]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/usb/host/xhci-mem.c
xhci: add helper to allocate command with input context
[mirror_ubuntu-focal-kernel.git] / drivers / usb / host / xhci-mem.c
CommitLineData
5fd54ace 1// SPDX-License-Identifier: GPL-2.0
66d4eadd
SS
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
66d4eadd
SS
9 */
10
11#include <linux/usb.h>
0ebbab37 12#include <linux/pci.h>
5a0e3ad6 13#include <linux/slab.h>
527c6d7f 14#include <linux/dmapool.h>
008eb957 15#include <linux/dma-mapping.h>
66d4eadd
SS
16
17#include "xhci.h"
3a7fa5be 18#include "xhci-trace.h"
02b6fdc2 19#include "xhci-debugfs.h"
66d4eadd 20
0ebbab37
SS
21/*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
186a7ef1 28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
f9c589e1
MN
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
0ebbab37
SS
32{
33 struct xhci_segment *seg;
34 dma_addr_t dma;
186a7ef1 35 int i;
0ebbab37
SS
36
37 seg = kzalloc(sizeof *seg, flags);
38 if (!seg)
326b4810 39 return NULL;
0ebbab37 40
84c1eeb0 41 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
0ebbab37
SS
42 if (!seg->trbs) {
43 kfree(seg);
326b4810 44 return NULL;
0ebbab37 45 }
0ebbab37 46
f9c589e1 47 if (max_packet) {
5db851cf 48 seg->bounce_buf = kzalloc(max_packet, flags);
f9c589e1
MN
49 if (!seg->bounce_buf) {
50 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 kfree(seg);
52 return NULL;
53 }
54 }
186a7ef1
AX
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58719487 58 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
186a7ef1 59 }
0ebbab37
SS
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64}
65
66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67{
0ebbab37 68 if (seg->trbs) {
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
f9c589e1 72 kfree(seg->bounce_buf);
0ebbab37
SS
73 kfree(seg);
74}
75
70d43601
AX
76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78{
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88}
89
0ebbab37
SS
90/*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
3b72fca0 98 struct xhci_segment *next, enum xhci_ring_type type)
0ebbab37
SS
99{
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
3b72fca0 105 if (type != TYPE_EVENT) {
f5960b69
ME
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
0ebbab37
SS
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
b0567b3f 113 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
3b72fca0
AX
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 118 val |= TRB_CHAIN;
28ccd296 119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 120 }
0ebbab37
SS
121}
122
8dfec614
AX
123/*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130{
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149}
150
15341303
GH
151/*
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
157 *
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
84c1e40f 160 * have segments of size 1KB, that are always 1KB aligned. A segment may
15341303
GH
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
164 *
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
168 *
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
171 *
172 * Caveats for the radix tree:
173 *
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
181 */
d5734223
SS
182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
185 gfp_t mem_flags)
15341303 186{
15341303
GH
187 unsigned long key;
188 int ret;
189
d5734223
SS
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
15341303
GH
193 return 0;
194
d5734223
SS
195 ret = radix_tree_maybe_preload(mem_flags);
196 if (ret)
197 return ret;
198 ret = radix_tree_insert(trb_address_map,
199 key, ring);
200 radix_tree_preload_end();
201 return ret;
202}
15341303 203
d5734223
SS
204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
206{
207 unsigned long key;
208
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
212}
213
214static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
219 gfp_t mem_flags)
220{
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
223 int ret;
224
225 if (WARN_ON_ONCE(trb_address_map == NULL))
226 return 0;
227
228 seg = first_seg;
229 do {
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
15341303 232 if (ret)
d5734223
SS
233 goto remove_streams;
234 if (seg == last_seg)
235 return 0;
15341303 236 seg = seg->next;
d5734223 237 } while (seg != first_seg);
15341303
GH
238
239 return 0;
d5734223
SS
240
241remove_streams:
242 failed_seg = seg;
243 seg = first_seg;
244 do {
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
247 return ret;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return ret;
15341303
GH
252}
253
254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255{
256 struct xhci_segment *seg;
15341303
GH
257
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 return;
260
261 seg = ring->first_seg;
262 do {
d5734223 263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
15341303
GH
264 seg = seg->next;
265 } while (seg != ring->first_seg);
266}
267
d5734223
SS
268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269{
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
272}
273
0ebbab37 274/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37 276{
0e6c7f74 277 if (!ring)
0ebbab37 278 return;
70d43601 279
b2d6edbb
LB
280 trace_xhci_ring_free(ring);
281
15341303
GH
282 if (ring->first_seg) {
283 if (ring->type == TYPE_STREAM)
284 xhci_remove_stream_mapping(ring);
70d43601 285 xhci_free_segments_for_ring(xhci, ring->first_seg);
15341303 286 }
70d43601 287
0ebbab37
SS
288 kfree(ring);
289}
290
186a7ef1
AX
291static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 unsigned int cycle_state)
74f9fe21
SS
293{
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring->enqueue = ring->first_seg->trbs;
296 ring->enq_seg = ring->first_seg;
297 ring->dequeue = ring->enqueue;
298 ring->deq_seg = ring->first_seg;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186a7ef1
AX
302 *
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
74f9fe21 305 */
186a7ef1 306 ring->cycle_state = cycle_state;
b008df60
AX
307
308 /*
309 * Each segment has a link TRB, and leave an extra TRB for SW
310 * accounting purpose
311 */
312 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
74f9fe21
SS
313}
314
70d43601
AX
315/* Allocate segments and link them for a ring */
316static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 struct xhci_segment **first, struct xhci_segment **last,
186a7ef1 318 unsigned int num_segs, unsigned int cycle_state,
f9c589e1 319 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
70d43601
AX
320{
321 struct xhci_segment *prev;
322
f9c589e1 323 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
70d43601
AX
324 if (!prev)
325 return -ENOMEM;
326 num_segs--;
327
328 *first = prev;
329 while (num_segs > 0) {
330 struct xhci_segment *next;
331
f9c589e1 332 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
70d43601 333 if (!next) {
68e5254a
JW
334 prev = *first;
335 while (prev) {
336 next = prev->next;
337 xhci_segment_free(xhci, prev);
338 prev = next;
339 }
70d43601
AX
340 return -ENOMEM;
341 }
342 xhci_link_segments(xhci, prev, next, type);
343
344 prev = next;
345 num_segs--;
346 }
347 xhci_link_segments(xhci, prev, *first, type);
348 *last = prev;
349
350 return 0;
351}
352
0ebbab37
SS
353/**
354 * Create a new ring with zero or more segments.
355 *
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
359 */
360static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
186a7ef1 361 unsigned int num_segs, unsigned int cycle_state,
f9c589e1 362 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
0ebbab37
SS
363{
364 struct xhci_ring *ring;
70d43601 365 int ret;
0ebbab37
SS
366
367 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 368 if (!ring)
326b4810 369 return NULL;
0ebbab37 370
3fe4fe08 371 ring->num_segs = num_segs;
f9c589e1 372 ring->bounce_buf_len = max_packet;
d0e96f5a 373 INIT_LIST_HEAD(&ring->td_list);
3b72fca0 374 ring->type = type;
0ebbab37
SS
375 if (num_segs == 0)
376 return ring;
377
70d43601 378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
f9c589e1
MN
379 &ring->last_seg, num_segs, cycle_state, type,
380 max_packet, flags);
70d43601 381 if (ret)
0ebbab37 382 goto fail;
0ebbab37 383
3b72fca0
AX
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
0ebbab37 386 /* See section 4.9.2.1 and 6.4.4.1 */
70d43601 387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
f5960b69 388 cpu_to_le32(LINK_TOGGLE);
0ebbab37 389 }
186a7ef1 390 xhci_initialize_ring_info(ring, cycle_state);
b2d6edbb 391 trace_xhci_ring_alloc(ring);
0ebbab37
SS
392 return ring;
393
394fail:
68e5254a 395 kfree(ring);
326b4810 396 return NULL;
0ebbab37
SS
397}
398
c5628a2a 399void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412566bd
SS
400 struct xhci_virt_device *virt_dev,
401 unsigned int ep_index)
402{
c5628a2a 403 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
412566bd
SS
404 virt_dev->eps[ep_index].ring = NULL;
405}
406
8dfec614
AX
407/*
408 * Expand an existing ring.
c5628a2a 409 * Allocate a new ring which has same segment numbers and link the two rings.
8dfec614
AX
410 */
411int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 unsigned int num_trbs, gfp_t flags)
413{
414 struct xhci_segment *first;
415 struct xhci_segment *last;
416 unsigned int num_segs;
417 unsigned int num_segs_needed;
418 int ret;
419
420 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 (TRBS_PER_SEGMENT - 1);
422
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs = ring->num_segs > num_segs_needed ?
