]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/usb/gadget/s3c-hsotg.c
USB: s3c-hsotg: Fix control request processing
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / gadget / s3c-hsotg.c
CommitLineData
5b7d70c6
BD
1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/delay.h>
24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
e50bf385 26#include <linux/clk.h>
5b7d70c6
BD
27
28#include <linux/usb/ch9.h>
29#include <linux/usb/gadget.h>
30
31#include <mach/map.h>
32
33#include <plat/regs-usb-hsotg-phy.h>
34#include <plat/regs-usb-hsotg.h>
f9fed7cd 35#include <mach/regs-sys.h>
5b7d70c6 36#include <plat/udc-hs.h>
4d47166c 37#include <plat/cpu.h>
5b7d70c6
BD
38
39#define DMA_ADDR_INVALID (~((dma_addr_t)0))
40
41/* EP0_MPS_LIMIT
42 *
43 * Unfortunately there seems to be a limit of the amount of data that can
25985edc
LDM
44 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
45 * packets (which practically means 1 packet and 63 bytes of data) when the
5b7d70c6
BD
46 * MPS is set to 64.
47 *
48 * This means if we are wanting to move >127 bytes of data, we need to
49 * split the transactions up, but just doing one packet at a time does
50 * not work (this may be an implicit DATA0 PID on first packet of the
51 * transaction) and doing 2 packets is outside the controller's limits.
52 *
53 * If we try to lower the MPS size for EP0, then no transfers work properly
54 * for EP0, and the system will fail basic enumeration. As no cause for this
55 * has currently been found, we cannot support any large IN transfers for
56 * EP0.
57 */
58#define EP0_MPS_LIMIT 64
59
60struct s3c_hsotg;
61struct s3c_hsotg_req;
62
63/**
64 * struct s3c_hsotg_ep - driver endpoint definition.
65 * @ep: The gadget layer representation of the endpoint.
66 * @name: The driver generated name for the endpoint.
67 * @queue: Queue of requests for this endpoint.
68 * @parent: Reference back to the parent device structure.
69 * @req: The current request that the endpoint is processing. This is
70 * used to indicate an request has been loaded onto the endpoint
71 * and has yet to be completed (maybe due to data move, or simply
72 * awaiting an ack from the core all the data has been completed).
73 * @debugfs: File entry for debugfs file for this endpoint.
74 * @lock: State lock to protect contents of endpoint.
75 * @dir_in: Set to true if this endpoint is of the IN direction, which
76 * means that it is sending data to the Host.
77 * @index: The index for the endpoint registers.
78 * @name: The name array passed to the USB core.
79 * @halted: Set if the endpoint has been halted.
80 * @periodic: Set if this is a periodic ep, such as Interrupt
81 * @sent_zlp: Set if we've sent a zero-length packet.
82 * @total_data: The total number of data bytes done.
83 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
84 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
85 * @last_load: The offset of data for the last start of request.
86 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
87 *
88 * This is the driver's state for each registered enpoint, allowing it
89 * to keep track of transactions that need doing. Each endpoint has a
90 * lock to protect the state, to try and avoid using an overall lock
91 * for the host controller as much as possible.
92 *
93 * For periodic IN endpoints, we have fifo_size and fifo_load to try
94 * and keep track of the amount of data in the periodic FIFO for each
95 * of these as we don't have a status register that tells us how much
e7a9ff54
BD
96 * is in each of them. (note, this may actually be useless information
97 * as in shared-fifo mode periodic in acts like a single-frame packet
98 * buffer than a fifo)
5b7d70c6
BD
99 */
100struct s3c_hsotg_ep {
101 struct usb_ep ep;
102 struct list_head queue;
103 struct s3c_hsotg *parent;
104 struct s3c_hsotg_req *req;
105 struct dentry *debugfs;
106
107 spinlock_t lock;
108
109 unsigned long total_data;
110 unsigned int size_loaded;
111 unsigned int last_load;
112 unsigned int fifo_load;
113 unsigned short fifo_size;
114
115 unsigned char dir_in;
116 unsigned char index;
117
118 unsigned int halted:1;
119 unsigned int periodic:1;
120 unsigned int sent_zlp:1;
121
122 char name[10];
123};
124
125#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
126
127/**
128 * struct s3c_hsotg - driver state.
129 * @dev: The parent device supplied to the probe function
130 * @driver: USB gadget driver
131 * @plat: The platform specific configuration data.
132 * @regs: The memory area mapped for accessing registers.
133 * @regs_res: The resource that was allocated when claiming register space.
134 * @irq: The IRQ number we are using
10aebc77 135 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
5b7d70c6
BD
136 * @debug_root: root directrory for debugfs.
137 * @debug_file: main status file for debugfs.
138 * @debug_fifo: FIFO status file for debugfs.
139 * @ep0_reply: Request used for ep0 reply.
140 * @ep0_buff: Buffer for EP0 reply data, if needed.
141 * @ctrl_buff: Buffer for EP0 control requests.
142 * @ctrl_req: Request for EP0 control packets.
143 * @eps: The endpoints being supplied to the gadget framework
144 */
145struct s3c_hsotg {
146 struct device *dev;
147 struct usb_gadget_driver *driver;
148 struct s3c_hsotg_plat *plat;
149
150 void __iomem *regs;
151 struct resource *regs_res;
152 int irq;
31ee04de 153 struct clk *clk;
5b7d70c6 154
10aebc77
BD
155 unsigned int dedicated_fifos:1;
156
5b7d70c6
BD
157 struct dentry *debug_root;
158 struct dentry *debug_file;
159 struct dentry *debug_fifo;
160
161 struct usb_request *ep0_reply;
162 struct usb_request *ctrl_req;
163 u8 ep0_buff[8];
164 u8 ctrl_buff[8];
165
166 struct usb_gadget gadget;
167 struct s3c_hsotg_ep eps[];
168};
169
170/**
171 * struct s3c_hsotg_req - data transfer request
172 * @req: The USB gadget request
173 * @queue: The list of requests for the endpoint this is queued for.
174 * @in_progress: Has already had size/packets written to core
175 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
176 */
177struct s3c_hsotg_req {
178 struct usb_request req;
179 struct list_head queue;
180 unsigned char in_progress;
181 unsigned char mapped;
182};
183
184/* conversion functions */
185static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
186{
187 return container_of(req, struct s3c_hsotg_req, req);
188}
189
190static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
191{
192 return container_of(ep, struct s3c_hsotg_ep, ep);
193}
194
195static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
196{
197 return container_of(gadget, struct s3c_hsotg, gadget);
198}
199
200static inline void __orr32(void __iomem *ptr, u32 val)
201{
202 writel(readl(ptr) | val, ptr);
203}
204
205static inline void __bic32(void __iomem *ptr, u32 val)
206{
207 writel(readl(ptr) & ~val, ptr);
208}
209
210/* forward decleration of functions */
211static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
212
213/**
214 * using_dma - return the DMA status of the driver.
215 * @hsotg: The driver state.
216 *
217 * Return true if we're using DMA.
218 *
219 * Currently, we have the DMA support code worked into everywhere
220 * that needs it, but the AMBA DMA implementation in the hardware can
221 * only DMA from 32bit aligned addresses. This means that gadgets such
222 * as the CDC Ethernet cannot work as they often pass packets which are
223 * not 32bit aligned.
224 *
225 * Unfortunately the choice to use DMA or not is global to the controller
226 * and seems to be only settable when the controller is being put through
227 * a core reset. This means we either need to fix the gadgets to take
228 * account of DMA alignment, or add bounce buffers (yuerk).
229 *
230 * Until this issue is sorted out, we always return 'false'.
231 */
232static inline bool using_dma(struct s3c_hsotg *hsotg)
233{
234 return false; /* support is not complete */
235}
236
237/**
238 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
239 * @hsotg: The device state
240 * @ints: A bitmask of the interrupts to enable
241 */
242static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
243{
244 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
245 u32 new_gsintmsk;
246
247 new_gsintmsk = gsintmsk | ints;
248
249 if (new_gsintmsk != gsintmsk) {
250 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
251 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
252 }
253}
254
255/**
256 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
257 * @hsotg: The device state
258 * @ints: A bitmask of the interrupts to enable
259 */
260static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
261{
262 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
263 u32 new_gsintmsk;
264
265 new_gsintmsk = gsintmsk & ~ints;
266
267 if (new_gsintmsk != gsintmsk)
268 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
269}
270
271/**
272 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
273 * @hsotg: The device state
274 * @ep: The endpoint index
275 * @dir_in: True if direction is in.
276 * @en: The enable value, true to enable
277 *
278 * Set or clear the mask for an individual endpoint's interrupt
279 * request.
280 */
281static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
282 unsigned int ep, unsigned int dir_in,
283 unsigned int en)
284{
285 unsigned long flags;
286 u32 bit = 1 << ep;
287 u32 daint;
288
289 if (!dir_in)
290 bit <<= 16;
291
292 local_irq_save(flags);
293 daint = readl(hsotg->regs + S3C_DAINTMSK);
294 if (en)
295 daint |= bit;
296 else
297 daint &= ~bit;
298 writel(daint, hsotg->regs + S3C_DAINTMSK);
299 local_irq_restore(flags);
300}
301
302/**
303 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
304 * @hsotg: The device instance.
305 */
306static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
307{
0f002d20
BD
308 unsigned int ep;
309 unsigned int addr;
310 unsigned int size;
1703a6d3 311 int timeout;
0f002d20
BD
312 u32 val;
313
5b7d70c6
BD
314 /* the ryu 2.6.24 release ahs
315 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
316 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
317 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
318 hsotg->regs + S3C_GNPTXFSIZ);
319 */
320
6d091ee7 321 /* set FIFO sizes to 2048/1024 */
5b7d70c6
BD
322
323 writel(2048, hsotg->regs + S3C_GRXFSIZ);
324 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
6d091ee7 325 S3C_GNPTXFSIZ_NPTxFDep(1024),
5b7d70c6 326 hsotg->regs + S3C_GNPTXFSIZ);
0f002d20
BD
327
328 /* arange all the rest of the TX FIFOs, as some versions of this
329 * block have overlapping default addresses. This also ensures
330 * that if the settings have been changed, then they are set to
331 * known values. */
332
333 /* start at the end of the GNPTXFSIZ, rounded up */
334 addr = 2048 + 1024;
335 size = 768;
336
337 /* currently we allocate TX FIFOs for all possible endpoints,
338 * and assume that they are all the same size. */
339
340 for (ep = 0; ep <= 15; ep++) {
341 val = addr;
342 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
343 addr += size;
344
345 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
346 }
1703a6d3
BD
347
348 /* according to p428 of the design guide, we need to ensure that
349 * all fifos are flushed before continuing */
350
351 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
352 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
353
354 /* wait until the fifos are both flushed */
355 timeout = 100;
356 while (1) {
357 val = readl(hsotg->regs + S3C_GRSTCTL);
358
359 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
360 break;
361
362 if (--timeout == 0) {
363 dev_err(hsotg->dev,
364 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
365 __func__, val);
366 }
367
368 udelay(1);
369 }
370
371 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
5b7d70c6
BD
372}
373
374/**
375 * @ep: USB endpoint to allocate request for.
376 * @flags: Allocation flags
377 *
378 * Allocate a new USB request structure appropriate for the specified endpoint
379 */
0978f8c5
MB
380static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
381 gfp_t flags)
5b7d70c6
BD
382{
383 struct s3c_hsotg_req *req;
384
385 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
386 if (!req)
387 return NULL;
388
389 INIT_LIST_HEAD(&req->queue);
390
391 req->req.dma = DMA_ADDR_INVALID;
392 return &req->req;
393}
394
395/**
396 * is_ep_periodic - return true if the endpoint is in periodic mode.
397 * @hs_ep: The endpoint to query.
398 *
399 * Returns true if the endpoint is in periodic mode, meaning it is being
400 * used for an Interrupt or ISO transfer.
401 */
402static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
403{
404 return hs_ep->periodic;
405}
406
407/**
408 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 * @hsotg: The device state.
410 * @hs_ep: The endpoint for the request
411 * @hs_req: The request being processed.
412 *
413 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
414 * of a request to ensure the buffer is ready for access by the caller.
