT if called */
1104 wake_up_interruptible(&uport->state->port.delta_msr_wait);
1105}
1106
1107/* check if the TX path is flushed, and if so clock off
1108 * returns 0 did not clock off, need to retry (still sending final byte)
1109 * -1 did not clock off, do not retry
1110 * 1 if we clocked off
1111 */
1112static int msm_hs_check_clock_off_locked(struct uart_port *uport)
1113{
1114 unsigned long sr_status;
1115 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1116 struct circ_buf *tx_buf = &uport->state->xmit;
1117
1118 /* Cancel if tx tty buffer is not empty, dma is in flight,
1119 * or tx fifo is not empty, or rx fifo is not empty */
1120 if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
1121 !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
1122 (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) ||
1123 !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK)) {
1124 return -1;
1125 }
1126
1127 /* Make sure the uart is finished with the last byte */
1128 sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
1129 if (!(sr_status & UARTDM_SR_TXEMT_BMSK))
1130 return 0; /* retry */
1131
1132 /* Make sure forced RXSTALE flush complete */
1133 switch (msm_uport->clk_req_off_state) {
1134 case CLK_REQ_OFF_START:
1135 msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
1136 msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
1137 return 0; /* RXSTALE flush not complete - retry */
1138 case CLK_REQ_OFF_RXSTALE_ISSUED:
1139 case CLK_REQ_OFF_FLUSH_ISSUED:
1140 return 0; /* RXSTALE flush not complete - retry */
1141 case CLK_REQ_OFF_RXSTALE_FLUSHED:
1142 break; /* continue */
1143 }
1144
1145 if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
1146 if (msm_uport->rx.flush == FLUSH_NONE)
1147 msm_hs_stop_rx_locked(uport);
1148 return 0; /* come back later to really clock off */
1149 }
1150
1151 /* we really want to clock off */
1152 clk_disable(msm_uport->clk);
1153 msm_uport->clk_state = MSM_HS_CLK_OFF;
1154
1155 if (use_low_power_rx_wakeup(msm_uport)) {
1156 msm_uport->rx_wakeup.ignore = 1;
1157 enable_irq(msm_uport->rx_wakeup.irq);
1158 }
1159 return 1;
1160}
1161
1162static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
1163{
1164 unsigned long flags;
1165 int ret = HRTIMER_NORESTART;
1166 struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
1167 clk_off_timer);
1168 struct uart_port *uport = &msm_uport->uport;
1169
1170 spin_lock_irqsave(&uport->lock, flags);
1171
1172 if (!msm_hs_check_clock_off_locked(uport)) {
1173 hrtimer_forward_now(timer, msm_uport->clk_off_delay);
1174 ret = HRTIMER_RESTART;
1175 }
1176
1177 spin_unlock_irqrestore(&uport->lock, flags);
1178
1179 return ret;
1180}
1181
1182static irqreturn_t msm_hs_isr(int irq, void *dev)
1183{
1184 unsigned long flags;
1185 unsigned long isr_status;
1186 struct msm_hs_port *msm_uport = dev;
1187 struct uart_port *uport = &msm_uport->uport;
1188 struct circ_buf *tx_buf = &uport->state->xmit;
1189 struct msm_hs_tx *tx = &msm_uport->tx;
1190 struct msm_hs_rx *rx = &msm_uport->rx;
1191
1192 spin_lock_irqsave(&uport->lock, flags);
1193
1194 isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
1195
1196 /* Uart RX starting */
1197 if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
1198 msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
1199 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1200 }
1201 /* Stale rx interrupt */
1202 if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
1203 msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
1204 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1205
1206 if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
1207 msm_uport->clk_req_off_state =
1208 CLK_REQ_OFF_FLUSH_ISSUED;
1209 if (rx->flush == FLUSH_NONE) {
1210 rx->flush = FLUSH_DATA_READY;
1211 msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
1212 }
1213 }
1214 /* tx ready interrupt */
1215 if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
1216 /* Clear TX Ready */
1217 msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
1218
1219 if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
1220 msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1221 msm_hs_write(uport, UARTDM_IMR_ADDR,
1222 msm_uport->imr_reg);
1223 }
1224
1225 /* Complete DMA TX transactions and submit new transactions */
1226 tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
1227
1228 tx->dma_in_flight = 0;
1229
1230 uport->icount.tx += tx->tx_count;
1231 if (tx->tx_ready_int_en)
1232 msm_hs_submit_tx_locked(uport);
1233
1234 if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
1235 uart_write_wakeup(uport);
1236 }
1237 if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
1238 /* TX FIFO is empty */
1239 msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
1240 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1241 if (!msm_hs_check_clock_off_locked(uport))
1242 hrtimer_start(&msm_uport->clk_off_timer,
1243 msm_uport->clk_off_delay,
1244 HRTIMER_MODE_REL);
1245 }
1246
1247 /* Change in CTS interrupt */
1248 if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
1249 msm_hs_handle_delta_cts(uport);
1250
1251 spin_unlock_irqrestore(&uport->lock, flags);
1252
1253 return IRQ_HANDLED;
1254}
1255
1256void msm_hs_request_clock_off_locked(struct uart_port *uport)
1257{
1258 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1259
1260 if (msm_uport->clk_state == MSM_HS_CLK_ON) {
1261 msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
1262 msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
1263 if (!use_low_power_rx_wakeup(msm_uport))
1264 set_rfr_locked(uport, 0);
1265 msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1266 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1267 }
1268}
1269
1270/**
1271 * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart
1272 * clock once pending TX is flushed and Rx DMA command is terminated.
