]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/usb/gadget/s3c-hsotg.c
USB: s3c-hsotg: modify only selected bits in S3C_PHYPWR register
[mirror_ubuntu-artful-kernel.git] / drivers / usb / gadget / s3c-hsotg.c
CommitLineData
5b7d70c6
BD
1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
10aebc77
BD
15#define DEBUG
16
5b7d70c6
BD
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/spinlock.h>
20#include <linux/interrupt.h>
21#include <linux/platform_device.h>
22#include <linux/dma-mapping.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/delay.h>
26#include <linux/io.h>
5a0e3ad6 27#include <linux/slab.h>
e50bf385 28#include <linux/clk.h>
5b7d70c6
BD
29
30#include <linux/usb/ch9.h>
31#include <linux/usb/gadget.h>
32
33#include <mach/map.h>
34
35#include <plat/regs-usb-hsotg-phy.h>
36#include <plat/regs-usb-hsotg.h>
f9fed7cd 37#include <mach/regs-sys.h>
5b7d70c6 38#include <plat/udc-hs.h>
4d47166c 39#include <plat/cpu.h>
5b7d70c6
BD
40
41#define DMA_ADDR_INVALID (~((dma_addr_t)0))
42
43/* EP0_MPS_LIMIT
44 *
45 * Unfortunately there seems to be a limit of the amount of data that can
46 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
47 * packets (which practially means 1 packet and 63 bytes of data) when the
48 * MPS is set to 64.
49 *
50 * This means if we are wanting to move >127 bytes of data, we need to
51 * split the transactions up, but just doing one packet at a time does
52 * not work (this may be an implicit DATA0 PID on first packet of the
53 * transaction) and doing 2 packets is outside the controller's limits.
54 *
55 * If we try to lower the MPS size for EP0, then no transfers work properly
56 * for EP0, and the system will fail basic enumeration. As no cause for this
57 * has currently been found, we cannot support any large IN transfers for
58 * EP0.
59 */
60#define EP0_MPS_LIMIT 64
61
62struct s3c_hsotg;
63struct s3c_hsotg_req;
64
65/**
66 * struct s3c_hsotg_ep - driver endpoint definition.
67 * @ep: The gadget layer representation of the endpoint.
68 * @name: The driver generated name for the endpoint.
69 * @queue: Queue of requests for this endpoint.
70 * @parent: Reference back to the parent device structure.
71 * @req: The current request that the endpoint is processing. This is
72 * used to indicate an request has been loaded onto the endpoint
73 * and has yet to be completed (maybe due to data move, or simply
74 * awaiting an ack from the core all the data has been completed).
75 * @debugfs: File entry for debugfs file for this endpoint.
76 * @lock: State lock to protect contents of endpoint.
77 * @dir_in: Set to true if this endpoint is of the IN direction, which
78 * means that it is sending data to the Host.
79 * @index: The index for the endpoint registers.
80 * @name: The name array passed to the USB core.
81 * @halted: Set if the endpoint has been halted.
82 * @periodic: Set if this is a periodic ep, such as Interrupt
83 * @sent_zlp: Set if we've sent a zero-length packet.
84 * @total_data: The total number of data bytes done.
85 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
86 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
87 * @last_load: The offset of data for the last start of request.
88 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
89 *
90 * This is the driver's state for each registered enpoint, allowing it
91 * to keep track of transactions that need doing. Each endpoint has a
92 * lock to protect the state, to try and avoid using an overall lock
93 * for the host controller as much as possible.
94 *
95 * For periodic IN endpoints, we have fifo_size and fifo_load to try
96 * and keep track of the amount of data in the periodic FIFO for each
97 * of these as we don't have a status register that tells us how much
e7a9ff54
BD
98 * is in each of them. (note, this may actually be useless information
99 * as in shared-fifo mode periodic in acts like a single-frame packet
100 * buffer than a fifo)
5b7d70c6
BD
101 */
102struct s3c_hsotg_ep {
103 struct usb_ep ep;
104 struct list_head queue;
105 struct s3c_hsotg *parent;
106 struct s3c_hsotg_req *req;
107 struct dentry *debugfs;
108
109 spinlock_t lock;
110
111 unsigned long total_data;
112 unsigned int size_loaded;
113 unsigned int last_load;
114 unsigned int fifo_load;
115 unsigned short fifo_size;
116
117 unsigned char dir_in;
118 unsigned char index;
119
120 unsigned int halted:1;
121 unsigned int periodic:1;
122 unsigned int sent_zlp:1;
123
124 char name[10];
125};
126
127#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
128
129/**
130 * struct s3c_hsotg - driver state.
131 * @dev: The parent device supplied to the probe function
132 * @driver: USB gadget driver
133 * @plat: The platform specific configuration data.
134 * @regs: The memory area mapped for accessing registers.
135 * @regs_res: The resource that was allocated when claiming register space.
136 * @irq: The IRQ number we are using
10aebc77 137 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
5b7d70c6
BD
138 * @debug_root: root directrory for debugfs.
139 * @debug_file: main status file for debugfs.
140 * @debug_fifo: FIFO status file for debugfs.
141 * @ep0_reply: Request used for ep0 reply.
142 * @ep0_buff: Buffer for EP0 reply data, if needed.
143 * @ctrl_buff: Buffer for EP0 control requests.
144 * @ctrl_req: Request for EP0 control packets.
145 * @eps: The endpoints being supplied to the gadget framework
146 */
147struct s3c_hsotg {
148 struct device *dev;
149 struct usb_gadget_driver *driver;
150 struct s3c_hsotg_plat *plat;
151
152 void __iomem *regs;
153 struct resource *regs_res;
154 int irq;
155
10aebc77
BD
156 unsigned int dedicated_fifos:1;
157
5b7d70c6
BD
158 struct dentry *debug_root;
159 struct dentry *debug_file;
160 struct dentry *debug_fifo;
161
162 struct usb_request *ep0_reply;
163 struct usb_request *ctrl_req;
164 u8 ep0_buff[8];
165 u8 ctrl_buff[8];
166
167 struct usb_gadget gadget;
168 struct s3c_hsotg_ep eps[];
169};
170
171/**
172 * struct s3c_hsotg_req - data transfer request
173 * @req: The USB gadget request
174 * @queue: The list of requests for the endpoint this is queued for.
175 * @in_progress: Has already had size/packets written to core
176 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
177 */
178struct s3c_hsotg_req {
179 struct usb_request req;
180 struct list_head queue;
181 unsigned char in_progress;
182 unsigned char mapped;
183};
184
185/* conversion functions */
186static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
187{
188 return container_of(req, struct s3c_hsotg_req, req);
189}
190
191static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
192{
193 return container_of(ep, struct s3c_hsotg_ep, ep);
194}
195
196static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
197{
198 return container_of(gadget, struct s3c_hsotg, gadget);
199}
200
201static inline void __orr32(void __iomem *ptr, u32 val)
202{
203 writel(readl(ptr) | val, ptr);
204}
205
206static inline void __bic32(void __iomem *ptr, u32 val)
207{
208 writel(readl(ptr) & ~val, ptr);
209}
210
211/* forward decleration of functions */
212static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
213
214/**
215 * using_dma - return the DMA status of the driver.
216 * @hsotg: The driver state.
217 *
218 * Return true if we're using DMA.
219 *
220 * Currently, we have the DMA support code worked into everywhere
221 * that needs it, but the AMBA DMA implementation in the hardware can
222 * only DMA from 32bit aligned addresses. This means that gadgets such
223 * as the CDC Ethernet cannot work as they often pass packets which are
224 * not 32bit aligned.
225 *
226 * Unfortunately the choice to use DMA or not is global to the controller
227 * and seems to be only settable when the controller is being put through
228 * a core reset. This means we either need to fix the gadgets to take
229 * account of DMA alignment, or add bounce buffers (yuerk).
230 *
231 * Until this issue is sorted out, we always return 'false'.
232 */
233static inline bool using_dma(struct s3c_hsotg *hsotg)
234{
235 return false; /* support is not complete */
236}
237
238/**
239 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
240 * @hsotg: The device state
241 * @ints: A bitmask of the interrupts to enable
242 */
243static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
244{
245 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
246 u32 new_gsintmsk;
247
248 new_gsintmsk = gsintmsk | ints;
249
250 if (new_gsintmsk != gsintmsk) {
251 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
252 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
253 }
254}
255
256/**
257 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
258 * @hsotg: The device state
259 * @ints: A bitmask of the interrupts to enable
260 */
261static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
262{
263 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
264 u32 new_gsintmsk;
265
266 new_gsintmsk = gsintmsk & ~ints;
267
268 if (new_gsintmsk != gsintmsk)
269 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
270}
271
272/**
273 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
274 * @hsotg: The device state
275 * @ep: The endpoint index
276 * @dir_in: True if direction is in.
277 * @en: The enable value, true to enable
278 *
279 * Set or clear the mask for an individual endpoint's interrupt
280 * request.
281 */
282static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
283 unsigned int ep, unsigned int dir_in,
284 unsigned int en)
285{
286 unsigned long flags;
287 u32 bit = 1 << ep;
288 u32 daint;
289
290 if (!dir_in)
291 bit <<= 16;
292
293 local_irq_save(flags);
294 daint = readl(hsotg->regs + S3C_DAINTMSK);
295 if (en)
296 daint |= bit;
297 else
298 daint &= ~bit;
299 writel(daint, hsotg->regs + S3C_DAINTMSK);
300 local_irq_restore(flags);
301}
302
303/**
304 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
305 * @hsotg: The device instance.
306 */
307static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
308{
0f002d20
BD
309 unsigned int ep;
310 unsigned int addr;
311 unsigned int size;
1703a6d3 312 int timeout;
0f002d20
BD
313 u32 val;
314
5b7d70c6
BD
315 /* the ryu 2.6.24 release ahs
316 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
317 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
318 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
319 hsotg->regs + S3C_GNPTXFSIZ);
320 */
321
6d091ee7 322 /* set FIFO sizes to 2048/1024 */
5b7d70c6
BD
323
324 writel(2048, hsotg->regs + S3C_GRXFSIZ);
325 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
6d091ee7 326 S3C_GNPTXFSIZ_NPTxFDep(1024),
5b7d70c6 327 hsotg->regs + S3C_GNPTXFSIZ);
0f002d20
BD
328
329 /* arange all the rest of the TX FIFOs, as some versions of this
330 * block have overlapping default addresses. This also ensures
331 * that if the settings have been changed, then they are set to
332 * known values. */
333
334 /* start at the end of the GNPTXFSIZ, rounded up */
335 addr = 2048 + 1024;
336 size = 768;
337
338 /* currently we allocate TX FIFOs for all possible endpoints,
339 * and assume that they are all the same size. */
340
341 for (ep = 0; ep <= 15; ep++) {
342 val = addr;
343 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
344 addr += size;
345
346 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
347 }
1703a6d3
BD
348
349 /* according to p428 of the design guide, we need to ensure that
350 * all fifos are flushed before continuing */
351
352 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
353 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
354
355 /* wait until the fifos are both flushed */
356 timeout = 100;
357 while (1) {
358 val = readl(hsotg->regs + S3C_GRSTCTL);
359
360 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
361 break;
362
363 if (--timeout == 0) {
364 dev_err(hsotg->dev,
365 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 __func__, val);
367 }
368
369 udelay(1);
370 }
371
372 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
5b7d70c6
BD
373}
374
375/**
376 * @ep: USB endpoint to allocate request for.
377 * @flags: Allocation flags
378 *
379 * Allocate a new USB request structure appropriate for the specified endpoint
380 */
0978f8c5
MB
381static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
382 gfp_t flags)
5b7d70c6
BD
383{
384 struct s3c_hsotg_req *req;
385
386 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
387 if (!req)
388 return NULL;
389
390 INIT_LIST_HEAD(&req->queue);
391
392 req->req.dma = DMA_ADDR_INVALID;
393 return &req->req;
394}
395
396/**
397 * is_ep_periodic - return true if the endpoint is in periodic mode.
398 * @hs_ep: The endpoint to query.
