]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/usb/host/xhci-mem.c
Merge branch 'for-next' of master.kernel.org:/pub/scm/linux/kernel/git/balbi/usb...
[mirror_ubuntu-focal-kernel.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
326b4810 44 return NULL;
700e2052 45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
0ebbab37
SS
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
326b4810 50 return NULL;
0ebbab37 51 }
700e2052
GKH
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
0ebbab37
SS
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64 if (!seg)
65 return;
66 if (seg->trbs) {
700e2052
GKH
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
700e2052 72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
0ebbab37
SS
73 kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85{
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
28ccd296
ME
92 prev->trbs[TRBS_PER_SEGMENT-1].link.
93 segment_ptr = cpu_to_le64(next->dma);
0ebbab37
SS
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
b0567b3f
SS
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci))
101 val |= TRB_CHAIN;
28ccd296 102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 103 }
700e2052
GKH
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
0ebbab37
SS
107}
108
109/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37
SS
111{
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
114
115 if (!ring || !ring->first_seg)
116 return;
117 first_seg = ring->first_seg;
118 seg = first_seg->next;
700e2052 119 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
0ebbab37
SS
120 while (seg != first_seg) {
121 struct xhci_segment *next = seg->next;
122 xhci_segment_free(xhci, seg);
123 seg = next;
124 }
125 xhci_segment_free(xhci, first_seg);
126 ring->first_seg = NULL;
127 kfree(ring);
128}
129
74f9fe21
SS
130static void xhci_initialize_ring_info(struct xhci_ring *ring)
131{
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring->enqueue = ring->first_seg->trbs;
134 ring->enq_seg = ring->first_seg;
135 ring->dequeue = ring->enqueue;
136 ring->deq_seg = ring->first_seg;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 */
141 ring->cycle_state = 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring->enq_updates = 0;
144 ring->deq_updates = 0;
145}
146
0ebbab37
SS
147/**
148 * Create a new ring with zero or more segments.
149 *
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
153 */
154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 unsigned int num_segs, bool link_trbs, gfp_t flags)
156{
157 struct xhci_ring *ring;
158 struct xhci_segment *prev;
159
160 ring = kzalloc(sizeof *(ring), flags);
700e2052 161 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
0ebbab37 162 if (!ring)
326b4810 163 return NULL;
0ebbab37 164
d0e96f5a 165 INIT_LIST_HEAD(&ring->td_list);
0ebbab37
SS
166 if (num_segs == 0)
167 return ring;
168
169 ring->first_seg = xhci_segment_alloc(xhci, flags);
170 if (!ring->first_seg)
171 goto fail;
172 num_segs--;
173
174 prev = ring->first_seg;
175 while (num_segs > 0) {
176 struct xhci_segment *next;
177
178 next = xhci_segment_alloc(xhci, flags);
179 if (!next)
180 goto fail;
181 xhci_link_segments(xhci, prev, next, link_trbs);
182
183 prev = next;
184 num_segs--;
185 }
186 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187
188 if (link_trbs) {
189 /* See section 4.9.2.1 and 6.4.4.1 */
28ccd296
ME
190 prev->trbs[TRBS_PER_SEGMENT-1].link.
191 control |= cpu_to_le32(LINK_TOGGLE);
0ebbab37 192 xhci_dbg(xhci, "Wrote link toggle flag to"
700e2052
GKH
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev, (unsigned long long)prev->dma);
0ebbab37 195 }
74f9fe21 196 xhci_initialize_ring_info(ring);
0ebbab37
SS
197 return ring;
198
199fail:
200 xhci_ring_free(xhci, ring);
326b4810 201 return NULL;
0ebbab37
SS
202}
203
412566bd
SS
204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 struct xhci_virt_device *virt_dev,
206 unsigned int ep_index)
207{
208 int rings_cached;
209
210 rings_cached = virt_dev->num_rings_cached;
211 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212 virt_dev->num_rings_cached++;
213 rings_cached = virt_dev->num_rings_cached;
214 virt_dev->ring_cache[rings_cached] =
215 virt_dev->eps[ep_index].ring;
216 xhci_dbg(xhci, "Cached old ring, "
217 "%d ring%s cached\n",
218 rings_cached,
219 (rings_cached > 1) ? "s" : "");
220 } else {
221 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
222 xhci_dbg(xhci, "Ring cache full (%d rings), "
223 "freeing ring\n",
224 virt_dev->num_rings_cached);
225 }
226 virt_dev->eps[ep_index].ring = NULL;
227}
228
74f9fe21
SS
229/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
230 * pointers to the beginning of the ring.
231 */
232static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
233 struct xhci_ring *ring)
234{
235 struct xhci_segment *seg = ring->first_seg;
236 do {
237 memset(seg->trbs, 0,
238 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
239 /* All endpoint rings have link TRBs */
240 xhci_link_segments(xhci, seg, seg->next, 1);
241 seg = seg->next;
242 } while (seg != ring->first_seg);
243 xhci_initialize_ring_info(ring);
244 /* td list should be empty since all URBs have been cancelled,
245 * but just in case...
246 */
247 INIT_LIST_HEAD(&ring->td_list);
248}
249
d115b048
JY
250#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
251
326b4810 252static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
253 int type, gfp_t flags)
254{
255 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
256 if (!ctx)
257 return NULL;
258
259 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
260 ctx->type = type;
261 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
262 if (type == XHCI_CTX_TYPE_INPUT)
263 ctx->size += CTX_SIZE(xhci->hcc_params);
264
265 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
266 memset(ctx->bytes, 0, ctx->size);
267 return ctx;
268}
269
326b4810 270static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
271 struct xhci_container_ctx *ctx)
272{
a1d78c16
SS
273 if (!ctx)
274 return;
d115b048
JY
275 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
276 kfree(ctx);
277}
278
279struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
280 struct xhci_container_ctx *ctx)
281{
282 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
283 return (struct xhci_input_control_ctx *)ctx->bytes;
284}
285
286struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
287 struct xhci_container_ctx *ctx)
288{
289 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
290 return (struct xhci_slot_ctx *)ctx->bytes;
291
292 return (struct xhci_slot_ctx *)
293 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
294}
295
296struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
297 struct xhci_container_ctx *ctx,
298 unsigned int ep_index)
299{
300 /* increment ep index by offset of start of ep ctx array */
301 ep_index++;
302 if (ctx->type == XHCI_CTX_TYPE_INPUT)
303 ep_index++;
304
305 return (struct xhci_ep_ctx *)
306 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
307}
308
8df75f42
SS
309
310/***************** Streams structures manipulation *************************/
311
8212a49d 312static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
313 unsigned int num_stream_ctxs,
314 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
315{
316 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
317
318 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
319 pci_free_consistent(pdev,
320 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
321 stream_ctx, dma);
322 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
323 return dma_pool_free(xhci->small_streams_pool,
324 stream_ctx, dma);
325 else
326 return dma_pool_free(xhci->medium_streams_pool,
327 stream_ctx, dma);
328}
329
330/*
331 * The stream context array for each endpoint with bulk streams enabled can
332 * vary in size, based on:
333 * - how many streams the endpoint supports,
334 * - the maximum primary stream array size the host controller supports,
335 * - and how many streams the device driver asks for.
336 *
337 * The stream context array must be a power of 2, and can be as small as
338 * 64 bytes or as large as 1MB.
