]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/usb/gadget/s3c-hsotg.c
usb: musb: musb_cppi41: Dont reprogram DMA if tear down is initiated
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / gadget / s3c-hsotg.c
CommitLineData
8b9bc460
LM
1/**
2 * linux/drivers/usb/gadget/s3c-hsotg.c
dfbc6fa3
AT
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
5b7d70c6
BD
6 *
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 * Ben Dooks <ben@simtec.co.uk>
10 * http://armlinux.simtec.co.uk/
11 *
12 * S3C USB2.0 High-speed / OtG driver
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
8b9bc460 17 */
5b7d70c6
BD
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/spinlock.h>
22#include <linux/interrupt.h>
23#include <linux/platform_device.h>
24#include <linux/dma-mapping.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/delay.h>
28#include <linux/io.h>
5a0e3ad6 29#include <linux/slab.h>
e50bf385 30#include <linux/clk.h>
fc9a731e 31#include <linux/regulator/consumer.h>
c50f056c 32#include <linux/of_platform.h>
74084844 33#include <linux/phy/phy.h>
5b7d70c6
BD
34
35#include <linux/usb/ch9.h>
36#include <linux/usb/gadget.h>
b2e587db 37#include <linux/usb/phy.h>
126625e1 38#include <linux/platform_data/s3c-hsotg.h>
5b7d70c6 39
127d42ae 40#include "s3c-hsotg.h"
5b7d70c6 41
fc9a731e
LM
42static const char * const s3c_hsotg_supply_names[] = {
43 "vusb_d", /* digital USB supply, 1.2V */
44 "vusb_a", /* analog USB supply, 1.1V */
45};
46
8b9bc460
LM
47/*
48 * EP0_MPS_LIMIT
5b7d70c6
BD
49 *
50 * Unfortunately there seems to be a limit of the amount of data that can
25985edc
LDM
51 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
52 * packets (which practically means 1 packet and 63 bytes of data) when the
5b7d70c6
BD
53 * MPS is set to 64.
54 *
55 * This means if we are wanting to move >127 bytes of data, we need to
56 * split the transactions up, but just doing one packet at a time does
57 * not work (this may be an implicit DATA0 PID on first packet of the
58 * transaction) and doing 2 packets is outside the controller's limits.
59 *
60 * If we try to lower the MPS size for EP0, then no transfers work properly
61 * for EP0, and the system will fail basic enumeration. As no cause for this
62 * has currently been found, we cannot support any large IN transfers for
63 * EP0.
64 */
65#define EP0_MPS_LIMIT 64
66
67struct s3c_hsotg;
68struct s3c_hsotg_req;
69
70/**
71 * struct s3c_hsotg_ep - driver endpoint definition.
72 * @ep: The gadget layer representation of the endpoint.
73 * @name: The driver generated name for the endpoint.
74 * @queue: Queue of requests for this endpoint.
75 * @parent: Reference back to the parent device structure.
76 * @req: The current request that the endpoint is processing. This is
77 * used to indicate an request has been loaded onto the endpoint
78 * and has yet to be completed (maybe due to data move, or simply
79 * awaiting an ack from the core all the data has been completed).
80 * @debugfs: File entry for debugfs file for this endpoint.
81 * @lock: State lock to protect contents of endpoint.
82 * @dir_in: Set to true if this endpoint is of the IN direction, which
83 * means that it is sending data to the Host.
84 * @index: The index for the endpoint registers.
4fca54aa 85 * @mc: Multi Count - number of transactions per microframe
1479e841 86 * @interval - Interval for periodic endpoints
5b7d70c6
BD
87 * @name: The name array passed to the USB core.
88 * @halted: Set if the endpoint has been halted.
89 * @periodic: Set if this is a periodic ep, such as Interrupt
1479e841 90 * @isochronous: Set if this is a isochronous ep
5b7d70c6
BD
91 * @sent_zlp: Set if we've sent a zero-length packet.
92 * @total_data: The total number of data bytes done.
93 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
94 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
95 * @last_load: The offset of data for the last start of request.
96 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
97 *
98 * This is the driver's state for each registered enpoint, allowing it
99 * to keep track of transactions that need doing. Each endpoint has a
100 * lock to protect the state, to try and avoid using an overall lock
101 * for the host controller as much as possible.
102 *
103 * For periodic IN endpoints, we have fifo_size and fifo_load to try
104 * and keep track of the amount of data in the periodic FIFO for each
105 * of these as we don't have a status register that tells us how much
e7a9ff54
BD
106 * is in each of them. (note, this may actually be useless information
107 * as in shared-fifo mode periodic in acts like a single-frame packet
108 * buffer than a fifo)
5b7d70c6
BD
109 */
110struct s3c_hsotg_ep {
111 struct usb_ep ep;
112 struct list_head queue;
113 struct s3c_hsotg *parent;
114 struct s3c_hsotg_req *req;
115 struct dentry *debugfs;
116
5b7d70c6
BD
117
118 unsigned long total_data;
119 unsigned int size_loaded;
120 unsigned int last_load;
121 unsigned int fifo_load;
122 unsigned short fifo_size;
123
124 unsigned char dir_in;
125 unsigned char index;
4fca54aa 126 unsigned char mc;
1479e841 127 unsigned char interval;
5b7d70c6
BD
128
129 unsigned int halted:1;
130 unsigned int periodic:1;
1479e841 131 unsigned int isochronous:1;
5b7d70c6
BD
132 unsigned int sent_zlp:1;
133
134 char name[10];
135};
136
5b7d70c6
BD
137/**
138 * struct s3c_hsotg - driver state.
139 * @dev: The parent device supplied to the probe function
140 * @driver: USB gadget driver
b2e587db 141 * @phy: The otg phy transceiver structure for phy control.
74084844 142 * @uphy: The otg phy transceiver structure for old USB phy control.
b2e587db
PP
143 * @plat: The platform specific configuration data. This can be removed once
144 * all SoCs support usb transceiver.
5b7d70c6 145 * @regs: The memory area mapped for accessing registers.
5b7d70c6 146 * @irq: The IRQ number we are using
fc9a731e 147 * @supplies: Definition of USB power supplies
f7e504c7 148 * @phyif: PHY interface width
10aebc77 149 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
b3f489b2 150 * @num_of_eps: Number of available EPs (excluding EP0)
5b7d70c6
BD
151 * @debug_root: root directrory for debugfs.
152 * @debug_file: main status file for debugfs.
153 * @debug_fifo: FIFO status file for debugfs.
154 * @ep0_reply: Request used for ep0 reply.
155 * @ep0_buff: Buffer for EP0 reply data, if needed.
156 * @ctrl_buff: Buffer for EP0 control requests.
157 * @ctrl_req: Request for EP0 control packets.
71225bee 158 * @setup: NAK management for EP0 SETUP
12a1f4dc 159 * @last_rst: Time of last reset
5b7d70c6
BD
160 * @eps: The endpoints being supplied to the gadget framework
161 */
162struct s3c_hsotg {
163 struct device *dev;
164 struct usb_gadget_driver *driver;
74084844
MP
165 struct phy *phy;
166 struct usb_phy *uphy;
5b7d70c6
BD
167 struct s3c_hsotg_plat *plat;
168
22258f49
LM
169 spinlock_t lock;
170
5b7d70c6 171 void __iomem *regs;
5b7d70c6 172 int irq;
31ee04de 173 struct clk *clk;
5b7d70c6 174
fc9a731e
LM
175 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
176
f7e504c7 177 u32 phyif;
10aebc77 178 unsigned int dedicated_fifos:1;
b3f489b2 179 unsigned char num_of_eps;
10aebc77 180
5b7d70c6
BD
181 struct dentry *debug_root;
182 struct dentry *debug_file;
183 struct dentry *debug_fifo;
184
185 struct usb_request *ep0_reply;
186 struct usb_request *ctrl_req;
187 u8 ep0_buff[8];
188 u8 ctrl_buff[8];
189
190 struct usb_gadget gadget;
71225bee 191 unsigned int setup;
12a1f4dc 192 unsigned long last_rst;
b3f489b2 193 struct s3c_hsotg_ep *eps;
5b7d70c6
BD
194};
195
196/**
197 * struct s3c_hsotg_req - data transfer request
198 * @req: The USB gadget request
199 * @queue: The list of requests for the endpoint this is queued for.
200 * @in_progress: Has already had size/packets written to core
201 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
202 */
203struct s3c_hsotg_req {
204 struct usb_request req;
205 struct list_head queue;
206 unsigned char in_progress;
207 unsigned char mapped;
208};
209
210/* conversion functions */
211static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
212{
213 return container_of(req, struct s3c_hsotg_req, req);
214}
215
216static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
217{
218 return container_of(ep, struct s3c_hsotg_ep, ep);
219}
220
221static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
222{
223 return container_of(gadget, struct s3c_hsotg, gadget);
224}
225
226static inline void __orr32(void __iomem *ptr, u32 val)
227{
228 writel(readl(ptr) | val, ptr);
229}
230
231static inline void __bic32(void __iomem *ptr, u32 val)
232{
233 writel(readl(ptr) & ~val, ptr);
234}
235
236/* forward decleration of functions */
237static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
238
239/**
240 * using_dma - return the DMA status of the driver.
241 * @hsotg: The driver state.
242 *
243 * Return true if we're using DMA.
244 *
245 * Currently, we have the DMA support code worked into everywhere
246 * that needs it, but the AMBA DMA implementation in the hardware can
247 * only DMA from 32bit aligned addresses. This means that gadgets such
248 * as the CDC Ethernet cannot work as they often pass packets which are
249 * not 32bit aligned.
250 *
251 * Unfortunately the choice to use DMA or not is global to the controller
252 * and seems to be only settable when the controller is being put through
253 * a core reset. This means we either need to fix the gadgets to take
254 * account of DMA alignment, or add bounce buffers (yuerk).
255 *
256 * Until this issue is sorted out, we always return 'false'.
257 */
258static inline bool using_dma(struct s3c_hsotg *hsotg)
259{
260 return false; /* support is not complete */
261}
262
263/**
264 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
265 * @hsotg: The device state
266 * @ints: A bitmask of the interrupts to enable
267 */
268static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
269{
94cb8fd6 270 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
5b7d70c6
BD
271 u32 new_gsintmsk;
272
273 new_gsintmsk = gsintmsk | ints;
274
275 if (new_gsintmsk != gsintmsk) {
276 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
94cb8fd6 277 writel(new_gsintmsk, hsotg->regs + GINTMSK);
5b7d70c6
BD
278 }
279}
280
281/**
282 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
283 * @hsotg: The device state
284 * @ints: A bitmask of the interrupts to enable
285 */
286static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
287{
94cb8fd6 288 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
5b7d70c6
BD
289 u32 new_gsintmsk;
290
291 new_gsintmsk = gsintmsk & ~ints;
292
293 if (new_gsintmsk != gsintmsk)
94cb8fd6 294 writel(new_gsintmsk, hsotg->regs + GINTMSK);
5b7d70c6
BD
295}
296
297/**
298 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
299 * @hsotg: The device state
300 * @ep: The endpoint index
301 * @dir_in: True if direction is in.
302 * @en: The enable value, true to enable
303 *
304 * Set or clear the mask for an individual endpoint's interrupt
305 * request.
306 */
307static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
308 unsigned int ep, unsigned int dir_in,
309 unsigned int en)
310{
311 unsigned long flags;
312 u32 bit = 1 << ep;
313 u32 daint;
314
315 if (!dir_in)
316 bit <<= 16;
317
318 local_irq_save(flags);
94cb8fd6 319 daint = readl(hsotg->regs + DAINTMSK);
5b7d70c6
BD
320 if (en)
321 daint |= bit;
322 else
323 daint &= ~bit;
94cb8fd6 324 writel(daint, hsotg->regs + DAINTMSK);
5b7d70c6
BD
325 local_irq_restore(flags);
326}
327
328/**
329 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
330 * @hsotg: The device instance.
331 */
332static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
333{
0f002d20
BD
334 unsigned int ep;
335 unsigned int addr;
336 unsigned int size;
1703a6d3 337 int timeout;
0f002d20
BD
338 u32 val;
339
6d091ee7 340 /* set FIFO sizes to 2048/1024 */
5b7d70c6 341
94cb8fd6
LM
342 writel(2048, hsotg->regs + GRXFSIZ);
343 writel(GNPTXFSIZ_NPTxFStAddr(2048) |
344 GNPTXFSIZ_NPTxFDep(1024),
345 hsotg->regs + GNPTXFSIZ);
0f002d20 346
8b9bc460
LM
347 /*
348 * arange all the rest of the TX FIFOs, as some versions of this
0f002d20
BD
349 * block have overlapping default addresses. This also ensures
350 * that if the settings have been changed, then they are set to
8b9bc460
LM
351 * known values.
352 */
0f002d20
BD
353
354 /* start at the end of the GNPTXFSIZ, rounded up */
355 addr = 2048 + 1024;
356 size = 768;
357
8b9bc460
LM
358 /*
359 * currently we allocate TX FIFOs for all possible endpoints,
360 * and assume that they are all the same size.
361 */
0f002d20 362
f7a83fe1 363 for (ep = 1; ep <= 15; ep++) {
0f002d20 364 val = addr;
94cb8fd6 365 val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
0f002d20
BD
366 addr += size;
367
94cb8fd6 368 writel(val, hsotg->regs + DPTXFSIZn(ep));
0f002d20 369 }
1703a6d3 370
8b9bc460
LM
371 /*
372 * according to p428 of the design guide, we need to ensure that
373 * all fifos are flushed before continuing
374 */
1703a6d3 375
94cb8fd6
LM
376 writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
377 GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
1703a6d3
BD
378
379 /* wait until the fifos are both flushed */
380 timeout = 100;
381 while (1) {
94cb8fd6 382 val = readl(hsotg->regs + GRSTCTL);
1703a6d3 383
94cb8fd6 384 if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
1703a6d3
BD
385 break;
386
387 if (--timeout == 0) {
388 dev_err(hsotg->dev,
389 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
390 __func__, val);
391 }
392
393 udelay(1);
394 }
395
396 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
5b7d70c6
BD
397}
398
399/**
400 * @ep: USB endpoint to allocate request for.
401 * @flags: Allocation flags
402 *
403 * Allocate a new USB request structure appropriate for the specified endpoint
404 */
0978f8c5
MB
405static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
406 gfp_t flags)
5b7d70c6
BD
407{
408 struct s3c_hsotg_req *req;
409
410 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
411 if (!req)
412 return NULL;
413
414 INIT_LIST_HEAD(&req->queue);
415
5b7d70c6
BD
416 return &req->req;
417}
418
419/**
420 * is_ep_periodic - return true if the endpoint is in periodic mode.
421 * @hs_ep: The endpoint to query.
422 *
423 * Returns true if the endpoint is in periodic mode, meaning it is being
424 * used for an Interrupt or ISO transfer.
425 */
426static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
427{
428 return hs_ep->periodic;
429}
430
431/**
432 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
433 * @hsotg: The device state.
434 * @hs_ep: The endpoint for the request
435 * @hs_req: The request being processed.
436 *
437 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
438 * of a request to ensure the buffer is ready for access by the caller.
8b9bc460 439 */
5b7d70c6
BD
440static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
441 struct s3c_hsotg_ep *hs_ep,
442 struct s3c_hsotg_req *hs_req)
443{
444 struct usb_request *req = &hs_req->req;
5b7d70c6
BD
445
446 /* ignore this if we're not moving any data */
447 if (hs_req->req.length == 0)
448 return;
449
17d966a3 450 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
5b7d70c6
BD
451}
452
453/**
454 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
455 * @hsotg: The controller state.
456 * @hs_ep: The endpoint we're going to write for.
457 * @hs_req: The request to write data for.
458 *
459 * This is called when the TxFIFO has some space in it to hold a new
460 * transmission and we have something to give it. The actual setup of
461 * the data size is done elsewhere, so all we have to do is to actually
462 * write the data.
463 *
464 * The return value is zero if there is more space (or nothing was done)
465 * otherwise -ENOSPC is returned if the FIFO space was used up.
