]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/usb/host/fotg210-hcd.c
xhci: support new USB 3.1 hub request to get extended port status
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / fotg210-hcd.c
CommitLineData
7d50195f
FHC
1/*
2 * Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software Foundation,
24 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/dmapool.h>
29#include <linux/kernel.h>
30#include <linux/delay.h>
31#include <linux/ioport.h>
32#include <linux/sched.h>
33#include <linux/vmalloc.h>
34#include <linux/errno.h>
35#include <linux/init.h>
36#include <linux/hrtimer.h>
37#include <linux/list.h>
38#include <linux/interrupt.h>
39#include <linux/usb.h>
40#include <linux/usb/hcd.h>
41#include <linux/moduleparam.h>
42#include <linux/dma-mapping.h>
43#include <linux/debugfs.h>
44#include <linux/slab.h>
45#include <linux/uaccess.h>
46#include <linux/platform_device.h>
47#include <linux/io.h>
48
49#include <asm/byteorder.h>
50#include <asm/irq.h>
51#include <asm/unaligned.h>
52
53/*-------------------------------------------------------------------------*/
54#define DRIVER_AUTHOR "Yuan-Hsin Chen"
55#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
56
57static const char hcd_name[] = "fotg210_hcd";
58
7d50195f
FHC
59#undef FOTG210_URB_TRACE
60
7d50195f 61#define FOTG210_STATS
7d50195f
FHC
62
63/* magic numbers that can affect system performance */
64#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
65#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
66#define FOTG210_TUNE_RL_TT 0
67#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
68#define FOTG210_TUNE_MULT_TT 1
69/*
70 * Some drivers think it's safe to schedule isochronous transfers more than
71 * 256 ms into the future (partly as a result of an old bug in the scheduling
72 * code). In an attempt to avoid trouble, we will use a minimum scheduling
73 * length of 512 frames instead of 256.
74 */
75#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
76
77/* Initial IRQ latency: faster than hw default */
78static int log2_irq_thresh; /* 0 to 6 */
79module_param(log2_irq_thresh, int, S_IRUGO);
80MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
81
82/* initial park setting: slower than hw default */
83static unsigned park;
84module_param(park, uint, S_IRUGO);
85MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
86
87/* for link power management(LPM) feature */
88static unsigned int hird;
89module_param(hird, int, S_IRUGO);
90MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
91
92#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
93
94#include "fotg210.h"
95
96/*-------------------------------------------------------------------------*/
97
98#define fotg210_dbg(fotg210, fmt, args...) \
99 dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
100#define fotg210_err(fotg210, fmt, args...) \
101 dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
102#define fotg210_info(fotg210, fmt, args...) \
103 dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
104#define fotg210_warn(fotg210, fmt, args...) \
105 dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
106
7d50195f
FHC
107/* check the values in the HCSPARAMS register
108 * (host controller _Structural_ parameters)
109 * see EHCI spec, Table 2-4 for each value
110 */
111static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
112{
113 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
114
115 fotg210_dbg(fotg210,
116 "%s hcs_params 0x%x ports=%d\n",
117 label, params,
118 HCS_N_PORTS(params)
119 );
120}
7d50195f
FHC
121
122/* check the values in the HCCPARAMS register
123 * (host controller _Capability_ parameters)
124 * see EHCI Spec, Table 2-5 for each value
125 * */
126static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
127{
128 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
129
130 fotg210_dbg(fotg210,
131 "%s hcc_params %04x uframes %s%s\n",
132 label,
133 params,
134 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
135 HCC_CANPARK(params) ? " park" : "");
136}
7d50195f
FHC
137
138static void __maybe_unused
139dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
140{
141 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
142 hc32_to_cpup(fotg210, &qtd->hw_next),
143 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
144 hc32_to_cpup(fotg210, &qtd->hw_token),
145 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
146 if (qtd->hw_buf[1])
147 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
148 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
149 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
150 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
151 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
152}
153
154static void __maybe_unused
155dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
156{
157 struct fotg210_qh_hw *hw = qh->hw;
158
159 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
160 qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
161 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
162}
163
164static void __maybe_unused
165dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
166{
167 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
168 label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
169 itd->urb);
170 fotg210_dbg(fotg210,
171 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
172 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
173 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
174 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
175 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
176 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
177 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
178 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
179 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
180 fotg210_dbg(fotg210,
181 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
182 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
183 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
184 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
185 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
186 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
187 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
188 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
189 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
190 itd->index[0], itd->index[1], itd->index[2],
191 itd->index[3], itd->index[4], itd->index[5],
192 itd->index[6], itd->index[7]);
193}
194
195static int __maybe_unused
196dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
197{
198 return scnprintf(buf, len,
199 "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
200 label, label[0] ? " " : "", status,
201 (status & STS_ASS) ? " Async" : "",
202 (status & STS_PSS) ? " Periodic" : "",
203 (status & STS_RECL) ? " Recl" : "",
204 (status & STS_HALT) ? " Halt" : "",
205 (status & STS_IAA) ? " IAA" : "",
206 (status & STS_FATAL) ? " FATAL" : "",
207 (status & STS_FLR) ? " FLR" : "",
208 (status & STS_PCD) ? " PCD" : "",
209 (status & STS_ERR) ? " ERR" : "",
210 (status & STS_INT) ? " INT" : ""
211 );
212}
213
214static int __maybe_unused
215dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
216{
217 return scnprintf(buf, len,
218 "%s%sintrenable %02x%s%s%s%s%s%s",
219 label, label[0] ? " " : "", enable,
220 (enable & STS_IAA) ? " IAA" : "",
221 (enable & STS_FATAL) ? " FATAL" : "",
222 (enable & STS_FLR) ? " FLR" : "",
223 (enable & STS_PCD) ? " PCD" : "",
224 (enable & STS_ERR) ? " ERR" : "",
225 (enable & STS_INT) ? " INT" : ""
226 );
227}
228
229static const char *const fls_strings[] = { "1024", "512", "256", "??" };
230
231static int
232dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
233{
234 return scnprintf(buf, len,
235 "%s%scommand %07x %s=%d ithresh=%d%s%s%s "
236 "period=%s%s %s",
237 label, label[0] ? " " : "", command,
238 (command & CMD_PARK) ? " park" : "(park)",
239 CMD_PARK_CNT(command),
240 (command >> 16) & 0x3f,
241 (command & CMD_IAAD) ? " IAAD" : "",
242 (command & CMD_ASE) ? " Async" : "",
243 (command & CMD_PSE) ? " Periodic" : "",
244 fls_strings[(command >> 2) & 0x3],
245 (command & CMD_RESET) ? " Reset" : "",
246 (command & CMD_RUN) ? "RUN" : "HALT"
247 );
248}
249
f848a88d
ON
250static char
251*dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
7d50195f
FHC
252{
253 char *sig;
254
255 /* signaling state */
256 switch (status & (3 << 10)) {
257 case 0 << 10:
258 sig = "se0";
259 break;
260 case 1 << 10:
261 sig = "k";
262 break; /* low speed */
263 case 2 << 10:
264 sig = "j";
265 break;
266 default:
267 sig = "?";
268 break;
269 }
270
f848a88d 271 scnprintf(buf, len,
7d50195f
FHC
272 "%s%sport:%d status %06x %d "
273 "sig=%s%s%s%s%s%s%s%s",
274 label, label[0] ? " " : "", port, status,
275 status>>25,/*device address */
276 sig,
277 (status & PORT_RESET) ? " RESET" : "",
278 (status & PORT_SUSPEND) ? " SUSPEND" : "",
279 (status & PORT_RESUME) ? " RESUME" : "",
280 (status & PORT_PEC) ? " PEC" : "",
281 (status & PORT_PE) ? " PE" : "",
282 (status & PORT_CSC) ? " CSC" : "",
283 (status & PORT_CONNECT) ? " CONNECT" : "");
f848a88d 284 return buf;
7d50195f
FHC
285}
286
7d50195f
FHC
287/* functions have the "wrong" filename when they're output... */
288#define dbg_status(fotg210, label, status) { \
289 char _buf[80]; \
290 dbg_status_buf(_buf, sizeof(_buf), label, status); \
291 fotg210_dbg(fotg210, "%s\n", _buf); \
292}
293
294#define dbg_cmd(fotg210, label, command) { \
295 char _buf[80]; \
296 dbg_command_buf(_buf, sizeof(_buf), label, command); \
297 fotg210_dbg(fotg210, "%s\n", _buf); \
298}
299
300#define dbg_port(fotg210, label, port, status) { \
301 char _buf[80]; \
f848a88d 302 fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \
7d50195f
FHC
303}
304
305/*-------------------------------------------------------------------------*/
306
7d50195f
FHC
307/* troubleshooting help: expose state in debugfs */
308
309static int debug_async_open(struct inode *, struct file *);
310static int debug_periodic_open(struct inode *, struct file *);
311static int debug_registers_open(struct inode *, struct file *);
312static int debug_async_open(struct inode *, struct file *);
313
314static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
315static int debug_close(struct inode *, struct file *);
316
317static const struct file_operations debug_async_fops = {
318 .owner = THIS_MODULE,
319 .open = debug_async_open,
320 .read = debug_output,
321 .release = debug_close,
322 .llseek = default_llseek,
323};
324static const struct file_operations debug_periodic_fops = {
325 .owner = THIS_MODULE,
326 .open = debug_periodic_open,
327 .read = debug_output,
328 .release = debug_close,
329 .llseek = default_llseek,
330};
331static const struct file_operations debug_registers_fops = {
332 .owner = THIS_MODULE,
333 .open = debug_registers_open,
334 .read = debug_output,
335 .release = debug_close,
336 .llseek = default_llseek,
337};
338
339static struct dentry *fotg210_debug_root;
340
341struct debug_buffer {
342 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
343 struct usb_bus *bus;
344 struct mutex mutex; /* protect filling of buffer */
345 size_t count; /* number of characters filled into buffer */
346 char *output_buf;
347 size_t alloc_size;
348};
349
350#define speed_char(info1)({ char tmp; \
351 switch (info1 & (3 << 12)) { \
352 case QH_FULL_SPEED: \
353 tmp = 'f'; break; \
354 case QH_LOW_SPEED: \
355 tmp = 'l'; break; \
356 case QH_HIGH_SPEED: \
357 tmp = 'h'; break; \
358 default: \
359 tmp = '?'; break; \
2b84f92b 360 } tmp; })
7d50195f
FHC
361
362static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
363{
364 __u32 v = hc32_to_cpu(fotg210, token);
365
366 if (v & QTD_STS_ACTIVE)
367 return '*';
368 if (v & QTD_STS_HALT)
369 return '-';
370 if (!IS_SHORT_READ(v))
371 return ' ';
372 /* tries to advance through hw_alt_next */
373 return '/';
374}
375
376static void qh_lines(
377 struct fotg210_hcd *fotg210,
378 struct fotg210_qh *qh,
379 char **nextp,
380 unsigned *sizep
381)
382{
383 u32 scratch;
384 u32 hw_curr;
385 struct fotg210_qtd *td;
386 unsigned temp;
387 unsigned size = *sizep;
388 char *next = *nextp;
389 char mark;
390 __le32 list_end = FOTG210_LIST_END(fotg210);
391 struct fotg210_qh_hw *hw = qh->hw;
392
393 if (hw->hw_qtd_next == list_end) /* NEC does this */
394 mark = '@';
395 else
396 mark = token_mark(fotg210, hw->hw_token);
397 if (mark == '/') { /* qh_alt_next controls qh advance? */
398 if ((hw->hw_alt_next & QTD_MASK(fotg210))
399 == fotg210->async->hw->hw_alt_next)
400 mark = '#'; /* blocked */
401 else if (hw->hw_alt_next == list_end)
402 mark = '.'; /* use hw_qtd_next */
403 /* else alt_next points to some other qtd */
404 }
405 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
406 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
407 temp = scnprintf(next, size,
408 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
409 qh, scratch & 0x007f,
410 speed_char(scratch),
411 (scratch >> 8) & 0x000f,
412 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
413 hc32_to_cpup(fotg210, &hw->hw_token), mark,
414 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
415 ? "data1" : "data0",
416 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
417 size -= temp;
418 next += temp;
419
420 /* hc may be modifying the list as we read it ... */
421 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
422 scratch = hc32_to_cpup(fotg210, &td->hw_token);
423 mark = ' ';
424 if (hw_curr == td->qtd_dma)
425 mark = '*';
426 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
427 mark = '+';
428 else if (QTD_LENGTH(scratch)) {
429 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
430 mark = '#';
431 else if (td->hw_alt_next != list_end)
432 mark = '/';
433 }
434 temp = snprintf(next, size,
435 "\n\t%p%c%s len=%d %08x urb %p",
436 td, mark, ({ char *tmp;
437 switch ((scratch>>8)&0x03) {
438 case 0:
439 tmp = "out";
440 break;
441 case 1:
442 tmp = "in";
443 break;
444 case 2:
445 tmp = "setup";
446 break;
447 default:
448 tmp = "?";
449 break;
450 } tmp; }),
451 (scratch >> 16) & 0x7fff,
452 scratch,
453 td->urb);
454 if (size < temp)
455 temp = size;
456 size -= temp;
457 next += temp;
458 if (temp == size)
459 goto done;
460 }
461
462 temp = snprintf(next, size, "\n");
463 if (size < temp)
464 temp = size;
465 size -= temp;
466 next += temp;
467
468done:
469 *sizep = size;
470 *nextp = next;
471}
472
473static ssize_t fill_async_buffer(struct debug_buffer *buf)
474{
475 struct usb_hcd *hcd;
476 struct fotg210_hcd *fotg210;
477 unsigned long flags;
478 unsigned temp, size;
479 char *next;
480 struct fotg210_qh *qh;
481
482 hcd = bus_to_hcd(buf->bus);
483 fotg210 = hcd_to_fotg210(hcd);
484 next = buf->output_buf;
485 size = buf->alloc_size;
486
487 *next = 0;
488
489 /* dumps a snapshot of the async schedule.
490 * usually empty except for long-term bulk reads, or head.
491 * one QH per line, and TDs we know about
492 */
493 spin_lock_irqsave(&fotg210->lock, flags);
494 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
495 qh = qh->qh_next.qh)
496 qh_lines(fotg210, qh, &next, &size);
497 if (fotg210->async_unlink && size > 0) {
498 temp = scnprintf(next, size, "\nunlink =\n");
499 size -= temp;
500 next += temp;
501
502 for (qh = fotg210->async_unlink; size > 0 && qh;
503 qh = qh->unlink_next)
504 qh_lines(fotg210, qh, &next, &size);
505 }
506 spin_unlock_irqrestore(&fotg210->lock, flags);
507
508 return strlen(buf->output_buf);
509}
510
511#define DBG_SCHED_LIMIT 64
512static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513{
514 struct usb_hcd *hcd;
515 struct fotg210_hcd *fotg210;
516 unsigned long flags;
517 union fotg210_shadow p, *seen;
518 unsigned temp, size, seen_count;
519 char *next;
520 unsigned i;
521 __hc32 tag;
522
523 seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
524 if (!seen)
525 return 0;
526 seen_count = 0;
527
528 hcd = bus_to_hcd(buf->bus);
529 fotg210 = hcd_to_fotg210(hcd);
530 next = buf->output_buf;
531 size = buf->alloc_size;
532
533 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534 size -= temp;
535 next += temp;
536
537 /* dump a snapshot of the periodic schedule.
538 * iso changes, interrupt usually doesn't.
539 */
540 spin_lock_irqsave(&fotg210->lock, flags);
541 for (i = 0; i < fotg210->periodic_size; i++) {
542 p = fotg210->pshadow[i];
543 if (likely(!p.ptr))
544 continue;
545 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
546
547 temp = scnprintf(next, size, "%4d: ", i);
548 size -= temp;
549 next += temp;
550
551 do {
552 struct fotg210_qh_hw *hw;
553
554 switch (hc32_to_cpu(fotg210, tag)) {
555 case Q_TYPE_QH:
556 hw = p.qh->hw;
557 temp = scnprintf(next, size, " qh%d-%04x/%p",
558 p.qh->period,
559 hc32_to_cpup(fotg210,
560 &hw->hw_info2)
561 /* uframe masks */
562 & (QH_CMASK | QH_SMASK),
563 p.qh);
564 size -= temp;
565 next += temp;
566 /* don't repeat what follows this qh */
567 for (temp = 0; temp < seen_count; temp++) {
568 if (seen[temp].ptr != p.ptr)
569 continue;
570 if (p.qh->qh_next.ptr) {
571 temp = scnprintf(next, size,
572 " ...");
573 size -= temp;
574 next += temp;
575 }
576 break;
577 }
578 /* show more info the first time around */
579 if (temp == seen_count) {
580 u32 scratch = hc32_to_cpup(fotg210,
581 &hw->hw_info1);
582 struct fotg210_qtd *qtd;
583 char *type = "";
584
585 /* count tds, get ep direction */
586 temp = 0;
587 list_for_each_entry(qtd,
588 &p.qh->qtd_list,
589 qtd_list) {
590 temp++;
591 switch (0x03 & (hc32_to_cpu(
592 fotg210,
593 qtd->hw_token) >> 8)) {
594 case 0:
595 type = "out";
596 continue;
597 case 1:
598 type = "in";
599 continue;
600 }
601 }
602
603 temp = scnprintf(next, size,
604 "(%c%d ep%d%s "
605 "[%d/%d] q%d p%d)",
606 speed_char(scratch),
607 scratch & 0x007f,
608 (scratch >> 8) & 0x000f, type,
609 p.qh->usecs, p.qh->c_usecs,
610 temp,
611 0x7ff & (scratch >> 16));
612
613 if (seen_count < DBG_SCHED_LIMIT)
614 seen[seen_count++].qh = p.qh;
615 } else
616 temp = 0;
617 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
618 p = p.qh->qh_next;
619 break;
620 case Q_TYPE_FSTN:
621 temp = scnprintf(next, size,
622 " fstn-%8x/%p", p.fstn->hw_prev,
623 p.fstn);
624 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
625 p = p.fstn->fstn_next;
626 break;
627 case Q_TYPE_ITD:
628 temp = scnprintf(next, size,
629 " itd/%p", p.itd);
630 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
631 p = p.itd->itd_next;
632 break;
633 }
634 size -= temp;
635 next += temp;
636 } while (p.ptr);
637
638 temp = scnprintf(next, size, "\n");
639 size -= temp;
640 next += temp;
641 }
642 spin_unlock_irqrestore(&fotg210->lock, flags);
643 kfree(seen);
644
645 return buf->alloc_size - size;
646}
647#undef DBG_SCHED_LIMIT
648
649static const char *rh_state_string(struct fotg210_hcd *fotg210)
650{
651 switch (fotg210->rh_state) {
652 case FOTG210_RH_HALTED:
653 return "halted";
654 case FOTG210_RH_SUSPENDED:
655 return "suspended";
656 case FOTG210_RH_RUNNING:
657 return "running";
658 case FOTG210_RH_STOPPING:
659 return "stopping";
660 }
661 return "?";
662}
663
664static ssize_t fill_registers_buffer(struct debug_buffer *buf)
665{
666 struct usb_hcd *hcd;
667 struct fotg210_hcd *fotg210;
668 unsigned long flags;
669 unsigned temp, size, i;
670 char *next, scratch[80];
671 static const char fmt[] = "%*s\n";
672 static const char label[] = "";
673
674 hcd = bus_to_hcd(buf->bus);
675 fotg210 = hcd_to_fotg210(hcd);
676 next = buf->output_buf;
677 size = buf->alloc_size;
678
679 spin_lock_irqsave(&fotg210->lock, flags);
680
681 if (!HCD_HW_ACCESSIBLE(hcd)) {
682 size = scnprintf(next, size,
683 "bus %s, device %s\n"
684 "%s\n"
685 "SUSPENDED(no register access)\n",
686 hcd->self.controller->bus->name,
687 dev_name(hcd->self.controller),
688 hcd->product_desc);
689 goto done;
690 }
691
692 /* Capability Registers */
693 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
694 &fotg210->caps->hc_capbase));
695 temp = scnprintf(next, size,
696 "bus %s, device %s\n"
697 "%s\n"
698 "EHCI %x.%02x, rh state %s\n",
699 hcd->self.controller->bus->name,
700 dev_name(hcd->self.controller),
701 hcd->product_desc,
702 i >> 8, i & 0x0ff, rh_state_string(fotg210));
703 size -= temp;
704 next += temp;
705
706 /* FIXME interpret both types of params */
707 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
708 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
709 size -= temp;
710 next += temp;
711
712 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
713 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
714 size -= temp;
715 next += temp;
716
717 /* Operational Registers */
718 temp = dbg_status_buf(scratch, sizeof(scratch), label,
719 fotg210_readl(fotg210, &fotg210->regs->status));
720 temp = scnprintf(next, size, fmt, temp, scratch);
721 size -= temp;
722 next += temp;
723
724 temp = dbg_command_buf(scratch, sizeof(scratch), label,
725 fotg210_readl(fotg210, &fotg210->regs->command));
726 temp = scnprintf(next, size, fmt, temp, scratch);
727 size -= temp;
728 next += temp;
729
730 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
731 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
732 temp = scnprintf(next, size, fmt, temp, scratch);
733 size -= temp;
734 next += temp;
735
736 temp = scnprintf(next, size, "uframe %04x\n",
737 fotg210_read_frame_index(fotg210));
738 size -= temp;
739 next += temp;
740
741 if (fotg210->async_unlink) {
742 temp = scnprintf(next, size, "async unlink qh %p\n",
743 fotg210->async_unlink);
744 size -= temp;
745 next += temp;
746 }
747
748#ifdef FOTG210_STATS
749 temp = scnprintf(next, size,
750 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
751 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
752 fotg210->stats.lost_iaa);
753 size -= temp;
754 next += temp;
755
756 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
757 fotg210->stats.complete, fotg210->stats.unlink);
758 size -= temp;
759 next += temp;
760#endif
761
762done:
763 spin_unlock_irqrestore(&fotg210->lock, flags);
764
765 return buf->alloc_size - size;
766}
767
768static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
769 ssize_t (*fill_func)(struct debug_buffer *))
770{
771 struct debug_buffer *buf;
772
773 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
774
775 if (buf) {
776 buf->bus = bus;
777 buf->fill_func = fill_func;
778 mutex_init(&buf->mutex);
779 buf->alloc_size = PAGE_SIZE;
780 }
781
782 return buf;
783}
784
785static int fill_buffer(struct debug_buffer *buf)
786{
787 int ret = 0;
788
789 if (!buf->output_buf)
790 buf->output_buf = vmalloc(buf->alloc_size);
791
792 if (!buf->output_buf) {
793 ret = -ENOMEM;
794 goto out;
795 }
796
797 ret = buf->fill_func(buf);
798
799 if (ret >= 0) {
800 buf->count = ret;
801 ret = 0;
802 }
803
804out:
805 return ret;
806}
807
808static ssize_t debug_output(struct file *file, char __user *user_buf,
809 size_t len, loff_t *offset)
810{
811 struct debug_buffer *buf = file->private_data;
812 int ret = 0;
813
814 mutex_lock(&buf->mutex);
815 if (buf->count == 0) {
816 ret = fill_buffer(buf);
817 if (ret != 0) {
818 mutex_unlock(&buf->mutex);
819 goto out;
820 }
821 }
822 mutex_unlock(&buf->mutex);
823
824 ret = simple_read_from_buffer(user_buf, len, offset,
825 buf->output_buf, buf->count);
826
827out:
828 return ret;
829
830}
831
832static int debug_close(struct inode *inode, struct file *file)
833{
834 struct debug_buffer *buf = file->private_data;
835
836 if (buf) {
837 vfree(buf->output_buf);
838 kfree(buf);
839 }
840
841 return 0;
842}
843static int debug_async_open(struct inode *inode, struct file *file)
844{
845 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
846
847 return file->private_data ? 0 : -ENOMEM;
848}
849
850static int debug_periodic_open(struct inode *inode, struct file *file)
851{
852 struct debug_buffer *buf;
853 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
854 if (!buf)
855 return -ENOMEM;
856
857 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
858 file->private_data = buf;
859 return 0;
860}
861
862static int debug_registers_open(struct inode *inode, struct file *file)
863{
864 file->private_data = alloc_buffer(inode->i_private,
865 fill_registers_buffer);
866
867 return file->private_data ? 0 : -ENOMEM;
868}
869
870static inline void create_debug_files(struct fotg210_hcd *fotg210)
871{
872 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
873
874 fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
875 fotg210_debug_root);
876 if (!fotg210->debug_dir)
877 return;
878
879 if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
880 &debug_async_fops))
881 goto file_error;
882
883 if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
884 &debug_periodic_fops))
885 goto file_error;
886
887 if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
888 &debug_registers_fops))
889 goto file_error;
890
891 return;
892
893file_error:
894 debugfs_remove_recursive(fotg210->debug_dir);
895}
896
897static inline void remove_debug_files(struct fotg210_hcd *fotg210)
898{
899 debugfs_remove_recursive(fotg210->debug_dir);
900}
901
7d50195f
FHC
902/*-------------------------------------------------------------------------*/
903
904/*
905 * handshake - spin reading hc until handshake completes or fails
906 * @ptr: address of hc register to be read
907 * @mask: bits to look at in result of read
908 * @done: value of those bits when handshake succeeds
909 * @usec: timeout in microseconds
910 *
911 * Returns negative errno, or zero on success
912 *
913 * Success happens when the "mask" bits have the specified value (hardware
914 * handshake done). There are two failure modes: "usec" have passed (major
915 * hardware flakeout), or the register reads as all-ones (hardware removed).
