]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/usb/storage/sddr09.c
usb: gadget: udc: renesas_usb3: make const array max_packet_array static
[mirror_ubuntu-hirsute-kernel.git] / drivers / usb / storage / sddr09.c
CommitLineData
f0183a33
FB
1/*
2 * Driver for SanDisk SDDR-09 SmartMedia reader
1da177e4 3 *
1da177e4
LT
4 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
5 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
6 * Developed with the assistance of:
7 * (c) 2002 Alan Stern <stern@rowland.org>
8 *
9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
10 * This chip is a programmable USB controller. In the SDDR-09, it has
11 * been programmed to obey a certain limited set of SCSI commands.
12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
13 * commands.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2, or (at your option) any
18 * later version.
19 *
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 */
29
30/*
31 * Known vendor commands: 12 bytes, first byte is opcode
32 *
33 * E7: read scatter gather
34 * E8: read
35 * E9: write
36 * EA: erase
37 * EB: reset
38 * EC: read status
39 * ED: read ID
40 * EE: write CIS (?)
41 * EF: compute checksum (?)
42 */
43
1da177e4 44#include <linux/errno.h>
0ff71883 45#include <linux/module.h>
1da177e4
LT
46#include <linux/slab.h>
47
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
c20b15fd 50#include <scsi/scsi_device.h>
1da177e4
LT
51
52#include "usb.h"
53#include "transport.h"
54#include "protocol.h"
55#include "debug.h"
aa519be3
AM
56#include "scsiglue.h"
57
58#define DRV_NAME "ums-sddr09"
0ff71883 59
4246b06a
MG
60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
62MODULE_LICENSE("GPL");
0ff71883
AS
63
64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
66static int usb_stor_sddr09_init(struct us_data *us);
67
68
69/*
70 * The table of devices
71 */
72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
73 vendorName, productName, useProtocol, useTransport, \
74 initFunction, flags) \
75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
f61870ee 76 .driver_info = (flags) }
0ff71883 77
6f871f9e 78static struct usb_device_id sddr09_usb_ids[] = {
0ff71883
AS
79# include "unusual_sddr09.h"
80 { } /* Terminating entry */
81};
82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
83
84#undef UNUSUAL_DEV
85
86/*
87 * The flags table
88 */
89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
90 vendor_name, product_name, use_protocol, use_transport, \
91 init_function, Flags) \
92{ \
93 .vendorName = vendor_name, \
94 .productName = product_name, \
95 .useProtocol = use_protocol, \
96 .useTransport = use_transport, \
97 .initFunction = init_function, \
98}
99
100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
101# include "unusual_sddr09.h"
102 { } /* Terminating entry */
103};
104
105#undef UNUSUAL_DEV
1da177e4
LT
106
107
108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
109#define LSB_of(s) ((s)&0xFF)
110#define MSB_of(s) ((s)>>8)
111
1da177e4
LT
112/*
113 * First some stuff that does not belong here:
114 * data on SmartMedia and other cards, completely
115 * unrelated to this driver.
116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
117 */
118
119struct nand_flash_dev {
120 int model_id;
121 int chipshift; /* 1<<cs bytes total capacity */
122 char pageshift; /* 1<<ps bytes in a page */
123 char blockshift; /* 1<<bs pages in an erase block */
124 char zoneshift; /* 1<<zs blocks in a zone */
125 /* # of logical blocks is 125/128 of this */
126 char pageadrlen; /* length of an address in bytes - 1 */
127};
128
129/*
130 * NAND Flash Manufacturer ID Codes
131 */
132#define NAND_MFR_AMD 0x01
133#define NAND_MFR_NATSEMI 0x8f
134#define NAND_MFR_TOSHIBA 0x98
135#define NAND_MFR_SAMSUNG 0xec
136
137static inline char *nand_flash_manufacturer(int manuf_id) {
138 switch(manuf_id) {
139 case NAND_MFR_AMD:
140 return "AMD";
141 case NAND_MFR_NATSEMI:
142 return "NATSEMI";
143 case NAND_MFR_TOSHIBA:
144 return "Toshiba";
145 case NAND_MFR_SAMSUNG:
146 return "Samsung";
147 default:
148 return "unknown";
149 }
150}
151
152/*
153 * It looks like it is unnecessary to attach manufacturer to the
154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
155 *
156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
157 */
158
159static struct nand_flash_dev nand_flash_ids[] = {
160 /* NAND flash */
161 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
164 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
166 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
169 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
170 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
171 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
172 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
173 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
174
175 /* MASK ROM */
176 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
177 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
178 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
179 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
180 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
181 { 0,}
182};
183
1da177e4
LT
184static struct nand_flash_dev *
185nand_find_id(unsigned char id) {
186 int i;
187
52950ed4 188 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
1da177e4
LT
189 if (nand_flash_ids[i].model_id == id)
190 return &(nand_flash_ids[i]);
191 return NULL;
192}
193
194/*
195 * ECC computation.