399 *
400 * Returns true if the endpoint is in periodic mode, meaning it is being
401 * used for an Interrupt or ISO transfer.
402 */
403static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
404{
405 return hs_ep->periodic;
406}
407
408/**
409 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
410 * @hsotg: The device state.
411 * @hs_ep: The endpoint for the request
412 * @hs_req: The request being processed.
413 *
414 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
415 * of a request to ensure the buffer is ready for access by the caller.
416*/
417static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
418 struct s3c_hsotg_ep *hs_ep,
419 struct s3c_hsotg_req *hs_req)
420{
421 struct usb_request *req = &hs_req->req;
422 enum dma_data_direction dir;
423
424 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
425
426 /* ignore this if we're not moving any data */
427 if (hs_req->req.length == 0)
428 return;
429
430 if (hs_req->mapped) {
431 /* we mapped this, so unmap and remove the dma */
432
433 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
434
435 req->dma = DMA_ADDR_INVALID;
436 hs_req->mapped = 0;
437 } else {
5b520259 438 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
439 }
440}
441
442/**
443 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
444 * @hsotg: The controller state.
445 * @hs_ep: The endpoint we're going to write for.
446 * @hs_req: The request to write data for.
447 *
448 * This is called when the TxFIFO has some space in it to hold a new
449 * transmission and we have something to give it. The actual setup of
450 * the data size is done elsewhere, so all we have to do is to actually
451 * write the data.
452 *
453 * The return value is zero if there is more space (or nothing was done)
454 * otherwise -ENOSPC is returned if the FIFO space was used up.
455 *
456 * This routine is only needed for PIO
457*/
458static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
459 struct s3c_hsotg_ep *hs_ep,
460 struct s3c_hsotg_req *hs_req)
461{
462 bool periodic = is_ep_periodic(hs_ep);
463 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
464 int buf_pos = hs_req->req.actual;
465 int to_write = hs_ep->size_loaded;
466 void *data;
467 int can_write;
468 int pkt_round;
469
470 to_write -= (buf_pos - hs_ep->last_load);
471
472 /* if there's nothing to write, get out early */
473 if (to_write == 0)
474 return 0;
475
10aebc77 476 if (periodic && !hsotg->dedicated_fifos) {
5b7d70c6
BD
477 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
478 int size_left;
479 int size_done;
480
481 /* work out how much data was loaded so we can calculate
482 * how much data is left in the fifo. */
483
484 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
485
e7a9ff54
BD
486 /* if shared fifo, we cannot write anything until the
487 * previous data has been completely sent.
488 */
489 if (hs_ep->fifo_load != 0) {
490 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
491 return -ENOSPC;
492 }
493
5b7d70c6
BD
494 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
495 __func__, size_left,
496 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
497
498 /* how much of the data has moved */
499 size_done = hs_ep->size_loaded - size_left;
500
501 /* how much data is left in the fifo */
502 can_write = hs_ep->fifo_load - size_done;
503 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
504 __func__, can_write);
505
506 can_write = hs_ep->fifo_size - can_write;
507 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
508 __func__, can_write);
509
510 if (can_write <= 0) {
511 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
512 return -ENOSPC;
513 }
10aebc77
BD
514 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
515 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
516
517 can_write &= 0xffff;
518 can_write *= 4;
5b7d70c6
BD
519 } else {
520 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
521 dev_dbg(hsotg->dev,
522 "%s: no queue slots available (0x%08x)\n",
523 __func__, gnptxsts);
524
525 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
526 return -ENOSPC;
527 }
528
529 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
679f9b7c 530 can_write *= 4; /* fifo size is in 32bit quantities. */
5b7d70c6
BD
531 }
532
533 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
534 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
535
536 /* limit to 512 bytes of data, it seems at least on the non-periodic
537 * FIFO, requests of >512 cause the endpoint to get stuck with a
538 * fragment of the end of the transfer in it.
539 */
540 if (can_write > 512)
541 can_write = 512;
542
03e10e5a
BD
543 /* limit the write to one max-packet size worth of data, but allow
544 * the transfer to return that it did not run out of fifo space
545 * doing it. */
546 if (to_write > hs_ep->ep.maxpacket) {
547 to_write = hs_ep->ep.maxpacket;
548
549 s3c_hsotg_en_gsint(hsotg,
550 periodic ? S3C_GINTSTS_PTxFEmp :
551 S3C_GINTSTS_NPTxFEmp);
552 }
553
5b7d70c6
BD
554 /* see if we can write data */
555
556 if (to_write > can_write) {
557 to_write = can_write;
558 pkt_round = to_write % hs_ep->ep.maxpacket;
559
560 /* Not sure, but we probably shouldn't be writing partial
561 * packets into the FIFO, so round the write down to an
562 * exact number of packets.
563 *
564 * Note, we do not currently check to see if we can ever
565 * write a full packet or not to the FIFO.
566 */
567
568 if (pkt_round)
569 to_write -= pkt_round;
570
571 /* enable correct FIFO interrupt to alert us when there
572 * is more room left. */
573
574 s3c_hsotg_en_gsint(hsotg,
575 periodic ? S3C_GINTSTS_PTxFEmp :
576 S3C_GINTSTS_NPTxFEmp);
577 }
578
579 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580 to_write, hs_req->req.length, can_write, buf_pos);
581
582 if (to_write <= 0)
583 return -ENOSPC;
584
585 hs_req->req.actual = buf_pos + to_write;
586 hs_ep->total_data += to_write;
587
588 if (periodic)
589 hs_ep->fifo_load += to_write;
590
591 to_write = DIV_ROUND_UP(to_write, 4);
592 data = hs_req->req.buf + buf_pos;
593
594 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
595
596 return (to_write >= can_write) ? -ENOSPC : 0;
597}
598
599/**
600 * get_ep_limit - get the maximum data legnth for this endpoint
601 * @hs_ep: The endpoint
602 *
603 * Return the maximum data that can be queued in one go on a given endpoint
604 * so that transfers that are too long can be split.
605 */
606static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
607{
608 int index = hs_ep->index;
609 unsigned maxsize;
610 unsigned maxpkt;
611
612 if (index != 0) {
613 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
614 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
615 } else {
b05ca580 616 maxsize = 64+64;
5b7d70c6 617 if (hs_ep->dir_in) {
5b7d70c6
BD
618 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
619 } else {
5b7d70c6
BD
620 maxpkt = 2;
621 }
622 }
623
624 /* we made the constant loading easier above by using +1 */
625 maxpkt--;
626 maxsize--;
627
628 /* constrain by packet count if maxpkts*pktsize is greater
629 * than the length register size. */
630
631 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
632 maxsize = maxpkt * hs_ep->ep.maxpacket;
633
634 return maxsize;
635}
636
637/**
638 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
639 * @hsotg: The controller state.
640 * @hs_ep: The endpoint to process a request for
641 * @hs_req: The request to start.
642 * @continuing: True if we are doing more for the current request.
643 *
644 * Start the given request running by setting the endpoint registers
645 * appropriately, and writing any data to the FIFOs.
646 */
647static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
648 struct s3c_hsotg_ep *hs_ep,
649 struct s3c_hsotg_req *hs_req,
650 bool continuing)
651{
652 struct usb_request *ureq = &hs_req->req;
653 int index = hs_ep->index;
654 int dir_in = hs_ep->dir_in;
655 u32 epctrl_reg;
656 u32 epsize_reg;
657 u32 epsize;
658 u32 ctrl;
659 unsigned length;
660 unsigned packets;
661 unsigned maxreq;
662
663 if (index != 0) {
664 if (hs_ep->req && !continuing) {
665 dev_err(hsotg->dev, "%s: active request\n", __func__);
666 WARN_ON(1);
667 return;
668 } else if (hs_ep->req != hs_req && continuing) {
669 dev_err(hsotg->dev,
670 "%s: continue different req\n", __func__);
671 WARN_ON(1);
672 return;
673 }
674 }
675
676 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
677 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
678
679 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
680 __func__, readl(hsotg->regs + epctrl_reg), index,
681 hs_ep->dir_in ? "in" : "out");
682
683 length = ureq->length - ureq->actual;
684
685 if (0)
686 dev_dbg(hsotg->dev,
687 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
688 ureq->buf, length, ureq->dma,
689 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
690
691 maxreq = get_ep_limit(hs_ep);
692 if (length > maxreq) {
693 int round = maxreq % hs_ep->ep.maxpacket;
694
695 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
696 __func__, length, maxreq, round);
697
698 /* round down to multiple of packets */
699 if (round)
700 maxreq -= round;
701
702 length = maxreq;
703 }
704
705 if (length)
706 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
707 else
708 packets = 1; /* send one packet if length is zero. */
709
710 if (dir_in && index != 0)
711 epsize = S3C_DxEPTSIZ_MC(1);
712 else
713 epsize = 0;
714
715 if (index != 0 && ureq->zero) {
716 /* test for the packets being exactly right for the
717 * transfer */
718
719 if (length == (packets * hs_ep->ep.maxpacket))
720 packets++;
721 }
722
723 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
724 epsize |= S3C_DxEPTSIZ_XferSize(length);
725
726 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
727 __func__, packets, length, ureq->length, epsize, epsize_reg);
728
729 /* store the request as the current one we're doing */
730 hs_ep->req = hs_req;
731
732 /* write size / packets */
733 writel(epsize, hsotg->regs + epsize_reg);
734
735 ctrl = readl(hsotg->regs + epctrl_reg);
736
737 if (ctrl & S3C_DxEPCTL_Stall) {
738 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
739
740 /* not sure what we can do here, if it is EP0 then we should
741 * get this cleared once the endpoint has transmitted the
742 * STALL packet, otherwise it needs to be cleared by the
743 * host.
744 */
745 }
746
747 if (using_dma(hsotg)) {
748 unsigned int dma_reg;
749
750 /* write DMA address to control register, buffer already
751 * synced by s3c_hsotg_ep_queue(). */
752
753 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
754 writel(ureq->dma, hsotg->regs + dma_reg);
755
756 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
757 __func__, ureq->dma, dma_reg);
758 }
759
760 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
761 ctrl |= S3C_DxEPCTL_USBActEp;
762 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
763
764 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
765 writel(ctrl, hsotg->regs + epctrl_reg);
766
767 /* set these, it seems that DMA support increments past the end
768 * of the packet buffer so we need to calculate the length from
769 * this information. */
770 hs_ep->size_loaded = length;
771 hs_ep->last_load = ureq->actual;
772
773 if (dir_in && !using_dma(hsotg)) {
774 /* set these anyway, we may need them for non-periodic in */
775 hs_ep->fifo_load = 0;
776
777 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
778 }
779
780 /* clear the INTknTXFEmpMsk when we start request, more as a aide
781 * to debugging to see what is going on. */
782 if (dir_in)
783 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
784 hsotg->regs + S3C_DIEPINT(index));
785
786 /* Note, trying to clear the NAK here causes problems with transmit
787 * on the S3C6400 ending up with the TXFIFO becomming full. */
788
789 /* check ep is enabled */
790 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
791 dev_warn(hsotg->dev,
792 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
793 index, readl(hsotg->regs + epctrl_reg));
794
795 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
796 __func__, readl(hsotg->regs + epctrl_reg));
797}
798
799/**
800 * s3c_hsotg_map_dma - map the DMA memory being used for the request
801 * @hsotg: The device state.
802 * @hs_ep: The endpoint the request is on.
803 * @req: The request being processed.
804 *
805 * We've been asked to queue a request, so ensure that the memory buffer
806 * is correctly setup for DMA. If we've been passed an extant DMA address
807 * then ensure the buffer has been synced to memory. If our buffer has no
808 * DMA memory, then we map the memory and mark our request to allow us to
809 * cleanup on completion.