425 ring->num_segs : num_segs_needed;
426
427 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
f9c589e1
MN
428 num_segs, ring->cycle_state, ring->type,
429 ring->bounce_buf_len, flags);
8dfec614
AX
430 if (ret)
431 return -ENOMEM;
432
d5734223
SS
433 if (ring->type == TYPE_STREAM)
434 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 ring, first, last, flags);
436 if (ret) {
437 struct xhci_segment *next;
438 do {
439 next = first->next;
440 xhci_segment_free(xhci, first);
441 if (first == last)
442 break;
443 first = next;
444 } while (true);
445 return ret;
446 }
447
8dfec614 448 xhci_link_rings(xhci, ring, first, last, num_segs);
b2d6edbb 449 trace_xhci_ring_expansion(ring);
68ffb011
XR
450 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 "ring expansion succeed, now has %d segments",
8dfec614
AX
452 ring->num_segs);
453
454 return 0;
455}
456
326b4810 457static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
458 int type, gfp_t flags)
459{
29f9d54b
SS
460 struct xhci_container_ctx *ctx;
461
462 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 return NULL;
464
465 ctx = kzalloc(sizeof(*ctx), flags);
d115b048
JY
466 if (!ctx)
467 return NULL;
468
d115b048
JY
469 ctx->type = type;
470 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 if (type == XHCI_CTX_TYPE_INPUT)
472 ctx->size += CTX_SIZE(xhci->hcc_params);
473
84c1eeb0 474 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
025f880c
MN
475 if (!ctx->bytes) {
476 kfree(ctx);
477 return NULL;
478 }
d115b048
JY
479 return ctx;
480}
481
326b4810 482static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
483 struct xhci_container_ctx *ctx)
484{
a1d78c16
SS
485 if (!ctx)
486 return;
d115b048
JY
487 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 kfree(ctx);
489}
490
4daf9df5 491struct xhci_input_control_ctx *xhci_get_input_control_ctx(
d115b048
JY
492 struct xhci_container_ctx *ctx)
493{
92f8e767
SS
494 if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 return NULL;
496
d115b048
JY
497 return (struct xhci_input_control_ctx *)ctx->bytes;
498}
499
500struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 struct xhci_container_ctx *ctx)
502{
503 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 return (struct xhci_slot_ctx *)ctx->bytes;
505
506 return (struct xhci_slot_ctx *)
507 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
508}
509
510struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 struct xhci_container_ctx *ctx,
512 unsigned int ep_index)
513{
514 /* increment ep index by offset of start of ep ctx array */
515 ep_index++;
516 if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 ep_index++;
518
519 return (struct xhci_ep_ctx *)
520 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521}
522
8df75f42
SS
523
524/***************** Streams structures manipulation *************************/
525
8212a49d 526static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
527 unsigned int num_stream_ctxs,
528 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529{
4c39d4b9 530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
ee4aa54b 531 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
8df75f42 532
ee4aa54b
HG
533 if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 dma_free_coherent(dev, size,
8df75f42 535 stream_ctx, dma);
ee4aa54b 536 else if (size <= SMALL_STREAM_ARRAY_SIZE)
8df75f42
SS
537 return dma_pool_free(xhci->small_streams_pool,
538 stream_ctx, dma);
539 else
540 return dma_pool_free(xhci->medium_streams_pool,
541 stream_ctx, dma);
542}
543
544/*
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
550 *
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
553 */
8212a49d 554static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
555 unsigned int num_stream_ctxs, dma_addr_t *dma,
556 gfp_t mem_flags)
557{
4c39d4b9 558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
ee4aa54b 559 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
8df75f42 560
ee4aa54b
HG
561 if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 return dma_alloc_coherent(dev, size,
22d45f01 563 dma, mem_flags);
ee4aa54b 564 else if (size <= SMALL_STREAM_ARRAY_SIZE)
8df75f42
SS
565 return dma_pool_alloc(xhci->small_streams_pool,
566 mem_flags, dma);
567 else
568 return dma_pool_alloc(xhci->medium_streams_pool,
569 mem_flags, dma);
570}
571
e9df17eb
SS
572struct xhci_ring *xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep *ep,
574 u64 address)
575{
576 if (ep->ep_state & EP_HAS_STREAMS)
577 return radix_tree_lookup(&ep->stream_info->trb_address_map,
eb8ccd2b 578 address >> TRB_SEGMENT_SHIFT);
e9df17eb
SS
579 return ep->ring;
580}
581
e9df17eb
SS
582struct xhci_ring *xhci_stream_id_to_ring(
583 struct xhci_virt_device *dev,
584 unsigned int ep_index,
585 unsigned int stream_id)
586{
587 struct xhci_virt_ep *ep = &dev->eps[ep_index];
588
589 if (stream_id == 0)
590 return ep->ring;
591 if (!ep->stream_info)
592 return NULL;
593
594 if (stream_id > ep->stream_info->num_streams)
595 return NULL;
596 return ep->stream_info->stream_rings[stream_id];
597}
598
8df75f42
SS
599/*
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
602 * drivers.
603 *
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
8df75f42
SS
607 */
608struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 unsigned int num_stream_ctxs,
f9c589e1
MN
610 unsigned int num_streams,
611 unsigned int max_packet, gfp_t mem_flags)
8df75f42
SS
612{
613 struct xhci_stream_info *stream_info;
614 u32 cur_stream;
615 struct xhci_ring *cur_ring;
8df75f42
SS
616 u64 addr;
617 int ret;
618
619 xhci_dbg(xhci, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams, num_stream_ctxs);
622 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 return NULL;
625 }
626 xhci->cmd_ring_reserved_trbs++;
627
628 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 if (!stream_info)
630 goto cleanup_trbs;
631
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
634
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kzalloc(
637 sizeof(struct xhci_ring *)*num_streams,
638 mem_flags);
639 if (!stream_info->stream_rings)
640 goto cleanup_info;
641
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
645 mem_flags);
646 if (!stream_info->stream_ctx_array)
647 goto cleanup_ctx;
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
14d49b7a 653 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
8df75f42
SS
654 if (!stream_info->free_streams_command)
655 goto cleanup_ctx;
656
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
662 */
f9c589e1 663
8df75f42
SS
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
f9c589e1
MN
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 mem_flags);
8df75f42
SS
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
e9df17eb 671 cur_ring->stream_id = cur_stream;
15341303 672 cur_ring->trb_address_map = &stream_info->trb_address_map;
8df75f42
SS
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
f5960b69
ME
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
8df75f42
SS
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
681
15341303 682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
8df75f42
SS
683 if (ret) {
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
686 goto cleanup_rings;
687 }
688 }
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
694 */
8df75f42
SS
695
696 return stream_info;
697
698cleanup_rings:
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
701 if (cur_ring) {
8df75f42
SS
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
704 }
705 }
706 xhci_free_command(xhci, stream_info->free_streams_command);
707cleanup_ctx:
708 kfree(stream_info->stream_rings);
709cleanup_info:
710 kfree(stream_info);
711cleanup_trbs:
712 xhci->cmd_ring_reserved_trbs--;
713 return NULL;
714}
715/*
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
718 */
719void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 struct xhci_ep_ctx *ep_ctx,
721 struct xhci_stream_info *stream_info)
722{
723 u32 max_primary_streams;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 */
728 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
3a7fa5be
XR
729 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
730 "Setting number of stream ctx array entries to %u",
8df75f42 731 1 << (max_primary_streams + 1));
28ccd296
ME
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 | EP_HAS_LSA);
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
736}
737
738/*
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
742 */
4daf9df5 743void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
8df75f42
SS
744 struct xhci_virt_ep *ep)
745{
746 dma_addr_t addr;
28ccd296 747 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 748 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 749 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
750}
751
752/* Frees all stream contexts associated with the endpoint,
753 *
754 * Caller should fix the endpoint context streams fields.
755 */
756void xhci_free_stream_info(struct xhci_hcd *xhci,
757 struct xhci_stream_info *stream_info)
758{
759 int cur_stream;
760 struct xhci_ring *cur_ring;
8df75f42
SS
761
762 if (!stream_info)
763 return;
764
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 cur_stream++) {
767 cur_ring = stream_info->stream_rings[cur_stream];
768 if (cur_ring) {
8df75f42
SS
769 xhci_ring_free(xhci, cur_ring);
770 stream_info->stream_rings[cur_stream] = NULL;
771 }
772 }
773 xhci_free_command(xhci, stream_info->free_streams_command);
774 xhci->cmd_ring_reserved_trbs--;
775 if (stream_info->stream_ctx_array)
776 xhci_free_stream_ctx(xhci,
777 stream_info->num_stream_ctxs,
778 stream_info->stream_ctx_array,
779 stream_info->ctx_array_dma);
780
0d3703be 781 kfree(stream_info->stream_rings);
8df75f42
SS
782 kfree(stream_info);
783}
784
785
786/***************** Device context manipulation *************************/
787
6f5165cf
SS
788static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
790{
66a45503
KC
791 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 0);
6f5165cf
SS
793 ep->xhci = xhci;
794}
795
839c817c
SS
796static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 struct xhci_virt_device *virt_dev,
798 int slot_id)
799{
839c817c 800 struct list_head *tt_list_head;
46ed8f00
TI
801 struct xhci_tt_bw_info *tt_info, *next;
802 bool slot_found = false;
839c817c
SS
803
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
806 */
807 if (virt_dev->real_port == 0 ||
808 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 xhci_dbg(xhci, "Bad real port.\n");
810 return;
811 }
812
813 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
46ed8f00
TI
814 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info->slot_id == slot_id) {
817 slot_found = true;
818 list_del(&tt_info->tt_list);
819 kfree(tt_info);
820 } else if (slot_found) {
839c817c 821 break;
46ed8f00 822 }
839c817c 823 }
839c817c
SS
824}
825
826int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 struct xhci_virt_device *virt_dev,
828 struct usb_device *hdev,
829 struct usb_tt *tt, gfp_t mem_flags)
830{
831 struct xhci_tt_bw_info *tt_info;
832 unsigned int num_ports;
833 int i, j;
834
835 if (!tt->multi)
836 num_ports = 1;
837 else
838 num_ports = hdev->maxchild;
839
840 for (i = 0; i < num_ports; i++, tt_info++) {
841 struct xhci_interval_bw_table *bw_table;
842
843 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 if (!tt_info)
845 goto free_tts;
846 INIT_LIST_HEAD(&tt_info->tt_list);
847 list_add(&tt_info->tt_list,
848 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849 tt_info->slot_id = virt_dev->udev->slot_id;
850 if (tt->multi)
851 tt_info->ttport = i+1;
852 bw_table = &tt_info->bw_table;
853 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 }
856 return 0;
857
858free_tts:
859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 return -ENOMEM;
861}
862
863
864/* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
868 */
3ffbba95
SS
869void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870{
871 struct xhci_virt_device *dev;
872 int i;
2e27980e 873 int old_active_eps = 0;
3ffbba95
SS
874
875 /* Slot ID 0 is reserved */
876 if (slot_id == 0 || !xhci->devs[slot_id])
877 return;
878
879 dev = xhci->devs[slot_id];
a711edee
FB
880
881 trace_xhci_free_virt_device(dev);
882
8e595a5d 883 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
884 if (!dev)
885 return;
886
2e27980e
SS
887 if (dev->tt_info)
888 old_active_eps = dev->tt_info->active_eps;
889
98871e94 890 for (i = 0; i < 31; i++) {
63a0d9ab
SS
891 if (dev->eps[i].ring)
892 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
893 if (dev->eps[i].stream_info)
894 xhci_free_stream_info(xhci,
895 dev->eps[i].stream_info);
2e27980e
SS
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
900 */
901 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 xhci_warn(xhci, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
904 slot_id, i);
8df75f42 905 }
839c817c
SS
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95
SS
910
911 if (dev->in_ctx)
d115b048 912 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 913 if (dev->out_ctx)
d115b048
JY
914 xhci_free_container_ctx(xhci, dev->out_ctx);
915
3ffbba95 916 kfree(xhci->devs[slot_id]);
326b4810 917 xhci->devs[slot_id] = NULL;
3ffbba95
SS
918}
919
ee8665e2
MN
920/*
921 * Free a virt_device structure.