466 *
467 * This routine is only needed for PIO
8b9bc460 468 */
5b7d70c6
BD
469static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
470 struct s3c_hsotg_ep *hs_ep,
471 struct s3c_hsotg_req *hs_req)
472{
473 bool periodic = is_ep_periodic(hs_ep);
94cb8fd6 474 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
5b7d70c6
BD
475 int buf_pos = hs_req->req.actual;
476 int to_write = hs_ep->size_loaded;
477 void *data;
478 int can_write;
479 int pkt_round;
4fca54aa 480 int max_transfer;
5b7d70c6
BD
481
482 to_write -= (buf_pos - hs_ep->last_load);
483
484 /* if there's nothing to write, get out early */
485 if (to_write == 0)
486 return 0;
487
10aebc77 488 if (periodic && !hsotg->dedicated_fifos) {
94cb8fd6 489 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
5b7d70c6
BD
490 int size_left;
491 int size_done;
492
8b9bc460
LM
493 /*
494 * work out how much data was loaded so we can calculate
495 * how much data is left in the fifo.
496 */
5b7d70c6 497
94cb8fd6 498 size_left = DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6 499
8b9bc460
LM
500 /*
501 * if shared fifo, we cannot write anything until the
e7a9ff54
BD
502 * previous data has been completely sent.
503 */
504 if (hs_ep->fifo_load != 0) {
94cb8fd6 505 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
e7a9ff54
BD
506 return -ENOSPC;
507 }
508
5b7d70c6
BD
509 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
510 __func__, size_left,
511 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
512
513 /* how much of the data has moved */
514 size_done = hs_ep->size_loaded - size_left;
515
516 /* how much data is left in the fifo */
517 can_write = hs_ep->fifo_load - size_done;
518 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
519 __func__, can_write);
520
521 can_write = hs_ep->fifo_size - can_write;
522 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
523 __func__, can_write);
524
525 if (can_write <= 0) {
94cb8fd6 526 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
5b7d70c6
BD
527 return -ENOSPC;
528 }
10aebc77 529 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
94cb8fd6 530 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
10aebc77
BD
531
532 can_write &= 0xffff;
533 can_write *= 4;
5b7d70c6 534 } else {
94cb8fd6 535 if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
5b7d70c6
BD
536 dev_dbg(hsotg->dev,
537 "%s: no queue slots available (0x%08x)\n",
538 __func__, gnptxsts);
539
94cb8fd6 540 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
5b7d70c6
BD
541 return -ENOSPC;
542 }
543
94cb8fd6 544 can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
679f9b7c 545 can_write *= 4; /* fifo size is in 32bit quantities. */
5b7d70c6
BD
546 }
547
4fca54aa
RB
548 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
549
550 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
551 __func__, gnptxsts, can_write, to_write, max_transfer);
5b7d70c6 552
8b9bc460
LM
553 /*
554 * limit to 512 bytes of data, it seems at least on the non-periodic
5b7d70c6
BD
555 * FIFO, requests of >512 cause the endpoint to get stuck with a
556 * fragment of the end of the transfer in it.
557 */
811f3303 558 if (can_write > 512 && !periodic)
5b7d70c6
BD
559 can_write = 512;
560
8b9bc460
LM
561 /*
562 * limit the write to one max-packet size worth of data, but allow
03e10e5a 563 * the transfer to return that it did not run out of fifo space
8b9bc460
LM
564 * doing it.
565 */
4fca54aa
RB
566 if (to_write > max_transfer) {
567 to_write = max_transfer;
03e10e5a 568
5cb2ff0c
RB
569 /* it's needed only when we do not use dedicated fifos */
570 if (!hsotg->dedicated_fifos)
571 s3c_hsotg_en_gsint(hsotg,
572 periodic ? GINTSTS_PTxFEmp :
573 GINTSTS_NPTxFEmp);
03e10e5a
BD
574 }
575
5b7d70c6
BD
576 /* see if we can write data */
577
578 if (to_write > can_write) {
579 to_write = can_write;
4fca54aa 580 pkt_round = to_write % max_transfer;
5b7d70c6 581
8b9bc460
LM
582 /*
583 * Round the write down to an
5b7d70c6
BD
584 * exact number of packets.
585 *
586 * Note, we do not currently check to see if we can ever
587 * write a full packet or not to the FIFO.
588 */
589
590 if (pkt_round)
591 to_write -= pkt_round;
592
8b9bc460
LM
593 /*
594 * enable correct FIFO interrupt to alert us when there
595 * is more room left.
596 */
5b7d70c6 597
5cb2ff0c
RB
598 /* it's needed only when we do not use dedicated fifos */
599 if (!hsotg->dedicated_fifos)
600 s3c_hsotg_en_gsint(hsotg,
601 periodic ? GINTSTS_PTxFEmp :
602 GINTSTS_NPTxFEmp);
5b7d70c6
BD
603 }
604
605 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
606 to_write, hs_req->req.length, can_write, buf_pos);
607
608 if (to_write <= 0)
609 return -ENOSPC;
610
611 hs_req->req.actual = buf_pos + to_write;
612 hs_ep->total_data += to_write;
613
614 if (periodic)
615 hs_ep->fifo_load += to_write;
616
617 to_write = DIV_ROUND_UP(to_write, 4);
618 data = hs_req->req.buf + buf_pos;
619
1a7ed5be 620 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
5b7d70c6
BD
621
622 return (to_write >= can_write) ? -ENOSPC : 0;
623}
624
625/**
626 * get_ep_limit - get the maximum data legnth for this endpoint
627 * @hs_ep: The endpoint
628 *
629 * Return the maximum data that can be queued in one go on a given endpoint
630 * so that transfers that are too long can be split.
631 */
632static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
633{
634 int index = hs_ep->index;
635 unsigned maxsize;
636 unsigned maxpkt;
637
638 if (index != 0) {
94cb8fd6
LM
639 maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
640 maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
5b7d70c6 641 } else {
b05ca580 642 maxsize = 64+64;
66e5c643 643 if (hs_ep->dir_in)
94cb8fd6 644 maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
66e5c643 645 else
5b7d70c6 646 maxpkt = 2;
5b7d70c6
BD
647 }
648
649 /* we made the constant loading easier above by using +1 */
650 maxpkt--;
651 maxsize--;
652
8b9bc460
LM
653 /*
654 * constrain by packet count if maxpkts*pktsize is greater
655 * than the length register size.
656 */
5b7d70c6
BD
657
658 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
659 maxsize = maxpkt * hs_ep->ep.maxpacket;
660
661 return maxsize;
662}
663
664/**
665 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
666 * @hsotg: The controller state.
667 * @hs_ep: The endpoint to process a request for
668 * @hs_req: The request to start.
669 * @continuing: True if we are doing more for the current request.
670 *
671 * Start the given request running by setting the endpoint registers
672 * appropriately, and writing any data to the FIFOs.
673 */
674static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
675 struct s3c_hsotg_ep *hs_ep,
676 struct s3c_hsotg_req *hs_req,
677 bool continuing)
678{
679 struct usb_request *ureq = &hs_req->req;
680 int index = hs_ep->index;
681 int dir_in = hs_ep->dir_in;
682 u32 epctrl_reg;
683 u32 epsize_reg;
684 u32 epsize;
685 u32 ctrl;
686 unsigned length;
687 unsigned packets;
688 unsigned maxreq;
689
690 if (index != 0) {
691 if (hs_ep->req && !continuing) {
692 dev_err(hsotg->dev, "%s: active request\n", __func__);
693 WARN_ON(1);
694 return;
695 } else if (hs_ep->req != hs_req && continuing) {
696 dev_err(hsotg->dev,
697 "%s: continue different req\n", __func__);
698 WARN_ON(1);
699 return;
700 }
701 }
702
94cb8fd6
LM
703 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
704 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
5b7d70c6
BD
705
706 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
707 __func__, readl(hsotg->regs + epctrl_reg), index,
708 hs_ep->dir_in ? "in" : "out");
709
9c39ddc6
AT
710 /* If endpoint is stalled, we will restart request later */
711 ctrl = readl(hsotg->regs + epctrl_reg);
712
94cb8fd6 713 if (ctrl & DxEPCTL_Stall) {
9c39ddc6
AT
714 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
715 return;
716 }
717
5b7d70c6 718 length = ureq->length - ureq->actual;
71225bee
LM
719 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
720 ureq->length, ureq->actual);
5b7d70c6
BD
721 if (0)
722 dev_dbg(hsotg->dev,
8b3bc14f
JH
723 "REQ buf %p len %d dma 0x%pad noi=%d zp=%d snok=%d\n",
724 ureq->buf, length, &ureq->dma,
5b7d70c6
BD
725 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
726
727 maxreq = get_ep_limit(hs_ep);
728 if (length > maxreq) {
729 int round = maxreq % hs_ep->ep.maxpacket;
730
731 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
732 __func__, length, maxreq, round);
733
734 /* round down to multiple of packets */
735 if (round)
736 maxreq -= round;
737
738 length = maxreq;
739 }
740
741 if (length)
742 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
743 else
744 packets = 1; /* send one packet if length is zero. */
745
4fca54aa
RB
746 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
747 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
748 return;
749 }
750
5b7d70c6 751 if (dir_in && index != 0)
4fca54aa
RB
752 if (hs_ep->isochronous)
753 epsize = DxEPTSIZ_MC(packets);
754 else
755 epsize = DxEPTSIZ_MC(1);
5b7d70c6
BD
756 else
757 epsize = 0;
758
759 if (index != 0 && ureq->zero) {
8b9bc460
LM
760 /*
761 * test for the packets being exactly right for the
762 * transfer
763 */
5b7d70c6
BD
764
765 if (length == (packets * hs_ep->ep.maxpacket))
766 packets++;
767 }
768
94cb8fd6
LM
769 epsize |= DxEPTSIZ_PktCnt(packets);
770 epsize |= DxEPTSIZ_XferSize(length);
5b7d70c6
BD
771
772 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
773 __func__, packets, length, ureq->length, epsize, epsize_reg);
774
775 /* store the request as the current one we're doing */
776 hs_ep->req = hs_req;
777
778 /* write size / packets */
779 writel(epsize, hsotg->regs + epsize_reg);
780
db1d8ba3 781 if (using_dma(hsotg) && !continuing) {
5b7d70c6
BD
782 unsigned int dma_reg;
783
8b9bc460
LM
784 /*
785 * write DMA address to control register, buffer already
786 * synced by s3c_hsotg_ep_queue().
787 */
5b7d70c6 788
94cb8fd6 789 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
5b7d70c6
BD
790 writel(ureq->dma, hsotg->regs + dma_reg);
791
8b3bc14f
JH
792 dev_dbg(hsotg->dev, "%s: 0x%pad => 0x%08x\n",
793 __func__, &ureq->dma, dma_reg);
5b7d70c6
BD
794 }
795
94cb8fd6
LM
796 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
797 ctrl |= DxEPCTL_USBActEp;
71225bee
LM
798
799 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
800
801 /* For Setup request do not clear NAK */
802 if (hsotg->setup && index == 0)
803 hsotg->setup = 0;
804 else
94cb8fd6 805 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
71225bee 806
5b7d70c6
BD
807
808 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
809 writel(ctrl, hsotg->regs + epctrl_reg);
810
8b9bc460
LM
811 /*
812 * set these, it seems that DMA support increments past the end
5b7d70c6 813 * of the packet buffer so we need to calculate the length from
8b9bc460
LM
814 * this information.
815 */
5b7d70c6
BD
816 hs_ep->size_loaded = length;
817 hs_ep->last_load = ureq->actual;
818
819 if (dir_in && !using_dma(hsotg)) {
820 /* set these anyway, we may need them for non-periodic in */
821 hs_ep->fifo_load = 0;
822
823 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
824 }
825
8b9bc460
LM
826 /*
827 * clear the INTknTXFEmpMsk when we start request, more as a aide
828 * to debugging to see what is going on.
829 */
5b7d70c6 830 if (dir_in)
94cb8fd6
LM
831 writel(DIEPMSK_INTknTXFEmpMsk,
832 hsotg->regs + DIEPINT(index));
5b7d70c6 833
8b9bc460
LM
834 /*
835 * Note, trying to clear the NAK here causes problems with transmit
836 * on the S3C6400 ending up with the TXFIFO becoming full.
837 */
5b7d70c6
BD
838
839 /* check ep is enabled */
94cb8fd6 840 if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
5b7d70c6
BD
841 dev_warn(hsotg->dev,
842 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
843 index, readl(hsotg->regs + epctrl_reg));
844
845 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
846 __func__, readl(hsotg->regs + epctrl_reg));
afcf4169
RB
847
848 /* enable ep interrupts */
849 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
5b7d70c6
BD
850}
851
852/**
853 * s3c_hsotg_map_dma - map the DMA memory being used for the request
854 * @hsotg: The device state.
855 * @hs_ep: The endpoint the request is on.
856 * @req: The request being processed.
857 *
858 * We've been asked to queue a request, so ensure that the memory buffer
859 * is correctly setup for DMA. If we've been passed an extant DMA address
860 * then ensure the buffer has been synced to memory. If our buffer has no
861 * DMA memory, then we map the memory and mark our request to allow us to
862 * cleanup on completion.
8b9bc460 863 */
5b7d70c6
BD
864static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
865 struct s3c_hsotg_ep *hs_ep,
866 struct usb_request *req)
867{
5b7d70c6 868 struct s3c_hsotg_req *hs_req = our_req(req);
e58ebcd1 869 int ret;
5b7d70c6
BD
870
871 /* if the length is zero, ignore the DMA data */
872 if (hs_req->req.length == 0)
873 return 0;
874
e58ebcd1
FB
875 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
876 if (ret)
877 goto dma_error;
5b7d70c6
BD
878
879 return 0;
880
881dma_error:
882 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
883 __func__, req->buf, req->length);
884
885 return -EIO;
886}
887
888static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
889 gfp_t gfp_flags)
890{
891 struct s3c_hsotg_req *hs_req = our_req(req);
892 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
893 struct s3c_hsotg *hs = hs_ep->parent;
5b7d70c6
BD
894 bool first;
895
896 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
897 ep->name, req, req->length, req->buf, req->no_interrupt,
898 req->zero, req->short_not_ok);
899
900 /* initialise status of the request */
901 INIT_LIST_HEAD(&hs_req->queue);
902 req->actual = 0;
903 req->status = -EINPROGRESS;
904
905 /* if we're using DMA, sync the buffers as necessary */
906 if (using_dma(hs)) {
907 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
908 if (ret)
909 return ret;
910 }
911
5b7d70c6
BD
912 first = list_empty(&hs_ep->queue);
913 list_add_tail(&hs_req->queue, &hs_ep->queue);
914
915 if (first)
916 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
917
5b7d70c6
BD
918 return 0;
919}
920
5ad1d316
LM
921static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
922 gfp_t gfp_flags)
923{
924 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
925 struct s3c_hsotg *hs = hs_ep->parent;
926 unsigned long flags = 0;
927 int ret = 0;
928
929 spin_lock_irqsave(&hs->lock, flags);
930 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
931 spin_unlock_irqrestore(&hs->lock, flags);
932
933 return ret;
934}
935
5b7d70c6
BD
936static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
937 struct usb_request *req)
938{
939 struct s3c_hsotg_req *hs_req = our_req(req);
940
941 kfree(hs_req);
942}
943
944/**
945 * s3c_hsotg_complete_oursetup - setup completion callback
946 * @ep: The endpoint the request was on.
947 * @req: The request completed.
948 *
949 * Called on completion of any requests the driver itself
950 * submitted that need cleaning up.
951 */
952static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
953 struct usb_request *req)
954{
955 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
956 struct s3c_hsotg *hsotg = hs_ep->parent;
957
958 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
959
960 s3c_hsotg_ep_free_request(ep, req);
961}
962
963/**
964 * ep_from_windex - convert control wIndex value to endpoint
965 * @hsotg: The driver state.
966 * @windex: The control request wIndex field (in host order).
967 *
968 * Convert the given wIndex into a pointer to an driver endpoint
969 * structure, or return NULL if it is not a valid endpoint.
8b9bc460 970 */
5b7d70c6
BD
971static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
972 u32 windex)
973{
974 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
975 int dir = (windex & USB_DIR_IN) ? 1 : 0;
976 int idx = windex & 0x7F;
977
978 if (windex >= 0x100)
979 return NULL;
980
b3f489b2 981 if (idx > hsotg->num_of_eps)
5b7d70c6
BD
982 return NULL;
983
984 if (idx && ep->dir_in != dir)
985 return NULL;
986
987 return ep;
988}
989
990/**
991 * s3c_hsotg_send_reply - send reply to control request
992 * @hsotg: The device state
993 * @ep: Endpoint 0
994 * @buff: Buffer for request
995 * @length: Length of reply.