810*/
811static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
812 struct s3c_hsotg_ep *hs_ep,
813 struct usb_request *req)
814{
815 enum dma_data_direction dir;
816 struct s3c_hsotg_req *hs_req = our_req(req);
817
818 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
819
820 /* if the length is zero, ignore the DMA data */
821 if (hs_req->req.length == 0)
822 return 0;
823
824 if (req->dma == DMA_ADDR_INVALID) {
825 dma_addr_t dma;
826
827 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
828
829 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
830 goto dma_error;
831
832 if (dma & 3) {
833 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
834 __func__);
835
836 dma_unmap_single(hsotg->dev, dma, req->length, dir);
837 return -EINVAL;
838 }
839
840 hs_req->mapped = 1;
841 req->dma = dma;
842 } else {
5b520259 843 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
844 hs_req->mapped = 0;
845 }
846
847 return 0;
848
849dma_error:
850 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
851 __func__, req->buf, req->length);
852
853 return -EIO;
854}
855
856static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
857 gfp_t gfp_flags)
858{
859 struct s3c_hsotg_req *hs_req = our_req(req);
860 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
861 struct s3c_hsotg *hs = hs_ep->parent;
862 unsigned long irqflags;
863 bool first;
864
865 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
866 ep->name, req, req->length, req->buf, req->no_interrupt,
867 req->zero, req->short_not_ok);
868
869 /* initialise status of the request */
870 INIT_LIST_HEAD(&hs_req->queue);
871 req->actual = 0;
872 req->status = -EINPROGRESS;
873
874 /* if we're using DMA, sync the buffers as necessary */
875 if (using_dma(hs)) {
876 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
877 if (ret)
878 return ret;
879 }
880
881 spin_lock_irqsave(&hs_ep->lock, irqflags);
882
883 first = list_empty(&hs_ep->queue);
884 list_add_tail(&hs_req->queue, &hs_ep->queue);
885
886 if (first)
887 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
888
889 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
890
891 return 0;
892}
893
894static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
895 struct usb_request *req)
896{
897 struct s3c_hsotg_req *hs_req = our_req(req);
898
899 kfree(hs_req);
900}
901
902/**
903 * s3c_hsotg_complete_oursetup - setup completion callback
904 * @ep: The endpoint the request was on.
905 * @req: The request completed.
906 *
907 * Called on completion of any requests the driver itself
908 * submitted that need cleaning up.
909 */
910static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
911 struct usb_request *req)
912{
913 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
914 struct s3c_hsotg *hsotg = hs_ep->parent;
915
916 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
917
918 s3c_hsotg_ep_free_request(ep, req);
919}
920
921/**
922 * ep_from_windex - convert control wIndex value to endpoint
923 * @hsotg: The driver state.
924 * @windex: The control request wIndex field (in host order).
925 *
926 * Convert the given wIndex into a pointer to an driver endpoint
927 * structure, or return NULL if it is not a valid endpoint.
928*/
929static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
930 u32 windex)
931{
932 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
933 int dir = (windex & USB_DIR_IN) ? 1 : 0;
934 int idx = windex & 0x7F;
935
936 if (windex >= 0x100)
937 return NULL;
938
939 if (idx > S3C_HSOTG_EPS)
940 return NULL;
941
942 if (idx && ep->dir_in != dir)
943 return NULL;
944
945 return ep;
946}
947
948/**
949 * s3c_hsotg_send_reply - send reply to control request
950 * @hsotg: The device state
951 * @ep: Endpoint 0
952 * @buff: Buffer for request
953 * @length: Length of reply.
954 *
955 * Create a request and queue it on the given endpoint. This is useful as
956 * an internal method of sending replies to certain control requests, etc.
957 */
958static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
959 struct s3c_hsotg_ep *ep,
960 void *buff,
961 int length)
962{
963 struct usb_request *req;
964 int ret;
965
966 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
967
968 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
969 hsotg->ep0_reply = req;
970 if (!req) {
971 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
972 return -ENOMEM;
973 }
974
975 req->buf = hsotg->ep0_buff;
976 req->length = length;
977 req->zero = 1; /* always do zero-length final transfer */
978 req->complete = s3c_hsotg_complete_oursetup;
979
980 if (length)
981 memcpy(req->buf, buff, length);
982 else
983 ep->sent_zlp = 1;
984
985 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
986 if (ret) {
987 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
988 return ret;
989 }
990
991 return 0;
992}
993
994/**
995 * s3c_hsotg_process_req_status - process request GET_STATUS
996 * @hsotg: The device state
997 * @ctrl: USB control request
998 */
999static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1000 struct usb_ctrlrequest *ctrl)
1001{
1002 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1003 struct s3c_hsotg_ep *ep;
1004 __le16 reply;
1005 int ret;
1006
1007 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1008
1009 if (!ep0->dir_in) {
1010 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1011 return -EINVAL;
1012 }
1013
1014 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1015 case USB_RECIP_DEVICE:
1016 reply = cpu_to_le16(0); /* bit 0 => self powered,
1017 * bit 1 => remote wakeup */
1018 break;
1019
1020 case USB_RECIP_INTERFACE:
1021 /* currently, the data result should be zero */
1022 reply = cpu_to_le16(0);
1023 break;
1024
1025 case USB_RECIP_ENDPOINT:
1026 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1027 if (!ep)
1028 return -ENOENT;
1029
1030 reply = cpu_to_le16(ep->halted ? 1 : 0);
1031 break;
1032
1033 default:
1034 return 0;
1035 }
1036
1037 if (le16_to_cpu(ctrl->wLength) != 2)
1038 return -EINVAL;
1039
1040 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1041 if (ret) {
1042 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1043 return ret;
1044 }
1045
1046 return 1;
1047}
1048
1049static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1050
1051/**
1052 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1053 * @hsotg: The device state
1054 * @ctrl: USB control request
1055 */
1056static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1057 struct usb_ctrlrequest *ctrl)
1058{
1059 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1060 struct s3c_hsotg_ep *ep;
1061
1062 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1063 __func__, set ? "SET" : "CLEAR");
1064
1065 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1066 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1067 if (!ep) {
1068 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1069 __func__, le16_to_cpu(ctrl->wIndex));
1070 return -ENOENT;
1071 }
1072
1073 switch (le16_to_cpu(ctrl->wValue)) {
1074 case USB_ENDPOINT_HALT:
1075 s3c_hsotg_ep_sethalt(&ep->ep, set);
1076 break;
1077
1078 default:
1079 return -ENOENT;
1080 }
1081 } else
1082 return -ENOENT; /* currently only deal with endpoint */
1083
1084 return 1;
1085}
1086
1087/**
1088 * s3c_hsotg_process_control - process a control request
1089 * @hsotg: The device state
1090 * @ctrl: The control request received
1091 *
1092 * The controller has received the SETUP phase of a control request, and
1093 * needs to work out what to do next (and whether to pass it on to the
1094 * gadget driver).
1095 */
1096static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1097 struct usb_ctrlrequest *ctrl)
1098{
1099 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1100 int ret = 0;
1101 u32 dcfg;
1102
1103 ep0->sent_zlp = 0;
1104
1105 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1106 ctrl->bRequest, ctrl->bRequestType,
1107 ctrl->wValue, ctrl->wLength);
1108
1109 /* record the direction of the request, for later use when enquing
1110 * packets onto EP0. */
1111
1112 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1113 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1114
1115 /* if we've no data with this request, then the last part of the
1116 * transaction is going to implicitly be IN. */
1117 if (ctrl->wLength == 0)
1118 ep0->dir_in = 1;
1119
1120 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1121 switch (ctrl->bRequest) {
1122 case USB_REQ_SET_ADDRESS:
1123 dcfg = readl(hsotg->regs + S3C_DCFG);
1124 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1125 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1126 writel(dcfg, hsotg->regs + S3C_DCFG);
1127
1128 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1129
1130 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1131 return;
1132
1133 case USB_REQ_GET_STATUS:
1134 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1135 break;
1136
1137 case USB_REQ_CLEAR_FEATURE:
1138 case USB_REQ_SET_FEATURE:
1139 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1140 break;
1141 }
1142 }
1143
1144 /* as a fallback, try delivering it to the driver to deal with */
1145
1146 if (ret == 0 && hsotg->driver) {
1147 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1148 if (ret < 0)
1149 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1150 }
1151
1152 if (ret > 0) {
1153 if (!ep0->dir_in) {
1154 /* need to generate zlp in reply or take data */
1155 /* todo - deal with any data we might be sent? */
1156 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1157 }
1158 }
1159
1160 /* the request is either unhandlable, or is not formatted correctly
1161 * so respond with a STALL for the status stage to indicate failure.
1162 */
1163
1164 if (ret < 0) {
1165 u32 reg;
1166 u32 ctrl;
1167
1168 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1169 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1170
1171 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1172 * taken effect, so no need to clear later. */
1173
1174 ctrl = readl(hsotg->regs + reg);
1175 ctrl |= S3C_DxEPCTL_Stall;
1176 ctrl |= S3C_DxEPCTL_CNAK;
1177 writel(ctrl, hsotg->regs + reg);
1178
1179 dev_dbg(hsotg->dev,
1180 "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1181 ctrl, reg, readl(hsotg->regs + reg));
1182
1183 /* don't belive we need to anything more to get the EP
1184 * to reply with a STALL packet */
1185 }
1186}
1187
1188static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1189
1190/**
1191 * s3c_hsotg_complete_setup - completion of a setup transfer
1192 * @ep: The endpoint the request was on.
1193 * @req: The request completed.
1194 *
1195 * Called on completion of any requests the driver itself submitted for
1196 * EP0 setup packets
1197 */
1198static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1199 struct usb_request *req)
1200{
1201 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1202 struct s3c_hsotg *hsotg = hs_ep->parent;
1203
1204 if (req->status < 0) {
1205 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1206 return;
1207 }
1208
1209 if (req->actual == 0)
1210 s3c_hsotg_enqueue_setup(hsotg);
1211 else
1212 s3c_hsotg_process_control(hsotg, req->buf);
1213}
1214
1215/**
1216 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1217 * @hsotg: The device state.
1218 *
1219 * Enqueue a request on EP0 if necessary to received any SETUP packets
1220 * received from the host.
1221 */
1222static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1223{
1224 struct usb_request *req = hsotg->ctrl_req;
1225 struct s3c_hsotg_req *hs_req = our_req(req);
1226 int ret;
1227
1228 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1229
1230 req->zero = 0;
1231 req->length = 8;
1232 req->buf = hsotg->ctrl_buff;
1233 req->complete = s3c_hsotg_complete_setup;
1234
1235 if (!list_empty(&hs_req->queue)) {
1236 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1237 return;
1238 }
1239
1240 hsotg->eps[0].dir_in = 0;
1241
1242 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1243 if (ret < 0) {
1244 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1245 /* Don't think there's much we can do other than watch the
1246 * driver fail. */
1247 }
1248}
1249
1250/**
1251 * get_ep_head - return the first request on the endpoint
1252 * @hs_ep: The controller endpoint to get
1253 *
1254 * Get the first request on the endpoint.
1255*/
1256static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1257{
1258 if (list_empty(&hs_ep->queue))
1259 return NULL;
1260
1261 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1262}
1263
1264/**
1265 * s3c_hsotg_complete_request - complete a request given to us
1266 * @hsotg: The device state.
1267 * @hs_ep: The endpoint the request was on.
1268 * @hs_req: The request to complete.
1269 * @result: The result code (0 => Ok, otherwise errno)
1270 *
1271 * The given request has finished, so call the necessary completion
1272 * if it has one and then look to see if we can start a new request
1273 * on the endpoint.
1274 *
1275 * Note, expects the ep to already be locked as appropriate.