415*/
416static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
417 struct s3c_hsotg_ep *hs_ep,
418 struct s3c_hsotg_req *hs_req)
419{
420 struct usb_request *req = &hs_req->req;
421 enum dma_data_direction dir;
422
423 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
424
425 /* ignore this if we're not moving any data */
426 if (hs_req->req.length == 0)
427 return;
428
429 if (hs_req->mapped) {
430 /* we mapped this, so unmap and remove the dma */
431
432 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
433
434 req->dma = DMA_ADDR_INVALID;
435 hs_req->mapped = 0;
436 } else {
5b520259 437 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
438 }
439}
440
441/**
442 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
443 * @hsotg: The controller state.
444 * @hs_ep: The endpoint we're going to write for.
445 * @hs_req: The request to write data for.
446 *
447 * This is called when the TxFIFO has some space in it to hold a new
448 * transmission and we have something to give it. The actual setup of
449 * the data size is done elsewhere, so all we have to do is to actually
450 * write the data.
451 *
452 * The return value is zero if there is more space (or nothing was done)
453 * otherwise -ENOSPC is returned if the FIFO space was used up.
454 *
455 * This routine is only needed for PIO
456*/
457static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
458 struct s3c_hsotg_ep *hs_ep,
459 struct s3c_hsotg_req *hs_req)
460{
461 bool periodic = is_ep_periodic(hs_ep);
462 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
463 int buf_pos = hs_req->req.actual;
464 int to_write = hs_ep->size_loaded;
465 void *data;
466 int can_write;
467 int pkt_round;
468
469 to_write -= (buf_pos - hs_ep->last_load);
470
471 /* if there's nothing to write, get out early */
472 if (to_write == 0)
473 return 0;
474
10aebc77 475 if (periodic && !hsotg->dedicated_fifos) {
5b7d70c6
BD
476 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
477 int size_left;
478 int size_done;
479
480 /* work out how much data was loaded so we can calculate
481 * how much data is left in the fifo. */
482
483 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
484
e7a9ff54
BD
485 /* if shared fifo, we cannot write anything until the
486 * previous data has been completely sent.
487 */
488 if (hs_ep->fifo_load != 0) {
489 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
490 return -ENOSPC;
491 }
492
5b7d70c6
BD
493 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
494 __func__, size_left,
495 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
496
497 /* how much of the data has moved */
498 size_done = hs_ep->size_loaded - size_left;
499
500 /* how much data is left in the fifo */
501 can_write = hs_ep->fifo_load - size_done;
502 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
503 __func__, can_write);
504
505 can_write = hs_ep->fifo_size - can_write;
506 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
507 __func__, can_write);
508
509 if (can_write <= 0) {
510 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
511 return -ENOSPC;
512 }
10aebc77
BD
513 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
514 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
515
516 can_write &= 0xffff;
517 can_write *= 4;
5b7d70c6
BD
518 } else {
519 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
520 dev_dbg(hsotg->dev,
521 "%s: no queue slots available (0x%08x)\n",
522 __func__, gnptxsts);
523
524 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
525 return -ENOSPC;
526 }
527
528 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
679f9b7c 529 can_write *= 4; /* fifo size is in 32bit quantities. */
5b7d70c6
BD
530 }
531
532 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
533 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
534
535 /* limit to 512 bytes of data, it seems at least on the non-periodic
536 * FIFO, requests of >512 cause the endpoint to get stuck with a
537 * fragment of the end of the transfer in it.
538 */
539 if (can_write > 512)
540 can_write = 512;
541
03e10e5a
BD
542 /* limit the write to one max-packet size worth of data, but allow
543 * the transfer to return that it did not run out of fifo space
544 * doing it. */
545 if (to_write > hs_ep->ep.maxpacket) {
546 to_write = hs_ep->ep.maxpacket;
547
548 s3c_hsotg_en_gsint(hsotg,
549 periodic ? S3C_GINTSTS_PTxFEmp :
550 S3C_GINTSTS_NPTxFEmp);
551 }
552
5b7d70c6
BD
553 /* see if we can write data */
554
555 if (to_write > can_write) {
556 to_write = can_write;
557 pkt_round = to_write % hs_ep->ep.maxpacket;
558
559 /* Not sure, but we probably shouldn't be writing partial
560 * packets into the FIFO, so round the write down to an
561 * exact number of packets.
562 *
563 * Note, we do not currently check to see if we can ever
564 * write a full packet or not to the FIFO.
565 */
566
567 if (pkt_round)
568 to_write -= pkt_round;
569
570 /* enable correct FIFO interrupt to alert us when there
571 * is more room left. */
572
573 s3c_hsotg_en_gsint(hsotg,
574 periodic ? S3C_GINTSTS_PTxFEmp :
575 S3C_GINTSTS_NPTxFEmp);
576 }
577
578 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
579 to_write, hs_req->req.length, can_write, buf_pos);
580
581 if (to_write <= 0)
582 return -ENOSPC;
583
584 hs_req->req.actual = buf_pos + to_write;
585 hs_ep->total_data += to_write;
586
587 if (periodic)
588 hs_ep->fifo_load += to_write;
589
590 to_write = DIV_ROUND_UP(to_write, 4);
591 data = hs_req->req.buf + buf_pos;
592
593 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
594
595 return (to_write >= can_write) ? -ENOSPC : 0;
596}
597
598/**
599 * get_ep_limit - get the maximum data legnth for this endpoint
600 * @hs_ep: The endpoint
601 *
602 * Return the maximum data that can be queued in one go on a given endpoint
603 * so that transfers that are too long can be split.
604 */
605static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
606{
607 int index = hs_ep->index;
608 unsigned maxsize;
609 unsigned maxpkt;
610
611 if (index != 0) {
612 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
613 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
614 } else {
b05ca580 615 maxsize = 64+64;
5b7d70c6 616 if (hs_ep->dir_in) {
5b7d70c6
BD
617 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
618 } else {
5b7d70c6
BD
619 maxpkt = 2;
620 }
621 }
622
623 /* we made the constant loading easier above by using +1 */
624 maxpkt--;
625 maxsize--;
626
627 /* constrain by packet count if maxpkts*pktsize is greater
628 * than the length register size. */
629
630 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
631 maxsize = maxpkt * hs_ep->ep.maxpacket;
632
633 return maxsize;
634}
635
636/**
637 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
638 * @hsotg: The controller state.
639 * @hs_ep: The endpoint to process a request for
640 * @hs_req: The request to start.
641 * @continuing: True if we are doing more for the current request.
642 *
643 * Start the given request running by setting the endpoint registers
644 * appropriately, and writing any data to the FIFOs.
645 */
646static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
647 struct s3c_hsotg_ep *hs_ep,
648 struct s3c_hsotg_req *hs_req,
649 bool continuing)
650{
651 struct usb_request *ureq = &hs_req->req;
652 int index = hs_ep->index;
653 int dir_in = hs_ep->dir_in;
654 u32 epctrl_reg;
655 u32 epsize_reg;
656 u32 epsize;
657 u32 ctrl;
658 unsigned length;
659 unsigned packets;
660 unsigned maxreq;
661
662 if (index != 0) {
663 if (hs_ep->req && !continuing) {
664 dev_err(hsotg->dev, "%s: active request\n", __func__);
665 WARN_ON(1);
666 return;
667 } else if (hs_ep->req != hs_req && continuing) {
668 dev_err(hsotg->dev,
669 "%s: continue different req\n", __func__);
670 WARN_ON(1);
671 return;
672 }
673 }
674
675 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
676 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
677
678 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
679 __func__, readl(hsotg->regs + epctrl_reg), index,
680 hs_ep->dir_in ? "in" : "out");
681
682 length = ureq->length - ureq->actual;
683
684 if (0)
685 dev_dbg(hsotg->dev,
686 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
687 ureq->buf, length, ureq->dma,
688 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
689
690 maxreq = get_ep_limit(hs_ep);
691 if (length > maxreq) {
692 int round = maxreq % hs_ep->ep.maxpacket;
693
694 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
695 __func__, length, maxreq, round);
696
697 /* round down to multiple of packets */
698 if (round)
699 maxreq -= round;
700
701 length = maxreq;
702 }
703
704 if (length)
705 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
706 else
707 packets = 1; /* send one packet if length is zero. */
708
709 if (dir_in && index != 0)
710 epsize = S3C_DxEPTSIZ_MC(1);
711 else
712 epsize = 0;
713
714 if (index != 0 && ureq->zero) {
715 /* test for the packets being exactly right for the
716 * transfer */
717
718 if (length == (packets * hs_ep->ep.maxpacket))
719 packets++;
720 }
721
722 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
723 epsize |= S3C_DxEPTSIZ_XferSize(length);
724
725 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
726 __func__, packets, length, ureq->length, epsize, epsize_reg);
727
728 /* store the request as the current one we're doing */
729 hs_ep->req = hs_req;
730
731 /* write size / packets */
732 writel(epsize, hsotg->regs + epsize_reg);
733
734 ctrl = readl(hsotg->regs + epctrl_reg);
735
736 if (ctrl & S3C_DxEPCTL_Stall) {
737 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
738
739 /* not sure what we can do here, if it is EP0 then we should
740 * get this cleared once the endpoint has transmitted the
741 * STALL packet, otherwise it needs to be cleared by the
742 * host.
743 */
744 }
745
746 if (using_dma(hsotg)) {
747 unsigned int dma_reg;
748
749 /* write DMA address to control register, buffer already
750 * synced by s3c_hsotg_ep_queue(). */
751
752 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
753 writel(ureq->dma, hsotg->regs + dma_reg);
754
755 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
756 __func__, ureq->dma, dma_reg);
757 }
758
759 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
760 ctrl |= S3C_DxEPCTL_USBActEp;
761 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
762
763 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
764 writel(ctrl, hsotg->regs + epctrl_reg);
765
766 /* set these, it seems that DMA support increments past the end
767 * of the packet buffer so we need to calculate the length from
768 * this information. */
769 hs_ep->size_loaded = length;
770 hs_ep->last_load = ureq->actual;
771
772 if (dir_in && !using_dma(hsotg)) {
773 /* set these anyway, we may need them for non-periodic in */
774 hs_ep->fifo_load = 0;
775
776 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
777 }
778
779 /* clear the INTknTXFEmpMsk when we start request, more as a aide
780 * to debugging to see what is going on. */
781 if (dir_in)
782 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
783 hsotg->regs + S3C_DIEPINT(index));
784
785 /* Note, trying to clear the NAK here causes problems with transmit
25985edc 786 * on the S3C6400 ending up with the TXFIFO becoming full. */
5b7d70c6
BD
787
788 /* check ep is enabled */
789 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
790 dev_warn(hsotg->dev,
791 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
792 index, readl(hsotg->regs + epctrl_reg));
793
794 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
795 __func__, readl(hsotg->regs + epctrl_reg));
796}
797
798/**
799 * s3c_hsotg_map_dma - map the DMA memory being used for the request
800 * @hsotg: The device state.
801 * @hs_ep: The endpoint the request is on.
802 * @req: The request being processed.
803 *
804 * We've been asked to queue a request, so ensure that the memory buffer
805 * is correctly setup for DMA. If we've been passed an extant DMA address
806 * then ensure the buffer has been synced to memory. If our buffer has no
807 * DMA memory, then we map the memory and mark our request to allow us to
808 * cleanup on completion.