196 */
197static unsigned char parity[256];
198static unsigned char ecc2[256];
199
200static void nand_init_ecc(void) {
201 int i, j, a;
202
203 parity[0] = 0;
204 for (i = 1; i < 256; i++)
205 parity[i] = (parity[i&(i-1)] ^ 1);
206
207 for (i = 0; i < 256; i++) {
208 a = 0;
209 for (j = 0; j < 8; j++) {
210 if (i & (1<<j)) {
211 if ((j & 1) == 0)
212 a ^= 0x04;
213 if ((j & 2) == 0)
214 a ^= 0x10;
215 if ((j & 4) == 0)
216 a ^= 0x40;
217 }
218 }
219 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
220 }
221}
222
223/* compute 3-byte ecc on 256 bytes */
224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
225 int i, j, a;
4cb4f838 226 unsigned char par = 0, bit, bits[8] = {0};
1da177e4
LT
227
228 /* collect 16 checksum bits */
229 for (i = 0; i < 256; i++) {
230 par ^= data[i];
231 bit = parity[data[i]];
232 for (j = 0; j < 8; j++)
233 if ((i & (1<<j)) == 0)
234 bits[j] ^= bit;
235 }
236
237 /* put 4+4+4 = 12 bits in the ecc */
238 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
239 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
240
241 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
242 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
243
244 ecc[2] = ecc2[par];
245}
246
247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
248 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
249}
250
251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
252 memcpy(data, ecc, 3);
253}
254
255/*
256 * The actual driver starts here.
257 */
258
f5b8cb9c
MD
259struct sddr09_card_info {
260 unsigned long capacity; /* Size of card in bytes */
261 int pagesize; /* Size of page in bytes */
262 int pageshift; /* log2 of pagesize */
263 int blocksize; /* Size of block in pages */
264 int blockshift; /* log2 of blocksize */
265 int blockmask; /* 2^blockshift - 1 */
266 int *lba_to_pba; /* logical to physical map */
267 int *pba_to_lba; /* physical to logical map */
268 int lbact; /* number of available pages */
269 int flags;
270#define SDDR09_WP 1 /* write protected */
271};
272
1da177e4
LT
273/*
274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
276 * so the reader makes up the remaining 48. Don't know whether these numbers
277 * depend on the card. For now a constant.
278 */
279#define CONTROL_SHIFT 6
280
281/*
282 * On my Combo CF/SM reader, the SM reader has LUN 1.
283 * (and things fail with LUN 0).
284 * It seems LUN is irrelevant for others.
285 */
286#define LUN 1
287#define LUNBITS (LUN << 5)
288
289/*
290 * LBA and PBA are unsigned ints. Special values.
291 */
292#define UNDEF 0xffffffff
293#define SPARE 0xfffffffe
294#define UNUSABLE 0xfffffffd
295
4c4c9432 296static const int erase_bad_lba_entries = 0;
1da177e4
LT
297
298/* send vendor interface command (0x41) */
299/* called for requests 0, 1, 8 */
300static int
301sddr09_send_command(struct us_data *us,
302 unsigned char request,
303 unsigned char direction,
304 unsigned char *xfer_data,
305 unsigned int xfer_len) {
306 unsigned int pipe;
307 unsigned char requesttype = (0x41 | direction);
308 int rc;
309
310 // Get the receive or send control pipe number
311
312 if (direction == USB_DIR_IN)
313 pipe = us->recv_ctrl_pipe;
314 else
315 pipe = us->send_ctrl_pipe;
316
317 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
318 0, 0, xfer_data, xfer_len);
0dc08a35
MD
319 switch (rc) {
320 case USB_STOR_XFER_GOOD: return 0;
321 case USB_STOR_XFER_STALLED: return -EPIPE;
322 default: return -EIO;
323 }
1da177e4
LT
324}
325
326static int
327sddr09_send_scsi_command(struct us_data *us,
328 unsigned char *command,
329 unsigned int command_len) {
330 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
331}
332
333#if 0
334/*
335 * Test Unit Ready Command: 12 bytes.
336 * byte 0: opcode: 00
337 */
338static int
339sddr09_test_unit_ready(struct us_data *us) {
340 unsigned char *command = us->iobuf;
341 int result;
342
343 memset(command, 0, 6);
344 command[1] = LUNBITS;
345
346 result = sddr09_send_scsi_command(us, command, 6);
347
191648d0 348 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
1da177e4
LT
349
350 return result;
351}
352#endif
353
354/*
355 * Request Sense Command: 12 bytes.
356 * byte 0: opcode: 03
357 * byte 4: data length
358 */
359static int
360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
361 unsigned char *command = us->iobuf;
362 int result;
363
364 memset(command, 0, 12);
365 command[0] = 0x03;
366 command[1] = LUNBITS;
367 command[4] = buflen;
368
369 result = sddr09_send_scsi_command(us, command, 12);
0dc08a35 370 if (result)
1da177e4 371 return result;
1da177e4
LT
372
373 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
374 sensebuf, buflen, NULL);
0dc08a35 375 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1da177e4
LT
376}
377
378/*
379 * Read Command: 12 bytes.
380 * byte 0: opcode: E8
381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
382 * 10: read both, 11: read pagewise control.
383 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
384 * bytes 2-5: address (interpretation depends on byte 1, see below)
385 * bytes 10-11: count (idem)
386 *
387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
388 * A read data command gets data in 512-byte pages.
389 * A read control command gets control in 64-byte chunks.
390 * A read both command gets data+control in 576-byte chunks.
391 *
392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
393 * next block, while read pagewise control jumps to the next page after
394 * reading a group of 64 control bytes.