1276*/
1277static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1278 struct s3c_hsotg_ep *hs_ep,
1279 struct s3c_hsotg_req *hs_req,
1280 int result)
1281{
1282 bool restart;
1283
1284 if (!hs_req) {
1285 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1286 return;
1287 }
1288
1289 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1290 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1291
1292 /* only replace the status if we've not already set an error
1293 * from a previous transaction */
1294
1295 if (hs_req->req.status == -EINPROGRESS)
1296 hs_req->req.status = result;
1297
1298 hs_ep->req = NULL;
1299 list_del_init(&hs_req->queue);
1300
1301 if (using_dma(hsotg))
1302 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1303
1304 /* call the complete request with the locks off, just in case the
1305 * request tries to queue more work for this endpoint. */
1306
1307 if (hs_req->req.complete) {
1308 spin_unlock(&hs_ep->lock);
1309 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1310 spin_lock(&hs_ep->lock);
1311 }
1312
1313 /* Look to see if there is anything else to do. Note, the completion
1314 * of the previous request may have caused a new request to be started
1315 * so be careful when doing this. */
1316
1317 if (!hs_ep->req && result >= 0) {
1318 restart = !list_empty(&hs_ep->queue);
1319 if (restart) {
1320 hs_req = get_ep_head(hs_ep);
1321 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1322 }
1323 }
1324}
1325
1326/**
1327 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1328 * @hsotg: The device state.
1329 * @hs_ep: The endpoint the request was on.
1330 * @hs_req: The request to complete.
1331 * @result: The result code (0 => Ok, otherwise errno)
1332 *
1333 * See s3c_hsotg_complete_request(), but called with the endpoint's
1334 * lock held.
1335*/
1336static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1337 struct s3c_hsotg_ep *hs_ep,
1338 struct s3c_hsotg_req *hs_req,
1339 int result)
1340{
1341 unsigned long flags;
1342
1343 spin_lock_irqsave(&hs_ep->lock, flags);
1344 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1345 spin_unlock_irqrestore(&hs_ep->lock, flags);
1346}
1347
1348/**
1349 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1350 * @hsotg: The device state.
1351 * @ep_idx: The endpoint index for the data
1352 * @size: The size of data in the fifo, in bytes
1353 *
1354 * The FIFO status shows there is data to read from the FIFO for a given
1355 * endpoint, so sort out whether we need to read the data into a request
1356 * that has been made for that endpoint.
1357 */
1358static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1359{
1360 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1361 struct s3c_hsotg_req *hs_req = hs_ep->req;
1362 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1363 int to_read;
1364 int max_req;
1365 int read_ptr;
1366
1367 if (!hs_req) {
1368 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1369 int ptr;
1370
1371 dev_warn(hsotg->dev,
1372 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1373 __func__, size, ep_idx, epctl);
1374
1375 /* dump the data from the FIFO, we've nothing we can do */
1376 for (ptr = 0; ptr < size; ptr += 4)
1377 (void)readl(fifo);
1378
1379 return;
1380 }
1381
1382 spin_lock(&hs_ep->lock);
1383
1384 to_read = size;
1385 read_ptr = hs_req->req.actual;
1386 max_req = hs_req->req.length - read_ptr;
1387
a33e7136
BD
1388 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1389 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1390
5b7d70c6
BD
1391 if (to_read > max_req) {
1392 /* more data appeared than we where willing
1393 * to deal with in this request.
1394 */
1395
1396 /* currently we don't deal this */
1397 WARN_ON_ONCE(1);
1398 }
1399
5b7d70c6
BD
1400 hs_ep->total_data += to_read;
1401 hs_req->req.actual += to_read;
1402 to_read = DIV_ROUND_UP(to_read, 4);
1403
1404 /* note, we might over-write the buffer end by 3 bytes depending on
1405 * alignment of the data. */
1406 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1407
1408 spin_unlock(&hs_ep->lock);
1409}
1410
1411/**
1412 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1413 * @hsotg: The device instance
1414 * @req: The request currently on this endpoint
1415 *
1416 * Generate a zero-length IN packet request for terminating a SETUP
1417 * transaction.
1418 *
1419 * Note, since we don't write any data to the TxFIFO, then it is
1420 * currently belived that we do not need to wait for any space in
1421 * the TxFIFO.
1422 */
1423static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1424 struct s3c_hsotg_req *req)
1425{
1426 u32 ctrl;
1427
1428 if (!req) {
1429 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1430 return;
1431 }
1432
1433 if (req->req.length == 0) {
1434 hsotg->eps[0].sent_zlp = 1;
1435 s3c_hsotg_enqueue_setup(hsotg);
1436 return;
1437 }
1438
1439 hsotg->eps[0].dir_in = 1;
1440 hsotg->eps[0].sent_zlp = 1;
1441
1442 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1443
1444 /* issue a zero-sized packet to terminate this */
1445 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1446 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1447
1448 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1449 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1450 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1451 ctrl |= S3C_DxEPCTL_USBActEp;
1452 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1453}
1454
1455/**
1456 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1457 * @hsotg: The device instance
1458 * @epnum: The endpoint received from
1459 * @was_setup: Set if processing a SetupDone event.
1460 *
1461 * The RXFIFO has delivered an OutDone event, which means that the data
1462 * transfer for an OUT endpoint has been completed, either by a short
1463 * packet or by the finish of a transfer.
1464*/
1465static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1466 int epnum, bool was_setup)
1467{
a33e7136 1468 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
5b7d70c6
BD
1469 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1470 struct s3c_hsotg_req *hs_req = hs_ep->req;
1471 struct usb_request *req = &hs_req->req;
a33e7136 1472 unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1473 int result = 0;
1474
1475 if (!hs_req) {
1476 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1477 return;
1478 }
1479
1480 if (using_dma(hsotg)) {
5b7d70c6 1481 unsigned size_done;
5b7d70c6
BD
1482
1483 /* Calculate the size of the transfer by checking how much
1484 * is left in the endpoint size register and then working it
1485 * out from the amount we loaded for the transfer.
1486 *
1487 * We need to do this as DMA pointers are always 32bit aligned
1488 * so may overshoot/undershoot the transfer.
1489 */
1490
5b7d70c6
BD
1491 size_done = hs_ep->size_loaded - size_left;
1492 size_done += hs_ep->last_load;
1493
1494 req->actual = size_done;
1495 }
1496
a33e7136
BD
1497 /* if there is more request to do, schedule new transfer */
1498 if (req->actual < req->length && size_left == 0) {
1499 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1500 return;
1501 }
1502
5b7d70c6
BD
1503 if (req->actual < req->length && req->short_not_ok) {
1504 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1505 __func__, req->actual, req->length);
1506
1507 /* todo - what should we return here? there's no one else
1508 * even bothering to check the status. */
1509 }
1510
1511 if (epnum == 0) {
1512 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1513 s3c_hsotg_send_zlp(hsotg, hs_req);
1514 }
1515
1516 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1517}
1518
1519/**
1520 * s3c_hsotg_read_frameno - read current frame number
1521 * @hsotg: The device instance
1522 *
1523 * Return the current frame number
1524*/
1525static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1526{
1527 u32 dsts;
1528
1529 dsts = readl(hsotg->regs + S3C_DSTS);
1530 dsts &= S3C_DSTS_SOFFN_MASK;
1531 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1532
1533 return dsts;
1534}
1535
1536/**
1537 * s3c_hsotg_handle_rx - RX FIFO has data
1538 * @hsotg: The device instance
1539 *
1540 * The IRQ handler has detected that the RX FIFO has some data in it
1541 * that requires processing, so find out what is in there and do the
1542 * appropriate read.
1543 *
1544 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1545 * chunks, so if you have x packets received on an endpoint you'll get x
1546 * FIFO events delivered, each with a packet's worth of data in it.
1547 *
1548 * When using DMA, we should not be processing events from the RXFIFO
1549 * as the actual data should be sent to the memory directly and we turn
1550 * on the completion interrupts to get notifications of transfer completion.
1551 */
0978f8c5 1552static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
5b7d70c6
BD
1553{
1554 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1555 u32 epnum, status, size;
1556
1557 WARN_ON(using_dma(hsotg));
1558
1559 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1560 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1561
1562 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1563 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1564
1565 if (1)
1566 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1567 __func__, grxstsr, size, epnum);
1568
1569#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1570
1571 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1572 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1573 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1574 break;
1575
1576 case __status(S3C_GRXSTS_PktSts_OutDone):
1577 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1578 s3c_hsotg_read_frameno(hsotg));
1579
1580 if (!using_dma(hsotg))
1581 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1582 break;
1583
1584 case __status(S3C_GRXSTS_PktSts_SetupDone):
1585 dev_dbg(hsotg->dev,
1586 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1587 s3c_hsotg_read_frameno(hsotg),
1588 readl(hsotg->regs + S3C_DOEPCTL(0)));
1589
1590 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1591 break;
1592
1593 case __status(S3C_GRXSTS_PktSts_OutRX):
1594 s3c_hsotg_rx_data(hsotg, epnum, size);
1595 break;
1596
1597 case __status(S3C_GRXSTS_PktSts_SetupRX):
1598 dev_dbg(hsotg->dev,
1599 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1600 s3c_hsotg_read_frameno(hsotg),
1601 readl(hsotg->regs + S3C_DOEPCTL(0)));
1602
1603 s3c_hsotg_rx_data(hsotg, epnum, size);
1604 break;
1605
1606 default:
1607 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1608 __func__, grxstsr);
1609
1610 s3c_hsotg_dump(hsotg);
1611 break;
1612 }
1613}
1614
1615/**
1616 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1617 * @mps: The maximum packet size in bytes.
1618*/
1619static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1620{
1621 switch (mps) {
1622 case 64:
1623 return S3C_D0EPCTL_MPS_64;
1624 case 32:
1625 return S3C_D0EPCTL_MPS_32;
1626 case 16:
1627 return S3C_D0EPCTL_MPS_16;
1628 case 8:
1629 return S3C_D0EPCTL_MPS_8;
1630 }
1631
1632 /* bad max packet size, warn and return invalid result */
1633 WARN_ON(1);
1634 return (u32)-1;
1635}
1636
1637/**
1638 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1639 * @hsotg: The driver state.
1640 * @ep: The index number of the endpoint
1641 * @mps: The maximum packet size in bytes
1642 *
1643 * Configure the maximum packet size for the given endpoint, updating
1644 * the hardware control registers to reflect this.
1645 */
1646static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1647 unsigned int ep, unsigned int mps)
1648{
1649 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1650 void __iomem *regs = hsotg->regs;
1651 u32 mpsval;
1652 u32 reg;
1653
1654 if (ep == 0) {
1655 /* EP0 is a special case */
1656 mpsval = s3c_hsotg_ep0_mps(mps);
1657 if (mpsval > 3)
1658 goto bad_mps;
1659 } else {
1660 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1661 goto bad_mps;
1662
1663 mpsval = mps;
1664 }
1665
1666 hs_ep->ep.maxpacket = mps;
1667
1668 /* update both the in and out endpoint controldir_ registers, even
1669 * if one of the directions may not be in use. */
1670
1671 reg = readl(regs + S3C_DIEPCTL(ep));
1672 reg &= ~S3C_DxEPCTL_MPS_MASK;
1673 reg |= mpsval;
1674 writel(reg, regs + S3C_DIEPCTL(ep));
1675
1676 reg = readl(regs + S3C_DOEPCTL(ep));
1677 reg &= ~S3C_DxEPCTL_MPS_MASK;
1678 reg |= mpsval;
1679 writel(reg, regs + S3C_DOEPCTL(ep));
1680
1681 return;
1682
1683bad_mps:
1684 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1685}
1686
1687
1688/**
1689 * s3c_hsotg_trytx - check to see if anything needs transmitting
1690 * @hsotg: The driver state
1691 * @hs_ep: The driver endpoint to check.
1692 *
1693 * Check to see if there is a request that has data to send, and if so
1694 * make an attempt to write data into the FIFO.
1695 */
1696static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1697 struct s3c_hsotg_ep *hs_ep)
1698{
1699 struct s3c_hsotg_req *hs_req = hs_ep->req;
1700
1701 if (!hs_ep->dir_in || !hs_req)
1702 return 0;
1703
1704 if (hs_req->req.actual < hs_req->req.length) {
1705 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1706 hs_ep->index);
1707 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1708 }
1709
1710 return 0;
1711}
1712
1713/**
1714 * s3c_hsotg_complete_in - complete IN transfer
1715 * @hsotg: The device state.
1716 * @hs_ep: The endpoint that has just completed.
1717 *
1718 * An IN transfer has been completed, update the transfer's state and then
1719 * call the relevant completion routines.
