]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/usb/core/message.c
USB: New device PID for ftdi_sio driver
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / core / message.c
CommitLineData
1da177e4
LT
1/*
2 * message.c - synchronous message handling
3 */
4
1da177e4
LT
5#include <linux/pci.h> /* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/timer.h>
12#include <linux/ctype.h>
13#include <linux/device.h>
7ceec1f1 14#include <linux/usb/quirks.h>
1da177e4 15#include <asm/byteorder.h>
5d68dfcf 16#include <asm/scatterlist.h>
1da177e4
LT
17
18#include "hcd.h" /* for usbcore internals */
19#include "usb.h"
20
7d12e780 21static void usb_api_blocking_completion(struct urb *urb)
1da177e4
LT
22{
23 complete((struct completion *)urb->context);
24}
25
26
ecdc0a59
FBH
27/*
28 * Starts urb and waits for completion or timeout. Note that this call
29 * is NOT interruptible. Many device driver i/o requests should be
30 * interruptible and therefore these drivers should implement their
31 * own interruptible routines.
32 */
33static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
1da177e4 34{
ecdc0a59
FBH
35 struct completion done;
36 unsigned long expire;
37 int status;
1da177e4
LT
38
39 init_completion(&done);
40 urb->context = &done;
1da177e4
LT
41 urb->actual_length = 0;
42 status = usb_submit_urb(urb, GFP_NOIO);
ecdc0a59
FBH
43 if (unlikely(status))
44 goto out;
1da177e4 45
ecdc0a59
FBH
46 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
47 if (!wait_for_completion_timeout(&done, expire)) {
48
49 dev_dbg(&urb->dev->dev,
50 "%s timed out on ep%d%s len=%d/%d\n",
51 current->comm,
52 usb_pipeendpoint(urb->pipe),
53 usb_pipein(urb->pipe) ? "in" : "out",
54 urb->actual_length,
55 urb->transfer_buffer_length);
1da177e4 56
ecdc0a59
FBH
57 usb_kill_urb(urb);
58 status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status;
59 } else
60 status = urb->status;
61out:
1da177e4
LT
62 if (actual_length)
63 *actual_length = urb->actual_length;
ecdc0a59 64
1da177e4
LT
65 usb_free_urb(urb);
66 return status;
67}
68
69/*-------------------------------------------------------------------*/
70// returns status (negative) or length (positive)
71static int usb_internal_control_msg(struct usb_device *usb_dev,
72 unsigned int pipe,
73 struct usb_ctrlrequest *cmd,
74 void *data, int len, int timeout)
75{
76 struct urb *urb;
77 int retv;
78 int length;
79
80 urb = usb_alloc_urb(0, GFP_NOIO);
81 if (!urb)
82 return -ENOMEM;
83
84 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
85 len, usb_api_blocking_completion, NULL);
86
87 retv = usb_start_wait_urb(urb, timeout, &length);
88 if (retv < 0)
89 return retv;
90 else
91 return length;
92}
93
94/**
95 * usb_control_msg - Builds a control urb, sends it off and waits for completion
96 * @dev: pointer to the usb device to send the message to
97 * @pipe: endpoint "pipe" to send the message to
98 * @request: USB message request value
99 * @requesttype: USB message request type value
100 * @value: USB message value
101 * @index: USB message index value
102 * @data: pointer to the data to send
103 * @size: length in bytes of the data to send
104 * @timeout: time in msecs to wait for the message to complete before
105 * timing out (if 0 the wait is forever)
106 * Context: !in_interrupt ()
107 *
108 * This function sends a simple control message to a specified endpoint
109 * and waits for the message to complete, or timeout.
110 *
111 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
112 *
113 * Don't use this function from within an interrupt context, like a
114 * bottom half handler. If you need an asynchronous message, or need to send
115 * a message from within interrupt context, use usb_submit_urb()
116 * If a thread in your driver uses this call, make sure your disconnect()
117 * method can wait for it to complete. Since you don't have a handle on
118 * the URB used, you can't cancel the request.
119 */
120int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
121 __u16 value, __u16 index, void *data, __u16 size, int timeout)
122{
123 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
124 int ret;
125
126 if (!dr)
127 return -ENOMEM;
128
129 dr->bRequestType= requesttype;
130 dr->bRequest = request;
131 dr->wValue = cpu_to_le16p(&value);
132 dr->wIndex = cpu_to_le16p(&index);
133 dr->wLength = cpu_to_le16p(&size);
134
135 //dbg("usb_control_msg");
136
137 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
138
139 kfree(dr);
140
141 return ret;
142}
143
144
782a7a63
GKH
145/**
146 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
147 * @usb_dev: pointer to the usb device to send the message to
148 * @pipe: endpoint "pipe" to send the message to
149 * @data: pointer to the data to send
150 * @len: length in bytes of the data to send
151 * @actual_length: pointer to a location to put the actual length transferred in bytes
152 * @timeout: time in msecs to wait for the message to complete before
153 * timing out (if 0 the wait is forever)
154 * Context: !in_interrupt ()
155 *
156 * This function sends a simple interrupt message to a specified endpoint and
157 * waits for the message to complete, or timeout.
158 *
159 * If successful, it returns 0, otherwise a negative error number. The number
160 * of actual bytes transferred will be stored in the actual_length paramater.
161 *
162 * Don't use this function from within an interrupt context, like a bottom half
163 * handler. If you need an asynchronous message, or need to send a message
164 * from within interrupt context, use usb_submit_urb() If a thread in your
165 * driver uses this call, make sure your disconnect() method can wait for it to
166 * complete. Since you don't have a handle on the URB used, you can't cancel
167 * the request.
168 */
169int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
170 void *data, int len, int *actual_length, int timeout)
171{
172 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
173}
174EXPORT_SYMBOL_GPL(usb_interrupt_msg);
175
1da177e4
LT
176/**
177 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
178 * @usb_dev: pointer to the usb device to send the message to
179 * @pipe: endpoint "pipe" to send the message to
180 * @data: pointer to the data to send
181 * @len: length in bytes of the data to send
182 * @actual_length: pointer to a location to put the actual length transferred in bytes
183 * @timeout: time in msecs to wait for the message to complete before
184 * timing out (if 0 the wait is forever)
185 * Context: !in_interrupt ()
186 *
187 * This function sends a simple bulk message to a specified endpoint
188 * and waits for the message to complete, or timeout.
189 *
190 * If successful, it returns 0, otherwise a negative error number.
191 * The number of actual bytes transferred will be stored in the
192 * actual_length paramater.
193 *
194 * Don't use this function from within an interrupt context, like a
195 * bottom half handler. If you need an asynchronous message, or need to
196 * send a message from within interrupt context, use usb_submit_urb()
197 * If a thread in your driver uses this call, make sure your disconnect()
198 * method can wait for it to complete. Since you don't have a handle on
199 * the URB used, you can't cancel the request.
d09d36a9
AS
200 *
201 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
202 * ioctl, users are forced to abuse this routine by using it to submit
203 * URBs for interrupt endpoints. We will take the liberty of creating
204 * an interrupt URB (with the default interval) if the target is an
205 * interrupt endpoint.