809*/
810static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
811 struct s3c_hsotg_ep *hs_ep,
812 struct usb_request *req)
813{
814 enum dma_data_direction dir;
815 struct s3c_hsotg_req *hs_req = our_req(req);
816
817 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
818
819 /* if the length is zero, ignore the DMA data */
820 if (hs_req->req.length == 0)
821 return 0;
822
823 if (req->dma == DMA_ADDR_INVALID) {
824 dma_addr_t dma;
825
826 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
827
828 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
829 goto dma_error;
830
831 if (dma & 3) {
832 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
833 __func__);
834
835 dma_unmap_single(hsotg->dev, dma, req->length, dir);
836 return -EINVAL;
837 }
838
839 hs_req->mapped = 1;
840 req->dma = dma;
841 } else {
5b520259 842 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
843 hs_req->mapped = 0;
844 }
845
846 return 0;
847
848dma_error:
849 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
850 __func__, req->buf, req->length);
851
852 return -EIO;
853}
854
855static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
856 gfp_t gfp_flags)
857{
858 struct s3c_hsotg_req *hs_req = our_req(req);
859 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860 struct s3c_hsotg *hs = hs_ep->parent;
861 unsigned long irqflags;
862 bool first;
863
864 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
865 ep->name, req, req->length, req->buf, req->no_interrupt,
866 req->zero, req->short_not_ok);
867
868 /* initialise status of the request */
869 INIT_LIST_HEAD(&hs_req->queue);
870 req->actual = 0;
871 req->status = -EINPROGRESS;
872
873 /* if we're using DMA, sync the buffers as necessary */
874 if (using_dma(hs)) {
875 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
876 if (ret)
877 return ret;
878 }
879
880 spin_lock_irqsave(&hs_ep->lock, irqflags);
881
882 first = list_empty(&hs_ep->queue);
883 list_add_tail(&hs_req->queue, &hs_ep->queue);
884
885 if (first)
886 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
887
888 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
889
890 return 0;
891}
892
893static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
894 struct usb_request *req)
895{
896 struct s3c_hsotg_req *hs_req = our_req(req);
897
898 kfree(hs_req);
899}
900
901/**
902 * s3c_hsotg_complete_oursetup - setup completion callback
903 * @ep: The endpoint the request was on.
904 * @req: The request completed.
905 *
906 * Called on completion of any requests the driver itself
907 * submitted that need cleaning up.
908 */
909static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
910 struct usb_request *req)
911{
912 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
913 struct s3c_hsotg *hsotg = hs_ep->parent;
914
915 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
916
917 s3c_hsotg_ep_free_request(ep, req);
918}
919
920/**
921 * ep_from_windex - convert control wIndex value to endpoint
922 * @hsotg: The driver state.
923 * @windex: The control request wIndex field (in host order).
924 *
925 * Convert the given wIndex into a pointer to an driver endpoint
926 * structure, or return NULL if it is not a valid endpoint.
927*/
928static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
929 u32 windex)
930{
931 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
932 int dir = (windex & USB_DIR_IN) ? 1 : 0;
933 int idx = windex & 0x7F;
934
935 if (windex >= 0x100)
936 return NULL;
937
938 if (idx > S3C_HSOTG_EPS)
939 return NULL;
940
941 if (idx && ep->dir_in != dir)
942 return NULL;
943
944 return ep;
945}
946
947/**
948 * s3c_hsotg_send_reply - send reply to control request
949 * @hsotg: The device state
950 * @ep: Endpoint 0
951 * @buff: Buffer for request
952 * @length: Length of reply.
953 *
954 * Create a request and queue it on the given endpoint. This is useful as
955 * an internal method of sending replies to certain control requests, etc.
956 */
957static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
958 struct s3c_hsotg_ep *ep,
959 void *buff,
960 int length)
961{
962 struct usb_request *req;
963 int ret;
964
965 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
966
967 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
968 hsotg->ep0_reply = req;
969 if (!req) {
970 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
971 return -ENOMEM;
972 }
973
974 req->buf = hsotg->ep0_buff;
975 req->length = length;
976 req->zero = 1; /* always do zero-length final transfer */
977 req->complete = s3c_hsotg_complete_oursetup;
978
979 if (length)
980 memcpy(req->buf, buff, length);
981 else
982 ep->sent_zlp = 1;
983
984 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
985 if (ret) {
986 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
987 return ret;
988 }
989
990 return 0;
991}
992
993/**
994 * s3c_hsotg_process_req_status - process request GET_STATUS
995 * @hsotg: The device state
996 * @ctrl: USB control request
997 */
998static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
999 struct usb_ctrlrequest *ctrl)
1000{
1001 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1002 struct s3c_hsotg_ep *ep;
1003 __le16 reply;
1004 int ret;
1005
1006 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1007
1008 if (!ep0->dir_in) {
1009 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1010 return -EINVAL;
1011 }
1012
1013 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1014 case USB_RECIP_DEVICE:
1015 reply = cpu_to_le16(0); /* bit 0 => self powered,
1016 * bit 1 => remote wakeup */
1017 break;
1018
1019 case USB_RECIP_INTERFACE:
1020 /* currently, the data result should be zero */
1021 reply = cpu_to_le16(0);
1022 break;
1023
1024 case USB_RECIP_ENDPOINT:
1025 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1026 if (!ep)
1027 return -ENOENT;
1028
1029 reply = cpu_to_le16(ep->halted ? 1 : 0);
1030 break;
1031
1032 default:
1033 return 0;
1034 }
1035
1036 if (le16_to_cpu(ctrl->wLength) != 2)
1037 return -EINVAL;
1038
1039 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1040 if (ret) {
1041 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1042 return ret;
1043 }
1044
1045 return 1;
1046}
1047
1048static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1049
1050/**
1051 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1052 * @hsotg: The device state
1053 * @ctrl: USB control request
1054 */
1055static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1056 struct usb_ctrlrequest *ctrl)
1057{
26ab3d0c 1058 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
5b7d70c6
BD
1059 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1060 struct s3c_hsotg_ep *ep;
26ab3d0c 1061 int ret;
5b7d70c6
BD
1062
1063 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1064 __func__, set ? "SET" : "CLEAR");
1065
1066 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1067 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1068 if (!ep) {
1069 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1070 __func__, le16_to_cpu(ctrl->wIndex));
1071 return -ENOENT;
1072 }
1073
1074 switch (le16_to_cpu(ctrl->wValue)) {
1075 case USB_ENDPOINT_HALT:
1076 s3c_hsotg_ep_sethalt(&ep->ep, set);
26ab3d0c
AT
1077
1078 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1079 if (ret) {
1080 dev_err(hsotg->dev,
1081 "%s: failed to send reply\n", __func__);
1082 return ret;
1083 }
5b7d70c6
BD
1084 break;
1085
1086 default:
1087 return -ENOENT;
1088 }
1089 } else
1090 return -ENOENT; /* currently only deal with endpoint */
1091
1092 return 1;
1093}
1094
1095/**
1096 * s3c_hsotg_process_control - process a control request
1097 * @hsotg: The device state
1098 * @ctrl: The control request received
1099 *
1100 * The controller has received the SETUP phase of a control request, and
1101 * needs to work out what to do next (and whether to pass it on to the
1102 * gadget driver).
1103 */
1104static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1105 struct usb_ctrlrequest *ctrl)
1106{
1107 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1108 int ret = 0;
1109 u32 dcfg;
1110
1111 ep0->sent_zlp = 0;
1112
1113 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1114 ctrl->bRequest, ctrl->bRequestType,
1115 ctrl->wValue, ctrl->wLength);
1116
1117 /* record the direction of the request, for later use when enquing
1118 * packets onto EP0. */
1119
1120 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1121 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1122
1123 /* if we've no data with this request, then the last part of the
1124 * transaction is going to implicitly be IN. */
1125 if (ctrl->wLength == 0)
1126 ep0->dir_in = 1;
1127
1128 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1129 switch (ctrl->bRequest) {
1130 case USB_REQ_SET_ADDRESS:
1131 dcfg = readl(hsotg->regs + S3C_DCFG);
1132 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1133 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1134 writel(dcfg, hsotg->regs + S3C_DCFG);
1135
1136 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1137
1138 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1139 return;
1140
1141 case USB_REQ_GET_STATUS:
1142 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1143 break;
1144
1145 case USB_REQ_CLEAR_FEATURE:
1146 case USB_REQ_SET_FEATURE:
1147 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1148 break;
1149 }
1150 }
1151
1152 /* as a fallback, try delivering it to the driver to deal with */
1153
1154 if (ret == 0 && hsotg->driver) {
1155 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1156 if (ret < 0)
1157 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1158 }
1159
5b7d70c6
BD
1160 /* the request is either unhandlable, or is not formatted correctly
1161 * so respond with a STALL for the status stage to indicate failure.
1162 */
1163
1164 if (ret < 0) {
1165 u32 reg;
1166 u32 ctrl;
1167
1168 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1169 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1170
1171 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1172 * taken effect, so no need to clear later. */
1173
1174 ctrl = readl(hsotg->regs + reg);
1175 ctrl |= S3C_DxEPCTL_Stall;
1176 ctrl |= S3C_DxEPCTL_CNAK;
1177 writel(ctrl, hsotg->regs + reg);
1178
1179 dev_dbg(hsotg->dev,
25985edc 1180 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
5b7d70c6
BD
1181 ctrl, reg, readl(hsotg->regs + reg));
1182
25985edc 1183 /* don't believe we need to anything more to get the EP
5b7d70c6
BD
1184 * to reply with a STALL packet */
1185 }
1186}
1187
1188static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1189
1190/**
1191 * s3c_hsotg_complete_setup - completion of a setup transfer
1192 * @ep: The endpoint the request was on.
1193 * @req: The request completed.
1194 *
1195 * Called on completion of any requests the driver itself submitted for
1196 * EP0 setup packets
1197 */
1198static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1199 struct usb_request *req)
1200{
1201 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1202 struct s3c_hsotg *hsotg = hs_ep->parent;
1203
1204 if (req->status < 0) {
1205 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1206 return;
1207 }
1208
1209 if (req->actual == 0)
1210 s3c_hsotg_enqueue_setup(hsotg);
1211 else
1212 s3c_hsotg_process_control(hsotg, req->buf);
1213}
1214
1215/**
1216 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1217 * @hsotg: The device state.
1218 *
1219 * Enqueue a request on EP0 if necessary to received any SETUP packets
1220 * received from the host.
1221 */
1222static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1223{
1224 struct usb_request *req = hsotg->ctrl_req;
1225 struct s3c_hsotg_req *hs_req = our_req(req);
1226 int ret;
1227
1228 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1229
1230 req->zero = 0;
1231 req->length = 8;
1232 req->buf = hsotg->ctrl_buff;
1233 req->complete = s3c_hsotg_complete_setup;
1234
1235 if (!list_empty(&hs_req->queue)) {
1236 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1237 return;
1238 }
1239
1240 hsotg->eps[0].dir_in = 0;
1241
1242 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1243 if (ret < 0) {
1244 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1245 /* Don't think there's much we can do other than watch the
1246 * driver fail. */
1247 }
1248}
1249
1250/**
1251 * get_ep_head - return the first request on the endpoint
1252 * @hs_ep: The controller endpoint to get
1253 *
1254 * Get the first request on the endpoint.
1255*/
1256static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1257{
1258 if (list_empty(&hs_ep->queue))
1259 return NULL;
1260
1261 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1262}
1263
1264/**
1265 * s3c_hsotg_complete_request - complete a request given to us
1266 * @hsotg: The device state.
1267 * @hs_ep: The endpoint the request was on.
1268 * @hs_req: The request to complete.
1269 * @result: The result code (0 => Ok, otherwise errno)
1270 *
1271 * The given request has finished, so call the necessary completion
1272 * if it has one and then look to see if we can start a new request
1273 * on the endpoint.
1274 *
1275 * Note, expects the ep to already be locked as appropriate.
1276*/
1277static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1278 struct s3c_hsotg_ep *hs_ep,
1279 struct s3c_hsotg_req *hs_req,
1280 int result)
1281{
1282 bool restart;
1283
1284 if (!hs_req) {
1285 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1286 return;
1287 }
1288
1289 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1290 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1291
1292 /* only replace the status if we've not already set an error
1293 * from a previous transaction */
1294
1295 if (hs_req->req.status == -EINPROGRESS)
1296 hs_req->req.status = result;
1297
1298 hs_ep->req = NULL;
1299 list_del_init(&hs_req->queue);
1300
1301 if (using_dma(hsotg))
1302 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1303
1304 /* call the complete request with the locks off, just in case the
1305 * request tries to queue more work for this endpoint. */
1306
1307 if (hs_req->req.complete) {
1308 spin_unlock(&hs_ep->lock);
1309 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1310 spin_lock(&hs_ep->lock);
1311 }
1312
1313 /* Look to see if there is anything else to do. Note, the completion
1314 * of the previous request may have caused a new request to be started
1315 * so be careful when doing this. */
1316
1317 if (!hs_ep->req && result >= 0) {
1318 restart = !list_empty(&hs_ep->queue);
1319 if (restart) {
1320 hs_req = get_ep_head(hs_ep);
1321 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1322 }
1323 }
1324}
1325
1326/**
1327 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1328 * @hsotg: The device state.