916 *
917 * That last failure should_only happen in cases like physical cardbus eject
918 * before driver shutdown. But it also seems to be caused by bugs in cardbus
919 * bridge shutdown: shutting down the bridge before the devices using it.
920 */
921static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
922 u32 mask, u32 done, int usec)
923{
924 u32 result;
925
926 do {
927 result = fotg210_readl(fotg210, ptr);
928 if (result == ~(u32)0) /* card removed */
929 return -ENODEV;
930 result &= mask;
931 if (result == done)
932 return 0;
933 udelay(1);
934 usec--;
935 } while (usec > 0);
936 return -ETIMEDOUT;
937}
938
939/*
940 * Force HC to halt state from unknown (EHCI spec section 2.3).
941 * Must be called with interrupts enabled and the lock not held.
942 */
943static int fotg210_halt(struct fotg210_hcd *fotg210)
944{
945 u32 temp;
946
947 spin_lock_irq(&fotg210->lock);
948
949 /* disable any irqs left enabled by previous code */
950 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
951
952 /*
953 * This routine gets called during probe before fotg210->command
954 * has been initialized, so we can't rely on its value.
955 */
956 fotg210->command &= ~CMD_RUN;
957 temp = fotg210_readl(fotg210, &fotg210->regs->command);
958 temp &= ~(CMD_RUN | CMD_IAAD);
959 fotg210_writel(fotg210, temp, &fotg210->regs->command);
960
961 spin_unlock_irq(&fotg210->lock);
962 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
963
964 return handshake(fotg210, &fotg210->regs->status,
965 STS_HALT, STS_HALT, 16 * 125);
966}
967
968/*
969 * Reset a non-running (STS_HALT == 1) controller.
970 * Must be called with interrupts enabled and the lock not held.
971 */
972static int fotg210_reset(struct fotg210_hcd *fotg210)
973{
974 int retval;
975 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
976
977 /* If the EHCI debug controller is active, special care must be
978 * taken before and after a host controller reset */
979 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
980 fotg210->debug = NULL;
981
982 command |= CMD_RESET;
983 dbg_cmd(fotg210, "reset", command);
984 fotg210_writel(fotg210, command, &fotg210->regs->command);
985 fotg210->rh_state = FOTG210_RH_HALTED;
986 fotg210->next_statechange = jiffies;
987 retval = handshake(fotg210, &fotg210->regs->command,
988 CMD_RESET, 0, 250 * 1000);
989
990 if (retval)
991 return retval;
992
993 if (fotg210->debug)
994 dbgp_external_startup(fotg210_to_hcd(fotg210));
995
996 fotg210->port_c_suspend = fotg210->suspended_ports =
997 fotg210->resuming_ports = 0;
998 return retval;
999}
1000
1001/*
1002 * Idle the controller (turn off the schedules).
1003 * Must be called with interrupts enabled and the lock not held.
1004 */
1005static void fotg210_quiesce(struct fotg210_hcd *fotg210)
1006{
1007 u32 temp;
1008
1009 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1010 return;
1011
1012 /* wait for any schedule enables/disables to take effect */
1013 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
1014 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
1015 16 * 125);
1016
1017 /* then disable anything that's still active */
1018 spin_lock_irq(&fotg210->lock);
1019 fotg210->command &= ~(CMD_ASE | CMD_PSE);
1020 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1021 spin_unlock_irq(&fotg210->lock);
1022
1023 /* hardware can take 16 microframes to turn off ... */
1024 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1025 16 * 125);
1026}
1027
1028/*-------------------------------------------------------------------------*/
1029
1030static void end_unlink_async(struct fotg210_hcd *fotg210);
1031static void unlink_empty_async(struct fotg210_hcd *fotg210);
1032static void fotg210_work(struct fotg210_hcd *fotg210);
1033static void start_unlink_intr(struct fotg210_hcd *fotg210,
1034 struct fotg210_qh *qh);
1035static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1036
1037/*-------------------------------------------------------------------------*/
1038
1039/* Set a bit in the USBCMD register */
1040static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1041{
1042 fotg210->command |= bit;
1043 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1044
1045 /* unblock posted write */
1046 fotg210_readl(fotg210, &fotg210->regs->command);
1047}
1048
1049/* Clear a bit in the USBCMD register */
1050static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1051{
1052 fotg210->command &= ~bit;
1053 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1054
1055 /* unblock posted write */
1056 fotg210_readl(fotg210, &fotg210->regs->command);
1057}
1058
1059/*-------------------------------------------------------------------------*/
1060
1061/*
1062 * EHCI timer support... Now using hrtimers.
1063 *
1064 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1065 * the timer routine runs, it checks each possible event; events that are
1066 * currently enabled and whose expiration time has passed get handled.
1067 * The set of enabled events is stored as a collection of bitflags in
1068 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1069 * increasing delay values (ranging between 1 ms and 100 ms).
1070 *
1071 * Rather than implementing a sorted list or tree of all pending events,
1072 * we keep track only of the lowest-numbered pending event, in
1073 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1074 * expiration time is set to the timeout value for this event.
1075 *
1076 * As a result, events might not get handled right away; the actual delay
1077 * could be anywhere up to twice the requested delay. This doesn't
1078 * matter, because none of the events are especially time-critical. The
1079 * ones that matter most all have a delay of 1 ms, so they will be
1080 * handled after 2 ms at most, which is okay. In addition to this, we
1081 * allow for an expiration range of 1 ms.
1082 */
1083
1084/*
1085 * Delay lengths for the hrtimer event types.
1086 * Keep this list sorted by delay length, in the same order as
1087 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1088 */
1089static unsigned event_delays_ns[] = {
1090 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1091 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1092 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1093 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1094 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1095 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1096 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1097 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1098 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1099 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1100};
1101
1102/* Enable a pending hrtimer event */
1103static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1104 bool resched)
1105{
1106 ktime_t *timeout = &fotg210->hr_timeouts[event];
1107
1108 if (resched)
1109 *timeout = ktime_add(ktime_get(),
1110 ktime_set(0, event_delays_ns[event]));
1111 fotg210->enabled_hrtimer_events |= (1 << event);
1112
1113 /* Track only the lowest-numbered pending event */
1114 if (event < fotg210->next_hrtimer_event) {
1115 fotg210->next_hrtimer_event = event;
1116 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1117 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1118 }
1119}
1120
1121
1122/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1123static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1124{
1125 unsigned actual, want;
1126
1127 /* Don't enable anything if the controller isn't running (e.g., died) */
1128 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1129 return;
1130
1131 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1132 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1133
1134 if (want != actual) {
1135
1136 /* Poll again later, but give up after about 20 ms */
1137 if (fotg210->ASS_poll_count++ < 20) {
1138 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1139 true);
1140 return;
1141 }
1142 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1143 want, actual);
1144 }
1145 fotg210->ASS_poll_count = 0;
1146
1147 /* The status is up-to-date; restart or stop the schedule as needed */
1148 if (want == 0) { /* Stopped */
1149 if (fotg210->async_count > 0)
1150 fotg210_set_command_bit(fotg210, CMD_ASE);
1151
1152 } else { /* Running */
1153 if (fotg210->async_count == 0) {
1154
1155 /* Turn off the schedule after a while */
1156 fotg210_enable_event(fotg210,
1157 FOTG210_HRTIMER_DISABLE_ASYNC,
1158 true);
1159 }
1160 }
1161}
1162
1163/* Turn off the async schedule after a brief delay */
1164static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1165{
1166 fotg210_clear_command_bit(fotg210, CMD_ASE);
1167}
1168
1169
1170/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1171static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1172{
1173 unsigned actual, want;
1174
1175 /* Don't do anything if the controller isn't running (e.g., died) */
1176 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1177 return;
1178
1179 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1180 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1181
1182 if (want != actual) {
1183
1184 /* Poll again later, but give up after about 20 ms */
1185 if (fotg210->PSS_poll_count++ < 20) {
1186 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1187 true);
1188 return;
1189 }
1190 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1191 want, actual);
1192 }
1193 fotg210->PSS_poll_count = 0;
1194
1195 /* The status is up-to-date; restart or stop the schedule as needed */
1196 if (want == 0) { /* Stopped */
1197 if (fotg210->periodic_count > 0)
1198 fotg210_set_command_bit(fotg210, CMD_PSE);
1199
1200 } else { /* Running */
1201 if (fotg210->periodic_count == 0) {
1202
1203 /* Turn off the schedule after a while */
1204 fotg210_enable_event(fotg210,
1205 FOTG210_HRTIMER_DISABLE_PERIODIC,
1206 true);
1207 }
1208 }
1209}
1210
1211/* Turn off the periodic schedule after a brief delay */
1212static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1213{
1214 fotg210_clear_command_bit(fotg210, CMD_PSE);
1215}
1216
1217
1218/* Poll the STS_HALT status bit; see when a dead controller stops */
1219static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1220{
1221 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1222
1223 /* Give up after a few milliseconds */
1224 if (fotg210->died_poll_count++ < 5) {
1225 /* Try again later */
1226 fotg210_enable_event(fotg210,
1227 FOTG210_HRTIMER_POLL_DEAD, true);
1228 return;
1229 }
1230 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1231 }
1232
1233 /* Clean up the mess */
1234 fotg210->rh_state = FOTG210_RH_HALTED;
1235 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1236 fotg210_work(fotg210);
1237 end_unlink_async(fotg210);
1238
1239 /* Not in process context, so don't try to reset the controller */
1240}
1241
1242
1243/* Handle unlinked interrupt QHs once they are gone from the hardware */
1244static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1245{
1246 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1247
1248 /*
1249 * Process all the QHs on the intr_unlink list that were added
1250 * before the current unlink cycle began. The list is in
1251 * temporal order, so stop when we reach the first entry in the
1252 * current cycle. But if the root hub isn't running then
1253 * process all the QHs on the list.
1254 */
1255 fotg210->intr_unlinking = true;
1256 while (fotg210->intr_unlink) {
1257 struct fotg210_qh *qh = fotg210->intr_unlink;
1258
1259 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1260 break;
1261 fotg210->intr_unlink = qh->unlink_next;
1262 qh->unlink_next = NULL;
1263 end_unlink_intr(fotg210, qh);
1264 }
1265
1266 /* Handle remaining entries later */
1267 if (fotg210->intr_unlink) {
1268 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1269 true);
1270 ++fotg210->intr_unlink_cycle;
1271 }
1272 fotg210->intr_unlinking = false;
1273}
1274
1275
1276/* Start another free-iTDs/siTDs cycle */
1277static void start_free_itds(struct fotg210_hcd *fotg210)
1278{
1279 if (!(fotg210->enabled_hrtimer_events &
1280 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1281 fotg210->last_itd_to_free = list_entry(
1282 fotg210->cached_itd_list.prev,
1283 struct fotg210_itd, itd_list);
1284 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1285 }
1286}
1287
1288/* Wait for controller to stop using old iTDs and siTDs */
1289static void end_free_itds(struct fotg210_hcd *fotg210)
1290{
1291 struct fotg210_itd *itd, *n;
1292
1293 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1294 fotg210->last_itd_to_free = NULL;
1295
1296 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1297 list_del(&itd->itd_list);
1298 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1299 if (itd == fotg210->last_itd_to_free)
1300 break;
1301 }
1302
1303 if (!list_empty(&fotg210->cached_itd_list))
1304 start_free_itds(fotg210);
1305}
1306
1307
1308/* Handle lost (or very late) IAA interrupts */
1309static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1310{
1311 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1312 return;
1313
1314 /*
1315 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1316 * So we need this watchdog, but must protect it against both
1317 * (a) SMP races against real IAA firing and retriggering, and
1318 * (b) clean HC shutdown, when IAA watchdog was pending.
1319 */
1320 if (fotg210->async_iaa) {
1321 u32 cmd, status;
1322
1323 /* If we get here, IAA is *REALLY* late. It's barely
1324 * conceivable that the system is so busy that CMD_IAAD
1325 * is still legitimately set, so let's be sure it's
1326 * clear before we read STS_IAA. (The HC should clear
1327 * CMD_IAAD when it sets STS_IAA.)
1328 */
1329 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1330
1331 /*
1332 * If IAA is set here it either legitimately triggered
1333 * after the watchdog timer expired (_way_ late, so we'll
1334 * still count it as lost) ... or a silicon erratum:
1335 * - VIA seems to set IAA without triggering the IRQ;
1336 * - IAAD potentially cleared without setting IAA.
1337 */
1338 status = fotg210_readl(fotg210, &fotg210->regs->status);
1339 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1340 COUNT(fotg210->stats.lost_iaa);
1341 fotg210_writel(fotg210, STS_IAA,
1342 &fotg210->regs->status);
1343 }
1344
be5ac4c4 1345 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
7d50195f
FHC
1346 status, cmd);
1347 end_unlink_async(fotg210);
1348 }
1349}
1350
1351
1352/* Enable the I/O watchdog, if appropriate */
1353static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1354{
1355 /* Not needed if the controller isn't running or it's already enabled */
1356 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1357 (fotg210->enabled_hrtimer_events &
1358 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1359 return;
1360
1361 /*
1362 * Isochronous transfers always need the watchdog.
1363 * For other sorts we use it only if the flag is set.
1364 */
1365 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1366 fotg210->async_count + fotg210->intr_count > 0))
1367 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1368 true);
1369}
1370
1371
1372/*
1373 * Handler functions for the hrtimer event types.
1374 * Keep this array in the same order as the event types indexed by
1375 * enum fotg210_hrtimer_event in fotg210.h.
1376 */
1377static void (*event_handlers[])(struct fotg210_hcd *) = {
1378 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1379 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1380 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1381 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1382 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1383 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1384 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1385 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1386 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1387 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1388};
1389
1390static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1391{
1392 struct fotg210_hcd *fotg210 =
1393 container_of(t, struct fotg210_hcd, hrtimer);
1394 ktime_t now;
1395 unsigned long events;
1396 unsigned long flags;
1397 unsigned e;
1398
1399 spin_lock_irqsave(&fotg210->lock, flags);
1400
1401 events = fotg210->enabled_hrtimer_events;
1402 fotg210->enabled_hrtimer_events = 0;
1403 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1404
1405 /*
1406 * Check each pending event. If its time has expired, handle
1407 * the event; otherwise re-enable it.
1408 */
1409 now = ktime_get();
1410 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1411 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1412 event_handlers[e](fotg210);
1413 else
1414 fotg210_enable_event(fotg210, e, false);
1415 }
1416
1417 spin_unlock_irqrestore(&fotg210->lock, flags);
1418 return HRTIMER_NORESTART;
1419}
1420
1421/*-------------------------------------------------------------------------*/
1422
1423#define fotg210_bus_suspend NULL
1424#define fotg210_bus_resume NULL
1425
1426/*-------------------------------------------------------------------------*/
1427
1428static int check_reset_complete(
1429 struct fotg210_hcd *fotg210,
1430 int index,
1431 u32 __iomem *status_reg,
1432 int port_status
1433) {
1434 if (!(port_status & PORT_CONNECT))
1435 return port_status;
1436
1437 /* if reset finished and it's still not enabled -- handoff */
1438 if (!(port_status & PORT_PE)) {
1439 /* with integrated TT, there's nobody to hand it to! */
1440 fotg210_dbg(fotg210,
1441 "Failed to enable port %d on root hub TT\n",
1442 index+1);
1443 return port_status;
1444 } else {
1445 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1446 index + 1);
1447 }
1448
1449 return port_status;
1450}
1451
1452/*-------------------------------------------------------------------------*/
1453
1454
1455/* build "status change" packet (one or two bytes) from HC registers */
1456
1457static int
1458fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1459{
1460 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1461 u32 temp, status;
1462 u32 mask;
1463 int retval = 1;
1464 unsigned long flags;
1465
1466 /* init status to no-changes */
1467 buf[0] = 0;
1468
1469 /* Inform the core about resumes-in-progress by returning
1470 * a non-zero value even if there are no status changes.
1471 */
1472 status = fotg210->resuming_ports;
1473
1474 mask = PORT_CSC | PORT_PEC;
1475 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1476
1477 /* no hub change reports (bit 0) for now (power, ...) */
1478
1479 /* port N changes (bit N)? */
1480 spin_lock_irqsave(&fotg210->lock, flags);
1481
1482 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1483
1484 /*
1485 * Return status information even for ports with OWNER set.
37ebb549 1486 * Otherwise hub_wq wouldn't see the disconnect event when a
7d50195f
FHC
1487 * high-speed device is switched over to the companion
1488 * controller by the user.
1489 */
1490
1491 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
1492 || (fotg210->reset_done[0] && time_after_eq(
1493 jiffies, fotg210->reset_done[0]))) {
1494 buf[0] |= 1 << 1;
1495 status = STS_PCD;
1496 }
1497 /* FIXME autosuspend idle root hubs */
1498 spin_unlock_irqrestore(&fotg210->lock, flags);
1499 return status ? retval : 0;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504static void
1505fotg210_hub_descriptor(
1506 struct fotg210_hcd *fotg210,
1507 struct usb_hub_descriptor *desc
1508) {
1509 int ports = HCS_N_PORTS(fotg210->hcs_params);
1510 u16 temp;
1511
4631f4e9 1512 desc->bDescriptorType = USB_DT_HUB;
7d50195f
FHC
1513 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1514 desc->bHubContrCurrent = 0;
1515
1516 desc->bNbrPorts = ports;
1517 temp = 1 + (ports / 8);
1518 desc->bDescLength = 7 + 2 * temp;
1519
1520 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1521 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1522 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1523
7538bd62
SS
1524 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1525 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
7d50195f
FHC
1526 desc->wHubCharacteristics = cpu_to_le16(temp);
1527}
1528
1529/*-------------------------------------------------------------------------*/
1530
1531static int fotg210_hub_control(
1532 struct usb_hcd *hcd,
1533 u16 typeReq,
1534 u16 wValue,
1535 u16 wIndex,
1536 char *buf,
1537 u16 wLength
1538) {
1539 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1540 int ports = HCS_N_PORTS(fotg210->hcs_params);
1541 u32 __iomem *status_reg = &fotg210->regs->port_status;
1542 u32 temp, temp1, status;
1543 unsigned long flags;
1544 int retval = 0;
1545 unsigned selector;
1546
1547 /*
1548 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1549 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1550 * (track current state ourselves) ... blink for diagnostics,
1551 * power, "this is the one", etc. EHCI spec supports this.
1552 */
1553
1554 spin_lock_irqsave(&fotg210->lock, flags);
1555 switch (typeReq) {
1556 case ClearHubFeature:
1557 switch (wValue) {
1558 case C_HUB_LOCAL_POWER:
1559 case C_HUB_OVER_CURRENT:
1560 /* no hub-wide feature/status flags */
1561 break;
1562 default:
1563 goto error;
1564 }
1565 break;
1566 case ClearPortFeature:
1567 if (!wIndex || wIndex > ports)
1568 goto error;
1569 wIndex--;
1570 temp = fotg210_readl(fotg210, status_reg);
1571 temp &= ~PORT_RWC_BITS;
1572
1573 /*
1574 * Even if OWNER is set, so the port is owned by the
37ebb549 1575 * companion controller, hub_wq needs to be able to clear
7d50195f
FHC
1576 * the port-change status bits (especially
1577 * USB_PORT_STAT_C_CONNECTION).