996 *
997 * Create a request and queue it on the given endpoint. This is useful as
998 * an internal method of sending replies to certain control requests, etc.
999 */
1000static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
1001 struct s3c_hsotg_ep *ep,
1002 void *buff,
1003 int length)
1004{
1005 struct usb_request *req;
1006 int ret;
1007
1008 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1009
1010 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1011 hsotg->ep0_reply = req;
1012 if (!req) {
1013 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1014 return -ENOMEM;
1015 }
1016
1017 req->buf = hsotg->ep0_buff;
1018 req->length = length;
1019 req->zero = 1; /* always do zero-length final transfer */
1020 req->complete = s3c_hsotg_complete_oursetup;
1021
1022 if (length)
1023 memcpy(req->buf, buff, length);
1024 else
1025 ep->sent_zlp = 1;
1026
1027 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1028 if (ret) {
1029 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1030 return ret;
1031 }
1032
1033 return 0;
1034}
1035
1036/**
1037 * s3c_hsotg_process_req_status - process request GET_STATUS
1038 * @hsotg: The device state
1039 * @ctrl: USB control request
1040 */
1041static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1042 struct usb_ctrlrequest *ctrl)
1043{
1044 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1045 struct s3c_hsotg_ep *ep;
1046 __le16 reply;
1047 int ret;
1048
1049 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1050
1051 if (!ep0->dir_in) {
1052 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1053 return -EINVAL;
1054 }
1055
1056 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1057 case USB_RECIP_DEVICE:
1058 reply = cpu_to_le16(0); /* bit 0 => self powered,
1059 * bit 1 => remote wakeup */
1060 break;
1061
1062 case USB_RECIP_INTERFACE:
1063 /* currently, the data result should be zero */
1064 reply = cpu_to_le16(0);
1065 break;
1066
1067 case USB_RECIP_ENDPOINT:
1068 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1069 if (!ep)
1070 return -ENOENT;
1071
1072 reply = cpu_to_le16(ep->halted ? 1 : 0);
1073 break;
1074
1075 default:
1076 return 0;
1077 }
1078
1079 if (le16_to_cpu(ctrl->wLength) != 2)
1080 return -EINVAL;
1081
1082 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1083 if (ret) {
1084 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1085 return ret;
1086 }
1087
1088 return 1;
1089}
1090
1091static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1092
9c39ddc6
AT
1093/**
1094 * get_ep_head - return the first request on the endpoint
1095 * @hs_ep: The controller endpoint to get
1096 *
1097 * Get the first request on the endpoint.
1098 */
1099static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1100{
1101 if (list_empty(&hs_ep->queue))
1102 return NULL;
1103
1104 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1105}
1106
5b7d70c6
BD
1107/**
1108 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1109 * @hsotg: The device state
1110 * @ctrl: USB control request
1111 */
1112static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1113 struct usb_ctrlrequest *ctrl)
1114{
26ab3d0c 1115 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
9c39ddc6
AT
1116 struct s3c_hsotg_req *hs_req;
1117 bool restart;
5b7d70c6
BD
1118 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1119 struct s3c_hsotg_ep *ep;
26ab3d0c 1120 int ret;
bd9ef7bf 1121 bool halted;
5b7d70c6
BD
1122
1123 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1124 __func__, set ? "SET" : "CLEAR");
1125
1126 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1127 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1128 if (!ep) {
1129 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1130 __func__, le16_to_cpu(ctrl->wIndex));
1131 return -ENOENT;
1132 }
1133
1134 switch (le16_to_cpu(ctrl->wValue)) {
1135 case USB_ENDPOINT_HALT:
bd9ef7bf
RB
1136 halted = ep->halted;
1137
5b7d70c6 1138 s3c_hsotg_ep_sethalt(&ep->ep, set);
26ab3d0c
AT
1139
1140 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1141 if (ret) {
1142 dev_err(hsotg->dev,
1143 "%s: failed to send reply\n", __func__);
1144 return ret;
1145 }
9c39ddc6 1146
bd9ef7bf
RB
1147 /*
1148 * we have to complete all requests for ep if it was
1149 * halted, and the halt was cleared by CLEAR_FEATURE
1150 */
1151
1152 if (!set && halted) {
9c39ddc6
AT
1153 /*
1154 * If we have request in progress,
1155 * then complete it
1156 */
1157 if (ep->req) {
1158 hs_req = ep->req;
1159 ep->req = NULL;
1160 list_del_init(&hs_req->queue);
1161 hs_req->req.complete(&ep->ep,
1162 &hs_req->req);
1163 }
1164
1165 /* If we have pending request, then start it */
1166 restart = !list_empty(&ep->queue);
1167 if (restart) {
1168 hs_req = get_ep_head(ep);
1169 s3c_hsotg_start_req(hsotg, ep,
1170 hs_req, false);
1171 }
1172 }
1173
5b7d70c6
BD
1174 break;
1175
1176 default:
1177 return -ENOENT;
1178 }
1179 } else
1180 return -ENOENT; /* currently only deal with endpoint */
1181
1182 return 1;
1183}
1184
ab93e014 1185static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
d18f7116 1186static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
ab93e014 1187
c9f721b2
RB
1188/**
1189 * s3c_hsotg_stall_ep0 - stall ep0
1190 * @hsotg: The device state
1191 *
1192 * Set stall for ep0 as response for setup request.
1193 */
1194static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) {
1195 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1196 u32 reg;
1197 u32 ctrl;
1198
1199 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1200 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1201
1202 /*
1203 * DxEPCTL_Stall will be cleared by EP once it has
1204 * taken effect, so no need to clear later.
1205 */
1206
1207 ctrl = readl(hsotg->regs + reg);
1208 ctrl |= DxEPCTL_Stall;
1209 ctrl |= DxEPCTL_CNAK;
1210 writel(ctrl, hsotg->regs + reg);
1211
1212 dev_dbg(hsotg->dev,
1213 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1214 ctrl, reg, readl(hsotg->regs + reg));
1215
1216 /*
1217 * complete won't be called, so we enqueue
1218 * setup request here
1219 */
1220 s3c_hsotg_enqueue_setup(hsotg);
1221}
1222
5b7d70c6
BD
1223/**
1224 * s3c_hsotg_process_control - process a control request
1225 * @hsotg: The device state
1226 * @ctrl: The control request received
1227 *
1228 * The controller has received the SETUP phase of a control request, and
1229 * needs to work out what to do next (and whether to pass it on to the
1230 * gadget driver).
1231 */
1232static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1233 struct usb_ctrlrequest *ctrl)
1234{
1235 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1236 int ret = 0;
1237 u32 dcfg;
1238
1239 ep0->sent_zlp = 0;
1240
1241 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1242 ctrl->bRequest, ctrl->bRequestType,
1243 ctrl->wValue, ctrl->wLength);
1244
8b9bc460
LM
1245 /*
1246 * record the direction of the request, for later use when enquing
1247 * packets onto EP0.
1248 */
5b7d70c6
BD
1249
1250 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1251 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1252
8b9bc460
LM
1253 /*
1254 * if we've no data with this request, then the last part of the
1255 * transaction is going to implicitly be IN.
1256 */
5b7d70c6
BD
1257 if (ctrl->wLength == 0)
1258 ep0->dir_in = 1;
1259
1260 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1261 switch (ctrl->bRequest) {
1262 case USB_REQ_SET_ADDRESS:
d18f7116 1263 s3c_hsotg_disconnect(hsotg);
94cb8fd6
LM
1264 dcfg = readl(hsotg->regs + DCFG);
1265 dcfg &= ~DCFG_DevAddr_MASK;
1266 dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1267 writel(dcfg, hsotg->regs + DCFG);
5b7d70c6
BD
1268
1269 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1270
1271 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1272 return;
1273
1274 case USB_REQ_GET_STATUS:
1275 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1276 break;
1277
1278 case USB_REQ_CLEAR_FEATURE:
1279 case USB_REQ_SET_FEATURE:
1280 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1281 break;
1282 }
1283 }
1284
1285 /* as a fallback, try delivering it to the driver to deal with */
1286
1287 if (ret == 0 && hsotg->driver) {
93f599f2 1288 spin_unlock(&hsotg->lock);
5b7d70c6 1289 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
93f599f2 1290 spin_lock(&hsotg->lock);
5b7d70c6
BD
1291 if (ret < 0)
1292 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1293 }
1294
8b9bc460
LM
1295 /*
1296 * the request is either unhandlable, or is not formatted correctly
5b7d70c6
BD
1297 * so respond with a STALL for the status stage to indicate failure.
1298 */
1299
c9f721b2
RB
1300 if (ret < 0)
1301 s3c_hsotg_stall_ep0(hsotg);
5b7d70c6
BD
1302}
1303
5b7d70c6
BD
1304/**
1305 * s3c_hsotg_complete_setup - completion of a setup transfer
1306 * @ep: The endpoint the request was on.
1307 * @req: The request completed.
1308 *
1309 * Called on completion of any requests the driver itself submitted for
1310 * EP0 setup packets
1311 */
1312static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1313 struct usb_request *req)
1314{
1315 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1316 struct s3c_hsotg *hsotg = hs_ep->parent;
1317
1318 if (req->status < 0) {
1319 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1320 return;
1321 }
1322
93f599f2 1323 spin_lock(&hsotg->lock);
5b7d70c6
BD
1324 if (req->actual == 0)
1325 s3c_hsotg_enqueue_setup(hsotg);
1326 else
1327 s3c_hsotg_process_control(hsotg, req->buf);
93f599f2 1328 spin_unlock(&hsotg->lock);
5b7d70c6
BD
1329}
1330
1331/**
1332 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1333 * @hsotg: The device state.
1334 *
1335 * Enqueue a request on EP0 if necessary to received any SETUP packets
1336 * received from the host.
1337 */
1338static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1339{
1340 struct usb_request *req = hsotg->ctrl_req;
1341 struct s3c_hsotg_req *hs_req = our_req(req);
1342 int ret;
1343
1344 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1345
1346 req->zero = 0;
1347 req->length = 8;
1348 req->buf = hsotg->ctrl_buff;
1349 req->complete = s3c_hsotg_complete_setup;
1350
1351 if (!list_empty(&hs_req->queue)) {
1352 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1353 return;
1354 }
1355
1356 hsotg->eps[0].dir_in = 0;
1357
1358 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1359 if (ret < 0) {
1360 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
8b9bc460
LM
1361 /*
1362 * Don't think there's much we can do other than watch the
1363 * driver fail.
1364 */
5b7d70c6
BD
1365 }
1366}
1367
5b7d70c6
BD
1368/**
1369 * s3c_hsotg_complete_request - complete a request given to us
1370 * @hsotg: The device state.
1371 * @hs_ep: The endpoint the request was on.
1372 * @hs_req: The request to complete.
1373 * @result: The result code (0 => Ok, otherwise errno)
1374 *
1375 * The given request has finished, so call the necessary completion
1376 * if it has one and then look to see if we can start a new request
1377 * on the endpoint.
1378 *
1379 * Note, expects the ep to already be locked as appropriate.
8b9bc460 1380 */
5b7d70c6
BD
1381static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1382 struct s3c_hsotg_ep *hs_ep,
1383 struct s3c_hsotg_req *hs_req,
1384 int result)
1385{
1386 bool restart;
1387
1388 if (!hs_req) {
1389 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1390 return;
1391 }
1392
1393 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1394 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1395
8b9bc460
LM
1396 /*
1397 * only replace the status if we've not already set an error
1398 * from a previous transaction
1399 */
5b7d70c6
BD
1400
1401 if (hs_req->req.status == -EINPROGRESS)
1402 hs_req->req.status = result;
1403
1404 hs_ep->req = NULL;
1405 list_del_init(&hs_req->queue);
1406
1407 if (using_dma(hsotg))
1408 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1409
8b9bc460
LM
1410 /*
1411 * call the complete request with the locks off, just in case the
1412 * request tries to queue more work for this endpoint.
1413 */
5b7d70c6
BD
1414
1415 if (hs_req->req.complete) {
22258f49 1416 spin_unlock(&hsotg->lock);
5b7d70c6 1417 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
22258f49 1418 spin_lock(&hsotg->lock);
5b7d70c6
BD
1419 }
1420
8b9bc460
LM
1421 /*
1422 * Look to see if there is anything else to do. Note, the completion
5b7d70c6 1423 * of the previous request may have caused a new request to be started
8b9bc460
LM
1424 * so be careful when doing this.
1425 */
5b7d70c6
BD
1426
1427 if (!hs_ep->req && result >= 0) {
1428 restart = !list_empty(&hs_ep->queue);
1429 if (restart) {
1430 hs_req = get_ep_head(hs_ep);
1431 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1432 }
1433 }
1434}
1435
5b7d70c6
BD
1436/**
1437 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1438 * @hsotg: The device state.
1439 * @ep_idx: The endpoint index for the data
1440 * @size: The size of data in the fifo, in bytes
1441 *
1442 * The FIFO status shows there is data to read from the FIFO for a given
1443 * endpoint, so sort out whether we need to read the data into a request
1444 * that has been made for that endpoint.
1445 */
1446static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1447{
1448 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1449 struct s3c_hsotg_req *hs_req = hs_ep->req;
94cb8fd6 1450 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
5b7d70c6
BD
1451 int to_read;
1452 int max_req;
1453 int read_ptr;
1454
22258f49 1455
5b7d70c6 1456 if (!hs_req) {
94cb8fd6 1457 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
5b7d70c6
BD
1458 int ptr;
1459
1460 dev_warn(hsotg->dev,
1461 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1462 __func__, size, ep_idx, epctl);
1463
1464 /* dump the data from the FIFO, we've nothing we can do */
1465 for (ptr = 0; ptr < size; ptr += 4)
1466 (void)readl(fifo);
1467
1468 return;
1469 }
1470
5b7d70c6
BD
1471 to_read = size;
1472 read_ptr = hs_req->req.actual;
1473 max_req = hs_req->req.length - read_ptr;
1474
a33e7136
BD
1475 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1476 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1477
5b7d70c6 1478 if (to_read > max_req) {
8b9bc460
LM
1479 /*
1480 * more data appeared than we where willing
5b7d70c6
BD
1481 * to deal with in this request.
1482 */
1483
1484 /* currently we don't deal this */
1485 WARN_ON_ONCE(1);
1486 }
1487
5b7d70c6
BD
1488 hs_ep->total_data += to_read;
1489 hs_req->req.actual += to_read;
1490 to_read = DIV_ROUND_UP(to_read, 4);
1491
8b9bc460
LM
1492 /*
1493 * note, we might over-write the buffer end by 3 bytes depending on
1494 * alignment of the data.
1495 */
1a7ed5be 1496 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
5b7d70c6
BD
1497}
1498
1499/**
1500 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1501 * @hsotg: The device instance
1502 * @req: The request currently on this endpoint
1503 *
1504 * Generate a zero-length IN packet request for terminating a SETUP
1505 * transaction.
1506 *
1507 * Note, since we don't write any data to the TxFIFO, then it is
25985edc 1508 * currently believed that we do not need to wait for any space in
5b7d70c6
BD
1509 * the TxFIFO.
1510 */
1511static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1512 struct s3c_hsotg_req *req)
1513{
1514 u32 ctrl;
1515
1516 if (!req) {
1517 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1518 return;
1519 }
1520
1521 if (req->req.length == 0) {
1522 hsotg->eps[0].sent_zlp = 1;
1523 s3c_hsotg_enqueue_setup(hsotg);
1524 return;
1525 }
1526
1527 hsotg->eps[0].dir_in = 1;
1528 hsotg->eps[0].sent_zlp = 1;
1529
1530 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1531
1532 /* issue a zero-sized packet to terminate this */
94cb8fd6
LM
1533 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1534 DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
5b7d70c6 1535
94cb8fd6
LM
1536 ctrl = readl(hsotg->regs + DIEPCTL0);
1537 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
1538 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1539 ctrl |= DxEPCTL_USBActEp;
1540 writel(ctrl, hsotg->regs + DIEPCTL0);
5b7d70c6
BD
1541}
1542
1543/**
1544 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1545 * @hsotg: The device instance
1546 * @epnum: The endpoint received from
1547 * @was_setup: Set if processing a SetupDone event.