1329 * @hs_ep: The endpoint the request was on.
1330 * @hs_req: The request to complete.
1331 * @result: The result code (0 => Ok, otherwise errno)
1332 *
1333 * See s3c_hsotg_complete_request(), but called with the endpoint's
1334 * lock held.
1335*/
1336static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1337 struct s3c_hsotg_ep *hs_ep,
1338 struct s3c_hsotg_req *hs_req,
1339 int result)
1340{
1341 unsigned long flags;
1342
1343 spin_lock_irqsave(&hs_ep->lock, flags);
1344 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1345 spin_unlock_irqrestore(&hs_ep->lock, flags);
1346}
1347
1348/**
1349 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1350 * @hsotg: The device state.
1351 * @ep_idx: The endpoint index for the data
1352 * @size: The size of data in the fifo, in bytes
1353 *
1354 * The FIFO status shows there is data to read from the FIFO for a given
1355 * endpoint, so sort out whether we need to read the data into a request
1356 * that has been made for that endpoint.
1357 */
1358static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1359{
1360 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1361 struct s3c_hsotg_req *hs_req = hs_ep->req;
1362 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1363 int to_read;
1364 int max_req;
1365 int read_ptr;
1366
1367 if (!hs_req) {
1368 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1369 int ptr;
1370
1371 dev_warn(hsotg->dev,
1372 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1373 __func__, size, ep_idx, epctl);
1374
1375 /* dump the data from the FIFO, we've nothing we can do */
1376 for (ptr = 0; ptr < size; ptr += 4)
1377 (void)readl(fifo);
1378
1379 return;
1380 }
1381
1382 spin_lock(&hs_ep->lock);
1383
1384 to_read = size;
1385 read_ptr = hs_req->req.actual;
1386 max_req = hs_req->req.length - read_ptr;
1387
a33e7136
BD
1388 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1389 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1390
5b7d70c6
BD
1391 if (to_read > max_req) {
1392 /* more data appeared than we where willing
1393 * to deal with in this request.
1394 */
1395
1396 /* currently we don't deal this */
1397 WARN_ON_ONCE(1);
1398 }
1399
5b7d70c6
BD
1400 hs_ep->total_data += to_read;
1401 hs_req->req.actual += to_read;
1402 to_read = DIV_ROUND_UP(to_read, 4);
1403
1404 /* note, we might over-write the buffer end by 3 bytes depending on
1405 * alignment of the data. */
1406 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1407
1408 spin_unlock(&hs_ep->lock);
1409}
1410
1411/**
1412 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1413 * @hsotg: The device instance
1414 * @req: The request currently on this endpoint
1415 *
1416 * Generate a zero-length IN packet request for terminating a SETUP
1417 * transaction.
1418 *
1419 * Note, since we don't write any data to the TxFIFO, then it is
25985edc 1420 * currently believed that we do not need to wait for any space in
5b7d70c6
BD
1421 * the TxFIFO.
1422 */
1423static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1424 struct s3c_hsotg_req *req)
1425{
1426 u32 ctrl;
1427
1428 if (!req) {
1429 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1430 return;
1431 }
1432
1433 if (req->req.length == 0) {
1434 hsotg->eps[0].sent_zlp = 1;
1435 s3c_hsotg_enqueue_setup(hsotg);
1436 return;
1437 }
1438
1439 hsotg->eps[0].dir_in = 1;
1440 hsotg->eps[0].sent_zlp = 1;
1441
1442 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1443
1444 /* issue a zero-sized packet to terminate this */
1445 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1446 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1447
1448 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1449 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1450 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1451 ctrl |= S3C_DxEPCTL_USBActEp;
1452 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1453}
1454
1455/**
1456 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1457 * @hsotg: The device instance
1458 * @epnum: The endpoint received from
1459 * @was_setup: Set if processing a SetupDone event.
1460 *
1461 * The RXFIFO has delivered an OutDone event, which means that the data
1462 * transfer for an OUT endpoint has been completed, either by a short
1463 * packet or by the finish of a transfer.
1464*/
1465static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1466 int epnum, bool was_setup)
1467{
a33e7136 1468 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
5b7d70c6
BD
1469 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1470 struct s3c_hsotg_req *hs_req = hs_ep->req;
1471 struct usb_request *req = &hs_req->req;
a33e7136 1472 unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1473 int result = 0;
1474
1475 if (!hs_req) {
1476 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1477 return;
1478 }
1479
1480 if (using_dma(hsotg)) {
5b7d70c6 1481 unsigned size_done;
5b7d70c6
BD
1482
1483 /* Calculate the size of the transfer by checking how much
1484 * is left in the endpoint size register and then working it
1485 * out from the amount we loaded for the transfer.
1486 *
1487 * We need to do this as DMA pointers are always 32bit aligned
1488 * so may overshoot/undershoot the transfer.
1489 */
1490
5b7d70c6
BD
1491 size_done = hs_ep->size_loaded - size_left;
1492 size_done += hs_ep->last_load;
1493
1494 req->actual = size_done;
1495 }
1496
a33e7136
BD
1497 /* if there is more request to do, schedule new transfer */
1498 if (req->actual < req->length && size_left == 0) {
1499 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1500 return;
1501 }
1502
5b7d70c6
BD
1503 if (req->actual < req->length && req->short_not_ok) {
1504 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1505 __func__, req->actual, req->length);
1506
1507 /* todo - what should we return here? there's no one else
1508 * even bothering to check the status. */
1509 }
1510
1511 if (epnum == 0) {
1512 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1513 s3c_hsotg_send_zlp(hsotg, hs_req);
1514 }
1515
1516 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1517}
1518
1519/**
1520 * s3c_hsotg_read_frameno - read current frame number
1521 * @hsotg: The device instance
1522 *
1523 * Return the current frame number
1524*/
1525static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1526{
1527 u32 dsts;
1528
1529 dsts = readl(hsotg->regs + S3C_DSTS);
1530 dsts &= S3C_DSTS_SOFFN_MASK;
1531 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1532
1533 return dsts;
1534}
1535
1536/**
1537 * s3c_hsotg_handle_rx - RX FIFO has data
1538 * @hsotg: The device instance
1539 *
1540 * The IRQ handler has detected that the RX FIFO has some data in it
1541 * that requires processing, so find out what is in there and do the
1542 * appropriate read.
1543 *
25985edc 1544 * The RXFIFO is a true FIFO, the packets coming out are still in packet
5b7d70c6
BD
1545 * chunks, so if you have x packets received on an endpoint you'll get x
1546 * FIFO events delivered, each with a packet's worth of data in it.
1547 *
1548 * When using DMA, we should not be processing events from the RXFIFO
1549 * as the actual data should be sent to the memory directly and we turn
1550 * on the completion interrupts to get notifications of transfer completion.
1551 */
0978f8c5 1552static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
5b7d70c6
BD
1553{
1554 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1555 u32 epnum, status, size;
1556
1557 WARN_ON(using_dma(hsotg));
1558
1559 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1560 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1561
1562 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1563 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1564
1565 if (1)
1566 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1567 __func__, grxstsr, size, epnum);
1568
1569#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1570
1571 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1572 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1573 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1574 break;
1575
1576 case __status(S3C_GRXSTS_PktSts_OutDone):
1577 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1578 s3c_hsotg_read_frameno(hsotg));
1579
1580 if (!using_dma(hsotg))
1581 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1582 break;
1583
1584 case __status(S3C_GRXSTS_PktSts_SetupDone):
1585 dev_dbg(hsotg->dev,
1586 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1587 s3c_hsotg_read_frameno(hsotg),
1588 readl(hsotg->regs + S3C_DOEPCTL(0)));
1589
1590 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1591 break;
1592
1593 case __status(S3C_GRXSTS_PktSts_OutRX):
1594 s3c_hsotg_rx_data(hsotg, epnum, size);
1595 break;
1596
1597 case __status(S3C_GRXSTS_PktSts_SetupRX):
1598 dev_dbg(hsotg->dev,
1599 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1600 s3c_hsotg_read_frameno(hsotg),
1601 readl(hsotg->regs + S3C_DOEPCTL(0)));
1602
1603 s3c_hsotg_rx_data(hsotg, epnum, size);
1604 break;
1605
1606 default:
1607 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1608 __func__, grxstsr);
1609
1610 s3c_hsotg_dump(hsotg);
1611 break;
1612 }
1613}
1614
1615/**
1616 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1617 * @mps: The maximum packet size in bytes.
1618*/
1619static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1620{
1621 switch (mps) {
1622 case 64:
1623 return S3C_D0EPCTL_MPS_64;
1624 case 32:
1625 return S3C_D0EPCTL_MPS_32;
1626 case 16:
1627 return S3C_D0EPCTL_MPS_16;
1628 case 8:
1629 return S3C_D0EPCTL_MPS_8;
1630 }
1631
1632 /* bad max packet size, warn and return invalid result */
1633 WARN_ON(1);
1634 return (u32)-1;
1635}
1636
1637/**
1638 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1639 * @hsotg: The driver state.
1640 * @ep: The index number of the endpoint
1641 * @mps: The maximum packet size in bytes
1642 *
1643 * Configure the maximum packet size for the given endpoint, updating
1644 * the hardware control registers to reflect this.
1645 */
1646static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1647 unsigned int ep, unsigned int mps)
1648{
1649 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1650 void __iomem *regs = hsotg->regs;
1651 u32 mpsval;
1652 u32 reg;
1653
1654 if (ep == 0) {
1655 /* EP0 is a special case */
1656 mpsval = s3c_hsotg_ep0_mps(mps);
1657 if (mpsval > 3)
1658 goto bad_mps;
1659 } else {
1660 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1661 goto bad_mps;
1662
1663 mpsval = mps;
1664 }
1665
1666 hs_ep->ep.maxpacket = mps;
1667
1668 /* update both the in and out endpoint controldir_ registers, even
1669 * if one of the directions may not be in use. */
1670
1671 reg = readl(regs + S3C_DIEPCTL(ep));
1672 reg &= ~S3C_DxEPCTL_MPS_MASK;
1673 reg |= mpsval;
1674 writel(reg, regs + S3C_DIEPCTL(ep));
1675
1676 reg = readl(regs + S3C_DOEPCTL(ep));
1677 reg &= ~S3C_DxEPCTL_MPS_MASK;
1678 reg |= mpsval;
1679 writel(reg, regs + S3C_DOEPCTL(ep));
1680
1681 return;
1682
1683bad_mps:
1684 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1685}
1686
1687
1688/**
1689 * s3c_hsotg_trytx - check to see if anything needs transmitting
1690 * @hsotg: The driver state
1691 * @hs_ep: The driver endpoint to check.
1692 *
1693 * Check to see if there is a request that has data to send, and if so
1694 * make an attempt to write data into the FIFO.
1695 */
1696static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1697 struct s3c_hsotg_ep *hs_ep)
1698{
1699 struct s3c_hsotg_req *hs_req = hs_ep->req;
1700
1701 if (!hs_ep->dir_in || !hs_req)
1702 return 0;
1703
1704 if (hs_req->req.actual < hs_req->req.length) {
1705 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1706 hs_ep->index);
1707 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1708 }
1709
1710 return 0;
1711}
1712
1713/**
1714 * s3c_hsotg_complete_in - complete IN transfer
1715 * @hsotg: The device state.
1716 * @hs_ep: The endpoint that has just completed.
1717 *
1718 * An IN transfer has been completed, update the transfer's state and then
1719 * call the relevant completion routines.
1720 */
1721static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1722 struct s3c_hsotg_ep *hs_ep)
1723{
1724 struct s3c_hsotg_req *hs_req = hs_ep->req;
1725 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1726 int size_left, size_done;
1727
1728 if (!hs_req) {
1729 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1730 return;
1731 }
1732
1733 /* Calculate the size of the transfer by checking how much is left
1734 * in the endpoint size register and then working it out from
1735 * the amount we loaded for the transfer.