1578 */
1579
1580 switch (wValue) {
1581 case USB_PORT_FEAT_ENABLE:
1582 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1583 break;
1584 case USB_PORT_FEAT_C_ENABLE:
1585 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1586 break;
1587 case USB_PORT_FEAT_SUSPEND:
1588 if (temp & PORT_RESET)
1589 goto error;
1590 if (!(temp & PORT_SUSPEND))
1591 break;
1592 if ((temp & PORT_PE) == 0)
1593 goto error;
1594
1595 /* resume signaling for 20 msec */
1596 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1597 fotg210->reset_done[wIndex] = jiffies
7e136bb7 1598 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
7d50195f
FHC
1599 break;
1600 case USB_PORT_FEAT_C_SUSPEND:
1601 clear_bit(wIndex, &fotg210->port_c_suspend);
1602 break;
1603 case USB_PORT_FEAT_C_CONNECTION:
1604 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1605 break;
1606 case USB_PORT_FEAT_C_OVER_CURRENT:
1607 fotg210_writel(fotg210, temp | OTGISR_OVC,
1608 &fotg210->regs->otgisr);
1609 break;
1610 case USB_PORT_FEAT_C_RESET:
1611 /* GetPortStatus clears reset */
1612 break;
1613 default:
1614 goto error;
1615 }
1616 fotg210_readl(fotg210, &fotg210->regs->command);
1617 break;
1618 case GetHubDescriptor:
1619 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1620 buf);
1621 break;
1622 case GetHubStatus:
1623 /* no hub-wide feature/status flags */
1624 memset(buf, 0, 4);
1625 /*cpu_to_le32s ((u32 *) buf); */
1626 break;
1627 case GetPortStatus:
1628 if (!wIndex || wIndex > ports)
1629 goto error;
1630 wIndex--;
1631 status = 0;
1632 temp = fotg210_readl(fotg210, status_reg);
1633
1634 /* wPortChange bits */
1635 if (temp & PORT_CSC)
1636 status |= USB_PORT_STAT_C_CONNECTION << 16;
1637 if (temp & PORT_PEC)
1638 status |= USB_PORT_STAT_C_ENABLE << 16;
1639
1640 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1641 if (temp1 & OTGISR_OVC)
1642 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1643
1644 /* whoever resumes must GetPortStatus to complete it!! */
1645 if (temp & PORT_RESUME) {
1646
1647 /* Remote Wakeup received? */
1648 if (!fotg210->reset_done[wIndex]) {
1649 /* resume signaling for 20 msec */
1650 fotg210->reset_done[wIndex] = jiffies
1651 + msecs_to_jiffies(20);
1652 /* check the port again */
1653 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1654 fotg210->reset_done[wIndex]);
1655 }
1656
1657 /* resume completed? */
1658 else if (time_after_eq(jiffies,
1659 fotg210->reset_done[wIndex])) {
1660 clear_bit(wIndex, &fotg210->suspended_ports);
1661 set_bit(wIndex, &fotg210->port_c_suspend);
1662 fotg210->reset_done[wIndex] = 0;
1663
1664 /* stop resume signaling */
1665 temp = fotg210_readl(fotg210, status_reg);
1666 fotg210_writel(fotg210,
1667 temp & ~(PORT_RWC_BITS | PORT_RESUME),
1668 status_reg);
1669 clear_bit(wIndex, &fotg210->resuming_ports);
1670 retval = handshake(fotg210, status_reg,
1671 PORT_RESUME, 0, 2000 /* 2msec */);
1672 if (retval != 0) {
1673 fotg210_err(fotg210,
1674 "port %d resume error %d\n",
1675 wIndex + 1, retval);
1676 goto error;
1677 }
1678 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1679 }
1680 }
1681
1682 /* whoever resets must GetPortStatus to complete it!! */
1683 if ((temp & PORT_RESET)
1684 && time_after_eq(jiffies,
1685 fotg210->reset_done[wIndex])) {
1686 status |= USB_PORT_STAT_C_RESET << 16;
1687 fotg210->reset_done[wIndex] = 0;
1688 clear_bit(wIndex, &fotg210->resuming_ports);
1689
1690 /* force reset to complete */
1691 fotg210_writel(fotg210,
1692 temp & ~(PORT_RWC_BITS | PORT_RESET),
1693 status_reg);
1694 /* REVISIT: some hardware needs 550+ usec to clear
1695 * this bit; seems too long to spin routinely...
1696 */
1697 retval = handshake(fotg210, status_reg,
1698 PORT_RESET, 0, 1000);
1699 if (retval != 0) {
1700 fotg210_err(fotg210, "port %d reset error %d\n",
1701 wIndex + 1, retval);
1702 goto error;
1703 }
1704
1705 /* see what we found out */
1706 temp = check_reset_complete(fotg210, wIndex, status_reg,
1707 fotg210_readl(fotg210, status_reg));
1708 }
1709
1710 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1711 fotg210->reset_done[wIndex] = 0;
1712 clear_bit(wIndex, &fotg210->resuming_ports);
1713 }
1714
1715 /* transfer dedicated ports to the companion hc */
1716 if ((temp & PORT_CONNECT) &&
1717 test_bit(wIndex, &fotg210->companion_ports)) {
1718 temp &= ~PORT_RWC_BITS;
1719 fotg210_writel(fotg210, temp, status_reg);
1720 fotg210_dbg(fotg210, "port %d --> companion\n",
1721 wIndex + 1);
1722 temp = fotg210_readl(fotg210, status_reg);
1723 }
1724
1725 /*
37ebb549 1726 * Even if OWNER is set, there's no harm letting hub_wq
7d50195f
FHC
1727 * see the wPortStatus values (they should all be 0 except
1728 * for PORT_POWER anyway).
1729 */
1730
1731 if (temp & PORT_CONNECT) {
1732 status |= USB_PORT_STAT_CONNECTION;
1733 status |= fotg210_port_speed(fotg210, temp);
1734 }
1735 if (temp & PORT_PE)
1736 status |= USB_PORT_STAT_ENABLE;
1737
1738 /* maybe the port was unsuspended without our knowledge */
1739 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1740 status |= USB_PORT_STAT_SUSPEND;
1741 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1742 clear_bit(wIndex, &fotg210->suspended_ports);
1743 clear_bit(wIndex, &fotg210->resuming_ports);
1744 fotg210->reset_done[wIndex] = 0;
1745 if (temp & PORT_PE)
1746 set_bit(wIndex, &fotg210->port_c_suspend);
1747 }
1748
1749 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1750 if (temp1 & OTGISR_OVC)
1751 status |= USB_PORT_STAT_OVERCURRENT;
1752 if (temp & PORT_RESET)
1753 status |= USB_PORT_STAT_RESET;
1754 if (test_bit(wIndex, &fotg210->port_c_suspend))
1755 status |= USB_PORT_STAT_C_SUSPEND << 16;
1756
3b707ece
ON
1757 if (status & ~0xffff) /* only if wPortChange is interesting */
1758 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
7d50195f
FHC
1759 put_unaligned_le32(status, buf);
1760 break;
1761 case SetHubFeature:
1762 switch (wValue) {
1763 case C_HUB_LOCAL_POWER:
1764 case C_HUB_OVER_CURRENT:
1765 /* no hub-wide feature/status flags */
1766 break;
1767 default:
1768 goto error;
1769 }
1770 break;
1771 case SetPortFeature:
1772 selector = wIndex >> 8;
1773 wIndex &= 0xff;
1774
1775 if (!wIndex || wIndex > ports)
1776 goto error;
1777 wIndex--;
1778 temp = fotg210_readl(fotg210, status_reg);
1779 temp &= ~PORT_RWC_BITS;
1780 switch (wValue) {
1781 case USB_PORT_FEAT_SUSPEND:
1782 if ((temp & PORT_PE) == 0
1783 || (temp & PORT_RESET) != 0)
1784 goto error;
1785
1786 /* After above check the port must be connected.
1787 * Set appropriate bit thus could put phy into low power
1788 * mode if we have hostpc feature
1789 */
1790 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1791 status_reg);
1792 set_bit(wIndex, &fotg210->suspended_ports);
1793 break;
1794 case USB_PORT_FEAT_RESET:
1795 if (temp & PORT_RESUME)
1796 goto error;
1797 /* line status bits may report this as low speed,
1798 * which can be fine if this root hub has a
1799 * transaction translator built in.
1800 */
be5ac4c4 1801 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
7d50195f
FHC
1802 temp |= PORT_RESET;
1803 temp &= ~PORT_PE;
1804
1805 /*
1806 * caller must wait, then call GetPortStatus
1807 * usb 2.0 spec says 50 ms resets on root
1808 */
1809 fotg210->reset_done[wIndex] = jiffies
1810 + msecs_to_jiffies(50);
1811 fotg210_writel(fotg210, temp, status_reg);
1812 break;
1813
1814 /* For downstream facing ports (these): one hub port is put
1815 * into test mode according to USB2 11.24.2.13, then the hub
1816 * must be reset (which for root hub now means rmmod+modprobe,
1817 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1818 * about the EHCI-specific stuff.
1819 */
1820 case USB_PORT_FEAT_TEST:
1821 if (!selector || selector > 5)
1822 goto error;
1823 spin_unlock_irqrestore(&fotg210->lock, flags);
1824 fotg210_quiesce(fotg210);
1825 spin_lock_irqsave(&fotg210->lock, flags);
1826
1827 /* Put all enabled ports into suspend */
1828 temp = fotg210_readl(fotg210, status_reg) &
1829 ~PORT_RWC_BITS;
1830 if (temp & PORT_PE)
1831 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1832 status_reg);
1833
1834 spin_unlock_irqrestore(&fotg210->lock, flags);
1835 fotg210_halt(fotg210);
1836 spin_lock_irqsave(&fotg210->lock, flags);
1837
1838 temp = fotg210_readl(fotg210, status_reg);
1839 temp |= selector << 16;
1840 fotg210_writel(fotg210, temp, status_reg);
1841 break;
1842
1843 default:
1844 goto error;
1845 }
1846 fotg210_readl(fotg210, &fotg210->regs->command);
1847 break;
1848
1849 default:
1850error:
1851 /* "stall" on error */
1852 retval = -EPIPE;
1853 }
1854 spin_unlock_irqrestore(&fotg210->lock, flags);
1855 return retval;
1856}
1857
1858static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1859 int portnum)
1860{
1861 return;
1862}
1863
1864static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1865 int portnum)
1866{
1867 return 0;
1868}
1869/*-------------------------------------------------------------------------*/
1870/*
1871 * There's basically three types of memory:
1872 * - data used only by the HCD ... kmalloc is fine
1873 * - async and periodic schedules, shared by HC and HCD ... these
1874 * need to use dma_pool or dma_alloc_coherent
1875 * - driver buffers, read/written by HC ... single shot DMA mapped
1876 *
1877 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1878 * No memory seen by this driver is pageable.
1879 */
1880
1881/*-------------------------------------------------------------------------*/
1882
1883/* Allocate the key transfer structures from the previously allocated pool */
1884
1885static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1886 struct fotg210_qtd *qtd, dma_addr_t dma)
1887{
1888 memset(qtd, 0, sizeof(*qtd));
1889 qtd->qtd_dma = dma;
1890 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1891 qtd->hw_next = FOTG210_LIST_END(fotg210);
1892 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1893 INIT_LIST_HEAD(&qtd->qtd_list);
1894}
1895
1896static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1897 gfp_t flags)
1898{
1899 struct fotg210_qtd *qtd;
1900 dma_addr_t dma;
1901
1902 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1903 if (qtd != NULL)
1904 fotg210_qtd_init(fotg210, qtd, dma);
1905
1906 return qtd;
1907}
1908
1909static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1910 struct fotg210_qtd *qtd)
1911{
1912 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1913}
1914
1915
1916static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1917{
1918 /* clean qtds first, and know this is not linked */
1919 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1920 fotg210_dbg(fotg210, "unused qh not empty!\n");
1921 BUG();
1922 }
1923 if (qh->dummy)
1924 fotg210_qtd_free(fotg210, qh->dummy);
1925 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1926 kfree(qh);
1927}
1928
1929static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1930 gfp_t flags)
1931{
1932 struct fotg210_qh *qh;
1933 dma_addr_t dma;
1934
1935 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1936 if (!qh)
1937 goto done;
1938 qh->hw = (struct fotg210_qh_hw *)
1939 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1940 if (!qh->hw)
1941 goto fail;
1942 memset(qh->hw, 0, sizeof(*qh->hw));
1943 qh->qh_dma = dma;
1944 INIT_LIST_HEAD(&qh->qtd_list);
1945
1946 /* dummy td enables safe urb queuing */
1947 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1948 if (qh->dummy == NULL) {
1949 fotg210_dbg(fotg210, "no dummy td\n");
1950 goto fail1;
1951 }
1952done:
1953 return qh;
1954fail1:
1955 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1956fail:
1957 kfree(qh);
1958 return NULL;
1959}
1960
1961/*-------------------------------------------------------------------------*/
1962
1963/* The queue heads and transfer descriptors are managed from pools tied
1964 * to each of the "per device" structures.
1965 * This is the initialisation and cleanup code.
1966 */
1967
1968static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1969{
1970 if (fotg210->async)
1971 qh_destroy(fotg210, fotg210->async);
1972 fotg210->async = NULL;
1973
1974 if (fotg210->dummy)
1975 qh_destroy(fotg210, fotg210->dummy);
1976 fotg210->dummy = NULL;
1977
1978 /* DMA consistent memory and pools */
1979 if (fotg210->qtd_pool)
1980 dma_pool_destroy(fotg210->qtd_pool);
1981 fotg210->qtd_pool = NULL;
1982
1983 if (fotg210->qh_pool) {
1984 dma_pool_destroy(fotg210->qh_pool);
1985 fotg210->qh_pool = NULL;
1986 }
1987
1988 if (fotg210->itd_pool)
1989 dma_pool_destroy(fotg210->itd_pool);
1990 fotg210->itd_pool = NULL;
1991
1992 if (fotg210->periodic)
1993 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1994 fotg210->periodic_size * sizeof(u32),
1995 fotg210->periodic, fotg210->periodic_dma);
1996 fotg210->periodic = NULL;
1997
1998 /* shadow periodic table */
1999 kfree(fotg210->pshadow);
2000 fotg210->pshadow = NULL;
2001}
2002
2003/* remember to add cleanup code (above) if you add anything here */
2004static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
2005{
2006 int i;
2007
2008 /* QTDs for control/bulk/intr transfers */
2009 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
2010 fotg210_to_hcd(fotg210)->self.controller,
2011 sizeof(struct fotg210_qtd),
2012 32 /* byte alignment (for hw parts) */,
2013 4096 /* can't cross 4K */);
2014 if (!fotg210->qtd_pool)
2015 goto fail;
2016
2017 /* QHs for control/bulk/intr transfers */
2018 fotg210->qh_pool = dma_pool_create("fotg210_qh",
2019 fotg210_to_hcd(fotg210)->self.controller,
2020 sizeof(struct fotg210_qh_hw),
2021 32 /* byte alignment (for hw parts) */,
2022 4096 /* can't cross 4K */);
2023 if (!fotg210->qh_pool)
2024 goto fail;
2025
2026 fotg210->async = fotg210_qh_alloc(fotg210, flags);
2027 if (!fotg210->async)
2028 goto fail;
2029
2030 /* ITD for high speed ISO transfers */
2031 fotg210->itd_pool = dma_pool_create("fotg210_itd",
2032 fotg210_to_hcd(fotg210)->self.controller,
2033 sizeof(struct fotg210_itd),
2034 64 /* byte alignment (for hw parts) */,
2035 4096 /* can't cross 4K */);
2036 if (!fotg210->itd_pool)
2037 goto fail;
2038
2039 /* Hardware periodic table */
2040 fotg210->periodic = (__le32 *)
2041 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
2042 fotg210->periodic_size * sizeof(__le32),
2043 &fotg210->periodic_dma, 0);
2044 if (fotg210->periodic == NULL)
2045 goto fail;
2046
2047 for (i = 0; i < fotg210->periodic_size; i++)
2048 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
2049
2050 /* software shadow of hardware table */
2051 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
2052 flags);
2053 if (fotg210->pshadow != NULL)
2054 return 0;
2055
2056fail:
2057 fotg210_dbg(fotg210, "couldn't init memory\n");
2058 fotg210_mem_cleanup(fotg210);
2059 return -ENOMEM;
2060}
2061/*-------------------------------------------------------------------------*/
2062/*
2063 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2064 *
2065 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2066 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2067 * buffers needed for the larger number). We use one QH per endpoint, queue
2068 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2069 *
2070 * ISO traffic uses "ISO TD" (itd) records, and (along with
2071 * interrupts) needs careful scheduling. Performance improvements can be
2072 * an ongoing challenge. That's in "ehci-sched.c".
2073 *
2074 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2075 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2076 * (b) special fields in qh entries or (c) split iso entries. TTs will
2077 * buffer low/full speed data so the host collects it at high speed.
2078 */
2079
2080/*-------------------------------------------------------------------------*/
2081
2082/* fill a qtd, returning how much of the buffer we were able to queue up */
2083
2084static int
2085qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
2086 size_t len, int token, int maxpacket)
2087{
2088 int i, count;
2089 u64 addr = buf;
2090
2091 /* one buffer entry per 4K ... first might be short or unaligned */
2092 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2093 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2094 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2095 if (likely(len < count)) /* ... iff needed */
2096 count = len;
2097 else {
2098 buf += 0x1000;
2099 buf &= ~0x0fff;
2100
2101 /* per-qtd limit: from 16K to 20K (best alignment) */
2102 for (i = 1; count < len && i < 5; i++) {
2103 addr = buf;
2104 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2105 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2106 (u32)(addr >> 32));
2107 buf += 0x1000;
2108 if ((count + 0x1000) < len)
2109 count += 0x1000;
2110 else
2111 count = len;
2112 }
2113
2114 /* short packets may only terminate transfers */
2115 if (count != len)
2116 count -= (count % maxpacket);
2117 }
2118 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2119 qtd->length = count;
2120
2121 return count;
2122}
2123
2124/*-------------------------------------------------------------------------*/
2125
2126static inline void
2127qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
2128 struct fotg210_qtd *qtd)
2129{
2130 struct fotg210_qh_hw *hw = qh->hw;
2131
2132 /* writes to an active overlay are unsafe */
2133 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2134
2135 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2136 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2137
2138 /* Except for control endpoints, we make hardware maintain data
2139 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2140 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2141 * ever clear it.
2142 */
2143 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2144 unsigned is_out, epnum;
2145
2146 is_out = qh->is_out;
2147 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2148 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2149 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2150 usb_settoggle(qh->dev, epnum, is_out, 1);
2151 }
2152 }
2153
2154 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2155}
2156
2157/* if it weren't for a common silicon quirk (writing the dummy into the qh
2158 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2159 * recovery (including urb dequeue) would need software changes to a QH...
2160 */
2161static void
2162qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2163{
2164 struct fotg210_qtd *qtd;
2165
2166 if (list_empty(&qh->qtd_list))
2167 qtd = qh->dummy;
2168 else {
2169 qtd = list_entry(qh->qtd_list.next,
2170 struct fotg210_qtd, qtd_list);
2171 /*
2172 * first qtd may already be partially processed.
2173 * If we come here during unlink, the QH overlay region
2174 * might have reference to the just unlinked qtd. The
2175 * qtd is updated in qh_completions(). Update the QH
2176 * overlay here.
2177 */
2178 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2179 qh->hw->hw_qtd_next = qtd->hw_next;
2180 qtd = NULL;
2181 }
2182 }
2183
2184 if (qtd)
2185 qh_update(fotg210, qh, qtd);
2186}
2187
2188/*-------------------------------------------------------------------------*/
2189
2190static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2191
2192static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2193 struct usb_host_endpoint *ep)
2194{
2195 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2196 struct fotg210_qh *qh = ep->hcpriv;
2197 unsigned long flags;
2198
2199 spin_lock_irqsave(&fotg210->lock, flags);
2200 qh->clearing_tt = 0;
2201 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2202 && fotg210->rh_state == FOTG210_RH_RUNNING)
2203 qh_link_async(fotg210, qh);
2204 spin_unlock_irqrestore(&fotg210->lock, flags);
2205}
2206
2207static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2208 struct fotg210_qh *qh,
2209 struct urb *urb, u32 token)
2210{
2211
2212 /* If an async split transaction gets an error or is unlinked,
2213 * the TT buffer may be left in an indeterminate state. We
2214 * have to clear the TT buffer.
2215 *
2216 * Note: this routine is never called for Isochronous transfers.
2217 */
2218 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
7d50195f
FHC
2219 struct usb_device *tt = urb->dev->tt->hub;
2220 dev_dbg(&tt->dev,
2221 "clear tt buffer port %d, a%d ep%d t%08x\n",
2222 urb->dev->ttport, urb->dev->devnum,
2223 usb_pipeendpoint(urb->pipe), token);
3b707ece 2224
7d50195f
FHC
2225 if (urb->dev->tt->hub !=
2226 fotg210_to_hcd(fotg210)->self.root_hub) {
2227 if (usb_hub_clear_tt_buffer(urb) == 0)
2228 qh->clearing_tt = 1;
2229 }
2230 }
2231}
2232
2233static int qtd_copy_status(
2234 struct fotg210_hcd *fotg210,
2235 struct urb *urb,
2236 size_t length,
2237 u32 token
2238)
2239{
2240 int status = -EINPROGRESS;
2241
2242 /* count IN/OUT bytes, not SETUP (even short packets) */
2243 if (likely(QTD_PID(token) != 2))
2244 urb->actual_length += length - QTD_LENGTH(token);
2245
2246 /* don't modify error codes */
2247 if (unlikely(urb->unlinked))
2248 return status;
2249
2250 /* force cleanup after short read; not always an error */
2251 if (unlikely(IS_SHORT_READ(token)))
2252 status = -EREMOTEIO;
2253
2254 /* serious "can't proceed" faults reported by the hardware */
2255 if (token & QTD_STS_HALT) {
2256 if (token & QTD_STS_BABBLE) {
2257 /* FIXME "must" disable babbling device's port too */
2258 status = -EOVERFLOW;
2259 /* CERR nonzero + halt --> stall */
2260 } else if (QTD_CERR(token)) {
2261 status = -EPIPE;
2262
2263 /* In theory, more than one of the following bits can be set
2264 * since they are sticky and the transaction is retried.
2265 * Which to test first is rather arbitrary.
2266 */
2267 } else if (token & QTD_STS_MMF) {
2268 /* fs/ls interrupt xfer missed the complete-split */
2269 status = -EPROTO;
2270 } else if (token & QTD_STS_DBE) {
2271 status = (QTD_PID(token) == 1) /* IN ? */
2272 ? -ENOSR /* hc couldn't read data */
2273 : -ECOMM; /* hc couldn't write data */
2274 } else if (token & QTD_STS_XACT) {
2275 /* timeout, bad CRC, wrong PID, etc */
2276 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2277 urb->dev->devpath,
2278 usb_pipeendpoint(urb->pipe),
2279 usb_pipein(urb->pipe) ? "in" : "out");
2280 status = -EPROTO;
2281 } else { /* unknown */
2282 status = -EPROTO;
2283 }
2284
be5ac4c4 2285 fotg210_dbg(fotg210,
7d50195f
FHC
2286 "dev%d ep%d%s qtd token %08x --> status %d\n",
2287 usb_pipedevice(urb->pipe),
2288 usb_pipeendpoint(urb->pipe),
2289 usb_pipein(urb->pipe) ? "in" : "out",
2290 token, status);
2291 }
2292
2293 return status;
2294}
2295
2296static void
2297fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
2298__releases(fotg210->lock)
2299__acquires(fotg210->lock)
2300{
2301 if (likely(urb->hcpriv != NULL)) {
2302 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2303
2304 /* S-mask in a QH means it's an interrupt urb */
2305 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2306
2307 /* ... update hc-wide periodic stats (for usbfs) */
2308 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2309 }
2310 }
2311
2312 if (unlikely(urb->unlinked)) {
2313 COUNT(fotg210->stats.unlink);
2314 } else {
2315 /* report non-error and short read status as zero */
2316 if (status == -EINPROGRESS || status == -EREMOTEIO)
2317 status = 0;
2318 COUNT(fotg210->stats.complete);
2319 }
2320
2321#ifdef FOTG210_URB_TRACE
2322 fotg210_dbg(fotg210,
2323 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2324 __func__, urb->dev->devpath, urb,
2325 usb_pipeendpoint(urb->pipe),
2326 usb_pipein(urb->pipe) ? "in" : "out",
2327 status,
2328 urb->actual_length, urb->transfer_buffer_length);
2329#endif
2330
2331 /* complete() can reenter this HCD */
2332 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2333 spin_unlock(&fotg210->lock);
2334 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2335 spin_lock(&fotg210->lock);
2336}
2337
2338static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2339
2340/*
2341 * Process and free completed qtds for a qh, returning URBs to drivers.