395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
396 *
397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
398 */
399
400static int
401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
402 int nr_of_pages, int bulklen, unsigned char *buf,
403 int use_sg) {
404
405 unsigned char *command = us->iobuf;
406 int result;
407
408 command[0] = 0xE8;
409 command[1] = LUNBITS | x;
410 command[2] = MSB_of(fromaddress>>16);
411 command[3] = LSB_of(fromaddress>>16);
412 command[4] = MSB_of(fromaddress & 0xFFFF);
413 command[5] = LSB_of(fromaddress & 0xFFFF);
414 command[6] = 0;
415 command[7] = 0;
416 command[8] = 0;
417 command[9] = 0;
418 command[10] = MSB_of(nr_of_pages);
419 command[11] = LSB_of(nr_of_pages);
420
421 result = sddr09_send_scsi_command(us, command, 12);
422
0dc08a35 423 if (result) {
191648d0
JP
424 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
425 x, result);
1da177e4
LT
426 return result;
427 }
428
429 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
430 buf, bulklen, use_sg, NULL);
431
432 if (result != USB_STOR_XFER_GOOD) {
191648d0
JP
433 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
434 x, result);
0dc08a35 435 return -EIO;
1da177e4 436 }
0dc08a35 437 return 0;
1da177e4
LT
438}
439
440/*
441 * Read Data
442 *
443 * fromaddress counts data shorts:
444 * increasing it by 256 shifts the bytestream by 512 bytes;
445 * the last 8 bits are ignored.
446 *
447 * nr_of_pages counts pages of size (1 << pageshift).
448 */
449static int
450sddr09_read20(struct us_data *us, unsigned long fromaddress,
451 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
452 int bulklen = nr_of_pages << pageshift;
453
454 /* The last 8 bits of fromaddress are ignored. */
455 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
456 buf, use_sg);
457}
458
459/*
460 * Read Blockwise Control
461 *
462 * fromaddress gives the starting position (as in read data;
463 * the last 8 bits are ignored); increasing it by 32*256 shifts
464 * the output stream by 64 bytes.
465 *
466 * count counts control groups of size (1 << controlshift).
467 * For me, controlshift = 6. Is this constant?
468 *
469 * After getting one control group, jump to the next block
470 * (fromaddress += 8192).
471 */
472static int
473sddr09_read21(struct us_data *us, unsigned long fromaddress,
474 int count, int controlshift, unsigned char *buf, int use_sg) {
475
476 int bulklen = (count << controlshift);
477 return sddr09_readX(us, 1, fromaddress, count, bulklen,
478 buf, use_sg);
479}
480
481/*
482 * Read both Data and Control
483 *
484 * fromaddress counts data shorts, ignoring control:
485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
486 * the last 8 bits are ignored.
487 *
488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
489 */
490static int
491sddr09_read22(struct us_data *us, unsigned long fromaddress,
492 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
493
494 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
191648d0 495 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
1da177e4
LT
496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
497 buf, use_sg);
498}
499
500#if 0
501/*
502 * Read Pagewise Control
503 *
504 * fromaddress gives the starting position (as in read data;
505 * the last 8 bits are ignored); increasing it by 256 shifts
506 * the output stream by 64 bytes.
507 *
508 * count counts control groups of size (1 << controlshift).
509 * For me, controlshift = 6. Is this constant?
510 *
511 * After getting one control group, jump to the next page
512 * (fromaddress += 256).
513 */
514static int
515sddr09_read23(struct us_data *us, unsigned long fromaddress,
516 int count, int controlshift, unsigned char *buf, int use_sg) {
517
518 int bulklen = (count << controlshift);
519 return sddr09_readX(us, 3, fromaddress, count, bulklen,
520 buf, use_sg);
521}
522#endif
523
524/*
525 * Erase Command: 12 bytes.
526 * byte 0: opcode: EA
527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
528 *
529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
530 * The byte address being erased is 2*Eaddress.
531 * The CIS cannot be erased.
532 */
533static int
534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
535 unsigned char *command = us->iobuf;
536 int result;
537
191648d0 538 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
1da177e4
LT
539
540 memset(command, 0, 12);
541 command[0] = 0xEA;
542 command[1] = LUNBITS;
543 command[6] = MSB_of(Eaddress>>16);
544 command[7] = LSB_of(Eaddress>>16);
545 command[8] = MSB_of(Eaddress & 0xFFFF);
546 command[9] = LSB_of(Eaddress & 0xFFFF);
547
548 result = sddr09_send_scsi_command(us, command, 12);
549
0dc08a35 550 if (result)
191648d0
JP
551 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
552 result);
1da177e4
LT
553
554 return result;
555}
556
557/*
558 * Write CIS Command: 12 bytes.
559 * byte 0: opcode: EE
560 * bytes 2-5: write address in shorts
561 * bytes 10-11: sector count
562 *
563 * This writes at the indicated address. Don't know how it differs
564 * from E9. Maybe it does not erase? However, it will also write to
565 * the CIS.
566 *
567 * When two such commands on the same page follow each other directly,
568 * the second one is not done.
569 */
570
571/*
572 * Write Command: 12 bytes.
573 * byte 0: opcode: E9
574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
577 *
578 * If write address equals erase address, the erase is done first,
579 * otherwise the write is done first. When erase address equals zero
580 * no erase is done?