339 */
8212a49d 340static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
341 unsigned int num_stream_ctxs, dma_addr_t *dma,
342 gfp_t mem_flags)
343{
344 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345
346 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
347 return pci_alloc_consistent(pdev,
348 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
349 dma);
350 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
351 return dma_pool_alloc(xhci->small_streams_pool,
352 mem_flags, dma);
353 else
354 return dma_pool_alloc(xhci->medium_streams_pool,
355 mem_flags, dma);
356}
357
e9df17eb
SS
358struct xhci_ring *xhci_dma_to_transfer_ring(
359 struct xhci_virt_ep *ep,
360 u64 address)
361{
362 if (ep->ep_state & EP_HAS_STREAMS)
363 return radix_tree_lookup(&ep->stream_info->trb_address_map,
364 address >> SEGMENT_SHIFT);
365 return ep->ring;
366}
367
368/* Only use this when you know stream_info is valid */
8df75f42 369#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
e9df17eb 370static struct xhci_ring *dma_to_stream_ring(
8df75f42
SS
371 struct xhci_stream_info *stream_info,
372 u64 address)
373{
374 return radix_tree_lookup(&stream_info->trb_address_map,
375 address >> SEGMENT_SHIFT);
376}
377#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
378
e9df17eb
SS
379struct xhci_ring *xhci_stream_id_to_ring(
380 struct xhci_virt_device *dev,
381 unsigned int ep_index,
382 unsigned int stream_id)
383{
384 struct xhci_virt_ep *ep = &dev->eps[ep_index];
385
386 if (stream_id == 0)
387 return ep->ring;
388 if (!ep->stream_info)
389 return NULL;
390
391 if (stream_id > ep->stream_info->num_streams)
392 return NULL;
393 return ep->stream_info->stream_rings[stream_id];
394}
395
8df75f42
SS
396#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
397static int xhci_test_radix_tree(struct xhci_hcd *xhci,
398 unsigned int num_streams,
399 struct xhci_stream_info *stream_info)
400{
401 u32 cur_stream;
402 struct xhci_ring *cur_ring;
403 u64 addr;
404
405 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
406 struct xhci_ring *mapped_ring;
407 int trb_size = sizeof(union xhci_trb);
408
409 cur_ring = stream_info->stream_rings[cur_stream];
410 for (addr = cur_ring->first_seg->dma;
411 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
412 addr += trb_size) {
413 mapped_ring = dma_to_stream_ring(stream_info, addr);
414 if (cur_ring != mapped_ring) {
415 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
416 "didn't map to stream ID %u; "
417 "mapped to ring %p\n",
418 (unsigned long long) addr,
419 cur_stream,
420 mapped_ring);
421 return -EINVAL;
422 }
423 }
424 /* One TRB after the end of the ring segment shouldn't return a
425 * pointer to the current ring (although it may be a part of a
426 * different ring).
427 */
428 mapped_ring = dma_to_stream_ring(stream_info, addr);
429 if (mapped_ring != cur_ring) {
430 /* One TRB before should also fail */
431 addr = cur_ring->first_seg->dma - trb_size;
432 mapped_ring = dma_to_stream_ring(stream_info, addr);
433 }
434 if (mapped_ring == cur_ring) {
435 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
436 "mapped to valid stream ID %u; "
437 "mapped ring = %p\n",
438 (unsigned long long) addr,
439 cur_stream,
440 mapped_ring);
441 return -EINVAL;
442 }
443 }
444 return 0;
445}
446#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
447
448/*
449 * Change an endpoint's internal structure so it supports stream IDs. The
450 * number of requested streams includes stream 0, which cannot be used by device
451 * drivers.
452 *
453 * The number of stream contexts in the stream context array may be bigger than
454 * the number of streams the driver wants to use. This is because the number of
455 * stream context array entries must be a power of two.
456 *
457 * We need a radix tree for mapping physical addresses of TRBs to which stream
458 * ID they belong to. We need to do this because the host controller won't tell
459 * us which stream ring the TRB came from. We could store the stream ID in an
460 * event data TRB, but that doesn't help us for the cancellation case, since the
461 * endpoint may stop before it reaches that event data TRB.
462 *
463 * The radix tree maps the upper portion of the TRB DMA address to a ring
464 * segment that has the same upper portion of DMA addresses. For example, say I
465 * have segments of size 1KB, that are always 64-byte aligned. A segment may
466 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
467 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
468 * pass the radix tree a key to get the right stream ID:
469 *
470 * 0x10c90fff >> 10 = 0x43243
471 * 0x10c912c0 >> 10 = 0x43244
472 * 0x10c91400 >> 10 = 0x43245
473 *
474 * Obviously, only those TRBs with DMA addresses that are within the segment
475 * will make the radix tree return the stream ID for that ring.
476 *
477 * Caveats for the radix tree:
478 *
479 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
480 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
481 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
482 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
483 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
484 * extended systems (where the DMA address can be bigger than 32-bits),
485 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
486 */
487struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
488 unsigned int num_stream_ctxs,
489 unsigned int num_streams, gfp_t mem_flags)
490{
491 struct xhci_stream_info *stream_info;
492 u32 cur_stream;
493 struct xhci_ring *cur_ring;
494 unsigned long key;
495 u64 addr;
496 int ret;
497
498 xhci_dbg(xhci, "Allocating %u streams and %u "
499 "stream context array entries.\n",
500 num_streams, num_stream_ctxs);
501 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
502 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
503 return NULL;
504 }
505 xhci->cmd_ring_reserved_trbs++;
506
507 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
508 if (!stream_info)
509 goto cleanup_trbs;
510
511 stream_info->num_streams = num_streams;
512 stream_info->num_stream_ctxs = num_stream_ctxs;
513
514 /* Initialize the array of virtual pointers to stream rings. */
515 stream_info->stream_rings = kzalloc(
516 sizeof(struct xhci_ring *)*num_streams,
517 mem_flags);
518 if (!stream_info->stream_rings)
519 goto cleanup_info;
520
521 /* Initialize the array of DMA addresses for stream rings for the HW. */
522 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
523 num_stream_ctxs, &stream_info->ctx_array_dma,
524 mem_flags);
525 if (!stream_info->stream_ctx_array)
526 goto cleanup_ctx;
527 memset(stream_info->stream_ctx_array, 0,
528 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
529
530 /* Allocate everything needed to free the stream rings later */
531 stream_info->free_streams_command =
532 xhci_alloc_command(xhci, true, true, mem_flags);
533 if (!stream_info->free_streams_command)
534 goto cleanup_ctx;
535
536 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
537
538 /* Allocate rings for all the streams that the driver will use,
539 * and add their segment DMA addresses to the radix tree.
540 * Stream 0 is reserved.
541 */
542 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
543 stream_info->stream_rings[cur_stream] =
544 xhci_ring_alloc(xhci, 1, true, mem_flags);
545 cur_ring = stream_info->stream_rings[cur_stream];
546 if (!cur_ring)
547 goto cleanup_rings;
e9df17eb 548 cur_ring->stream_id = cur_stream;
8df75f42
SS
549 /* Set deq ptr, cycle bit, and stream context type */
550 addr = cur_ring->first_seg->dma |
551 SCT_FOR_CTX(SCT_PRI_TR) |
552 cur_ring->cycle_state;
28ccd296
ME
553 stream_info->stream_ctx_array[cur_stream].
554 stream_ring = cpu_to_le64(addr);
8df75f42
SS
555 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
556 cur_stream, (unsigned long long) addr);
557
558 key = (unsigned long)
559 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
560 ret = radix_tree_insert(&stream_info->trb_address_map,
561 key, cur_ring);
562 if (ret) {
563 xhci_ring_free(xhci, cur_ring);
564 stream_info->stream_rings[cur_stream] = NULL;
565 goto cleanup_rings;
566 }
567 }
568 /* Leave the other unused stream ring pointers in the stream context
569 * array initialized to zero. This will cause the xHC to give us an
570 * error if the device asks for a stream ID we don't have setup (if it
571 * was any other way, the host controller would assume the ring is
572 * "empty" and wait forever for data to be queued to that stream ID).
573 */
574#if XHCI_DEBUG
575 /* Do a little test on the radix tree to make sure it returns the
576 * correct values.
577 */
578 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
579 goto cleanup_rings;
580#endif
581
582 return stream_info;
583
584cleanup_rings:
585 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
586 cur_ring = stream_info->stream_rings[cur_stream];
587 if (cur_ring) {
588 addr = cur_ring->first_seg->dma;
589 radix_tree_delete(&stream_info->trb_address_map,
590 addr >> SEGMENT_SHIFT);
591 xhci_ring_free(xhci, cur_ring);
592 stream_info->stream_rings[cur_stream] = NULL;
593 }
594 }
595 xhci_free_command(xhci, stream_info->free_streams_command);
596cleanup_ctx:
597 kfree(stream_info->stream_rings);
598cleanup_info:
599 kfree(stream_info);
600cleanup_trbs:
601 xhci->cmd_ring_reserved_trbs--;
602 return NULL;
603}
604/*
605 * Sets the MaxPStreams field and the Linear Stream Array field.