2342 * Chases up to qh->hw_current. Returns number of completions called,
2343 * indicating how much "real" work we did.
2344 */
2345static unsigned
2346qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2347{
2348 struct fotg210_qtd *last, *end = qh->dummy;
2349 struct list_head *entry, *tmp;
2350 int last_status;
2351 int stopped;
2352 unsigned count = 0;
2353 u8 state;
2354 struct fotg210_qh_hw *hw = qh->hw;
2355
2356 if (unlikely(list_empty(&qh->qtd_list)))
2357 return count;
2358
2359 /* completions (or tasks on other cpus) must never clobber HALT
2360 * till we've gone through and cleaned everything up, even when
2361 * they add urbs to this qh's queue or mark them for unlinking.
2362 *
2363 * NOTE: unlinking expects to be done in queue order.
2364 *
2365 * It's a bug for qh->qh_state to be anything other than
2366 * QH_STATE_IDLE, unless our caller is scan_async() or
2367 * scan_intr().
2368 */
2369 state = qh->qh_state;
2370 qh->qh_state = QH_STATE_COMPLETING;
2371 stopped = (state == QH_STATE_IDLE);
2372
2373 rescan:
2374 last = NULL;
2375 last_status = -EINPROGRESS;
2376 qh->needs_rescan = 0;
2377
2378 /* remove de-activated QTDs from front of queue.
2379 * after faults (including short reads), cleanup this urb
2380 * then let the queue advance.
2381 * if queue is stopped, handles unlinks.
2382 */
2383 list_for_each_safe(entry, tmp, &qh->qtd_list) {
2384 struct fotg210_qtd *qtd;
2385 struct urb *urb;
2386 u32 token = 0;
2387
2388 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2389 urb = qtd->urb;
2390
2391 /* clean up any state from previous QTD ...*/
2392 if (last) {
2393 if (likely(last->urb != urb)) {
2394 fotg210_urb_done(fotg210, last->urb,
2395 last_status);
2396 count++;
2397 last_status = -EINPROGRESS;
2398 }
2399 fotg210_qtd_free(fotg210, last);
2400 last = NULL;
2401 }
2402
2403 /* ignore urbs submitted during completions we reported */
2404 if (qtd == end)
2405 break;
2406
2407 /* hardware copies qtd out of qh overlay */
2408 rmb();
2409 token = hc32_to_cpu(fotg210, qtd->hw_token);
2410
2411 /* always clean up qtds the hc de-activated */
2412 retry_xacterr:
2413 if ((token & QTD_STS_ACTIVE) == 0) {
2414
2415 /* Report Data Buffer Error: non-fatal but useful */
2416 if (token & QTD_STS_DBE)
2417 fotg210_dbg(fotg210,
2418 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2419 urb,
2420 usb_endpoint_num(&urb->ep->desc),
2421 usb_endpoint_dir_in(&urb->ep->desc)
2422 ? "in" : "out",
2423 urb->transfer_buffer_length,
2424 qtd,
2425 qh);
2426
2427 /* on STALL, error, and short reads this urb must
2428 * complete and all its qtds must be recycled.
2429 */
2430 if ((token & QTD_STS_HALT) != 0) {
2431
2432 /* retry transaction errors until we
2433 * reach the software xacterr limit
2434 */
2435 if ((token & QTD_STS_XACT) &&
2436 QTD_CERR(token) == 0 &&
2437 ++qh->xacterrs < QH_XACTERR_MAX &&
2438 !urb->unlinked) {
2439 fotg210_dbg(fotg210,
2440 "detected XactErr len %zu/%zu retry %d\n",
2441 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
2442
2443 /* reset the token in the qtd and the
2444 * qh overlay (which still contains
2445 * the qtd) so that we pick up from
2446 * where we left off
2447 */
2448 token &= ~QTD_STS_HALT;
2449 token |= QTD_STS_ACTIVE |
2450 (FOTG210_TUNE_CERR << 10);
2451 qtd->hw_token = cpu_to_hc32(fotg210,
2452 token);
2453 wmb();
2454 hw->hw_token = cpu_to_hc32(fotg210,
2455 token);
2456 goto retry_xacterr;
2457 }
2458 stopped = 1;
2459
2460 /* magic dummy for some short reads; qh won't advance.
2461 * that silicon quirk can kick in with this dummy too.
2462 *
2463 * other short reads won't stop the queue, including
2464 * control transfers (status stage handles that) or
2465 * most other single-qtd reads ... the queue stops if
2466 * URB_SHORT_NOT_OK was set so the driver submitting
2467 * the urbs could clean it up.
2468 */
2469 } else if (IS_SHORT_READ(token)
2470 && !(qtd->hw_alt_next
2471 & FOTG210_LIST_END(fotg210))) {
2472 stopped = 1;
2473 }
2474
2475 /* stop scanning when we reach qtds the hc is using */
2476 } else if (likely(!stopped
2477 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2478 break;
2479
2480 /* scan the whole queue for unlinks whenever it stops */
2481 } else {
2482 stopped = 1;
2483
2484 /* cancel everything if we halt, suspend, etc */
2485 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2486 last_status = -ESHUTDOWN;
2487
2488 /* this qtd is active; skip it unless a previous qtd
2489 * for its urb faulted, or its urb was canceled.
2490 */
2491 else if (last_status == -EINPROGRESS && !urb->unlinked)
2492 continue;
2493
2494 /* qh unlinked; token in overlay may be most current */
2495 if (state == QH_STATE_IDLE
2496 && cpu_to_hc32(fotg210, qtd->qtd_dma)
2497 == hw->hw_current) {
2498 token = hc32_to_cpu(fotg210, hw->hw_token);
2499
2500 /* An unlink may leave an incomplete
2501 * async transaction in the TT buffer.
2502 * We have to clear it.
2503 */
2504 fotg210_clear_tt_buffer(fotg210, qh, urb,
2505 token);
2506 }
2507 }
2508
2509 /* unless we already know the urb's status, collect qtd status
2510 * and update count of bytes transferred. in common short read
2511 * cases with only one data qtd (including control transfers),
2512 * queue processing won't halt. but with two or more qtds (for
2513 * example, with a 32 KB transfer), when the first qtd gets a
2514 * short read the second must be removed by hand.
2515 */
2516 if (last_status == -EINPROGRESS) {
2517 last_status = qtd_copy_status(fotg210, urb,
2518 qtd->length, token);
2519 if (last_status == -EREMOTEIO
2520 && (qtd->hw_alt_next
2521 & FOTG210_LIST_END(fotg210)))
2522 last_status = -EINPROGRESS;
2523
2524 /* As part of low/full-speed endpoint-halt processing
2525 * we must clear the TT buffer (11.17.5).
2526 */
2527 if (unlikely(last_status != -EINPROGRESS &&
2528 last_status != -EREMOTEIO)) {
2529 /* The TT's in some hubs malfunction when they
2530 * receive this request following a STALL (they
2531 * stop sending isochronous packets). Since a
2532 * STALL can't leave the TT buffer in a busy
2533 * state (if you believe Figures 11-48 - 11-51
2534 * in the USB 2.0 spec), we won't clear the TT
2535 * buffer in this case. Strictly speaking this
2536 * is a violation of the spec.
2537 */
2538 if (last_status != -EPIPE)
2539 fotg210_clear_tt_buffer(fotg210, qh,
2540 urb, token);
2541 }
2542 }
2543
2544 /* if we're removing something not at the queue head,
2545 * patch the hardware queue pointer.
2546 */
2547 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2548 last = list_entry(qtd->qtd_list.prev,
2549 struct fotg210_qtd, qtd_list);
2550 last->hw_next = qtd->hw_next;
2551 }
2552
2553 /* remove qtd; it's recycled after possible urb completion */
2554 list_del(&qtd->qtd_list);
2555 last = qtd;
2556
2557 /* reinit the xacterr counter for the next qtd */
2558 qh->xacterrs = 0;
2559 }
2560
2561 /* last urb's completion might still need calling */
2562 if (likely(last != NULL)) {
2563 fotg210_urb_done(fotg210, last->urb, last_status);
2564 count++;
2565 fotg210_qtd_free(fotg210, last);
2566 }
2567
2568 /* Do we need to rescan for URBs dequeued during a giveback? */
2569 if (unlikely(qh->needs_rescan)) {
2570 /* If the QH is already unlinked, do the rescan now. */
2571 if (state == QH_STATE_IDLE)
2572 goto rescan;
2573
2574 /* Otherwise we have to wait until the QH is fully unlinked.
2575 * Our caller will start an unlink if qh->needs_rescan is
2576 * set. But if an unlink has already started, nothing needs
2577 * to be done.
2578 */
2579 if (state != QH_STATE_LINKED)
2580 qh->needs_rescan = 0;
2581 }
2582
2583 /* restore original state; caller must unlink or relink */
2584 qh->qh_state = state;
2585
2586 /* be sure the hardware's done with the qh before refreshing
2587 * it after fault cleanup, or recovering from silicon wrongly
2588 * overlaying the dummy qtd (which reduces DMA chatter).
2589 */
2590 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2591 switch (state) {
2592 case QH_STATE_IDLE:
2593 qh_refresh(fotg210, qh);
2594 break;
2595 case QH_STATE_LINKED:
2596 /* We won't refresh a QH that's linked (after the HC
2597 * stopped the queue). That avoids a race:
2598 * - HC reads first part of QH;
2599 * - CPU updates that first part and the token;
2600 * - HC reads rest of that QH, including token
2601 * Result: HC gets an inconsistent image, and then
2602 * DMAs to/from the wrong memory (corrupting it).
2603 *
2604 * That should be rare for interrupt transfers,
2605 * except maybe high bandwidth ...
2606 */
2607
2608 /* Tell the caller to start an unlink */
2609 qh->needs_rescan = 1;
2610 break;
2611 /* otherwise, unlink already started */
2612 }
2613 }
2614
2615 return count;
2616}
2617
2618/*-------------------------------------------------------------------------*/
2619
2620/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2621#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2622/* ... and packet size, for any kind of endpoint descriptor */
2623#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2624
2625/*
2626 * reverse of qh_urb_transaction: free a list of TDs.
2627 * used for cleanup after errors, before HC sees an URB's TDs.
2628 */
2629static void qtd_list_free(
2630 struct fotg210_hcd *fotg210,
2631 struct urb *urb,
2632 struct list_head *qtd_list
2633) {
2634 struct list_head *entry, *temp;
2635
2636 list_for_each_safe(entry, temp, qtd_list) {
2637 struct fotg210_qtd *qtd;
2638
2639 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2640 list_del(&qtd->qtd_list);
2641 fotg210_qtd_free(fotg210, qtd);
2642 }
2643}
2644
2645/*
2646 * create a list of filled qtds for this URB; won't link into qh.
2647 */
2648static struct list_head *
2649qh_urb_transaction(
2650 struct fotg210_hcd *fotg210,
2651 struct urb *urb,
2652 struct list_head *head,
2653 gfp_t flags
2654) {
2655 struct fotg210_qtd *qtd, *qtd_prev;
2656 dma_addr_t buf;
2657 int len, this_sg_len, maxpacket;
2658 int is_input;
2659 u32 token;
2660 int i;
2661 struct scatterlist *sg;
2662
2663 /*
2664 * URBs map to sequences of QTDs: one logical transaction
2665 */
2666 qtd = fotg210_qtd_alloc(fotg210, flags);
2667 if (unlikely(!qtd))
2668 return NULL;
2669 list_add_tail(&qtd->qtd_list, head);
2670 qtd->urb = urb;
2671
2672 token = QTD_STS_ACTIVE;
2673 token |= (FOTG210_TUNE_CERR << 10);
2674 /* for split transactions, SplitXState initialized to zero */
2675
2676 len = urb->transfer_buffer_length;
2677 is_input = usb_pipein(urb->pipe);
2678 if (usb_pipecontrol(urb->pipe)) {
2679 /* SETUP pid */
2680 qtd_fill(fotg210, qtd, urb->setup_dma,
2681 sizeof(struct usb_ctrlrequest),
2682 token | (2 /* "setup" */ << 8), 8);
2683
2684 /* ... and always at least one more pid */
2685 token ^= QTD_TOGGLE;
2686 qtd_prev = qtd;
2687 qtd = fotg210_qtd_alloc(fotg210, flags);
2688 if (unlikely(!qtd))
2689 goto cleanup;
2690 qtd->urb = urb;
2691 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2692 list_add_tail(&qtd->qtd_list, head);
2693
2694 /* for zero length DATA stages, STATUS is always IN */
2695 if (len == 0)
2696 token |= (1 /* "in" */ << 8);
2697 }
2698
2699 /*
2700 * data transfer stage: buffer setup
2701 */
2702 i = urb->num_mapped_sgs;
2703 if (len > 0 && i > 0) {
2704 sg = urb->sg;
2705 buf = sg_dma_address(sg);
2706
2707 /* urb->transfer_buffer_length may be smaller than the
2708 * size of the scatterlist (or vice versa)
2709 */
2710 this_sg_len = min_t(int, sg_dma_len(sg), len);
2711 } else {
2712 sg = NULL;
2713 buf = urb->transfer_dma;
2714 this_sg_len = len;
2715 }
2716
2717 if (is_input)
2718 token |= (1 /* "in" */ << 8);
2719 /* else it's already initted to "out" pid (0 << 8) */
2720
2721 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2722
2723 /*
2724 * buffer gets wrapped in one or more qtds;
2725 * last one may be "short" (including zero len)
2726 * and may serve as a control status ack
2727 */
2728 for (;;) {
2729 int this_qtd_len;
2730
2731 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2732 maxpacket);
2733 this_sg_len -= this_qtd_len;
2734 len -= this_qtd_len;
2735 buf += this_qtd_len;
2736
2737 /*
2738 * short reads advance to a "magic" dummy instead of the next
2739 * qtd ... that forces the queue to stop, for manual cleanup.
2740 * (this will usually be overridden later.)
2741 */
2742 if (is_input)
2743 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2744
2745 /* qh makes control packets use qtd toggle; maybe switch it */
2746 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2747 token ^= QTD_TOGGLE;
2748
2749 if (likely(this_sg_len <= 0)) {
2750 if (--i <= 0 || len <= 0)
2751 break;
2752 sg = sg_next(sg);
2753 buf = sg_dma_address(sg);
2754 this_sg_len = min_t(int, sg_dma_len(sg), len);
2755 }
2756
2757 qtd_prev = qtd;
2758 qtd = fotg210_qtd_alloc(fotg210, flags);
2759 if (unlikely(!qtd))
2760 goto cleanup;
2761 qtd->urb = urb;
2762 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2763 list_add_tail(&qtd->qtd_list, head);
2764 }
2765
2766 /*
2767 * unless the caller requires manual cleanup after short reads,
2768 * have the alt_next mechanism keep the queue running after the
2769 * last data qtd (the only one, for control and most other cases).
2770 */
2771 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
2772 || usb_pipecontrol(urb->pipe)))
2773 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2774
2775 /*
2776 * control requests may need a terminating data "status" ack;
2777 * other OUT ones may need a terminating short packet
2778 * (zero length).
2779 */
2780 if (likely(urb->transfer_buffer_length != 0)) {
2781 int one_more = 0;
2782
2783 if (usb_pipecontrol(urb->pipe)) {
2784 one_more = 1;
2785 token ^= 0x0100; /* "in" <--> "out" */
2786 token |= QTD_TOGGLE; /* force DATA1 */
2787 } else if (usb_pipeout(urb->pipe)
2788 && (urb->transfer_flags & URB_ZERO_PACKET)
2789 && !(urb->transfer_buffer_length % maxpacket)) {
2790 one_more = 1;
2791 }
2792 if (one_more) {
2793 qtd_prev = qtd;
2794 qtd = fotg210_qtd_alloc(fotg210, flags);
2795 if (unlikely(!qtd))
2796 goto cleanup;
2797 qtd->urb = urb;
2798 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2799 list_add_tail(&qtd->qtd_list, head);
2800
2801 /* never any data in such packets */
2802 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2803 }
2804 }
2805
2806 /* by default, enable interrupt on urb completion */
2807 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2808 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2809 return head;
2810
2811cleanup:
2812 qtd_list_free(fotg210, urb, head);
2813 return NULL;
2814}
2815
2816/*-------------------------------------------------------------------------*/
2817/*
2818 * Would be best to create all qh's from config descriptors,
2819 * when each interface/altsetting is established. Unlink
2820 * any previous qh and cancel its urbs first; endpoints are
2821 * implicitly reset then (data toggle too).
2822 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2823*/
2824
2825
2826/*
2827 * Each QH holds a qtd list; a QH is used for everything except iso.
2828 *
2829 * For interrupt urbs, the scheduler must set the microframe scheduling
2830 * mask(s) each time the QH gets scheduled. For highspeed, that's
2831 * just one microframe in the s-mask. For split interrupt transactions
2832 * there are additional complications: c-mask, maybe FSTNs.
2833 */
2834static struct fotg210_qh *
2835qh_make(
2836 struct fotg210_hcd *fotg210,
2837 struct urb *urb,
2838 gfp_t flags
2839) {
2840 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2841 u32 info1 = 0, info2 = 0;
2842 int is_input, type;
2843 int maxp = 0;
2844 struct usb_tt *tt = urb->dev->tt;
2845 struct fotg210_qh_hw *hw;
2846
2847 if (!qh)
2848 return qh;
2849
2850 /*
2851 * init endpoint/device data for this QH
2852 */
2853 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2854 info1 |= usb_pipedevice(urb->pipe) << 0;
2855
2856 is_input = usb_pipein(urb->pipe);
2857 type = usb_pipetype(urb->pipe);
2858 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2859
2860 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2861 * acts like up to 3KB, but is built from smaller packets.
2862 */
2863 if (max_packet(maxp) > 1024) {
2864 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2865 max_packet(maxp));
2866 goto done;
2867 }
2868
2869 /* Compute interrupt scheduling parameters just once, and save.
2870 * - allowing for high bandwidth, how many nsec/uframe are used?
2871 * - split transactions need a second CSPLIT uframe; same question
2872 * - splits also need a schedule gap (for full/low speed I/O)
2873 * - qh has a polling interval
2874 *
2875 * For control/bulk requests, the HC or TT handles these.
2876 */
2877 if (type == PIPE_INTERRUPT) {
2878 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2879 is_input, 0,
2880 hb_mult(maxp) * max_packet(maxp)));
2881 qh->start = NO_FRAME;
2882
2883 if (urb->dev->speed == USB_SPEED_HIGH) {
2884 qh->c_usecs = 0;
2885 qh->gap_uf = 0;
2886
2887 qh->period = urb->interval >> 3;
2888 if (qh->period == 0 && urb->interval != 1) {
2889 /* NOTE interval 2 or 4 uframes could work.
2890 * But interval 1 scheduling is simpler, and
2891 * includes high bandwidth.
2892 */
2893 urb->interval = 1;
2894 } else if (qh->period > fotg210->periodic_size) {
2895 qh->period = fotg210->periodic_size;
2896 urb->interval = qh->period << 3;
2897 }
2898 } else {
2899 int think_time;
2900
2901 /* gap is f(FS/LS transfer times) */
2902 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2903 is_input, 0, maxp) / (125 * 1000);
2904
2905 /* FIXME this just approximates SPLIT/CSPLIT times */
2906 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2907 qh->c_usecs = qh->usecs + HS_USECS(0);
2908 qh->usecs = HS_USECS(1);
2909 } else { /* SPLIT+DATA, gap, CSPLIT */
2910 qh->usecs += HS_USECS(1);
2911 qh->c_usecs = HS_USECS(0);
2912 }
2913
2914 think_time = tt ? tt->think_time : 0;
2915 qh->tt_usecs = NS_TO_US(think_time +
2916 usb_calc_bus_time(urb->dev->speed,
2917 is_input, 0, max_packet(maxp)));
2918 qh->period = urb->interval;
2919 if (qh->period > fotg210->periodic_size) {
2920 qh->period = fotg210->periodic_size;
2921 urb->interval = qh->period;
2922 }
2923 }
2924 }
2925
2926 /* support for tt scheduling, and access to toggles */
2927 qh->dev = urb->dev;
2928
2929 /* using TT? */
2930 switch (urb->dev->speed) {
2931 case USB_SPEED_LOW:
2932 info1 |= QH_LOW_SPEED;
2933 /* FALL THROUGH */
2934
2935 case USB_SPEED_FULL:
2936 /* EPS 0 means "full" */
2937 if (type != PIPE_INTERRUPT)
2938 info1 |= (FOTG210_TUNE_RL_TT << 28);
2939 if (type == PIPE_CONTROL) {
2940 info1 |= QH_CONTROL_EP; /* for TT */
2941 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2942 }
2943 info1 |= maxp << 16;
2944
2945 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2946
2947 /* Some Freescale processors have an erratum in which the
2948 * port number in the queue head was 0..N-1 instead of 1..N.
2949 */
2950 if (fotg210_has_fsl_portno_bug(fotg210))
2951 info2 |= (urb->dev->ttport-1) << 23;
2952 else
2953 info2 |= urb->dev->ttport << 23;
2954
2955 /* set the address of the TT; for TDI's integrated
2956 * root hub tt, leave it zeroed.
2957 */
2958 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2959 info2 |= tt->hub->devnum << 16;
2960
2961 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2962
2963 break;
2964
2965 case USB_SPEED_HIGH: /* no TT involved */
2966 info1 |= QH_HIGH_SPEED;
2967 if (type == PIPE_CONTROL) {
2968 info1 |= (FOTG210_TUNE_RL_HS << 28);
2969 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2970 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2971 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2972 } else if (type == PIPE_BULK) {
2973 info1 |= (FOTG210_TUNE_RL_HS << 28);
2974 /* The USB spec says that high speed bulk endpoints
2975 * always use 512 byte maxpacket. But some device
2976 * vendors decided to ignore that, and MSFT is happy
2977 * to help them do so. So now people expect to use
2978 * such nonconformant devices with Linux too; sigh.