581 */
582static int
583sddr09_writeX(struct us_data *us,
584 unsigned long Waddress, unsigned long Eaddress,
585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
586
587 unsigned char *command = us->iobuf;
588 int result;
589
590 command[0] = 0xE9;
591 command[1] = LUNBITS;
592
593 command[2] = MSB_of(Waddress>>16);
594 command[3] = LSB_of(Waddress>>16);
595 command[4] = MSB_of(Waddress & 0xFFFF);
596 command[5] = LSB_of(Waddress & 0xFFFF);
597
598 command[6] = MSB_of(Eaddress>>16);
599 command[7] = LSB_of(Eaddress>>16);
600 command[8] = MSB_of(Eaddress & 0xFFFF);
601 command[9] = LSB_of(Eaddress & 0xFFFF);
602
603 command[10] = MSB_of(nr_of_pages);
604 command[11] = LSB_of(nr_of_pages);
605
606 result = sddr09_send_scsi_command(us, command, 12);
607
0dc08a35 608 if (result) {
191648d0
JP
609 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
610 result);
1da177e4
LT
611 return result;
612 }
613
614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
615 buf, bulklen, use_sg, NULL);
616
617 if (result != USB_STOR_XFER_GOOD) {
191648d0
JP
618 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
619 result);
0dc08a35 620 return -EIO;
1da177e4 621 }
0dc08a35 622 return 0;
1da177e4
LT
623}
624
625/* erase address, write same address */
626static int
627sddr09_write_inplace(struct us_data *us, unsigned long address,
628 int nr_of_pages, int pageshift, unsigned char *buf,
629 int use_sg) {
630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
632 buf, use_sg);
633}
634
635#if 0
636/*
637 * Read Scatter Gather Command: 3+4n bytes.
638 * byte 0: opcode E7
639 * byte 2: n
640 * bytes 4i-1,4i,4i+1: page address
641 * byte 4i+2: page count
642 * (i=1..n)
643 *
644 * This reads several pages from the card to a single memory buffer.
645 * The last two bits of byte 1 have the same meaning as for E8.
646 */
647static int
648sddr09_read_sg_test_only(struct us_data *us) {
649 unsigned char *command = us->iobuf;
650 int result, bulklen, nsg, ct;
651 unsigned char *buf;
652 unsigned long address;
653
654 nsg = bulklen = 0;
655 command[0] = 0xE7;
656 command[1] = LUNBITS;
657 command[2] = 0;
658 address = 040000; ct = 1;
659 nsg++;
660 bulklen += (ct << 9);
661 command[4*nsg+2] = ct;
662 command[4*nsg+1] = ((address >> 9) & 0xFF);
663 command[4*nsg+0] = ((address >> 17) & 0xFF);
664 command[4*nsg-1] = ((address >> 25) & 0xFF);
665
666 address = 0340000; ct = 1;
667 nsg++;
668 bulklen += (ct << 9);
669 command[4*nsg+2] = ct;
670 command[4*nsg+1] = ((address >> 9) & 0xFF);
671 command[4*nsg+0] = ((address >> 17) & 0xFF);
672 command[4*nsg-1] = ((address >> 25) & 0xFF);
673
674 address = 01000000; ct = 2;
675 nsg++;
676 bulklen += (ct << 9);
677 command[4*nsg+2] = ct;
678 command[4*nsg+1] = ((address >> 9) & 0xFF);
679 command[4*nsg+0] = ((address >> 17) & 0xFF);
680 command[4*nsg-1] = ((address >> 25) & 0xFF);
681
682 command[2] = nsg;
683
684 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
685
0dc08a35 686 if (result) {
191648d0
JP
687 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
688 result);
1da177e4
LT
689 return result;
690 }
691
5cbded58 692 buf = kmalloc(bulklen, GFP_NOIO);
1da177e4 693 if (!buf)
0dc08a35 694 return -ENOMEM;
1da177e4
LT
695
696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
697 buf, bulklen, NULL);
698 kfree(buf);
699 if (result != USB_STOR_XFER_GOOD) {
191648d0
JP
700 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
701 result);
0dc08a35 702 return -EIO;
1da177e4
LT
703 }
704
0dc08a35 705 return 0;
1da177e4
LT
706}
707#endif
708
709/*
710 * Read Status Command: 12 bytes.
711 * byte 0: opcode: EC
712 *
713 * Returns 64 bytes, all zero except for the first.
714 * bit 0: 1: Error
715 * bit 5: 1: Suspended
716 * bit 6: 1: Ready
717 * bit 7: 1: Not write-protected
718 */
719
720static int
721sddr09_read_status(struct us_data *us, unsigned char *status) {
722
723 unsigned char *command = us->iobuf;
724 unsigned char *data = us->iobuf;
725 int result;
726
191648d0 727 usb_stor_dbg(us, "Reading status...\n");
1da177e4
LT
728
729 memset(command, 0, 12);
730 command[0] = 0xEC;
731 command[1] = LUNBITS;
732
733 result = sddr09_send_scsi_command(us, command, 12);
0dc08a35 734 if (result)
1da177e4
LT
735 return result;
736
737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
738 data, 64, NULL);
739 *status = data[0];
0dc08a35 740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1da177e4
LT
741}
742
743static int
744sddr09_read_data(struct us_data *us,
745 unsigned long address,
746 unsigned int sectors) {
747
748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
749 unsigned char *buffer;
750 unsigned int lba, maxlba, pba;
751 unsigned int page, pages;
1f6f31a0
JA
752 unsigned int len, offset;
753 struct scatterlist *sg;
1da177e4
LT
754 int result;
755
a6c976c6
MD
756 // Figure out the initial LBA and page
757 lba = address >> info->blockshift;
758 page = (address & info->blockmask);
759 maxlba = info->capacity >> (info->pageshift + info->blockshift);
760 if (lba >= maxlba)
761 return -EIO;
762
1da177e4
LT
763 // Since we only read in one block at a time, we have to create
764 // a bounce buffer and move the data a piece at a time between the
765 // bounce buffer and the actual transfer buffer.