1da177e4
LT
206 */
207int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
208 void *data, int len, int *actual_length, int timeout)
209{
210 struct urb *urb;
d09d36a9 211 struct usb_host_endpoint *ep;
1da177e4 212
d09d36a9
AS
213 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
214 [usb_pipeendpoint(pipe)];
215 if (!ep || len < 0)
1da177e4
LT
216 return -EINVAL;
217
d09d36a9 218 urb = usb_alloc_urb(0, GFP_KERNEL);
1da177e4
LT
219 if (!urb)
220 return -ENOMEM;
221
d09d36a9
AS
222 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
223 USB_ENDPOINT_XFER_INT) {
97b9eb91
AS
224 int interval;
225
226 if (usb_dev->speed == USB_SPEED_HIGH)
227 interval = 1 << min(15, ep->desc.bInterval - 1);
228 else
229 interval = ep->desc.bInterval;
d09d36a9
AS
230 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
231 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
97b9eb91 232 usb_api_blocking_completion, NULL, interval);
d09d36a9
AS
233 } else
234 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
235 usb_api_blocking_completion, NULL);
1da177e4
LT
236
237 return usb_start_wait_urb(urb, timeout, actual_length);
238}
239
240/*-------------------------------------------------------------------*/
241
242static void sg_clean (struct usb_sg_request *io)
243{
244 if (io->urbs) {
245 while (io->entries--)
246 usb_free_urb (io->urbs [io->entries]);
247 kfree (io->urbs);
248 io->urbs = NULL;
249 }
250 if (io->dev->dev.dma_mask != NULL)
251 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
252 io->dev = NULL;
253}
254
7d12e780 255static void sg_complete (struct urb *urb)
1da177e4 256{
ec17cf1c 257 struct usb_sg_request *io = urb->context;
1da177e4
LT
258
259 spin_lock (&io->lock);
260
261 /* In 2.5 we require hcds' endpoint queues not to progress after fault
262 * reports, until the completion callback (this!) returns. That lets
263 * device driver code (like this routine) unlink queued urbs first,
264 * if it needs to, since the HC won't work on them at all. So it's
265 * not possible for page N+1 to overwrite page N, and so on.
266 *
267 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
268 * complete before the HCD can get requests away from hardware,
269 * though never during cleanup after a hard fault.
270 */
271 if (io->status
272 && (io->status != -ECONNRESET
273 || urb->status != -ECONNRESET)
274 && urb->actual_length) {
275 dev_err (io->dev->bus->controller,
276 "dev %s ep%d%s scatterlist error %d/%d\n",
277 io->dev->devpath,
278 usb_pipeendpoint (urb->pipe),
279 usb_pipein (urb->pipe) ? "in" : "out",
280 urb->status, io->status);
281 // BUG ();
282 }
283
284 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
285 int i, found, status;
286
287 io->status = urb->status;
288
289 /* the previous urbs, and this one, completed already.
290 * unlink pending urbs so they won't rx/tx bad data.
291 * careful: unlink can sometimes be synchronous...
292 */
293 spin_unlock (&io->lock);
294 for (i = 0, found = 0; i < io->entries; i++) {
295 if (!io->urbs [i] || !io->urbs [i]->dev)
296 continue;
297 if (found) {
298 status = usb_unlink_urb (io->urbs [i]);
8f34c288
DB
299 if (status != -EINPROGRESS
300 && status != -ENODEV
301 && status != -EBUSY)
1da177e4
LT
302 dev_err (&io->dev->dev,
303 "%s, unlink --> %d\n",
304 __FUNCTION__, status);
305 } else if (urb == io->urbs [i])
306 found = 1;
307 }
308 spin_lock (&io->lock);
309 }
310 urb->dev = NULL;
311
312 /* on the last completion, signal usb_sg_wait() */
313 io->bytes += urb->actual_length;
314 io->count--;
315 if (!io->count)
316 complete (&io->complete);
317
318 spin_unlock (&io->lock);
319}
320
321
322/**
323 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
324 * @io: request block being initialized. until usb_sg_wait() returns,
325 * treat this as a pointer to an opaque block of memory,
326 * @dev: the usb device that will send or receive the data
327 * @pipe: endpoint "pipe" used to transfer the data
328 * @period: polling rate for interrupt endpoints, in frames or
329 * (for high speed endpoints) microframes; ignored for bulk
330 * @sg: scatterlist entries
331 * @nents: how many entries in the scatterlist
332 * @length: how many bytes to send from the scatterlist, or zero to
333 * send every byte identified in the list.
334 * @mem_flags: SLAB_* flags affecting memory allocations in this call
335 *
336 * Returns zero for success, else a negative errno value. This initializes a
337 * scatter/gather request, allocating resources such as I/O mappings and urb
338 * memory (except maybe memory used by USB controller drivers).
339 *
340 * The request must be issued using usb_sg_wait(), which waits for the I/O to
341 * complete (or to be canceled) and then cleans up all resources allocated by
342 * usb_sg_init().
343 *
344 * The request may be canceled with usb_sg_cancel(), either before or after
345 * usb_sg_wait() is called.
346 */
347int usb_sg_init (
348 struct usb_sg_request *io,
349 struct usb_device *dev,
350 unsigned pipe,
351 unsigned period,
352 struct scatterlist *sg,
353 int nents,
354 size_t length,
55016f10 355 gfp_t mem_flags
1da177e4
LT
356)
357{
358 int i;
359 int urb_flags;
360 int dma;
361
362 if (!io || !dev || !sg
363 || usb_pipecontrol (pipe)
364 || usb_pipeisoc (pipe)
365 || nents <= 0)
366 return -EINVAL;
367
368 spin_lock_init (&io->lock);
369 io->dev = dev;
370 io->pipe = pipe;
371 io->sg = sg;
372 io->nents = nents;
373
374 /* not all host controllers use DMA (like the mainstream pci ones);
375 * they can use PIO (sl811) or be software over another transport.
376 */
377 dma = (dev->dev.dma_mask != NULL);
378 if (dma)
379 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
380 else
381 io->entries = nents;
382
383 /* initialize all the urbs we'll use */
384 if (io->entries <= 0)
385 return io->entries;
386
387 io->count = io->entries;
388 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
389 if (!io->urbs)
390 goto nomem;
391
b375a049 392 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
1da177e4
LT
393 if (usb_pipein (pipe))
394 urb_flags |= URB_SHORT_NOT_OK;
395
396 for (i = 0; i < io->entries; i++) {
397 unsigned len;
398
399 io->urbs [i] = usb_alloc_urb (0, mem_flags);
400 if (!io->urbs [i]) {
401 io->entries = i;
402 goto nomem;
403 }
404
405 io->urbs [i]->dev = NULL;
406 io->urbs [i]->pipe = pipe;
407 io->urbs [i]->interval = period;
408 io->urbs [i]->transfer_flags = urb_flags;
409
410 io->urbs [i]->complete = sg_complete;
411 io->urbs [i]->context = io;
412 io->urbs [i]->status = -EINPROGRESS;
413 io->urbs [i]->actual_length = 0;
414
35d07fd5
TL
415 /*
416 * Some systems need to revert to PIO when DMA is temporarily
417 * unavailable. For their sakes, both transfer_buffer and
418 * transfer_dma are set when possible. However this can only
419 * work on systems without HIGHMEM, since DMA buffers located
420 * in high memory are not directly addressable by the CPU for
421 * PIO ... so when HIGHMEM is in use, transfer_buffer is NULL
422 * to prevent stale pointers and to help spot bugs.