2979 */
2980 info1 |= max_packet(maxp) << 16;
2981 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2982 } else { /* PIPE_INTERRUPT */
2983 info1 |= max_packet(maxp) << 16;
2984 info2 |= hb_mult(maxp) << 30;
2985 }
2986 break;
2987 default:
2988 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2989 urb->dev->speed);
2990done:
2991 qh_destroy(fotg210, qh);
2992 return NULL;
2993 }
2994
2995 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2996
2997 /* init as live, toggle clear, advance to dummy */
2998 qh->qh_state = QH_STATE_IDLE;
2999 hw = qh->hw;
3000 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
3001 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
3002 qh->is_out = !is_input;
3003 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
3004 qh_refresh(fotg210, qh);
3005 return qh;
3006}
3007
3008/*-------------------------------------------------------------------------*/
3009
3010static void enable_async(struct fotg210_hcd *fotg210)
3011{
3012 if (fotg210->async_count++)
3013 return;
3014
3015 /* Stop waiting to turn off the async schedule */
3016 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
3017
3018 /* Don't start the schedule until ASS is 0 */
3019 fotg210_poll_ASS(fotg210);
3020 turn_on_io_watchdog(fotg210);
3021}
3022
3023static void disable_async(struct fotg210_hcd *fotg210)
3024{
3025 if (--fotg210->async_count)
3026 return;
3027
3028 /* The async schedule and async_unlink list are supposed to be empty */
3029 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
3030
3031 /* Don't turn off the schedule until ASS is 1 */
3032 fotg210_poll_ASS(fotg210);
3033}
3034
3035/* move qh (and its qtds) onto async queue; maybe enable queue. */
3036
3037static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3038{
3039 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
3040 struct fotg210_qh *head;
3041
3042 /* Don't link a QH if there's a Clear-TT-Buffer pending */
3043 if (unlikely(qh->clearing_tt))
3044 return;
3045
3046 WARN_ON(qh->qh_state != QH_STATE_IDLE);
3047
3048 /* clear halt and/or toggle; and maybe recover from silicon quirk */
3049 qh_refresh(fotg210, qh);
3050
3051 /* splice right after start */
3052 head = fotg210->async;
3053 qh->qh_next = head->qh_next;
3054 qh->hw->hw_next = head->hw->hw_next;
3055 wmb();
3056
3057 head->qh_next.qh = qh;
3058 head->hw->hw_next = dma;
3059
3060 qh->xacterrs = 0;
3061 qh->qh_state = QH_STATE_LINKED;
3062 /* qtd completions reported later by interrupt */
3063
3064 enable_async(fotg210);
3065}
3066
3067/*-------------------------------------------------------------------------*/
3068
3069/*
3070 * For control/bulk/interrupt, return QH with these TDs appended.
3071 * Allocates and initializes the QH if necessary.
3072 * Returns null if it can't allocate a QH it needs to.
3073 * If the QH has TDs (urbs) already, that's great.
3074 */
3075static struct fotg210_qh *qh_append_tds(
3076 struct fotg210_hcd *fotg210,
3077 struct urb *urb,
3078 struct list_head *qtd_list,
3079 int epnum,
3080 void **ptr
3081)
3082{
3083 struct fotg210_qh *qh = NULL;
3084 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
3085
3086 qh = (struct fotg210_qh *) *ptr;
3087 if (unlikely(qh == NULL)) {
3088 /* can't sleep here, we have fotg210->lock... */
3089 qh = qh_make(fotg210, urb, GFP_ATOMIC);
3090 *ptr = qh;
3091 }
3092 if (likely(qh != NULL)) {
3093 struct fotg210_qtd *qtd;
3094
3095 if (unlikely(list_empty(qtd_list)))
3096 qtd = NULL;
3097 else
3098 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
3099 qtd_list);
3100
3101 /* control qh may need patching ... */
3102 if (unlikely(epnum == 0)) {
3103 /* usb_reset_device() briefly reverts to address 0 */
3104 if (usb_pipedevice(urb->pipe) == 0)
3105 qh->hw->hw_info1 &= ~qh_addr_mask;
3106 }
3107
3108 /* just one way to queue requests: swap with the dummy qtd.
3109 * only hc or qh_refresh() ever modify the overlay.
3110 */
3111 if (likely(qtd != NULL)) {
3112 struct fotg210_qtd *dummy;
3113 dma_addr_t dma;
3114 __hc32 token;
3115
3116 /* to avoid racing the HC, use the dummy td instead of
3117 * the first td of our list (becomes new dummy). both
3118 * tds stay deactivated until we're done, when the
3119 * HC is allowed to fetch the old dummy (4.10.2).
3120 */
3121 token = qtd->hw_token;
3122 qtd->hw_token = HALT_BIT(fotg210);
3123
3124 dummy = qh->dummy;
3125
3126 dma = dummy->qtd_dma;
3127 *dummy = *qtd;
3128 dummy->qtd_dma = dma;
3129
3130 list_del(&qtd->qtd_list);
3131 list_add(&dummy->qtd_list, qtd_list);
3132 list_splice_tail(qtd_list, &qh->qtd_list);
3133
3134 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3135 qh->dummy = qtd;
3136
3137 /* hc must see the new dummy at list end */
3138 dma = qtd->qtd_dma;
3139 qtd = list_entry(qh->qtd_list.prev,
3140 struct fotg210_qtd, qtd_list);
3141 qtd->hw_next = QTD_NEXT(fotg210, dma);
3142
3143 /* let the hc process these next qtds */
3144 wmb();
3145 dummy->hw_token = token;
3146
3147 urb->hcpriv = qh;
3148 }
3149 }
3150 return qh;
3151}
3152
3153/*-------------------------------------------------------------------------*/
3154
3155static int
3156submit_async(
3157 struct fotg210_hcd *fotg210,
3158 struct urb *urb,
3159 struct list_head *qtd_list,
3160 gfp_t mem_flags
3161) {
3162 int epnum;
3163 unsigned long flags;
3164 struct fotg210_qh *qh = NULL;
3165 int rc;
3166
3167 epnum = urb->ep->desc.bEndpointAddress;
3168
3169#ifdef FOTG210_URB_TRACE
3170 {
3171 struct fotg210_qtd *qtd;
3172 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3173 fotg210_dbg(fotg210,
3174 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3175 __func__, urb->dev->devpath, urb,
3176 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
3177 urb->transfer_buffer_length,
3178 qtd, urb->ep->hcpriv);
3179 }
3180#endif
3181
3182 spin_lock_irqsave(&fotg210->lock, flags);
3183 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3184 rc = -ESHUTDOWN;
3185 goto done;
3186 }
3187 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3188 if (unlikely(rc))
3189 goto done;
3190
3191 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3192 if (unlikely(qh == NULL)) {
3193 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3194 rc = -ENOMEM;
3195 goto done;
3196 }
3197
3198 /* Control/bulk operations through TTs don't need scheduling,
3199 * the HC and TT handle it when the TT has a buffer ready.
3200 */
3201 if (likely(qh->qh_state == QH_STATE_IDLE))
3202 qh_link_async(fotg210, qh);
3203 done:
3204 spin_unlock_irqrestore(&fotg210->lock, flags);
3205 if (unlikely(qh == NULL))
3206 qtd_list_free(fotg210, urb, qtd_list);
3207 return rc;
3208}
3209
3210/*-------------------------------------------------------------------------*/
3211
3212static void single_unlink_async(struct fotg210_hcd *fotg210,
3213 struct fotg210_qh *qh)
3214{
3215 struct fotg210_qh *prev;
3216
3217 /* Add to the end of the list of QHs waiting for the next IAAD */
3218 qh->qh_state = QH_STATE_UNLINK;
3219 if (fotg210->async_unlink)
3220 fotg210->async_unlink_last->unlink_next = qh;
3221 else
3222 fotg210->async_unlink = qh;
3223 fotg210->async_unlink_last = qh;
3224
3225 /* Unlink it from the schedule */
3226 prev = fotg210->async;
3227 while (prev->qh_next.qh != qh)
3228 prev = prev->qh_next.qh;
3229
3230 prev->hw->hw_next = qh->hw->hw_next;
3231 prev->qh_next = qh->qh_next;
3232 if (fotg210->qh_scan_next == qh)
3233 fotg210->qh_scan_next = qh->qh_next.qh;
3234}
3235
3236static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3237{
3238 /*
3239 * Do nothing if an IAA cycle is already running or
3240 * if one will be started shortly.
3241 */
3242 if (fotg210->async_iaa || fotg210->async_unlinking)
3243 return;
3244
3245 /* Do all the waiting QHs at once */
3246 fotg210->async_iaa = fotg210->async_unlink;
3247 fotg210->async_unlink = NULL;
3248
3249 /* If the controller isn't running, we don't have to wait for it */
3250 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3251 if (!nested) /* Avoid recursion */
3252 end_unlink_async(fotg210);
3253
3254 /* Otherwise start a new IAA cycle */
3255 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3256 /* Make sure the unlinks are all visible to the hardware */
3257 wmb();
3258
3259 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3260 &fotg210->regs->command);
3261 fotg210_readl(fotg210, &fotg210->regs->command);
3262 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3263 true);
3264 }
3265}
3266
3267/* the async qh for the qtds being unlinked are now gone from the HC */
3268
3269static void end_unlink_async(struct fotg210_hcd *fotg210)
3270{
3271 struct fotg210_qh *qh;
3272
3273 /* Process the idle QHs */
3274 restart:
3275 fotg210->async_unlinking = true;
3276 while (fotg210->async_iaa) {
3277 qh = fotg210->async_iaa;
3278 fotg210->async_iaa = qh->unlink_next;
3279 qh->unlink_next = NULL;
3280
3281 qh->qh_state = QH_STATE_IDLE;
3282 qh->qh_next.qh = NULL;
3283
3284 qh_completions(fotg210, qh);
3285 if (!list_empty(&qh->qtd_list) &&
3286 fotg210->rh_state == FOTG210_RH_RUNNING)
3287 qh_link_async(fotg210, qh);
3288 disable_async(fotg210);
3289 }
3290 fotg210->async_unlinking = false;
3291
3292 /* Start a new IAA cycle if any QHs are waiting for it */
3293 if (fotg210->async_unlink) {
3294 start_iaa_cycle(fotg210, true);
3295 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3296 goto restart;
3297 }
3298}
3299
3300static void unlink_empty_async(struct fotg210_hcd *fotg210)
3301{
3302 struct fotg210_qh *qh, *next;
3303 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3304 bool check_unlinks_later = false;
3305
3306 /* Unlink all the async QHs that have been empty for a timer cycle */
3307 next = fotg210->async->qh_next.qh;
3308 while (next) {
3309 qh = next;
3310 next = qh->qh_next.qh;
3311
3312 if (list_empty(&qh->qtd_list) &&
3313 qh->qh_state == QH_STATE_LINKED) {
3314 if (!stopped && qh->unlink_cycle ==
3315 fotg210->async_unlink_cycle)
3316 check_unlinks_later = true;
3317 else
3318 single_unlink_async(fotg210, qh);
3319 }
3320 }
3321
3322 /* Start a new IAA cycle if any QHs are waiting for it */
3323 if (fotg210->async_unlink)
3324 start_iaa_cycle(fotg210, false);
3325
3326 /* QHs that haven't been empty for long enough will be handled later */
3327 if (check_unlinks_later) {
3328 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3329 true);
3330 ++fotg210->async_unlink_cycle;
3331 }
3332}
3333
3334/* makes sure the async qh will become idle */
3335/* caller must own fotg210->lock */
3336
3337static void start_unlink_async(struct fotg210_hcd *fotg210,
3338 struct fotg210_qh *qh)
3339{
3340 /*
3341 * If the QH isn't linked then there's nothing we can do
3342 * unless we were called during a giveback, in which case
3343 * qh_completions() has to deal with it.
3344 */
3345 if (qh->qh_state != QH_STATE_LINKED) {
3346 if (qh->qh_state == QH_STATE_COMPLETING)
3347 qh->needs_rescan = 1;
3348 return;
3349 }
3350
3351 single_unlink_async(fotg210, qh);
3352 start_iaa_cycle(fotg210, false);
3353}
3354
3355/*-------------------------------------------------------------------------*/
3356
3357static void scan_async(struct fotg210_hcd *fotg210)
3358{
3359 struct fotg210_qh *qh;
3360 bool check_unlinks_later = false;
3361
3362 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3363 while (fotg210->qh_scan_next) {
3364 qh = fotg210->qh_scan_next;
3365 fotg210->qh_scan_next = qh->qh_next.qh;
3366 rescan:
3367 /* clean any finished work for this qh */
3368 if (!list_empty(&qh->qtd_list)) {
3369 int temp;
3370
3371 /*
3372 * Unlinks could happen here; completion reporting
3373 * drops the lock. That's why fotg210->qh_scan_next
3374 * always holds the next qh to scan; if the next qh
3375 * gets unlinked then fotg210->qh_scan_next is adjusted
3376 * in single_unlink_async().
3377 */
3378 temp = qh_completions(fotg210, qh);
3379 if (qh->needs_rescan) {
3380 start_unlink_async(fotg210, qh);
3381 } else if (list_empty(&qh->qtd_list)
3382 && qh->qh_state == QH_STATE_LINKED) {
3383 qh->unlink_cycle = fotg210->async_unlink_cycle;
3384 check_unlinks_later = true;
3385 } else if (temp != 0)
3386 goto rescan;
3387 }
3388 }
3389
3390 /*
3391 * Unlink empty entries, reducing DMA usage as well
3392 * as HCD schedule-scanning costs. Delay for any qh
3393 * we just scanned, there's a not-unusual case that it
3394 * doesn't stay idle for long.
3395 */
3396 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3397 !(fotg210->enabled_hrtimer_events &
3398 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3399 fotg210_enable_event(fotg210,
3400 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3401 ++fotg210->async_unlink_cycle;
3402 }
3403}
3404/*-------------------------------------------------------------------------*/
3405/*
3406 * EHCI scheduled transaction support: interrupt, iso, split iso
3407 * These are called "periodic" transactions in the EHCI spec.
3408 *
3409 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3410 * with the "asynchronous" transaction support (control/bulk transfers).
3411 * The only real difference is in how interrupt transfers are scheduled.
3412 *
3413 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3414 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3415 * pre-calculated schedule data to make appending to the queue be quick.
3416 */
3417
3418static int fotg210_get_frame(struct usb_hcd *hcd);
3419
3420/*-------------------------------------------------------------------------*/
3421
3422/*
3423 * periodic_next_shadow - return "next" pointer on shadow list
3424 * @periodic: host pointer to qh/itd
3425 * @tag: hardware tag for type of this record
3426 */
3427static union fotg210_shadow *
3428periodic_next_shadow(struct fotg210_hcd *fotg210,
3429 union fotg210_shadow *periodic, __hc32 tag)
3430{
3431 switch (hc32_to_cpu(fotg210, tag)) {
3432 case Q_TYPE_QH:
3433 return &periodic->qh->qh_next;
3434 case Q_TYPE_FSTN:
3435 return &periodic->fstn->fstn_next;
3436 default:
3437 return &periodic->itd->itd_next;
3438 }
3439}
3440
3441static __hc32 *
3442shadow_next_periodic(struct fotg210_hcd *fotg210,
3443 union fotg210_shadow *periodic, __hc32 tag)
3444{
3445 switch (hc32_to_cpu(fotg210, tag)) {
3446 /* our fotg210_shadow.qh is actually software part */
3447 case Q_TYPE_QH:
3448 return &periodic->qh->hw->hw_next;
3449 /* others are hw parts */
3450 default:
3451 return periodic->hw_next;
3452 }
3453}
3454
3455/* caller must hold fotg210->lock */
3456static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3457 void *ptr)
3458{
3459 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3460 __hc32 *hw_p = &fotg210->periodic[frame];
3461 union fotg210_shadow here = *prev_p;
3462
3463 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3464 while (here.ptr && here.ptr != ptr) {
3465 prev_p = periodic_next_shadow(fotg210, prev_p,
3466 Q_NEXT_TYPE(fotg210, *hw_p));
3467 hw_p = shadow_next_periodic(fotg210, &here,
3468 Q_NEXT_TYPE(fotg210, *hw_p));
3469 here = *prev_p;
3470 }
3471 /* an interrupt entry (at list end) could have been shared */
3472 if (!here.ptr)
3473 return;
3474
3475 /* update shadow and hardware lists ... the old "next" pointers
3476 * from ptr may still be in use, the caller updates them.
3477 */
3478 *prev_p = *periodic_next_shadow(fotg210, &here,
3479 Q_NEXT_TYPE(fotg210, *hw_p));
3480
3481 *hw_p = *shadow_next_periodic(fotg210, &here,
3482 Q_NEXT_TYPE(fotg210, *hw_p));
3483}
3484
3485/* how many of the uframe's 125 usecs are allocated? */
3486static unsigned short
3487periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
3488{
3489 __hc32 *hw_p = &fotg210->periodic[frame];
3490 union fotg210_shadow *q = &fotg210->pshadow[frame];
3491 unsigned usecs = 0;
3492 struct fotg210_qh_hw *hw;
3493
3494 while (q->ptr) {
3495 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3496 case Q_TYPE_QH:
3497 hw = q->qh->hw;
3498 /* is it in the S-mask? */
3499 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3500 usecs += q->qh->usecs;
3501 /* ... or C-mask? */
3502 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3503 1 << (8 + uframe)))
3504 usecs += q->qh->c_usecs;
3505 hw_p = &hw->hw_next;
3506 q = &q->qh->qh_next;
3507 break;
3508 /* case Q_TYPE_FSTN: */
3509 default:
3510 /* for "save place" FSTNs, count the relevant INTR
3511 * bandwidth from the previous frame
3512 */
3513 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3514 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3515
3516 hw_p = &q->fstn->hw_next;
3517 q = &q->fstn->fstn_next;
3518 break;
3519 case Q_TYPE_ITD:
3520 if (q->itd->hw_transaction[uframe])
3521 usecs += q->itd->stream->usecs;
3522 hw_p = &q->itd->hw_next;
3523 q = &q->itd->itd_next;
3524 break;
3525 }
3526 }
7d50195f
FHC
3527 if (usecs > fotg210->uframe_periodic_max)
3528 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3529 frame * 8 + uframe, usecs);
7d50195f
FHC
3530 return usecs;
3531}
3532
3533/*-------------------------------------------------------------------------*/
3534
3535static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3536{
3537 if (!dev1->tt || !dev2->tt)
3538 return 0;
3539 if (dev1->tt != dev2->tt)
3540 return 0;
3541 if (dev1->tt->multi)
3542 return dev1->ttport == dev2->ttport;
3543 else
3544 return 1;
3545}
3546
3547/* return true iff the device's transaction translator is available
3548 * for a periodic transfer starting at the specified frame, using
3549 * all the uframes in the mask.
3550 */
3551static int tt_no_collision(
3552 struct fotg210_hcd *fotg210,
3553 unsigned period,
3554 struct usb_device *dev,
3555 unsigned frame,
3556 u32 uf_mask
3557)
3558{
3559 if (period == 0) /* error */
3560 return 0;
3561
3562 /* note bandwidth wastage: split never follows csplit
3563 * (different dev or endpoint) until the next uframe.
3564 * calling convention doesn't make that distinction.
3565 */
3566 for (; frame < fotg210->periodic_size; frame += period) {
3567 union fotg210_shadow here;
3568 __hc32 type;
3569 struct fotg210_qh_hw *hw;
3570
3571 here = fotg210->pshadow[frame];
3572 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3573 while (here.ptr) {
3574 switch (hc32_to_cpu(fotg210, type)) {
3575 case Q_TYPE_ITD:
3576 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3577 here = here.itd->itd_next;
3578 continue;
3579 case Q_TYPE_QH:
3580 hw = here.qh->hw;
3581 if (same_tt(dev, here.qh->dev)) {
3582 u32 mask;
3583
3584 mask = hc32_to_cpu(fotg210,
3585 hw->hw_info2);
3586 /* "knows" no gap is needed */
3587 mask |= mask >> 8;
3588 if (mask & uf_mask)
3589 break;
3590 }
3591 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3592 here = here.qh->qh_next;
3593 continue;
3594 /* case Q_TYPE_FSTN: */
3595 default:
3596 fotg210_dbg(fotg210,
3597 "periodic frame %d bogus type %d\n",
3598 frame, type);
3599 }
3600
3601 /* collision or error */
3602 return 0;
3603 }
3604 }
3605
3606 /* no collision */
3607 return 1;
3608}
3609
3610/*-------------------------------------------------------------------------*/
3611
3612static void enable_periodic(struct fotg210_hcd *fotg210)
3613{
3614 if (fotg210->periodic_count++)
3615 return;
3616
3617 /* Stop waiting to turn off the periodic schedule */
3618 fotg210->enabled_hrtimer_events &=
3619 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3620
3621 /* Don't start the schedule until PSS is 0 */
3622 fotg210_poll_PSS(fotg210);
3623 turn_on_io_watchdog(fotg210);
3624}
3625
3626static void disable_periodic(struct fotg210_hcd *fotg210)
3627{
3628 if (--fotg210->periodic_count)
3629 return;
3630
3631 /* Don't turn off the schedule until PSS is 1 */
3632 fotg210_poll_PSS(fotg210);
3633}
3634
3635/*-------------------------------------------------------------------------*/
3636
3637/* periodic schedule slots have iso tds (normal or split) first, then a
3638 * sparse tree for active interrupt transfers.
3639 *
3640 * this just links in a qh; caller guarantees uframe masks are set right.
3641 * no FSTN support (yet; fotg210 0.96+)
3642 */
3643static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644{
3645 unsigned i;
3646 unsigned period = qh->period;
3647
3648 dev_dbg(&qh->dev->dev,
3649 "link qh%d-%04x/%p start %d [%d/%d us]\n",
3650 period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
3651 & (QH_CMASK | QH_SMASK),
3652 qh, qh->start, qh->usecs, qh->c_usecs);
3653
3654 /* high bandwidth, or otherwise every microframe */
3655 if (period == 0)
3656 period = 1;
3657
3658 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3659 union fotg210_shadow *prev = &fotg210->pshadow[i];
3660 __hc32 *hw_p = &fotg210->periodic[i];
3661 union fotg210_shadow here = *prev;
3662 __hc32 type = 0;
3663
3664 /* skip the iso nodes at list head */
3665 while (here.ptr) {
3666 type = Q_NEXT_TYPE(fotg210, *hw_p);
3667 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3668 break;
3669 prev = periodic_next_shadow(fotg210, prev, type);
3670 hw_p = shadow_next_periodic(fotg210, &here, type);
3671 here = *prev;
3672 }
3673
3674 /* sorting each branch by period (slow-->fast)
3675 * enables sharing interior tree nodes
3676 */
3677 while (here.ptr && qh != here.qh) {
3678 if (qh->period > here.qh->period)
3679 break;
3680 prev = &here.qh->qh_next;
3681 hw_p = &here.qh->hw->hw_next;
3682 here = *prev;
3683 }
3684 /* link in this qh, unless some earlier pass did that */
3685 if (qh != here.qh) {
3686 qh->qh_next = here;
3687 if (here.qh)
3688 qh->hw->hw_next = *hw_p;
3689 wmb();
3690 prev->qh = qh;
3691 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3692 }
3693 }
3694 qh->qh_state = QH_STATE_LINKED;
3695 qh->xacterrs = 0;
3696
3697 /* update per-qh bandwidth for usbfs */
3698 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3699 ? ((qh->usecs + qh->c_usecs) / qh->period)
3700 : (qh->usecs * 8);
3701
3702 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3703
3704 /* maybe enable periodic schedule processing */
3705 ++fotg210->intr_count;
3706 enable_periodic(fotg210);
3707}
3708
3709static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3710 struct fotg210_qh *qh)
3711{
3712 unsigned i;
3713 unsigned period;
3714
3715 /*
3716 * If qh is for a low/full-speed device, simply unlinking it
3717 * could interfere with an ongoing split transaction. To unlink
3718 * it safely would require setting the QH_INACTIVATE bit and
3719 * waiting at least one frame, as described in EHCI 4.12.2.5.
3720 *
3721 * We won't bother with any of this. Instead, we assume that the
3722 * only reason for unlinking an interrupt QH while the current URB
3723 * is still active is to dequeue all the URBs (flush the whole
3724 * endpoint queue).
3725 *
3726 * If rebalancing the periodic schedule is ever implemented, this
3727 * approach will no longer be valid.