1548 *
1549 * The RXFIFO has delivered an OutDone event, which means that the data
1550 * transfer for an OUT endpoint has been completed, either by a short
1551 * packet or by the finish of a transfer.
8b9bc460 1552 */
5b7d70c6
BD
1553static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1554 int epnum, bool was_setup)
1555{
94cb8fd6 1556 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
5b7d70c6
BD
1557 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1558 struct s3c_hsotg_req *hs_req = hs_ep->req;
1559 struct usb_request *req = &hs_req->req;
94cb8fd6 1560 unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1561 int result = 0;
1562
1563 if (!hs_req) {
1564 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1565 return;
1566 }
1567
1568 if (using_dma(hsotg)) {
5b7d70c6 1569 unsigned size_done;
5b7d70c6 1570
8b9bc460
LM
1571 /*
1572 * Calculate the size of the transfer by checking how much
5b7d70c6
BD
1573 * is left in the endpoint size register and then working it
1574 * out from the amount we loaded for the transfer.
1575 *
1576 * We need to do this as DMA pointers are always 32bit aligned
1577 * so may overshoot/undershoot the transfer.
1578 */
1579
5b7d70c6
BD
1580 size_done = hs_ep->size_loaded - size_left;
1581 size_done += hs_ep->last_load;
1582
1583 req->actual = size_done;
1584 }
1585
a33e7136
BD
1586 /* if there is more request to do, schedule new transfer */
1587 if (req->actual < req->length && size_left == 0) {
1588 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1589 return;
71225bee
LM
1590 } else if (epnum == 0) {
1591 /*
1592 * After was_setup = 1 =>
1593 * set CNAK for non Setup requests
1594 */
1595 hsotg->setup = was_setup ? 0 : 1;
a33e7136
BD
1596 }
1597
5b7d70c6
BD
1598 if (req->actual < req->length && req->short_not_ok) {
1599 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1600 __func__, req->actual, req->length);
1601
8b9bc460
LM
1602 /*
1603 * todo - what should we return here? there's no one else
1604 * even bothering to check the status.
1605 */
5b7d70c6
BD
1606 }
1607
1608 if (epnum == 0) {
d3ca0259
LM
1609 /*
1610 * Condition req->complete != s3c_hsotg_complete_setup says:
1611 * send ZLP when we have an asynchronous request from gadget
1612 */
5b7d70c6
BD
1613 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1614 s3c_hsotg_send_zlp(hsotg, hs_req);
1615 }
1616
5ad1d316 1617 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
5b7d70c6
BD
1618}
1619
1620/**
1621 * s3c_hsotg_read_frameno - read current frame number
1622 * @hsotg: The device instance
1623 *
1624 * Return the current frame number
8b9bc460 1625 */
5b7d70c6
BD
1626static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1627{
1628 u32 dsts;
1629
94cb8fd6
LM
1630 dsts = readl(hsotg->regs + DSTS);
1631 dsts &= DSTS_SOFFN_MASK;
1632 dsts >>= DSTS_SOFFN_SHIFT;
5b7d70c6
BD
1633
1634 return dsts;
1635}
1636
1637/**
1638 * s3c_hsotg_handle_rx - RX FIFO has data
1639 * @hsotg: The device instance
1640 *
1641 * The IRQ handler has detected that the RX FIFO has some data in it
1642 * that requires processing, so find out what is in there and do the
1643 * appropriate read.
1644 *
25985edc 1645 * The RXFIFO is a true FIFO, the packets coming out are still in packet
5b7d70c6
BD
1646 * chunks, so if you have x packets received on an endpoint you'll get x
1647 * FIFO events delivered, each with a packet's worth of data in it.
1648 *
1649 * When using DMA, we should not be processing events from the RXFIFO
1650 * as the actual data should be sent to the memory directly and we turn
1651 * on the completion interrupts to get notifications of transfer completion.
1652 */
0978f8c5 1653static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
5b7d70c6 1654{
94cb8fd6 1655 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
5b7d70c6
BD
1656 u32 epnum, status, size;
1657
1658 WARN_ON(using_dma(hsotg));
1659
94cb8fd6
LM
1660 epnum = grxstsr & GRXSTS_EPNum_MASK;
1661 status = grxstsr & GRXSTS_PktSts_MASK;
5b7d70c6 1662
94cb8fd6
LM
1663 size = grxstsr & GRXSTS_ByteCnt_MASK;
1664 size >>= GRXSTS_ByteCnt_SHIFT;
5b7d70c6
BD
1665
1666 if (1)
1667 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1668 __func__, grxstsr, size, epnum);
1669
94cb8fd6 1670#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
5b7d70c6 1671
94cb8fd6
LM
1672 switch (status >> GRXSTS_PktSts_SHIFT) {
1673 case __status(GRXSTS_PktSts_GlobalOutNAK):
5b7d70c6
BD
1674 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1675 break;
1676
94cb8fd6 1677 case __status(GRXSTS_PktSts_OutDone):
5b7d70c6
BD
1678 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1679 s3c_hsotg_read_frameno(hsotg));
1680
1681 if (!using_dma(hsotg))
1682 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1683 break;
1684
94cb8fd6 1685 case __status(GRXSTS_PktSts_SetupDone):
5b7d70c6
BD
1686 dev_dbg(hsotg->dev,
1687 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1688 s3c_hsotg_read_frameno(hsotg),
94cb8fd6 1689 readl(hsotg->regs + DOEPCTL(0)));
5b7d70c6
BD
1690
1691 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1692 break;
1693
94cb8fd6 1694 case __status(GRXSTS_PktSts_OutRX):
5b7d70c6
BD
1695 s3c_hsotg_rx_data(hsotg, epnum, size);
1696 break;
1697
94cb8fd6 1698 case __status(GRXSTS_PktSts_SetupRX):
5b7d70c6
BD
1699 dev_dbg(hsotg->dev,
1700 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1701 s3c_hsotg_read_frameno(hsotg),
94cb8fd6 1702 readl(hsotg->regs + DOEPCTL(0)));
5b7d70c6
BD
1703
1704 s3c_hsotg_rx_data(hsotg, epnum, size);
1705 break;
1706
1707 default:
1708 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1709 __func__, grxstsr);
1710
1711 s3c_hsotg_dump(hsotg);
1712 break;
1713 }
1714}
1715
1716/**
1717 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1718 * @mps: The maximum packet size in bytes.
8b9bc460 1719 */
5b7d70c6
BD
1720static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1721{
1722 switch (mps) {
1723 case 64:
94cb8fd6 1724 return D0EPCTL_MPS_64;
5b7d70c6 1725 case 32:
94cb8fd6 1726 return D0EPCTL_MPS_32;
5b7d70c6 1727 case 16:
94cb8fd6 1728 return D0EPCTL_MPS_16;
5b7d70c6 1729 case 8:
94cb8fd6 1730 return D0EPCTL_MPS_8;
5b7d70c6
BD
1731 }
1732
1733 /* bad max packet size, warn and return invalid result */
1734 WARN_ON(1);
1735 return (u32)-1;
1736}
1737
1738/**
1739 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1740 * @hsotg: The driver state.
1741 * @ep: The index number of the endpoint
1742 * @mps: The maximum packet size in bytes
1743 *
1744 * Configure the maximum packet size for the given endpoint, updating
1745 * the hardware control registers to reflect this.
1746 */
1747static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1748 unsigned int ep, unsigned int mps)
1749{
1750 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1751 void __iomem *regs = hsotg->regs;
1752 u32 mpsval;
4fca54aa 1753 u32 mcval;
5b7d70c6
BD
1754 u32 reg;
1755
1756 if (ep == 0) {
1757 /* EP0 is a special case */
1758 mpsval = s3c_hsotg_ep0_mps(mps);
1759 if (mpsval > 3)
1760 goto bad_mps;
e9edd199 1761 hs_ep->ep.maxpacket = mps;
4fca54aa 1762 hs_ep->mc = 1;
5b7d70c6 1763 } else {
e9edd199
RB
1764 mpsval = mps & DxEPCTL_MPS_MASK;
1765 if (mpsval > 1024)
5b7d70c6 1766 goto bad_mps;
4fca54aa
RB
1767 mcval = ((mps >> 11) & 0x3) + 1;
1768 hs_ep->mc = mcval;
1769 if (mcval > 3)
1770 goto bad_mps;
e9edd199 1771 hs_ep->ep.maxpacket = mpsval;
5b7d70c6
BD
1772 }
1773
8b9bc460
LM
1774 /*
1775 * update both the in and out endpoint controldir_ registers, even
1776 * if one of the directions may not be in use.
1777 */
5b7d70c6 1778
94cb8fd6
LM
1779 reg = readl(regs + DIEPCTL(ep));
1780 reg &= ~DxEPCTL_MPS_MASK;
5b7d70c6 1781 reg |= mpsval;
94cb8fd6 1782 writel(reg, regs + DIEPCTL(ep));
5b7d70c6 1783
659ad60c 1784 if (ep) {
94cb8fd6
LM
1785 reg = readl(regs + DOEPCTL(ep));
1786 reg &= ~DxEPCTL_MPS_MASK;
659ad60c 1787 reg |= mpsval;
94cb8fd6 1788 writel(reg, regs + DOEPCTL(ep));
659ad60c 1789 }
5b7d70c6
BD
1790
1791 return;
1792
1793bad_mps:
1794 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1795}
1796
9c39ddc6
AT
1797/**
1798 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1799 * @hsotg: The driver state
1800 * @idx: The index for the endpoint (0..15)
1801 */
1802static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1803{
1804 int timeout;
1805 int val;
1806
94cb8fd6
LM
1807 writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1808 hsotg->regs + GRSTCTL);
9c39ddc6
AT
1809
1810 /* wait until the fifo is flushed */
1811 timeout = 100;
1812
1813 while (1) {
94cb8fd6 1814 val = readl(hsotg->regs + GRSTCTL);
9c39ddc6 1815
94cb8fd6 1816 if ((val & (GRSTCTL_TxFFlsh)) == 0)
9c39ddc6
AT
1817 break;
1818
1819 if (--timeout == 0) {
1820 dev_err(hsotg->dev,
1821 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1822 __func__, val);
1823 }
1824
1825 udelay(1);
1826 }
1827}
5b7d70c6
BD
1828
1829/**
1830 * s3c_hsotg_trytx - check to see if anything needs transmitting
1831 * @hsotg: The driver state
1832 * @hs_ep: The driver endpoint to check.
1833 *
1834 * Check to see if there is a request that has data to send, and if so
1835 * make an attempt to write data into the FIFO.
1836 */
1837static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1838 struct s3c_hsotg_ep *hs_ep)
1839{
1840 struct s3c_hsotg_req *hs_req = hs_ep->req;
1841
afcf4169
RB
1842 if (!hs_ep->dir_in || !hs_req) {
1843 /**
1844 * if request is not enqueued, we disable interrupts
1845 * for endpoints, excepting ep0
1846 */
1847 if (hs_ep->index != 0)
1848 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1849 hs_ep->dir_in, 0);
5b7d70c6 1850 return 0;
afcf4169 1851 }
5b7d70c6
BD
1852
1853 if (hs_req->req.actual < hs_req->req.length) {
1854 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1855 hs_ep->index);
1856 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1857 }
1858
1859 return 0;
1860}
1861
1862/**
1863 * s3c_hsotg_complete_in - complete IN transfer
1864 * @hsotg: The device state.
1865 * @hs_ep: The endpoint that has just completed.
1866 *
1867 * An IN transfer has been completed, update the transfer's state and then
1868 * call the relevant completion routines.
1869 */
1870static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1871 struct s3c_hsotg_ep *hs_ep)
1872{
1873 struct s3c_hsotg_req *hs_req = hs_ep->req;
94cb8fd6 1874 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
5b7d70c6
BD
1875 int size_left, size_done;
1876
1877 if (!hs_req) {
1878 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1879 return;
1880 }
1881
d3ca0259
LM
1882 /* Finish ZLP handling for IN EP0 transactions */
1883 if (hsotg->eps[0].sent_zlp) {
1884 dev_dbg(hsotg->dev, "zlp packet received\n");
5ad1d316 1885 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
d3ca0259
LM
1886 return;
1887 }
1888
8b9bc460
LM
1889 /*
1890 * Calculate the size of the transfer by checking how much is left
5b7d70c6
BD
1891 * in the endpoint size register and then working it out from
1892 * the amount we loaded for the transfer.
1893 *
1894 * We do this even for DMA, as the transfer may have incremented
1895 * past the end of the buffer (DMA transfers are always 32bit
1896 * aligned).
1897 */
1898
94cb8fd6 1899 size_left = DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1900
1901 size_done = hs_ep->size_loaded - size_left;
1902 size_done += hs_ep->last_load;
1903
1904 if (hs_req->req.actual != size_done)
1905 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1906 __func__, hs_req->req.actual, size_done);
1907
1908 hs_req->req.actual = size_done;
d3ca0259
LM
1909 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1910 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1911
1912 /*
1913 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1914 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1915 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1916 * inform the host that no more data is available.
1917 * The state of req.zero member is checked to be sure that the value to
1918 * send is smaller than wValue expected from host.
1919 * Check req.length to NOT send another ZLP when the current one is
1920 * under completion (the one for which this completion has been called).
1921 */
1922 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1923 hs_req->req.length == hs_req->req.actual &&
1924 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1925
1926 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1927 s3c_hsotg_send_zlp(hsotg, hs_req);
5b7d70c6 1928
d3ca0259
LM
1929 return;
1930 }
5b7d70c6
BD
1931
1932 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1933 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1934 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1935 } else
5ad1d316 1936 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
5b7d70c6
BD
1937}
1938
1939/**
1940 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1941 * @hsotg: The driver state
1942 * @idx: The index for the endpoint (0..15)
1943 * @dir_in: Set if this is an IN endpoint
1944 *
1945 * Process and clear any interrupt pending for an individual endpoint
8b9bc460 1946 */
5b7d70c6
BD
1947static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1948 int dir_in)
1949{
1950 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
94cb8fd6
LM
1951 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
5b7d70c6 1954 u32 ints;
1479e841 1955 u32 ctrl;
5b7d70c6
BD
1956
1957 ints = readl(hsotg->regs + epint_reg);
1479e841 1958 ctrl = readl(hsotg->regs + epctl_reg);
5b7d70c6 1959
a3395f0d
AT
1960 /* Clear endpoint interrupts */
1961 writel(ints, hsotg->regs + epint_reg);
1962
5b7d70c6
BD
1963 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1964 __func__, idx, dir_in ? "in" : "out", ints);
1965
94cb8fd6 1966 if (ints & DxEPINT_XferCompl) {
1479e841
RB
1967 if (hs_ep->isochronous && hs_ep->interval == 1) {
1968 if (ctrl & DxEPCTL_EOFrNum)
1969 ctrl |= DxEPCTL_SetEvenFr;
1970 else
1971 ctrl |= DxEPCTL_SetOddFr;
1972 writel(ctrl, hsotg->regs + epctl_reg);
1973 }
1974
5b7d70c6
BD
1975 dev_dbg(hsotg->dev,
1976 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1977 __func__, readl(hsotg->regs + epctl_reg),
1978 readl(hsotg->regs + epsiz_reg));
1979
8b9bc460
LM
1980 /*
1981 * we get OutDone from the FIFO, so we only need to look
1982 * at completing IN requests here
1983 */
5b7d70c6
BD
1984 if (dir_in) {
1985 s3c_hsotg_complete_in(hsotg, hs_ep);
1986
c9a64ea8 1987 if (idx == 0 && !hs_ep->req)
5b7d70c6
BD
1988 s3c_hsotg_enqueue_setup(hsotg);
1989 } else if (using_dma(hsotg)) {
8b9bc460
LM
1990 /*
1991 * We're using DMA, we need to fire an OutDone here
1992 * as we ignore the RXFIFO.