423 */
1da177e4 424 if (dma) {
1da177e4
LT
425 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
426 len = sg_dma_len (sg + i);
35d07fd5
TL
427#ifdef CONFIG_HIGHMEM
428 io->urbs[i]->transfer_buffer = NULL;
429#else
430 io->urbs[i]->transfer_buffer =
431 page_address(sg[i].page) + sg[i].offset;
432#endif
1da177e4
LT
433 } else {
434 /* hc may use _only_ transfer_buffer */
435 io->urbs [i]->transfer_buffer =
436 page_address (sg [i].page) + sg [i].offset;
437 len = sg [i].length;
438 }
439
440 if (length) {
441 len = min_t (unsigned, len, length);
442 length -= len;
443 if (length == 0)
444 io->entries = i + 1;
445 }
446 io->urbs [i]->transfer_buffer_length = len;
447 }
448 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449
450 /* transaction state */
451 io->status = 0;
452 io->bytes = 0;
453 init_completion (&io->complete);
454 return 0;
455
456nomem:
457 sg_clean (io);
458 return -ENOMEM;
459}
460
461
462/**
463 * usb_sg_wait - synchronously execute scatter/gather request
464 * @io: request block handle, as initialized with usb_sg_init().
465 * some fields become accessible when this call returns.
466 * Context: !in_interrupt ()
467 *
468 * This function blocks until the specified I/O operation completes. It
469 * leverages the grouping of the related I/O requests to get good transfer
470 * rates, by queueing the requests. At higher speeds, such queuing can
471 * significantly improve USB throughput.
472 *
473 * There are three kinds of completion for this function.
474 * (1) success, where io->status is zero. The number of io->bytes
475 * transferred is as requested.
476 * (2) error, where io->status is a negative errno value. The number
477 * of io->bytes transferred before the error is usually less
478 * than requested, and can be nonzero.
093cf723 479 * (3) cancellation, a type of error with status -ECONNRESET that
1da177e4
LT
480 * is initiated by usb_sg_cancel().
481 *
482 * When this function returns, all memory allocated through usb_sg_init() or
483 * this call will have been freed. The request block parameter may still be
484 * passed to usb_sg_cancel(), or it may be freed. It could also be
485 * reinitialized and then reused.
486 *
487 * Data Transfer Rates:
488 *
489 * Bulk transfers are valid for full or high speed endpoints.
490 * The best full speed data rate is 19 packets of 64 bytes each
491 * per frame, or 1216 bytes per millisecond.
492 * The best high speed data rate is 13 packets of 512 bytes each
493 * per microframe, or 52 KBytes per millisecond.
494 *
495 * The reason to use interrupt transfers through this API would most likely
496 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
497 * could be transferred. That capability is less useful for low or full
498 * speed interrupt endpoints, which allow at most one packet per millisecond,
499 * of at most 8 or 64 bytes (respectively).
500 */
501void usb_sg_wait (struct usb_sg_request *io)
502{
503 int i, entries = io->entries;
504
505 /* queue the urbs. */
506 spin_lock_irq (&io->lock);
507 for (i = 0; i < entries && !io->status; i++) {
508 int retval;
509
510 io->urbs [i]->dev = io->dev;
54e6ecb2 511 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
1da177e4
LT
512
513 /* after we submit, let completions or cancelations fire;
514 * we handshake using io->status.
515 */
516 spin_unlock_irq (&io->lock);
517 switch (retval) {
518 /* maybe we retrying will recover */
519 case -ENXIO: // hc didn't queue this one
520 case -EAGAIN:
521 case -ENOMEM:
522 io->urbs[i]->dev = NULL;
523 retval = 0;
524 i--;
525 yield ();
526 break;
527
528 /* no error? continue immediately.
529 *
530 * NOTE: to work better with UHCI (4K I/O buffer may
531 * need 3K of TDs) it may be good to limit how many
532 * URBs are queued at once; N milliseconds?
533 */
534 case 0:
535 cpu_relax ();
536 break;
537
538 /* fail any uncompleted urbs */
539 default:
540 io->urbs [i]->dev = NULL;
541 io->urbs [i]->status = retval;
542 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
543 __FUNCTION__, retval);
544 usb_sg_cancel (io);
545 }
546 spin_lock_irq (&io->lock);
547 if (retval && (io->status == 0 || io->status == -ECONNRESET))
548 io->status = retval;
549 }
550 io->count -= entries - i;
551 if (io->count == 0)
552 complete (&io->complete);
553 spin_unlock_irq (&io->lock);
554
555 /* OK, yes, this could be packaged as non-blocking.
556 * So could the submit loop above ... but it's easier to
557 * solve neither problem than to solve both!
558 */
559 wait_for_completion (&io->complete);
560
561 sg_clean (io);
562}
563
564/**
565 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
566 * @io: request block, initialized with usb_sg_init()
567 *
568 * This stops a request after it has been started by usb_sg_wait().
569 * It can also prevents one initialized by usb_sg_init() from starting,
570 * so that call just frees resources allocated to the request.
571 */
572void usb_sg_cancel (struct usb_sg_request *io)
573{
574 unsigned long flags;
575
576 spin_lock_irqsave (&io->lock, flags);
577
578 /* shut everything down, if it didn't already */
579 if (!io->status) {
580 int i;
581
582 io->status = -ECONNRESET;
583 spin_unlock (&io->lock);
584 for (i = 0; i < io->entries; i++) {
585 int retval;
586
587 if (!io->urbs [i]->dev)
588 continue;
589 retval = usb_unlink_urb (io->urbs [i]);
590 if (retval != -EINPROGRESS && retval != -EBUSY)
591 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
592 __FUNCTION__, retval);
593 }
594 spin_lock (&io->lock);
595 }
596 spin_unlock_irqrestore (&io->lock, flags);
597}
598
599/*-------------------------------------------------------------------*/
600
601/**
602 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
603 * @dev: the device whose descriptor is being retrieved
604 * @type: the descriptor type (USB_DT_*)
605 * @index: the number of the descriptor
606 * @buf: where to put the descriptor
607 * @size: how big is "buf"?
608 * Context: !in_interrupt ()
609 *
610 * Gets a USB descriptor. Convenience functions exist to simplify
611 * getting some types of descriptors. Use
612 * usb_get_string() or usb_string() for USB_DT_STRING.
613 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
614 * are part of the device structure.
615 * In addition to a number of USB-standard descriptors, some
616 * devices also use class-specific or vendor-specific descriptors.
617 *
618 * This call is synchronous, and may not be used in an interrupt context.
619 *
620 * Returns the number of bytes received on success, or else the status code
621 * returned by the underlying usb_control_msg() call.
622 */
623int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
624{
625 int i;
626 int result;
627
628 memset(buf,0,size); // Make sure we parse really received data
629
630 for (i = 0; i < 3; ++i) {
631 /* retry on length 0 or stall; some devices are flakey */
632 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
633 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
634 (type << 8) + index, 0, buf, size,
635 USB_CTRL_GET_TIMEOUT);
636 if (result == 0 || result == -EPIPE)
637 continue;
638 if (result > 1 && ((u8 *)buf)[1] != type) {
639 result = -EPROTO;
640 continue;
641 }
642 break;
643 }
644 return result;
645}
646
647/**
648 * usb_get_string - gets a string descriptor
649 * @dev: the device whose string descriptor is being retrieved
650 * @langid: code for language chosen (from string descriptor zero)
651 * @index: the number of the descriptor
652 * @buf: where to put the string
653 * @size: how big is "buf"?