1720 */
1721static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1722 struct s3c_hsotg_ep *hs_ep)
1723{
1724 struct s3c_hsotg_req *hs_req = hs_ep->req;
1725 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1726 int size_left, size_done;
1727
1728 if (!hs_req) {
1729 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1730 return;
1731 }
1732
1733 /* Calculate the size of the transfer by checking how much is left
1734 * in the endpoint size register and then working it out from
1735 * the amount we loaded for the transfer.
1736 *
1737 * We do this even for DMA, as the transfer may have incremented
1738 * past the end of the buffer (DMA transfers are always 32bit
1739 * aligned).
1740 */
1741
1742 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1743
1744 size_done = hs_ep->size_loaded - size_left;
1745 size_done += hs_ep->last_load;
1746
1747 if (hs_req->req.actual != size_done)
1748 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1749 __func__, hs_req->req.actual, size_done);
1750
1751 hs_req->req.actual = size_done;
1752
1753 /* if we did all of the transfer, and there is more data left
1754 * around, then try restarting the rest of the request */
1755
1756 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1757 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1758 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1759 } else
1760 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1761}
1762
1763/**
1764 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1765 * @hsotg: The driver state
1766 * @idx: The index for the endpoint (0..15)
1767 * @dir_in: Set if this is an IN endpoint
1768 *
1769 * Process and clear any interrupt pending for an individual endpoint
1770*/
1771static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1772 int dir_in)
1773{
1774 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1775 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1776 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1777 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1778 u32 ints;
1779 u32 clear = 0;
1780
1781 ints = readl(hsotg->regs + epint_reg);
1782
1783 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1784 __func__, idx, dir_in ? "in" : "out", ints);
1785
1786 if (ints & S3C_DxEPINT_XferCompl) {
1787 dev_dbg(hsotg->dev,
1788 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1789 __func__, readl(hsotg->regs + epctl_reg),
1790 readl(hsotg->regs + epsiz_reg));
1791
1792 /* we get OutDone from the FIFO, so we only need to look
1793 * at completing IN requests here */
1794 if (dir_in) {
1795 s3c_hsotg_complete_in(hsotg, hs_ep);
1796
c9a64ea8 1797 if (idx == 0 && !hs_ep->req)
5b7d70c6
BD
1798 s3c_hsotg_enqueue_setup(hsotg);
1799 } else if (using_dma(hsotg)) {
1800 /* We're using DMA, we need to fire an OutDone here
1801 * as we ignore the RXFIFO. */
1802
1803 s3c_hsotg_handle_outdone(hsotg, idx, false);
1804 }
1805
1806 clear |= S3C_DxEPINT_XferCompl;
1807 }
1808
1809 if (ints & S3C_DxEPINT_EPDisbld) {
1810 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1811 clear |= S3C_DxEPINT_EPDisbld;
1812 }
1813
1814 if (ints & S3C_DxEPINT_AHBErr) {
1815 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1816 clear |= S3C_DxEPINT_AHBErr;
1817 }
1818
1819 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1820 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1821
1822 if (using_dma(hsotg) && idx == 0) {
1823 /* this is the notification we've received a
1824 * setup packet. In non-DMA mode we'd get this
1825 * from the RXFIFO, instead we need to process
1826 * the setup here. */
1827
1828 if (dir_in)
1829 WARN_ON_ONCE(1);
1830 else
1831 s3c_hsotg_handle_outdone(hsotg, 0, true);
1832 }
1833
1834 clear |= S3C_DxEPINT_Setup;
1835 }
1836
1837 if (ints & S3C_DxEPINT_Back2BackSetup) {
1838 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1839 clear |= S3C_DxEPINT_Back2BackSetup;
1840 }
1841
1842 if (dir_in) {
1843 /* not sure if this is important, but we'll clear it anyway
1844 */
1845 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1846 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1847 __func__, idx);
1848 clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1849 }
1850
1851 /* this probably means something bad is happening */
1852 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1853 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1854 __func__, idx);
1855 clear |= S3C_DIEPMSK_INTknEPMisMsk;
1856 }
10aebc77
BD
1857
1858 /* FIFO has space or is empty (see GAHBCFG) */
1859 if (hsotg->dedicated_fifos &&
1860 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1861 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1862 __func__, idx);
1863 s3c_hsotg_trytx(hsotg, hs_ep);
1864 clear |= S3C_DIEPMSK_TxFIFOEmpty;
1865 }
5b7d70c6
BD
1866 }
1867
1868 writel(clear, hsotg->regs + epint_reg);
1869}
1870
1871/**
1872 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1873 * @hsotg: The device state.
1874 *
1875 * Handle updating the device settings after the enumeration phase has
1876 * been completed.
1877*/
1878static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1879{
1880 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1881 int ep0_mps = 0, ep_mps;
1882
1883 /* This should signal the finish of the enumeration phase
1884 * of the USB handshaking, so we should now know what rate
1885 * we connected at. */
1886
1887 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1888
1889 /* note, since we're limited by the size of transfer on EP0, and
1890 * it seems IN transfers must be a even number of packets we do
1891 * not advertise a 64byte MPS on EP0. */
1892
1893 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1894 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1895 case S3C_DSTS_EnumSpd_FS:
1896 case S3C_DSTS_EnumSpd_FS48:
1897 hsotg->gadget.speed = USB_SPEED_FULL;
1898 dev_info(hsotg->dev, "new device is full-speed\n");
1899
1900 ep0_mps = EP0_MPS_LIMIT;
1901 ep_mps = 64;
1902 break;
1903
1904 case S3C_DSTS_EnumSpd_HS:
1905 dev_info(hsotg->dev, "new device is high-speed\n");
1906 hsotg->gadget.speed = USB_SPEED_HIGH;
1907
1908 ep0_mps = EP0_MPS_LIMIT;
1909 ep_mps = 512;
1910 break;
1911
1912 case S3C_DSTS_EnumSpd_LS:
1913 hsotg->gadget.speed = USB_SPEED_LOW;
1914 dev_info(hsotg->dev, "new device is low-speed\n");
1915
1916 /* note, we don't actually support LS in this driver at the
1917 * moment, and the documentation seems to imply that it isn't
1918 * supported by the PHYs on some of the devices.
1919 */
1920 break;
1921 }
1922
1923 /* we should now know the maximum packet size for an
1924 * endpoint, so set the endpoints to a default value. */
1925
1926 if (ep0_mps) {
1927 int i;
1928 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1929 for (i = 1; i < S3C_HSOTG_EPS; i++)
1930 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1931 }
1932
1933 /* ensure after enumeration our EP0 is active */
1934
1935 s3c_hsotg_enqueue_setup(hsotg);
1936
1937 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1938 readl(hsotg->regs + S3C_DIEPCTL0),
1939 readl(hsotg->regs + S3C_DOEPCTL0));
1940}
1941
1942/**
1943 * kill_all_requests - remove all requests from the endpoint's queue
1944 * @hsotg: The device state.
1945 * @ep: The endpoint the requests may be on.
1946 * @result: The result code to use.
1947 * @force: Force removal of any current requests
1948 *
1949 * Go through the requests on the given endpoint and mark them
1950 * completed with the given result code.
1951 */
1952static void kill_all_requests(struct s3c_hsotg *hsotg,
1953 struct s3c_hsotg_ep *ep,
1954 int result, bool force)
1955{
1956 struct s3c_hsotg_req *req, *treq;
1957 unsigned long flags;
1958
1959 spin_lock_irqsave(&ep->lock, flags);
1960
1961 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1962 /* currently, we can't do much about an already
1963 * running request on an in endpoint */
1964
1965 if (ep->req == req && ep->dir_in && !force)
1966 continue;
1967
1968 s3c_hsotg_complete_request(hsotg, ep, req,
1969 result);
1970 }
1971
1972 spin_unlock_irqrestore(&ep->lock, flags);
1973}
1974
1975#define call_gadget(_hs, _entry) \
1976 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1977 (_hs)->driver && (_hs)->driver->_entry) \
1978 (_hs)->driver->_entry(&(_hs)->gadget);
1979
1980/**
1981 * s3c_hsotg_disconnect_irq - disconnect irq service
1982 * @hsotg: The device state.
1983 *
1984 * A disconnect IRQ has been received, meaning that the host has
1985 * lost contact with the bus. Remove all current transactions
1986 * and signal the gadget driver that this has happened.
1987*/
1988static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1989{
1990 unsigned ep;
1991
1992 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1993 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1994
1995 call_gadget(hsotg, disconnect);
1996}
1997
1998/**
1999 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2000 * @hsotg: The device state:
2001 * @periodic: True if this is a periodic FIFO interrupt
2002 */
2003static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2004{
2005 struct s3c_hsotg_ep *ep;
2006 int epno, ret;
2007
2008 /* look through for any more data to transmit */
2009
2010 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2011 ep = &hsotg->eps[epno];
2012
2013 if (!ep->dir_in)
2014 continue;
2015
2016 if ((periodic && !ep->periodic) ||
2017 (!periodic && ep->periodic))
2018 continue;
2019
2020 ret = s3c_hsotg_trytx(hsotg, ep);
2021 if (ret < 0)
2022 break;
2023 }
2024}
2025
2026static struct s3c_hsotg *our_hsotg;
2027
2028/* IRQ flags which will trigger a retry around the IRQ loop */
2029#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2030 S3C_GINTSTS_PTxFEmp | \
2031 S3C_GINTSTS_RxFLvl)
2032
2033/**
2034 * s3c_hsotg_irq - handle device interrupt
2035 * @irq: The IRQ number triggered
2036 * @pw: The pw value when registered the handler.
2037 */
2038static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2039{
2040 struct s3c_hsotg *hsotg = pw;
2041 int retry_count = 8;
2042 u32 gintsts;
2043 u32 gintmsk;
2044
2045irq_retry:
2046 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2047 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2048
2049 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2050 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2051
2052 gintsts &= gintmsk;
2053
2054 if (gintsts & S3C_GINTSTS_OTGInt) {
2055 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2056
2057 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2058
2059 writel(otgint, hsotg->regs + S3C_GOTGINT);
2060 writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
2061 }
2062
2063 if (gintsts & S3C_GINTSTS_DisconnInt) {
2064 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2065 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2066
2067 s3c_hsotg_disconnect_irq(hsotg);
2068 }
2069
2070 if (gintsts & S3C_GINTSTS_SessReqInt) {
2071 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2072 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2073 }
2074
2075 if (gintsts & S3C_GINTSTS_EnumDone) {
2076 s3c_hsotg_irq_enumdone(hsotg);
2077 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2078 }
2079
2080 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2081 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2082 readl(hsotg->regs + S3C_DSTS),
2083 readl(hsotg->regs + S3C_GOTGCTL));
2084
2085 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2086 }
2087
2088 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2089 u32 daint = readl(hsotg->regs + S3C_DAINT);
2090 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2091 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2092 int ep;
2093
2094 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2095
2096 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2097 if (daint_out & 1)
2098 s3c_hsotg_epint(hsotg, ep, 0);
2099 }
2100
2101 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2102 if (daint_in & 1)
2103 s3c_hsotg_epint(hsotg, ep, 1);
2104 }
2105
2106 writel(daint, hsotg->regs + S3C_DAINT);
2107 writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2108 hsotg->regs + S3C_GINTSTS);
2109 }
2110
2111 if (gintsts & S3C_GINTSTS_USBRst) {
2112 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2113 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2114 readl(hsotg->regs + S3C_GNPTXSTS));
2115
2116 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2117
2118 /* it seems after a reset we can end up with a situation
b3864ced
BD
2119 * where the TXFIFO still has data in it... the docs
2120 * suggest resetting all the fifos, so use the init_fifo
2121 * code to relayout and flush the fifos.