3728 */
3729
3730 /* high bandwidth, or otherwise part of every microframe */
3731 period = qh->period;
3732 if (!period)
3733 period = 1;
3734
3735 for (i = qh->start; i < fotg210->periodic_size; i += period)
3736 periodic_unlink(fotg210, i, qh);
3737
3738 /* update per-qh bandwidth for usbfs */
3739 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3740 ? ((qh->usecs + qh->c_usecs) / qh->period)
3741 : (qh->usecs * 8);
3742
3743 dev_dbg(&qh->dev->dev,
3744 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3745 qh->period,
3746 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3747 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
3748
3749 /* qh->qh_next still "live" to HC */
3750 qh->qh_state = QH_STATE_UNLINK;
3751 qh->qh_next.ptr = NULL;
3752
3753 if (fotg210->qh_scan_next == qh)
3754 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3755 struct fotg210_qh, intr_node);
3756 list_del(&qh->intr_node);
3757}
3758
3759static void start_unlink_intr(struct fotg210_hcd *fotg210,
3760 struct fotg210_qh *qh)
3761{
3762 /* If the QH isn't linked then there's nothing we can do
3763 * unless we were called during a giveback, in which case
3764 * qh_completions() has to deal with it.
3765 */
3766 if (qh->qh_state != QH_STATE_LINKED) {
3767 if (qh->qh_state == QH_STATE_COMPLETING)
3768 qh->needs_rescan = 1;
3769 return;
3770 }
3771
3772 qh_unlink_periodic(fotg210, qh);
3773
3774 /* Make sure the unlinks are visible before starting the timer */
3775 wmb();
3776
3777 /*
3778 * The EHCI spec doesn't say how long it takes the controller to
3779 * stop accessing an unlinked interrupt QH. The timer delay is
3780 * 9 uframes; presumably that will be long enough.
3781 */
3782 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3783
3784 /* New entries go at the end of the intr_unlink list */
3785 if (fotg210->intr_unlink)
3786 fotg210->intr_unlink_last->unlink_next = qh;
3787 else
3788 fotg210->intr_unlink = qh;
3789 fotg210->intr_unlink_last = qh;
3790
3791 if (fotg210->intr_unlinking)
3792 ; /* Avoid recursive calls */
3793 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3794 fotg210_handle_intr_unlinks(fotg210);
3795 else if (fotg210->intr_unlink == qh) {
3796 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3797 true);
3798 ++fotg210->intr_unlink_cycle;
3799 }
3800}
3801
3802static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3803{
3804 struct fotg210_qh_hw *hw = qh->hw;
3805 int rc;
3806
3807 qh->qh_state = QH_STATE_IDLE;
3808 hw->hw_next = FOTG210_LIST_END(fotg210);
3809
3810 qh_completions(fotg210, qh);
3811
3812 /* reschedule QH iff another request is queued */
3813 if (!list_empty(&qh->qtd_list) &&
3814 fotg210->rh_state == FOTG210_RH_RUNNING) {
3815 rc = qh_schedule(fotg210, qh);
3816
3817 /* An error here likely indicates handshake failure
3818 * or no space left in the schedule. Neither fault
3819 * should happen often ...
3820 *
3821 * FIXME kill the now-dysfunctional queued urbs
3822 */
3823 if (rc != 0)
3824 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3825 qh, rc);
3826 }
3827
3828 /* maybe turn off periodic schedule */
3829 --fotg210->intr_count;
3830 disable_periodic(fotg210);
3831}
3832
3833/*-------------------------------------------------------------------------*/
3834
3835static int check_period(
3836 struct fotg210_hcd *fotg210,
3837 unsigned frame,
3838 unsigned uframe,
3839 unsigned period,
3840 unsigned usecs
3841) {
3842 int claimed;
3843
3844 /* complete split running into next frame?
3845 * given FSTN support, we could sometimes check...
3846 */
3847 if (uframe >= 8)
3848 return 0;
3849
3850 /* convert "usecs we need" to "max already claimed" */
3851 usecs = fotg210->uframe_periodic_max - usecs;
3852
3853 /* we "know" 2 and 4 uframe intervals were rejected; so
3854 * for period 0, check _every_ microframe in the schedule.
3855 */
3856 if (unlikely(period == 0)) {
3857 do {
3858 for (uframe = 0; uframe < 7; uframe++) {
3859 claimed = periodic_usecs(fotg210, frame,
3860 uframe);
3861 if (claimed > usecs)
3862 return 0;
3863 }
3864 } while ((frame += 1) < fotg210->periodic_size);
3865
3866 /* just check the specified uframe, at that period */
3867 } else {
3868 do {
3869 claimed = periodic_usecs(fotg210, frame, uframe);
3870 if (claimed > usecs)
3871 return 0;
3872 } while ((frame += period) < fotg210->periodic_size);
3873 }
3874
3875 /* success! */
3876 return 1;
3877}
3878
3879static int check_intr_schedule(
3880 struct fotg210_hcd *fotg210,
3881 unsigned frame,
3882 unsigned uframe,
3883 const struct fotg210_qh *qh,
3884 __hc32 *c_maskp
3885)
3886{
3887 int retval = -ENOSPC;
3888 u8 mask = 0;
3889
3890 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3891 goto done;
3892
3893 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3894 goto done;
3895 if (!qh->c_usecs) {
3896 retval = 0;
3897 *c_maskp = 0;
3898 goto done;
3899 }
3900
3901 /* Make sure this tt's buffer is also available for CSPLITs.
3902 * We pessimize a bit; probably the typical full speed case
3903 * doesn't need the second CSPLIT.
3904 *
3905 * NOTE: both SPLIT and CSPLIT could be checked in just
3906 * one smart pass...
3907 */
3908 mask = 0x03 << (uframe + qh->gap_uf);
3909 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3910
3911 mask |= 1 << uframe;
3912 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3913 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3914 qh->period, qh->c_usecs))
3915 goto done;
3916 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3917 qh->period, qh->c_usecs))
3918 goto done;
3919 retval = 0;
3920 }
3921done:
3922 return retval;
3923}
3924
3925/* "first fit" scheduling policy used the first time through,
3926 * or when the previous schedule slot can't be re-used.
3927 */
3928static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3929{
3930 int status;
3931 unsigned uframe;
3932 __hc32 c_mask;
3933 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3934 struct fotg210_qh_hw *hw = qh->hw;
3935
3936 qh_refresh(fotg210, qh);
3937 hw->hw_next = FOTG210_LIST_END(fotg210);
3938 frame = qh->start;
3939
3940 /* reuse the previous schedule slots, if we can */
3941 if (frame < qh->period) {
3942 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3943 status = check_intr_schedule(fotg210, frame, --uframe,
3944 qh, &c_mask);
3945 } else {
3946 uframe = 0;
3947 c_mask = 0;
3948 status = -ENOSPC;
3949 }
3950
3951 /* else scan the schedule to find a group of slots such that all
3952 * uframes have enough periodic bandwidth available.
3953 */
3954 if (status) {
3955 /* "normal" case, uframing flexible except with splits */
3956 if (qh->period) {
3957 int i;
3958
3959 for (i = qh->period; status && i > 0; --i) {
3960 frame = ++fotg210->random_frame % qh->period;
3961 for (uframe = 0; uframe < 8; uframe++) {
3962 status = check_intr_schedule(fotg210,
3963 frame, uframe, qh,
3964 &c_mask);
3965 if (status == 0)
3966 break;
3967 }
3968 }
3969
3970 /* qh->period == 0 means every uframe */
3971 } else {
3972 frame = 0;
3973 status = check_intr_schedule(fotg210, 0, 0, qh,
3974 &c_mask);
3975 }
3976 if (status)
3977 goto done;
3978 qh->start = frame;
3979
3980 /* reset S-frame and (maybe) C-frame masks */
3981 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3982 hw->hw_info2 |= qh->period
3983 ? cpu_to_hc32(fotg210, 1 << uframe)
3984 : cpu_to_hc32(fotg210, QH_SMASK);
3985 hw->hw_info2 |= c_mask;
3986 } else
3987 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3988
3989 /* stuff into the periodic schedule */
3990 qh_link_periodic(fotg210, qh);
3991done:
3992 return status;
3993}
3994
3995static int intr_submit(
3996 struct fotg210_hcd *fotg210,
3997 struct urb *urb,
3998 struct list_head *qtd_list,
3999 gfp_t mem_flags
4000) {
4001 unsigned epnum;
4002 unsigned long flags;
4003 struct fotg210_qh *qh;
4004 int status;
4005 struct list_head empty;
4006
4007 /* get endpoint and transfer/schedule data */
4008 epnum = urb->ep->desc.bEndpointAddress;
4009
4010 spin_lock_irqsave(&fotg210->lock, flags);
4011
4012 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4013 status = -ESHUTDOWN;
4014 goto done_not_linked;
4015 }
4016 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4017 if (unlikely(status))
4018 goto done_not_linked;
4019
4020 /* get qh and force any scheduling errors */
4021 INIT_LIST_HEAD(&empty);
4022 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
4023 if (qh == NULL) {
4024 status = -ENOMEM;
4025 goto done;
4026 }
4027 if (qh->qh_state == QH_STATE_IDLE) {
4028 status = qh_schedule(fotg210, qh);
4029 if (status)
4030 goto done;
4031 }
4032
4033 /* then queue the urb's tds to the qh */
4034 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
4035 BUG_ON(qh == NULL);
4036
4037 /* ... update usbfs periodic stats */
4038 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
4039
4040done:
4041 if (unlikely(status))
4042 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4043done_not_linked:
4044 spin_unlock_irqrestore(&fotg210->lock, flags);
4045 if (status)
4046 qtd_list_free(fotg210, urb, qtd_list);
4047
4048 return status;
4049}
4050
4051static void scan_intr(struct fotg210_hcd *fotg210)
4052{
4053 struct fotg210_qh *qh;
4054
4055 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
4056 &fotg210->intr_qh_list, intr_node) {
4057 rescan:
4058 /* clean any finished work for this qh */
4059 if (!list_empty(&qh->qtd_list)) {
4060 int temp;
4061
4062 /*
4063 * Unlinks could happen here; completion reporting
4064 * drops the lock. That's why fotg210->qh_scan_next
4065 * always holds the next qh to scan; if the next qh
4066 * gets unlinked then fotg210->qh_scan_next is adjusted
4067 * in qh_unlink_periodic().
4068 */
4069 temp = qh_completions(fotg210, qh);
4070 if (unlikely(qh->needs_rescan ||
4071 (list_empty(&qh->qtd_list) &&
4072 qh->qh_state == QH_STATE_LINKED)))
4073 start_unlink_intr(fotg210, qh);
4074 else if (temp != 0)
4075 goto rescan;
4076 }
4077 }
4078}
4079
4080/*-------------------------------------------------------------------------*/
4081
4082/* fotg210_iso_stream ops work with both ITD and SITD */
4083
4084static struct fotg210_iso_stream *
4085iso_stream_alloc(gfp_t mem_flags)
4086{
4087 struct fotg210_iso_stream *stream;
4088
4089 stream = kzalloc(sizeof(*stream), mem_flags);
4090 if (likely(stream != NULL)) {
4091 INIT_LIST_HEAD(&stream->td_list);
4092 INIT_LIST_HEAD(&stream->free_list);
4093 stream->next_uframe = -1;
4094 }
4095 return stream;
4096}
4097
4098static void
4099iso_stream_init(
4100 struct fotg210_hcd *fotg210,
4101 struct fotg210_iso_stream *stream,
4102 struct usb_device *dev,
4103 int pipe,
4104 unsigned interval
4105)
4106{
4107 u32 buf1;
4108 unsigned epnum, maxp;
4109 int is_input;
4110 long bandwidth;
4111 unsigned multi;
4112
4113 /*
4114 * this might be a "high bandwidth" highspeed endpoint,
4115 * as encoded in the ep descriptor's wMaxPacket field
4116 */
4117 epnum = usb_pipeendpoint(pipe);
4118 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
4119 maxp = usb_maxpacket(dev, pipe, !is_input);
4120 if (is_input)
4121 buf1 = (1 << 11);
4122 else
4123 buf1 = 0;
4124
4125 maxp = max_packet(maxp);
4126 multi = hb_mult(maxp);
4127 buf1 |= maxp;
4128 maxp *= multi;
4129
4130 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
4131 stream->buf1 = cpu_to_hc32(fotg210, buf1);
4132 stream->buf2 = cpu_to_hc32(fotg210, multi);
4133
4134 /* usbfs wants to report the average usecs per frame tied up
4135 * when transfers on this endpoint are scheduled ...
4136 */
4137 if (dev->speed == USB_SPEED_FULL) {
4138 interval <<= 3;
4139 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
4140 is_input, 1, maxp));
4141 stream->usecs /= 8;
4142 } else {
4143 stream->highspeed = 1;
4144 stream->usecs = HS_USECS_ISO(maxp);
4145 }
4146 bandwidth = stream->usecs * 8;
4147 bandwidth /= interval;
4148
4149 stream->bandwidth = bandwidth;
4150 stream->udev = dev;
4151 stream->bEndpointAddress = is_input | epnum;
4152 stream->interval = interval;
4153 stream->maxp = maxp;
4154}
4155
4156static struct fotg210_iso_stream *
4157iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
4158{
4159 unsigned epnum;
4160 struct fotg210_iso_stream *stream;
4161 struct usb_host_endpoint *ep;
4162 unsigned long flags;
4163
4164 epnum = usb_pipeendpoint(urb->pipe);
4165 if (usb_pipein(urb->pipe))
4166 ep = urb->dev->ep_in[epnum];
4167 else
4168 ep = urb->dev->ep_out[epnum];
4169
4170 spin_lock_irqsave(&fotg210->lock, flags);
4171 stream = ep->hcpriv;
4172
4173 if (unlikely(stream == NULL)) {
4174 stream = iso_stream_alloc(GFP_ATOMIC);
4175 if (likely(stream != NULL)) {
4176 ep->hcpriv = stream;
4177 stream->ep = ep;
4178 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4179 urb->interval);
4180 }
4181
4182 /* if dev->ep[epnum] is a QH, hw is set */
4183 } else if (unlikely(stream->hw != NULL)) {
4184 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4185 urb->dev->devpath, epnum,
4186 usb_pipein(urb->pipe) ? "in" : "out");
4187 stream = NULL;
4188 }
4189
4190 spin_unlock_irqrestore(&fotg210->lock, flags);
4191 return stream;
4192}
4193
4194/*-------------------------------------------------------------------------*/
4195
4196/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4197
4198static struct fotg210_iso_sched *
4199iso_sched_alloc(unsigned packets, gfp_t mem_flags)
4200{
4201 struct fotg210_iso_sched *iso_sched;
4202 int size = sizeof(*iso_sched);
4203
4204 size += packets * sizeof(struct fotg210_iso_packet);
4205 iso_sched = kzalloc(size, mem_flags);
4206 if (likely(iso_sched != NULL))
4207 INIT_LIST_HEAD(&iso_sched->td_list);
4208
4209 return iso_sched;
4210}
4211
4212static inline void
4213itd_sched_init(
4214 struct fotg210_hcd *fotg210,
4215 struct fotg210_iso_sched *iso_sched,
4216 struct fotg210_iso_stream *stream,
4217 struct urb *urb
4218)
4219{
4220 unsigned i;
4221 dma_addr_t dma = urb->transfer_dma;
4222
4223 /* how many uframes are needed for these transfers */
4224 iso_sched->span = urb->number_of_packets * stream->interval;
4225
4226 /* figure out per-uframe itd fields that we'll need later
4227 * when we fit new itds into the schedule.
4228 */
4229 for (i = 0; i < urb->number_of_packets; i++) {
4230 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4231 unsigned length;
4232 dma_addr_t buf;
4233 u32 trans;
4234
4235 length = urb->iso_frame_desc[i].length;
4236 buf = dma + urb->iso_frame_desc[i].offset;
4237
4238 trans = FOTG210_ISOC_ACTIVE;
4239 trans |= buf & 0x0fff;
4240 if (unlikely(((i + 1) == urb->number_of_packets))
4241 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4242 trans |= FOTG210_ITD_IOC;
4243 trans |= length << 16;
4244 uframe->transaction = cpu_to_hc32(fotg210, trans);
4245
4246 /* might need to cross a buffer page within a uframe */
4247 uframe->bufp = (buf & ~(u64)0x0fff);
4248 buf += length;
4249 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4250 uframe->cross = 1;
4251 }
4252}
4253
4254static void
4255iso_sched_free(
4256 struct fotg210_iso_stream *stream,
4257 struct fotg210_iso_sched *iso_sched
4258)
4259{
4260 if (!iso_sched)
4261 return;
4262 /* caller must hold fotg210->lock!*/
4263 list_splice(&iso_sched->td_list, &stream->free_list);
4264 kfree(iso_sched);
4265}
4266
4267static int
4268itd_urb_transaction(
4269 struct fotg210_iso_stream *stream,
4270 struct fotg210_hcd *fotg210,
4271 struct urb *urb,
4272 gfp_t mem_flags
4273)
4274{
4275 struct fotg210_itd *itd;
4276 dma_addr_t itd_dma;
4277 int i;
4278 unsigned num_itds;
4279 struct fotg210_iso_sched *sched;
4280 unsigned long flags;
4281
4282 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4283 if (unlikely(sched == NULL))
4284 return -ENOMEM;
4285
4286 itd_sched_init(fotg210, sched, stream, urb);
4287
4288 if (urb->interval < 8)
4289 num_itds = 1 + (sched->span + 7) / 8;
4290 else
4291 num_itds = urb->number_of_packets;
4292
4293 /* allocate/init ITDs */
4294 spin_lock_irqsave(&fotg210->lock, flags);
4295 for (i = 0; i < num_itds; i++) {
4296
4297 /*
4298 * Use iTDs from the free list, but not iTDs that may
4299 * still be in use by the hardware.
4300 */
4301 if (likely(!list_empty(&stream->free_list))) {
4302 itd = list_first_entry(&stream->free_list,
4303 struct fotg210_itd, itd_list);
4304 if (itd->frame == fotg210->now_frame)
4305 goto alloc_itd;
4306 list_del(&itd->itd_list);
4307 itd_dma = itd->itd_dma;
4308 } else {
4309 alloc_itd:
4310 spin_unlock_irqrestore(&fotg210->lock, flags);
4311 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4312 &itd_dma);
4313 spin_lock_irqsave(&fotg210->lock, flags);
4314 if (!itd) {
4315 iso_sched_free(stream, sched);
4316 spin_unlock_irqrestore(&fotg210->lock, flags);
4317 return -ENOMEM;
4318 }
4319 }
4320
4321 memset(itd, 0, sizeof(*itd));
4322 itd->itd_dma = itd_dma;
4323 list_add(&itd->itd_list, &sched->td_list);
4324 }
4325 spin_unlock_irqrestore(&fotg210->lock, flags);
4326
4327 /* temporarily store schedule info in hcpriv */
4328 urb->hcpriv = sched;
4329 urb->error_count = 0;
4330 return 0;
4331}
4332
4333/*-------------------------------------------------------------------------*/
4334
4335static inline int
4336itd_slot_ok(
4337 struct fotg210_hcd *fotg210,
4338 u32 mod,
4339 u32 uframe,
4340 u8 usecs,
4341 u32 period
4342)
4343{
4344 uframe %= period;
4345 do {
4346 /* can't commit more than uframe_periodic_max usec */
4347 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4348 > (fotg210->uframe_periodic_max - usecs))
4349 return 0;
4350
4351 /* we know urb->interval is 2^N uframes */
4352 uframe += period;
4353 } while (uframe < mod);
4354 return 1;
4355}
4356
4357/*
4358 * This scheduler plans almost as far into the future as it has actual
4359 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4360 * "as small as possible" to be cache-friendlier.) That limits the size
4361 * transfers you can stream reliably; avoid more than 64 msec per urb.
4362 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4363 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4364 * and other factors); or more than about 230 msec total (for portability,
4365 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4366 */
4367
4368#define SCHEDULE_SLOP 80 /* microframes */
4369
4370static int
4371iso_stream_schedule(
4372 struct fotg210_hcd *fotg210,
4373 struct urb *urb,
4374 struct fotg210_iso_stream *stream
4375)
4376{
4377 u32 now, next, start, period, span;
4378 int status;
4379 unsigned mod = fotg210->periodic_size << 3;
4380 struct fotg210_iso_sched *sched = urb->hcpriv;
4381
4382 period = urb->interval;
4383 span = sched->span;
4384
4385 if (span > mod - SCHEDULE_SLOP) {
4386 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4387 status = -EFBIG;
4388 goto fail;
4389 }
4390
4391 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4392
4393 /* Typical case: reuse current schedule, stream is still active.
4394 * Hopefully there are no gaps from the host falling behind
4395 * (irq delays etc), but if there are we'll take the next
4396 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4397 */
4398 if (likely(!list_empty(&stream->td_list))) {
4399 u32 excess;
4400
4401 /* For high speed devices, allow scheduling within the
4402 * isochronous scheduling threshold. For full speed devices
4403 * and Intel PCI-based controllers, don't (work around for
4404 * Intel ICH9 bug).
4405 */
4406 if (!stream->highspeed && fotg210->fs_i_thresh)
4407 next = now + fotg210->i_thresh;
4408 else
4409 next = now;
4410
4411 /* Fell behind (by up to twice the slop amount)?
4412 * We decide based on the time of the last currently-scheduled
4413 * slot, not the time of the next available slot.
4414 */
4415 excess = (stream->next_uframe - period - next) & (mod - 1);
4416 if (excess >= mod - 2 * SCHEDULE_SLOP)
4417 start = next + excess - mod + period *
4418 DIV_ROUND_UP(mod - excess, period);
4419 else
4420 start = next + excess + period;
4421 if (start - now >= mod) {
4422 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4423 urb, start - now - period, period,
4424 mod);
4425 status = -EFBIG;
4426 goto fail;
4427 }
4428 }
4429
4430 /* need to schedule; when's the next (u)frame we could start?
4431 * this is bigger than fotg210->i_thresh allows; scheduling itself
4432 * isn't free, the slop should handle reasonably slow cpus. it
4433 * can also help high bandwidth if the dma and irq loads don't
4434 * jump until after the queue is primed.
4435 */
4436 else {
4437 int done = 0;
4438 start = SCHEDULE_SLOP + (now & ~0x07);
4439
4440 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4441
4442 /* find a uframe slot with enough bandwidth.
4443 * Early uframes are more precious because full-speed
4444 * iso IN transfers can't use late uframes,
4445 * and therefore they should be allocated last.