1993 */
5b7d70c6
BD
1994
1995 s3c_hsotg_handle_outdone(hsotg, idx, false);
1996 }
5b7d70c6
BD
1997 }
1998
94cb8fd6 1999 if (ints & DxEPINT_EPDisbld) {
5b7d70c6 2000 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
5b7d70c6 2001
9c39ddc6
AT
2002 if (dir_in) {
2003 int epctl = readl(hsotg->regs + epctl_reg);
2004
2005 s3c_hsotg_txfifo_flush(hsotg, idx);
2006
94cb8fd6
LM
2007 if ((epctl & DxEPCTL_Stall) &&
2008 (epctl & DxEPCTL_EPType_Bulk)) {
2009 int dctl = readl(hsotg->regs + DCTL);
9c39ddc6 2010
94cb8fd6
LM
2011 dctl |= DCTL_CGNPInNAK;
2012 writel(dctl, hsotg->regs + DCTL);
9c39ddc6
AT
2013 }
2014 }
2015 }
2016
94cb8fd6 2017 if (ints & DxEPINT_AHBErr)
5b7d70c6 2018 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
5b7d70c6 2019
94cb8fd6 2020 if (ints & DxEPINT_Setup) { /* Setup or Timeout */
5b7d70c6
BD
2021 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2022
2023 if (using_dma(hsotg) && idx == 0) {
8b9bc460
LM
2024 /*
2025 * this is the notification we've received a
5b7d70c6
BD
2026 * setup packet. In non-DMA mode we'd get this
2027 * from the RXFIFO, instead we need to process
8b9bc460
LM
2028 * the setup here.
2029 */
5b7d70c6
BD
2030
2031 if (dir_in)
2032 WARN_ON_ONCE(1);
2033 else
2034 s3c_hsotg_handle_outdone(hsotg, 0, true);
2035 }
5b7d70c6
BD
2036 }
2037
94cb8fd6 2038 if (ints & DxEPINT_Back2BackSetup)
5b7d70c6 2039 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
5b7d70c6 2040
1479e841 2041 if (dir_in && !hs_ep->isochronous) {
8b9bc460 2042 /* not sure if this is important, but we'll clear it anyway */
94cb8fd6 2043 if (ints & DIEPMSK_INTknTXFEmpMsk) {
5b7d70c6
BD
2044 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2045 __func__, idx);
5b7d70c6
BD
2046 }
2047
2048 /* this probably means something bad is happening */
94cb8fd6 2049 if (ints & DIEPMSK_INTknEPMisMsk) {
5b7d70c6
BD
2050 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2051 __func__, idx);
5b7d70c6 2052 }
10aebc77
BD
2053
2054 /* FIFO has space or is empty (see GAHBCFG) */
2055 if (hsotg->dedicated_fifos &&
94cb8fd6 2056 ints & DIEPMSK_TxFIFOEmpty) {
10aebc77
BD
2057 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2058 __func__, idx);
70fa030f
AT
2059 if (!using_dma(hsotg))
2060 s3c_hsotg_trytx(hsotg, hs_ep);
10aebc77 2061 }
5b7d70c6 2062 }
5b7d70c6
BD
2063}
2064
2065/**
2066 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2067 * @hsotg: The device state.
2068 *
2069 * Handle updating the device settings after the enumeration phase has
2070 * been completed.
8b9bc460 2071 */
5b7d70c6
BD
2072static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
2073{
94cb8fd6 2074 u32 dsts = readl(hsotg->regs + DSTS);
5b7d70c6
BD
2075 int ep0_mps = 0, ep_mps;
2076
8b9bc460
LM
2077 /*
2078 * This should signal the finish of the enumeration phase
5b7d70c6 2079 * of the USB handshaking, so we should now know what rate
8b9bc460
LM
2080 * we connected at.
2081 */
5b7d70c6
BD
2082
2083 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2084
8b9bc460
LM
2085 /*
2086 * note, since we're limited by the size of transfer on EP0, and
5b7d70c6 2087 * it seems IN transfers must be a even number of packets we do
8b9bc460
LM
2088 * not advertise a 64byte MPS on EP0.
2089 */
5b7d70c6
BD
2090
2091 /* catch both EnumSpd_FS and EnumSpd_FS48 */
94cb8fd6
LM
2092 switch (dsts & DSTS_EnumSpd_MASK) {
2093 case DSTS_EnumSpd_FS:
2094 case DSTS_EnumSpd_FS48:
5b7d70c6 2095 hsotg->gadget.speed = USB_SPEED_FULL;
5b7d70c6 2096 ep0_mps = EP0_MPS_LIMIT;
295538ff 2097 ep_mps = 1023;
5b7d70c6
BD
2098 break;
2099
94cb8fd6 2100 case DSTS_EnumSpd_HS:
5b7d70c6 2101 hsotg->gadget.speed = USB_SPEED_HIGH;
5b7d70c6 2102 ep0_mps = EP0_MPS_LIMIT;
295538ff 2103 ep_mps = 1024;
5b7d70c6
BD
2104 break;
2105
94cb8fd6 2106 case DSTS_EnumSpd_LS:
5b7d70c6 2107 hsotg->gadget.speed = USB_SPEED_LOW;
8b9bc460
LM
2108 /*
2109 * note, we don't actually support LS in this driver at the
5b7d70c6
BD
2110 * moment, and the documentation seems to imply that it isn't
2111 * supported by the PHYs on some of the devices.
2112 */
2113 break;
2114 }
e538dfda
MN
2115 dev_info(hsotg->dev, "new device is %s\n",
2116 usb_speed_string(hsotg->gadget.speed));
5b7d70c6 2117
8b9bc460
LM
2118 /*
2119 * we should now know the maximum packet size for an
2120 * endpoint, so set the endpoints to a default value.
2121 */
5b7d70c6
BD
2122
2123 if (ep0_mps) {
2124 int i;
2125 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
b3f489b2 2126 for (i = 1; i < hsotg->num_of_eps; i++)
5b7d70c6
BD
2127 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2128 }
2129
2130 /* ensure after enumeration our EP0 is active */
2131
2132 s3c_hsotg_enqueue_setup(hsotg);
2133
2134 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
94cb8fd6
LM
2135 readl(hsotg->regs + DIEPCTL0),
2136 readl(hsotg->regs + DOEPCTL0));
5b7d70c6
BD
2137}
2138
2139/**
2140 * kill_all_requests - remove all requests from the endpoint's queue
2141 * @hsotg: The device state.
2142 * @ep: The endpoint the requests may be on.
2143 * @result: The result code to use.
2144 * @force: Force removal of any current requests
2145 *
2146 * Go through the requests on the given endpoint and mark them
2147 * completed with the given result code.
2148 */
2149static void kill_all_requests(struct s3c_hsotg *hsotg,
2150 struct s3c_hsotg_ep *ep,
2151 int result, bool force)
2152{
2153 struct s3c_hsotg_req *req, *treq;
5b7d70c6
BD
2154
2155 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
8b9bc460
LM
2156 /*
2157 * currently, we can't do much about an already
2158 * running request on an in endpoint
2159 */
5b7d70c6
BD
2160
2161 if (ep->req == req && ep->dir_in && !force)
2162 continue;
2163
2164 s3c_hsotg_complete_request(hsotg, ep, req,
2165 result);
2166 }
b963a81a
RB
2167 if(hsotg->dedicated_fifos)
2168 if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
2169 s3c_hsotg_txfifo_flush(hsotg, ep->index);
5b7d70c6
BD
2170}
2171
2172#define call_gadget(_hs, _entry) \
a023da33 2173do { \
5b7d70c6 2174 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
5ad1d316
LM
2175 (_hs)->driver && (_hs)->driver->_entry) { \
2176 spin_unlock(&_hs->lock); \
2177 (_hs)->driver->_entry(&(_hs)->gadget); \
2178 spin_lock(&_hs->lock); \
a023da33
PM
2179 } \
2180} while (0)
5b7d70c6
BD
2181
2182/**
5e891342 2183 * s3c_hsotg_disconnect - disconnect service
5b7d70c6
BD
2184 * @hsotg: The device state.
2185 *
5e891342
LM
2186 * The device has been disconnected. Remove all current
2187 * transactions and signal the gadget driver that this
2188 * has happened.
8b9bc460 2189 */
5e891342 2190static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
5b7d70c6
BD
2191{
2192 unsigned ep;
2193
b3f489b2 2194 for (ep = 0; ep < hsotg->num_of_eps; ep++)
5b7d70c6
BD
2195 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2196
2197 call_gadget(hsotg, disconnect);
2198}
2199
2200/**
2201 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2202 * @hsotg: The device state:
2203 * @periodic: True if this is a periodic FIFO interrupt
2204 */
2205static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2206{
2207 struct s3c_hsotg_ep *ep;
2208 int epno, ret;
2209
2210 /* look through for any more data to transmit */
2211
b3f489b2 2212 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
5b7d70c6
BD
2213 ep = &hsotg->eps[epno];
2214
2215 if (!ep->dir_in)
2216 continue;
2217
2218 if ((periodic && !ep->periodic) ||
2219 (!periodic && ep->periodic))
2220 continue;
2221
2222 ret = s3c_hsotg_trytx(hsotg, ep);
2223 if (ret < 0)
2224 break;
2225 }
2226}
2227
5b7d70c6 2228/* IRQ flags which will trigger a retry around the IRQ loop */
94cb8fd6
LM
2229#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2230 GINTSTS_PTxFEmp | \
2231 GINTSTS_RxFLvl)
5b7d70c6 2232
308d734e
LM
2233/**
2234 * s3c_hsotg_corereset - issue softreset to the core
2235 * @hsotg: The device state
2236 *
2237 * Issue a soft reset to the core, and await the core finishing it.
8b9bc460 2238 */
308d734e
LM
2239static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2240{
2241 int timeout;
2242 u32 grstctl;
2243
2244 dev_dbg(hsotg->dev, "resetting core\n");
2245
2246 /* issue soft reset */
94cb8fd6 2247 writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
308d734e 2248
2868fea2 2249 timeout = 10000;
308d734e 2250 do {
94cb8fd6
LM
2251 grstctl = readl(hsotg->regs + GRSTCTL);
2252 } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
308d734e 2253
94cb8fd6 2254 if (grstctl & GRSTCTL_CSftRst) {
308d734e
LM
2255 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2256 return -EINVAL;
2257 }
2258
2868fea2 2259 timeout = 10000;
308d734e
LM
2260
2261 while (1) {
94cb8fd6 2262 u32 grstctl = readl(hsotg->regs + GRSTCTL);
308d734e
LM
2263
2264 if (timeout-- < 0) {
2265 dev_info(hsotg->dev,
2266 "%s: reset failed, GRSTCTL=%08x\n",
2267 __func__, grstctl);
2268 return -ETIMEDOUT;
2269 }
2270
94cb8fd6 2271 if (!(grstctl & GRSTCTL_AHBIdle))
308d734e
LM
2272 continue;
2273
2274 break; /* reset done */
2275 }
2276
2277 dev_dbg(hsotg->dev, "reset successful\n");
2278 return 0;
2279}
2280
8b9bc460
LM
2281/**
2282 * s3c_hsotg_core_init - issue softreset to the core
2283 * @hsotg: The device state
2284 *
2285 * Issue a soft reset to the core, and await the core finishing it.
2286 */
308d734e
LM
2287static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2288{
2289 s3c_hsotg_corereset(hsotg);
2290
2291 /*
2292 * we must now enable ep0 ready for host detection and then
2293 * set configuration.
2294 */
2295
2296 /* set the PLL on, remove the HNP/SRP and set the PHY */
f7e504c7 2297 writel(hsotg->phyif | GUSBCFG_TOutCal(7) |
94cb8fd6 2298 (0x5 << 10), hsotg->regs + GUSBCFG);
308d734e
LM
2299
2300 s3c_hsotg_init_fifo(hsotg);
2301
94cb8fd6 2302 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
308d734e 2303
94cb8fd6 2304 writel(1 << 18 | DCFG_DevSpd_HS, hsotg->regs + DCFG);
308d734e
LM
2305
2306 /* Clear any pending OTG interrupts */
94cb8fd6 2307 writel(0xffffffff, hsotg->regs + GOTGINT);
308d734e
LM
2308
2309 /* Clear any pending interrupts */
94cb8fd6 2310 writel(0xffffffff, hsotg->regs + GINTSTS);
308d734e 2311
94cb8fd6
LM
2312 writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2313 GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2314 GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2315 GINTSTS_EnumDone | GINTSTS_OTGInt |
2316 GINTSTS_USBSusp | GINTSTS_WkUpInt,
2317 hsotg->regs + GINTMSK);
308d734e
LM
2318
2319 if (using_dma(hsotg))
94cb8fd6
LM
2320 writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2321 GAHBCFG_HBstLen_Incr4,
2322 hsotg->regs + GAHBCFG);
308d734e 2323 else
8acc8296
RB
2324 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NPTxFEmpLvl |
2325 GAHBCFG_PTxFEmpLvl) : 0) |
2326 GAHBCFG_GlblIntrEn,
2327 hsotg->regs + GAHBCFG);
308d734e
LM
2328
2329 /*
8acc8296
RB
2330 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2331 * when we have no data to transfer. Otherwise we get being flooded by
2332 * interrupts.
308d734e
LM
2333 */
2334
8acc8296
RB
2335 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty |
2336 DIEPMSK_INTknTXFEmpMsk : 0) |
94cb8fd6
LM
2337 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2338 DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2339 DIEPMSK_INTknEPMisMsk,
2340 hsotg->regs + DIEPMSK);
308d734e
LM
2341
2342 /*
2343 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2344 * DMA mode we may need this.
2345 */
94cb8fd6
LM
2346 writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2347 DIEPMSK_TimeOUTMsk) : 0) |
2348 DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2349 DOEPMSK_SetupMsk,
2350 hsotg->regs + DOEPMSK);
308d734e 2351
94cb8fd6 2352 writel(0, hsotg->regs + DAINTMSK);
308d734e
LM
2353
2354 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
94cb8fd6
LM
2355 readl(hsotg->regs + DIEPCTL0),
2356 readl(hsotg->regs + DOEPCTL0));
308d734e
LM
2357
2358 /* enable in and out endpoint interrupts */
94cb8fd6 2359 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
308d734e
LM
2360
2361 /*
2362 * Enable the RXFIFO when in slave mode, as this is how we collect
2363 * the data. In DMA mode, we get events from the FIFO but also
2364 * things we cannot process, so do not use it.
2365 */
2366 if (!using_dma(hsotg))
94cb8fd6 2367 s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
308d734e
LM
2368
2369 /* Enable interrupts for EP0 in and out */
2370 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2371 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2372
94cb8fd6 2373 __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
308d734e 2374 udelay(10); /* see openiboot */
94cb8fd6 2375 __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
308d734e 2376
94cb8fd6 2377 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
308d734e
LM
2378
2379 /*
94cb8fd6 2380 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
308d734e
LM
2381 * writing to the EPCTL register..
2382 */
2383
2384 /* set to read 1 8byte packet */
94cb8fd6
LM
2385 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2386 DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
308d734e
LM
2387
2388 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
94cb8fd6
LM
2389 DxEPCTL_CNAK | DxEPCTL_EPEna |
2390 DxEPCTL_USBActEp,
2391 hsotg->regs + DOEPCTL0);
308d734e
LM
2392
2393 /* enable, but don't activate EP0in */
2394 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
94cb8fd6 2395 DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
308d734e
LM
2396
2397 s3c_hsotg_enqueue_setup(hsotg);
2398
2399 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
94cb8fd6
LM
2400 readl(hsotg->regs + DIEPCTL0),
2401 readl(hsotg->regs + DOEPCTL0));
308d734e
LM
2402
2403 /* clear global NAKs */
94cb8fd6
LM
2404 writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2405 hsotg->regs + DCTL);
308d734e
LM
2406
2407 /* must be at-least 3ms to allow bus to see disconnect */
2408 mdelay(3);
2409
2410 /* remove the soft-disconnect and let's go */
94cb8fd6 2411 __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
308d734e
LM
2412}
2413
5b7d70c6
BD
2414/**
2415 * s3c_hsotg_irq - handle device interrupt
2416 * @irq: The IRQ number triggered
2417 * @pw: The pw value when registered the handler.