766
767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
768 buffer = kmalloc(len, GFP_NOIO);
fd233925 769 if (!buffer)
0dc08a35 770 return -ENOMEM;
1da177e4 771
1da177e4
LT
772 // This could be made much more efficient by checking for
773 // contiguous LBA's. Another exercise left to the student.
774
0dc08a35 775 result = 0;
1f6f31a0
JA
776 offset = 0;
777 sg = NULL;
1da177e4
LT
778
779 while (sectors > 0) {
780
781 /* Find number of pages we can read in this block */
782 pages = min(sectors, info->blocksize - page);
783 len = pages << info->pageshift;
784
785 /* Not overflowing capacity? */
786 if (lba >= maxlba) {
191648d0
JP
787 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
788 lba, maxlba);
0dc08a35 789 result = -EIO;
1da177e4
LT
790 break;
791 }
792
793 /* Find where this lba lives on disk */
794 pba = info->lba_to_pba[lba];
795
796 if (pba == UNDEF) { /* this lba was never written */
797
191648d0
JP
798 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
799 pages, lba, page);
1da177e4 800
f0183a33
FB
801 /*
802 * This is not really an error. It just means
803 * that the block has never been written.
804 * Instead of returning an error
805 * it is better to return all zero data.
806 */
1da177e4
LT
807
808 memset(buffer, 0, len);
809
810 } else {
191648d0
JP
811 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
812 pages, pba, lba, page);
1da177e4
LT
813
814 address = ((pba << info->blockshift) + page) <<
815 info->pageshift;
816
817 result = sddr09_read20(us, address>>1,
818 pages, info->pageshift, buffer, 0);
0dc08a35 819 if (result)
1da177e4
LT
820 break;
821 }
822
823 // Store the data in the transfer buffer
824 usb_stor_access_xfer_buf(buffer, len, us->srb,
1f6f31a0 825 &sg, &offset, TO_XFER_BUF);
1da177e4
LT
826
827 page = 0;
828 lba++;
829 sectors -= pages;
830 }
831
832 kfree(buffer);
833 return result;
834}
835
836static unsigned int
837sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
838 static unsigned int lastpba = 1;
839 int zonestart, end, i;
840
841 zonestart = (lba/1000) << 10;
842 end = info->capacity >> (info->blockshift + info->pageshift);
843 end -= zonestart;
844 if (end > 1024)
845 end = 1024;
846
847 for (i = lastpba+1; i < end; i++) {
848 if (info->pba_to_lba[zonestart+i] == UNDEF) {
849 lastpba = i;
850 return zonestart+i;
851 }
852 }
853 for (i = 0; i <= lastpba; i++) {
854 if (info->pba_to_lba[zonestart+i] == UNDEF) {
855 lastpba = i;
856 return zonestart+i;
857 }
858 }
859 return 0;
860}
861
862static int
863sddr09_write_lba(struct us_data *us, unsigned int lba,
864 unsigned int page, unsigned int pages,
865 unsigned char *ptr, unsigned char *blockbuffer) {
866
867 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
868 unsigned long address;
869 unsigned int pba, lbap;
870 unsigned int pagelen;
871 unsigned char *bptr, *cptr, *xptr;
872 unsigned char ecc[3];
92190e36 873 int i, result;
1da177e4
LT
874
875 lbap = ((lba % 1000) << 1) | 0x1000;
876 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
877 lbap ^= 1;
878 pba = info->lba_to_pba[lba];
1da177e4
LT
879
880 if (pba == UNDEF) {
881 pba = sddr09_find_unused_pba(info, lba);
882 if (!pba) {
6f8aa65b
FS
883 printk(KERN_WARNING
884 "sddr09_write_lba: Out of unused blocks\n");
0dc08a35 885 return -ENOSPC;
1da177e4
LT
886 }
887 info->pba_to_lba[pba] = lba;
888 info->lba_to_pba[lba] = pba;
1da177e4
LT
889 }
890
891 if (pba == 1) {
f0183a33
FB
892 /*
893 * Maybe it is impossible to write to PBA 1.
894 * Fake success, but don't do anything.