654 * Context: !in_interrupt ()
655 *
656 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
657 * in little-endian byte order).
658 * The usb_string() function will often be a convenient way to turn
659 * these strings into kernel-printable form.
660 *
661 * Strings may be referenced in device, configuration, interface, or other
662 * descriptors, and could also be used in vendor-specific ways.
663 *
664 * This call is synchronous, and may not be used in an interrupt context.
665 *
666 * Returns the number of bytes received on success, or else the status code
667 * returned by the underlying usb_control_msg() call.
668 */
e266a124
AB
669static int usb_get_string(struct usb_device *dev, unsigned short langid,
670 unsigned char index, void *buf, int size)
1da177e4
LT
671{
672 int i;
673 int result;
674
675 for (i = 0; i < 3; ++i) {
676 /* retry on length 0 or stall; some devices are flakey */
677 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
678 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
679 (USB_DT_STRING << 8) + index, langid, buf, size,
680 USB_CTRL_GET_TIMEOUT);
681 if (!(result == 0 || result == -EPIPE))
682 break;
683 }
684 return result;
685}
686
687static void usb_try_string_workarounds(unsigned char *buf, int *length)
688{
689 int newlength, oldlength = *length;
690
691 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
692 if (!isprint(buf[newlength]) || buf[newlength + 1])
693 break;
694
695 if (newlength > 2) {
696 buf[0] = newlength;
697 *length = newlength;
698 }
699}
700
701static int usb_string_sub(struct usb_device *dev, unsigned int langid,
702 unsigned int index, unsigned char *buf)
703{
704 int rc;
705
706 /* Try to read the string descriptor by asking for the maximum
707 * possible number of bytes */
7ceec1f1
ON
708 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
709 rc = -EIO;
710 else
711 rc = usb_get_string(dev, langid, index, buf, 255);
1da177e4
LT
712
713 /* If that failed try to read the descriptor length, then
714 * ask for just that many bytes */
715 if (rc < 2) {
716 rc = usb_get_string(dev, langid, index, buf, 2);
717 if (rc == 2)
718 rc = usb_get_string(dev, langid, index, buf, buf[0]);
719 }
720
721 if (rc >= 2) {
722 if (!buf[0] && !buf[1])
723 usb_try_string_workarounds(buf, &rc);
724
725 /* There might be extra junk at the end of the descriptor */
726 if (buf[0] < rc)
727 rc = buf[0];
728
729 rc = rc - (rc & 1); /* force a multiple of two */
730 }
731
732 if (rc < 2)
733 rc = (rc < 0 ? rc : -EINVAL);
734
735 return rc;
736}
737
738/**
739 * usb_string - returns ISO 8859-1 version of a string descriptor
740 * @dev: the device whose string descriptor is being retrieved
741 * @index: the number of the descriptor
742 * @buf: where to put the string
743 * @size: how big is "buf"?
744 * Context: !in_interrupt ()
745 *
746 * This converts the UTF-16LE encoded strings returned by devices, from
747 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
748 * that are more usable in most kernel contexts. Note that all characters
749 * in the chosen descriptor that can't be encoded using ISO-8859-1
750 * are converted to the question mark ("?") character, and this function
751 * chooses strings in the first language supported by the device.
752 *
753 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
754 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
755 * and is appropriate for use many uses of English and several other
756 * Western European languages. (But it doesn't include the "Euro" symbol.)
757 *
758 * This call is synchronous, and may not be used in an interrupt context.
759 *
760 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
761 */
762int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
763{
764 unsigned char *tbuf;
765 int err;
766 unsigned int u, idx;
767
768 if (dev->state == USB_STATE_SUSPENDED)
769 return -EHOSTUNREACH;
770 if (size <= 0 || !buf || !index)
771 return -EINVAL;
772 buf[0] = 0;
773 tbuf = kmalloc(256, GFP_KERNEL);
774 if (!tbuf)
775 return -ENOMEM;
776
777 /* get langid for strings if it's not yet known */
778 if (!dev->have_langid) {
779 err = usb_string_sub(dev, 0, 0, tbuf);
780 if (err < 0) {
781 dev_err (&dev->dev,
782 "string descriptor 0 read error: %d\n",
783 err);
784 goto errout;
785 } else if (err < 4) {
786 dev_err (&dev->dev, "string descriptor 0 too short\n");
787 err = -EINVAL;
788 goto errout;
789 } else {
ce361587 790 dev->have_langid = 1;
1da177e4
LT
791 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
792 /* always use the first langid listed */
793 dev_dbg (&dev->dev, "default language 0x%04x\n",
794 dev->string_langid);
795 }
796 }
797
798 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
799 if (err < 0)
800 goto errout;
801
802 size--; /* leave room for trailing NULL char in output buffer */
803 for (idx = 0, u = 2; u < err; u += 2) {
804 if (idx >= size)
805 break;
806 if (tbuf[u+1]) /* high byte */
807 buf[idx++] = '?'; /* non ISO-8859-1 character */
808 else
809 buf[idx++] = tbuf[u];
810 }
811 buf[idx] = 0;
812 err = idx;
813
814 if (tbuf[1] != USB_DT_STRING)
815 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
816
817 errout:
818 kfree(tbuf);
819 return err;
820}
821
4f62efe6
AS
822/**
823 * usb_cache_string - read a string descriptor and cache it for later use
824 * @udev: the device whose string descriptor is being read
825 * @index: the descriptor index
826 *
827 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
828 * or NULL if the index is 0 or the string could not be read.
829 */
830char *usb_cache_string(struct usb_device *udev, int index)
831{
832 char *buf;
833 char *smallbuf = NULL;
834 int len;
835
836 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
837 if ((len = usb_string(udev, index, buf, 256)) > 0) {
838 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
839 return buf;
840 memcpy(smallbuf, buf, len);
841 }
842 kfree(buf);
843 }
844 return smallbuf;
845}
846
1da177e4
LT
847/*
848 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
849 * @dev: the device whose device descriptor is being updated
850 * @size: how much of the descriptor to read
851 * Context: !in_interrupt ()
852 *
853 * Updates the copy of the device descriptor stored in the device structure,
6ab16a90 854 * which dedicates space for this purpose.
1da177e4
LT
855 *
856 * Not exported, only for use by the core. If drivers really want to read
857 * the device descriptor directly, they can call usb_get_descriptor() with
858 * type = USB_DT_DEVICE and index = 0.
859 *
860 * This call is synchronous, and may not be used in an interrupt context.
861 *
862 * Returns the number of bytes received on success, or else the status code
863 * returned by the underlying usb_control_msg() call.
864 */
865int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
866{
867 struct usb_device_descriptor *desc;
868 int ret;
869
870 if (size > sizeof(*desc))
871 return -EINVAL;
872 desc = kmalloc(sizeof(*desc), GFP_NOIO);
873 if (!desc)
874 return -ENOMEM;
875
876 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
877 if (ret >= 0)
878 memcpy(&dev->descriptor, desc, size);
879 kfree(desc);
880 return ret;
881}
882
883/**
884 * usb_get_status - issues a GET_STATUS call
885 * @dev: the device whose status is being checked
886 * @type: USB_RECIP_*; for device, interface, or endpoint
887 * @target: zero (for device), else interface or endpoint number
888 * @data: pointer to two bytes of bitmap data
889 * Context: !in_interrupt ()
890 *
891 * Returns device, interface, or endpoint status. Normally only of
892 * interest to see if the device is self powered, or has enabled the
893 * remote wakeup facility; or whether a bulk or interrupt endpoint
894 * is halted ("stalled").