2418 */
2419static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2420{
2421 struct s3c_hsotg *hsotg = pw;
2422 int retry_count = 8;
2423 u32 gintsts;
2424 u32 gintmsk;
2425
5ad1d316 2426 spin_lock(&hsotg->lock);
5b7d70c6 2427irq_retry:
94cb8fd6
LM
2428 gintsts = readl(hsotg->regs + GINTSTS);
2429 gintmsk = readl(hsotg->regs + GINTMSK);
5b7d70c6
BD
2430
2431 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2432 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2433
2434 gintsts &= gintmsk;
2435
94cb8fd6
LM
2436 if (gintsts & GINTSTS_OTGInt) {
2437 u32 otgint = readl(hsotg->regs + GOTGINT);
5b7d70c6
BD
2438
2439 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2440
94cb8fd6 2441 writel(otgint, hsotg->regs + GOTGINT);
5b7d70c6
BD
2442 }
2443
94cb8fd6 2444 if (gintsts & GINTSTS_SessReqInt) {
5b7d70c6 2445 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
94cb8fd6 2446 writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
5b7d70c6
BD
2447 }
2448
94cb8fd6
LM
2449 if (gintsts & GINTSTS_EnumDone) {
2450 writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
a3395f0d
AT
2451
2452 s3c_hsotg_irq_enumdone(hsotg);
5b7d70c6
BD
2453 }
2454
94cb8fd6 2455 if (gintsts & GINTSTS_ConIDStsChng) {
5b7d70c6 2456 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
94cb8fd6
LM
2457 readl(hsotg->regs + DSTS),
2458 readl(hsotg->regs + GOTGCTL));
5b7d70c6 2459
94cb8fd6 2460 writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
5b7d70c6
BD
2461 }
2462
94cb8fd6
LM
2463 if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2464 u32 daint = readl(hsotg->regs + DAINT);
7e804650
RB
2465 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2466 u32 daint_out, daint_in;
5b7d70c6
BD
2467 int ep;
2468
7e804650
RB
2469 daint &= daintmsk;
2470 daint_out = daint >> DAINT_OutEP_SHIFT;
2471 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2472
5b7d70c6
BD
2473 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2474
2475 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2476 if (daint_out & 1)
2477 s3c_hsotg_epint(hsotg, ep, 0);
2478 }
2479
2480 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2481 if (daint_in & 1)
2482 s3c_hsotg_epint(hsotg, ep, 1);
2483 }
5b7d70c6
BD
2484 }
2485
94cb8fd6 2486 if (gintsts & GINTSTS_USBRst) {
12a1f4dc 2487
94cb8fd6 2488 u32 usb_status = readl(hsotg->regs + GOTGCTL);
12a1f4dc 2489
5b7d70c6
BD
2490 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2491 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
94cb8fd6 2492 readl(hsotg->regs + GNPTXSTS));
5b7d70c6 2493
94cb8fd6 2494 writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
a3395f0d 2495
94cb8fd6 2496 if (usb_status & GOTGCTL_BSESVLD) {
12a1f4dc
LM
2497 if (time_after(jiffies, hsotg->last_rst +
2498 msecs_to_jiffies(200))) {
5b7d70c6 2499
12a1f4dc
LM
2500 kill_all_requests(hsotg, &hsotg->eps[0],
2501 -ECONNRESET, true);
5b7d70c6 2502
12a1f4dc
LM
2503 s3c_hsotg_core_init(hsotg);
2504 hsotg->last_rst = jiffies;
2505 }
2506 }
5b7d70c6
BD
2507 }
2508
2509 /* check both FIFOs */
2510
94cb8fd6 2511 if (gintsts & GINTSTS_NPTxFEmp) {
5b7d70c6
BD
2512 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2513
8b9bc460
LM
2514 /*
2515 * Disable the interrupt to stop it happening again
5b7d70c6 2516 * unless one of these endpoint routines decides that
8b9bc460
LM
2517 * it needs re-enabling
2518 */
5b7d70c6 2519
94cb8fd6 2520 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
5b7d70c6 2521 s3c_hsotg_irq_fifoempty(hsotg, false);
5b7d70c6
BD
2522 }
2523
94cb8fd6 2524 if (gintsts & GINTSTS_PTxFEmp) {
5b7d70c6
BD
2525 dev_dbg(hsotg->dev, "PTxFEmp\n");
2526
94cb8fd6 2527 /* See note in GINTSTS_NPTxFEmp */
5b7d70c6 2528
94cb8fd6 2529 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
5b7d70c6 2530 s3c_hsotg_irq_fifoempty(hsotg, true);
5b7d70c6
BD
2531 }
2532
94cb8fd6 2533 if (gintsts & GINTSTS_RxFLvl) {
8b9bc460
LM
2534 /*
2535 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
5b7d70c6 2536 * we need to retry s3c_hsotg_handle_rx if this is still
8b9bc460
LM
2537 * set.
2538 */
5b7d70c6
BD
2539
2540 s3c_hsotg_handle_rx(hsotg);
5b7d70c6
BD
2541 }
2542
94cb8fd6 2543 if (gintsts & GINTSTS_ModeMis) {
5b7d70c6 2544 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
94cb8fd6 2545 writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
5b7d70c6
BD
2546 }
2547
94cb8fd6
LM
2548 if (gintsts & GINTSTS_USBSusp) {
2549 dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2550 writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
5b7d70c6
BD
2551
2552 call_gadget(hsotg, suspend);
2553 }
2554
94cb8fd6
LM
2555 if (gintsts & GINTSTS_WkUpInt) {
2556 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2557 writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
5b7d70c6
BD
2558
2559 call_gadget(hsotg, resume);
2560 }
2561
94cb8fd6
LM
2562 if (gintsts & GINTSTS_ErlySusp) {
2563 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2564 writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
5b7d70c6
BD
2565 }
2566
8b9bc460
LM
2567 /*
2568 * these next two seem to crop-up occasionally causing the core
5b7d70c6 2569 * to shutdown the USB transfer, so try clearing them and logging
8b9bc460
LM
2570 * the occurrence.
2571 */
5b7d70c6 2572
94cb8fd6 2573 if (gintsts & GINTSTS_GOUTNakEff) {
5b7d70c6
BD
2574 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2575
94cb8fd6 2576 writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
a3395f0d
AT
2577
2578 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2579 }
2580
94cb8fd6 2581 if (gintsts & GINTSTS_GINNakEff) {
5b7d70c6
BD
2582 dev_info(hsotg->dev, "GINNakEff triggered\n");
2583
94cb8fd6 2584 writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
a3395f0d
AT
2585
2586 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2587 }
2588
8b9bc460
LM
2589 /*
2590 * if we've had fifo events, we should try and go around the
2591 * loop again to see if there's any point in returning yet.
2592 */
5b7d70c6
BD
2593
2594 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2595 goto irq_retry;
2596
5ad1d316
LM
2597 spin_unlock(&hsotg->lock);
2598
5b7d70c6
BD
2599 return IRQ_HANDLED;
2600}
2601
2602/**
2603 * s3c_hsotg_ep_enable - enable the given endpoint
2604 * @ep: The USB endpint to configure
2605 * @desc: The USB endpoint descriptor to configure with.
2606 *
2607 * This is called from the USB gadget code's usb_ep_enable().
8b9bc460 2608 */
5b7d70c6
BD
2609static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2610 const struct usb_endpoint_descriptor *desc)
2611{
2612 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2613 struct s3c_hsotg *hsotg = hs_ep->parent;
2614 unsigned long flags;
2615 int index = hs_ep->index;
2616 u32 epctrl_reg;
2617 u32 epctrl;
2618 u32 mps;
2619 int dir_in;
19c190f9 2620 int ret = 0;
5b7d70c6
BD
2621
2622 dev_dbg(hsotg->dev,
2623 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2624 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2625 desc->wMaxPacketSize, desc->bInterval);
2626
2627 /* not to be called for EP0 */
2628 WARN_ON(index == 0);
2629
2630 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2631 if (dir_in != hs_ep->dir_in) {
2632 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2633 return -EINVAL;
2634 }
2635
29cc8897 2636 mps = usb_endpoint_maxp(desc);
5b7d70c6
BD
2637
2638 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2639
94cb8fd6 2640 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
5b7d70c6
BD
2641 epctrl = readl(hsotg->regs + epctrl_reg);
2642
2643 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2644 __func__, epctrl, epctrl_reg);
2645
22258f49 2646 spin_lock_irqsave(&hsotg->lock, flags);
5b7d70c6 2647
94cb8fd6
LM
2648 epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2649 epctrl |= DxEPCTL_MPS(mps);
5b7d70c6 2650
8b9bc460
LM
2651 /*
2652 * mark the endpoint as active, otherwise the core may ignore
2653 * transactions entirely for this endpoint
2654 */
94cb8fd6 2655 epctrl |= DxEPCTL_USBActEp;
5b7d70c6 2656
8b9bc460
LM
2657 /*
2658 * set the NAK status on the endpoint, otherwise we might try and
5b7d70c6
BD
2659 * do something with data that we've yet got a request to process
2660 * since the RXFIFO will take data for an endpoint even if the
2661 * size register hasn't been set.
2662 */
2663
94cb8fd6 2664 epctrl |= DxEPCTL_SNAK;
5b7d70c6
BD
2665
2666 /* update the endpoint state */
e9edd199 2667 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
5b7d70c6
BD
2668
2669 /* default, set to non-periodic */
1479e841 2670 hs_ep->isochronous = 0;
5b7d70c6 2671 hs_ep->periodic = 0;
a18ed7b0 2672 hs_ep->halted = 0;
1479e841 2673 hs_ep->interval = desc->bInterval;
5b7d70c6 2674
4fca54aa
RB
2675 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2676 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2677
5b7d70c6
BD
2678 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2679 case USB_ENDPOINT_XFER_ISOC:
1479e841
RB
2680 epctrl |= DxEPCTL_EPType_Iso;
2681 epctrl |= DxEPCTL_SetEvenFr;
2682 hs_ep->isochronous = 1;
2683 if (dir_in)
2684 hs_ep->periodic = 1;
2685 break;
5b7d70c6
BD
2686
2687 case USB_ENDPOINT_XFER_BULK:
94cb8fd6 2688 epctrl |= DxEPCTL_EPType_Bulk;
5b7d70c6
BD
2689 break;
2690
2691 case USB_ENDPOINT_XFER_INT:
2692 if (dir_in) {
8b9bc460
LM
2693 /*
2694 * Allocate our TxFNum by simply using the index
5b7d70c6
BD
2695 * of the endpoint for the moment. We could do
2696 * something better if the host indicates how
8b9bc460
LM
2697 * many FIFOs we are expecting to use.
2698 */
5b7d70c6
BD
2699
2700 hs_ep->periodic = 1;
94cb8fd6 2701 epctrl |= DxEPCTL_TxFNum(index);
5b7d70c6
BD
2702 }
2703
94cb8fd6 2704 epctrl |= DxEPCTL_EPType_Intterupt;
5b7d70c6
BD
2705 break;
2706
2707 case USB_ENDPOINT_XFER_CONTROL:
94cb8fd6 2708 epctrl |= DxEPCTL_EPType_Control;
5b7d70c6
BD
2709 break;
2710 }
2711
8b9bc460
LM
2712 /*
2713 * if the hardware has dedicated fifos, we must give each IN EP
10aebc77
BD
2714 * a unique tx-fifo even if it is non-periodic.
2715 */
2716 if (dir_in && hsotg->dedicated_fifos)
94cb8fd6 2717 epctrl |= DxEPCTL_TxFNum(index);
10aebc77 2718
5b7d70c6
BD
2719 /* for non control endpoints, set PID to D0 */
2720 if (index)
94cb8fd6 2721 epctrl |= DxEPCTL_SetD0PID;
5b7d70c6
BD
2722
2723 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2724 __func__, epctrl);
2725
2726 writel(epctrl, hsotg->regs + epctrl_reg);
2727 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2728 __func__, readl(hsotg->regs + epctrl_reg));
2729
2730 /* enable the endpoint interrupt */
2731 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2732
22258f49 2733 spin_unlock_irqrestore(&hsotg->lock, flags);
19c190f9 2734 return ret;
5b7d70c6
BD
2735}
2736
8b9bc460
LM
2737/**
2738 * s3c_hsotg_ep_disable - disable given endpoint
2739 * @ep: The endpoint to disable.
2740 */
5b7d70c6
BD
2741static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2742{
2743 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2744 struct s3c_hsotg *hsotg = hs_ep->parent;
2745 int dir_in = hs_ep->dir_in;
2746 int index = hs_ep->index;
2747 unsigned long flags;
2748 u32 epctrl_reg;
2749 u32 ctrl;
2750
2751 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2752
2753 if (ep == &hsotg->eps[0].ep) {
2754 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2755 return -EINVAL;
2756 }
2757
94cb8fd6 2758 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
5b7d70c6 2759
5ad1d316 2760 spin_lock_irqsave(&hsotg->lock, flags);
5b7d70c6
BD
2761 /* terminate all requests with shutdown */
2762 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2763
5b7d70c6
BD
2764
2765 ctrl = readl(hsotg->regs + epctrl_reg);
94cb8fd6
LM
2766 ctrl &= ~DxEPCTL_EPEna;
2767 ctrl &= ~DxEPCTL_USBActEp;
2768 ctrl |= DxEPCTL_SNAK;
5b7d70c6
BD
2769
2770 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2771 writel(ctrl, hsotg->regs + epctrl_reg);
2772
2773 /* disable endpoint interrupts */
2774 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2775
22258f49 2776 spin_unlock_irqrestore(&hsotg->lock, flags);
5b7d70c6
BD
2777 return 0;
2778}
2779
2780/**
2781 * on_list - check request is on the given endpoint
2782 * @ep: The endpoint to check.
2783 * @test: The request to test if it is on the endpoint.
8b9bc460 2784 */
5b7d70c6
BD
2785static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2786{
2787 struct s3c_hsotg_req *req, *treq;
2788
2789 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2790 if (req == test)
2791 return true;
2792 }
2793
2794 return false;
2795}
2796
8b9bc460
LM
2797/**
2798 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2799 * @ep: The endpoint to dequeue.
2800 * @req: The request to be removed from a queue.
2801 */
5b7d70c6
BD
2802static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2803{
2804 struct s3c_hsotg_req *hs_req = our_req(req);
2805 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2806 struct s3c_hsotg *hs = hs_ep->parent;
2807 unsigned long flags;
2808
2809 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2810
22258f49 2811 spin_lock_irqsave(&hs->lock, flags);
5b7d70c6
BD
2812
2813 if (!on_list(hs_ep, hs_req)) {
22258f49 2814 spin_unlock_irqrestore(&hs->lock, flags);
5b7d70c6
BD
2815 return -EINVAL;
2816 }
2817
2818 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
22258f49 2819 spin_unlock_irqrestore(&hs->lock, flags);
5b7d70c6
BD
2820
2821 return 0;
2822}
2823
8b9bc460
LM
2824/**
2825 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2826 * @ep: The endpoint to set halt.
2827 * @value: Set or unset the halt.
2828 */
5b7d70c6
BD
2829static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2830{
2831 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2832 struct s3c_hsotg *hs = hs_ep->parent;
2833 int index = hs_ep->index;
5b7d70c6
BD
2834 u32 epreg;
2835 u32 epctl;
9c39ddc6 2836 u32 xfertype;
5b7d70c6
BD
2837
2838 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2839
c9f721b2
RB
2840 if (index == 0) {
2841 if (value)
2842 s3c_hsotg_stall_ep0(hs);
2843 else
2844 dev_warn(hs->dev,
2845 "%s: can't clear halt on ep0\n", __func__);
2846 return 0;
2847 }
2848
5b7d70c6
BD
2849 /* write both IN and OUT control registers */
2850
94cb8fd6 2851 epreg = DIEPCTL(index);
5b7d70c6
BD
2852 epctl = readl(hs->regs + epreg);
2853
9c39ddc6 2854 if (value) {
94cb8fd6
LM
2855 epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2856 if (epctl & DxEPCTL_EPEna)
2857 epctl |= DxEPCTL_EPDis;
9c39ddc6 2858 } else {
94cb8fd6
LM
2859 epctl &= ~DxEPCTL_Stall;
2860 xfertype = epctl & DxEPCTL_EPType_MASK;
2861 if (xfertype == DxEPCTL_EPType_Bulk ||
2862 xfertype == DxEPCTL_EPType_Intterupt)
2863 epctl |= DxEPCTL_SetD0PID;
9c39ddc6 2864 }
5b7d70c6
BD
2865
2866 writel(epctl, hs->regs + epreg);
2867
94cb8fd6 2868 epreg = DOEPCTL(index);
5b7d70c6
BD
2869 epctl = readl(hs->regs + epreg);
2870
2871 if (value)
94cb8fd6 2872 epctl |= DxEPCTL_Stall;
9c39ddc6 2873 else {
94cb8fd6
LM
2874 epctl &= ~DxEPCTL_Stall;
2875 xfertype = epctl & DxEPCTL_EPType_MASK;
2876 if (xfertype == DxEPCTL_EPType_Bulk ||
2877 xfertype == DxEPCTL_EPType_Intterupt)
2878 epctl |= DxEPCTL_SetD0PID;
9c39ddc6 2879 }
5b7d70c6
BD
2880
2881 writel(epctl, hs->regs + epreg);
2882
a18ed7b0
RB
2883 hs_ep->halted = value;
2884
5b7d70c6
BD
2885 return 0;
2886}
2887
5ad1d316
LM
2888/**
2889 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2890 * @ep: The endpoint to set halt.