895 */
6f8aa65b 896 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
0dc08a35 897 return 0;
1da177e4
LT
898 }
899
900 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
901
902 /* read old contents */
903 address = (pba << (info->pageshift + info->blockshift));
904 result = sddr09_read22(us, address>>1, info->blocksize,
905 info->pageshift, blockbuffer, 0);
0dc08a35 906 if (result)
1da177e4
LT
907 return result;
908
909 /* check old contents and fill lba */
910 for (i = 0; i < info->blocksize; i++) {
911 bptr = blockbuffer + i*pagelen;
912 cptr = bptr + info->pagesize;
913 nand_compute_ecc(bptr, ecc);
914 if (!nand_compare_ecc(cptr+13, ecc)) {
191648d0
JP
915 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
916 i, pba);
1da177e4
LT
917 nand_store_ecc(cptr+13, ecc);
918 }
919 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
920 if (!nand_compare_ecc(cptr+8, ecc)) {
191648d0
JP
921 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
922 i, pba);
1da177e4
LT
923 nand_store_ecc(cptr+8, ecc);
924 }
925 cptr[6] = cptr[11] = MSB_of(lbap);
926 cptr[7] = cptr[12] = LSB_of(lbap);
927 }
928
929 /* copy in new stuff and compute ECC */
930 xptr = ptr;
931 for (i = page; i < page+pages; i++) {
932 bptr = blockbuffer + i*pagelen;
933 cptr = bptr + info->pagesize;
934 memcpy(bptr, xptr, info->pagesize);
935 xptr += info->pagesize;
936 nand_compute_ecc(bptr, ecc);
937 nand_store_ecc(cptr+13, ecc);
938 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
939 nand_store_ecc(cptr+8, ecc);
940 }
941
191648d0 942 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
1da177e4
LT
943
944 result = sddr09_write_inplace(us, address>>1, info->blocksize,
945 info->pageshift, blockbuffer, 0);
946
191648d0 947 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
1da177e4
LT
948
949#if 0
950 {
951 unsigned char status = 0;
952 int result2 = sddr09_read_status(us, &status);
0dc08a35 953 if (result2)
191648d0 954 usb_stor_dbg(us, "cannot read status\n");
1da177e4 955 else if (status != 0xc0)
191648d0 956 usb_stor_dbg(us, "status after write: 0x%x\n", status);
1da177e4
LT
957 }
958#endif
959
960#if 0
961 {
962 int result2 = sddr09_test_unit_ready(us);
963 }
964#endif
965
966 return result;
967}
968
969static int
970sddr09_write_data(struct us_data *us,
971 unsigned long address,
972 unsigned int sectors) {
973
974 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
a6c976c6 975 unsigned int lba, maxlba, page, pages;
1da177e4
LT
976 unsigned int pagelen, blocklen;
977 unsigned char *blockbuffer;
978 unsigned char *buffer;
1f6f31a0
JA
979 unsigned int len, offset;
980 struct scatterlist *sg;
1da177e4
LT
981 int result;
982
f0183a33 983 /* Figure out the initial LBA and page */
a6c976c6
MD
984 lba = address >> info->blockshift;
985 page = (address & info->blockmask);
986 maxlba = info->capacity >> (info->pageshift + info->blockshift);
987 if (lba >= maxlba)
988 return -EIO;
989
f0183a33
FB
990 /*
991 * blockbuffer is used for reading in the old data, overwriting
992 * with the new data, and performing ECC calculations
993 */
1da177e4 994
f0183a33
FB
995 /*
996 * TODO: instead of doing kmalloc/kfree for each write,
997 * add a bufferpointer to the info structure
998 */
1da177e4
LT
999
1000 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1001 blocklen = (pagelen << info->blockshift);
1002 blockbuffer = kmalloc(blocklen, GFP_NOIO);
fd233925 1003 if (!blockbuffer)
0dc08a35 1004 return -ENOMEM;
1da177e4 1005
f0183a33
FB
1006 /*
1007 * Since we don't write the user data directly to the device,
1008 * we have to create a bounce buffer and move the data a piece
1009 * at a time between the bounce buffer and the actual transfer buffer.
1010 */
1da177e4
LT
1011
1012 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1013 buffer = kmalloc(len, GFP_NOIO);
fd233925 1014 if (!buffer) {
1da177e4 1015 kfree(blockbuffer);
0dc08a35 1016 return -ENOMEM;
1da177e4
LT
1017 }
1018
0dc08a35 1019 result = 0;
1f6f31a0
JA
1020 offset = 0;
1021 sg = NULL;
1da177e4
LT
1022
1023 while (sectors > 0) {
1024
f0183a33 1025 /* Write as many sectors as possible in this block */
1da177e4
LT
1026
1027 pages = min(sectors, info->blocksize - page);
1028 len = (pages << info->pageshift);
1029
a6c976c6
MD
1030 /* Not overflowing capacity? */
1031 if (lba >= maxlba) {
191648d0
JP
1032 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1033 lba, maxlba);
a6c976c6
MD
1034 result = -EIO;
1035 break;
1036 }
1037
f0183a33 1038 /* Get the data from the transfer buffer */
1da177e4 1039 usb_stor_access_xfer_buf(buffer, len, us->srb,
1f6f31a0 1040 &sg, &offset, FROM_XFER_BUF);
1da177e4
LT
1041
1042 result = sddr09_write_lba(us, lba, page, pages,
1043 buffer, blockbuffer);
0dc08a35 1044 if (result)
1da177e4
LT
1045 break;
1046
1047 page = 0;
1048 lba++;
1049 sectors -= pages;
1050 }
1051
1052 kfree(buffer);
1053 kfree(blockbuffer);
1054
1055 return result;
1056}
1057
1058static int
1059sddr09_read_control(struct us_data *us,
1060 unsigned long address,
1061 unsigned int blocks,
1062 unsigned char *content,
1063 int use_sg) {
1064
191648d0
JP
1065 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1066 address, blocks);
1da177e4
LT
1067
1068 return sddr09_read21(us, address, blocks,
1069 CONTROL_SHIFT, content, use_sg);
1070}
1071
1072/*
1073 * Read Device ID Command: 12 bytes.
1074 * byte 0: opcode: ED
1075 *
1076 * Returns 2 bytes: Manufacturer ID and Device ID.
1077 * On more recent cards 3 bytes: the third byte is an option code A5
1078 * signifying that the secret command to read an 128-bit ID is available.
1079 * On still more recent cards 4 bytes: the fourth byte C0 means that
1080 * a second read ID cmd is available.