922 * If the virt_device added a tt_info (a hub) and has children pointing to
923 * that tt_info, then free the child first. Recursive.
924 * We can't rely on udev at this point to find child-parent relationships.
925 */
926void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
927{
928 struct xhci_virt_device *vdev;
929 struct list_head *tt_list_head;
930 struct xhci_tt_bw_info *tt_info, *next;
931 int i;
932
933 vdev = xhci->devs[slot_id];
934 if (!vdev)
935 return;
936
937 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
938 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
939 /* is this a hub device that added a tt_info to the tts list */
940 if (tt_info->slot_id == slot_id) {
941 /* are any devices using this tt_info? */
942 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
943 vdev = xhci->devs[i];
944 if (vdev && (vdev->tt_info == tt_info))
945 xhci_free_virt_devices_depth_first(
946 xhci, i);
947 }
948 }
949 }
950 /* we are now at a leaf device */
02b6fdc2 951 xhci_debugfs_remove_slot(xhci, slot_id);
ee8665e2
MN
952 xhci_free_virt_device(xhci, slot_id);
953}
954
3ffbba95
SS
955int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
956 struct usb_device *udev, gfp_t flags)
957{
3ffbba95 958 struct xhci_virt_device *dev;
63a0d9ab 959 int i;
3ffbba95
SS
960
961 /* Slot ID 0 is reserved */
962 if (slot_id == 0 || xhci->devs[slot_id]) {
963 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
964 return 0;
965 }
966
967 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
968 if (!xhci->devs[slot_id])
969 return 0;
970 dev = xhci->devs[slot_id];
971
d115b048
JY
972 /* Allocate the (output) device context that will be used in the HC. */
973 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
974 if (!dev->out_ctx)
975 goto fail;
d115b048 976
700e2052 977 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 978 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
979
980 /* Allocate the (input) device context for address device command */
d115b048 981 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
982 if (!dev->in_ctx)
983 goto fail;
d115b048 984
700e2052 985 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 986 (unsigned long long)dev->in_ctx->dma);
3ffbba95 987
6f5165cf
SS
988 /* Initialize the cancellation list and watchdog timers for each ep */
989 for (i = 0; i < 31; i++) {
990 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 991 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 992 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 993 }
63a0d9ab 994
3ffbba95 995 /* Allocate endpoint 0 ring */
f9c589e1 996 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
63a0d9ab 997 if (!dev->eps[0].ring)
3ffbba95
SS
998 goto fail;
999
64927730 1000 dev->udev = udev;
f94e0186 1001
28c2d2ef 1002 /* Point to output device context in dcbaa. */
28ccd296 1003 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 1004 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
1005 slot_id,
1006 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 1007 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95 1008
a711edee
FB
1009 trace_xhci_alloc_virt_device(dev);
1010
3ffbba95
SS
1011 return 1;
1012fail:
1013 xhci_free_virt_device(xhci, slot_id);
1014 return 0;
1015}
1016
2d1ee590
SS
1017void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1018 struct usb_device *udev)
1019{
1020 struct xhci_virt_device *virt_dev;
1021 struct xhci_ep_ctx *ep0_ctx;
1022 struct xhci_ring *ep_ring;
1023
1024 virt_dev = xhci->devs[udev->slot_id];
1025 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1026 ep_ring = virt_dev->eps[0].ring;
1027 /*
1028 * FIXME we don't keep track of the dequeue pointer very well after a
1029 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1030 * host to our enqueue pointer. This should only be called after a
1031 * configured device has reset, so all control transfers should have
1032 * been completed or cancelled before the reset.
1033 */
28ccd296
ME
1034 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1035 ep_ring->enqueue)
1036 | ep_ring->cycle_state);
2d1ee590
SS
1037}
1038
f6ff0ac8
SS
1039/*
1040 * The xHCI roothub may have ports of differing speeds in any order in the port
1041 * status registers. xhci->port_array provides an array of the port speed for
1042 * each offset into the port status registers.
1043 *
1044 * The xHCI hardware wants to know the roothub port number that the USB device
1045 * is attached to (or the roothub port its ancestor hub is attached to). All we
1046 * know is the index of that port under either the USB 2.0 or the USB 3.0
1047 * roothub, but that doesn't give us the real index into the HW port status
3f5eb141 1048 * registers. Call xhci_find_raw_port_number() to get real index.
f6ff0ac8
SS
1049 */
1050static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1052{
1053 struct usb_device *top_dev;
3f5eb141
LT
1054 struct usb_hcd *hcd;
1055
0caf6b33 1056 if (udev->speed >= USB_SPEED_SUPER)
3f5eb141
LT
1057 hcd = xhci->shared_hcd;
1058 else
1059 hcd = xhci->main_hcd;
f6ff0ac8
SS
1060
1061 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1062 top_dev = top_dev->parent)
1063 /* Found device below root hub */;
f6ff0ac8 1064
3f5eb141 1065 return xhci_find_raw_port_number(hcd, top_dev->portnum);
f6ff0ac8
SS
1066}
1067
3ffbba95
SS
1068/* Setup an xHCI virtual device for a Set Address command */
1069int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1070{
1071 struct xhci_virt_device *dev;
1072 struct xhci_ep_ctx *ep0_ctx;
d115b048 1073 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8 1074 u32 port_num;
bd18fd5c 1075 u32 max_packets;
f6ff0ac8 1076 struct usb_device *top_dev;
3ffbba95
SS
1077
1078 dev = xhci->devs[udev->slot_id];
1079 /* Slot ID 0 is reserved */
1080 if (udev->slot_id == 0 || !dev) {
1081 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1082 udev->slot_id);
1083 return -EINVAL;
1084 }
d115b048 1085 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 1086 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 1087
3ffbba95 1088 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 1089 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95 1090 switch (udev->speed) {
0caf6b33 1091 case USB_SPEED_SUPER_PLUS:
d7854041
MN
1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1093 max_packets = MAX_PACKET(512);
1094 break;
3ffbba95 1095 case USB_SPEED_SUPER:
f5960b69 1096 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
bd18fd5c 1097 max_packets = MAX_PACKET(512);
3ffbba95
SS
1098 break;
1099 case USB_SPEED_HIGH:
f5960b69 1100 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
bd18fd5c 1101 max_packets = MAX_PACKET(64);
3ffbba95 1102 break;
bd18fd5c 1103 /* USB core guesses at a 64-byte max packet first for FS devices */
3ffbba95 1104 case USB_SPEED_FULL:
f5960b69 1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
bd18fd5c 1106 max_packets = MAX_PACKET(64);
3ffbba95
SS
1107 break;
1108 case USB_SPEED_LOW:
f5960b69 1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
bd18fd5c 1110 max_packets = MAX_PACKET(8);
3ffbba95 1111 break;
551cdbbe 1112 case USB_SPEED_WIRELESS:
3ffbba95
SS
1113 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1114 return -EINVAL;
1115 break;
1116 default:
1117 /* Speed was set earlier, this shouldn't happen. */
bd18fd5c 1118 return -EINVAL;
3ffbba95
SS
1119 }
1120 /* Find the root hub port this device is under */
f6ff0ac8
SS
1121 port_num = xhci_find_real_port_number(xhci, udev);
1122 if (!port_num)
1123 return -EINVAL;
f5960b69 1124 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1125 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1126 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1127 top_dev = top_dev->parent)
1128 /* Found device below root hub */;
fe30182c 1129 dev->fake_port = top_dev->portnum;
66381755 1130 dev->real_port = port_num;
f6ff0ac8 1131 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1132 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1133
839c817c
SS
1134 /* Find the right bandwidth table that this device will be a part of.
1135 * If this is a full speed device attached directly to a root port (or a
1136 * decendent of one), it counts as a primary bandwidth domain, not a
1137 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1138 * will never be created for the HS root hub.
1139 */
1140 if (!udev->tt || !udev->tt->hub->parent) {
1141 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1142 } else {
1143 struct xhci_root_port_bw_info *rh_bw;
1144 struct xhci_tt_bw_info *tt_bw;
1145
1146 rh_bw = &xhci->rh_bw[port_num - 1];
1147 /* Find the right TT. */
1148 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1149 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1150 continue;
1151
1152 if (!dev->udev->tt->multi ||
1153 (udev->tt->multi &&
1154 tt_bw->ttport == dev->udev->ttport)) {
1155 dev->bw_table = &tt_bw->bw_table;
1156 dev->tt_info = tt_bw;
1157 break;
1158 }
1159 }
1160 if (!dev->tt_info)
1161 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1162 }
1163
aa1b13ef
SS
1164 /* Is this a LS/FS device under an external HS hub? */
1165 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1166 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1167 (udev->ttport << 8));
07b6de10 1168 if (udev->tt->multi)
28ccd296 1169 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1170 }
700e2052 1171 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1172 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1173
1174 /* Step 4 - ring already allocated */
1175 /* Step 5 */
28ccd296 1176 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
bd18fd5c 1177
3ffbba95 1178 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
bd18fd5c
MN
1179 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1180 max_packets);
3ffbba95 1181
28ccd296
ME
1182 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1183 dev->eps[0].ring->cycle_state);
3ffbba95 1184
a711edee
FB
1185 trace_xhci_setup_addressable_virt_device(dev);
1186
3ffbba95
SS
1187 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1188
1189 return 0;
1190}
1191
dfa49c4a
DT
1192/*
1193 * Convert interval expressed as 2^(bInterval - 1) == interval into
1194 * straight exponent value 2^n == interval.