1736 *
1737 * We do this even for DMA, as the transfer may have incremented
1738 * past the end of the buffer (DMA transfers are always 32bit
1739 * aligned).
1740 */
1741
1742 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1743
1744 size_done = hs_ep->size_loaded - size_left;
1745 size_done += hs_ep->last_load;
1746
1747 if (hs_req->req.actual != size_done)
1748 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1749 __func__, hs_req->req.actual, size_done);
1750
1751 hs_req->req.actual = size_done;
1752
1753 /* if we did all of the transfer, and there is more data left
1754 * around, then try restarting the rest of the request */
1755
1756 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1757 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1758 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1759 } else
1760 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1761}
1762
1763/**
1764 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1765 * @hsotg: The driver state
1766 * @idx: The index for the endpoint (0..15)
1767 * @dir_in: Set if this is an IN endpoint
1768 *
1769 * Process and clear any interrupt pending for an individual endpoint
1770*/
1771static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1772 int dir_in)
1773{
1774 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1775 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1776 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1777 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1778 u32 ints;
5b7d70c6
BD
1779
1780 ints = readl(hsotg->regs + epint_reg);
1781
a3395f0d
AT
1782 /* Clear endpoint interrupts */
1783 writel(ints, hsotg->regs + epint_reg);
1784
5b7d70c6
BD
1785 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1786 __func__, idx, dir_in ? "in" : "out", ints);
1787
1788 if (ints & S3C_DxEPINT_XferCompl) {
1789 dev_dbg(hsotg->dev,
1790 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1791 __func__, readl(hsotg->regs + epctl_reg),
1792 readl(hsotg->regs + epsiz_reg));
1793
1794 /* we get OutDone from the FIFO, so we only need to look
1795 * at completing IN requests here */
1796 if (dir_in) {
1797 s3c_hsotg_complete_in(hsotg, hs_ep);
1798
c9a64ea8 1799 if (idx == 0 && !hs_ep->req)
5b7d70c6
BD
1800 s3c_hsotg_enqueue_setup(hsotg);
1801 } else if (using_dma(hsotg)) {
1802 /* We're using DMA, we need to fire an OutDone here
1803 * as we ignore the RXFIFO. */
1804
1805 s3c_hsotg_handle_outdone(hsotg, idx, false);
1806 }
5b7d70c6
BD
1807 }
1808
a3395f0d 1809 if (ints & S3C_DxEPINT_EPDisbld)
5b7d70c6 1810 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
5b7d70c6 1811
a3395f0d 1812 if (ints & S3C_DxEPINT_AHBErr)
5b7d70c6 1813 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
5b7d70c6
BD
1814
1815 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1816 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1817
1818 if (using_dma(hsotg) && idx == 0) {
1819 /* this is the notification we've received a
1820 * setup packet. In non-DMA mode we'd get this
1821 * from the RXFIFO, instead we need to process
1822 * the setup here. */
1823
1824 if (dir_in)
1825 WARN_ON_ONCE(1);
1826 else
1827 s3c_hsotg_handle_outdone(hsotg, 0, true);
1828 }
5b7d70c6
BD
1829 }
1830
a3395f0d 1831 if (ints & S3C_DxEPINT_Back2BackSetup)
5b7d70c6 1832 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
5b7d70c6
BD
1833
1834 if (dir_in) {
1835 /* not sure if this is important, but we'll clear it anyway
1836 */
1837 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1838 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1839 __func__, idx);
5b7d70c6
BD
1840 }
1841
1842 /* this probably means something bad is happening */
1843 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1844 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1845 __func__, idx);
5b7d70c6 1846 }
10aebc77
BD
1847
1848 /* FIFO has space or is empty (see GAHBCFG) */
1849 if (hsotg->dedicated_fifos &&
1850 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1851 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1852 __func__, idx);
1853 s3c_hsotg_trytx(hsotg, hs_ep);
10aebc77 1854 }
5b7d70c6 1855 }
5b7d70c6
BD
1856}
1857
1858/**
1859 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1860 * @hsotg: The device state.
1861 *
1862 * Handle updating the device settings after the enumeration phase has
1863 * been completed.
1864*/
1865static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1866{
1867 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1868 int ep0_mps = 0, ep_mps;
1869
1870 /* This should signal the finish of the enumeration phase
1871 * of the USB handshaking, so we should now know what rate
1872 * we connected at. */
1873
1874 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1875
1876 /* note, since we're limited by the size of transfer on EP0, and
1877 * it seems IN transfers must be a even number of packets we do
1878 * not advertise a 64byte MPS on EP0. */
1879
1880 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1881 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1882 case S3C_DSTS_EnumSpd_FS:
1883 case S3C_DSTS_EnumSpd_FS48:
1884 hsotg->gadget.speed = USB_SPEED_FULL;
1885 dev_info(hsotg->dev, "new device is full-speed\n");
1886
1887 ep0_mps = EP0_MPS_LIMIT;
1888 ep_mps = 64;
1889 break;
1890
1891 case S3C_DSTS_EnumSpd_HS:
1892 dev_info(hsotg->dev, "new device is high-speed\n");
1893 hsotg->gadget.speed = USB_SPEED_HIGH;
1894
1895 ep0_mps = EP0_MPS_LIMIT;
1896 ep_mps = 512;
1897 break;
1898
1899 case S3C_DSTS_EnumSpd_LS:
1900 hsotg->gadget.speed = USB_SPEED_LOW;
1901 dev_info(hsotg->dev, "new device is low-speed\n");
1902
1903 /* note, we don't actually support LS in this driver at the
1904 * moment, and the documentation seems to imply that it isn't
1905 * supported by the PHYs on some of the devices.
1906 */
1907 break;
1908 }
1909
1910 /* we should now know the maximum packet size for an
1911 * endpoint, so set the endpoints to a default value. */
1912
1913 if (ep0_mps) {
1914 int i;
1915 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1916 for (i = 1; i < S3C_HSOTG_EPS; i++)
1917 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1918 }
1919
1920 /* ensure after enumeration our EP0 is active */
1921
1922 s3c_hsotg_enqueue_setup(hsotg);
1923
1924 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1925 readl(hsotg->regs + S3C_DIEPCTL0),
1926 readl(hsotg->regs + S3C_DOEPCTL0));
1927}
1928
1929/**
1930 * kill_all_requests - remove all requests from the endpoint's queue
1931 * @hsotg: The device state.
1932 * @ep: The endpoint the requests may be on.
1933 * @result: The result code to use.
1934 * @force: Force removal of any current requests
1935 *
1936 * Go through the requests on the given endpoint and mark them
1937 * completed with the given result code.
1938 */
1939static void kill_all_requests(struct s3c_hsotg *hsotg,
1940 struct s3c_hsotg_ep *ep,
1941 int result, bool force)
1942{
1943 struct s3c_hsotg_req *req, *treq;
1944 unsigned long flags;
1945
1946 spin_lock_irqsave(&ep->lock, flags);
1947
1948 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1949 /* currently, we can't do much about an already
1950 * running request on an in endpoint */
1951
1952 if (ep->req == req && ep->dir_in && !force)
1953 continue;
1954
1955 s3c_hsotg_complete_request(hsotg, ep, req,
1956 result);
1957 }
1958
1959 spin_unlock_irqrestore(&ep->lock, flags);
1960}
1961
1962#define call_gadget(_hs, _entry) \
1963 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1964 (_hs)->driver && (_hs)->driver->_entry) \
1965 (_hs)->driver->_entry(&(_hs)->gadget);
1966
1967/**
1968 * s3c_hsotg_disconnect_irq - disconnect irq service
1969 * @hsotg: The device state.
1970 *
1971 * A disconnect IRQ has been received, meaning that the host has
1972 * lost contact with the bus. Remove all current transactions
1973 * and signal the gadget driver that this has happened.
1974*/
1975static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1976{
1977 unsigned ep;
1978
1979 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1980 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1981
1982 call_gadget(hsotg, disconnect);
1983}
1984
1985/**
1986 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1987 * @hsotg: The device state:
1988 * @periodic: True if this is a periodic FIFO interrupt
1989 */
1990static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
1991{
1992 struct s3c_hsotg_ep *ep;
1993 int epno, ret;
1994
1995 /* look through for any more data to transmit */
1996
1997 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
1998 ep = &hsotg->eps[epno];
1999
2000 if (!ep->dir_in)
2001 continue;
2002
2003 if ((periodic && !ep->periodic) ||
2004 (!periodic && ep->periodic))
2005 continue;
2006
2007 ret = s3c_hsotg_trytx(hsotg, ep);
2008 if (ret < 0)
2009 break;
2010 }
2011}
2012
2013static struct s3c_hsotg *our_hsotg;
2014
2015/* IRQ flags which will trigger a retry around the IRQ loop */
2016#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2017 S3C_GINTSTS_PTxFEmp | \
2018 S3C_GINTSTS_RxFLvl)
2019
2020/**
2021 * s3c_hsotg_irq - handle device interrupt
2022 * @irq: The IRQ number triggered
2023 * @pw: The pw value when registered the handler.
2024 */
2025static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2026{
2027 struct s3c_hsotg *hsotg = pw;
2028 int retry_count = 8;
2029 u32 gintsts;
2030 u32 gintmsk;
2031
2032irq_retry:
2033 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2034 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2035
2036 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2037 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2038
2039 gintsts &= gintmsk;
2040
2041 if (gintsts & S3C_GINTSTS_OTGInt) {
2042 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2043
2044 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2045
2046 writel(otgint, hsotg->regs + S3C_GOTGINT);
5b7d70c6
BD
2047 }
2048
2049 if (gintsts & S3C_GINTSTS_DisconnInt) {
2050 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2051 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2052
2053 s3c_hsotg_disconnect_irq(hsotg);
2054 }
2055
2056 if (gintsts & S3C_GINTSTS_SessReqInt) {
2057 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2058 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2059 }
2060
2061 if (gintsts & S3C_GINTSTS_EnumDone) {
5b7d70c6 2062 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
a3395f0d
AT
2063
2064 s3c_hsotg_irq_enumdone(hsotg);
5b7d70c6
BD
2065 }
2066
2067 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2068 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2069 readl(hsotg->regs + S3C_DSTS),
2070 readl(hsotg->regs + S3C_GOTGCTL));
2071
2072 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2073 }
2074
2075 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2076 u32 daint = readl(hsotg->regs + S3C_DAINT);
2077 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2078 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2079 int ep;
2080
2081 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2082
2083 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2084 if (daint_out & 1)
2085 s3c_hsotg_epint(hsotg, ep, 0);
2086 }
2087
2088 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2089 if (daint_in & 1)
2090 s3c_hsotg_epint(hsotg, ep, 1);
2091 }
5b7d70c6
BD
2092 }
2093
2094 if (gintsts & S3C_GINTSTS_USBRst) {
2095 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2096 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2097 readl(hsotg->regs + S3C_GNPTXSTS));
2098
a3395f0d
AT
2099 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2100
5b7d70c6
BD
2101 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2102
2103 /* it seems after a reset we can end up with a situation
b3864ced
BD
2104 * where the TXFIFO still has data in it... the docs
2105 * suggest resetting all the fifos, so use the init_fifo
2106 * code to relayout and flush the fifos.