895 *
896 * Bits in these status bitmaps are set using the SET_FEATURE request,
897 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
898 * function should be used to clear halt ("stall") status.
899 *
900 * This call is synchronous, and may not be used in an interrupt context.
901 *
902 * Returns the number of bytes received on success, or else the status code
903 * returned by the underlying usb_control_msg() call.
904 */
905int usb_get_status(struct usb_device *dev, int type, int target, void *data)
906{
907 int ret;
908 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
909
910 if (!status)
911 return -ENOMEM;
912
913 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
914 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
915 sizeof(*status), USB_CTRL_GET_TIMEOUT);
916
917 *(u16 *)data = *status;
918 kfree(status);
919 return ret;
920}
921
922/**
923 * usb_clear_halt - tells device to clear endpoint halt/stall condition
924 * @dev: device whose endpoint is halted
925 * @pipe: endpoint "pipe" being cleared
926 * Context: !in_interrupt ()
927 *
928 * This is used to clear halt conditions for bulk and interrupt endpoints,
929 * as reported by URB completion status. Endpoints that are halted are
930 * sometimes referred to as being "stalled". Such endpoints are unable
931 * to transmit or receive data until the halt status is cleared. Any URBs
932 * queued for such an endpoint should normally be unlinked by the driver
933 * before clearing the halt condition, as described in sections 5.7.5
934 * and 5.8.5 of the USB 2.0 spec.
935 *
936 * Note that control and isochronous endpoints don't halt, although control
937 * endpoints report "protocol stall" (for unsupported requests) using the
938 * same status code used to report a true stall.
939 *
940 * This call is synchronous, and may not be used in an interrupt context.
941 *
942 * Returns zero on success, or else the status code returned by the
943 * underlying usb_control_msg() call.
944 */
945int usb_clear_halt(struct usb_device *dev, int pipe)
946{
947 int result;
948 int endp = usb_pipeendpoint(pipe);
949
950 if (usb_pipein (pipe))
951 endp |= USB_DIR_IN;
952
953 /* we don't care if it wasn't halted first. in fact some devices
954 * (like some ibmcam model 1 units) seem to expect hosts to make
955 * this request for iso endpoints, which can't halt!
956 */
957 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
958 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
959 USB_ENDPOINT_HALT, endp, NULL, 0,
960 USB_CTRL_SET_TIMEOUT);
961
962 /* don't un-halt or force to DATA0 except on success */
963 if (result < 0)
964 return result;
965
966 /* NOTE: seems like Microsoft and Apple don't bother verifying
967 * the clear "took", so some devices could lock up if you check...
968 * such as the Hagiwara FlashGate DUAL. So we won't bother.
969 *
970 * NOTE: make sure the logic here doesn't diverge much from
971 * the copy in usb-storage, for as long as we need two copies.
972 */
973
974 /* toggle was reset by the clear */
975 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
976
977 return 0;
978}
979
980/**
981 * usb_disable_endpoint -- Disable an endpoint by address
982 * @dev: the device whose endpoint is being disabled
983 * @epaddr: the endpoint's address. Endpoint number for output,
984 * endpoint number + USB_DIR_IN for input
985 *
986 * Deallocates hcd/hardware state for this endpoint ... and nukes all
987 * pending urbs.
988 *
989 * If the HCD hasn't registered a disable() function, this sets the
990 * endpoint's maxpacket size to 0 to prevent further submissions.
991 */
992void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
993{
994 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
995 struct usb_host_endpoint *ep;
996
997 if (!dev)
998 return;
999
1000 if (usb_endpoint_out(epaddr)) {
1001 ep = dev->ep_out[epnum];
1002 dev->ep_out[epnum] = NULL;
1003 } else {
1004 ep = dev->ep_in[epnum];
1005 dev->ep_in[epnum] = NULL;
1006 }
a6d2bb9f
AS
1007 if (ep && dev->bus)
1008 usb_hcd_endpoint_disable(dev, ep);
1da177e4
LT
1009}
1010
1011/**
1012 * usb_disable_interface -- Disable all endpoints for an interface
1013 * @dev: the device whose interface is being disabled
1014 * @intf: pointer to the interface descriptor
1015 *
1016 * Disables all the endpoints for the interface's current altsetting.
1017 */
1018void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1019{
1020 struct usb_host_interface *alt = intf->cur_altsetting;
1021 int i;
1022
1023 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1024 usb_disable_endpoint(dev,
1025 alt->endpoint[i].desc.bEndpointAddress);
1026 }
1027}
1028
1029/*
1030 * usb_disable_device - Disable all the endpoints for a USB device
1031 * @dev: the device whose endpoints are being disabled
1032 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1033 *
1034 * Disables all the device's endpoints, potentially including endpoint 0.
1035 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1036 * pending urbs) and usbcore state for the interfaces, so that usbcore
1037 * must usb_set_configuration() before any interfaces could be used.
1038 */
1039void usb_disable_device(struct usb_device *dev, int skip_ep0)
1040{
1041 int i;
1042
1043 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1044 skip_ep0 ? "non-ep0" : "all");
1045 for (i = skip_ep0; i < 16; ++i) {
1046 usb_disable_endpoint(dev, i);
1047 usb_disable_endpoint(dev, i + USB_DIR_IN);
1048 }
1049 dev->toggle[0] = dev->toggle[1] = 0;
1050
1051 /* getting rid of interfaces will disconnect
1052 * any drivers bound to them (a key side effect)
1053 */
1054 if (dev->actconfig) {
1055 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1056 struct usb_interface *interface;
1057
86d30741 1058 /* remove this interface if it has been registered */
1da177e4 1059 interface = dev->actconfig->interface[i];
d305ef5d 1060 if (!device_is_registered(&interface->dev))
86d30741 1061 continue;
1da177e4
LT
1062 dev_dbg (&dev->dev, "unregistering interface %s\n",
1063 interface->dev.bus_id);
1064 usb_remove_sysfs_intf_files(interface);
1da177e4
LT
1065 device_del (&interface->dev);
1066 }
1067
1068 /* Now that the interfaces are unbound, nobody should
1069 * try to access them.
1070 */
1071 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1072 put_device (&dev->actconfig->interface[i]->dev);
1073 dev->actconfig->interface[i] = NULL;
1074 }
1075 dev->actconfig = NULL;
1076 if (dev->state == USB_STATE_CONFIGURED)
1077 usb_set_device_state(dev, USB_STATE_ADDRESS);
1078 }
1079}
1080
1081
1082/*
1083 * usb_enable_endpoint - Enable an endpoint for USB communications
1084 * @dev: the device whose interface is being enabled
1085 * @ep: the endpoint
1086 *
1087 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1088 * For control endpoints, both the input and output sides are handled.