1273 * @uport: uart_port structure for the device instance.
1274 *
1275 * This functions puts the device into a partially active low power mode. It
1276 * waits to complete all pending tx transactions, flushes ongoing Rx DMA
1277 * command and terminates UART side Rx transaction, puts UART HW in non DMA
1278 * mode and then clocks off the device. A client calls this when no UART
1279 * data is expected. msm_request_clock_on() must be called before any further
1280 * UART can be sent or received.
1281 */
1282void msm_hs_request_clock_off(struct uart_port *uport)
1283{
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&uport->lock, flags);
1287 msm_hs_request_clock_off_locked(uport);
1288 spin_unlock_irqrestore(&uport->lock, flags);
1289}
1290
1291void msm_hs_request_clock_on_locked(struct uart_port *uport)
1292{
1293 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1294 unsigned int data;
1295
1296 switch (msm_uport->clk_state) {
1297 case MSM_HS_CLK_OFF:
1298 clk_enable(msm_uport->clk);
1299 disable_irq_nosync(msm_uport->rx_wakeup.irq);
1300 /* fall-through */
1301 case MSM_HS_CLK_REQUEST_OFF:
1302 if (msm_uport->rx.flush == FLUSH_STOP ||
1303 msm_uport->rx.flush == FLUSH_SHUTDOWN) {
1304 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1305 data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
1306 data |= UARTDM_RX_DM_EN_BMSK;
1307 msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1308 }
1309 hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
1310 if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
1311 msm_hs_start_rx_locked(uport);
1312 if (!use_low_power_rx_wakeup(msm_uport))
1313 set_rfr_locked(uport, 1);
1314 if (msm_uport->rx.flush == FLUSH_STOP)
1315 msm_uport->rx.flush = FLUSH_IGNORE;
1316 msm_uport->clk_state = MSM_HS_CLK_ON;
1317 break;
1318 case MSM_HS_CLK_ON:
1319 break;
1320 case MSM_HS_CLK_PORT_OFF:
1321 break;
1322 }
1323}
1324
1325/**
1326 * msm_hs_request_clock_on - Switch the device from partially active low
1327 * power mode to fully active (i.e. clock on) mode.
1328 * @uport: uart_port structure for the device.
1329 *
1330 * This function switches on the input clock, puts UART HW into DMA mode
1331 * and enqueues an Rx DMA command if the device was in partially active
1332 * mode. It has no effect if called with the device in inactive state.