606 * Sets the dequeue pointer to the stream context array.
607 */
608void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
609 struct xhci_ep_ctx *ep_ctx,
610 struct xhci_stream_info *stream_info)
611{
612 u32 max_primary_streams;
613 /* MaxPStreams is the number of stream context array entries, not the
614 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
615 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
616 */
617 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
618 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
619 1 << (max_primary_streams + 1));
28ccd296
ME
620 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
621 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
622 | EP_HAS_LSA);
623 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
624}
625
626/*
627 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
628 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
629 * not at the beginning of the ring).
630 */
631void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
632 struct xhci_ep_ctx *ep_ctx,
633 struct xhci_virt_ep *ep)
634{
635 dma_addr_t addr;
28ccd296 636 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 637 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 638 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
639}
640
641/* Frees all stream contexts associated with the endpoint,
642 *
643 * Caller should fix the endpoint context streams fields.
644 */
645void xhci_free_stream_info(struct xhci_hcd *xhci,
646 struct xhci_stream_info *stream_info)
647{
648 int cur_stream;
649 struct xhci_ring *cur_ring;
650 dma_addr_t addr;
651
652 if (!stream_info)
653 return;
654
655 for (cur_stream = 1; cur_stream < stream_info->num_streams;
656 cur_stream++) {
657 cur_ring = stream_info->stream_rings[cur_stream];
658 if (cur_ring) {
659 addr = cur_ring->first_seg->dma;
660 radix_tree_delete(&stream_info->trb_address_map,
661 addr >> SEGMENT_SHIFT);
662 xhci_ring_free(xhci, cur_ring);
663 stream_info->stream_rings[cur_stream] = NULL;
664 }
665 }
666 xhci_free_command(xhci, stream_info->free_streams_command);
667 xhci->cmd_ring_reserved_trbs--;
668 if (stream_info->stream_ctx_array)
669 xhci_free_stream_ctx(xhci,
670 stream_info->num_stream_ctxs,
671 stream_info->stream_ctx_array,
672 stream_info->ctx_array_dma);
673
674 if (stream_info)
675 kfree(stream_info->stream_rings);
676 kfree(stream_info);
677}
678
679
680/***************** Device context manipulation *************************/
681
6f5165cf
SS
682static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
683 struct xhci_virt_ep *ep)
684{
685 init_timer(&ep->stop_cmd_timer);
686 ep->stop_cmd_timer.data = (unsigned long) ep;
687 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
688 ep->xhci = xhci;
689}
690
d0e96f5a 691/* All the xhci_tds in the ring's TD list should be freed at this point */
3ffbba95
SS
692void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
693{
694 struct xhci_virt_device *dev;
695 int i;
696
697 /* Slot ID 0 is reserved */
698 if (slot_id == 0 || !xhci->devs[slot_id])
699 return;
700
701 dev = xhci->devs[slot_id];
8e595a5d 702 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
703 if (!dev)
704 return;
705
8df75f42 706 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
707 if (dev->eps[i].ring)
708 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
709 if (dev->eps[i].stream_info)
710 xhci_free_stream_info(xhci,
711 dev->eps[i].stream_info);
712 }
3ffbba95 713
74f9fe21
SS
714 if (dev->ring_cache) {
715 for (i = 0; i < dev->num_rings_cached; i++)
716 xhci_ring_free(xhci, dev->ring_cache[i]);
717 kfree(dev->ring_cache);
718 }
719
3ffbba95 720 if (dev->in_ctx)
d115b048 721 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 722 if (dev->out_ctx)
d115b048
JY
723 xhci_free_container_ctx(xhci, dev->out_ctx);
724
3ffbba95 725 kfree(xhci->devs[slot_id]);
326b4810 726 xhci->devs[slot_id] = NULL;
3ffbba95
SS
727}
728
729int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
730 struct usb_device *udev, gfp_t flags)
731{
3ffbba95 732 struct xhci_virt_device *dev;
63a0d9ab 733 int i;
3ffbba95
SS
734
735 /* Slot ID 0 is reserved */
736 if (slot_id == 0 || xhci->devs[slot_id]) {
737 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
738 return 0;
739 }
740
741 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
742 if (!xhci->devs[slot_id])
743 return 0;
744 dev = xhci->devs[slot_id];
745
d115b048
JY
746 /* Allocate the (output) device context that will be used in the HC. */
747 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
748 if (!dev->out_ctx)
749 goto fail;
d115b048 750
700e2052 751 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 752 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
753
754 /* Allocate the (input) device context for address device command */
d115b048 755 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
756 if (!dev->in_ctx)
757 goto fail;
d115b048 758
700e2052 759 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 760 (unsigned long long)dev->in_ctx->dma);
3ffbba95 761
6f5165cf
SS
762 /* Initialize the cancellation list and watchdog timers for each ep */
763 for (i = 0; i < 31; i++) {
764 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 765 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
6f5165cf 766 }
63a0d9ab 767
3ffbba95 768 /* Allocate endpoint 0 ring */
63a0d9ab
SS
769 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
770 if (!dev->eps[0].ring)
3ffbba95
SS
771 goto fail;
772
74f9fe21
SS
773 /* Allocate pointers to the ring cache */
774 dev->ring_cache = kzalloc(
775 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
776 flags);
777 if (!dev->ring_cache)
778 goto fail;
779 dev->num_rings_cached = 0;
780
f94e0186 781 init_completion(&dev->cmd_completion);
913a8a34 782 INIT_LIST_HEAD(&dev->cmd_list);
64927730 783 dev->udev = udev;
f94e0186 784
28c2d2ef 785 /* Point to output device context in dcbaa. */
28ccd296 786 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 787 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
788 slot_id,
789 &xhci->dcbaa->dev_context_ptrs[slot_id],
790 (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
791
792 return 1;
793fail:
794 xhci_free_virt_device(xhci, slot_id);
795 return 0;
796}
797
2d1ee590
SS
798void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
799 struct usb_device *udev)
800{
801 struct xhci_virt_device *virt_dev;
802 struct xhci_ep_ctx *ep0_ctx;
803 struct xhci_ring *ep_ring;
804
805 virt_dev = xhci->devs[udev->slot_id];
806 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
807 ep_ring = virt_dev->eps[0].ring;
808 /*
809 * FIXME we don't keep track of the dequeue pointer very well after a
810 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
811 * host to our enqueue pointer. This should only be called after a
812 * configured device has reset, so all control transfers should have
813 * been completed or cancelled before the reset.
814 */
28ccd296
ME
815 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
816 ep_ring->enqueue)
817 | ep_ring->cycle_state);
2d1ee590
SS
818}
819
f6ff0ac8
SS
820/*
821 * The xHCI roothub may have ports of differing speeds in any order in the port
822 * status registers. xhci->port_array provides an array of the port speed for
823 * each offset into the port status registers.
824 *
825 * The xHCI hardware wants to know the roothub port number that the USB device
826 * is attached to (or the roothub port its ancestor hub is attached to). All we
827 * know is the index of that port under either the USB 2.0 or the USB 3.0
828 * roothub, but that doesn't give us the real index into the HW port status
829 * registers. Scan through the xHCI roothub port array, looking for the Nth
830 * entry of the correct port speed. Return the port number of that entry.
831 */
832static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
833 struct usb_device *udev)
834{
835 struct usb_device *top_dev;
836 unsigned int num_similar_speed_ports;
837 unsigned int faked_port_num;
838 int i;
839
840 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
841 top_dev = top_dev->parent)
842 /* Found device below root hub */;
843 faked_port_num = top_dev->portnum;
844 for (i = 0, num_similar_speed_ports = 0;
845 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
846 u8 port_speed = xhci->port_array[i];
847
848 /*
849 * Skip ports that don't have known speeds, or have duplicate
850 * Extended Capabilities port speed entries.
851 */
22e04870 852 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
f6ff0ac8
SS
853 continue;
854
855 /*
856 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
857 * 1.1 ports are under the USB 2.0 hub. If the port speed
858 * matches the device speed, it's a similar speed port.