5b7d70c6
BD
2107 */
2108
b3864ced 2109 s3c_hsotg_init_fifo(hsotg);
5b7d70c6
BD
2110
2111 s3c_hsotg_enqueue_setup(hsotg);
5b7d70c6
BD
2112 }
2113
2114 /* check both FIFOs */
2115
2116 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2117 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2118
2119 /* Disable the interrupt to stop it happening again
2120 * unless one of these endpoint routines decides that
2121 * it needs re-enabling */
2122
2123 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2124 s3c_hsotg_irq_fifoempty(hsotg, false);
5b7d70c6
BD
2125 }
2126
2127 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2128 dev_dbg(hsotg->dev, "PTxFEmp\n");
2129
2130 /* See note in S3C_GINTSTS_NPTxFEmp */
2131
2132 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2133 s3c_hsotg_irq_fifoempty(hsotg, true);
5b7d70c6
BD
2134 }
2135
2136 if (gintsts & S3C_GINTSTS_RxFLvl) {
2137 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2138 * we need to retry s3c_hsotg_handle_rx if this is still
2139 * set. */
2140
2141 s3c_hsotg_handle_rx(hsotg);
5b7d70c6
BD
2142 }
2143
2144 if (gintsts & S3C_GINTSTS_ModeMis) {
2145 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2146 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2147 }
2148
2149 if (gintsts & S3C_GINTSTS_USBSusp) {
2150 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2151 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2152
2153 call_gadget(hsotg, suspend);
2154 }
2155
2156 if (gintsts & S3C_GINTSTS_WkUpInt) {
2157 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2158 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2159
2160 call_gadget(hsotg, resume);
2161 }
2162
2163 if (gintsts & S3C_GINTSTS_ErlySusp) {
2164 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2165 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2166 }
2167
2168 /* these next two seem to crop-up occasionally causing the core
2169 * to shutdown the USB transfer, so try clearing them and logging
25985edc 2170 * the occurrence. */
5b7d70c6
BD
2171
2172 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2173 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2174
5b7d70c6 2175 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
a3395f0d
AT
2176
2177 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2178 }
2179
2180 if (gintsts & S3C_GINTSTS_GINNakEff) {
2181 dev_info(hsotg->dev, "GINNakEff triggered\n");
2182
5b7d70c6 2183 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
a3395f0d
AT
2184
2185 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2186 }
2187
2188 /* if we've had fifo events, we should try and go around the
2189 * loop again to see if there's any point in returning yet. */
2190
2191 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2192 goto irq_retry;
2193
2194 return IRQ_HANDLED;
2195}
2196
2197/**
2198 * s3c_hsotg_ep_enable - enable the given endpoint
2199 * @ep: The USB endpint to configure
2200 * @desc: The USB endpoint descriptor to configure with.
2201 *
2202 * This is called from the USB gadget code's usb_ep_enable().
2203*/
2204static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2205 const struct usb_endpoint_descriptor *desc)
2206{
2207 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2208 struct s3c_hsotg *hsotg = hs_ep->parent;
2209 unsigned long flags;
2210 int index = hs_ep->index;
2211 u32 epctrl_reg;
2212 u32 epctrl;
2213 u32 mps;
2214 int dir_in;
19c190f9 2215 int ret = 0;
5b7d70c6
BD
2216
2217 dev_dbg(hsotg->dev,
2218 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2219 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2220 desc->wMaxPacketSize, desc->bInterval);
2221
2222 /* not to be called for EP0 */
2223 WARN_ON(index == 0);
2224
2225 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2226 if (dir_in != hs_ep->dir_in) {
2227 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2228 return -EINVAL;
2229 }
2230
2231 mps = le16_to_cpu(desc->wMaxPacketSize);
2232
2233 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2234
2235 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2236 epctrl = readl(hsotg->regs + epctrl_reg);
2237
2238 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2239 __func__, epctrl, epctrl_reg);
2240
2241 spin_lock_irqsave(&hs_ep->lock, flags);
2242
2243 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2244 epctrl |= S3C_DxEPCTL_MPS(mps);
2245
2246 /* mark the endpoint as active, otherwise the core may ignore
2247 * transactions entirely for this endpoint */
2248 epctrl |= S3C_DxEPCTL_USBActEp;
2249
2250 /* set the NAK status on the endpoint, otherwise we might try and
2251 * do something with data that we've yet got a request to process
2252 * since the RXFIFO will take data for an endpoint even if the
2253 * size register hasn't been set.
2254 */
2255
2256 epctrl |= S3C_DxEPCTL_SNAK;
2257
2258 /* update the endpoint state */
2259 hs_ep->ep.maxpacket = mps;
2260
2261 /* default, set to non-periodic */
2262 hs_ep->periodic = 0;
2263
2264 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2265 case USB_ENDPOINT_XFER_ISOC:
2266 dev_err(hsotg->dev, "no current ISOC support\n");
19c190f9
JL
2267 ret = -EINVAL;
2268 goto out;
5b7d70c6
BD
2269
2270 case USB_ENDPOINT_XFER_BULK:
2271 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2272 break;
2273
2274 case USB_ENDPOINT_XFER_INT:
2275 if (dir_in) {
2276 /* Allocate our TxFNum by simply using the index
2277 * of the endpoint for the moment. We could do
2278 * something better if the host indicates how
2279 * many FIFOs we are expecting to use. */
2280
2281 hs_ep->periodic = 1;
2282 epctrl |= S3C_DxEPCTL_TxFNum(index);
2283 }
2284
2285 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2286 break;
2287
2288 case USB_ENDPOINT_XFER_CONTROL:
2289 epctrl |= S3C_DxEPCTL_EPType_Control;
2290 break;
2291 }
2292
10aebc77
BD
2293 /* if the hardware has dedicated fifos, we must give each IN EP
2294 * a unique tx-fifo even if it is non-periodic.
2295 */
2296 if (dir_in && hsotg->dedicated_fifos)
2297 epctrl |= S3C_DxEPCTL_TxFNum(index);
2298
5b7d70c6
BD
2299 /* for non control endpoints, set PID to D0 */
2300 if (index)
2301 epctrl |= S3C_DxEPCTL_SetD0PID;
2302
2303 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2304 __func__, epctrl);
2305
2306 writel(epctrl, hsotg->regs + epctrl_reg);
2307 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2308 __func__, readl(hsotg->regs + epctrl_reg));
2309
2310 /* enable the endpoint interrupt */
2311 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2312
19c190f9 2313out:
5b7d70c6 2314 spin_unlock_irqrestore(&hs_ep->lock, flags);
19c190f9 2315 return ret;
5b7d70c6
BD
2316}
2317
2318static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2319{
2320 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2321 struct s3c_hsotg *hsotg = hs_ep->parent;
2322 int dir_in = hs_ep->dir_in;
2323 int index = hs_ep->index;
2324 unsigned long flags;
2325 u32 epctrl_reg;
2326 u32 ctrl;
2327
2328 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2329
2330 if (ep == &hsotg->eps[0].ep) {
2331 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2332 return -EINVAL;
2333 }
2334
2335 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2336
2337 /* terminate all requests with shutdown */
2338 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2339
2340 spin_lock_irqsave(&hs_ep->lock, flags);
2341
2342 ctrl = readl(hsotg->regs + epctrl_reg);
2343 ctrl &= ~S3C_DxEPCTL_EPEna;
2344 ctrl &= ~S3C_DxEPCTL_USBActEp;
2345 ctrl |= S3C_DxEPCTL_SNAK;
2346
2347 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2348 writel(ctrl, hsotg->regs + epctrl_reg);
2349
2350 /* disable endpoint interrupts */
2351 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2352
2353 spin_unlock_irqrestore(&hs_ep->lock, flags);
2354 return 0;
2355}
2356
2357/**
2358 * on_list - check request is on the given endpoint
2359 * @ep: The endpoint to check.
2360 * @test: The request to test if it is on the endpoint.
2361*/
2362static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2363{
2364 struct s3c_hsotg_req *req, *treq;
2365
2366 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2367 if (req == test)
2368 return true;
2369 }
2370
2371 return false;
2372}
2373
2374static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2375{
2376 struct s3c_hsotg_req *hs_req = our_req(req);
2377 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2378 struct s3c_hsotg *hs = hs_ep->parent;
2379 unsigned long flags;
2380
2381 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2382
2383 if (hs_req == hs_ep->req) {
2384 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2385 return -EINPROGRESS;
2386 }
2387
2388 spin_lock_irqsave(&hs_ep->lock, flags);
2389
2390 if (!on_list(hs_ep, hs_req)) {
2391 spin_unlock_irqrestore(&hs_ep->lock, flags);
2392 return -EINVAL;
2393 }
2394
2395 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2396 spin_unlock_irqrestore(&hs_ep->lock, flags);
2397
2398 return 0;
2399}
2400
2401static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2402{
2403 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2404 struct s3c_hsotg *hs = hs_ep->parent;
2405 int index = hs_ep->index;
2406 unsigned long irqflags;
2407 u32 epreg;
2408 u32 epctl;
2409
2410 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2411
2412 spin_lock_irqsave(&hs_ep->lock, irqflags);
2413
2414 /* write both IN and OUT control registers */
2415
2416 epreg = S3C_DIEPCTL(index);
2417 epctl = readl(hs->regs + epreg);
2418
2419 if (value)
2420 epctl |= S3C_DxEPCTL_Stall;
2421 else
2422 epctl &= ~S3C_DxEPCTL_Stall;
2423
2424 writel(epctl, hs->regs + epreg);
2425
2426 epreg = S3C_DOEPCTL(index);
2427 epctl = readl(hs->regs + epreg);
2428
2429 if (value)
2430 epctl |= S3C_DxEPCTL_Stall;
2431 else
2432 epctl &= ~S3C_DxEPCTL_Stall;
2433
2434 writel(epctl, hs->regs + epreg);
2435
2436 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2437
2438 return 0;
2439}
2440
2441static struct usb_ep_ops s3c_hsotg_ep_ops = {
2442 .enable = s3c_hsotg_ep_enable,
2443 .disable = s3c_hsotg_ep_disable,
2444 .alloc_request = s3c_hsotg_ep_alloc_request,
2445 .free_request = s3c_hsotg_ep_free_request,
2446 .queue = s3c_hsotg_ep_queue,
2447 .dequeue = s3c_hsotg_ep_dequeue,
2448 .set_halt = s3c_hsotg_ep_sethalt,
25985edc 2449 /* note, don't believe we have any call for the fifo routines */
5b7d70c6
BD
2450};
2451
2452/**
2453 * s3c_hsotg_corereset - issue softreset to the core
2454 * @hsotg: The device state
2455 *
2456 * Issue a soft reset to the core, and await the core finishing it.