4446 */
4447 next = start;
4448 start += period;
4449 do {
4450 start--;
4451 /* check schedule: enough space? */
4452 if (itd_slot_ok(fotg210, mod, start,
4453 stream->usecs, period))
4454 done = 1;
4455 } while (start > next && !done);
4456
4457 /* no room in the schedule */
4458 if (!done) {
4459 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4460 urb, now, now + mod);
4461 status = -ENOSPC;
4462 goto fail;
4463 }
4464 }
4465
4466 /* Tried to schedule too far into the future? */
4467 if (unlikely(start - now + span - period
4468 >= mod - 2 * SCHEDULE_SLOP)) {
4469 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4470 urb, start - now, span - period,
4471 mod - 2 * SCHEDULE_SLOP);
4472 status = -EFBIG;
4473 goto fail;
4474 }
4475
4476 stream->next_uframe = start & (mod - 1);
4477
4478 /* report high speed start in uframes; full speed, in frames */
4479 urb->start_frame = stream->next_uframe;
4480 if (!stream->highspeed)
4481 urb->start_frame >>= 3;
4482
4483 /* Make sure scan_isoc() sees these */
4484 if (fotg210->isoc_count == 0)
4485 fotg210->next_frame = now >> 3;
4486 return 0;
4487
4488 fail:
4489 iso_sched_free(stream, sched);
4490 urb->hcpriv = NULL;
4491 return status;
4492}
4493
4494/*-------------------------------------------------------------------------*/
4495
4496static inline void
4497itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
4498 struct fotg210_itd *itd)
4499{
4500 int i;
4501
4502 /* it's been recently zeroed */
4503 itd->hw_next = FOTG210_LIST_END(fotg210);
4504 itd->hw_bufp[0] = stream->buf0;
4505 itd->hw_bufp[1] = stream->buf1;
4506 itd->hw_bufp[2] = stream->buf2;
4507
4508 for (i = 0; i < 8; i++)
4509 itd->index[i] = -1;
4510
4511 /* All other fields are filled when scheduling */
4512}
4513
4514static inline void
4515itd_patch(
4516 struct fotg210_hcd *fotg210,
4517 struct fotg210_itd *itd,
4518 struct fotg210_iso_sched *iso_sched,
4519 unsigned index,
4520 u16 uframe
4521)
4522{
4523 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4524 unsigned pg = itd->pg;
4525
4526 uframe &= 0x07;
4527 itd->index[uframe] = index;
4528
4529 itd->hw_transaction[uframe] = uf->transaction;
4530 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4531 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4532 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4533
4534 /* iso_frame_desc[].offset must be strictly increasing */
4535 if (unlikely(uf->cross)) {
4536 u64 bufp = uf->bufp + 4096;
4537
4538 itd->pg = ++pg;
4539 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4540 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4541 }
4542}
4543
4544static inline void
4545itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
4546{
4547 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4548 __hc32 *hw_p = &fotg210->periodic[frame];
4549 union fotg210_shadow here = *prev;
4550 __hc32 type = 0;
4551
4552 /* skip any iso nodes which might belong to previous microframes */
4553 while (here.ptr) {
4554 type = Q_NEXT_TYPE(fotg210, *hw_p);
4555 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4556 break;
4557 prev = periodic_next_shadow(fotg210, prev, type);
4558 hw_p = shadow_next_periodic(fotg210, &here, type);
4559 here = *prev;
4560 }
4561
4562 itd->itd_next = here;
4563 itd->hw_next = *hw_p;
4564 prev->itd = itd;
4565 itd->frame = frame;
4566 wmb();
4567 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4568}
4569
4570/* fit urb's itds into the selected schedule slot; activate as needed */
4571static void itd_link_urb(
4572 struct fotg210_hcd *fotg210,
4573 struct urb *urb,
4574 unsigned mod,
4575 struct fotg210_iso_stream *stream
4576)
4577{
4578 int packet;
4579 unsigned next_uframe, uframe, frame;
4580 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4581 struct fotg210_itd *itd;
4582
4583 next_uframe = stream->next_uframe & (mod - 1);
4584
4585 if (unlikely(list_empty(&stream->td_list))) {
4586 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4587 += stream->bandwidth;
be5ac4c4 4588 fotg210_dbg(fotg210,
7d50195f
FHC
4589 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4590 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4591 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4592 urb->interval,
4593 next_uframe >> 3, next_uframe & 0x7);
4594 }
4595
4596 /* fill iTDs uframe by uframe */
4597 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4598 if (itd == NULL) {
4599 /* ASSERT: we have all necessary itds */
4600
4601 /* ASSERT: no itds for this endpoint in this uframe */
4602
4603 itd = list_entry(iso_sched->td_list.next,
4604 struct fotg210_itd, itd_list);
4605 list_move_tail(&itd->itd_list, &stream->td_list);
4606 itd->stream = stream;
4607 itd->urb = urb;
4608 itd_init(fotg210, stream, itd);
4609 }
4610
4611 uframe = next_uframe & 0x07;
4612 frame = next_uframe >> 3;
4613
4614 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4615
4616 next_uframe += stream->interval;
4617 next_uframe &= mod - 1;
4618 packet++;
4619
4620 /* link completed itds into the schedule */
4621 if (((next_uframe >> 3) != frame)
4622 || packet == urb->number_of_packets) {
4623 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4624 itd);
4625 itd = NULL;
4626 }
4627 }
4628 stream->next_uframe = next_uframe;
4629
4630 /* don't need that schedule data any more */
4631 iso_sched_free(stream, iso_sched);
4632 urb->hcpriv = NULL;
4633
4634 ++fotg210->isoc_count;
4635 enable_periodic(fotg210);
4636}
4637
4638#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4639 FOTG210_ISOC_XACTERR)
4640
4641/* Process and recycle a completed ITD. Return true iff its urb completed,
4642 * and hence its completion callback probably added things to the hardware
4643 * schedule.
4644 *
4645 * Note that we carefully avoid recycling this descriptor until after any
4646 * completion callback runs, so that it won't be reused quickly. That is,
4647 * assuming (a) no more than two urbs per frame on this endpoint, and also
4648 * (b) only this endpoint's completions submit URBs. It seems some silicon
4649 * corrupts things if you reuse completed descriptors very quickly...
4650 */
4651static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4652{
4653 struct urb *urb = itd->urb;
4654 struct usb_iso_packet_descriptor *desc;
4655 u32 t;
4656 unsigned uframe;
4657 int urb_index = -1;
4658 struct fotg210_iso_stream *stream = itd->stream;
4659 struct usb_device *dev;
4660 bool retval = false;
4661
4662 /* for each uframe with a packet */
4663 for (uframe = 0; uframe < 8; uframe++) {
4664 if (likely(itd->index[uframe] == -1))
4665 continue;
4666 urb_index = itd->index[uframe];
4667 desc = &urb->iso_frame_desc[urb_index];
4668
4669 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4670 itd->hw_transaction[uframe] = 0;
4671
4672 /* report transfer status */
4673 if (unlikely(t & ISO_ERRS)) {
4674 urb->error_count++;
4675 if (t & FOTG210_ISOC_BUF_ERR)
4676 desc->status = usb_pipein(urb->pipe)
4677 ? -ENOSR /* hc couldn't read */
4678 : -ECOMM; /* hc couldn't write */
4679 else if (t & FOTG210_ISOC_BABBLE)
4680 desc->status = -EOVERFLOW;
4681 else /* (t & FOTG210_ISOC_XACTERR) */
4682 desc->status = -EPROTO;
4683
4684 /* HC need not update length with this error */
4685 if (!(t & FOTG210_ISOC_BABBLE)) {
4686 desc->actual_length =
4687 fotg210_itdlen(urb, desc, t);
4688 urb->actual_length += desc->actual_length;
4689 }
4690 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4691 desc->status = 0;
4692 desc->actual_length = fotg210_itdlen(urb, desc, t);
4693 urb->actual_length += desc->actual_length;
4694 } else {
4695 /* URB was too late */
4696 desc->status = -EXDEV;
4697 }
4698 }
4699
4700 /* handle completion now? */
4701 if (likely((urb_index + 1) != urb->number_of_packets))
4702 goto done;
4703
4704 /* ASSERT: it's really the last itd for this urb
4705 list_for_each_entry (itd, &stream->td_list, itd_list)
4706 BUG_ON (itd->urb == urb);
4707 */
4708
4709 /* give urb back to the driver; completion often (re)submits */
4710 dev = urb->dev;
4711 fotg210_urb_done(fotg210, urb, 0);
4712 retval = true;
4713 urb = NULL;
4714
4715 --fotg210->isoc_count;
4716 disable_periodic(fotg210);
4717
4718 if (unlikely(list_is_singular(&stream->td_list))) {
4719 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4720 -= stream->bandwidth;
be5ac4c4 4721 fotg210_dbg(fotg210,
7d50195f
FHC
4722 "deschedule devp %s ep%d%s-iso\n",
4723 dev->devpath, stream->bEndpointAddress & 0x0f,
4724 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4725 }
4726
4727done:
4728 itd->urb = NULL;
4729
4730 /* Add to the end of the free list for later reuse */
4731 list_move_tail(&itd->itd_list, &stream->free_list);
4732
4733 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4734 if (list_empty(&stream->td_list)) {
4735 list_splice_tail_init(&stream->free_list,
4736 &fotg210->cached_itd_list);
4737 start_free_itds(fotg210);
4738 }
4739
4740 return retval;
4741}
4742
4743/*-------------------------------------------------------------------------*/
4744
4745static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4746 gfp_t mem_flags)
4747{
4748 int status = -EINVAL;
4749 unsigned long flags;
4750 struct fotg210_iso_stream *stream;
4751
4752 /* Get iso_stream head */
4753 stream = iso_stream_find(fotg210, urb);
4754 if (unlikely(stream == NULL)) {
4755 fotg210_dbg(fotg210, "can't get iso stream\n");
4756 return -ENOMEM;
4757 }
4758 if (unlikely(urb->interval != stream->interval &&
4759 fotg210_port_speed(fotg210, 0) ==
4760 USB_PORT_STAT_HIGH_SPEED)) {
4761 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4762 stream->interval, urb->interval);
4763 goto done;
4764 }
4765
4766#ifdef FOTG210_URB_TRACE
4767 fotg210_dbg(fotg210,
4768 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4769 __func__, urb->dev->devpath, urb,
4770 usb_pipeendpoint(urb->pipe),
4771 usb_pipein(urb->pipe) ? "in" : "out",
4772 urb->transfer_buffer_length,
4773 urb->number_of_packets, urb->interval,
4774 stream);
4775#endif
4776
4777 /* allocate ITDs w/o locking anything */
4778 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4779 if (unlikely(status < 0)) {
4780 fotg210_dbg(fotg210, "can't init itds\n");
4781 goto done;
4782 }
4783
4784 /* schedule ... need to lock */
4785 spin_lock_irqsave(&fotg210->lock, flags);
4786 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4787 status = -ESHUTDOWN;
4788 goto done_not_linked;
4789 }
4790 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4791 if (unlikely(status))
4792 goto done_not_linked;
4793 status = iso_stream_schedule(fotg210, urb, stream);
4794 if (likely(status == 0))
4795 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4796 else
4797 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4798 done_not_linked:
4799 spin_unlock_irqrestore(&fotg210->lock, flags);
4800 done:
4801 return status;
4802}
4803
4804/*-------------------------------------------------------------------------*/
4805
4806static void scan_isoc(struct fotg210_hcd *fotg210)
4807{
4808 unsigned uf, now_frame, frame;
4809 unsigned fmask = fotg210->periodic_size - 1;
4810 bool modified, live;
4811
4812 /*
4813 * When running, scan from last scan point up to "now"
4814 * else clean up by scanning everything that's left.
4815 * Touches as few pages as possible: cache-friendly.
4816 */
4817 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4818 uf = fotg210_read_frame_index(fotg210);
4819 now_frame = (uf >> 3) & fmask;
4820 live = true;
4821 } else {
4822 now_frame = (fotg210->next_frame - 1) & fmask;
4823 live = false;
4824 }
4825 fotg210->now_frame = now_frame;
4826
4827 frame = fotg210->next_frame;
4828 for (;;) {
4829 union fotg210_shadow q, *q_p;
4830 __hc32 type, *hw_p;
4831
4832restart:
4833 /* scan each element in frame's queue for completions */
4834 q_p = &fotg210->pshadow[frame];
4835 hw_p = &fotg210->periodic[frame];
4836 q.ptr = q_p->ptr;
4837 type = Q_NEXT_TYPE(fotg210, *hw_p);
4838 modified = false;
4839
4840 while (q.ptr != NULL) {
4841 switch (hc32_to_cpu(fotg210, type)) {
4842 case Q_TYPE_ITD:
4843 /* If this ITD is still active, leave it for
4844 * later processing ... check the next entry.
4845 * No need to check for activity unless the
4846 * frame is current.
4847 */
4848 if (frame == now_frame && live) {
4849 rmb();
4850 for (uf = 0; uf < 8; uf++) {
4851 if (q.itd->hw_transaction[uf] &
4852 ITD_ACTIVE(fotg210))
4853 break;
4854 }
4855 if (uf < 8) {
4856 q_p = &q.itd->itd_next;
4857 hw_p = &q.itd->hw_next;
4858 type = Q_NEXT_TYPE(fotg210,
4859 q.itd->hw_next);
4860 q = *q_p;
4861 break;
4862 }
4863 }
4864
4865 /* Take finished ITDs out of the schedule
4866 * and process them: recycle, maybe report
4867 * URB completion. HC won't cache the
4868 * pointer for much longer, if at all.
4869 */
4870 *q_p = q.itd->itd_next;
4871 *hw_p = q.itd->hw_next;
4872 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4873 wmb();
4874 modified = itd_complete(fotg210, q.itd);
4875 q = *q_p;
4876 break;
4877 default:
4878 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4879 type, frame, q.ptr);
4880 /* FALL THROUGH */
4881 case Q_TYPE_QH:
4882 case Q_TYPE_FSTN:
4883 /* End of the iTDs and siTDs */
4884 q.ptr = NULL;
4885 break;
4886 }
4887
4888 /* assume completion callbacks modify the queue */
4889 if (unlikely(modified && fotg210->isoc_count > 0))
4890 goto restart;
4891 }
4892
4893 /* Stop when we have reached the current frame */
4894 if (frame == now_frame)
4895 break;
4896 frame = (frame + 1) & fmask;
4897 }
4898 fotg210->next_frame = now_frame;
4899}
4900/*-------------------------------------------------------------------------*/
4901/*
4902 * Display / Set uframe_periodic_max
4903 */
4904static ssize_t show_uframe_periodic_max(struct device *dev,
4905 struct device_attribute *attr,
4906 char *buf)
4907{
4908 struct fotg210_hcd *fotg210;
4909 int n;
4910
4911 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4912 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4913 return n;
4914}
4915
4916
4917static ssize_t store_uframe_periodic_max(struct device *dev,
4918 struct device_attribute *attr,
4919 const char *buf, size_t count)
4920{
4921 struct fotg210_hcd *fotg210;
4922 unsigned uframe_periodic_max;
4923 unsigned frame, uframe;
4924 unsigned short allocated_max;
4925 unsigned long flags;
4926 ssize_t ret;
4927
4928 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4929 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4930 return -EINVAL;
4931
4932 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4933 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4934 uframe_periodic_max);
4935 return -EINVAL;
4936 }
4937
4938 ret = -EINVAL;
4939
4940 /*
4941 * lock, so that our checking does not race with possible periodic
4942 * bandwidth allocation through submitting new urbs.
4943 */
4944 spin_lock_irqsave(&fotg210->lock, flags);
4945
4946 /*
4947 * for request to decrease max periodic bandwidth, we have to check
4948 * every microframe in the schedule to see whether the decrease is
4949 * possible.
4950 */
4951 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4952 allocated_max = 0;
4953
4954 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4955 for (uframe = 0; uframe < 7; ++uframe)
4956 allocated_max = max(allocated_max,
4957 periodic_usecs(fotg210, frame, uframe));
4958
4959 if (allocated_max > uframe_periodic_max) {
4960 fotg210_info(fotg210,
6774def6 4961 "cannot decrease uframe_periodic_max because "
7d50195f
FHC
4962 "periodic bandwidth is already allocated "
4963 "(%u > %u)\n",
4964 allocated_max, uframe_periodic_max);
4965 goto out_unlock;
4966 }
4967 }
4968
4969 /* increasing is always ok */
4970
4971 fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4972 100 * uframe_periodic_max/125, uframe_periodic_max);
4973
4974 if (uframe_periodic_max != 100)
4975 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4976
4977 fotg210->uframe_periodic_max = uframe_periodic_max;
4978 ret = count;
4979
4980out_unlock:
4981 spin_unlock_irqrestore(&fotg210->lock, flags);
4982 return ret;
4983}
4984
4985static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4986 store_uframe_periodic_max);
4987
4988static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4989{
4990 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4991 int i = 0;
4992
4993 if (i)
4994 goto out;
4995
4996 i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4997out:
4998 return i;
4999}
5000
5001static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
5002{
5003 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
5004
5005 device_remove_file(controller, &dev_attr_uframe_periodic_max);
5006}
5007/*-------------------------------------------------------------------------*/
5008
5009/* On some systems, leaving remote wakeup enabled prevents system shutdown.
5010 * The firmware seems to think that powering off is a wakeup event!
5011 * This routine turns off remote wakeup and everything else, on all ports.
5012 */
5013static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
5014{
5015 u32 __iomem *status_reg = &fotg210->regs->port_status;
5016
5017 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
5018}
5019
5020/*
5021 * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5022 * Must be called with interrupts enabled and the lock not held.
5023 */
5024static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
5025{
5026 fotg210_halt(fotg210);
5027
5028 spin_lock_irq(&fotg210->lock);
5029 fotg210->rh_state = FOTG210_RH_HALTED;
5030 fotg210_turn_off_all_ports(fotg210);
5031 spin_unlock_irq(&fotg210->lock);
5032}
5033
5034/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5035 * This forcibly disables dma and IRQs, helping kexec and other cases
5036 * where the next system software may expect clean state.
5037 */
5038static void fotg210_shutdown(struct usb_hcd *hcd)
5039{
5040 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5041
5042 spin_lock_irq(&fotg210->lock);
5043 fotg210->shutdown = true;
5044 fotg210->rh_state = FOTG210_RH_STOPPING;
5045 fotg210->enabled_hrtimer_events = 0;
5046 spin_unlock_irq(&fotg210->lock);
5047
5048 fotg210_silence_controller(fotg210);
5049
5050 hrtimer_cancel(&fotg210->hrtimer);
5051}
5052
5053/*-------------------------------------------------------------------------*/
5054
5055/*
5056 * fotg210_work is called from some interrupts, timers, and so on.
5057 * it calls driver completion functions, after dropping fotg210->lock.
5058 */
5059static void fotg210_work(struct fotg210_hcd *fotg210)
5060{
5061 /* another CPU may drop fotg210->lock during a schedule scan while
5062 * it reports urb completions. this flag guards against bogus
5063 * attempts at re-entrant schedule scanning.
5064 */
5065 if (fotg210->scanning) {
5066 fotg210->need_rescan = true;
5067 return;
5068 }
5069 fotg210->scanning = true;
5070
5071 rescan:
5072 fotg210->need_rescan = false;
5073 if (fotg210->async_count)
5074 scan_async(fotg210);
5075 if (fotg210->intr_count > 0)
5076 scan_intr(fotg210);
5077 if (fotg210->isoc_count > 0)
5078 scan_isoc(fotg210);
5079 if (fotg210->need_rescan)
5080 goto rescan;
5081 fotg210->scanning = false;
5082
5083 /* the IO watchdog guards against hardware or driver bugs that
5084 * misplace IRQs, and should let us run completely without IRQs.
5085 * such lossage has been observed on both VT6202 and VT8235.
5086 */
5087 turn_on_io_watchdog(fotg210);
5088}
5089
5090/*
5091 * Called when the fotg210_hcd module is removed.
5092 */
5093static void fotg210_stop(struct usb_hcd *hcd)
5094{
5095 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5096
5097 fotg210_dbg(fotg210, "stop\n");
5098
5099 /* no more interrupts ... */
5100
5101 spin_lock_irq(&fotg210->lock);
5102 fotg210->enabled_hrtimer_events = 0;
5103 spin_unlock_irq(&fotg210->lock);
5104
5105 fotg210_quiesce(fotg210);
5106 fotg210_silence_controller(fotg210);
5107 fotg210_reset(fotg210);
5108
5109 hrtimer_cancel(&fotg210->hrtimer);
5110 remove_sysfs_files(fotg210);
5111 remove_debug_files(fotg210);
5112
5113 /* root hub is shut down separately (first, when possible) */
5114 spin_lock_irq(&fotg210->lock);
5115 end_free_itds(fotg210);
5116 spin_unlock_irq(&fotg210->lock);
5117 fotg210_mem_cleanup(fotg210);
5118
5119#ifdef FOTG210_STATS
5120 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5121 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
5122 fotg210->stats.lost_iaa);
5123 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
5124 fotg210->stats.complete, fotg210->stats.unlink);
5125#endif
5126
5127 dbg_status(fotg210, "fotg210_stop completed",
5128 fotg210_readl(fotg210, &fotg210->regs->status));
5129}
5130
5131/* one-time init, only for memory state */
5132static int hcd_fotg210_init(struct usb_hcd *hcd)
5133{
5134 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5135 u32 temp;
5136 int retval;
5137 u32 hcc_params;
5138 struct fotg210_qh_hw *hw;
5139
5140 spin_lock_init(&fotg210->lock);
5141
5142 /*
5143 * keep io watchdog by default, those good HCDs could turn off it later
5144 */
5145 fotg210->need_io_watchdog = 1;
5146
5147 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
5148 fotg210->hrtimer.function = fotg210_hrtimer_func;
5149 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
5150
5151 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5152
5153 /*
5154 * by default set standard 80% (== 100 usec/uframe) max periodic
5155 * bandwidth as required by USB 2.0
5156 */
5157 fotg210->uframe_periodic_max = 100;
5158
5159 /*
5160 * hw default: 1K periodic list heads, one per frame.
5161 * periodic_size can shrink by USBCMD update if hcc_params allows.
5162 */
5163 fotg210->periodic_size = DEFAULT_I_TDPS;
5164 INIT_LIST_HEAD(&fotg210->intr_qh_list);
5165 INIT_LIST_HEAD(&fotg210->cached_itd_list);
5166
5167 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5168 /* periodic schedule size can be smaller than default */
5169 switch (FOTG210_TUNE_FLS) {
5170 case 0:
5171 fotg210->periodic_size = 1024;
5172 break;
5173 case 1:
5174 fotg210->periodic_size = 512;
5175 break;
5176 case 2:
5177 fotg210->periodic_size = 256;
5178 break;
5179 default:
5180 BUG();
5181 }
5182 }
5183 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
5184 if (retval < 0)
5185 return retval;
5186
5187 /* controllers may cache some of the periodic schedule ... */
5188 fotg210->i_thresh = 2;
5189
5190 /*
5191 * dedicate a qh for the async ring head, since we couldn't unlink
5192 * a 'real' qh without stopping the async schedule [4.8]. use it
5193 * as the 'reclamation list head' too.
5194 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5195 * from automatically advancing to the next td after short reads.
5196 */
5197 fotg210->async->qh_next.qh = NULL;
5198 hw = fotg210->async->hw;
5199 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5200 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5201 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5202 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5203 fotg210->async->qh_state = QH_STATE_LINKED;
5204 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5205
5206 /* clear interrupt enables, set irq latency */
5207 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5208 log2_irq_thresh = 0;
5209 temp = 1 << (16 + log2_irq_thresh);
5210 if (HCC_CANPARK(hcc_params)) {
5211 /* HW default park == 3, on hardware that supports it (like
5212 * NVidia and ALI silicon), maximizes throughput on the async
5213 * schedule by avoiding QH fetches between transfers.
5214 *
5215 * With fast usb storage devices and NForce2, "park" seems to
5216 * make problems: throughput reduction (!), data errors...