1195 *
1196 */
1197static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1198 struct usb_host_endpoint *ep)
1199{
1200 unsigned int interval;
1201
1202 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1203 if (interval != ep->desc.bInterval - 1)
1204 dev_warn(&udev->dev,
cd3c18ba 1205 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1206 ep->desc.bEndpointAddress,
cd3c18ba
DT
1207 1 << interval,
1208 udev->speed == USB_SPEED_FULL ? "" : "micro");
1209
1210 if (udev->speed == USB_SPEED_FULL) {
1211 /*
1212 * Full speed isoc endpoints specify interval in frames,
1213 * not microframes. We are using microframes everywhere,
1214 * so adjust accordingly.
1215 */
1216 interval += 3; /* 1 frame = 2^3 uframes */
1217 }
dfa49c4a
DT
1218
1219 return interval;
1220}
1221
1222/*
340a3504 1223 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1224 * microframes, rounded down to nearest power of 2.
1225 */
340a3504
SS
1226static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1227 struct usb_host_endpoint *ep, unsigned int desc_interval,
1228 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1229{
1230 unsigned int interval;
1231
340a3504
SS
1232 interval = fls(desc_interval) - 1;
1233 interval = clamp_val(interval, min_exponent, max_exponent);
1234 if ((1 << interval) != desc_interval)
a5da9568 1235 dev_dbg(&udev->dev,
dfa49c4a
DT
1236 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1237 ep->desc.bEndpointAddress,
1238 1 << interval,
340a3504 1239 desc_interval);
dfa49c4a
DT
1240
1241 return interval;
1242}
1243
340a3504
SS
1244static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1245 struct usb_host_endpoint *ep)
1246{
55c1945e
SS
1247 if (ep->desc.bInterval == 0)
1248 return 0;
340a3504
SS
1249 return xhci_microframes_to_exponent(udev, ep,
1250 ep->desc.bInterval, 0, 15);
1251}
1252
1253
1254static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1255 struct usb_host_endpoint *ep)
1256{
1257 return xhci_microframes_to_exponent(udev, ep,
1258 ep->desc.bInterval * 8, 3, 10);
1259}
1260
f94e0186
SS
1261/* Return the polling or NAK interval.
1262 *
1263 * The polling interval is expressed in "microframes". If xHCI's Interval field
1264 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1265 *
1266 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1267 * is set to 0.
1268 */
575688e1 1269static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1270 struct usb_host_endpoint *ep)
1271{
1272 unsigned int interval = 0;
1273
1274 switch (udev->speed) {
1275 case USB_SPEED_HIGH:
1276 /* Max NAK rate */
1277 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1278 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1279 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1280 break;
1281 }
f94e0186 1282 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1283
0caf6b33 1284 case USB_SPEED_SUPER_PLUS:
f94e0186
SS
1285 case USB_SPEED_SUPER:
1286 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1287 usb_endpoint_xfer_isoc(&ep->desc)) {
1288 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1289 }
1290 break;
dfa49c4a 1291
f94e0186 1292 case USB_SPEED_FULL:
b513d447 1293 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1294 interval = xhci_parse_exponent_interval(udev, ep);
1295 break;
1296 }
1297 /*
b513d447 1298 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1299 * since it uses the same rules as low speed interrupt
1300 * endpoints.
1301 */
1356cedd 1302 /* fall through */
dfa49c4a 1303
f94e0186
SS
1304 case USB_SPEED_LOW:
1305 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1306 usb_endpoint_xfer_isoc(&ep->desc)) {
1307
1308 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1309 }
1310 break;
dfa49c4a 1311
f94e0186
SS
1312 default:
1313 BUG();
1314 }
def4e6f7 1315 return interval;
f94e0186
SS
1316}
1317
c30c791c 1318/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1319 * High speed endpoint descriptors can define "the number of additional
1320 * transaction opportunities per microframe", but that goes in the Max Burst
1321 * endpoint context field.
1322 */
575688e1 1323static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1324 struct usb_host_endpoint *ep)
1325{
0caf6b33 1326 if (udev->speed < USB_SPEED_SUPER ||
c30c791c 1327 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1328 return 0;
842f1690 1329 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1330}
1331
def4e6f7
MN
1332static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1333 struct usb_host_endpoint *ep)
1334{
1335 /* Super speed and Plus have max burst in ep companion desc */
1336 if (udev->speed >= USB_SPEED_SUPER)
1337 return ep->ss_ep_comp.bMaxBurst;
1338
1339 if (udev->speed == USB_SPEED_HIGH &&
1340 (usb_endpoint_xfer_isoc(&ep->desc) ||
1341 usb_endpoint_xfer_int(&ep->desc)))
dcf5228c 1342 return usb_endpoint_maxp_mult(&ep->desc) - 1;
def4e6f7
MN
1343
1344 return 0;
1345}
1346
4daf9df5 1347static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
f94e0186
SS
1348{
1349 int in;
f94e0186
SS
1350
1351 in = usb_endpoint_dir_in(&ep->desc);
def4e6f7 1352
c0e625c4
FB
1353 switch (usb_endpoint_type(&ep->desc)) {
1354 case USB_ENDPOINT_XFER_CONTROL:
def4e6f7 1355 return CTRL_EP;
c0e625c4 1356 case USB_ENDPOINT_XFER_BULK:
def4e6f7 1357 return in ? BULK_IN_EP : BULK_OUT_EP;
c0e625c4 1358 case USB_ENDPOINT_XFER_ISOC:
def4e6f7 1359 return in ? ISOC_IN_EP : ISOC_OUT_EP;
c0e625c4 1360 case USB_ENDPOINT_XFER_INT:
def4e6f7 1361 return in ? INT_IN_EP : INT_OUT_EP;
c0e625c4 1362 }
def4e6f7 1363 return 0;
f94e0186
SS
1364}
1365
9238f25d
SS
1366/* Return the maximum endpoint service interval time (ESIT) payload.
1367 * Basically, this is the maxpacket size, multiplied by the burst size
1368 * and mult size.
1369 */
4daf9df5 1370static u32 xhci_get_max_esit_payload(struct usb_device *udev,
9238f25d
SS
1371 struct usb_host_endpoint *ep)
1372{
1373 int max_burst;
1374 int max_packet;
1375
1376 /* Only applies for interrupt or isochronous endpoints */
1377 if (usb_endpoint_xfer_control(&ep->desc) ||
1378 usb_endpoint_xfer_bulk(&ep->desc))
1379 return 0;
1380
8ef8a9f5
MN
1381 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1382 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1383 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1384 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1385 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1386 else if (udev->speed >= USB_SPEED_SUPER)
64b3c304 1387 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1388
734d3ddd 1389 max_packet = usb_endpoint_maxp(&ep->desc);
dcf5228c 1390 max_burst = usb_endpoint_maxp_mult(&ep->desc);
9238f25d 1391 /* A 0 in max burst means 1 transfer per ESIT */
dcf5228c 1392 return max_packet * max_burst;
9238f25d
SS
1393}
1394
8df75f42
SS
1395/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1396 * Drivers will have to call usb_alloc_streams() to do that.
1397 */
f94e0186
SS
1398int xhci_endpoint_init(struct xhci_hcd *xhci,
1399 struct xhci_virt_device *virt_dev,
1400 struct usb_device *udev,
f88ba78d
SS
1401 struct usb_host_endpoint *ep,
1402 gfp_t mem_flags)
f94e0186
SS
1403{
1404 unsigned int ep_index;
1405 struct xhci_ep_ctx *ep_ctx;
1406 struct xhci_ring *ep_ring;
1407 unsigned int max_packet;
def4e6f7 1408 enum xhci_ring_type ring_type;
9238f25d 1409 u32 max_esit_payload;
17d65554 1410 u32 endpoint_type;
def4e6f7
MN
1411 unsigned int max_burst;
1412 unsigned int interval;
1413 unsigned int mult;
1414 unsigned int avg_trb_len;
1415 unsigned int err_count = 0;
f94e0186
SS
1416
1417 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1418 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186 1419
4daf9df5 1420 endpoint_type = xhci_get_endpoint_type(ep);
17d65554
MN
1421 if (!endpoint_type)
1422 return -EINVAL;
17d65554 1423
def4e6f7 1424 ring_type = usb_endpoint_type(&ep->desc);
f94e0186 1425
def4e6f7
MN
1426 /*
1427 * Get values to fill the endpoint context, mostly from ep descriptor.