1333 */
1334void msm_hs_request_clock_on(struct uart_port *uport)
1335{
1336 unsigned long flags;
1337
1338 spin_lock_irqsave(&uport->lock, flags);
1339 msm_hs_request_clock_on_locked(uport);
1340 spin_unlock_irqrestore(&uport->lock, flags);
1341}
1342
1343static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev)
1344{
1345 unsigned int wakeup = 0;
1346 unsigned long flags;
1347 struct msm_hs_port *msm_uport = dev;
1348 struct uart_port *uport = &msm_uport->uport;
1349 struct tty_struct *tty = NULL;
1350
1351 spin_lock_irqsave(&uport->lock, flags);
1352 if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
25985edc 1353 /* ignore the first irq - it is a pending irq that occurred
55046237
MR
1354 * before enable_irq() */
1355 if (msm_uport->rx_wakeup.ignore)
1356 msm_uport->rx_wakeup.ignore = 0;
1357 else
1358 wakeup = 1;
1359 }
1360
1361 if (wakeup) {
1362 /* the uart was clocked off during an rx, wake up and
1363 * optionally inject char into tty rx */
1364 msm_hs_request_clock_on_locked(uport);
1365 if (msm_uport->rx_wakeup.inject_rx) {
1366 tty = uport->state->port.tty;
1367 tty_insert_flip_char(tty,
1368 msm_uport->rx_wakeup.rx_to_inject,
1369 TTY_NORMAL);
1370 queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
1371 }
1372 }
1373
1374 spin_unlock_irqrestore(&uport->lock, flags);
1375
1376 return IRQ_HANDLED;
1377}
1378
1379static const char *msm_hs_type(struct uart_port *port)
1380{
1381 return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL;
1382}
1383
1384/* Called when port is opened */
1385static int msm_hs_startup(struct uart_port *uport)
1386{
1387 int ret;
1388 int rfr_level;
1389 unsigned long flags;
1390 unsigned int data;
1391 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1392 struct circ_buf *tx_buf = &uport->state->xmit;
1393 struct msm_hs_tx *tx = &msm_uport->tx;
1394 struct msm_hs_rx *rx = &msm_uport->rx;
1395
1396 rfr_level = uport->fifosize;
1397 if (rfr_level > 16)
1398 rfr_level -= 16;
1399
1400 tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
1401 DMA_TO_DEVICE);
1402
1403 /* do not let tty layer execute RX in global workqueue, use a
1404 * dedicated workqueue managed by this driver */
1405 uport->state->port.tty->low_latency = 1;
1406
1407 /* turn on uart clk */
1408 ret = msm_hs_init_clk_locked(uport);
1409 if (unlikely(ret)) {
1410 printk(KERN_ERR "Turning uartclk failed!\n");
1411 goto err_msm_hs_init_clk;
1412 }
1413
1414 /* Set auto RFR Level */
1415 data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1416 data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
1417 data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
1418 data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
1419 data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
1420 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1421
1422 /* Make sure RXSTALE count is non-zero */
1423 data = msm_hs_read(uport, UARTDM_IPR_ADDR);
1424 if (!data) {
1425 data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
1426 msm_hs_write(uport, UARTDM_IPR_ADDR, data);
1427 }
1428
1429 /* Enable Data Mover Mode */
1430 data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
1431 msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1432
1433 /* Reset TX */
1434 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
1435 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1436 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
1437 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
1438 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1439 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1440 msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
1441 /* Turn on Uart Receiver */
1442 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
1443
1444 /* Turn on Uart Transmitter */
1445 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
1446
1447 /* Initialize the tx */
1448 tx->tx_ready_int_en = 0;
1449 tx->dma_in_flight = 0;
1450
1451 tx->xfer.complete_func = msm_hs_dmov_tx_callback;
1452 tx->xfer.execute_func = NULL;
1453
1454 tx->command_ptr->cmd = CMD_LC |
1455 CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
1456
1457 tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1458 | (MSM_UARTDM_BURST_SIZE);
1459
1460 tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
1461
1462 tx->command_ptr->dst_row_addr =
1463 msm_uport->uport.mapbase + UARTDM_TF_ADDR;
1464
1465