1089 */
1090static void
1091usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1092{
1093 unsigned int epaddr = ep->desc.bEndpointAddress;
1094 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1095 int is_control;
1096
1097 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1098 == USB_ENDPOINT_XFER_CONTROL);
1099 if (usb_endpoint_out(epaddr) || is_control) {
1100 usb_settoggle(dev, epnum, 1, 0);
1101 dev->ep_out[epnum] = ep;
1102 }
1103 if (!usb_endpoint_out(epaddr) || is_control) {
1104 usb_settoggle(dev, epnum, 0, 0);
1105 dev->ep_in[epnum] = ep;
1106 }
1107}
1108
1109/*
1110 * usb_enable_interface - Enable all the endpoints for an interface
1111 * @dev: the device whose interface is being enabled
1112 * @intf: pointer to the interface descriptor
1113 *
1114 * Enables all the endpoints for the interface's current altsetting.
1115 */
1116static void usb_enable_interface(struct usb_device *dev,
1117 struct usb_interface *intf)
1118{
1119 struct usb_host_interface *alt = intf->cur_altsetting;
1120 int i;
1121
1122 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1123 usb_enable_endpoint(dev, &alt->endpoint[i]);
1124}
1125
1126/**
1127 * usb_set_interface - Makes a particular alternate setting be current
1128 * @dev: the device whose interface is being updated
1129 * @interface: the interface being updated
1130 * @alternate: the setting being chosen.
1131 * Context: !in_interrupt ()
1132 *
1133 * This is used to enable data transfers on interfaces that may not
1134 * be enabled by default. Not all devices support such configurability.
1135 * Only the driver bound to an interface may change its setting.
1136 *
1137 * Within any given configuration, each interface may have several
1138 * alternative settings. These are often used to control levels of
1139 * bandwidth consumption. For example, the default setting for a high
1140 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1141 * while interrupt transfers of up to 3KBytes per microframe are legal.
1142 * Also, isochronous endpoints may never be part of an
1143 * interface's default setting. To access such bandwidth, alternate
1144 * interface settings must be made current.
1145 *
1146 * Note that in the Linux USB subsystem, bandwidth associated with
1147 * an endpoint in a given alternate setting is not reserved until an URB
1148 * is submitted that needs that bandwidth. Some other operating systems
1149 * allocate bandwidth early, when a configuration is chosen.
1150 *
1151 * This call is synchronous, and may not be used in an interrupt context.
1152 * Also, drivers must not change altsettings while urbs are scheduled for
1153 * endpoints in that interface; all such urbs must first be completed
1154 * (perhaps forced by unlinking).
1155 *
1156 * Returns zero on success, or else the status code returned by the
1157 * underlying usb_control_msg() call.
1158 */
1159int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1160{
1161 struct usb_interface *iface;
1162 struct usb_host_interface *alt;
1163 int ret;
1164 int manual = 0;
1165
1166 if (dev->state == USB_STATE_SUSPENDED)
1167 return -EHOSTUNREACH;
1168
1169 iface = usb_ifnum_to_if(dev, interface);
1170 if (!iface) {
1171 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1172 interface);
1173 return -EINVAL;
1174 }
1175
1176 alt = usb_altnum_to_altsetting(iface, alternate);
1177 if (!alt) {
1178 warn("selecting invalid altsetting %d", alternate);
1179 return -EINVAL;
1180 }
1181
1182 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1183 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1184 alternate, interface, NULL, 0, 5000);
1185
1186 /* 9.4.10 says devices don't need this and are free to STALL the
1187 * request if the interface only has one alternate setting.
1188 */
1189 if (ret == -EPIPE && iface->num_altsetting == 1) {
1190 dev_dbg(&dev->dev,
1191 "manual set_interface for iface %d, alt %d\n",
1192 interface, alternate);
1193 manual = 1;
1194 } else if (ret < 0)
1195 return ret;
1196
1197 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1198 * when they implement async or easily-killable versions of this or
1199 * other "should-be-internal" functions (like clear_halt).
1200 * should hcd+usbcore postprocess control requests?
1201 */
1202
1203 /* prevent submissions using previous endpoint settings */
0e6c8e8d
AS
1204 if (device_is_registered(&iface->dev))
1205 usb_remove_sysfs_intf_files(iface);
1da177e4
LT
1206 usb_disable_interface(dev, iface);
1207
1da177e4
LT
1208 iface->cur_altsetting = alt;
1209
1210 /* If the interface only has one altsetting and the device didn't
a81e7ecc 1211 * accept the request, we attempt to carry out the equivalent action
1da177e4
LT
1212 * by manually clearing the HALT feature for each endpoint in the
1213 * new altsetting.
1214 */
1215 if (manual) {
1216 int i;
1217
1218 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1219 unsigned int epaddr =
1220 alt->endpoint[i].desc.bEndpointAddress;
1221 unsigned int pipe =
1222 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1223 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1224
1225 usb_clear_halt(dev, pipe);
1226 }
1227 }
1228
1229 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1230 *
1231 * Note:
1232 * Despite EP0 is always present in all interfaces/AS, the list of
1233 * endpoints from the descriptor does not contain EP0. Due to its
1234 * omnipresence one might expect EP0 being considered "affected" by
1235 * any SetInterface request and hence assume toggles need to be reset.
1236 * However, EP0 toggles are re-synced for every individual transfer
1237 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1238 * (Likewise, EP0 never "halts" on well designed devices.)
1239 */
1240 usb_enable_interface(dev, iface);
0e6c8e8d
AS
1241 if (device_is_registered(&iface->dev))
1242 usb_create_sysfs_intf_files(iface);
1da177e4
LT
1243
1244 return 0;
1245}
1246
1247/**
1248 * usb_reset_configuration - lightweight device reset
1249 * @dev: the device whose configuration is being reset
1250 *
1251 * This issues a standard SET_CONFIGURATION request to the device using
1252 * the current configuration. The effect is to reset most USB-related
1253 * state in the device, including interface altsettings (reset to zero),
1254 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1255 * endpoints). Other usbcore state is unchanged, including bindings of
1256 * usb device drivers to interfaces.
1257 *
1258 * Because this affects multiple interfaces, avoid using this with composite
1259 * (multi-interface) devices. Instead, the driver for each interface may
a81e7ecc
DB
1260 * use usb_set_interface() on the interfaces it claims. Be careful though;
1261 * some devices don't support the SET_INTERFACE request, and others won't
1262 * reset all the interface state (notably data toggles). Resetting the whole
1da177e4
LT
1263 * configuration would affect other drivers' interfaces.
1264 *
1265 * The caller must own the device lock.
1266 *
1267 * Returns zero on success, else a negative error code.
1268 */
1269int usb_reset_configuration(struct usb_device *dev)
1270{
1271 int i, retval;
1272 struct usb_host_config *config;
1273
1274 if (dev->state == USB_STATE_SUSPENDED)
1275 return -EHOSTUNREACH;
1276
1277 /* caller must have locked the device and must own
1278 * the usb bus readlock (so driver bindings are stable);
1279 * calls during probe() are fine
1280 */
1281
1282 for (i = 1; i < 16; ++i) {
1283 usb_disable_endpoint(dev, i);
1284 usb_disable_endpoint(dev, i + USB_DIR_IN);
1285 }
1286
1287 config = dev->actconfig;
1288 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1289 USB_REQ_SET_CONFIGURATION, 0,
1290 config->desc.bConfigurationValue, 0,
1291 NULL, 0, USB_CTRL_SET_TIMEOUT);
0e6c8e8d 1292 if (retval < 0)
1da177e4 1293 return retval;
1da177e4
LT
1294
1295 dev->toggle[0] = dev->toggle[1] = 0;
1296
1297 /* re-init hc/hcd interface/endpoint state */
1298 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1299 struct usb_interface *intf = config->interface[i];
1300 struct usb_host_interface *alt;
1301
0e6c8e8d
AS
1302 if (device_is_registered(&intf->dev))
1303 usb_remove_sysfs_intf_files(intf);
1da177e4
LT
1304 alt = usb_altnum_to_altsetting(intf, 0);
1305
1306 /* No altsetting 0? We'll assume the first altsetting.