859 */
860 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
861 num_similar_speed_ports++;
862 if (num_similar_speed_ports == faked_port_num)
863 /* Roothub ports are numbered from 1 to N */
864 return i+1;
865 }
866 return 0;
867}
868
3ffbba95
SS
869/* Setup an xHCI virtual device for a Set Address command */
870int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
871{
872 struct xhci_virt_device *dev;
873 struct xhci_ep_ctx *ep0_ctx;
d115b048
JY
874 struct xhci_slot_ctx *slot_ctx;
875 struct xhci_input_control_ctx *ctrl_ctx;
f6ff0ac8
SS
876 u32 port_num;
877 struct usb_device *top_dev;
3ffbba95
SS
878
879 dev = xhci->devs[udev->slot_id];
880 /* Slot ID 0 is reserved */
881 if (udev->slot_id == 0 || !dev) {
882 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
883 udev->slot_id);
884 return -EINVAL;
885 }
d115b048
JY
886 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
887 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
888 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95
SS
889
890 /* 2) New slot context and endpoint 0 context are valid*/
28ccd296 891 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3ffbba95
SS
892
893 /* 3) Only the control endpoint is valid - one endpoint context */
28ccd296 894 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | (u32) udev->route);
3ffbba95
SS
895 switch (udev->speed) {
896 case USB_SPEED_SUPER:
28ccd296 897 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_SS);
3ffbba95
SS
898 break;
899 case USB_SPEED_HIGH:
28ccd296 900 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_HS);
3ffbba95
SS
901 break;
902 case USB_SPEED_FULL:
28ccd296 903 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_FS);
3ffbba95
SS
904 break;
905 case USB_SPEED_LOW:
28ccd296 906 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_LS);
3ffbba95 907 break;
551cdbbe 908 case USB_SPEED_WIRELESS:
3ffbba95
SS
909 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
910 return -EINVAL;
911 break;
912 default:
913 /* Speed was set earlier, this shouldn't happen. */
914 BUG();
915 }
916 /* Find the root hub port this device is under */
f6ff0ac8
SS
917 port_num = xhci_find_real_port_number(xhci, udev);
918 if (!port_num)
919 return -EINVAL;
28ccd296 920 slot_ctx->dev_info2 |= cpu_to_le32((u32) ROOT_HUB_PORT(port_num));
f6ff0ac8 921 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
922 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
923 top_dev = top_dev->parent)
924 /* Found device below root hub */;
be88fe4f 925 dev->port = top_dev->portnum;
f6ff0ac8
SS
926 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
927 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
3ffbba95 928
aa1b13ef
SS
929 /* Is this a LS/FS device under an external HS hub? */
930 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
931 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
932 (udev->ttport << 8));
07b6de10 933 if (udev->tt->multi)
28ccd296 934 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 935 }
700e2052 936 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
937 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
938
939 /* Step 4 - ring already allocated */
940 /* Step 5 */
28ccd296 941 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
3ffbba95 942 /*
3ffbba95
SS
943 * XXX: Not sure about wireless USB devices.
944 */
47aded8a
SS
945 switch (udev->speed) {
946 case USB_SPEED_SUPER:
28ccd296 947 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
47aded8a
SS
948 break;
949 case USB_SPEED_HIGH:
950 /* USB core guesses at a 64-byte max packet first for FS devices */
951 case USB_SPEED_FULL:
28ccd296 952 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
47aded8a
SS
953 break;
954 case USB_SPEED_LOW:
28ccd296 955 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
47aded8a 956 break;
551cdbbe 957 case USB_SPEED_WIRELESS:
47aded8a
SS
958 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
959 return -EINVAL;
960 break;
961 default:
962 /* New speed? */
963 BUG();
964 }
3ffbba95 965 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
28ccd296 966 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
3ffbba95 967
28ccd296
ME
968 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
969 dev->eps[0].ring->cycle_state);
3ffbba95
SS
970
971 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
972
973 return 0;
974}
975
dfa49c4a
DT
976/*
977 * Convert interval expressed as 2^(bInterval - 1) == interval into
978 * straight exponent value 2^n == interval.
979 *
980 */
981static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
982 struct usb_host_endpoint *ep)
983{
984 unsigned int interval;
985
986 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
987 if (interval != ep->desc.bInterval - 1)
988 dev_warn(&udev->dev,
989 "ep %#x - rounding interval to %d microframes\n",
990 ep->desc.bEndpointAddress,
991 1 << interval);
992
993 return interval;
994}
995
996/*
997 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
998 * microframes, rounded down to nearest power of 2.
999 */
1000static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1001 struct usb_host_endpoint *ep)
1002{
1003 unsigned int interval;
1004
1005 interval = fls(8 * ep->desc.bInterval) - 1;
1006 interval = clamp_val(interval, 3, 10);
1007 if ((1 << interval) != 8 * ep->desc.bInterval)
1008 dev_warn(&udev->dev,
1009 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1010 ep->desc.bEndpointAddress,
1011 1 << interval,
1012 8 * ep->desc.bInterval);
1013
1014 return interval;
1015}
1016
f94e0186
SS
1017/* Return the polling or NAK interval.
1018 *
1019 * The polling interval is expressed in "microframes". If xHCI's Interval field
1020 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1021 *
1022 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1023 * is set to 0.
1024 */
575688e1 1025static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1026 struct usb_host_endpoint *ep)
1027{
1028 unsigned int interval = 0;
1029
1030 switch (udev->speed) {
1031 case USB_SPEED_HIGH:
1032 /* Max NAK rate */
1033 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1034 usb_endpoint_xfer_bulk(&ep->desc)) {
f94e0186 1035 interval = ep->desc.bInterval;
dfa49c4a
DT
1036 break;
1037 }
f94e0186 1038 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1039
f94e0186
SS
1040 case USB_SPEED_SUPER:
1041 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1042 usb_endpoint_xfer_isoc(&ep->desc)) {
1043 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1044 }
1045 break;
dfa49c4a 1046
f94e0186 1047 case USB_SPEED_FULL:
dfa49c4a
DT
1048 if (usb_endpoint_xfer_int(&ep->desc)) {
1049 interval = xhci_parse_exponent_interval(udev, ep);
1050 break;
1051 }
1052 /*
1053 * Fall through for isochronous endpoint interval decoding
1054 * since it uses the same rules as low speed interrupt
1055 * endpoints.
1056 */
1057
f94e0186
SS
1058 case USB_SPEED_LOW:
1059 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1060 usb_endpoint_xfer_isoc(&ep->desc)) {
1061
1062 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1063 }
1064 break;
dfa49c4a 1065
f94e0186
SS
1066 default:
1067 BUG();
1068 }
1069 return EP_INTERVAL(interval);
1070}
1071
c30c791c 1072/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1073 * High speed endpoint descriptors can define "the number of additional
1074 * transaction opportunities per microframe", but that goes in the Max Burst
1075 * endpoint context field.
1076 */
575688e1 1077static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1078 struct usb_host_endpoint *ep)
1079{
c30c791c
SS
1080 if (udev->speed != USB_SPEED_SUPER ||
1081 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1082 return 0;
842f1690 1083 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1084}
1085
575688e1 1086static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1087 struct usb_host_endpoint *ep)
1088{
1089 int in;
1090 u32 type;
1091
1092 in = usb_endpoint_dir_in(&ep->desc);
1093 if (usb_endpoint_xfer_control(&ep->desc)) {
1094 type = EP_TYPE(CTRL_EP);
1095 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1096 if (in)
1097 type = EP_TYPE(BULK_IN_EP);
1098 else
1099 type = EP_TYPE(BULK_OUT_EP);
1100 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1101 if (in)
1102 type = EP_TYPE(ISOC_IN_EP);
1103 else
1104 type = EP_TYPE(ISOC_OUT_EP);
1105 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1106 if (in)
1107 type = EP_TYPE(INT_IN_EP);
1108 else
1109 type = EP_TYPE(INT_OUT_EP);
1110 } else {
1111 BUG();
1112 }
1113 return type;
1114}
1115
9238f25d
SS
1116/* Return the maximum endpoint service interval time (ESIT) payload.