1081 */
1082static int
1083sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1084 unsigned char *command = us->iobuf;
1085 unsigned char *content = us->iobuf;
1086 int result, i;
1087
1088 memset(command, 0, 12);
1089 command[0] = 0xED;
1090 command[1] = LUNBITS;
1091
1092 result = sddr09_send_scsi_command(us, command, 12);
0dc08a35 1093 if (result)
1da177e4
LT
1094 return result;
1095
1096 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1097 content, 64, NULL);
1098
1099 for (i = 0; i < 4; i++)
1100 deviceID[i] = content[i];
1101
0dc08a35 1102 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1da177e4
LT
1103}
1104
1105static int
1106sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1107 int result;
1108 unsigned char status;
ef976ea3 1109 const char *wp_fmt;
1da177e4
LT
1110
1111 result = sddr09_read_status(us, &status);
0dc08a35 1112 if (result) {
191648d0 1113 usb_stor_dbg(us, "read_status fails\n");
1da177e4
LT
1114 return result;
1115 }
1da177e4
LT
1116 if ((status & 0x80) == 0) {
1117 info->flags |= SDDR09_WP; /* write protected */
ef976ea3
VD
1118 wp_fmt = " WP";
1119 } else {
1120 wp_fmt = "";
1da177e4 1121 }
ef976ea3
VD
1122 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1123 status & 0x40 ? " Ready" : "",
1124 status & LUNBITS ? " Suspended" : "",
1125 status & 0x01 ? " Error" : "");
1126
0dc08a35 1127 return 0;
1da177e4
LT
1128}
1129
1130#if 0
1131/*
1132 * Reset Command: 12 bytes.
1133 * byte 0: opcode: EB
1134 */
1135static int
1136sddr09_reset(struct us_data *us) {
1137
1138 unsigned char *command = us->iobuf;
1139
1140 memset(command, 0, 12);
1141 command[0] = 0xEB;
1142 command[1] = LUNBITS;
1143
1144 return sddr09_send_scsi_command(us, command, 12);
1145}
1146#endif
1147
1148static struct nand_flash_dev *
1149sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1150 struct nand_flash_dev *cardinfo;
1151 unsigned char deviceID[4];
1152 char blurbtxt[256];
1153 int result;
1154
191648d0 1155 usb_stor_dbg(us, "Reading capacity...\n");
1da177e4
LT
1156
1157 result = sddr09_read_deviceID(us, deviceID);
1158
0dc08a35 1159 if (result) {
191648d0 1160 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
6f8aa65b 1161 printk(KERN_WARNING "sddr09: could not read card info\n");
1da177e4
LT
1162 return NULL;
1163 }
1164
7adce467 1165 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1da177e4
LT
1166
1167 /* Byte 0 is the manufacturer */
1168 sprintf(blurbtxt + strlen(blurbtxt),
1169 ": Manuf. %s",
1170 nand_flash_manufacturer(deviceID[0]));
1171
1172 /* Byte 1 is the device type */
1173 cardinfo = nand_find_id(deviceID[1]);
1174 if (cardinfo) {
f0183a33
FB
1175 /*
1176 * MB or MiB? It is neither. A 16 MB card has
1177 * 17301504 raw bytes, of which 16384000 are
1178 * usable for user data.
1179 */
1da177e4
LT
1180 sprintf(blurbtxt + strlen(blurbtxt),
1181 ", %d MB", 1<<(cardinfo->chipshift - 20));
1182 } else {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", type unrecognized");
1185 }
1186
1187 /* Byte 2 is code to signal availability of 128-bit ID */
1188 if (deviceID[2] == 0xa5) {
1189 sprintf(blurbtxt + strlen(blurbtxt),
1190 ", 128-bit ID");
1191 }
1192
1193 /* Byte 3 announces the availability of another read ID command */
1194 if (deviceID[3] == 0xc0) {
1195 sprintf(blurbtxt + strlen(blurbtxt),
1196 ", extra cmd");
1197 }
1198
1199 if (flags & SDDR09_WP)
1200 sprintf(blurbtxt + strlen(blurbtxt),
1201 ", WP");
1202
6f8aa65b 1203 printk(KERN_WARNING "%s\n", blurbtxt);
1da177e4
LT
1204
1205 return cardinfo;
1206}
1207
1208static int
1209sddr09_read_map(struct us_data *us) {
1210
1211 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1212 int numblocks, alloc_len, alloc_blocks;
1213 int i, j, result;
1214 unsigned char *buffer, *buffer_end, *ptr;
1215 unsigned int lba, lbact;
1216
1217 if (!info->capacity)
1218 return -1;
1219
f0183a33
FB
1220 /*
1221 * size of a block is 1 << (blockshift + pageshift) bytes
1222 * divide into the total capacity to get the number of blocks
1223 */
1da177e4
LT
1224
1225 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1226
f0183a33
FB
1227 /*
1228 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1229 * but only use a 64 KB buffer
1230 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1231 */
1da177e4
LT
1232#define SDDR09_READ_MAP_BUFSZ 65536
1233
1234 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1235 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1236 buffer = kmalloc(alloc_len, GFP_NOIO);
fd233925 1237 if (!buffer) {
1da177e4
LT
1238 result = -1;
1239 goto done;
1240 }
1241 buffer_end = buffer + alloc_len;
1242