1428 * The average TRB buffer lengt for bulk endpoints is unclear as we
1429 * have no clue on scatter gather list entry size. For Isoc and Int,
1430 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1431 */
1432 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1433 interval = xhci_get_endpoint_interval(udev, ep);
69307ccb
RQ
1434
1435 /* Periodic endpoint bInterval limit quirk */
1436 if (usb_endpoint_xfer_int(&ep->desc) ||
1437 usb_endpoint_xfer_isoc(&ep->desc)) {
1438 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1439 udev->speed >= USB_SPEED_HIGH &&
1440 interval >= 7) {
1441 interval = 6;
1442 }
1443 }
1444
def4e6f7 1445 mult = xhci_get_endpoint_mult(udev, ep);
734d3ddd 1446 max_packet = usb_endpoint_maxp(&ep->desc);
def4e6f7
MN
1447 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1448 avg_trb_len = max_esit_payload;
f94e0186
SS
1449
1450 /* FIXME dig Mult and streams info out of ep companion desc */
1451
def4e6f7 1452 /* Allow 3 retries for everything but isoc, set CErr = 3 */
f94e0186 1453 if (!usb_endpoint_xfer_isoc(&ep->desc))
def4e6f7
MN
1454 err_count = 3;
1455 /* Some devices get this wrong */
1456 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1457 max_packet = 512;
1458 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
dca77945 1459 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
def4e6f7 1460 avg_trb_len = 8;
8ef8a9f5
MN
1461 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1462 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1463 mult = 0;
def4e6f7 1464
f9c589e1
MN
1465 /* Set up the endpoint ring */
1466 virt_dev->eps[ep_index].new_ring =
1467 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
c5628a2a
MN
1468 if (!virt_dev->eps[ep_index].new_ring)
1469 return -ENOMEM;
1470
f9c589e1
MN
1471 virt_dev->eps[ep_index].skip = false;
1472 ep_ring = virt_dev->eps[ep_index].new_ring;
1473
def4e6f7 1474 /* Fill the endpoint context */
8ef8a9f5
MN
1475 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1476 EP_INTERVAL(interval) |
def4e6f7
MN
1477 EP_MULT(mult));
1478 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1479 MAX_PACKET(max_packet) |
1480 MAX_BURST(max_burst) |
1481 ERROR_COUNT(err_count));
1482 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1483 ep_ring->cycle_state);
1484
1485 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1486 EP_AVG_TRB_LENGTH(avg_trb_len));
9238f25d 1487
f94e0186
SS
1488 return 0;
1489}
1490
1491void xhci_endpoint_zero(struct xhci_hcd *xhci,
1492 struct xhci_virt_device *virt_dev,
1493 struct usb_host_endpoint *ep)
1494{
1495 unsigned int ep_index;
1496 struct xhci_ep_ctx *ep_ctx;
1497
1498 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1499 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1500
1501 ep_ctx->ep_info = 0;
1502 ep_ctx->ep_info2 = 0;
8e595a5d 1503 ep_ctx->deq = 0;
f94e0186
SS
1504 ep_ctx->tx_info = 0;
1505 /* Don't free the endpoint ring until the set interface or configuration
1506 * request succeeds.
1507 */
1508}
1509
9af5d71d
SS
1510void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1511{
1512 bw_info->ep_interval = 0;
1513 bw_info->mult = 0;
1514 bw_info->num_packets = 0;
1515 bw_info->max_packet_size = 0;
1516 bw_info->type = 0;
1517 bw_info->max_esit_payload = 0;
1518}
1519
1520void xhci_update_bw_info(struct xhci_hcd *xhci,
1521 struct xhci_container_ctx *in_ctx,
1522 struct xhci_input_control_ctx *ctrl_ctx,
1523 struct xhci_virt_device *virt_dev)
1524{
1525 struct xhci_bw_info *bw_info;
1526 struct xhci_ep_ctx *ep_ctx;
1527 unsigned int ep_type;
1528 int i;
1529
98871e94 1530 for (i = 1; i < 31; i++) {
9af5d71d
SS
1531 bw_info = &virt_dev->eps[i].bw_info;
1532
1533 /* We can't tell what endpoint type is being dropped, but
1534 * unconditionally clearing the bandwidth info for non-periodic
1535 * endpoints should be harmless because the info will never be
1536 * set in the first place.
1537 */
1538 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1539 /* Dropped endpoint */
1540 xhci_clear_endpoint_bw_info(bw_info);
1541 continue;
1542 }
1543
1544 if (EP_IS_ADDED(ctrl_ctx, i)) {
1545 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1546 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1547
1548 /* Ignore non-periodic endpoints */
1549 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1550 ep_type != ISOC_IN_EP &&
1551 ep_type != INT_IN_EP)
1552 continue;
1553
1554 /* Added or changed endpoint */
1555 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1556 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1557 /* Number of packets and mult are zero-based in the
1558 * input context, but we want one-based for the
1559 * interval table.
9af5d71d 1560 */
170c0263
SS
1561 bw_info->mult = CTX_TO_EP_MULT(
1562 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1563 bw_info->num_packets = CTX_TO_MAX_BURST(
1564 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1565 bw_info->max_packet_size = MAX_PACKET_DECODED(
1566 le32_to_cpu(ep_ctx->ep_info2));
1567 bw_info->type = ep_type;
1568 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1569 le32_to_cpu(ep_ctx->tx_info));
1570 }
1571 }
1572}
1573
f2217e8e
SS
1574/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1575 * Useful when you want to change one particular aspect of the endpoint and then
1576 * issue a configure endpoint command.
1577 */
1578void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1579 struct xhci_container_ctx *in_ctx,
1580 struct xhci_container_ctx *out_ctx,
1581 unsigned int ep_index)
f2217e8e
SS
1582{
1583 struct xhci_ep_ctx *out_ep_ctx;
1584 struct xhci_ep_ctx *in_ep_ctx;
1585
913a8a34
SS
1586 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1588
1589 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1590 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1591 in_ep_ctx->deq = out_ep_ctx->deq;
1592 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1593}
1594
1595/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1596 * Useful when you want to change one particular aspect of the endpoint and then
1597 * issue a configure endpoint command. Only the context entries field matters,
1598 * but we'll copy the whole thing anyway.
1599 */
913a8a34
SS
1600void xhci_slot_copy(struct xhci_hcd *xhci,
1601 struct xhci_container_ctx *in_ctx,
1602 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1603{
1604 struct xhci_slot_ctx *in_slot_ctx;
1605 struct xhci_slot_ctx *out_slot_ctx;
1606
913a8a34
SS
1607 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1608 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1609
1610 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1611 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1612 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1613 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1614}
1615
254c80a3
JY
1616/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1617static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1618{
1619 int i;
4c39d4b9 1620 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
254c80a3
JY
1621 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1622
d195fcff
XR
1623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1624 "Allocating %d scratchpad buffers", num_sp);
254c80a3
JY
1625
1626 if (!num_sp)
1627 return 0;
1628
1629 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1630 if (!xhci->scratchpad)
1631 goto fail_sp;
1632
22d45f01 1633 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1634 num_sp * sizeof(u64),
22d45f01 1635 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1636 if (!xhci->scratchpad->sp_array)
1637 goto fail_sp2;
1638
1639 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1640 if (!xhci->scratchpad->sp_buffers)
1641 goto fail_sp3;
1642
28ccd296 1643 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1644 for (i = 0; i < num_sp; i++) {
1645 dma_addr_t dma;
7480d912 1646 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
22d45f01 1647 flags);
254c80a3 1648 if (!buf)
314eaf7d 1649 goto fail_sp4;
254c80a3
JY
1650
1651 xhci->scratchpad->sp_array[i] = dma;
1652 xhci->scratchpad->sp_buffers[i] = buf;
254c80a3
JY
1653 }
1654
1655 return 0;
1656
314eaf7d 1657 fail_sp4:
254c80a3 1658 for (i = i - 1; i >= 0; i--) {
22d45f01 1659 dma_free_coherent(dev, xhci->page_size,
254c80a3 1660 xhci->scratchpad->sp_buffers[i],
314eaf7d 1661 xhci->scratchpad->sp_array[i]);
254c80a3 1662 }
254c80a3 1663
254c80a3
JY
1664 kfree(xhci->scratchpad->sp_buffers);
1665
1666 fail_sp3:
22d45f01 1667 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1668 xhci->scratchpad->sp_array,
1669 xhci->scratchpad->sp_dma);
1670
1671 fail_sp2:
1672 kfree(xhci->scratchpad);
1673 xhci->scratchpad = NULL;
1674
1675 fail_sp:
1676 return -ENOMEM;
1677}
1678
1679static void scratchpad_free(struct xhci_hcd *xhci)
1680{
1681 int num_sp;
1682 int i;
4c39d4b9 1683 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
254c80a3
JY
1684
1685 if (!xhci->scratchpad)
1686 return;
1687
1688 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1689
1690 for (i = 0; i < num_sp; i++) {
2a100047 1691 dma_free_coherent(dev, xhci->page_size,
254c80a3 1692 xhci->scratchpad->sp_buffers[i],
314eaf7d 1693 xhci->scratchpad->sp_array[i]);
254c80a3 1694 }
254c80a3 1695 kfree(xhci->scratchpad->sp_buffers);
2a100047 1696 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1697 xhci->scratchpad->sp_array,
1698 xhci->scratchpad->sp_dma);
1699 kfree(xhci->scratchpad);
1700 xhci->scratchpad = NULL;
1701}
1702
913a8a34 1703struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1704 bool allocate_in_ctx, bool allocate_completion,
1705 gfp_t mem_flags)
913a8a34
SS
1706{
1707 struct xhci_command *command;
1708
1709 command = kzalloc(sizeof(*command), mem_flags);
1710 if (!command)
1711 return NULL;
1712
a1d78c16
SS
1713 if (allocate_in_ctx) {
1714 command->in_ctx =
1715 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1716 mem_flags);
1717 if (!command->in_ctx) {
1718 kfree(command);
1719 return NULL;
1720 }
06e18291 1721 }
913a8a34
SS
1722
1723 if (allocate_completion) {
1724 command->completion =
1725 kzalloc(sizeof(struct completion), mem_flags);
1726 if (!command->completion) {
1727 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1728 kfree(command);
913a8a34
SS
1729 return NULL;
1730 }
1731 init_completion(command->completion);
1732 }
1733
1734 command->status = 0;
1735 INIT_LIST_HEAD(&command->cmd_list);
1736 return command;
1737}
1738
14d49b7a
MN
1739struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1740 bool allocate_completion, gfp_t mem_flags)
1741{
1742 struct xhci_command *command;
1743
1744 command = xhci_alloc_command(xhci, false, allocate_completion,
1745 mem_flags);
1746 if (!command)
1747 return NULL;
1748
1749 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1750 mem_flags);