1307 * We could use a GetInterface call, but if a device is
1308 * so non-compliant that it doesn't have altsetting 0
1309 * then I wouldn't trust its reply anyway.
1310 */
1311 if (!alt)
1312 alt = &intf->altsetting[0];
1313
1314 intf->cur_altsetting = alt;
1315 usb_enable_interface(dev, intf);
0e6c8e8d
AS
1316 if (device_is_registered(&intf->dev))
1317 usb_create_sysfs_intf_files(intf);
1da177e4
LT
1318 }
1319 return 0;
1320}
1321
9f8b17e6 1322void usb_release_interface(struct device *dev)
1da177e4
LT
1323{
1324 struct usb_interface *intf = to_usb_interface(dev);
1325 struct usb_interface_cache *intfc =
1326 altsetting_to_usb_interface_cache(intf->altsetting);
1327
1328 kref_put(&intfc->ref, usb_release_interface_cache);
1329 kfree(intf);
1330}
1331
9f8b17e6
KS
1332#ifdef CONFIG_HOTPLUG
1333static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1334 char *buffer, int buffer_size)
1335{
1336 struct usb_device *usb_dev;
1337 struct usb_interface *intf;
1338 struct usb_host_interface *alt;
1339 int i = 0;
1340 int length = 0;
1341
1342 if (!dev)
1343 return -ENODEV;
1344
1345 /* driver is often null here; dev_dbg() would oops */
1346 pr_debug ("usb %s: uevent\n", dev->bus_id);
1347
1348 intf = to_usb_interface(dev);
1349 usb_dev = interface_to_usbdev(intf);
1350 alt = intf->cur_altsetting;
1351
1352 if (add_uevent_var(envp, num_envp, &i,
1353 buffer, buffer_size, &length,
1354 "INTERFACE=%d/%d/%d",
1355 alt->desc.bInterfaceClass,
1356 alt->desc.bInterfaceSubClass,
1357 alt->desc.bInterfaceProtocol))
1358 return -ENOMEM;
1359
1360 if (add_uevent_var(envp, num_envp, &i,
1361 buffer, buffer_size, &length,
1362 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1363 le16_to_cpu(usb_dev->descriptor.idVendor),
1364 le16_to_cpu(usb_dev->descriptor.idProduct),
1365 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1366 usb_dev->descriptor.bDeviceClass,
1367 usb_dev->descriptor.bDeviceSubClass,
1368 usb_dev->descriptor.bDeviceProtocol,
1369 alt->desc.bInterfaceClass,
1370 alt->desc.bInterfaceSubClass,
1371 alt->desc.bInterfaceProtocol))
1372 return -ENOMEM;
1373
1374 envp[i] = NULL;
1375 return 0;
1376}
1377
1378#else
1379
1380static int usb_if_uevent(struct device *dev, char **envp,
1381 int num_envp, char *buffer, int buffer_size)
1382{
1383 return -ENODEV;
1384}
1385#endif /* CONFIG_HOTPLUG */
1386
1387struct device_type usb_if_device_type = {
1388 .name = "usb_interface",
1389 .release = usb_release_interface,
1390 .uevent = usb_if_uevent,
1391};
1392
1da177e4
LT
1393/*
1394 * usb_set_configuration - Makes a particular device setting be current
1395 * @dev: the device whose configuration is being updated
1396 * @configuration: the configuration being chosen.
1397 * Context: !in_interrupt(), caller owns the device lock
1398 *
1399 * This is used to enable non-default device modes. Not all devices
1400 * use this kind of configurability; many devices only have one
1401 * configuration.
1402 *
3f141e2a
AS
1403 * @configuration is the value of the configuration to be installed.
1404 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1405 * must be non-zero; a value of zero indicates that the device in
1406 * unconfigured. However some devices erroneously use 0 as one of their
1407 * configuration values. To help manage such devices, this routine will
1408 * accept @configuration = -1 as indicating the device should be put in
1409 * an unconfigured state.
1410 *
1da177e4
LT
1411 * USB device configurations may affect Linux interoperability,
1412 * power consumption and the functionality available. For example,
1413 * the default configuration is limited to using 100mA of bus power,
1414 * so that when certain device functionality requires more power,
1415 * and the device is bus powered, that functionality should be in some
1416 * non-default device configuration. Other device modes may also be
1417 * reflected as configuration options, such as whether two ISDN
1418 * channels are available independently; and choosing between open
1419 * standard device protocols (like CDC) or proprietary ones.
1420 *
1421 * Note that USB has an additional level of device configurability,
1422 * associated with interfaces. That configurability is accessed using
1423 * usb_set_interface().
1424 *
1425 * This call is synchronous. The calling context must be able to sleep,
1426 * must own the device lock, and must not hold the driver model's USB
341487a8 1427 * bus mutex; usb device driver probe() methods cannot use this routine.
1da177e4
LT
1428 *
1429 * Returns zero on success, or else the status code returned by the
093cf723 1430 * underlying call that failed. On successful completion, each interface
1da177e4
LT
1431 * in the original device configuration has been destroyed, and each one
1432 * in the new configuration has been probed by all relevant usb device
1433 * drivers currently known to the kernel.
1434 */
1435int usb_set_configuration(struct usb_device *dev, int configuration)
1436{
1437 int i, ret;
1438 struct usb_host_config *cp = NULL;
1439 struct usb_interface **new_interfaces = NULL;
1440 int n, nintf;
1441
3f141e2a
AS
1442 if (configuration == -1)
1443 configuration = 0;
1444 else {
1445 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1446 if (dev->config[i].desc.bConfigurationValue ==
1447 configuration) {
1448 cp = &dev->config[i];
1449 break;
1450 }
1da177e4
LT
1451 }
1452 }
1453 if ((!cp && configuration != 0))
1454 return -EINVAL;
1455
1456 /* The USB spec says configuration 0 means unconfigured.
1457 * But if a device includes a configuration numbered 0,
1458 * we will accept it as a correctly configured state.
3f141e2a 1459 * Use -1 if you really want to unconfigure the device.
1da177e4
LT
1460 */
1461 if (cp && configuration == 0)
1462 dev_warn(&dev->dev, "config 0 descriptor??\n");
1463
1da177e4
LT
1464 /* Allocate memory for new interfaces before doing anything else,
1465 * so that if we run out then nothing will have changed. */
1466 n = nintf = 0;
1467 if (cp) {
1468 nintf = cp->desc.bNumInterfaces;
1469 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1470 GFP_KERNEL);
1471 if (!new_interfaces) {
1472 dev_err(&dev->dev, "Out of memory");
1473 return -ENOMEM;
1474 }
1475
1476 for (; n < nintf; ++n) {
0a1ef3b5 1477 new_interfaces[n] = kzalloc(
1da177e4
LT
1478 sizeof(struct usb_interface),
1479 GFP_KERNEL);
1480 if (!new_interfaces[n]) {
1481 dev_err(&dev->dev, "Out of memory");
1482 ret = -ENOMEM;
1483free_interfaces:
1484 while (--n >= 0)
1485 kfree(new_interfaces[n]);
1486 kfree(new_interfaces);
1487 return ret;
1488 }
1489 }
1da177e4 1490
f48219db
HS
1491 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1492 if (i < 0)
1493 dev_warn(&dev->dev, "new config #%d exceeds power "
1494 "limit by %dmA\n",
1495 configuration, -i);
1496 }
55c52718 1497
01d883d4 1498 /* Wake up the device so we can send it the Set-Config request */
94fcda1f 1499 ret = usb_autoresume_device(dev);
01d883d4
AS
1500 if (ret)
1501 goto free_interfaces;
1502
6ad07129
AS
1503 /* if it's already configured, clear out old state first.