1117 * Basically, this is the maxpacket size, multiplied by the burst size
1118 * and mult size.
1119 */
575688e1 1120static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1121 struct usb_device *udev,
1122 struct usb_host_endpoint *ep)
1123{
1124 int max_burst;
1125 int max_packet;
1126
1127 /* Only applies for interrupt or isochronous endpoints */
1128 if (usb_endpoint_xfer_control(&ep->desc) ||
1129 usb_endpoint_xfer_bulk(&ep->desc))
1130 return 0;
1131
842f1690 1132 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1133 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1134
28ccd296
ME
1135 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1136 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
9238f25d
SS
1137 /* A 0 in max burst means 1 transfer per ESIT */
1138 return max_packet * (max_burst + 1);
1139}
1140
8df75f42
SS
1141/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1142 * Drivers will have to call usb_alloc_streams() to do that.
1143 */
f94e0186
SS
1144int xhci_endpoint_init(struct xhci_hcd *xhci,
1145 struct xhci_virt_device *virt_dev,
1146 struct usb_device *udev,
f88ba78d
SS
1147 struct usb_host_endpoint *ep,
1148 gfp_t mem_flags)
f94e0186
SS
1149{
1150 unsigned int ep_index;
1151 struct xhci_ep_ctx *ep_ctx;
1152 struct xhci_ring *ep_ring;
1153 unsigned int max_packet;
1154 unsigned int max_burst;
9238f25d 1155 u32 max_esit_payload;
f94e0186
SS
1156
1157 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1158 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1159
1160 /* Set up the endpoint ring */
a061a5a0
AX
1161 /*
1162 * Isochronous endpoint ring needs bigger size because one isoc URB
1163 * carries multiple packets and it will insert multiple tds to the
1164 * ring.
1165 * This should be replaced with dynamic ring resizing in the future.
1166 */
1167 if (usb_endpoint_xfer_isoc(&ep->desc))
1168 virt_dev->eps[ep_index].new_ring =
1169 xhci_ring_alloc(xhci, 8, true, mem_flags);
1170 else
1171 virt_dev->eps[ep_index].new_ring =
1172 xhci_ring_alloc(xhci, 1, true, mem_flags);
74f9fe21
SS
1173 if (!virt_dev->eps[ep_index].new_ring) {
1174 /* Attempt to use the ring cache */
1175 if (virt_dev->num_rings_cached == 0)
1176 return -ENOMEM;
1177 virt_dev->eps[ep_index].new_ring =
1178 virt_dev->ring_cache[virt_dev->num_rings_cached];
1179 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1180 virt_dev->num_rings_cached--;
1181 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1182 }
d18240db 1183 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1184 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1185 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1186
28ccd296
ME
1187 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1188 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1189
1190 /* FIXME dig Mult and streams info out of ep companion desc */
1191
47692d17 1192 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1193 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1194 */
f94e0186 1195 if (!usb_endpoint_xfer_isoc(&ep->desc))
28ccd296 1196 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
f94e0186 1197 else
7b1fc2ea 1198 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
f94e0186 1199
28ccd296 1200 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
f94e0186
SS
1201
1202 /* Set the max packet size and max burst */
1203 switch (udev->speed) {
1204 case USB_SPEED_SUPER:
28ccd296
ME
1205 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1206 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
b10de142 1207 /* dig out max burst from ep companion desc */
842f1690
AS
1208 max_packet = ep->ss_ep_comp.bMaxBurst;
1209 if (!max_packet)
1210 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
28ccd296 1211 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
f94e0186
SS
1212 break;
1213 case USB_SPEED_HIGH:
1214 /* bits 11:12 specify the number of additional transaction
1215 * opportunities per microframe (USB 2.0, section 9.6.6)
1216 */
1217 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1218 usb_endpoint_xfer_int(&ep->desc)) {
28ccd296
ME
1219 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1220 & 0x1800) >> 11;
1221 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
f94e0186
SS
1222 }
1223 /* Fall through */
1224 case USB_SPEED_FULL:
1225 case USB_SPEED_LOW:
28ccd296
ME
1226 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1227 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
f94e0186
SS
1228 break;
1229 default:
1230 BUG();
1231 }
9238f25d 1232 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1233 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1234
1235 /*
1236 * XXX no idea how to calculate the average TRB buffer length for bulk
1237 * endpoints, as the driver gives us no clue how big each scatter gather
1238 * list entry (or buffer) is going to be.
1239 *
1240 * For isochronous and interrupt endpoints, we set it to the max
1241 * available, until we have new API in the USB core to allow drivers to
1242 * declare how much bandwidth they actually need.
1243 *
1244 * Normally, it would be calculated by taking the total of the buffer
1245 * lengths in the TD and then dividing by the number of TRBs in a TD,
1246 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1247 * use Event Data TRBs, and we don't chain in a link TRB on short
1248 * transfers, we're basically dividing by 1.
51eb01a7
AX
1249 *
1250 * xHCI 1.0 specification indicates that the Average TRB Length should
1251 * be set to 8 for control endpoints.
9238f25d 1252 */
51eb01a7
AX
1253 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1254 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1255 else
1256 ep_ctx->tx_info |=
1257 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1258
f94e0186
SS
1259 /* FIXME Debug endpoint context */
1260 return 0;
1261}
1262
1263void xhci_endpoint_zero(struct xhci_hcd *xhci,
1264 struct xhci_virt_device *virt_dev,
1265 struct usb_host_endpoint *ep)
1266{
1267 unsigned int ep_index;
1268 struct xhci_ep_ctx *ep_ctx;
1269
1270 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1271 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1272
1273 ep_ctx->ep_info = 0;
1274 ep_ctx->ep_info2 = 0;
8e595a5d 1275 ep_ctx->deq = 0;
f94e0186
SS
1276 ep_ctx->tx_info = 0;
1277 /* Don't free the endpoint ring until the set interface or configuration
1278 * request succeeds.
1279 */
1280}
1281
f2217e8e
SS
1282/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1283 * Useful when you want to change one particular aspect of the endpoint and then
1284 * issue a configure endpoint command.
1285 */
1286void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1287 struct xhci_container_ctx *in_ctx,
1288 struct xhci_container_ctx *out_ctx,
1289 unsigned int ep_index)
f2217e8e
SS
1290{
1291 struct xhci_ep_ctx *out_ep_ctx;
1292 struct xhci_ep_ctx *in_ep_ctx;
1293
913a8a34
SS
1294 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1295 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1296
1297 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1298 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1299 in_ep_ctx->deq = out_ep_ctx->deq;
1300 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1301}
1302
1303/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1304 * Useful when you want to change one particular aspect of the endpoint and then
1305 * issue a configure endpoint command. Only the context entries field matters,
1306 * but we'll copy the whole thing anyway.