1751 if (!command->in_ctx) {
1752 kfree(command->completion);
1753 kfree(command);
1754 return NULL;
1755 }
1756 return command;
1757}
1758
4daf9df5 1759void xhci_urb_free_priv(struct urb_priv *urb_priv)
8e51adcc 1760{
7e64b037 1761 kfree(urb_priv);
8e51adcc
AX
1762}
1763
913a8a34
SS
1764void xhci_free_command(struct xhci_hcd *xhci,
1765 struct xhci_command *command)
1766{
1767 xhci_free_container_ctx(xhci,
1768 command->in_ctx);
1769 kfree(command->completion);
1770 kfree(command);
1771}
1772
66d4eadd
SS
1773void xhci_mem_cleanup(struct xhci_hcd *xhci)
1774{
4c39d4b9 1775 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0ebbab37 1776 int size;
32f1d2c5 1777 int i, j, num_ports;
0ebbab37 1778
cb4d5ce5 1779 cancel_delayed_work_sync(&xhci->cmd_timer);
c311e391 1780
0ebbab37 1781 /* Free the Event Ring Segment Table and the actual Event Ring */
0ebbab37
SS
1782 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1783 if (xhci->erst.entries)
2a100047 1784 dma_free_coherent(dev, size,
0ebbab37
SS
1785 xhci->erst.entries, xhci->erst.erst_dma_addr);
1786 xhci->erst.entries = NULL;
d195fcff 1787 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
0ebbab37
SS
1788 if (xhci->event_ring)
1789 xhci_ring_free(xhci, xhci->event_ring);
1790 xhci->event_ring = NULL;
d195fcff 1791 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
0ebbab37 1792
dbc33303
SS
1793 if (xhci->lpm_command)
1794 xhci_free_command(xhci, xhci->lpm_command);
0eda06c7 1795 xhci->lpm_command = NULL;
0ebbab37
SS
1796 if (xhci->cmd_ring)
1797 xhci_ring_free(xhci, xhci->cmd_ring);
1798 xhci->cmd_ring = NULL;
d195fcff 1799 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
c9aa1a2d 1800 xhci_cleanup_command_queue(xhci);
3ffbba95 1801
5dc2808c 1802 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
c207e7c5 1803 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
5dc2808c
MN
1804 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1805 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1806 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1807 while (!list_empty(ep))
1808 list_del_init(ep->next);
1809 }
1810 }
1811
ee8665e2
MN
1812 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1813 xhci_free_virt_devices_depth_first(xhci, i);
3ffbba95 1814
c7360b34 1815 dma_pool_destroy(xhci->segment_pool);
0ebbab37 1816 xhci->segment_pool = NULL;
d195fcff 1817 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
3ffbba95 1818
c7360b34 1819 dma_pool_destroy(xhci->device_pool);
3ffbba95 1820 xhci->device_pool = NULL;
d195fcff 1821 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
3ffbba95 1822
c7360b34 1823 dma_pool_destroy(xhci->small_streams_pool);
8df75f42 1824 xhci->small_streams_pool = NULL;
d195fcff
XR
1825 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1826 "Freed small stream array pool");
8df75f42 1827
c7360b34 1828 dma_pool_destroy(xhci->medium_streams_pool);
8df75f42 1829 xhci->medium_streams_pool = NULL;
d195fcff
XR
1830 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1831 "Freed medium stream array pool");
8df75f42 1832
a74588f9 1833 if (xhci->dcbaa)
2a100047 1834 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1835 xhci->dcbaa, xhci->dcbaa->dma);
1836 xhci->dcbaa = NULL;
3ffbba95 1837
5294bea4 1838 scratchpad_free(xhci);
da6699ce 1839
88696ae4
VM
1840 if (!xhci->rh_bw)
1841 goto no_bw;
1842
32f1d2c5
TI
1843 for (i = 0; i < num_ports; i++) {
1844 struct xhci_tt_bw_info *tt, *n;
1845 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1846 list_del(&tt->tt_list);
1847 kfree(tt);
1848 }
f8a9e72d
ON
1849 }
1850
88696ae4 1851no_bw:
127329d7 1852 xhci->cmd_ring_reserved_trbs = 0;
da6699ce
SS
1853 xhci->num_usb2_ports = 0;
1854 xhci->num_usb3_ports = 0;
f8a9e72d 1855 xhci->num_active_eps = 0;
da6699ce
SS
1856 kfree(xhci->usb2_ports);
1857 kfree(xhci->usb3_ports);
1858 kfree(xhci->port_array);
839c817c 1859 kfree(xhci->rh_bw);
b630d4b9 1860 kfree(xhci->ext_caps);
da6699ce 1861
71504062
LB
1862 xhci->usb2_ports = NULL;
1863 xhci->usb3_ports = NULL;
1864 xhci->port_array = NULL;
1865 xhci->rh_bw = NULL;
1866 xhci->ext_caps = NULL;
1867
66d4eadd
SS
1868 xhci->page_size = 0;
1869 xhci->page_shift = 0;
20b67cf5 1870 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1871 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1872}
1873
6648f29d
SS
1874static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1875 struct xhci_segment *input_seg,
1876 union xhci_trb *start_trb,
1877 union xhci_trb *end_trb,
1878 dma_addr_t input_dma,
1879 struct xhci_segment *result_seg,
1880 char *test_name, int test_number)
1881{
1882 unsigned long long start_dma;
1883 unsigned long long end_dma;
1884 struct xhci_segment *seg;
1885
1886 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1887 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1888
cffb9be8 1889 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
6648f29d
SS
1890 if (seg != result_seg) {
1891 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1892 test_name, test_number);
1893 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1894 "input DMA 0x%llx\n",
1895 input_seg,
1896 (unsigned long long) input_dma);
1897 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1898 "ending TRB %p (0x%llx DMA)\n",
1899 start_trb, start_dma,
1900 end_trb, end_dma);
1901 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1902 result_seg, seg);
cffb9be8
HG
1903 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1904 true);
6648f29d
SS
1905 return -1;
1906 }
1907 return 0;
1908}
1909
1910/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
4daf9df5 1911static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
6648f29d
SS
1912{
1913 struct {
1914 dma_addr_t input_dma;
1915 struct xhci_segment *result_seg;
1916 } simple_test_vector [] = {
1917 /* A zeroed DMA field should fail */
1918 { 0, NULL },
1919 /* One TRB before the ring start should fail */
1920 { xhci->event_ring->first_seg->dma - 16, NULL },
1921 /* One byte before the ring start should fail */
1922 { xhci->event_ring->first_seg->dma - 1, NULL },
1923 /* Starting TRB should succeed */
1924 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1925 /* Ending TRB should succeed */
1926 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1927 xhci->event_ring->first_seg },
1928 /* One byte after the ring end should fail */
1929 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1930 /* One TRB after the ring end should fail */
1931 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1932 /* An address of all ones should fail */
1933 { (dma_addr_t) (~0), NULL },
1934 };
1935 struct {
1936 struct xhci_segment *input_seg;
1937 union xhci_trb *start_trb;
1938 union xhci_trb *end_trb;
1939 dma_addr_t input_dma;
1940 struct xhci_segment *result_seg;
1941 } complex_test_vector [] = {
1942 /* Test feeding a valid DMA address from a different ring */
1943 { .input_seg = xhci->event_ring->first_seg,
1944 .start_trb = xhci->event_ring->first_seg->trbs,
1945 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1946 .input_dma = xhci->cmd_ring->first_seg->dma,
1947 .result_seg = NULL,
1948 },
1949 /* Test feeding a valid end TRB from a different ring */
1950 { .input_seg = xhci->event_ring->first_seg,
1951 .start_trb = xhci->event_ring->first_seg->trbs,
1952 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1953 .input_dma = xhci->cmd_ring->first_seg->dma,
1954 .result_seg = NULL,
1955 },
1956 /* Test feeding a valid start and end TRB from a different ring */
1957 { .input_seg = xhci->event_ring->first_seg,
1958 .start_trb = xhci->cmd_ring->first_seg->trbs,
1959 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1960 .input_dma = xhci->cmd_ring->first_seg->dma,
1961 .result_seg = NULL,
1962 },
1963 /* TRB in this ring, but after this TD */
1964 { .input_seg = xhci->event_ring->first_seg,
1965 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1966 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1967 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1968 .result_seg = NULL,
1969 },
1970 /* TRB in this ring, but before this TD */
1971 { .input_seg = xhci->event_ring->first_seg,
1972 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1973 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1974 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1975 .result_seg = NULL,
1976 },
1977 /* TRB in this ring, but after this wrapped TD */
1978 { .input_seg = xhci->event_ring->first_seg,
1979 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1980 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1981 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1982 .result_seg = NULL,
1983 },
1984 /* TRB in this ring, but before this wrapped TD */
1985 { .input_seg = xhci->event_ring->first_seg,
1986 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1987 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1988 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1989 .result_seg = NULL,
1990 },
1991 /* TRB not in this ring, and we have a wrapped TD */
1992 { .input_seg = xhci->event_ring->first_seg,
1993 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1994 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1995 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1996 .result_seg = NULL,
1997 },
1998 };
1999
2000 unsigned int num_tests;
2001 int i, ret;
2002
e10fa478 2003 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
2004 for (i = 0; i < num_tests; i++) {
2005 ret = xhci_test_trb_in_td(xhci,
2006 xhci->event_ring->first_seg,
2007 xhci->event_ring->first_seg->trbs,
2008 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2009 simple_test_vector[i].input_dma,
2010 simple_test_vector[i].result_seg,
2011 "Simple", i);
2012 if (ret < 0)
2013 return ret;
2014 }
2015
e10fa478 2016 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
2017 for (i = 0; i < num_tests; i++) {
2018 ret = xhci_test_trb_in_td(xhci,
2019 complex_test_vector[i].input_seg,
2020 complex_test_vector[i].start_trb,
2021 complex_test_vector[i].end_trb,
2022 complex_test_vector[i].input_dma,
2023 complex_test_vector[i].result_seg,
2024 "Complex", i);
2025 if (ret < 0)
2026 return ret;
2027 }
2028 xhci_dbg(xhci, "TRB math tests passed.\n");
2029 return 0;
2030}
2031
257d585a
SS
2032static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2033{
2034 u64 temp;
2035 dma_addr_t deq;
2036
2037 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2038 xhci->event_ring->dequeue);
2039 if (deq == 0 && !in_interrupt())
2040 xhci_warn(xhci, "WARN something wrong with SW event ring "
2041 "dequeue ptr.\n");
2042 /* Update HC event ring dequeue pointer */
f7b2e403 2043 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
257d585a
SS
2044 temp &= ERST_PTR_MASK;
2045 /* Don't clear the EHB bit (which is RW1C) because
2046 * there might be more events to service.