2891 * @value: Set or unset the halt.
2892 */
2893static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2894{
2895 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2896 struct s3c_hsotg *hs = hs_ep->parent;
2897 unsigned long flags = 0;
2898 int ret = 0;
2899
2900 spin_lock_irqsave(&hs->lock, flags);
2901 ret = s3c_hsotg_ep_sethalt(ep, value);
2902 spin_unlock_irqrestore(&hs->lock, flags);
2903
2904 return ret;
2905}
2906
5b7d70c6
BD
2907static struct usb_ep_ops s3c_hsotg_ep_ops = {
2908 .enable = s3c_hsotg_ep_enable,
2909 .disable = s3c_hsotg_ep_disable,
2910 .alloc_request = s3c_hsotg_ep_alloc_request,
2911 .free_request = s3c_hsotg_ep_free_request,
5ad1d316 2912 .queue = s3c_hsotg_ep_queue_lock,
5b7d70c6 2913 .dequeue = s3c_hsotg_ep_dequeue,
5ad1d316 2914 .set_halt = s3c_hsotg_ep_sethalt_lock,
25985edc 2915 /* note, don't believe we have any call for the fifo routines */
5b7d70c6
BD
2916};
2917
41188786
LM
2918/**
2919 * s3c_hsotg_phy_enable - enable platform phy dev
8b9bc460 2920 * @hsotg: The driver state
41188786
LM
2921 *
2922 * A wrapper for platform code responsible for controlling
2923 * low-level USB code
2924 */
2925static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2926{
2927 struct platform_device *pdev = to_platform_device(hsotg->dev);
2928
2929 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
b2e587db 2930
74084844
MP
2931 if (hsotg->phy) {
2932 phy_init(hsotg->phy);
2933 phy_power_on(hsotg->phy);
2934 } else if (hsotg->uphy)
2935 usb_phy_init(hsotg->uphy);
b2e587db 2936 else if (hsotg->plat->phy_init)
41188786
LM
2937 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2938}
2939
2940/**
2941 * s3c_hsotg_phy_disable - disable platform phy dev
8b9bc460 2942 * @hsotg: The driver state
41188786
LM
2943 *
2944 * A wrapper for platform code responsible for controlling
2945 * low-level USB code
2946 */
2947static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2948{
2949 struct platform_device *pdev = to_platform_device(hsotg->dev);
2950
74084844
MP
2951 if (hsotg->phy) {
2952 phy_power_off(hsotg->phy);
2953 phy_exit(hsotg->phy);
2954 } else if (hsotg->uphy)
2955 usb_phy_shutdown(hsotg->uphy);
b2e587db 2956 else if (hsotg->plat->phy_exit)
41188786
LM
2957 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2958}
2959
8b9bc460
LM
2960/**
2961 * s3c_hsotg_init - initalize the usb core
2962 * @hsotg: The driver state
2963 */
b3f489b2
LM
2964static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2965{
2966 /* unmask subset of endpoint interrupts */
2967
94cb8fd6
LM
2968 writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2969 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2970 hsotg->regs + DIEPMSK);
b3f489b2 2971
94cb8fd6
LM
2972 writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2973 DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2974 hsotg->regs + DOEPMSK);
b3f489b2 2975
94cb8fd6 2976 writel(0, hsotg->regs + DAINTMSK);
b3f489b2
LM
2977
2978 /* Be in disconnected state until gadget is registered */
94cb8fd6 2979 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
b3f489b2
LM
2980
2981 if (0) {
2982 /* post global nak until we're ready */
94cb8fd6
LM
2983 writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2984 hsotg->regs + DCTL);
b3f489b2
LM
2985 }
2986
2987 /* setup fifos */
2988
2989 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
94cb8fd6
LM
2990 readl(hsotg->regs + GRXFSIZ),
2991 readl(hsotg->regs + GNPTXFSIZ));
b3f489b2
LM
2992
2993 s3c_hsotg_init_fifo(hsotg);
2994
2995 /* set the PLL on, remove the HNP/SRP and set the PHY */
94cb8fd6
LM
2996 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2997 hsotg->regs + GUSBCFG);
b3f489b2 2998
94cb8fd6
LM
2999 writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
3000 hsotg->regs + GAHBCFG);
b3f489b2
LM
3001}
3002
8b9bc460
LM
3003/**
3004 * s3c_hsotg_udc_start - prepare the udc for work
3005 * @gadget: The usb gadget state
3006 * @driver: The usb gadget driver
3007 *
3008 * Perform initialization to prepare udc device and driver
3009 * to work.
3010 */
f65f0f10
LM
3011static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
3012 struct usb_gadget_driver *driver)
5b7d70c6 3013{
f99b2bfe 3014 struct s3c_hsotg *hsotg = to_hsotg(gadget);
5b7d70c6
BD
3015 int ret;
3016
3017 if (!hsotg) {
a023da33 3018 pr_err("%s: called with no device\n", __func__);
5b7d70c6
BD
3019 return -ENODEV;
3020 }
3021
3022 if (!driver) {
3023 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3024 return -EINVAL;
3025 }
3026
7177aed4 3027 if (driver->max_speed < USB_SPEED_FULL)
5b7d70c6 3028 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
5b7d70c6 3029
f65f0f10 3030 if (!driver->setup) {
5b7d70c6
BD
3031 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3032 return -EINVAL;
3033 }
3034
3035 WARN_ON(hsotg->driver);
3036
3037 driver->driver.bus = NULL;
3038 hsotg->driver = driver;
7d7b2292 3039 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
5b7d70c6
BD
3040 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3041
f65f0f10
LM
3042 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3043 hsotg->supplies);
5b7d70c6 3044 if (ret) {
f65f0f10 3045 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
5b7d70c6
BD
3046 goto err;
3047 }
3048
12a1f4dc 3049 hsotg->last_rst = jiffies;
5b7d70c6
BD
3050 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3051 return 0;
3052
3053err:
3054 hsotg->driver = NULL;
5b7d70c6
BD
3055 return ret;
3056}
3057
8b9bc460
LM
3058/**
3059 * s3c_hsotg_udc_stop - stop the udc
3060 * @gadget: The usb gadget state
3061 * @driver: The usb gadget driver
3062 *
3063 * Stop udc hw block and stay tunned for future transmissions
3064 */
f65f0f10
LM
3065static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
3066 struct usb_gadget_driver *driver)
5b7d70c6 3067{
f99b2bfe 3068 struct s3c_hsotg *hsotg = to_hsotg(gadget);
2b19a52c 3069 unsigned long flags = 0;
5b7d70c6
BD
3070 int ep;
3071
3072 if (!hsotg)
3073 return -ENODEV;
3074
5b7d70c6 3075 /* all endpoints should be shutdown */
b3f489b2 3076 for (ep = 0; ep < hsotg->num_of_eps; ep++)
5b7d70c6
BD
3077 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3078
2b19a52c
LM
3079 spin_lock_irqsave(&hsotg->lock, flags);
3080
f65f0f10 3081 s3c_hsotg_phy_disable(hsotg);
5b7d70c6 3082
c8c10253
MS
3083 if (!driver)
3084 hsotg->driver = NULL;
3085
5b7d70c6 3086 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5b7d70c6 3087
2b19a52c
LM
3088 spin_unlock_irqrestore(&hsotg->lock, flags);
3089
c8c10253 3090 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
5b7d70c6
BD
3091
3092 return 0;
3093}
5b7d70c6 3094
8b9bc460
LM
3095/**
3096 * s3c_hsotg_gadget_getframe - read the frame number
3097 * @gadget: The usb gadget state
3098 *
3099 * Read the {micro} frame number
3100 */
5b7d70c6
BD
3101static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3102{
3103 return s3c_hsotg_read_frameno(to_hsotg(gadget));
3104}
3105
a188b689
LM
3106/**
3107 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3108 * @gadget: The usb gadget state
3109 * @is_on: Current state of the USB PHY
3110 *
3111 * Connect/Disconnect the USB PHY pullup
3112 */
3113static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3114{
3115 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3116 unsigned long flags = 0;
3117
3118 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3119
3120 spin_lock_irqsave(&hsotg->lock, flags);
3121 if (is_on) {
3122 s3c_hsotg_phy_enable(hsotg);
3123 s3c_hsotg_core_init(hsotg);
3124 } else {
3125 s3c_hsotg_disconnect(hsotg);
3126 s3c_hsotg_phy_disable(hsotg);
3127 }
3128
3129 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3130 spin_unlock_irqrestore(&hsotg->lock, flags);
3131
3132 return 0;
3133}
3134
eeef4587 3135static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
5b7d70c6 3136 .get_frame = s3c_hsotg_gadget_getframe,
f65f0f10
LM
3137 .udc_start = s3c_hsotg_udc_start,
3138 .udc_stop = s3c_hsotg_udc_stop,
a188b689 3139 .pullup = s3c_hsotg_pullup,
5b7d70c6
BD
3140};
3141
3142/**
3143 * s3c_hsotg_initep - initialise a single endpoint
3144 * @hsotg: The device state.
3145 * @hs_ep: The endpoint to be initialised.
3146 * @epnum: The endpoint number
3147 *
3148 * Initialise the given endpoint (as part of the probe and device state
3149 * creation) to give to the gadget driver. Setup the endpoint name, any
3150 * direction information and other state that may be required.
3151 */
41ac7b3a 3152static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
5b7d70c6
BD
3153 struct s3c_hsotg_ep *hs_ep,
3154 int epnum)
3155{
3156 u32 ptxfifo;
3157 char *dir;
3158
3159 if (epnum == 0)
3160 dir = "";
3161 else if ((epnum % 2) == 0) {
3162 dir = "out";
3163 } else {
3164 dir = "in";
3165 hs_ep->dir_in = 1;
3166 }
3167
3168 hs_ep->index = epnum;
3169
3170 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3171
3172 INIT_LIST_HEAD(&hs_ep->queue);
3173 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3174
5b7d70c6
BD
3175 /* add to the list of endpoints known by the gadget driver */
3176 if (epnum)
3177 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3178
3179 hs_ep->parent = hsotg;
3180 hs_ep->ep.name = hs_ep->name;
e117e742 3181 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
5b7d70c6
BD
3182 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3183
8b9bc460
LM
3184 /*
3185 * Read the FIFO size for the Periodic TX FIFO, even if we're
5b7d70c6
BD
3186 * an OUT endpoint, we may as well do this if in future the
3187 * code is changed to make each endpoint's direction changeable.
3188 */
3189
94cb8fd6
LM
3190 ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3191 hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
5b7d70c6 3192
8b9bc460
LM
3193 /*
3194 * if we're using dma, we need to set the next-endpoint pointer
5b7d70c6
BD
3195 * to be something valid.
3196 */
3197
3198 if (using_dma(hsotg)) {
94cb8fd6
LM
3199 u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3200 writel(next, hsotg->regs + DIEPCTL(epnum));
3201 writel(next, hsotg->regs + DOEPCTL(epnum));
5b7d70c6
BD
3202 }
3203}
3204
b3f489b2
LM
3205/**
3206 * s3c_hsotg_hw_cfg - read HW configuration registers
3207 * @param: The device state
3208 *
3209 * Read the USB core HW configuration registers
3210 */
3211static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
5b7d70c6 3212{
b3f489b2
LM
3213 u32 cfg2, cfg4;
3214 /* check hardware configuration */
5b7d70c6 3215
b3f489b2
LM
3216 cfg2 = readl(hsotg->regs + 0x48);
3217 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
10aebc77 3218
b3f489b2 3219 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
10aebc77
BD
3220
3221 cfg4 = readl(hsotg->regs + 0x50);
3222 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3223
3224 dev_info(hsotg->dev, "%s fifos\n",
3225 hsotg->dedicated_fifos ? "dedicated" : "shared");
5b7d70c6
BD
3226}
3227
8b9bc460
LM
3228/**
3229 * s3c_hsotg_dump - dump state of the udc
3230 * @param: The device state
3231 */
5b7d70c6
BD
3232static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3233{
83a01804 3234#ifdef DEBUG
5b7d70c6
BD
3235 struct device *dev = hsotg->dev;
3236 void __iomem *regs = hsotg->regs;
3237 u32 val;
3238 int idx;
3239
3240 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
94cb8fd6
LM
3241 readl(regs + DCFG), readl(regs + DCTL),
3242 readl(regs + DIEPMSK));
5b7d70c6
BD
3243
3244 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
94cb8fd6 3245 readl(regs + GAHBCFG), readl(regs + 0x44));
5b7d70c6
BD
3246
3247 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
94cb8fd6 3248 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
5b7d70c6
BD
3249
3250 /* show periodic fifo settings */
3251
3252 for (idx = 1; idx <= 15; idx++) {
94cb8fd6 3253 val = readl(regs + DPTXFSIZn(idx));
5b7d70c6 3254 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
94cb8fd6
LM
3255 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3256 val & DPTXFSIZn_DPTxFStAddr_MASK);
5b7d70c6
BD
3257 }
3258
3259 for (idx = 0; idx < 15; idx++) {
3260 dev_info(dev,
3261 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
94cb8fd6
LM
3262 readl(regs + DIEPCTL(idx)),
3263 readl(regs + DIEPTSIZ(idx)),
3264 readl(regs + DIEPDMA(idx)));
5b7d70c6 3265
94cb8fd6 3266 val = readl(regs + DOEPCTL(idx));
5b7d70c6
BD
3267 dev_info(dev,
3268 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
94cb8fd6
LM
3269 idx, readl(regs + DOEPCTL(idx)),
3270 readl(regs + DOEPTSIZ(idx)),
3271 readl(regs + DOEPDMA(idx)));
5b7d70c6
BD
3272
3273 }
3274
3275 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
94cb8fd6 3276 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
83a01804 3277#endif
5b7d70c6
BD
3278}
3279
5b7d70c6
BD
3280/**
3281 * state_show - debugfs: show overall driver and device state.
3282 * @seq: The seq file to write to.
3283 * @v: Unused parameter.
3284 *
3285 * This debugfs entry shows the overall state of the hardware and
3286 * some general information about each of the endpoints available
3287 * to the system.
3288 */
3289static int state_show(struct seq_file *seq, void *v)
3290{
3291 struct s3c_hsotg *hsotg = seq->private;
3292 void __iomem *regs = hsotg->regs;
3293 int idx;
3294
3295 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
94cb8fd6
LM
3296 readl(regs + DCFG),
3297 readl(regs + DCTL),
3298 readl(regs + DSTS));
5b7d70c6
BD
3299
3300 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
94cb8fd6 3301 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
5b7d70c6
BD
3302
3303 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
94cb8fd6
LM
3304 readl(regs + GINTMSK),
3305 readl(regs + GINTSTS));
5b7d70c6
BD
3306
3307 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
94cb8fd6
LM
3308 readl(regs + DAINTMSK),
3309 readl(regs + DAINT));
5b7d70c6
BD
3310
3311 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
94cb8fd6
LM
3312 readl(regs + GNPTXSTS),
3313 readl(regs + GRXSTSR));
5b7d70c6 3314
a023da33 3315 seq_puts(seq, "\nEndpoint status:\n");
5b7d70c6
BD
3316
3317 for (idx = 0; idx < 15; idx++) {
3318 u32 in, out;
3319
94cb8fd6
LM
3320 in = readl(regs + DIEPCTL(idx));
3321 out = readl(regs + DOEPCTL(idx));
5b7d70c6
BD
3322
3323 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3324 idx, in, out);
3325
94cb8fd6
LM
3326 in = readl(regs + DIEPTSIZ(idx));
3327 out = readl(regs + DOEPTSIZ(idx));
5b7d70c6
BD
3328
3329 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3330 in, out);
3331
a023da33 3332 seq_puts(seq, "\n");
5b7d70c6
BD
3333 }
3334
3335 return 0;
3336}
3337
3338static int state_open(struct inode *inode, struct file *file)
3339{
3340 return single_open(file, state_show, inode->i_private);
3341}
3342
3343static const struct file_operations state_fops = {
3344 .owner = THIS_MODULE,
3345 .open = state_open,
3346 .read = seq_read,
3347 .llseek = seq_lseek,
3348 .release = single_release,
3349};
3350
3351/**
3352 * fifo_show - debugfs: show the fifo information
3353 * @seq: The seq_file to write data to.