1307 */
913a8a34
SS
1308void xhci_slot_copy(struct xhci_hcd *xhci,
1309 struct xhci_container_ctx *in_ctx,
1310 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1311{
1312 struct xhci_slot_ctx *in_slot_ctx;
1313 struct xhci_slot_ctx *out_slot_ctx;
1314
913a8a34
SS
1315 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1316 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1317
1318 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1319 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1320 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1321 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1322}
1323
254c80a3
JY
1324/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1325static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1326{
1327 int i;
1328 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1329 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1330
1331 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1332
1333 if (!num_sp)
1334 return 0;
1335
1336 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1337 if (!xhci->scratchpad)
1338 goto fail_sp;
1339
1340 xhci->scratchpad->sp_array =
1341 pci_alloc_consistent(to_pci_dev(dev),
1342 num_sp * sizeof(u64),
1343 &xhci->scratchpad->sp_dma);
1344 if (!xhci->scratchpad->sp_array)
1345 goto fail_sp2;
1346
1347 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1348 if (!xhci->scratchpad->sp_buffers)
1349 goto fail_sp3;
1350
1351 xhci->scratchpad->sp_dma_buffers =
1352 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1353
1354 if (!xhci->scratchpad->sp_dma_buffers)
1355 goto fail_sp4;
1356
28ccd296 1357 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1358 for (i = 0; i < num_sp; i++) {
1359 dma_addr_t dma;
1360 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1361 xhci->page_size, &dma);
1362 if (!buf)
1363 goto fail_sp5;
1364
1365 xhci->scratchpad->sp_array[i] = dma;
1366 xhci->scratchpad->sp_buffers[i] = buf;
1367 xhci->scratchpad->sp_dma_buffers[i] = dma;
1368 }
1369
1370 return 0;
1371
1372 fail_sp5:
1373 for (i = i - 1; i >= 0; i--) {
1374 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1375 xhci->scratchpad->sp_buffers[i],
1376 xhci->scratchpad->sp_dma_buffers[i]);
1377 }
1378 kfree(xhci->scratchpad->sp_dma_buffers);
1379
1380 fail_sp4:
1381 kfree(xhci->scratchpad->sp_buffers);
1382
1383 fail_sp3:
1384 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1385 xhci->scratchpad->sp_array,
1386 xhci->scratchpad->sp_dma);
1387
1388 fail_sp2:
1389 kfree(xhci->scratchpad);
1390 xhci->scratchpad = NULL;
1391
1392 fail_sp:
1393 return -ENOMEM;
1394}
1395
1396static void scratchpad_free(struct xhci_hcd *xhci)
1397{
1398 int num_sp;
1399 int i;
1400 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1401
1402 if (!xhci->scratchpad)
1403 return;
1404
1405 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1406
1407 for (i = 0; i < num_sp; i++) {
1408 pci_free_consistent(pdev, xhci->page_size,
1409 xhci->scratchpad->sp_buffers[i],
1410 xhci->scratchpad->sp_dma_buffers[i]);
1411 }
1412 kfree(xhci->scratchpad->sp_dma_buffers);
1413 kfree(xhci->scratchpad->sp_buffers);
1414 pci_free_consistent(pdev, num_sp * sizeof(u64),
1415 xhci->scratchpad->sp_array,
1416 xhci->scratchpad->sp_dma);
1417 kfree(xhci->scratchpad);
1418 xhci->scratchpad = NULL;
1419}
1420
913a8a34 1421struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1422 bool allocate_in_ctx, bool allocate_completion,
1423 gfp_t mem_flags)
913a8a34
SS
1424{
1425 struct xhci_command *command;
1426
1427 command = kzalloc(sizeof(*command), mem_flags);
1428 if (!command)
1429 return NULL;
1430
a1d78c16
SS
1431 if (allocate_in_ctx) {
1432 command->in_ctx =
1433 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1434 mem_flags);
1435 if (!command->in_ctx) {
1436 kfree(command);
1437 return NULL;
1438 }
06e18291 1439 }
913a8a34
SS
1440
1441 if (allocate_completion) {
1442 command->completion =
1443 kzalloc(sizeof(struct completion), mem_flags);
1444 if (!command->completion) {
1445 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1446 kfree(command);
913a8a34
SS
1447 return NULL;
1448 }
1449 init_completion(command->completion);
1450 }
1451
1452 command->status = 0;
1453 INIT_LIST_HEAD(&command->cmd_list);
1454 return command;
1455}
1456
8e51adcc
AX
1457void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1458{
1459 int last;
1460
1461 if (!urb_priv)
1462 return;
1463
1464 last = urb_priv->length - 1;
1465 if (last >= 0) {
1466 int i;
1467 for (i = 0; i <= last; i++)
1468 kfree(urb_priv->td[i]);
1469 }
1470 kfree(urb_priv);
1471}
1472
913a8a34
SS
1473void xhci_free_command(struct xhci_hcd *xhci,
1474 struct xhci_command *command)
1475{
1476 xhci_free_container_ctx(xhci,
1477 command->in_ctx);
1478 kfree(command->completion);
1479 kfree(command);
1480}
1481
66d4eadd
SS
1482void xhci_mem_cleanup(struct xhci_hcd *xhci)
1483{
0ebbab37
SS
1484 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1485 int size;
3ffbba95 1486 int i;
0ebbab37
SS
1487
1488 /* Free the Event Ring Segment Table and the actual Event Ring */
d94c05e3
SS
1489 if (xhci->ir_set) {
1490 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1491 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1492 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1493 }
0ebbab37
SS
1494 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1495 if (xhci->erst.entries)
1496 pci_free_consistent(pdev, size,
1497 xhci->erst.entries, xhci->erst.erst_dma_addr);
1498 xhci->erst.entries = NULL;
1499 xhci_dbg(xhci, "Freed ERST\n");
1500 if (xhci->event_ring)
1501 xhci_ring_free(xhci, xhci->event_ring);
1502 xhci->event_ring = NULL;
1503 xhci_dbg(xhci, "Freed event ring\n");
1504
8e595a5d 1505 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
0ebbab37
SS
1506 if (xhci->cmd_ring)
1507 xhci_ring_free(xhci, xhci->cmd_ring);
1508 xhci->cmd_ring = NULL;
1509 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
1510
1511 for (i = 1; i < MAX_HC_SLOTS; ++i)
1512 xhci_free_virt_device(xhci, i);
1513
0ebbab37
SS
1514 if (xhci->segment_pool)
1515 dma_pool_destroy(xhci->segment_pool);
1516 xhci->segment_pool = NULL;
1517 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1518
1519 if (xhci->device_pool)
1520 dma_pool_destroy(xhci->device_pool);
1521 xhci->device_pool = NULL;
1522 xhci_dbg(xhci, "Freed device context pool\n");
1523
8df75f42
SS
1524 if (xhci->small_streams_pool)
1525 dma_pool_destroy(xhci->small_streams_pool);
1526 xhci->small_streams_pool = NULL;
1527 xhci_dbg(xhci, "Freed small stream array pool\n");
1528
1529 if (xhci->medium_streams_pool)
1530 dma_pool_destroy(xhci->medium_streams_pool);
1531 xhci->medium_streams_pool = NULL;
1532 xhci_dbg(xhci, "Freed medium stream array pool\n");
1533
8e595a5d 1534 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
a74588f9
SS
1535 if (xhci->dcbaa)
1536 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1537 xhci->dcbaa, xhci->dcbaa->dma);
1538 xhci->dcbaa = NULL;
3ffbba95 1539
5294bea4 1540 scratchpad_free(xhci);
da6699ce
SS
1541
1542 xhci->num_usb2_ports = 0;
1543 xhci->num_usb3_ports = 0;
1544 kfree(xhci->usb2_ports);
1545 kfree(xhci->usb3_ports);
1546 kfree(xhci->port_array);
1547
66d4eadd
SS
1548 xhci->page_size = 0;
1549 xhci->page_shift = 0;
20b67cf5 1550 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1551 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1552}
1553
6648f29d
SS
1554static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1555 struct xhci_segment *input_seg,
1556 union xhci_trb *start_trb,
1557 union xhci_trb *end_trb,
1558 dma_addr_t input_dma,
1559 struct xhci_segment *result_seg,
1560 char *test_name, int test_number)
1561{
1562 unsigned long long start_dma;
1563 unsigned long long end_dma;
1564 struct xhci_segment *seg;
1565
1566 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1567 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1568
1569 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1570 if (seg != result_seg) {
1571 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1572 test_name, test_number);
1573 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1574 "input DMA 0x%llx\n",
1575 input_seg,
1576 (unsigned long long) input_dma);
1577 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1578 "ending TRB %p (0x%llx DMA)\n",
1579 start_trb, start_dma,
1580 end_trb, end_dma);
1581 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1582 result_seg, seg);
1583 return -1;
1584 }
1585 return 0;
1586}
1587
1588/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1589static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1590{
1591 struct {
1592 dma_addr_t input_dma;
1593 struct xhci_segment *result_seg;
1594 } simple_test_vector [] = {
1595 /* A zeroed DMA field should fail */
1596 { 0, NULL },
1597 /* One TRB before the ring start should fail */
1598 { xhci->event_ring->first_seg->dma - 16, NULL },
1599 /* One byte before the ring start should fail */
1600 { xhci->event_ring->first_seg->dma - 1, NULL },
1601 /* Starting TRB should succeed */