1466 /* Turn on Uart Receive */
1467 rx->xfer.complete_func = msm_hs_dmov_rx_callback;
1468 rx->xfer.execute_func = NULL;
1469
1470 rx->command_ptr->cmd = CMD_LC |
1471 CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
1472
1473 rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1474 | (MSM_UARTDM_BURST_SIZE);
1475 rx->command_ptr->row_offset = MSM_UARTDM_BURST_SIZE;
1476 rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
1477
1478
1479 msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
1480 /* Enable reading the current CTS, no harm even if CTS is ignored */
1481 msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
1482
1483 msm_hs_write(uport, UARTDM_TFWR_ADDR, 0); /* TXLEV on empty TX fifo */
1484
1485
1486 ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
1487 "msm_hs_uart", msm_uport);
1488 if (unlikely(ret)) {
1489 printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n");
1490 goto err_request_irq;
1491 }
1492 if (use_low_power_rx_wakeup(msm_uport)) {
1493 ret = request_irq(msm_uport->rx_wakeup.irq,
1494 msm_hs_rx_wakeup_isr,
1495 IRQF_TRIGGER_FALLING,
1496 "msm_hs_rx_wakeup", msm_uport);
1497 if (unlikely(ret)) {
1498 printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n");
1499 free_irq(uport->irq, msm_uport);
1500 goto err_request_irq;
1501 }
1502 disable_irq(msm_uport->rx_wakeup.irq);
1503 }
1504
1505 spin_lock_irqsave(&uport->lock, flags);
1506
1507 msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
1508 msm_hs_start_rx_locked(uport);
1509
1510 spin_unlock_irqrestore(&uport->lock, flags);
1511 ret = pm_runtime_set_active(uport->dev);
1512 if (ret)
1513 dev_err(uport->dev, "set active error:%d\n", ret);
1514 pm_runtime_enable(uport->dev);
1515
1516 return 0;
1517
1518err_request_irq:
1519err_msm_hs_init_clk:
1520 dma_unmap_single(uport->dev, tx->dma_base,
1521 UART_XMIT_SIZE, DMA_TO_DEVICE);
1522 return ret;
1523}
1524
1525/* Initialize tx and rx data structures */
1526static int __devinit uartdm_init_port(struct uart_port *uport)
1527{
1528 int ret = 0;
1529 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1530 struct msm_hs_tx *tx = &msm_uport->tx;
1531 struct msm_hs_rx *rx = &msm_uport->rx;
1532
1533 /* Allocate the command pointer. Needs to be 64 bit aligned */
1534 tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1535 if (!tx->command_ptr)
1536 return -ENOMEM;
1537
1538 tx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA);
1539 if (!tx->command_ptr_ptr) {
1540 ret = -ENOMEM;
1541 goto err_tx_command_ptr_ptr;
1542 }
1543
1544 tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
1545 sizeof(dmov_box), DMA_TO_DEVICE);
1546 tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
1547 tx->command_ptr_ptr,
1548 sizeof(u32 *), DMA_TO_DEVICE);
1549 tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
1550
1551 init_waitqueue_head(&rx->wait);
1552
1553 rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
1554 UARTDM_RX_BUF_SIZE, 16, 0);
1555 if (!rx->pool) {
1556 pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
1557 ret = -ENOMEM;
1558 goto err_dma_pool_create;
1559 }
1560
1561 rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
1562 if (!rx->buffer) {
1563 pr_err("%s(): cannot allocate rx->buffer", __func__);
1564 ret = -ENOMEM;
1565 goto err_dma_pool_alloc;
1566 }
1567
1568 /* Allocate the command pointer. Needs to be 64 bit aligned */
1569 rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1570 if (!rx->command_ptr) {
1571 pr_err("%s(): cannot allocate rx->command_ptr", __func__);
1572 ret = -ENOMEM;
1573 goto err_rx_command_ptr;
1574 }
1575
1576 rx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA);
1577 if (!rx->command_ptr_ptr) {
1578 pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
1579 ret = -ENOMEM;
1580 goto err_rx_command_ptr_ptr;
1581 }
1582
1583 rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
1584 (UARTDM_RX_BUF_SIZE >> 4);
1585
1586 rx->command_ptr->dst_row_addr = rx->rbuffer;
1587
1588 rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
1589 sizeof(dmov_box), DMA_TO_DEVICE);
1590
1591 *rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
1592
1593 rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
1594 sizeof(u32 *), DMA_TO_DEVICE);
1595 rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
1596
1597 INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work);
1598
1599 return ret;
1600
1601err_rx_command_ptr_ptr:
1602 kfree(rx->command_ptr);
1603err_rx_command_ptr:
1604 dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
1605 msm_uport->rx.rbuffer);
1606err_dma_pool_alloc:
1607 dma_pool_destroy(msm_uport->rx.pool);
1608err_dma_pool_create:
1609 dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
1610 sizeof(u32 *), DMA_TO_DEVICE);
1611 dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
1612 sizeof(dmov_box), DMA_TO_DEVICE);
1613 kfree(msm_uport->tx.command_ptr_ptr);
1614err_tx_command_ptr_ptr:
1615 kfree(msm_uport->tx.command_ptr);
1616 return ret;
1617}
1618
1619static int __devinit msm_hs_probe(struct platform_device *pdev)
1620{
1621 int ret;
1622 struct uart_port *uport;
1623 struct msm_hs_port *msm_uport;
1624 struct resource *resource;
1625 const struct msm_serial_hs_platform_data *pdata =
1626 pdev->dev.platform_data;
1627
1628 if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
1629 printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
1630 return -EINVAL;
1631 }
1632
1633 msm_uport = &q_uart_port[pdev->id];
1634 uport = &msm_uport->uport;
1635
1636 uport->dev = &pdev->dev;
1637
1638 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1639 if (unlikely(!resource))
1640 return -ENXIO;
1641
1642 uport->mapbase = resource->start;
1643 uport->irq = platform_get_irq(pdev, 0);
1644 if (unlikely(uport->irq < 0))
1645 return -ENXIO;
1646
dced35ae 1647 if (unlikely(irq_set_irq_wake(uport->irq, 1)))
55046237
MR
1648 return -ENXIO;
1649
1650 if (pdata == NULL || pdata->rx_wakeup_irq < 0)
1651 msm_uport->rx_wakeup.irq = -1;
1652 else {
1653 msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq;
1654 msm_uport->rx_wakeup.ignore = 1;
1655 msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup;
1656 msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject;
1657
1658 if (unlikely(msm_uport->rx_wakeup.irq < 0))
1659 return -ENXIO;
1660
dced35ae 1661 if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1)))
55046237
MR
1662 return -ENXIO;
1663 }
1664
1665 if (pdata == NULL)
1666 msm_uport->exit_lpm_cb = NULL;
1667 else
1668 msm_uport->exit_lpm_cb = pdata->exit_lpm_cb;
1669
1670 resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1671 "uartdm_channels");
1672 if (unlikely(!resource))
1673 return -ENXIO;
1674
1675 msm_uport->dma_tx_channel = resource->start;
1676 msm_uport->dma_rx_channel = resource->end;
1677
1678 resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1679 "uartdm_crci");
1680 if (unlikely(!resource))
1681 return -ENXIO;
1682
1683 msm_uport->dma_tx_crci = resource->start;
1684 msm_uport->dma_rx_crci = resource->end;
1685
1686 uport->iotype = UPIO_MEM;
1687 uport->fifosize = UART_FIFOSIZE;
1688 uport->ops = &msm_hs_ops;
1689 uport->flags = UPF_BOOT_AUTOCONF;
1690 uport->uartclk = UARTCLK;
1691 msm_uport->imr_reg = 0x0;
1692 msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk");
1693 if (IS_ERR(msm_uport->clk))
1694 return PTR_ERR(msm_uport->clk);
1695
1696 ret = uartdm_init_port(uport);
1697 if (unlikely(ret))
1698 return ret;
1699
1700 msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1701 hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
1702 HRTIMER_MODE_REL);
1703 msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
1704 msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */
1705
1706 uport->line = pdev->id;
1707 return uart_add_one_port(&msm_hs_driver, uport);
1708}
1709
1710static int __init msm_serial_hs_init(void)
1711{
1712 int ret, i;
1713
1714 /* Init all UARTS as non-configured */
1715 for (i = 0; i < UARTDM_NR; i++)
1716 q_uart_port[i].uport.type = PORT_UNKNOWN;
1717
1718 msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs");
1719 if (unlikely(!msm_hs_workqueue))
1720 return -ENOMEM;
1721
1722 ret = uart_register_driver(&msm_hs_driver);
1723 if (unlikely(ret)) {
1724 printk(KERN_ERR "%s failed to load\n", __func__);
1725 goto err_uart_register_driver;
1726 }
1727
1728 ret = platform_driver_register(&msm_serial_hs_platform_driver);
1729 if (ret) {
1730 printk(KERN_ERR "%s failed to load\n", __func__);
1731 goto err_platform_driver_register;
1732 }
1733
1734 return ret;
1735
1736err_platform_driver_register:
1737 uart_unregister_driver(&msm_hs_driver);
1738err_uart_register_driver:
1739 destroy_workqueue(msm_hs_workqueue);
1740 return ret;
1741}
1742module_init(msm_serial_hs_init);
1743
1744/*
1745 * Called by the upper layer when port is closed.