3354 * @v: Unused parameter.
3355 *
3356 * Show the FIFO information for the overall fifo and all the
3357 * periodic transmission FIFOs.
8b9bc460 3358 */
5b7d70c6
BD
3359static int fifo_show(struct seq_file *seq, void *v)
3360{
3361 struct s3c_hsotg *hsotg = seq->private;
3362 void __iomem *regs = hsotg->regs;
3363 u32 val;
3364 int idx;
3365
a023da33 3366 seq_puts(seq, "Non-periodic FIFOs:\n");
94cb8fd6 3367 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
5b7d70c6 3368
94cb8fd6 3369 val = readl(regs + GNPTXFSIZ);
5b7d70c6 3370 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
94cb8fd6
LM
3371 val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3372 val & GNPTXFSIZ_NPTxFStAddr_MASK);
5b7d70c6 3373
a023da33 3374 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
5b7d70c6
BD
3375
3376 for (idx = 1; idx <= 15; idx++) {
94cb8fd6 3377 val = readl(regs + DPTXFSIZn(idx));
5b7d70c6
BD
3378
3379 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
94cb8fd6
LM
3380 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3381 val & DPTXFSIZn_DPTxFStAddr_MASK);
5b7d70c6
BD
3382 }
3383
3384 return 0;
3385}
3386
3387static int fifo_open(struct inode *inode, struct file *file)
3388{
3389 return single_open(file, fifo_show, inode->i_private);
3390}
3391
3392static const struct file_operations fifo_fops = {
3393 .owner = THIS_MODULE,
3394 .open = fifo_open,
3395 .read = seq_read,
3396 .llseek = seq_lseek,
3397 .release = single_release,
3398};
3399
3400
3401static const char *decode_direction(int is_in)
3402{
3403 return is_in ? "in" : "out";
3404}
3405
3406/**
3407 * ep_show - debugfs: show the state of an endpoint.
3408 * @seq: The seq_file to write data to.
3409 * @v: Unused parameter.
3410 *
3411 * This debugfs entry shows the state of the given endpoint (one is
3412 * registered for each available).
8b9bc460 3413 */
5b7d70c6
BD
3414static int ep_show(struct seq_file *seq, void *v)
3415{
3416 struct s3c_hsotg_ep *ep = seq->private;
3417 struct s3c_hsotg *hsotg = ep->parent;
3418 struct s3c_hsotg_req *req;
3419 void __iomem *regs = hsotg->regs;
3420 int index = ep->index;
3421 int show_limit = 15;
3422 unsigned long flags;
3423
3424 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3425 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3426
3427 /* first show the register state */
3428
3429 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
94cb8fd6
LM
3430 readl(regs + DIEPCTL(index)),
3431 readl(regs + DOEPCTL(index)));
5b7d70c6
BD
3432
3433 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
94cb8fd6
LM
3434 readl(regs + DIEPDMA(index)),
3435 readl(regs + DOEPDMA(index)));
5b7d70c6
BD
3436
3437 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
94cb8fd6
LM
3438 readl(regs + DIEPINT(index)),
3439 readl(regs + DOEPINT(index)));
5b7d70c6
BD
3440
3441 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
94cb8fd6
LM
3442 readl(regs + DIEPTSIZ(index)),
3443 readl(regs + DOEPTSIZ(index)));
5b7d70c6 3444
a023da33 3445 seq_puts(seq, "\n");
5b7d70c6
BD
3446 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3447 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3448
3449 seq_printf(seq, "request list (%p,%p):\n",
3450 ep->queue.next, ep->queue.prev);
3451
22258f49 3452 spin_lock_irqsave(&hsotg->lock, flags);
5b7d70c6
BD
3453
3454 list_for_each_entry(req, &ep->queue, queue) {
3455 if (--show_limit < 0) {
a023da33 3456 seq_puts(seq, "not showing more requests...\n");
5b7d70c6
BD
3457 break;
3458 }
3459
3460 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3461 req == ep->req ? '*' : ' ',
3462 req, req->req.length, req->req.buf);
3463 seq_printf(seq, "%d done, res %d\n",
3464 req->req.actual, req->req.status);
3465 }
3466
22258f49 3467 spin_unlock_irqrestore(&hsotg->lock, flags);
5b7d70c6
BD
3468
3469 return 0;
3470}
3471
3472static int ep_open(struct inode *inode, struct file *file)
3473{
3474 return single_open(file, ep_show, inode->i_private);
3475}
3476
3477static const struct file_operations ep_fops = {
3478 .owner = THIS_MODULE,
3479 .open = ep_open,
3480 .read = seq_read,
3481 .llseek = seq_lseek,
3482 .release = single_release,
3483};
3484
3485/**
3486 * s3c_hsotg_create_debug - create debugfs directory and files
3487 * @hsotg: The driver state
3488 *
3489 * Create the debugfs files to allow the user to get information
3490 * about the state of the system. The directory name is created
3491 * with the same name as the device itself, in case we end up
3492 * with multiple blocks in future systems.
8b9bc460 3493 */
41ac7b3a 3494static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
5b7d70c6
BD
3495{
3496 struct dentry *root;
3497 unsigned epidx;
3498
3499 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3500 hsotg->debug_root = root;
3501 if (IS_ERR(root)) {
3502 dev_err(hsotg->dev, "cannot create debug root\n");
3503 return;
3504 }
3505
3506 /* create general state file */
3507
3508 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3509 hsotg, &state_fops);
3510
3511 if (IS_ERR(hsotg->debug_file))
3512 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3513
3514 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3515 hsotg, &fifo_fops);
3516
3517 if (IS_ERR(hsotg->debug_fifo))
3518 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3519
3520 /* create one file for each endpoint */
3521
b3f489b2 3522 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
5b7d70c6
BD
3523 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3524
3525 ep->debugfs = debugfs_create_file(ep->name, 0444,
3526 root, ep, &ep_fops);
3527
3528 if (IS_ERR(ep->debugfs))
3529 dev_err(hsotg->dev, "failed to create %s debug file\n",
3530 ep->name);
3531 }
3532}
3533
3534/**
3535 * s3c_hsotg_delete_debug - cleanup debugfs entries
3536 * @hsotg: The driver state
3537 *
3538 * Cleanup (remove) the debugfs files for use on module exit.
8b9bc460 3539 */
fb4e98ab 3540static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
5b7d70c6
BD
3541{
3542 unsigned epidx;
3543
b3f489b2 3544 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
5b7d70c6
BD
3545 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3546 debugfs_remove(ep->debugfs);
3547 }
3548
3549 debugfs_remove(hsotg->debug_file);
3550 debugfs_remove(hsotg->debug_fifo);
3551 debugfs_remove(hsotg->debug_root);
3552}
3553
8b9bc460
LM
3554/**
3555 * s3c_hsotg_probe - probe function for hsotg driver
3556 * @pdev: The platform information for the driver
3557 */
f026a52d 3558
41ac7b3a 3559static int s3c_hsotg_probe(struct platform_device *pdev)
5b7d70c6 3560{
e01ee9f5 3561 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
74084844
MP
3562 struct phy *phy;
3563 struct usb_phy *uphy;
5b7d70c6 3564 struct device *dev = &pdev->dev;
b3f489b2 3565 struct s3c_hsotg_ep *eps;
5b7d70c6
BD
3566 struct s3c_hsotg *hsotg;
3567 struct resource *res;
3568 int epnum;
3569 int ret;
fc9a731e 3570 int i;
5b7d70c6 3571
338edabc 3572 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
5b7d70c6
BD
3573 if (!hsotg) {
3574 dev_err(dev, "cannot get memory\n");
3575 return -ENOMEM;
3576 }
3577
74084844
MP
3578 /*
3579 * Attempt to find a generic PHY, then look for an old style
3580 * USB PHY, finally fall back to pdata
3581 */
3582 phy = devm_phy_get(&pdev->dev, "usb2-phy");
f4f5ba5e 3583 if (IS_ERR(phy)) {
74084844
MP
3584 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3585 if (IS_ERR(uphy)) {
3586 /* Fallback for pdata */
3587 plat = dev_get_platdata(&pdev->dev);
3588 if (!plat) {
3589 dev_err(&pdev->dev,
3590 "no platform data or transceiver defined\n");
3591 return -EPROBE_DEFER;
3592 }
b2e587db 3593 hsotg->plat = plat;
74084844
MP
3594 } else
3595 hsotg->uphy = uphy;
3596 } else
b2e587db 3597 hsotg->phy = phy;
b2e587db 3598
5b7d70c6 3599 hsotg->dev = dev;
5b7d70c6 3600
84749c6d 3601 hsotg->clk = devm_clk_get(&pdev->dev, "otg");
31ee04de
MS
3602 if (IS_ERR(hsotg->clk)) {
3603 dev_err(dev, "cannot get otg clock\n");
338edabc 3604 return PTR_ERR(hsotg->clk);
31ee04de
MS
3605 }
3606
5b7d70c6
BD
3607 platform_set_drvdata(pdev, hsotg);
3608
3609 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5b7d70c6 3610
148e1134
TR
3611 hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3612 if (IS_ERR(hsotg->regs)) {
3613 ret = PTR_ERR(hsotg->regs);
338edabc 3614 goto err_clk;
5b7d70c6
BD
3615 }
3616
3617 ret = platform_get_irq(pdev, 0);
3618 if (ret < 0) {
3619 dev_err(dev, "cannot find IRQ\n");
338edabc 3620 goto err_clk;
5b7d70c6
BD
3621 }
3622
22258f49
LM
3623 spin_lock_init(&hsotg->lock);
3624
5b7d70c6
BD
3625 hsotg->irq = ret;
3626
338edabc
SK
3627 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3628 dev_name(dev), hsotg);
5b7d70c6
BD
3629 if (ret < 0) {
3630 dev_err(dev, "cannot claim IRQ\n");
338edabc 3631 goto err_clk;
5b7d70c6
BD
3632 }
3633
3634 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3635
d327ab5b 3636 hsotg->gadget.max_speed = USB_SPEED_HIGH;
5b7d70c6
BD
3637 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3638 hsotg->gadget.name = dev_name(dev);
5b7d70c6 3639
5b7d70c6
BD
3640 /* reset the system */
3641
04b4a0fc 3642 clk_prepare_enable(hsotg->clk);
31ee04de 3643
fc9a731e
LM
3644 /* regulators */
3645
3646 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3647 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3648
cd76213e 3649 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
fc9a731e
LM
3650 hsotg->supplies);
3651 if (ret) {
3652 dev_err(dev, "failed to request supplies: %d\n", ret);
338edabc 3653 goto err_clk;
fc9a731e
LM
3654 }
3655
3656 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3657 hsotg->supplies);
3658
3659 if (ret) {
3660 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3661 goto err_supplies;
3662 }
3663
f7e504c7
MP
3664 /* Set default UTMI width */
3665 hsotg->phyif = GUSBCFG_PHYIf16;
3666
3667 /*
3668 * If using the generic PHY framework, check if the PHY bus
3669 * width is 8-bit and set the phyif appropriately.
3670 */
3671 if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3672 hsotg->phyif = GUSBCFG_PHYIf8;
3673
74084844
MP
3674 if (hsotg->phy)
3675 phy_init(hsotg->phy);
3676
41188786
LM
3677 /* usb phy enable */
3678 s3c_hsotg_phy_enable(hsotg);
5b7d70c6 3679
5b7d70c6
BD
3680 s3c_hsotg_corereset(hsotg);
3681 s3c_hsotg_init(hsotg);
b3f489b2
LM
3682 s3c_hsotg_hw_cfg(hsotg);
3683
3684 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3685
3686 if (hsotg->num_of_eps == 0) {
3687 dev_err(dev, "wrong number of EPs (zero)\n");
dfdda5a0 3688 ret = -EINVAL;
b3f489b2
LM
3689 goto err_supplies;
3690 }
3691
3692 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3693 GFP_KERNEL);
3694 if (!eps) {
3695 dev_err(dev, "cannot get memory\n");
dfdda5a0 3696 ret = -ENOMEM;
b3f489b2
LM
3697 goto err_supplies;
3698 }
3699
3700 hsotg->eps = eps;
3701
3702 /* setup endpoint information */
3703
3704 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3705 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3706
3707 /* allocate EP0 request */
3708
3709 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3710 GFP_KERNEL);
3711 if (!hsotg->ctrl_req) {
3712 dev_err(dev, "failed to allocate ctrl req\n");
dfdda5a0 3713 ret = -ENOMEM;
b3f489b2
LM
3714 goto err_ep_mem;
3715 }
5b7d70c6
BD
3716
3717 /* initialise the endpoints now the core has been initialised */
b3f489b2 3718 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
5b7d70c6
BD
3719 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3720
f65f0f10
LM
3721 /* disable power and clock */
3722
3723 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3724 hsotg->supplies);
3725 if (ret) {
3726 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3727 goto err_ep_mem;
3728 }
3729
3730 s3c_hsotg_phy_disable(hsotg);
3731
0f91349b
SAS
3732 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3733 if (ret)
b3f489b2 3734 goto err_ep_mem;
0f91349b 3735
5b7d70c6
BD
3736 s3c_hsotg_create_debug(hsotg);
3737
3738 s3c_hsotg_dump(hsotg);
3739
5b7d70c6
BD
3740 return 0;
3741
1d144c67 3742err_ep_mem:
b3f489b2 3743 kfree(eps);
fc9a731e 3744err_supplies:
41188786 3745 s3c_hsotg_phy_disable(hsotg);
31ee04de 3746err_clk:
1d144c67 3747 clk_disable_unprepare(hsotg->clk);
338edabc 3748
5b7d70c6
BD
3749 return ret;
3750}
3751
8b9bc460
LM
3752/**
3753 * s3c_hsotg_remove - remove function for hsotg driver
3754 * @pdev: The platform information for the driver
3755 */
fb4e98ab 3756static int s3c_hsotg_remove(struct platform_device *pdev)
5b7d70c6
BD
3757{
3758 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3759
0f91349b
SAS
3760 usb_del_gadget_udc(&hsotg->gadget);
3761
5b7d70c6
BD
3762 s3c_hsotg_delete_debug(hsotg);
3763
f65f0f10
LM
3764 if (hsotg->driver) {
3765 /* should have been done already by driver model core */
3766 usb_gadget_unregister_driver(hsotg->driver);
3767 }
5b7d70c6 3768
41188786 3769 s3c_hsotg_phy_disable(hsotg);
74084844
MP
3770 if (hsotg->phy)
3771 phy_exit(hsotg->phy);
04b4a0fc 3772 clk_disable_unprepare(hsotg->clk);
31ee04de 3773
5b7d70c6
BD
3774 return 0;
3775}
3776
3777#if 1
3778#define s3c_hsotg_suspend NULL
3779#define s3c_hsotg_resume NULL
3780#endif
3781
c50f056c
TF
3782#ifdef CONFIG_OF
3783static const struct of_device_id s3c_hsotg_of_ids[] = {
3784 { .compatible = "samsung,s3c6400-hsotg", },
0d33d825 3785 { .compatible = "snps,dwc2", },
c50f056c
TF
3786 { /* sentinel */ }
3787};
3788MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3789#endif
3790
5b7d70c6
BD
3791static struct platform_driver s3c_hsotg_driver = {
3792 .driver = {
3793 .name = "s3c-hsotg",
3794 .owner = THIS_MODULE,
c50f056c 3795 .of_match_table = of_match_ptr(s3c_hsotg_of_ids),
5b7d70c6
BD
3796 },
3797 .probe = s3c_hsotg_probe,
7690417d 3798 .remove = s3c_hsotg_remove,
5b7d70c6
BD
3799 .suspend = s3c_hsotg_suspend,
3800 .resume = s3c_hsotg_resume,
3801};
3802
cc27c96c 3803module_platform_driver(s3c_hsotg_driver);
5b7d70c6
BD
3804
3805MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3806MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3807MODULE_LICENSE("GPL");
3808MODULE_ALIAS("platform:s3c-hsotg");