1504 * getting rid of old interfaces means unbinding their drivers.
1505 */
1506 if (dev->state != USB_STATE_ADDRESS)
1507 usb_disable_device (dev, 1); // Skip ep0
1508
1da177e4
LT
1509 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1510 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
6ad07129
AS
1511 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1512
1513 /* All the old state is gone, so what else can we do?
1514 * The device is probably useless now anyway.
1515 */
1516 cp = NULL;
1517 }
1da177e4
LT
1518
1519 dev->actconfig = cp;
6ad07129 1520 if (!cp) {
1da177e4 1521 usb_set_device_state(dev, USB_STATE_ADDRESS);
94fcda1f 1522 usb_autosuspend_device(dev);
6ad07129
AS
1523 goto free_interfaces;
1524 }
1525 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1da177e4 1526
6ad07129
AS
1527 /* Initialize the new interface structures and the
1528 * hc/hcd/usbcore interface/endpoint state.
1529 */
1530 for (i = 0; i < nintf; ++i) {
1531 struct usb_interface_cache *intfc;
1532 struct usb_interface *intf;
1533 struct usb_host_interface *alt;
1da177e4 1534
6ad07129
AS
1535 cp->interface[i] = intf = new_interfaces[i];
1536 intfc = cp->intf_cache[i];
1537 intf->altsetting = intfc->altsetting;
1538 intf->num_altsetting = intfc->num_altsetting;
1539 kref_get(&intfc->ref);
1da177e4 1540
6ad07129
AS
1541 alt = usb_altnum_to_altsetting(intf, 0);
1542
1543 /* No altsetting 0? We'll assume the first altsetting.
1544 * We could use a GetInterface call, but if a device is
1545 * so non-compliant that it doesn't have altsetting 0
1546 * then I wouldn't trust its reply anyway.
1da177e4 1547 */
6ad07129
AS
1548 if (!alt)
1549 alt = &intf->altsetting[0];
1550
1551 intf->cur_altsetting = alt;
1552 usb_enable_interface(dev, intf);
1553 intf->dev.parent = &dev->dev;
1554 intf->dev.driver = NULL;
1555 intf->dev.bus = &usb_bus_type;
9f8b17e6 1556 intf->dev.type = &usb_if_device_type;
6ad07129 1557 intf->dev.dma_mask = dev->dev.dma_mask;
6ad07129
AS
1558 device_initialize (&intf->dev);
1559 mark_quiesced(intf);
1560 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1561 dev->bus->busnum, dev->devpath,
1562 configuration, alt->desc.bInterfaceNumber);
1563 }
1564 kfree(new_interfaces);
1565
1566 if (cp->string == NULL)
1567 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1568
1569 /* Now that all the interfaces are set up, register them
1570 * to trigger binding of drivers to interfaces. probe()
1571 * routines may install different altsettings and may
1572 * claim() any interfaces not yet bound. Many class drivers
1573 * need that: CDC, audio, video, etc.
1574 */
1575 for (i = 0; i < nintf; ++i) {
1576 struct usb_interface *intf = cp->interface[i];
1577
1578 dev_dbg (&dev->dev,
1579 "adding %s (config #%d, interface %d)\n",
1580 intf->dev.bus_id, configuration,
1581 intf->cur_altsetting->desc.bInterfaceNumber);
1582 ret = device_add (&intf->dev);
1583 if (ret != 0) {
1584 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1585 intf->dev.bus_id, ret);
1586 continue;
1da177e4 1587 }
6ad07129 1588 usb_create_sysfs_intf_files (intf);
1da177e4
LT
1589 }
1590
94fcda1f 1591 usb_autosuspend_device(dev);
86d30741 1592 return 0;
1da177e4
LT
1593}
1594
088dc270
AS
1595struct set_config_request {
1596 struct usb_device *udev;
1597 int config;
1598 struct work_struct work;
1599};
1600
1601/* Worker routine for usb_driver_set_configuration() */
c4028958 1602static void driver_set_config_work(struct work_struct *work)
088dc270 1603{
c4028958
DH
1604 struct set_config_request *req =
1605 container_of(work, struct set_config_request, work);
088dc270
AS
1606
1607 usb_lock_device(req->udev);
1608 usb_set_configuration(req->udev, req->config);
1609 usb_unlock_device(req->udev);
1610 usb_put_dev(req->udev);
1611 kfree(req);
1612}
1613
1614/**
1615 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1616 * @udev: the device whose configuration is being updated
1617 * @config: the configuration being chosen.
1618 * Context: In process context, must be able to sleep
1619 *
1620 * Device interface drivers are not allowed to change device configurations.
1621 * This is because changing configurations will destroy the interface the
1622 * driver is bound to and create new ones; it would be like a floppy-disk
1623 * driver telling the computer to replace the floppy-disk drive with a
1624 * tape drive!
1625 *
1626 * Still, in certain specialized circumstances the need may arise. This
1627 * routine gets around the normal restrictions by using a work thread to
1628 * submit the change-config request.
1629 *
1630 * Returns 0 if the request was succesfully queued, error code otherwise.
1631 * The caller has no way to know whether the queued request will eventually
1632 * succeed.
1633 */
1634int usb_driver_set_configuration(struct usb_device *udev, int config)
1635{
1636 struct set_config_request *req;
1637
1638 req = kmalloc(sizeof(*req), GFP_KERNEL);
1639 if (!req)
1640 return -ENOMEM;
1641 req->udev = udev;
1642 req->config = config;
c4028958 1643 INIT_WORK(&req->work, driver_set_config_work);
088dc270
AS
1644
1645 usb_get_dev(udev);
1737bf2c 1646 schedule_work(&req->work);
088dc270
AS
1647 return 0;
1648}
1649EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1650
1da177e4
LT
1651// synchronous request completion model
1652EXPORT_SYMBOL(usb_control_msg);
1653EXPORT_SYMBOL(usb_bulk_msg);
1654
1655EXPORT_SYMBOL(usb_sg_init);
1656EXPORT_SYMBOL(usb_sg_cancel);
1657EXPORT_SYMBOL(usb_sg_wait);
1658
1659// synchronous control message convenience routines
1660EXPORT_SYMBOL(usb_get_descriptor);
1661EXPORT_SYMBOL(usb_get_status);
1da177e4
LT
1662EXPORT_SYMBOL(usb_string);
1663
1664// synchronous calls that also maintain usbcore state
1665EXPORT_SYMBOL(usb_clear_halt);
1666EXPORT_SYMBOL(usb_reset_configuration);
1667EXPORT_SYMBOL(usb_set_interface);
1668