2457*/
2458static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2459{
2460 int timeout;
2461 u32 grstctl;
2462
2463 dev_dbg(hsotg->dev, "resetting core\n");
2464
2465 /* issue soft reset */
2466 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2467
2468 timeout = 1000;
2469 do {
2470 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
d00f5004 2471 } while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
5b7d70c6 2472
d00f5004 2473 if (grstctl & S3C_GRSTCTL_CSftRst) {
5b7d70c6
BD
2474 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2475 return -EINVAL;
2476 }
2477
2478 timeout = 1000;
2479
2480 while (1) {
2481 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2482
2483 if (timeout-- < 0) {
2484 dev_info(hsotg->dev,
2485 "%s: reset failed, GRSTCTL=%08x\n",
2486 __func__, grstctl);
2487 return -ETIMEDOUT;
2488 }
2489
5b7d70c6
BD
2490 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2491 continue;
2492
2493 break; /* reset done */
2494 }
2495
2496 dev_dbg(hsotg->dev, "reset successful\n");
2497 return 0;
2498}
2499
b0fca50f
UKK
2500int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2501 int (*bind)(struct usb_gadget *))
5b7d70c6
BD
2502{
2503 struct s3c_hsotg *hsotg = our_hsotg;
2504 int ret;
2505
2506 if (!hsotg) {
2507 printk(KERN_ERR "%s: called with no device\n", __func__);
2508 return -ENODEV;
2509 }
2510
2511 if (!driver) {
2512 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2513 return -EINVAL;
2514 }
2515
2516 if (driver->speed != USB_SPEED_HIGH &&
2517 driver->speed != USB_SPEED_FULL) {
2518 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2519 }
2520
b0fca50f 2521 if (!bind || !driver->setup) {
5b7d70c6
BD
2522 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2523 return -EINVAL;
2524 }
2525
2526 WARN_ON(hsotg->driver);
2527
2528 driver->driver.bus = NULL;
2529 hsotg->driver = driver;
2530 hsotg->gadget.dev.driver = &driver->driver;
2531 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2532 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2533
2534 ret = device_add(&hsotg->gadget.dev);
2535 if (ret) {
2536 dev_err(hsotg->dev, "failed to register gadget device\n");
2537 goto err;
2538 }
2539
b0fca50f 2540 ret = bind(&hsotg->gadget);
5b7d70c6
BD
2541 if (ret) {
2542 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2543
2544 hsotg->gadget.dev.driver = NULL;
2545 hsotg->driver = NULL;
2546 goto err;
2547 }
2548
2549 /* we must now enable ep0 ready for host detection and then
2550 * set configuration. */
2551
2552 s3c_hsotg_corereset(hsotg);
2553
2554 /* set the PLL on, remove the HNP/SRP and set the PHY */
2555 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2556 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2557
2558 /* looks like soft-reset changes state of FIFOs */
2559 s3c_hsotg_init_fifo(hsotg);
2560
2561 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2562
2563 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2564
a3395f0d
AT
2565 /* Clear any pending OTG interrupts */
2566 writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2567
2568 /* Clear any pending interrupts */
2569 writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2570
5b7d70c6
BD
2571 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2572 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2573 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2574 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2575 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2576 S3C_GINTSTS_ErlySusp,
2577 hsotg->regs + S3C_GINTMSK);
2578
2579 if (using_dma(hsotg))
2580 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2581 S3C_GAHBCFG_HBstLen_Incr4,
2582 hsotg->regs + S3C_GAHBCFG);
2583 else
2584 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2585
2586 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2587 * up being flooded with interrupts if the host is polling the
2588 * endpoint to try and read data. */
2589
2590 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2591 S3C_DIEPMSK_INTknEPMisMsk |
10aebc77
BD
2592 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2593 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
5b7d70c6
BD
2594 hsotg->regs + S3C_DIEPMSK);
2595
2596 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2597 * DMA mode we may need this. */
2598 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2599 S3C_DOEPMSK_EPDisbldMsk |
b7800218
RK
2600 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2601 S3C_DIEPMSK_TimeOUTMsk) : 0),
5b7d70c6
BD
2602 hsotg->regs + S3C_DOEPMSK);
2603
2604 writel(0, hsotg->regs + S3C_DAINTMSK);
2605
2606 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2607 readl(hsotg->regs + S3C_DIEPCTL0),
2608 readl(hsotg->regs + S3C_DOEPCTL0));
2609
2610 /* enable in and out endpoint interrupts */
2611 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2612
2613 /* Enable the RXFIFO when in slave mode, as this is how we collect
2614 * the data. In DMA mode, we get events from the FIFO but also
2615 * things we cannot process, so do not use it. */
2616 if (!using_dma(hsotg))
2617 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2618
2619 /* Enable interrupts for EP0 in and out */
2620 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2621 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2622
2623 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2624 udelay(10); /* see openiboot */
2625 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2626
2627 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2628
2629 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2630 writing to the EPCTL register.. */
2631
2632 /* set to read 1 8byte packet */
2633 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2634 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2635
2636 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2637 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2638 S3C_DxEPCTL_USBActEp,
2639 hsotg->regs + S3C_DOEPCTL0);
2640
2641 /* enable, but don't activate EP0in */
2642 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2643 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2644
2645 s3c_hsotg_enqueue_setup(hsotg);
2646
2647 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2648 readl(hsotg->regs + S3C_DIEPCTL0),
2649 readl(hsotg->regs + S3C_DOEPCTL0));
2650
2651 /* clear global NAKs */
2652 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2653 hsotg->regs + S3C_DCTL);
2654
2e0e0777
BD
2655 /* must be at-least 3ms to allow bus to see disconnect */
2656 msleep(3);
2657
5b7d70c6
BD
2658 /* remove the soft-disconnect and let's go */
2659 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2660
2661 /* report to the user, and return */
2662
2663 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2664 return 0;
2665
2666err:
2667 hsotg->driver = NULL;
2668 hsotg->gadget.dev.driver = NULL;
2669 return ret;
2670}
b0fca50f 2671EXPORT_SYMBOL(usb_gadget_probe_driver);
5b7d70c6
BD
2672
2673int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2674{
2675 struct s3c_hsotg *hsotg = our_hsotg;
2676 int ep;
2677
2678 if (!hsotg)
2679 return -ENODEV;
2680
2681 if (!driver || driver != hsotg->driver || !driver->unbind)
2682 return -EINVAL;
2683
2684 /* all endpoints should be shutdown */
2685 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2686 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2687
2688 call_gadget(hsotg, disconnect);
2689
2690 driver->unbind(&hsotg->gadget);
2691 hsotg->driver = NULL;
2692 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2693
2694 device_del(&hsotg->gadget.dev);
2695
2696 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2697 driver->driver.name);
2698
2699 return 0;
2700}
2701EXPORT_SYMBOL(usb_gadget_unregister_driver);
2702
2703static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2704{
2705 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2706}
2707
2708static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2709 .get_frame = s3c_hsotg_gadget_getframe,
2710};
2711
2712/**
2713 * s3c_hsotg_initep - initialise a single endpoint
2714 * @hsotg: The device state.
2715 * @hs_ep: The endpoint to be initialised.
2716 * @epnum: The endpoint number
2717 *
2718 * Initialise the given endpoint (as part of the probe and device state
2719 * creation) to give to the gadget driver. Setup the endpoint name, any
2720 * direction information and other state that may be required.
2721 */
2722static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2723 struct s3c_hsotg_ep *hs_ep,
2724 int epnum)
2725{
2726 u32 ptxfifo;
2727 char *dir;
2728
2729 if (epnum == 0)
2730 dir = "";
2731 else if ((epnum % 2) == 0) {
2732 dir = "out";
2733 } else {
2734 dir = "in";
2735 hs_ep->dir_in = 1;
2736 }
2737
2738 hs_ep->index = epnum;
2739
2740 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2741
2742 INIT_LIST_HEAD(&hs_ep->queue);
2743 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2744
2745 spin_lock_init(&hs_ep->lock);
2746
2747 /* add to the list of endpoints known by the gadget driver */
2748 if (epnum)
2749 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2750
2751 hs_ep->parent = hsotg;
2752 hs_ep->ep.name = hs_ep->name;
2753 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2754 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2755
2756 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2757 * an OUT endpoint, we may as well do this if in future the
2758 * code is changed to make each endpoint's direction changeable.
2759 */
2760
2761 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
679f9b7c 2762 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
5b7d70c6
BD
2763
2764 /* if we're using dma, we need to set the next-endpoint pointer
2765 * to be something valid.
2766 */
2767
2768 if (using_dma(hsotg)) {
2769 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2770 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2771 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2772 }
2773}
2774
2775/**
2776 * s3c_hsotg_otgreset - reset the OtG phy block
2777 * @hsotg: The host state.
2778 *
2779 * Power up the phy, set the basic configuration and start the PHY.
2780 */
2781static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2782{
e50bf385 2783 struct clk *xusbxti;
1eb838d3 2784 u32 pwr, osc;
5b7d70c6 2785
1eb838d3
MS
2786 pwr = readl(S3C_PHYPWR);
2787 pwr &= ~0x19;
2788 writel(pwr, S3C_PHYPWR);
5b7d70c6
BD
2789 mdelay(1);
2790
2791 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2792
e50bf385
MC
2793 xusbxti = clk_get(hsotg->dev, "xusbxti");
2794 if (xusbxti && !IS_ERR(xusbxti)) {
2795 switch (clk_get_rate(xusbxti)) {
2796 case 12*MHZ:
2797 osc |= S3C_PHYCLK_CLKSEL_12M;
2798 break;
2799 case 24*MHZ:
2800 osc |= S3C_PHYCLK_CLKSEL_24M;
2801 break;
2802 default:
2803 case 48*MHZ:
2804 /* default reference clock */
2805 break;
2806 }
2807 clk_put(xusbxti);
2808 }
2809
5b7d70c6
BD
2810 writel(osc | 0x10, S3C_PHYCLK);
2811
2812 /* issue a full set of resets to the otg and core */
2813
2814 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2815 udelay(20); /* at-least 10uS */
2816 writel(0, S3C_RSTCON);
2817}
2818
2819
2820static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2821{
10aebc77
BD
2822 u32 cfg4;
2823
5b7d70c6
BD
2824 /* unmask subset of endpoint interrupts */
2825
2826 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2827 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2828 hsotg->regs + S3C_DIEPMSK);
2829
2830 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2831 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2832 hsotg->regs + S3C_DOEPMSK);
2833
2834 writel(0, hsotg->regs + S3C_DAINTMSK);
2835
390b1661
TA
2836 /* Be in disconnected state until gadget is registered */
2837 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2838
5b7d70c6
BD
2839 if (0) {
2840 /* post global nak until we're ready */
2841 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2842 hsotg->regs + S3C_DCTL);
2843 }
2844
2845 /* setup fifos */
2846
2847 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2848 readl(hsotg->regs + S3C_GRXFSIZ),
2849 readl(hsotg->regs + S3C_GNPTXFSIZ));
2850
2851 s3c_hsotg_init_fifo(hsotg);
2852
2853 /* set the PLL on, remove the HNP/SRP and set the PHY */
2854 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2855 hsotg->regs + S3C_GUSBCFG);
2856
2857 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2858 hsotg->regs + S3C_GAHBCFG);
10aebc77
BD
2859
2860 /* check hardware configuration */
2861
2862 cfg4 = readl(hsotg->regs + 0x50);
2863 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2864
2865 dev_info(hsotg->dev, "%s fifos\n",
2866 hsotg->dedicated_fifos ? "dedicated" : "shared");
5b7d70c6
BD
2867}
2868
2869static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2870{
2871 struct device *dev = hsotg->dev;
2872 void __iomem *regs = hsotg->regs;
2873 u32 val;
2874 int idx;
2875
2876 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2877 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2878 readl(regs + S3C_DIEPMSK));
2879
2880 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2881 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2882
2883 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2884 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2885
2886 /* show periodic fifo settings */
2887
2888 for (idx = 1; idx <= 15; idx++) {
2889 val = readl(regs + S3C_DPTXFSIZn(idx));
2890 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2891 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2892 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2893 }
2894
2895 for (idx = 0; idx < 15; idx++) {
2896 dev_info(dev,
2897 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2898 readl(regs + S3C_DIEPCTL(idx)),
2899 readl(regs + S3C_DIEPTSIZ(idx)),
2900 readl(regs + S3C_DIEPDMA(idx)));
2901
2902 val = readl(regs + S3C_DOEPCTL(idx));
2903 dev_info(dev,
2904 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2905 idx, readl(regs + S3C_DOEPCTL(idx)),
2906 readl(regs + S3C_DOEPTSIZ(idx)),
2907 readl(regs + S3C_DOEPDMA(idx)));
2908
2909 }
2910
2911 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2912 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2913}
2914
2915
2916/**
2917 * state_show - debugfs: show overall driver and device state.
2918 * @seq: The seq file to write to.
2919 * @v: Unused parameter.
2920 *
2921 * This debugfs entry shows the overall state of the hardware and
2922 * some general information about each of the endpoints available
2923 * to the system.
2924 */
2925static int state_show(struct seq_file *seq, void *v)
2926{
2927 struct s3c_hsotg *hsotg = seq->private;
2928 void __iomem *regs = hsotg->regs;
2929 int idx;
2930
2931 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2932 readl(regs + S3C_DCFG),
2933 readl(regs + S3C_DCTL),
2934 readl(regs + S3C_DSTS));
2935
2936 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2937 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2938
2939 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2940 readl(regs + S3C_GINTMSK),
2941 readl(regs + S3C_GINTSTS));
2942
2943 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2944 readl(regs + S3C_DAINTMSK),
2945 readl(regs + S3C_DAINT));
2946
2947 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2948 readl(regs + S3C_GNPTXSTS),
2949 readl(regs + S3C_GRXSTSR));
2950
2951 seq_printf(seq, "\nEndpoint status:\n");
2952
2953 for (idx = 0; idx < 15; idx++) {
2954 u32 in, out;
2955
2956 in = readl(regs + S3C_DIEPCTL(idx));
2957 out = readl(regs + S3C_DOEPCTL(idx));
2958
2959 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2960 idx, in, out);
2961
2962 in = readl(regs + S3C_DIEPTSIZ(idx));
2963 out = readl(regs + S3C_DOEPTSIZ(idx));
2964
2965 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2966 in, out);
2967
2968 seq_printf(seq, "\n");
2969 }
2970
2971 return 0;
2972}
2973
2974static int state_open(struct inode *inode, struct file *file)
2975{
2976 return single_open(file, state_show, inode->i_private);
2977}
2978
2979static const struct file_operations state_fops = {
2980 .owner = THIS_MODULE,
2981 .open = state_open,
2982 .read = seq_read,
2983 .llseek = seq_lseek,
2984 .release = single_release,
2985};
2986
2987/**
2988 * fifo_show - debugfs: show the fifo information
2989 * @seq: The seq_file to write data to.