2047 */
2048 temp &= ~ERST_EHB;
d195fcff
XR
2049 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050 "// Write event ring dequeue pointer, "
2051 "preserving EHB bit");
477632df 2052 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
257d585a
SS
2053 &xhci->ir_set->erst_dequeue);
2054}
2055
da6699ce 2056static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
d5ddcdf4 2057 __le32 __iomem *addr, int max_caps)
da6699ce
SS
2058{
2059 u32 temp, port_offset, port_count;
2060 int i;
b72eb843 2061 u8 major_revision, minor_revision;
47189098 2062 struct xhci_hub *rhub;
da6699ce 2063
47189098 2064 temp = readl(addr);
d5ddcdf4 2065 major_revision = XHCI_EXT_PORT_MAJOR(temp);
b72eb843 2066 minor_revision = XHCI_EXT_PORT_MINOR(temp);
47189098 2067
d5ddcdf4 2068 if (major_revision == 0x03) {
47189098 2069 rhub = &xhci->usb3_rhub;
d5ddcdf4 2070 } else if (major_revision <= 0x02) {
47189098
MN
2071 rhub = &xhci->usb2_rhub;
2072 } else {
da6699ce
SS
2073 xhci_warn(xhci, "Ignoring unknown port speed, "
2074 "Ext Cap %p, revision = 0x%x\n",
2075 addr, major_revision);
2076 /* Ignoring port protocol we can't understand. FIXME */
2077 return;
2078 }
47189098 2079 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
b72eb843
YT
2080
2081 if (rhub->min_rev < minor_revision)
2082 rhub->min_rev = minor_revision;
da6699ce
SS
2083
2084 /* Port offset and count in the third dword, see section 7.2 */
b0ba9720 2085 temp = readl(addr + 2);
da6699ce
SS
2086 port_offset = XHCI_EXT_PORT_OFF(temp);
2087 port_count = XHCI_EXT_PORT_COUNT(temp);
d195fcff
XR
2088 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2089 "Ext Cap %p, port offset = %u, "
2090 "count = %u, revision = 0x%x",
da6699ce
SS
2091 addr, port_offset, port_count, major_revision);
2092 /* Port count includes the current port offset */
2093 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2094 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2095 return;
fc71ff75 2096
47189098
MN
2097 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2098 if (rhub->psi_count) {
2099 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2100 GFP_KERNEL);
2101 if (!rhub->psi)
2102 rhub->psi_count = 0;
2103
2104 rhub->psi_uid_count++;
2105 for (i = 0; i < rhub->psi_count; i++) {
2106 rhub->psi[i] = readl(addr + 4 + i);
2107
2108 /* count unique ID values, two consecutive entries can
2109 * have the same ID if link is assymetric
2110 */
2111 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2112 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2113 rhub->psi_uid_count++;
2114
2115 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2116 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2117 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2118 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2119 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2120 XHCI_EXT_PORT_LP(rhub->psi[i]),
2121 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2122 }
2123 }
b630d4b9
MN
2124 /* cache usb2 port capabilities */
2125 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2126 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2127
fc71ff75
AX
2128 /* Check the host's USB2 LPM capability */
2129 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2130 (temp & XHCI_L1C)) {
d195fcff
XR
2131 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2132 "xHCI 0.96: support USB2 software lpm");
fc71ff75
AX
2133 xhci->sw_lpm_support = 1;
2134 }
2135
2136 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
d195fcff
XR
2137 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2138 "xHCI 1.0: support USB2 software lpm");
fc71ff75
AX
2139 xhci->sw_lpm_support = 1;
2140 if (temp & XHCI_HLC) {
d195fcff
XR
2141 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2142 "xHCI 1.0: support USB2 hardware lpm");
fc71ff75
AX
2143 xhci->hw_lpm_support = 1;
2144 }
2145 }
2146
da6699ce
SS
2147 port_offset--;
2148 for (i = port_offset; i < (port_offset + port_count); i++) {
2149 /* Duplicate entry. Ignore the port if the revisions differ. */
2150 if (xhci->port_array[i] != 0) {
2151 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2152 " port %u\n", addr, i);
2153 xhci_warn(xhci, "Port was marked as USB %u, "
2154 "duplicated as USB %u\n",
2155 xhci->port_array[i], major_revision);
2156 /* Only adjust the roothub port counts if we haven't
2157 * found a similar duplicate.
2158 */
2159 if (xhci->port_array[i] != major_revision &&
22e04870 2160 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2161 if (xhci->port_array[i] == 0x03)
2162 xhci->num_usb3_ports--;
2163 else
2164 xhci->num_usb2_ports--;
22e04870 2165 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2166 }
2167 /* FIXME: Should we disable the port? */
f8bbeabc 2168 continue;
da6699ce
SS
2169 }
2170 xhci->port_array[i] = major_revision;
2171 if (major_revision == 0x03)
2172 xhci->num_usb3_ports++;
2173 else
2174 xhci->num_usb2_ports++;
2175 }
2176 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2177}
2178
2179/*
2180 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2181 * specify what speeds each port is supposed to be. We can't count on the port
2182 * speed bits in the PORTSC register being correct until a device is connected,
2183 * but we need to set up the two fake roothubs with the correct number of USB
2184 * 3.0 and USB 2.0 ports at host controller initialization time.
2185 */
2186static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2187{
d5ddcdf4
MN
2188 void __iomem *base;
2189 u32 offset;
da6699ce 2190 unsigned int num_ports;
2e27980e 2191 int i, j, port_index;
b630d4b9 2192 int cap_count = 0;
d5ddcdf4 2193 u32 cap_start;
da6699ce
SS
2194
2195 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2196 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2197 if (!xhci->port_array)
2198 return -ENOMEM;
2199
839c817c
SS
2200 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2201 if (!xhci->rh_bw)
2202 return -ENOMEM;
2e27980e
SS
2203 for (i = 0; i < num_ports; i++) {
2204 struct xhci_interval_bw_table *bw_table;
2205
839c817c 2206 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2207 bw_table = &xhci->rh_bw[i].bw_table;
2208 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2209 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2210 }
d5ddcdf4 2211 base = &xhci->cap_regs->hc_capbase;
839c817c 2212
d5ddcdf4
MN
2213 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2214 if (!cap_start) {
2215 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2216 return -ENODEV;
2217 }
b630d4b9 2218
d5ddcdf4 2219 offset = cap_start;
b630d4b9 2220 /* count extended protocol capability entries for later caching */
d5ddcdf4
MN
2221 while (offset) {
2222 cap_count++;
2223 offset = xhci_find_next_ext_cap(base, offset,
2224 XHCI_EXT_CAPS_PROTOCOL);
2225 }
b630d4b9
MN
2226
2227 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2228 if (!xhci->ext_caps)
2229 return -ENOMEM;
2230
d5ddcdf4
MN
2231 offset = cap_start;
2232
2233 while (offset) {
2234 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2235 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
da6699ce 2236 break;
d5ddcdf4
MN
2237 offset = xhci_find_next_ext_cap(base, offset,
2238 XHCI_EXT_CAPS_PROTOCOL);
da6699ce
SS
2239 }
2240
2241 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2242 xhci_warn(xhci, "No ports on the roothubs?\n");
2243 return -ENODEV;
2244 }
d195fcff
XR
2245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
da6699ce 2247 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2248
2249 /* Place limits on the number of roothub ports so that the hub
2250 * descriptors aren't longer than the USB core will allocate.
2251 */
5120a266 2252 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
d195fcff 2253 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
5120a266
JH
2254 "Limiting USB 3.0 roothub ports to %u.",
2255 USB_SS_MAXPORTS);
2256 xhci->num_usb3_ports = USB_SS_MAXPORTS;
d30b2a20
SS
2257 }
2258 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
d195fcff
XR
2259 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2260 "Limiting USB 2.0 roothub ports to %u.",
d30b2a20
SS
2261 USB_MAXCHILDREN);
2262 xhci->num_usb2_ports = USB_MAXCHILDREN;
2263 }
2264
da6699ce
SS
2265 /*
2266 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2267 * Not sure how the USB core will handle a hub with no ports...