5b7d70c6
BD
2122 */
2123
b3864ced 2124 s3c_hsotg_init_fifo(hsotg);
5b7d70c6
BD
2125
2126 s3c_hsotg_enqueue_setup(hsotg);
2127
2128 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2129 }
2130
2131 /* check both FIFOs */
2132
2133 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2134 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2135
2136 /* Disable the interrupt to stop it happening again
2137 * unless one of these endpoint routines decides that
2138 * it needs re-enabling */
2139
2140 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2141 s3c_hsotg_irq_fifoempty(hsotg, false);
2142
2143 writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2144 }
2145
2146 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2147 dev_dbg(hsotg->dev, "PTxFEmp\n");
2148
2149 /* See note in S3C_GINTSTS_NPTxFEmp */
2150
2151 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2152 s3c_hsotg_irq_fifoempty(hsotg, true);
2153
2154 writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2155 }
2156
2157 if (gintsts & S3C_GINTSTS_RxFLvl) {
2158 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2159 * we need to retry s3c_hsotg_handle_rx if this is still
2160 * set. */
2161
2162 s3c_hsotg_handle_rx(hsotg);
2163 writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2164 }
2165
2166 if (gintsts & S3C_GINTSTS_ModeMis) {
2167 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2168 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2169 }
2170
2171 if (gintsts & S3C_GINTSTS_USBSusp) {
2172 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2173 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2174
2175 call_gadget(hsotg, suspend);
2176 }
2177
2178 if (gintsts & S3C_GINTSTS_WkUpInt) {
2179 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2180 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2181
2182 call_gadget(hsotg, resume);
2183 }
2184
2185 if (gintsts & S3C_GINTSTS_ErlySusp) {
2186 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2187 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2188 }
2189
2190 /* these next two seem to crop-up occasionally causing the core
2191 * to shutdown the USB transfer, so try clearing them and logging
2192 * the occurence. */
2193
2194 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2195 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2196
2197 s3c_hsotg_dump(hsotg);
2198
2199 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2200 writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2201 }
2202
2203 if (gintsts & S3C_GINTSTS_GINNakEff) {
2204 dev_info(hsotg->dev, "GINNakEff triggered\n");
2205
2206 s3c_hsotg_dump(hsotg);
2207
2208 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2209 writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2210 }
2211
2212 /* if we've had fifo events, we should try and go around the
2213 * loop again to see if there's any point in returning yet. */
2214
2215 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2216 goto irq_retry;
2217
2218 return IRQ_HANDLED;
2219}
2220
2221/**
2222 * s3c_hsotg_ep_enable - enable the given endpoint
2223 * @ep: The USB endpint to configure
2224 * @desc: The USB endpoint descriptor to configure with.
2225 *
2226 * This is called from the USB gadget code's usb_ep_enable().
2227*/
2228static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2229 const struct usb_endpoint_descriptor *desc)
2230{
2231 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2232 struct s3c_hsotg *hsotg = hs_ep->parent;
2233 unsigned long flags;
2234 int index = hs_ep->index;
2235 u32 epctrl_reg;
2236 u32 epctrl;
2237 u32 mps;
2238 int dir_in;
19c190f9 2239 int ret = 0;
5b7d70c6
BD
2240
2241 dev_dbg(hsotg->dev,
2242 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2243 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2244 desc->wMaxPacketSize, desc->bInterval);
2245
2246 /* not to be called for EP0 */
2247 WARN_ON(index == 0);
2248
2249 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2250 if (dir_in != hs_ep->dir_in) {
2251 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2252 return -EINVAL;
2253 }
2254
2255 mps = le16_to_cpu(desc->wMaxPacketSize);
2256
2257 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2258
2259 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2260 epctrl = readl(hsotg->regs + epctrl_reg);
2261
2262 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2263 __func__, epctrl, epctrl_reg);
2264
2265 spin_lock_irqsave(&hs_ep->lock, flags);
2266
2267 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2268 epctrl |= S3C_DxEPCTL_MPS(mps);
2269
2270 /* mark the endpoint as active, otherwise the core may ignore
2271 * transactions entirely for this endpoint */
2272 epctrl |= S3C_DxEPCTL_USBActEp;
2273
2274 /* set the NAK status on the endpoint, otherwise we might try and
2275 * do something with data that we've yet got a request to process
2276 * since the RXFIFO will take data for an endpoint even if the
2277 * size register hasn't been set.
2278 */
2279
2280 epctrl |= S3C_DxEPCTL_SNAK;
2281
2282 /* update the endpoint state */
2283 hs_ep->ep.maxpacket = mps;
2284
2285 /* default, set to non-periodic */
2286 hs_ep->periodic = 0;
2287
2288 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2289 case USB_ENDPOINT_XFER_ISOC:
2290 dev_err(hsotg->dev, "no current ISOC support\n");
19c190f9
JL
2291 ret = -EINVAL;
2292 goto out;
5b7d70c6
BD
2293
2294 case USB_ENDPOINT_XFER_BULK:
2295 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2296 break;
2297
2298 case USB_ENDPOINT_XFER_INT:
2299 if (dir_in) {
2300 /* Allocate our TxFNum by simply using the index
2301 * of the endpoint for the moment. We could do
2302 * something better if the host indicates how
2303 * many FIFOs we are expecting to use. */
2304
2305 hs_ep->periodic = 1;
2306 epctrl |= S3C_DxEPCTL_TxFNum(index);
2307 }
2308
2309 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2310 break;
2311
2312 case USB_ENDPOINT_XFER_CONTROL:
2313 epctrl |= S3C_DxEPCTL_EPType_Control;
2314 break;
2315 }
2316
10aebc77
BD
2317 /* if the hardware has dedicated fifos, we must give each IN EP
2318 * a unique tx-fifo even if it is non-periodic.
2319 */
2320 if (dir_in && hsotg->dedicated_fifos)
2321 epctrl |= S3C_DxEPCTL_TxFNum(index);
2322
5b7d70c6
BD
2323 /* for non control endpoints, set PID to D0 */
2324 if (index)
2325 epctrl |= S3C_DxEPCTL_SetD0PID;
2326
2327 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2328 __func__, epctrl);
2329
2330 writel(epctrl, hsotg->regs + epctrl_reg);
2331 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2332 __func__, readl(hsotg->regs + epctrl_reg));
2333
2334 /* enable the endpoint interrupt */
2335 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2336
19c190f9 2337out:
5b7d70c6 2338 spin_unlock_irqrestore(&hs_ep->lock, flags);
19c190f9 2339 return ret;
5b7d70c6
BD
2340}
2341
2342static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2343{
2344 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2345 struct s3c_hsotg *hsotg = hs_ep->parent;
2346 int dir_in = hs_ep->dir_in;
2347 int index = hs_ep->index;
2348 unsigned long flags;
2349 u32 epctrl_reg;
2350 u32 ctrl;
2351
2352 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2353
2354 if (ep == &hsotg->eps[0].ep) {
2355 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2356 return -EINVAL;
2357 }
2358
2359 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2360
2361 /* terminate all requests with shutdown */
2362 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2363
2364 spin_lock_irqsave(&hs_ep->lock, flags);
2365
2366 ctrl = readl(hsotg->regs + epctrl_reg);
2367 ctrl &= ~S3C_DxEPCTL_EPEna;
2368 ctrl &= ~S3C_DxEPCTL_USBActEp;
2369 ctrl |= S3C_DxEPCTL_SNAK;
2370
2371 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2372 writel(ctrl, hsotg->regs + epctrl_reg);
2373
2374 /* disable endpoint interrupts */
2375 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2376
2377 spin_unlock_irqrestore(&hs_ep->lock, flags);
2378 return 0;
2379}
2380
2381/**
2382 * on_list - check request is on the given endpoint
2383 * @ep: The endpoint to check.
2384 * @test: The request to test if it is on the endpoint.
2385*/
2386static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2387{
2388 struct s3c_hsotg_req *req, *treq;
2389
2390 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2391 if (req == test)
2392 return true;
2393 }
2394
2395 return false;
2396}
2397
2398static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2399{
2400 struct s3c_hsotg_req *hs_req = our_req(req);
2401 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2402 struct s3c_hsotg *hs = hs_ep->parent;
2403 unsigned long flags;
2404
2405 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2406
2407 if (hs_req == hs_ep->req) {
2408 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2409 return -EINPROGRESS;
2410 }
2411
2412 spin_lock_irqsave(&hs_ep->lock, flags);
2413
2414 if (!on_list(hs_ep, hs_req)) {
2415 spin_unlock_irqrestore(&hs_ep->lock, flags);
2416 return -EINVAL;
2417 }
2418
2419 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2420 spin_unlock_irqrestore(&hs_ep->lock, flags);
2421
2422 return 0;
2423}
2424
2425static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2426{
2427 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2428 struct s3c_hsotg *hs = hs_ep->parent;
2429 int index = hs_ep->index;
2430 unsigned long irqflags;
2431 u32 epreg;
2432 u32 epctl;
2433
2434 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2435
2436 spin_lock_irqsave(&hs_ep->lock, irqflags);
2437
2438 /* write both IN and OUT control registers */
2439
2440 epreg = S3C_DIEPCTL(index);
2441 epctl = readl(hs->regs + epreg);
2442
2443 if (value)
2444 epctl |= S3C_DxEPCTL_Stall;
2445 else
2446 epctl &= ~S3C_DxEPCTL_Stall;
2447
2448 writel(epctl, hs->regs + epreg);
2449
2450 epreg = S3C_DOEPCTL(index);
2451 epctl = readl(hs->regs + epreg);
2452
2453 if (value)
2454 epctl |= S3C_DxEPCTL_Stall;
2455 else
2456 epctl &= ~S3C_DxEPCTL_Stall;
2457
2458 writel(epctl, hs->regs + epreg);
2459
2460 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2461
2462 return 0;
2463}
2464
2465static struct usb_ep_ops s3c_hsotg_ep_ops = {
2466 .enable = s3c_hsotg_ep_enable,
2467 .disable = s3c_hsotg_ep_disable,
2468 .alloc_request = s3c_hsotg_ep_alloc_request,
2469 .free_request = s3c_hsotg_ep_free_request,
2470 .queue = s3c_hsotg_ep_queue,
2471 .dequeue = s3c_hsotg_ep_dequeue,
2472 .set_halt = s3c_hsotg_ep_sethalt,
2473 /* note, don't belive we have any call for the fifo routines */
2474};
2475
2476/**
2477 * s3c_hsotg_corereset - issue softreset to the core
2478 * @hsotg: The device state
2479 *
2480 * Issue a soft reset to the core, and await the core finishing it.