2990 * @v: Unused parameter.
2991 *
2992 * Show the FIFO information for the overall fifo and all the
2993 * periodic transmission FIFOs.
2994*/
2995static int fifo_show(struct seq_file *seq, void *v)
2996{
2997 struct s3c_hsotg *hsotg = seq->private;
2998 void __iomem *regs = hsotg->regs;
2999 u32 val;
3000 int idx;
3001
3002 seq_printf(seq, "Non-periodic FIFOs:\n");
3003 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3004
3005 val = readl(regs + S3C_GNPTXFSIZ);
3006 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3007 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3008 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3009
3010 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3011
3012 for (idx = 1; idx <= 15; idx++) {
3013 val = readl(regs + S3C_DPTXFSIZn(idx));
3014
3015 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3016 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3017 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3018 }
3019
3020 return 0;
3021}
3022
3023static int fifo_open(struct inode *inode, struct file *file)
3024{
3025 return single_open(file, fifo_show, inode->i_private);
3026}
3027
3028static const struct file_operations fifo_fops = {
3029 .owner = THIS_MODULE,
3030 .open = fifo_open,
3031 .read = seq_read,
3032 .llseek = seq_lseek,
3033 .release = single_release,
3034};
3035
3036
3037static const char *decode_direction(int is_in)
3038{
3039 return is_in ? "in" : "out";
3040}
3041
3042/**
3043 * ep_show - debugfs: show the state of an endpoint.
3044 * @seq: The seq_file to write data to.
3045 * @v: Unused parameter.
3046 *
3047 * This debugfs entry shows the state of the given endpoint (one is
3048 * registered for each available).
3049*/
3050static int ep_show(struct seq_file *seq, void *v)
3051{
3052 struct s3c_hsotg_ep *ep = seq->private;
3053 struct s3c_hsotg *hsotg = ep->parent;
3054 struct s3c_hsotg_req *req;
3055 void __iomem *regs = hsotg->regs;
3056 int index = ep->index;
3057 int show_limit = 15;
3058 unsigned long flags;
3059
3060 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3061 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3062
3063 /* first show the register state */
3064
3065 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3066 readl(regs + S3C_DIEPCTL(index)),
3067 readl(regs + S3C_DOEPCTL(index)));
3068
3069 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3070 readl(regs + S3C_DIEPDMA(index)),
3071 readl(regs + S3C_DOEPDMA(index)));
3072
3073 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3074 readl(regs + S3C_DIEPINT(index)),
3075 readl(regs + S3C_DOEPINT(index)));
3076
3077 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3078 readl(regs + S3C_DIEPTSIZ(index)),
3079 readl(regs + S3C_DOEPTSIZ(index)));
3080
3081 seq_printf(seq, "\n");
3082 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3083 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3084
3085 seq_printf(seq, "request list (%p,%p):\n",
3086 ep->queue.next, ep->queue.prev);
3087
3088 spin_lock_irqsave(&ep->lock, flags);
3089
3090 list_for_each_entry(req, &ep->queue, queue) {
3091 if (--show_limit < 0) {
3092 seq_printf(seq, "not showing more requests...\n");
3093 break;
3094 }
3095
3096 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3097 req == ep->req ? '*' : ' ',
3098 req, req->req.length, req->req.buf);
3099 seq_printf(seq, "%d done, res %d\n",
3100 req->req.actual, req->req.status);
3101 }
3102
3103 spin_unlock_irqrestore(&ep->lock, flags);
3104
3105 return 0;
3106}
3107
3108static int ep_open(struct inode *inode, struct file *file)
3109{
3110 return single_open(file, ep_show, inode->i_private);
3111}
3112
3113static const struct file_operations ep_fops = {
3114 .owner = THIS_MODULE,
3115 .open = ep_open,
3116 .read = seq_read,
3117 .llseek = seq_lseek,
3118 .release = single_release,
3119};
3120
3121/**
3122 * s3c_hsotg_create_debug - create debugfs directory and files
3123 * @hsotg: The driver state
3124 *
3125 * Create the debugfs files to allow the user to get information
3126 * about the state of the system. The directory name is created
3127 * with the same name as the device itself, in case we end up
3128 * with multiple blocks in future systems.
3129*/
3130static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3131{
3132 struct dentry *root;
3133 unsigned epidx;
3134
3135 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3136 hsotg->debug_root = root;
3137 if (IS_ERR(root)) {
3138 dev_err(hsotg->dev, "cannot create debug root\n");
3139 return;
3140 }
3141
3142 /* create general state file */
3143
3144 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3145 hsotg, &state_fops);
3146
3147 if (IS_ERR(hsotg->debug_file))
3148 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3149
3150 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3151 hsotg, &fifo_fops);
3152
3153 if (IS_ERR(hsotg->debug_fifo))
3154 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3155
3156 /* create one file for each endpoint */
3157
3158 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3159 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3160
3161 ep->debugfs = debugfs_create_file(ep->name, 0444,
3162 root, ep, &ep_fops);
3163
3164 if (IS_ERR(ep->debugfs))
3165 dev_err(hsotg->dev, "failed to create %s debug file\n",
3166 ep->name);
3167 }
3168}
3169
3170/**
3171 * s3c_hsotg_delete_debug - cleanup debugfs entries
3172 * @hsotg: The driver state
3173 *
3174 * Cleanup (remove) the debugfs files for use on module exit.
3175*/
3176static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3177{
3178 unsigned epidx;
3179
3180 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3181 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3182 debugfs_remove(ep->debugfs);
3183 }
3184
3185 debugfs_remove(hsotg->debug_file);
3186 debugfs_remove(hsotg->debug_fifo);
3187 debugfs_remove(hsotg->debug_root);
3188}
3189
3190/**
3191 * s3c_hsotg_gate - set the hardware gate for the block
3192 * @pdev: The device we bound to
3193 * @on: On or off.
3194 *
3195 * Set the hardware gate setting into the block. If we end up on
3196 * something other than an S3C64XX, then we might need to change this
3197 * to using a platform data callback, or some other mechanism.
3198 */
3199static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3200{
3201 unsigned long flags;
3202 u32 others;
3203
3204 local_irq_save(flags);
3205
3206 others = __raw_readl(S3C64XX_OTHERS);
3207 if (on)
3208 others |= S3C64XX_OTHERS_USBMASK;
3209 else
3210 others &= ~S3C64XX_OTHERS_USBMASK;
3211 __raw_writel(others, S3C64XX_OTHERS);
3212
3213 local_irq_restore(flags);
3214}
3215
0978f8c5 3216static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
5b7d70c6
BD
3217
3218static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3219{
3220 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3221 struct device *dev = &pdev->dev;
3222 struct s3c_hsotg *hsotg;
3223 struct resource *res;
3224 int epnum;
3225 int ret;
3226
3227 if (!plat)
3228 plat = &s3c_hsotg_default_pdata;
3229
3230 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3231 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3232 GFP_KERNEL);
3233 if (!hsotg) {
3234 dev_err(dev, "cannot get memory\n");
3235 return -ENOMEM;
3236 }
3237
3238 hsotg->dev = dev;
3239 hsotg->plat = plat;
3240
31ee04de
MS
3241 hsotg->clk = clk_get(&pdev->dev, "otg");
3242 if (IS_ERR(hsotg->clk)) {
3243 dev_err(dev, "cannot get otg clock\n");
3244 ret = -EINVAL;
3245 goto err_mem;
3246 }
3247
5b7d70c6
BD
3248 platform_set_drvdata(pdev, hsotg);
3249
3250 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3251 if (!res) {
3252 dev_err(dev, "cannot find register resource 0\n");
3253 ret = -EINVAL;
31ee04de 3254 goto err_clk;
5b7d70c6
BD
3255 }
3256
3257 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3258 dev_name(dev));
3259 if (!hsotg->regs_res) {
3260 dev_err(dev, "cannot reserve registers\n");
3261 ret = -ENOENT;
31ee04de 3262 goto err_clk;
5b7d70c6
BD
3263 }
3264
3265 hsotg->regs = ioremap(res->start, resource_size(res));
3266 if (!hsotg->regs) {
3267 dev_err(dev, "cannot map registers\n");
3268 ret = -ENXIO;
3269 goto err_regs_res;
3270 }
3271
3272 ret = platform_get_irq(pdev, 0);
3273 if (ret < 0) {
3274 dev_err(dev, "cannot find IRQ\n");
3275 goto err_regs;
3276 }
3277
3278 hsotg->irq = ret;
3279
3280 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3281 if (ret < 0) {
3282 dev_err(dev, "cannot claim IRQ\n");
3283 goto err_regs;
3284 }
3285
3286 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3287
3288 device_initialize(&hsotg->gadget.dev);
3289
3290 dev_set_name(&hsotg->gadget.dev, "gadget");
3291
3292 hsotg->gadget.is_dualspeed = 1;
3293 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3294 hsotg->gadget.name = dev_name(dev);
3295
3296 hsotg->gadget.dev.parent = dev;
3297 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3298
3299 /* setup endpoint information */
3300
3301 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3302 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3303
3304 /* allocate EP0 request */
3305
3306 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3307 GFP_KERNEL);
3308 if (!hsotg->ctrl_req) {
3309 dev_err(dev, "failed to allocate ctrl req\n");
3310 goto err_regs;
3311 }
3312
3313 /* reset the system */
3314
31ee04de
MS
3315 clk_enable(hsotg->clk);
3316
5b7d70c6
BD
3317 s3c_hsotg_gate(pdev, true);
3318
3319 s3c_hsotg_otgreset(hsotg);
3320 s3c_hsotg_corereset(hsotg);
3321 s3c_hsotg_init(hsotg);
3322
3323 /* initialise the endpoints now the core has been initialised */
3324 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3325 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3326
3327 s3c_hsotg_create_debug(hsotg);
3328
3329 s3c_hsotg_dump(hsotg);
3330
3331 our_hsotg = hsotg;
3332 return 0;
3333
3334err_regs:
3335 iounmap(hsotg->regs);
3336
3337err_regs_res:
3338 release_resource(hsotg->regs_res);
3339 kfree(hsotg->regs_res);
31ee04de
MS
3340err_clk:
3341 clk_put(hsotg->clk);
5b7d70c6
BD
3342err_mem:
3343 kfree(hsotg);
3344 return ret;
3345}
3346
3347static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3348{
3349 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3350
3351 s3c_hsotg_delete_debug(hsotg);
3352
3353 usb_gadget_unregister_driver(hsotg->driver);
3354
3355 free_irq(hsotg->irq, hsotg);
3356 iounmap(hsotg->regs);
3357
3358 release_resource(hsotg->regs_res);
3359 kfree(hsotg->regs_res);
3360
3361 s3c_hsotg_gate(pdev, false);
3362
31ee04de
MS
3363 clk_disable(hsotg->clk);
3364 clk_put(hsotg->clk);
3365
5b7d70c6
BD
3366 kfree(hsotg);
3367 return 0;
3368}
3369
3370#if 1
3371#define s3c_hsotg_suspend NULL
3372#define s3c_hsotg_resume NULL
3373#endif
3374
3375static struct platform_driver s3c_hsotg_driver = {
3376 .driver = {
3377 .name = "s3c-hsotg",
3378 .owner = THIS_MODULE,
3379 },
3380 .probe = s3c_hsotg_probe,
3381 .remove = __devexit_p(s3c_hsotg_remove),
3382 .suspend = s3c_hsotg_suspend,
3383 .resume = s3c_hsotg_resume,
3384};
3385
3386static int __init s3c_hsotg_modinit(void)
3387{
3388 return platform_driver_register(&s3c_hsotg_driver);
3389}
3390
3391static void __exit s3c_hsotg_modexit(void)
3392{
3393 platform_driver_unregister(&s3c_hsotg_driver);
3394}
3395
3396module_init(s3c_hsotg_modinit);
3397module_exit(s3c_hsotg_modexit);
3398
3399MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3400MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3401MODULE_LICENSE("GPL");
3402MODULE_ALIAS("platform:s3c-hsotg");