1602 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1603 /* Ending TRB should succeed */
1604 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1605 xhci->event_ring->first_seg },
1606 /* One byte after the ring end should fail */
1607 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1608 /* One TRB after the ring end should fail */
1609 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1610 /* An address of all ones should fail */
1611 { (dma_addr_t) (~0), NULL },
1612 };
1613 struct {
1614 struct xhci_segment *input_seg;
1615 union xhci_trb *start_trb;
1616 union xhci_trb *end_trb;
1617 dma_addr_t input_dma;
1618 struct xhci_segment *result_seg;
1619 } complex_test_vector [] = {
1620 /* Test feeding a valid DMA address from a different ring */
1621 { .input_seg = xhci->event_ring->first_seg,
1622 .start_trb = xhci->event_ring->first_seg->trbs,
1623 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1624 .input_dma = xhci->cmd_ring->first_seg->dma,
1625 .result_seg = NULL,
1626 },
1627 /* Test feeding a valid end TRB from a different ring */
1628 { .input_seg = xhci->event_ring->first_seg,
1629 .start_trb = xhci->event_ring->first_seg->trbs,
1630 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631 .input_dma = xhci->cmd_ring->first_seg->dma,
1632 .result_seg = NULL,
1633 },
1634 /* Test feeding a valid start and end TRB from a different ring */
1635 { .input_seg = xhci->event_ring->first_seg,
1636 .start_trb = xhci->cmd_ring->first_seg->trbs,
1637 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638 .input_dma = xhci->cmd_ring->first_seg->dma,
1639 .result_seg = NULL,
1640 },
1641 /* TRB in this ring, but after this TD */
1642 { .input_seg = xhci->event_ring->first_seg,
1643 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1644 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1645 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1646 .result_seg = NULL,
1647 },
1648 /* TRB in this ring, but before this TD */
1649 { .input_seg = xhci->event_ring->first_seg,
1650 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1651 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1652 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1653 .result_seg = NULL,
1654 },
1655 /* TRB in this ring, but after this wrapped TD */
1656 { .input_seg = xhci->event_ring->first_seg,
1657 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1658 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1659 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660 .result_seg = NULL,
1661 },
1662 /* TRB in this ring, but before this wrapped TD */
1663 { .input_seg = xhci->event_ring->first_seg,
1664 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1666 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1667 .result_seg = NULL,
1668 },
1669 /* TRB not in this ring, and we have a wrapped TD */
1670 { .input_seg = xhci->event_ring->first_seg,
1671 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1673 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1674 .result_seg = NULL,
1675 },
1676 };
1677
1678 unsigned int num_tests;
1679 int i, ret;
1680
e10fa478 1681 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
1682 for (i = 0; i < num_tests; i++) {
1683 ret = xhci_test_trb_in_td(xhci,
1684 xhci->event_ring->first_seg,
1685 xhci->event_ring->first_seg->trbs,
1686 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1687 simple_test_vector[i].input_dma,
1688 simple_test_vector[i].result_seg,
1689 "Simple", i);
1690 if (ret < 0)
1691 return ret;
1692 }
1693
e10fa478 1694 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
1695 for (i = 0; i < num_tests; i++) {
1696 ret = xhci_test_trb_in_td(xhci,
1697 complex_test_vector[i].input_seg,
1698 complex_test_vector[i].start_trb,
1699 complex_test_vector[i].end_trb,
1700 complex_test_vector[i].input_dma,
1701 complex_test_vector[i].result_seg,
1702 "Complex", i);
1703 if (ret < 0)
1704 return ret;
1705 }
1706 xhci_dbg(xhci, "TRB math tests passed.\n");
1707 return 0;
1708}
1709
257d585a
SS
1710static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1711{
1712 u64 temp;
1713 dma_addr_t deq;
1714
1715 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1716 xhci->event_ring->dequeue);
1717 if (deq == 0 && !in_interrupt())
1718 xhci_warn(xhci, "WARN something wrong with SW event ring "
1719 "dequeue ptr.\n");
1720 /* Update HC event ring dequeue pointer */
1721 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1722 temp &= ERST_PTR_MASK;
1723 /* Don't clear the EHB bit (which is RW1C) because
1724 * there might be more events to service.
1725 */
1726 temp &= ~ERST_EHB;
1727 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1728 "preserving EHB bit\n");
1729 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1730 &xhci->ir_set->erst_dequeue);
1731}
1732
da6699ce 1733static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
28ccd296 1734 __le32 __iomem *addr, u8 major_revision)
da6699ce
SS
1735{
1736 u32 temp, port_offset, port_count;
1737 int i;
1738
1739 if (major_revision > 0x03) {
1740 xhci_warn(xhci, "Ignoring unknown port speed, "
1741 "Ext Cap %p, revision = 0x%x\n",
1742 addr, major_revision);
1743 /* Ignoring port protocol we can't understand. FIXME */
1744 return;
1745 }
1746
1747 /* Port offset and count in the third dword, see section 7.2 */
1748 temp = xhci_readl(xhci, addr + 2);
1749 port_offset = XHCI_EXT_PORT_OFF(temp);
1750 port_count = XHCI_EXT_PORT_COUNT(temp);
1751 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1752 "count = %u, revision = 0x%x\n",
1753 addr, port_offset, port_count, major_revision);
1754 /* Port count includes the current port offset */
1755 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1756 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1757 return;
1758 port_offset--;
1759 for (i = port_offset; i < (port_offset + port_count); i++) {
1760 /* Duplicate entry. Ignore the port if the revisions differ. */
1761 if (xhci->port_array[i] != 0) {
1762 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1763 " port %u\n", addr, i);
1764 xhci_warn(xhci, "Port was marked as USB %u, "
1765 "duplicated as USB %u\n",
1766 xhci->port_array[i], major_revision);
1767 /* Only adjust the roothub port counts if we haven't
1768 * found a similar duplicate.
1769 */
1770 if (xhci->port_array[i] != major_revision &&
22e04870 1771 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
1772 if (xhci->port_array[i] == 0x03)
1773 xhci->num_usb3_ports--;
1774 else
1775 xhci->num_usb2_ports--;
22e04870 1776 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
1777 }
1778 /* FIXME: Should we disable the port? */
f8bbeabc 1779 continue;
da6699ce
SS
1780 }
1781 xhci->port_array[i] = major_revision;
1782 if (major_revision == 0x03)
1783 xhci->num_usb3_ports++;
1784 else
1785 xhci->num_usb2_ports++;
1786 }
1787 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1788}
1789
1790/*
1791 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1792 * specify what speeds each port is supposed to be. We can't count on the port
1793 * speed bits in the PORTSC register being correct until a device is connected,
1794 * but we need to set up the two fake roothubs with the correct number of USB
1795 * 3.0 and USB 2.0 ports at host controller initialization time.
1796 */
1797static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1798{
28ccd296 1799 __le32 __iomem *addr;
da6699ce
SS
1800 u32 offset;
1801 unsigned int num_ports;
1802 int i, port_index;
1803
1804 addr = &xhci->cap_regs->hcc_params;
1805 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1806 if (offset == 0) {
1807 xhci_err(xhci, "No Extended Capability registers, "
1808 "unable to set up roothub.\n");
1809 return -ENODEV;
1810 }
1811
1812 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1813 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1814 if (!xhci->port_array)
1815 return -ENOMEM;
1816
1817 /*
1818 * For whatever reason, the first capability offset is from the
1819 * capability register base, not from the HCCPARAMS register.
1820 * See section 5.3.6 for offset calculation.
1821 */
1822 addr = &xhci->cap_regs->hc_capbase + offset;
1823 while (1) {
1824 u32 cap_id;
1825
1826 cap_id = xhci_readl(xhci, addr);
1827 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1828 xhci_add_in_port(xhci, num_ports, addr,
1829 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1830 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1831 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1832 == num_ports)
1833 break;
1834 /*
1835 * Once you're into the Extended Capabilities, the offset is
1836 * always relative to the register holding the offset.
1837 */
1838 addr += offset;
1839 }
1840
1841 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1842 xhci_warn(xhci, "No ports on the roothubs?\n");
1843 return -ENODEV;
1844 }
1845 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1846 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
1847
1848 /* Place limits on the number of roothub ports so that the hub
1849 * descriptors aren't longer than the USB core will allocate.