2268 */
2269 if (xhci->num_usb2_ports) {
2270 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2271 xhci->num_usb2_ports, flags);
2272 if (!xhci->usb2_ports)
2273 return -ENOMEM;
2274
2275 port_index = 0;
f8bbeabc
SS
2276 for (i = 0; i < num_ports; i++) {
2277 if (xhci->port_array[i] == 0x03 ||
2278 xhci->port_array[i] == 0 ||
22e04870 2279 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2280 continue;
2281
2282 xhci->usb2_ports[port_index] =
2283 &xhci->op_regs->port_status_base +
2284 NUM_PORT_REGS*i;
d195fcff
XR
2285 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2286 "USB 2.0 port at index %u, "
2287 "addr = %p", i,
f8bbeabc
SS
2288 xhci->usb2_ports[port_index]);
2289 port_index++;
d30b2a20
SS
2290 if (port_index == xhci->num_usb2_ports)
2291 break;
f8bbeabc 2292 }
da6699ce
SS
2293 }
2294 if (xhci->num_usb3_ports) {
2295 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2296 xhci->num_usb3_ports, flags);
2297 if (!xhci->usb3_ports)
2298 return -ENOMEM;
2299
2300 port_index = 0;
2301 for (i = 0; i < num_ports; i++)
2302 if (xhci->port_array[i] == 0x03) {
2303 xhci->usb3_ports[port_index] =
2304 &xhci->op_regs->port_status_base +
2305 NUM_PORT_REGS*i;
d195fcff
XR
2306 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2307 "USB 3.0 port at index %u, "
2308 "addr = %p", i,
da6699ce
SS
2309 xhci->usb3_ports[port_index]);
2310 port_index++;
d30b2a20
SS
2311 if (port_index == xhci->num_usb3_ports)
2312 break;
da6699ce
SS
2313 }
2314 }
2315 return 0;
2316}
6648f29d 2317
66d4eadd
SS
2318int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2319{
0ebbab37 2320 dma_addr_t dma;
4c39d4b9 2321 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
66d4eadd 2322 unsigned int val, val2;
8e595a5d 2323 u64 val_64;
0ebbab37 2324 struct xhci_segment *seg;
623bef9e 2325 u32 page_size, temp;
66d4eadd
SS
2326 int i;
2327
c9aa1a2d 2328 INIT_LIST_HEAD(&xhci->cmd_list);
331de00a 2329
cb4d5ce5
OH
2330 /* init command timeout work */
2331 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
1c111b6c 2332 init_completion(&xhci->cmd_ring_stop_completion);
cc8e4fc0 2333
b0ba9720 2334 page_size = readl(&xhci->op_regs->page_size);
d195fcff
XR
2335 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 "Supported page size register = 0x%x", page_size);
66d4eadd
SS
2337 for (i = 0; i < 16; i++) {
2338 if ((0x1 & page_size) != 0)
2339 break;
2340 page_size = page_size >> 1;
2341 }
2342 if (i < 16)
d195fcff
XR
2343 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344 "Supported page size of %iK", (1 << (i+12)) / 1024);
66d4eadd
SS
2345 else
2346 xhci_warn(xhci, "WARN: no supported page size\n");
2347 /* Use 4K pages, since that's common and the minimum the HC supports */
2348 xhci->page_shift = 12;
2349 xhci->page_size = 1 << xhci->page_shift;
d195fcff
XR
2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 "HCD page size set to %iK", xhci->page_size / 1024);
66d4eadd
SS
2352
2353 /*
2354 * Program the Number of Device Slots Enabled field in the CONFIG
2355 * register with the max value of slots the HC can handle.
2356 */
b0ba9720 2357 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
d195fcff
XR
2358 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2359 "// xHC can handle at most %d device slots.", val);
b0ba9720 2360 val2 = readl(&xhci->op_regs->config_reg);
66d4eadd 2361 val |= (val2 & ~HCS_SLOTS_MASK);
d195fcff
XR
2362 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2363 "// Setting Max device slots reg = 0x%x.", val);
204b7793 2364 writel(val, &xhci->op_regs->config_reg);
66d4eadd 2365
a74588f9 2366 /*
724e882d 2367 * xHCI section 5.4.6 - doorbell array must be
a74588f9
SS
2368 * "physically contiguous and 64-byte (cache line) aligned".
2369 */
22d45f01 2370 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
c95a9f83 2371 flags);
a74588f9
SS
2372 if (!xhci->dcbaa)
2373 goto fail;
2374 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2375 xhci->dcbaa->dma = dma;
d195fcff
XR
2376 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2377 "// Device context base array address = 0x%llx (DMA), %p (virt)",
700e2052 2378 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
477632df 2379 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2380
0ebbab37
SS
2381 /*
2382 * Initialize the ring segment pool. The ring must be a contiguous
2383 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
84c1e40f
HG
2384 * however, the command ring segment needs 64-byte aligned segments
2385 * and our use of dma addresses in the trb_address_map radix tree needs
2386 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
0ebbab37
SS
2387 */
2388 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
84c1e40f 2389 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
d115b048 2390
3ffbba95 2391 /* See Table 46 and Note on Figure 55 */
3ffbba95 2392 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2393 2112, 64, xhci->page_size);
3ffbba95 2394 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2395 goto fail;
2396
8df75f42
SS
2397 /* Linear stream context arrays don't have any boundary restrictions,
2398 * and only need to be 16-byte aligned.
2399 */
2400 xhci->small_streams_pool =
2401 dma_pool_create("xHCI 256 byte stream ctx arrays",
2402 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2403 xhci->medium_streams_pool =
2404 dma_pool_create("xHCI 1KB stream ctx arrays",
2405 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2406 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2407 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2408 */
2409
2410 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2411 goto fail;
2412
0ebbab37 2413 /* Set up the command ring to have one segments for now. */
f9c589e1 2414 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
0ebbab37
SS
2415 if (!xhci->cmd_ring)
2416 goto fail;
d195fcff
XR
2417 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418 "Allocated command ring at %p", xhci->cmd_ring);
2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
700e2052 2420 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2421
2422 /* Set the address in the Command Ring Control register */
f7b2e403 2423 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
8e595a5d
SS
2424 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2425 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2426 xhci->cmd_ring->cycle_state;
d195fcff 2427 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
6fc091fb 2428 "// Setting command ring address to 0x%016llx", val_64);
477632df 2429 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2430 xhci_dbg_cmd_ptrs(xhci);
2431
14d49b7a 2432 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
dbc33303
SS
2433 if (!xhci->lpm_command)
2434 goto fail;
2435
2436 /* Reserve one command ring TRB for disabling LPM.
2437 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2438 * disabling LPM, we only need to reserve one TRB for all devices.
2439 */
2440 xhci->cmd_ring_reserved_trbs++;
2441
b0ba9720 2442 val = readl(&xhci->cap_regs->db_off);
0ebbab37 2443 val &= DBOFF_MASK;
d195fcff
XR
2444 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2445 "// Doorbell array is located at offset 0x%x"
2446 " from cap regs base addr", val);
c50a00f8 2447 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2448 xhci_dbg_regs(xhci);
2449 xhci_print_run_regs(xhci);
2450 /* Set ir_set to interrupt register set 0 */
c50a00f8 2451 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2452
2453 /*
2454 * Event ring setup: Allocate a normal ring, but also setup
2455 * the event ring segment table (ERST). Section 4.9.3.
2456 */
d195fcff 2457 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
186a7ef1 2458 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
f9c589e1 2459 0, flags);
0ebbab37
SS
2460 if (!xhci->event_ring)
2461 goto fail;
4daf9df5 2462 if (xhci_check_trb_in_td_math(xhci) < 0)
6648f29d 2463 goto fail;
0ebbab37 2464
22d45f01
SAS
2465 xhci->erst.entries = dma_alloc_coherent(dev,
2466 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
c95a9f83 2467 flags);
0ebbab37
SS
2468 if (!xhci->erst.entries)
2469 goto fail;
d195fcff
XR
2470 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471 "// Allocated event ring segment table at 0x%llx",
700e2052 2472 (unsigned long long)dma);
0ebbab37
SS
2473
2474 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2475 xhci->erst.num_entries = ERST_NUM_SEGS;
2476 xhci->erst.erst_dma_addr = dma;
d195fcff
XR
2477 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2478 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
0ebbab37 2479 xhci->erst.num_entries,
700e2052
GKH
2480 xhci->erst.entries,
2481 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2482
2483 /* set ring base address and size for each segment table entry */
2484 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2485 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2486 entry->seg_addr = cpu_to_le64(seg->dma);
2487 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2488 entry->rsvd = 0;
2489 seg = seg->next;
2490 }
2491
2492 /* set ERST count with the number of entries in the segment table */
b0ba9720 2493 val = readl(&xhci->ir_set->erst_size);
0ebbab37
SS
2494 val &= ERST_SIZE_MASK;
2495 val |= ERST_NUM_SEGS;
d195fcff
XR
2496 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
0ebbab37 2498 val);
204b7793 2499 writel(val, &xhci->ir_set->erst_size);
0ebbab37 2500
d195fcff
XR
2501 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502 "// Set ERST entries to point to event ring.");
0ebbab37 2503 /* set the segment table base address */
d195fcff
XR
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505 "// Set ERST base address for ir_set 0 = 0x%llx",
700e2052 2506 (unsigned long long)xhci->erst.erst_dma_addr);
f7b2e403 2507 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
8e595a5d
SS
2508 val_64 &= ERST_PTR_MASK;
2509 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
477632df 2510 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2511
2512 /* Set the event ring dequeue address */
23e3be11 2513 xhci_set_hc_event_deq(xhci);
d195fcff
XR
2514 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515 "Wrote ERST address to ir_set 0.");
09ece30e 2516 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2517
2518 /*
2519 * XXX: Might need to set the Interrupter Moderation Register to
2520 * something other than the default (~1ms minimum between interrupts).
2521 * See section 5.5.1.2.
2522 */
98871e94 2523 for (i = 0; i < MAX_HC_SLOTS; i++)
326b4810 2524 xhci->devs[i] = NULL;
98871e94 2525 for (i = 0; i < USB_MAXCHILDREN; i++) {
20b67cf5 2526 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8 2527 xhci->bus_state[1].resume_done[i] = 0;
8b3d4570
SS
2528 /* Only the USB 2.0 completions will ever be used. */
2529 init_completion(&xhci->bus_state[1].rexit_done[i]);
f6ff0ac8 2530 }
66d4eadd 2531
254c80a3
JY
2532 if (scratchpad_alloc(xhci, flags))
2533 goto fail;
da6699ce
SS
2534 if (xhci_setup_port_arrays(xhci, flags))
2535 goto fail;
254c80a3 2536
623bef9e
SS
2537 /* Enable USB 3.0 device notifications for function remote wake, which
2538 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2539 * U3 (device suspend).
2540 */
b0ba9720 2541 temp = readl(&xhci->op_regs->dev_notification);
623bef9e
SS
2542 temp &= ~DEV_NOTE_MASK;
2543 temp |= DEV_NOTE_FWAKE;
204b7793 2544 writel(temp, &xhci->op_regs->dev_notification);
623bef9e 2545
66d4eadd 2546 return 0;
254c80a3 2547
66d4eadd 2548fail:
159e1fcc
SS
2549 xhci_halt(xhci);
2550 xhci_reset(xhci);
66d4eadd
SS
2551 xhci_mem_cleanup(xhci);
2552 return -ENOMEM;
2553}