1746 * - Disables the port
1747 * - Unhook the ISR
1748 */
1749static void msm_hs_shutdown(struct uart_port *uport)
1750{
1751 unsigned long flags;
1752 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1753
1754 BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
1755
1756 spin_lock_irqsave(&uport->lock, flags);
1757 clk_enable(msm_uport->clk);
1758
1759 /* Disable the transmitter */
1760 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
1761 /* Disable the receiver */
1762 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
1763
1764 pm_runtime_disable(uport->dev);
1765 pm_runtime_set_suspended(uport->dev);
1766
1767 /* Free the interrupt */
1768 free_irq(uport->irq, msm_uport);
1769 if (use_low_power_rx_wakeup(msm_uport))
1770 free_irq(msm_uport->rx_wakeup.irq, msm_uport);
1771
1772 msm_uport->imr_reg = 0;
1773 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1774
1775 wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
1776
1777 clk_disable(msm_uport->clk); /* to balance local clk_enable() */
1778 if (msm_uport->clk_state != MSM_HS_CLK_OFF)
1779 clk_disable(msm_uport->clk); /* to balance clk_state */
1780 msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1781
1782 dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
1783 UART_XMIT_SIZE, DMA_TO_DEVICE);
1784
1785 spin_unlock_irqrestore(&uport->lock, flags);
1786
1787 if (cancel_work_sync(&msm_uport->rx.tty_work))
1788 msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work);
1789}
1790
1791static void __exit msm_serial_hs_exit(void)
1792{
1793 flush_workqueue(msm_hs_workqueue);
1794 destroy_workqueue(msm_hs_workqueue);
1795 platform_driver_unregister(&msm_serial_hs_platform_driver);
1796 uart_unregister_driver(&msm_hs_driver);
1797}
1798module_exit(msm_serial_hs_exit);
1799
1800#ifdef CONFIG_PM_RUNTIME
1801static int msm_hs_runtime_idle(struct device *dev)
1802{
1803 /*
1804 * returning success from idle results in runtime suspend to be
1805 * called
1806 */
1807 return 0;
1808}
1809
1810static int msm_hs_runtime_resume(struct device *dev)
1811{
1812 struct platform_device *pdev = container_of(dev, struct
1813 platform_device, dev);
1814 struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1815
1816 msm_hs_request_clock_on(&msm_uport->uport);
1817 return 0;
1818}
1819
1820static int msm_hs_runtime_suspend(struct device *dev)
1821{
1822 struct platform_device *pdev = container_of(dev, struct
1823 platform_device, dev);
1824 struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1825
1826 msm_hs_request_clock_off(&msm_uport->uport);
1827 return 0;
1828}
1829#else
1830#define msm_hs_runtime_idle NULL
1831#define msm_hs_runtime_resume NULL
1832#define msm_hs_runtime_suspend NULL
1833#endif
1834
1835static const struct dev_pm_ops msm_hs_dev_pm_ops = {
1836 .runtime_suspend = msm_hs_runtime_suspend,
1837 .runtime_resume = msm_hs_runtime_resume,
1838 .runtime_idle = msm_hs_runtime_idle,
1839};
1840
1841static struct platform_driver msm_serial_hs_platform_driver = {
1842 .probe = msm_hs_probe,
1843 .remove = __devexit_p(msm_hs_remove),
1844 .driver = {
1845 .name = "msm_serial_hs",
1846 .owner = THIS_MODULE,
1847 .pm = &msm_hs_dev_pm_ops,
1848 },
1849};
1850
1851static struct uart_driver msm_hs_driver = {
1852 .owner = THIS_MODULE,
1853 .driver_name = "msm_serial_hs",
1854 .dev_name = "ttyHS",
1855 .nr = UARTDM_NR,
1856 .cons = 0,
1857};
1858
1859static struct uart_ops msm_hs_ops = {
1860 .tx_empty = msm_hs_tx_empty,
1861 .set_mctrl = msm_hs_set_mctrl_locked,
1862 .get_mctrl = msm_hs_get_mctrl_locked,
1863 .stop_tx = msm_hs_stop_tx_locked,
1864 .start_tx = msm_hs_start_tx_locked,
1865 .stop_rx = msm_hs_stop_rx_locked,
1866 .enable_ms = msm_hs_enable_ms_locked,
1867 .break_ctl = msm_hs_break_ctl,
1868 .startup = msm_hs_startup,
1869 .shutdown = msm_hs_shutdown,
1870 .set_termios = msm_hs_set_termios,
1871 .pm = msm_hs_pm,
1872 .type = msm_hs_type,
1873 .config_port = msm_hs_config_port,
1874 .release_port = msm_hs_release_port,
1875 .request_port = msm_hs_request_port,
1876};
1877
1878MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
1879MODULE_VERSION("1.2");
1880MODULE_LICENSE("GPL v2");