1850 */
1851 if (xhci->num_usb3_ports > 15) {
1852 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1853 xhci->num_usb3_ports = 15;
1854 }
1855 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1856 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1857 USB_MAXCHILDREN);
1858 xhci->num_usb2_ports = USB_MAXCHILDREN;
1859 }
1860
da6699ce
SS
1861 /*
1862 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1863 * Not sure how the USB core will handle a hub with no ports...
1864 */
1865 if (xhci->num_usb2_ports) {
1866 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1867 xhci->num_usb2_ports, flags);
1868 if (!xhci->usb2_ports)
1869 return -ENOMEM;
1870
1871 port_index = 0;
f8bbeabc
SS
1872 for (i = 0; i < num_ports; i++) {
1873 if (xhci->port_array[i] == 0x03 ||
1874 xhci->port_array[i] == 0 ||
22e04870 1875 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
1876 continue;
1877
1878 xhci->usb2_ports[port_index] =
1879 &xhci->op_regs->port_status_base +
1880 NUM_PORT_REGS*i;
1881 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1882 "addr = %p\n", i,
1883 xhci->usb2_ports[port_index]);
1884 port_index++;
d30b2a20
SS
1885 if (port_index == xhci->num_usb2_ports)
1886 break;
f8bbeabc 1887 }
da6699ce
SS
1888 }
1889 if (xhci->num_usb3_ports) {
1890 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1891 xhci->num_usb3_ports, flags);
1892 if (!xhci->usb3_ports)
1893 return -ENOMEM;
1894
1895 port_index = 0;
1896 for (i = 0; i < num_ports; i++)
1897 if (xhci->port_array[i] == 0x03) {
1898 xhci->usb3_ports[port_index] =
1899 &xhci->op_regs->port_status_base +
1900 NUM_PORT_REGS*i;
1901 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1902 "addr = %p\n", i,
1903 xhci->usb3_ports[port_index]);
1904 port_index++;
d30b2a20
SS
1905 if (port_index == xhci->num_usb3_ports)
1906 break;
da6699ce
SS
1907 }
1908 }
1909 return 0;
1910}
6648f29d 1911
66d4eadd
SS
1912int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1913{
0ebbab37
SS
1914 dma_addr_t dma;
1915 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 1916 unsigned int val, val2;
8e595a5d 1917 u64 val_64;
0ebbab37 1918 struct xhci_segment *seg;
66d4eadd
SS
1919 u32 page_size;
1920 int i;
1921
1922 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1923 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1924 for (i = 0; i < 16; i++) {
1925 if ((0x1 & page_size) != 0)
1926 break;
1927 page_size = page_size >> 1;
1928 }
1929 if (i < 16)
1930 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1931 else
1932 xhci_warn(xhci, "WARN: no supported page size\n");
1933 /* Use 4K pages, since that's common and the minimum the HC supports */
1934 xhci->page_shift = 12;
1935 xhci->page_size = 1 << xhci->page_shift;
1936 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1937
1938 /*
1939 * Program the Number of Device Slots Enabled field in the CONFIG
1940 * register with the max value of slots the HC can handle.
1941 */
1942 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1943 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1944 (unsigned int) val);
1945 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1946 val |= (val2 & ~HCS_SLOTS_MASK);
1947 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1948 (unsigned int) val);
1949 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1950
a74588f9
SS
1951 /*
1952 * Section 5.4.8 - doorbell array must be
1953 * "physically contiguous and 64-byte (cache line) aligned".
1954 */
1955 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1956 sizeof(*xhci->dcbaa), &dma);
1957 if (!xhci->dcbaa)
1958 goto fail;
1959 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1960 xhci->dcbaa->dma = dma;
700e2052
GKH
1961 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1962 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 1963 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 1964
0ebbab37
SS
1965 /*
1966 * Initialize the ring segment pool. The ring must be a contiguous
1967 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1968 * however, the command ring segment needs 64-byte aligned segments,
1969 * so we pick the greater alignment need.
1970 */
1971 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1972 SEGMENT_SIZE, 64, xhci->page_size);
d115b048 1973
3ffbba95 1974 /* See Table 46 and Note on Figure 55 */
3ffbba95 1975 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 1976 2112, 64, xhci->page_size);
3ffbba95 1977 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
1978 goto fail;
1979
8df75f42
SS
1980 /* Linear stream context arrays don't have any boundary restrictions,
1981 * and only need to be 16-byte aligned.
1982 */
1983 xhci->small_streams_pool =
1984 dma_pool_create("xHCI 256 byte stream ctx arrays",
1985 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1986 xhci->medium_streams_pool =
1987 dma_pool_create("xHCI 1KB stream ctx arrays",
1988 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1989 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1990 * will be allocated with pci_alloc_consistent()
1991 */
1992
1993 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1994 goto fail;
1995
0ebbab37
SS
1996 /* Set up the command ring to have one segments for now. */
1997 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1998 if (!xhci->cmd_ring)
1999 goto fail;
700e2052
GKH
2000 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2001 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2002 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2003
2004 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2005 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2006 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2007 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2008 xhci->cmd_ring->cycle_state;
8e595a5d
SS
2009 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2010 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2011 xhci_dbg_cmd_ptrs(xhci);
2012
2013 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2014 val &= DBOFF_MASK;
2015 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2016 " from cap regs base addr\n", val);
c50a00f8 2017 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2018 xhci_dbg_regs(xhci);
2019 xhci_print_run_regs(xhci);
2020 /* Set ir_set to interrupt register set 0 */
c50a00f8 2021 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2022
2023 /*
2024 * Event ring setup: Allocate a normal ring, but also setup
2025 * the event ring segment table (ERST). Section 4.9.3.
2026 */
2027 xhci_dbg(xhci, "// Allocating event ring\n");
2028 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2029 if (!xhci->event_ring)
2030 goto fail;
6648f29d
SS
2031 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2032 goto fail;
0ebbab37
SS
2033
2034 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2035 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2036 if (!xhci->erst.entries)
2037 goto fail;
700e2052
GKH
2038 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2039 (unsigned long long)dma);
0ebbab37
SS
2040
2041 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2042 xhci->erst.num_entries = ERST_NUM_SEGS;
2043 xhci->erst.erst_dma_addr = dma;
700e2052 2044 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 2045 xhci->erst.num_entries,
700e2052
GKH
2046 xhci->erst.entries,
2047 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2048
2049 /* set ring base address and size for each segment table entry */
2050 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2051 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2052 entry->seg_addr = cpu_to_le64(seg->dma);
2053 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2054 entry->rsvd = 0;
2055 seg = seg->next;
2056 }
2057
2058 /* set ERST count with the number of entries in the segment table */
2059 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2060 val &= ERST_SIZE_MASK;
2061 val |= ERST_NUM_SEGS;
2062 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2063 val);
2064 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2065
2066 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2067 /* set the segment table base address */
700e2052
GKH
2068 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2069 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2070 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2071 val_64 &= ERST_PTR_MASK;
2072 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2073 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2074
2075 /* Set the event ring dequeue address */
23e3be11 2076 xhci_set_hc_event_deq(xhci);
0ebbab37 2077 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
09ece30e 2078 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2079
2080 /*
2081 * XXX: Might need to set the Interrupter Moderation Register to
2082 * something other than the default (~1ms minimum between interrupts).
2083 * See section 5.5.1.2.
2084 */
3ffbba95
SS
2085 init_completion(&xhci->addr_dev);
2086 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2087 xhci->devs[i] = NULL;
f6ff0ac8 2088 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2089 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2090 xhci->bus_state[1].resume_done[i] = 0;
2091 }
66d4eadd 2092
254c80a3
JY
2093 if (scratchpad_alloc(xhci, flags))
2094 goto fail;
da6699ce
SS
2095 if (xhci_setup_port_arrays(xhci, flags))
2096 goto fail;
254c80a3 2097
66d4eadd 2098 return 0;
254c80a3 2099
66d4eadd
SS
2100fail:
2101 xhci_warn(xhci, "Couldn't initialize memory\n");
2102 xhci_mem_cleanup(xhci);
2103 return -ENOMEM;
2104}