2481*/
2482static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2483{
2484 int timeout;
2485 u32 grstctl;
2486
2487 dev_dbg(hsotg->dev, "resetting core\n");
2488
2489 /* issue soft reset */
2490 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2491
2492 timeout = 1000;
2493 do {
2494 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2495 } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2496
b7800218 2497 if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
5b7d70c6
BD
2498 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2499 return -EINVAL;
2500 }
2501
2502 timeout = 1000;
2503
2504 while (1) {
2505 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2506
2507 if (timeout-- < 0) {
2508 dev_info(hsotg->dev,
2509 "%s: reset failed, GRSTCTL=%08x\n",
2510 __func__, grstctl);
2511 return -ETIMEDOUT;
2512 }
2513
2514 if (grstctl & S3C_GRSTCTL_CSftRst)
2515 continue;
2516
2517 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2518 continue;
2519
2520 break; /* reset done */
2521 }
2522
2523 dev_dbg(hsotg->dev, "reset successful\n");
2524 return 0;
2525}
2526
2527int usb_gadget_register_driver(struct usb_gadget_driver *driver)
2528{
2529 struct s3c_hsotg *hsotg = our_hsotg;
2530 int ret;
2531
2532 if (!hsotg) {
2533 printk(KERN_ERR "%s: called with no device\n", __func__);
2534 return -ENODEV;
2535 }
2536
2537 if (!driver) {
2538 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2539 return -EINVAL;
2540 }
2541
2542 if (driver->speed != USB_SPEED_HIGH &&
2543 driver->speed != USB_SPEED_FULL) {
2544 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2545 }
2546
2547 if (!driver->bind || !driver->setup) {
2548 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2549 return -EINVAL;
2550 }
2551
2552 WARN_ON(hsotg->driver);
2553
2554 driver->driver.bus = NULL;
2555 hsotg->driver = driver;
2556 hsotg->gadget.dev.driver = &driver->driver;
2557 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2558 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2559
2560 ret = device_add(&hsotg->gadget.dev);
2561 if (ret) {
2562 dev_err(hsotg->dev, "failed to register gadget device\n");
2563 goto err;
2564 }
2565
2566 ret = driver->bind(&hsotg->gadget);
2567 if (ret) {
2568 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2569
2570 hsotg->gadget.dev.driver = NULL;
2571 hsotg->driver = NULL;
2572 goto err;
2573 }
2574
2575 /* we must now enable ep0 ready for host detection and then
2576 * set configuration. */
2577
2578 s3c_hsotg_corereset(hsotg);
2579
2580 /* set the PLL on, remove the HNP/SRP and set the PHY */
2581 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2582 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2583
2584 /* looks like soft-reset changes state of FIFOs */
2585 s3c_hsotg_init_fifo(hsotg);
2586
2587 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2588
2589 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2590
2591 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2592 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2593 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2594 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2595 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2596 S3C_GINTSTS_ErlySusp,
2597 hsotg->regs + S3C_GINTMSK);
2598
2599 if (using_dma(hsotg))
2600 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2601 S3C_GAHBCFG_HBstLen_Incr4,
2602 hsotg->regs + S3C_GAHBCFG);
2603 else
2604 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2605
2606 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2607 * up being flooded with interrupts if the host is polling the
2608 * endpoint to try and read data. */
2609
2610 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2611 S3C_DIEPMSK_INTknEPMisMsk |
10aebc77
BD
2612 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2613 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
5b7d70c6
BD
2614 hsotg->regs + S3C_DIEPMSK);
2615
2616 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2617 * DMA mode we may need this. */
2618 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2619 S3C_DOEPMSK_EPDisbldMsk |
b7800218
RK
2620 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2621 S3C_DIEPMSK_TimeOUTMsk) : 0),
5b7d70c6
BD
2622 hsotg->regs + S3C_DOEPMSK);
2623
2624 writel(0, hsotg->regs + S3C_DAINTMSK);
2625
2626 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2627 readl(hsotg->regs + S3C_DIEPCTL0),
2628 readl(hsotg->regs + S3C_DOEPCTL0));
2629
2630 /* enable in and out endpoint interrupts */
2631 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2632
2633 /* Enable the RXFIFO when in slave mode, as this is how we collect
2634 * the data. In DMA mode, we get events from the FIFO but also
2635 * things we cannot process, so do not use it. */
2636 if (!using_dma(hsotg))
2637 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2638
2639 /* Enable interrupts for EP0 in and out */
2640 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2641 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2642
2643 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2644 udelay(10); /* see openiboot */
2645 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2646
2647 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2648
2649 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2650 writing to the EPCTL register.. */
2651
2652 /* set to read 1 8byte packet */
2653 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2654 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2655
2656 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2657 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2658 S3C_DxEPCTL_USBActEp,
2659 hsotg->regs + S3C_DOEPCTL0);
2660
2661 /* enable, but don't activate EP0in */
2662 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2663 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2664
2665 s3c_hsotg_enqueue_setup(hsotg);
2666
2667 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2668 readl(hsotg->regs + S3C_DIEPCTL0),
2669 readl(hsotg->regs + S3C_DOEPCTL0));
2670
2671 /* clear global NAKs */
2672 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2673 hsotg->regs + S3C_DCTL);
2674
2e0e0777
BD
2675 /* must be at-least 3ms to allow bus to see disconnect */
2676 msleep(3);
2677
5b7d70c6
BD
2678 /* remove the soft-disconnect and let's go */
2679 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2680
2681 /* report to the user, and return */
2682
2683 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2684 return 0;
2685
2686err:
2687 hsotg->driver = NULL;
2688 hsotg->gadget.dev.driver = NULL;
2689 return ret;
2690}
6feb63b6 2691EXPORT_SYMBOL(usb_gadget_register_driver);
5b7d70c6
BD
2692
2693int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2694{
2695 struct s3c_hsotg *hsotg = our_hsotg;
2696 int ep;
2697
2698 if (!hsotg)
2699 return -ENODEV;
2700
2701 if (!driver || driver != hsotg->driver || !driver->unbind)
2702 return -EINVAL;
2703
2704 /* all endpoints should be shutdown */
2705 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2706 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2707
2708 call_gadget(hsotg, disconnect);
2709
2710 driver->unbind(&hsotg->gadget);
2711 hsotg->driver = NULL;
2712 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2713
2714 device_del(&hsotg->gadget.dev);
2715
2716 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2717 driver->driver.name);
2718
2719 return 0;
2720}
2721EXPORT_SYMBOL(usb_gadget_unregister_driver);
2722
2723static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2724{
2725 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2726}
2727
2728static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2729 .get_frame = s3c_hsotg_gadget_getframe,
2730};
2731
2732/**
2733 * s3c_hsotg_initep - initialise a single endpoint
2734 * @hsotg: The device state.
2735 * @hs_ep: The endpoint to be initialised.
2736 * @epnum: The endpoint number
2737 *
2738 * Initialise the given endpoint (as part of the probe and device state
2739 * creation) to give to the gadget driver. Setup the endpoint name, any
2740 * direction information and other state that may be required.
2741 */
2742static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2743 struct s3c_hsotg_ep *hs_ep,
2744 int epnum)
2745{
2746 u32 ptxfifo;
2747 char *dir;
2748
2749 if (epnum == 0)
2750 dir = "";
2751 else if ((epnum % 2) == 0) {
2752 dir = "out";
2753 } else {
2754 dir = "in";
2755 hs_ep->dir_in = 1;
2756 }
2757
2758 hs_ep->index = epnum;
2759
2760 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2761
2762 INIT_LIST_HEAD(&hs_ep->queue);
2763 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2764
2765 spin_lock_init(&hs_ep->lock);
2766
2767 /* add to the list of endpoints known by the gadget driver */
2768 if (epnum)
2769 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2770
2771 hs_ep->parent = hsotg;
2772 hs_ep->ep.name = hs_ep->name;
2773 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2774 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2775
2776 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2777 * an OUT endpoint, we may as well do this if in future the
2778 * code is changed to make each endpoint's direction changeable.
2779 */
2780
2781 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
679f9b7c 2782 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
5b7d70c6
BD
2783
2784 /* if we're using dma, we need to set the next-endpoint pointer
2785 * to be something valid.
2786 */
2787
2788 if (using_dma(hsotg)) {
2789 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2790 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2791 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2792 }
2793}
2794
2795/**
2796 * s3c_hsotg_otgreset - reset the OtG phy block
2797 * @hsotg: The host state.
2798 *
2799 * Power up the phy, set the basic configuration and start the PHY.
2800 */
2801static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2802{
e50bf385 2803 struct clk *xusbxti;
1eb838d3 2804 u32 pwr, osc;
5b7d70c6 2805
1eb838d3
MS
2806 pwr = readl(S3C_PHYPWR);
2807 pwr &= ~0x19;
2808 writel(pwr, S3C_PHYPWR);
5b7d70c6
BD
2809 mdelay(1);
2810
2811 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2812
e50bf385
MC
2813 xusbxti = clk_get(hsotg->dev, "xusbxti");
2814 if (xusbxti && !IS_ERR(xusbxti)) {
2815 switch (clk_get_rate(xusbxti)) {
2816 case 12*MHZ:
2817 osc |= S3C_PHYCLK_CLKSEL_12M;
2818 break;
2819 case 24*MHZ:
2820 osc |= S3C_PHYCLK_CLKSEL_24M;
2821 break;
2822 default:
2823 case 48*MHZ:
2824 /* default reference clock */
2825 break;
2826 }
2827 clk_put(xusbxti);
2828 }
2829
5b7d70c6
BD
2830 writel(osc | 0x10, S3C_PHYCLK);
2831
2832 /* issue a full set of resets to the otg and core */
2833
2834 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2835 udelay(20); /* at-least 10uS */
2836 writel(0, S3C_RSTCON);
2837}
2838
2839
2840static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2841{
10aebc77
BD
2842 u32 cfg4;
2843
5b7d70c6
BD
2844 /* unmask subset of endpoint interrupts */
2845
2846 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2847 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2848 hsotg->regs + S3C_DIEPMSK);
2849
2850 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2851 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2852 hsotg->regs + S3C_DOEPMSK);
2853
2854 writel(0, hsotg->regs + S3C_DAINTMSK);
2855
390b1661
TA
2856 /* Be in disconnected state until gadget is registered */
2857 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2858
5b7d70c6
BD
2859 if (0) {
2860 /* post global nak until we're ready */
2861 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2862 hsotg->regs + S3C_DCTL);
2863 }
2864
2865 /* setup fifos */
2866
2867 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2868 readl(hsotg->regs + S3C_GRXFSIZ),
2869 readl(hsotg->regs + S3C_GNPTXFSIZ));
2870
2871 s3c_hsotg_init_fifo(hsotg);
2872
2873 /* set the PLL on, remove the HNP/SRP and set the PHY */
2874 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2875 hsotg->regs + S3C_GUSBCFG);
2876
2877 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2878 hsotg->regs + S3C_GAHBCFG);
10aebc77
BD
2879
2880 /* check hardware configuration */
2881
2882 cfg4 = readl(hsotg->regs + 0x50);
2883 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2884
2885 dev_info(hsotg->dev, "%s fifos\n",
2886 hsotg->dedicated_fifos ? "dedicated" : "shared");
5b7d70c6
BD
2887}
2888
2889static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2890{
2891 struct device *dev = hsotg->dev;
2892 void __iomem *regs = hsotg->regs;
2893 u32 val;
2894 int idx;
2895
2896 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2897 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2898 readl(regs + S3C_DIEPMSK));
2899
2900 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2901 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2902
2903 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2904 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2905
2906 /* show periodic fifo settings */
2907
2908 for (idx = 1; idx <= 15; idx++) {
2909 val = readl(regs + S3C_DPTXFSIZn(idx));
2910 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2911 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2912 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2913 }
2914
2915 for (idx = 0; idx < 15; idx++) {
2916 dev_info(dev,
2917 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2918 readl(regs + S3C_DIEPCTL(idx)),
2919 readl(regs + S3C_DIEPTSIZ(idx)),
2920 readl(regs + S3C_DIEPDMA(idx)));
2921
2922 val = readl(regs + S3C_DOEPCTL(idx));
2923 dev_info(dev,
2924 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2925 idx, readl(regs + S3C_DOEPCTL(idx)),
2926 readl(regs + S3C_DOEPTSIZ(idx)),
2927 readl(regs + S3C_DOEPDMA(idx)));
2928
2929 }
2930
2931 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2932 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2933}
2934
2935
2936/**
2937 * state_show - debugfs: show overall driver and device state.
2938 * @seq: The seq file to write to.
2939 * @v: Unused parameter.
2940 *
2941 * This debugfs entry shows the overall state of the hardware and
2942 * some general information about each of the endpoints available
2943 * to the system.
2944 */
2945static int state_show(struct seq_file *seq, void *v)
2946{
2947 struct s3c_hsotg *hsotg = seq->private;
2948 void __iomem *regs = hsotg->regs;
2949 int idx;
2950
2951 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2952 readl(regs + S3C_DCFG),
2953 readl(regs + S3C_DCTL),
2954 readl(regs + S3C_DSTS));
2955
2956 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2957 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2958
2959 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2960 readl(regs + S3C_GINTMSK),
2961 readl(regs + S3C_GINTSTS));
2962
2963 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2964 readl(regs + S3C_DAINTMSK),
2965 readl(regs + S3C_DAINT));
2966
2967 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2968 readl(regs + S3C_GNPTXSTS),
2969 readl(regs + S3C_GRXSTSR));
2970
2971 seq_printf(seq, "\nEndpoint status:\n");
2972
2973 for (idx = 0; idx < 15; idx++) {
2974 u32 in, out;
2975
2976 in = readl(regs + S3C_DIEPCTL(idx));
2977 out = readl(regs + S3C_DOEPCTL(idx));
2978
2979 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2980 idx, in, out);
2981
2982 in = readl(regs + S3C_DIEPTSIZ(idx));
2983 out = readl(regs + S3C_DOEPTSIZ(idx));
2984
2985 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2986 in, out);
2987
2988 seq_printf(seq, "\n");
2989 }
2990
2991 return 0;
2992}
2993
2994static int state_open(struct inode *inode, struct file *file)
2995{
2996 return single_open(file, state_show, inode->i_private);
2997}
2998
2999static const struct file_operations state_fops = {
3000 .owner = THIS_MODULE,
3001 .open = state_open,
3002 .read = seq_read,
3003 .llseek = seq_lseek,
3004 .release = single_release,
3005};
3006
3007/**
3008 * fifo_show - debugfs: show the fifo information
3009 * @seq: The seq_file to write data to.