5217 */
5218 if (park) {
5219 park = min_t(unsigned, park, 3);
5220 temp |= CMD_PARK;
5221 temp |= park << 8;
5222 }
5223 fotg210_dbg(fotg210, "park %d\n", park);
5224 }
5225 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5226 /* periodic schedule size can be smaller than default */
5227 temp &= ~(3 << 2);
5228 temp |= (FOTG210_TUNE_FLS << 2);
5229 }
5230 fotg210->command = temp;
5231
5232 /* Accept arbitrarily long scatter-gather lists */
5233 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5234 hcd->self.sg_tablesize = ~0;
5235 return 0;
5236}
5237
5238/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5239static int fotg210_run(struct usb_hcd *hcd)
5240{
5241 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5242 u32 temp;
5243 u32 hcc_params;
5244
5245 hcd->uses_new_polling = 1;
5246
5247 /* EHCI spec section 4.1 */
5248
5249 fotg210_writel(fotg210, fotg210->periodic_dma,
5250 &fotg210->regs->frame_list);
5251 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5252 &fotg210->regs->async_next);
5253
5254 /*
5255 * hcc_params controls whether fotg210->regs->segment must (!!!)
5256 * be used; it constrains QH/ITD/SITD and QTD locations.
5257 * pci_pool consistent memory always uses segment zero.
5258 * streaming mappings for I/O buffers, like pci_map_single(),
5259 * can return segments above 4GB, if the device allows.
5260 *
5261 * NOTE: the dma mask is visible through dma_supported(), so
5262 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5263 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5264 * host side drivers though.
5265 */
5266 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5267
5268 /*
5269 * Philips, Intel, and maybe others need CMD_RUN before the
5270 * root hub will detect new devices (why?); NEC doesn't
5271 */
5272 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5273 fotg210->command |= CMD_RUN;
5274 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5275 dbg_cmd(fotg210, "init", fotg210->command);
5276
5277 /*
5278 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5279 * are explicitly handed to companion controller(s), so no TT is
5280 * involved with the root hub. (Except where one is integrated,
5281 * and there's no companion controller unless maybe for USB OTG.)
5282 *
5283 * Turning on the CF flag will transfer ownership of all ports
5284 * from the companions to the EHCI controller. If any of the
5285 * companions are in the middle of a port reset at the time, it
5286 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5287 * guarantees that no resets are in progress. After we set CF,
5288 * a short delay lets the hardware catch up; new resets shouldn't
5289 * be started before the port switching actions could complete.
5290 */
5291 down_write(&ehci_cf_port_reset_rwsem);
5292 fotg210->rh_state = FOTG210_RH_RUNNING;
5293 /* unblock posted writes */
5294 fotg210_readl(fotg210, &fotg210->regs->command);
5295 msleep(5);
5296 up_write(&ehci_cf_port_reset_rwsem);
5297 fotg210->last_periodic_enable = ktime_get_real();
5298
5299 temp = HC_VERSION(fotg210,
5300 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5301 fotg210_info(fotg210,
5302 "USB %x.%x started, EHCI %x.%02x\n",
5303 ((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
5304 temp >> 8, temp & 0xff);
5305
5306 fotg210_writel(fotg210, INTR_MASK,
5307 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5308
5309 /* GRR this is run-once init(), being done every time the HC starts.
5310 * So long as they're part of class devices, we can't do it init()
5311 * since the class device isn't created that early.
5312 */
5313 create_debug_files(fotg210);
5314 create_sysfs_files(fotg210);
5315
5316 return 0;
5317}
5318
5319static int fotg210_setup(struct usb_hcd *hcd)
5320{
5321 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5322 int retval;
5323
5324 fotg210->regs = (void __iomem *)fotg210->caps +
5325 HC_LENGTH(fotg210,
5326 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5327 dbg_hcs_params(fotg210, "reset");
5328 dbg_hcc_params(fotg210, "reset");
5329
5330 /* cache this readonly data; minimize chip reads */
5331 fotg210->hcs_params = fotg210_readl(fotg210,
5332 &fotg210->caps->hcs_params);
5333
5334 fotg210->sbrn = HCD_USB2;
5335
5336 /* data structure init */
5337 retval = hcd_fotg210_init(hcd);
5338 if (retval)
5339 return retval;
5340
5341 retval = fotg210_halt(fotg210);
5342 if (retval)
5343 return retval;
5344
5345 fotg210_reset(fotg210);
5346
5347 return 0;
5348}
5349
5350/*-------------------------------------------------------------------------*/
5351
5352static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5353{
5354 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5355 u32 status, masked_status, pcd_status = 0, cmd;
5356 int bh;
5357
5358 spin_lock(&fotg210->lock);
5359
5360 status = fotg210_readl(fotg210, &fotg210->regs->status);
5361
5362 /* e.g. cardbus physical eject */
5363 if (status == ~(u32) 0) {
5364 fotg210_dbg(fotg210, "device removed\n");
5365 goto dead;
5366 }
5367
5368 /*
5369 * We don't use STS_FLR, but some controllers don't like it to
5370 * remain on, so mask it out along with the other status bits.
5371 */
5372 masked_status = status & (INTR_MASK | STS_FLR);
5373
5374 /* Shared IRQ? */
5375 if (!masked_status ||
5376 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5377 spin_unlock(&fotg210->lock);
5378 return IRQ_NONE;
5379 }
5380
5381 /* clear (just) interrupts */
5382 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5383 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5384 bh = 0;
5385
7d50195f
FHC
5386 /* unrequested/ignored: Frame List Rollover */
5387 dbg_status(fotg210, "irq", status);
7d50195f
FHC
5388
5389 /* INT, ERR, and IAA interrupt rates can be throttled */
5390
5391 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5392 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5393 if (likely((status & STS_ERR) == 0))
5394 COUNT(fotg210->stats.normal);
5395 else
5396 COUNT(fotg210->stats.error);
5397 bh = 1;
5398 }
5399
5400 /* complete the unlinking of some qh [4.15.2.3] */
5401 if (status & STS_IAA) {
5402
5403 /* Turn off the IAA watchdog */
5404 fotg210->enabled_hrtimer_events &=
5405 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5406
5407 /*
5408 * Mild optimization: Allow another IAAD to reset the
5409 * hrtimer, if one occurs before the next expiration.
5410 * In theory we could always cancel the hrtimer, but
5411 * tests show that about half the time it will be reset
5412 * for some other event anyway.
5413 */
5414 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5415 ++fotg210->next_hrtimer_event;
5416
5417 /* guard against (alleged) silicon errata */
5418 if (cmd & CMD_IAAD)
5419 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5420 if (fotg210->async_iaa) {
5421 COUNT(fotg210->stats.iaa);
5422 end_unlink_async(fotg210);
5423 } else
5424 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5425 }
5426
5427 /* remote wakeup [4.3.1] */
5428 if (status & STS_PCD) {
5429 int pstatus;
5430 u32 __iomem *status_reg = &fotg210->regs->port_status;
5431
5432 /* kick root hub later */
5433 pcd_status = status;
5434
5435 /* resume root hub? */
5436 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5437 usb_hcd_resume_root_hub(hcd);
5438
5439 pstatus = fotg210_readl(fotg210, status_reg);
5440
5441 if (test_bit(0, &fotg210->suspended_ports) &&
5442 ((pstatus & PORT_RESUME) ||
5443 !(pstatus & PORT_SUSPEND)) &&
5444 (pstatus & PORT_PE) &&
5445 fotg210->reset_done[0] == 0) {
5446
5447 /* start 20 msec resume signaling from this port,
37ebb549 5448 * and make hub_wq collect PORT_STAT_C_SUSPEND to
7d50195f
FHC
5449 * stop that signaling. Use 5 ms extra for safety,
5450 * like usb_port_resume() does.
5451 */
5452 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5453 set_bit(0, &fotg210->resuming_ports);
5454 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5455 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5456 }
5457 }
5458
5459 /* PCI errors [4.15.2.4] */
5460 if (unlikely((status & STS_FATAL) != 0)) {
5461 fotg210_err(fotg210, "fatal error\n");
5462 dbg_cmd(fotg210, "fatal", cmd);
5463 dbg_status(fotg210, "fatal", status);
5464dead:
5465 usb_hc_died(hcd);
5466
5467 /* Don't let the controller do anything more */
5468 fotg210->shutdown = true;
5469 fotg210->rh_state = FOTG210_RH_STOPPING;
5470 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5471 fotg210_writel(fotg210, fotg210->command,
5472 &fotg210->regs->command);
5473 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5474 fotg210_handle_controller_death(fotg210);
5475
5476 /* Handle completions when the controller stops */
5477 bh = 0;
5478 }
5479
5480 if (bh)
5481 fotg210_work(fotg210);
5482 spin_unlock(&fotg210->lock);
5483 if (pcd_status)
5484 usb_hcd_poll_rh_status(hcd);
5485 return IRQ_HANDLED;
5486}
5487
5488/*-------------------------------------------------------------------------*/
5489
5490/*
5491 * non-error returns are a promise to giveback() the urb later
5492 * we drop ownership so next owner (or urb unlink) can get it
5493 *
5494 * urb + dev is in hcd.self.controller.urb_list
5495 * we're queueing TDs onto software and hardware lists
5496 *
5497 * hcd-specific init for hcpriv hasn't been done yet
5498 *
5499 * NOTE: control, bulk, and interrupt share the same code to append TDs
5500 * to a (possibly active) QH, and the same QH scanning code.
5501 */
5502static int fotg210_urb_enqueue(
5503 struct usb_hcd *hcd,
5504 struct urb *urb,
5505 gfp_t mem_flags
5506) {
5507 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5508 struct list_head qtd_list;
5509
5510 INIT_LIST_HEAD(&qtd_list);
5511
5512 switch (usb_pipetype(urb->pipe)) {
5513 case PIPE_CONTROL:
5514 /* qh_completions() code doesn't handle all the fault cases
5515 * in multi-TD control transfers. Even 1KB is rare anyway.
5516 */
5517 if (urb->transfer_buffer_length > (16 * 1024))
5518 return -EMSGSIZE;
5519 /* FALLTHROUGH */
5520 /* case PIPE_BULK: */
5521 default:
5522 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5523 return -ENOMEM;
5524 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5525
5526 case PIPE_INTERRUPT:
5527 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5528 return -ENOMEM;
5529 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5530
5531 case PIPE_ISOCHRONOUS:
5532 return itd_submit(fotg210, urb, mem_flags);
5533 }
5534}
5535
5536/* remove from hardware lists
5537 * completions normally happen asynchronously
5538 */
5539
5540static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5541{
5542 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5543 struct fotg210_qh *qh;
5544 unsigned long flags;
5545 int rc;
5546
5547 spin_lock_irqsave(&fotg210->lock, flags);
5548 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5549 if (rc)
5550 goto done;
5551
5552 switch (usb_pipetype(urb->pipe)) {
5553 /* case PIPE_CONTROL: */
5554 /* case PIPE_BULK:*/
5555 default:
5556 qh = (struct fotg210_qh *) urb->hcpriv;
5557 if (!qh)
5558 break;
5559 switch (qh->qh_state) {
5560 case QH_STATE_LINKED:
5561 case QH_STATE_COMPLETING:
5562 start_unlink_async(fotg210, qh);
5563 break;
5564 case QH_STATE_UNLINK:
5565 case QH_STATE_UNLINK_WAIT:
5566 /* already started */
5567 break;
5568 case QH_STATE_IDLE:
5569 /* QH might be waiting for a Clear-TT-Buffer */
5570 qh_completions(fotg210, qh);
5571 break;
5572 }
5573 break;
5574
5575 case PIPE_INTERRUPT:
5576 qh = (struct fotg210_qh *) urb->hcpriv;
5577 if (!qh)
5578 break;
5579 switch (qh->qh_state) {
5580 case QH_STATE_LINKED:
5581 case QH_STATE_COMPLETING:
5582 start_unlink_intr(fotg210, qh);
5583 break;
5584 case QH_STATE_IDLE:
5585 qh_completions(fotg210, qh);
5586 break;
5587 default:
5588 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5589 qh, qh->qh_state);
5590 goto done;
5591 }
5592 break;
5593
5594 case PIPE_ISOCHRONOUS:
5595 /* itd... */
5596
5597 /* wait till next completion, do it then. */
5598 /* completion irqs can wait up to 1024 msec, */
5599 break;
5600 }
5601done:
5602 spin_unlock_irqrestore(&fotg210->lock, flags);
5603 return rc;
5604}
5605
5606/*-------------------------------------------------------------------------*/
5607
5608/* bulk qh holds the data toggle */
5609
5610static void
5611fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5612{
5613 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5614 unsigned long flags;
5615 struct fotg210_qh *qh, *tmp;
5616
5617 /* ASSERT: any requests/urbs are being unlinked */
5618 /* ASSERT: nobody can be submitting urbs for this any more */
5619
5620rescan:
5621 spin_lock_irqsave(&fotg210->lock, flags);
5622 qh = ep->hcpriv;
5623 if (!qh)
5624 goto done;
5625
5626 /* endpoints can be iso streams. for now, we don't
5627 * accelerate iso completions ... so spin a while.
5628 */
5629 if (qh->hw == NULL) {
5630 struct fotg210_iso_stream *stream = ep->hcpriv;
5631
5632 if (!list_empty(&stream->td_list))
5633 goto idle_timeout;
5634
5635 /* BUG_ON(!list_empty(&stream->free_list)); */
5636 kfree(stream);
5637 goto done;
5638 }
5639
5640 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5641 qh->qh_state = QH_STATE_IDLE;
5642 switch (qh->qh_state) {
5643 case QH_STATE_LINKED:
5644 case QH_STATE_COMPLETING:
5645 for (tmp = fotg210->async->qh_next.qh;
5646 tmp && tmp != qh;
5647 tmp = tmp->qh_next.qh)
5648 continue;
5649 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5650 * may already be unlinked.
5651 */
5652 if (tmp)
5653 start_unlink_async(fotg210, qh);
5654 /* FALL THROUGH */
5655 case QH_STATE_UNLINK: /* wait for hw to finish? */
5656 case QH_STATE_UNLINK_WAIT:
5657idle_timeout:
5658 spin_unlock_irqrestore(&fotg210->lock, flags);
5659 schedule_timeout_uninterruptible(1);
5660 goto rescan;
5661 case QH_STATE_IDLE: /* fully unlinked */
5662 if (qh->clearing_tt)
5663 goto idle_timeout;
5664 if (list_empty(&qh->qtd_list)) {
5665 qh_destroy(fotg210, qh);
5666 break;
5667 }
5668 /* else FALL THROUGH */
5669 default:
5670 /* caller was supposed to have unlinked any requests;
5671 * that's not our job. just leak this memory.
5672 */
5673 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5674 qh, ep->desc.bEndpointAddress, qh->qh_state,
5675 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5676 break;
5677 }
5678 done:
5679 ep->hcpriv = NULL;
5680 spin_unlock_irqrestore(&fotg210->lock, flags);
5681}
5682
5683static void
5684fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5685{
5686 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5687 struct fotg210_qh *qh;
5688 int eptype = usb_endpoint_type(&ep->desc);
5689 int epnum = usb_endpoint_num(&ep->desc);
5690 int is_out = usb_endpoint_dir_out(&ep->desc);
5691 unsigned long flags;
5692
5693 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5694 return;
5695
5696 spin_lock_irqsave(&fotg210->lock, flags);
5697 qh = ep->hcpriv;
5698
5699 /* For Bulk and Interrupt endpoints we maintain the toggle state
5700 * in the hardware; the toggle bits in udev aren't used at all.
5701 * When an endpoint is reset by usb_clear_halt() we must reset
5702 * the toggle bit in the QH.
5703 */
5704 if (qh) {
5705 usb_settoggle(qh->dev, epnum, is_out, 0);
5706 if (!list_empty(&qh->qtd_list)) {
5707 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5708 } else if (qh->qh_state == QH_STATE_LINKED ||
5709 qh->qh_state == QH_STATE_COMPLETING) {
5710
5711 /* The toggle value in the QH can't be updated
5712 * while the QH is active. Unlink it now;
5713 * re-linking will call qh_refresh().
5714 */
5715 if (eptype == USB_ENDPOINT_XFER_BULK)
5716 start_unlink_async(fotg210, qh);
5717 else
5718 start_unlink_intr(fotg210, qh);
5719 }
5720 }
5721 spin_unlock_irqrestore(&fotg210->lock, flags);
5722}
5723
5724static int fotg210_get_frame(struct usb_hcd *hcd)
5725{
5726 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5727 return (fotg210_read_frame_index(fotg210) >> 3) %
5728 fotg210->periodic_size;
5729}
5730
5731/*-------------------------------------------------------------------------*/
5732
5733/*
5734 * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5735 * because its registers (and irq) are shared between host/gadget/otg
5736 * functions and in order to facilitate role switching we cannot
5737 * give the fotg210 driver exclusive access to those.
5738 */
5739MODULE_DESCRIPTION(DRIVER_DESC);
5740MODULE_AUTHOR(DRIVER_AUTHOR);
5741MODULE_LICENSE("GPL");
5742
5743static const struct hc_driver fotg210_fotg210_hc_driver = {
5744 .description = hcd_name,
5745 .product_desc = "Faraday USB2.0 Host Controller",
5746 .hcd_priv_size = sizeof(struct fotg210_hcd),
5747
5748 /*
5749 * generic hardware linkage
5750 */
5751 .irq = fotg210_irq,
5752 .flags = HCD_MEMORY | HCD_USB2,
5753
5754 /*
5755 * basic lifecycle operations
5756 */
5757 .reset = hcd_fotg210_init,
5758 .start = fotg210_run,
5759 .stop = fotg210_stop,
5760 .shutdown = fotg210_shutdown,
5761
5762 /*
5763 * managing i/o requests and associated device resources
5764 */
5765 .urb_enqueue = fotg210_urb_enqueue,
5766 .urb_dequeue = fotg210_urb_dequeue,
5767 .endpoint_disable = fotg210_endpoint_disable,
5768 .endpoint_reset = fotg210_endpoint_reset,
5769
5770 /*
5771 * scheduling support
5772 */
5773 .get_frame_number = fotg210_get_frame,
5774
5775 /*
5776 * root hub support
5777 */
5778 .hub_status_data = fotg210_hub_status_data,
5779 .hub_control = fotg210_hub_control,
5780 .bus_suspend = fotg210_bus_suspend,
5781 .bus_resume = fotg210_bus_resume,
5782
5783 .relinquish_port = fotg210_relinquish_port,
5784 .port_handed_over = fotg210_port_handed_over,
5785
5786 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5787};
5788
5789static void fotg210_init(struct fotg210_hcd *fotg210)
5790{
5791 u32 value;
5792
5793 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5794 &fotg210->regs->gmir);
5795
5796 value = ioread32(&fotg210->regs->otgcsr);
5797 value &= ~OTGCSR_A_BUS_DROP;
5798 value |= OTGCSR_A_BUS_REQ;
5799 iowrite32(value, &fotg210->regs->otgcsr);
5800}
5801
5802/**
5803 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5804 *
5805 * Allocates basic resources for this USB host controller, and
5806 * then invokes the start() method for the HCD associated with it
5807 * through the hotplug entry's driver_data.
5808 */
5809static int fotg210_hcd_probe(struct platform_device *pdev)
5810{
5811 struct device *dev = &pdev->dev;
5812 struct usb_hcd *hcd;
5813 struct resource *res;
5814 int irq;
5815 int retval = -ENODEV;
5816 struct fotg210_hcd *fotg210;
5817
5818 if (usb_disabled())
5819 return -ENODEV;
5820
5821 pdev->dev.power.power_state = PMSG_ON;
5822
5823 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5824 if (!res) {
5825 dev_err(dev,
5826 "Found HC with no IRQ. Check %s setup!\n",
5827 dev_name(dev));
5828 return -ENODEV;
5829 }
5830
5831 irq = res->start;
5832
5833 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5834 dev_name(dev));
5835 if (!hcd) {
5836 dev_err(dev, "failed to create hcd with err %d\n", retval);
5837 retval = -ENOMEM;
5838 goto fail_create_hcd;
5839 }
5840
0e278b34
HS
5841 hcd->has_tt = 1;
5842
7d50195f 5843 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
0e278b34
HS
5844 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5845 if (IS_ERR(hcd->regs)) {
5846 retval = PTR_ERR(hcd->regs);
5847 goto failed;
7d50195f
FHC
5848 }
5849
5850 hcd->rsrc_start = res->start;
5851 hcd->rsrc_len = resource_size(res);
7d50195f
FHC
5852
5853 fotg210 = hcd_to_fotg210(hcd);
5854
5855 fotg210->caps = hcd->regs;
5856
5857 retval = fotg210_setup(hcd);
5858 if (retval)
0e278b34 5859 goto failed;
7d50195f
FHC
5860
5861 fotg210_init(fotg210);
5862
5863 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5864 if (retval) {
5865 dev_err(dev, "failed to add hcd with err %d\n", retval);
0e278b34 5866 goto failed;
7d50195f 5867 }
3c9740a1 5868 device_wakeup_enable(hcd->self.controller);
7d50195f
FHC
5869
5870 return retval;
5871
0e278b34 5872failed:
7d50195f
FHC
5873 usb_put_hcd(hcd);
5874fail_create_hcd:
5875 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5876 return retval;
5877}
5878
5879/**
5880 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5881 * @dev: USB Host Controller being removed
5882 *
5883 */
5884static int fotg210_hcd_remove(struct platform_device *pdev)
5885{
5886 struct device *dev = &pdev->dev;
5887 struct usb_hcd *hcd = dev_get_drvdata(dev);
5888
5889 if (!hcd)
5890 return 0;
5891
5892 usb_remove_hcd(hcd);
7d50195f
FHC
5893 usb_put_hcd(hcd);
5894
5895 return 0;
5896}
5897
5898static struct platform_driver fotg210_hcd_driver = {
5899 .driver = {
5900 .name = "fotg210-hcd",
5901 },
5902 .probe = fotg210_hcd_probe,
5903 .remove = fotg210_hcd_remove,
5904};
5905
5906static int __init fotg210_hcd_init(void)
5907{
5908 int retval = 0;
5909
5910 if (usb_disabled())
5911 return -ENODEV;
5912
5913 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5914 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5915 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5916 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5917 pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5918
5919 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5920 hcd_name,
5921 sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
5922 sizeof(struct fotg210_itd));
5923
7d50195f
FHC
5924 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5925 if (!fotg210_debug_root) {
5926 retval = -ENOENT;
5927 goto err_debug;
5928 }
7d50195f
FHC
5929
5930 retval = platform_driver_register(&fotg210_hcd_driver);
5931 if (retval < 0)
5932 goto clean;
5933 return retval;
5934
5935 platform_driver_unregister(&fotg210_hcd_driver);
5936clean:
7d50195f
FHC
5937 debugfs_remove(fotg210_debug_root);
5938 fotg210_debug_root = NULL;
5939err_debug:
7d50195f
FHC
5940 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5941 return retval;
5942}
5943module_init(fotg210_hcd_init);
5944
5945static void __exit fotg210_hcd_cleanup(void)
5946{
5947 platform_driver_unregister(&fotg210_hcd_driver);
7d50195f 5948 debugfs_remove(fotg210_debug_root);
7d50195f
FHC
5949 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5950}
5951module_exit(fotg210_hcd_cleanup);