3010 * @v: Unused parameter.
3011 *
3012 * Show the FIFO information for the overall fifo and all the
3013 * periodic transmission FIFOs.
3014*/
3015static int fifo_show(struct seq_file *seq, void *v)
3016{
3017 struct s3c_hsotg *hsotg = seq->private;
3018 void __iomem *regs = hsotg->regs;
3019 u32 val;
3020 int idx;
3021
3022 seq_printf(seq, "Non-periodic FIFOs:\n");
3023 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3024
3025 val = readl(regs + S3C_GNPTXFSIZ);
3026 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3027 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3028 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3029
3030 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3031
3032 for (idx = 1; idx <= 15; idx++) {
3033 val = readl(regs + S3C_DPTXFSIZn(idx));
3034
3035 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3036 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3037 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3038 }
3039
3040 return 0;
3041}
3042
3043static int fifo_open(struct inode *inode, struct file *file)
3044{
3045 return single_open(file, fifo_show, inode->i_private);
3046}
3047
3048static const struct file_operations fifo_fops = {
3049 .owner = THIS_MODULE,
3050 .open = fifo_open,
3051 .read = seq_read,
3052 .llseek = seq_lseek,
3053 .release = single_release,
3054};
3055
3056
3057static const char *decode_direction(int is_in)
3058{
3059 return is_in ? "in" : "out";
3060}
3061
3062/**
3063 * ep_show - debugfs: show the state of an endpoint.
3064 * @seq: The seq_file to write data to.
3065 * @v: Unused parameter.
3066 *
3067 * This debugfs entry shows the state of the given endpoint (one is
3068 * registered for each available).
3069*/
3070static int ep_show(struct seq_file *seq, void *v)
3071{
3072 struct s3c_hsotg_ep *ep = seq->private;
3073 struct s3c_hsotg *hsotg = ep->parent;
3074 struct s3c_hsotg_req *req;
3075 void __iomem *regs = hsotg->regs;
3076 int index = ep->index;
3077 int show_limit = 15;
3078 unsigned long flags;
3079
3080 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3081 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3082
3083 /* first show the register state */
3084
3085 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3086 readl(regs + S3C_DIEPCTL(index)),
3087 readl(regs + S3C_DOEPCTL(index)));
3088
3089 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3090 readl(regs + S3C_DIEPDMA(index)),
3091 readl(regs + S3C_DOEPDMA(index)));
3092
3093 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3094 readl(regs + S3C_DIEPINT(index)),
3095 readl(regs + S3C_DOEPINT(index)));
3096
3097 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3098 readl(regs + S3C_DIEPTSIZ(index)),
3099 readl(regs + S3C_DOEPTSIZ(index)));
3100
3101 seq_printf(seq, "\n");
3102 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3103 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3104
3105 seq_printf(seq, "request list (%p,%p):\n",
3106 ep->queue.next, ep->queue.prev);
3107
3108 spin_lock_irqsave(&ep->lock, flags);
3109
3110 list_for_each_entry(req, &ep->queue, queue) {
3111 if (--show_limit < 0) {
3112 seq_printf(seq, "not showing more requests...\n");
3113 break;
3114 }
3115
3116 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3117 req == ep->req ? '*' : ' ',
3118 req, req->req.length, req->req.buf);
3119 seq_printf(seq, "%d done, res %d\n",
3120 req->req.actual, req->req.status);
3121 }
3122
3123 spin_unlock_irqrestore(&ep->lock, flags);
3124
3125 return 0;
3126}
3127
3128static int ep_open(struct inode *inode, struct file *file)
3129{
3130 return single_open(file, ep_show, inode->i_private);
3131}
3132
3133static const struct file_operations ep_fops = {
3134 .owner = THIS_MODULE,
3135 .open = ep_open,
3136 .read = seq_read,
3137 .llseek = seq_lseek,
3138 .release = single_release,
3139};
3140
3141/**
3142 * s3c_hsotg_create_debug - create debugfs directory and files
3143 * @hsotg: The driver state
3144 *
3145 * Create the debugfs files to allow the user to get information
3146 * about the state of the system. The directory name is created
3147 * with the same name as the device itself, in case we end up
3148 * with multiple blocks in future systems.
3149*/
3150static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3151{
3152 struct dentry *root;
3153 unsigned epidx;
3154
3155 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3156 hsotg->debug_root = root;
3157 if (IS_ERR(root)) {
3158 dev_err(hsotg->dev, "cannot create debug root\n");
3159 return;
3160 }
3161
3162 /* create general state file */
3163
3164 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3165 hsotg, &state_fops);
3166
3167 if (IS_ERR(hsotg->debug_file))
3168 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3169
3170 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3171 hsotg, &fifo_fops);
3172
3173 if (IS_ERR(hsotg->debug_fifo))
3174 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3175
3176 /* create one file for each endpoint */
3177
3178 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3179 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3180
3181 ep->debugfs = debugfs_create_file(ep->name, 0444,
3182 root, ep, &ep_fops);
3183
3184 if (IS_ERR(ep->debugfs))
3185 dev_err(hsotg->dev, "failed to create %s debug file\n",
3186 ep->name);
3187 }
3188}
3189
3190/**
3191 * s3c_hsotg_delete_debug - cleanup debugfs entries
3192 * @hsotg: The driver state
3193 *
3194 * Cleanup (remove) the debugfs files for use on module exit.
3195*/
3196static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3197{
3198 unsigned epidx;
3199
3200 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3201 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3202 debugfs_remove(ep->debugfs);
3203 }
3204
3205 debugfs_remove(hsotg->debug_file);
3206 debugfs_remove(hsotg->debug_fifo);
3207 debugfs_remove(hsotg->debug_root);
3208}
3209
3210/**
3211 * s3c_hsotg_gate - set the hardware gate for the block
3212 * @pdev: The device we bound to
3213 * @on: On or off.
3214 *
3215 * Set the hardware gate setting into the block. If we end up on
3216 * something other than an S3C64XX, then we might need to change this
3217 * to using a platform data callback, or some other mechanism.
3218 */
3219static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3220{
3221 unsigned long flags;
3222 u32 others;
3223
3224 local_irq_save(flags);
3225
3226 others = __raw_readl(S3C64XX_OTHERS);
3227 if (on)
3228 others |= S3C64XX_OTHERS_USBMASK;
3229 else
3230 others &= ~S3C64XX_OTHERS_USBMASK;
3231 __raw_writel(others, S3C64XX_OTHERS);
3232
3233 local_irq_restore(flags);
3234}
3235
0978f8c5 3236static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
5b7d70c6
BD
3237
3238static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3239{
3240 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3241 struct device *dev = &pdev->dev;
3242 struct s3c_hsotg *hsotg;
3243 struct resource *res;
3244 int epnum;
3245 int ret;
3246
3247 if (!plat)
3248 plat = &s3c_hsotg_default_pdata;
3249
3250 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3251 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3252 GFP_KERNEL);
3253 if (!hsotg) {
3254 dev_err(dev, "cannot get memory\n");
3255 return -ENOMEM;
3256 }
3257
3258 hsotg->dev = dev;
3259 hsotg->plat = plat;
3260
3261 platform_set_drvdata(pdev, hsotg);
3262
3263 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3264 if (!res) {
3265 dev_err(dev, "cannot find register resource 0\n");
3266 ret = -EINVAL;
3267 goto err_mem;
3268 }
3269
3270 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3271 dev_name(dev));
3272 if (!hsotg->regs_res) {
3273 dev_err(dev, "cannot reserve registers\n");
3274 ret = -ENOENT;
3275 goto err_mem;
3276 }
3277
3278 hsotg->regs = ioremap(res->start, resource_size(res));
3279 if (!hsotg->regs) {
3280 dev_err(dev, "cannot map registers\n");
3281 ret = -ENXIO;
3282 goto err_regs_res;
3283 }
3284
3285 ret = platform_get_irq(pdev, 0);
3286 if (ret < 0) {
3287 dev_err(dev, "cannot find IRQ\n");
3288 goto err_regs;
3289 }
3290
3291 hsotg->irq = ret;
3292
3293 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3294 if (ret < 0) {
3295 dev_err(dev, "cannot claim IRQ\n");
3296 goto err_regs;
3297 }
3298
3299 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3300
3301 device_initialize(&hsotg->gadget.dev);
3302
3303 dev_set_name(&hsotg->gadget.dev, "gadget");
3304
3305 hsotg->gadget.is_dualspeed = 1;
3306 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3307 hsotg->gadget.name = dev_name(dev);
3308
3309 hsotg->gadget.dev.parent = dev;
3310 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3311
3312 /* setup endpoint information */
3313
3314 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3315 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3316
3317 /* allocate EP0 request */
3318
3319 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3320 GFP_KERNEL);
3321 if (!hsotg->ctrl_req) {
3322 dev_err(dev, "failed to allocate ctrl req\n");
3323 goto err_regs;
3324 }
3325
3326 /* reset the system */
3327
3328 s3c_hsotg_gate(pdev, true);
3329
3330 s3c_hsotg_otgreset(hsotg);
3331 s3c_hsotg_corereset(hsotg);
3332 s3c_hsotg_init(hsotg);
3333
3334 /* initialise the endpoints now the core has been initialised */
3335 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3336 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3337
3338 s3c_hsotg_create_debug(hsotg);
3339
3340 s3c_hsotg_dump(hsotg);
3341
3342 our_hsotg = hsotg;
3343 return 0;
3344
3345err_regs:
3346 iounmap(hsotg->regs);
3347
3348err_regs_res:
3349 release_resource(hsotg->regs_res);
3350 kfree(hsotg->regs_res);
3351
3352err_mem:
3353 kfree(hsotg);
3354 return ret;
3355}
3356
3357static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3358{
3359 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3360
3361 s3c_hsotg_delete_debug(hsotg);
3362
3363 usb_gadget_unregister_driver(hsotg->driver);
3364
3365 free_irq(hsotg->irq, hsotg);
3366 iounmap(hsotg->regs);
3367
3368 release_resource(hsotg->regs_res);
3369 kfree(hsotg->regs_res);
3370
3371 s3c_hsotg_gate(pdev, false);
3372
3373 kfree(hsotg);
3374 return 0;
3375}
3376
3377#if 1
3378#define s3c_hsotg_suspend NULL
3379#define s3c_hsotg_resume NULL
3380#endif
3381
3382static struct platform_driver s3c_hsotg_driver = {
3383 .driver = {
3384 .name = "s3c-hsotg",
3385 .owner = THIS_MODULE,
3386 },
3387 .probe = s3c_hsotg_probe,
3388 .remove = __devexit_p(s3c_hsotg_remove),
3389 .suspend = s3c_hsotg_suspend,
3390 .resume = s3c_hsotg_resume,
3391};
3392
3393static int __init s3c_hsotg_modinit(void)
3394{
3395 return platform_driver_register(&s3c_hsotg_driver);
3396}
3397
3398static void __exit s3c_hsotg_modexit(void)
3399{
3400 platform_driver_unregister(&s3c_hsotg_driver);
3401}
3402
3403module_init(s3c_hsotg_modinit);
3404module_exit(s3c_hsotg_modexit);
3405
3406MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3407MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3408MODULE_LICENSE("GPL");
3409MODULE_ALIAS("platform:s3c-hsotg");