1243#undef SDDR09_READ_MAP_BUFSZ
1244
1245 kfree(info->lba_to_pba);
1246 kfree(info->pba_to_lba);
1247 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1248 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1249
1250 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
6f8aa65b 1251 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1da177e4
LT
1252 result = -1;
1253 goto done;
1254 }
1255
1256 for (i = 0; i < numblocks; i++)
1257 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1258
1259 /*
1260 * Define lba-pba translation table
1261 */
1262
1263 ptr = buffer_end;
1264 for (i = 0; i < numblocks; i++) {
1265 ptr += (1 << CONTROL_SHIFT);
1266 if (ptr >= buffer_end) {
1267 unsigned long address;
1268
1269 address = i << (info->pageshift + info->blockshift);
1270 result = sddr09_read_control(
1271 us, address>>1,
1272 min(alloc_blocks, numblocks - i),
1273 buffer, 0);
0dc08a35 1274 if (result) {
1da177e4
LT
1275 result = -1;
1276 goto done;
1277 }
1278 ptr = buffer;
1279 }
1280
1281 if (i == 0 || i == 1) {
1282 info->pba_to_lba[i] = UNUSABLE;
1283 continue;
1284 }
1285
1286 /* special PBAs have control field 0^16 */
1287 for (j = 0; j < 16; j++)
1288 if (ptr[j] != 0)
1289 goto nonz;
1290 info->pba_to_lba[i] = UNUSABLE;
6f8aa65b
FS
1291 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1292 i);
1da177e4
LT
1293 continue;
1294
1295 nonz:
1296 /* unwritten PBAs have control field FF^16 */
1297 for (j = 0; j < 16; j++)
1298 if (ptr[j] != 0xff)
1299 goto nonff;
1300 continue;
1301
1302 nonff:
1303 /* normal PBAs start with six FFs */
1304 if (j < 6) {
6f8aa65b
FS
1305 printk(KERN_WARNING
1306 "sddr09: PBA %d has no logical mapping: "
1da177e4
LT
1307 "reserved area = %02X%02X%02X%02X "
1308 "data status %02X block status %02X\n",
1309 i, ptr[0], ptr[1], ptr[2], ptr[3],
1310 ptr[4], ptr[5]);
1311 info->pba_to_lba[i] = UNUSABLE;
1312 continue;
1313 }
1314
1315 if ((ptr[6] >> 4) != 0x01) {
6f8aa65b
FS
1316 printk(KERN_WARNING
1317 "sddr09: PBA %d has invalid address field "
1da177e4
LT
1318 "%02X%02X/%02X%02X\n",
1319 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1320 info->pba_to_lba[i] = UNUSABLE;
1321 continue;
1322 }
1323
1324 /* check even parity */
1325 if (parity[ptr[6] ^ ptr[7]]) {
6f8aa65b
FS
1326 printk(KERN_WARNING
1327 "sddr09: Bad parity in LBA for block %d"
1da177e4
LT
1328 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1329 info->pba_to_lba[i] = UNUSABLE;
1330 continue;
1331 }
1332
1333 lba = short_pack(ptr[7], ptr[6]);
1334 lba = (lba & 0x07FF) >> 1;
1335
1336 /*
1337 * Every 1024 physical blocks ("zone"), the LBA numbers
1338 * go back to zero, but are within a higher block of LBA's.
1339 * Also, there is a maximum of 1000 LBA's per zone.
1340 * In other words, in PBA 1024-2047 you will find LBA 0-999
1341 * which are really LBA 1000-1999. This allows for 24 bad
1342 * or special physical blocks per zone.
1343 */
1344
1345 if (lba >= 1000) {
6f8aa65b
FS
1346 printk(KERN_WARNING
1347 "sddr09: Bad low LBA %d for block %d\n",
1da177e4
LT
1348 lba, i);
1349 goto possibly_erase;
1350 }
1351
1352 lba += 1000*(i/0x400);
1353
1354 if (info->lba_to_pba[lba] != UNDEF) {
6f8aa65b
FS
1355 printk(KERN_WARNING
1356 "sddr09: LBA %d seen for PBA %d and %d\n",
1da177e4
LT
1357 lba, info->lba_to_pba[lba], i);
1358 goto possibly_erase;
1359 }
1360
1361 info->pba_to_lba[i] = lba;
1362 info->lba_to_pba[lba] = i;
1363 continue;
1364
1365 possibly_erase:
1366 if (erase_bad_lba_entries) {
1367 unsigned long address;
1368
1369 address = (i << (info->pageshift + info->blockshift));
1370 sddr09_erase(us, address>>1);
1371 info->pba_to_lba[i] = UNDEF;
1372 } else
1373 info->pba_to_lba[i] = UNUSABLE;
1374 }
1375
1376 /*
1377 * Approximate capacity. This is not entirely correct yet,
1378 * since a zone with less than 1000 usable pages leads to
1379 * missing LBAs. Especially if it is the last zone, some
1380 * LBAs can be past capacity.
1381 */
1382 lbact = 0;
1383 for (i = 0; i < numblocks; i += 1024) {
1384 int ct = 0;
1385
1386 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1387 if (info->pba_to_lba[i+j] != UNUSABLE) {
1388 if (ct >= 1000)
1389 info->pba_to_lba[i+j] = SPARE;
1390 else
1391 ct++;
1392 }
1393 }
1394 lbact += ct;
1395 }
1396 info->lbact = lbact;
191648d0 1397 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1da177e4
LT
1398 result = 0;
1399
1400 done:
1401 if (result != 0) {
1402 kfree(info->lba_to_pba);
1403 kfree(info->pba_to_lba);
1404 info->lba_to_pba = NULL;
1405 info->pba_to_lba = NULL;
1406 }
1407 kfree(buffer);
1408 return result;
1409}
1410
1411static void
1412sddr09_card_info_destructor(void *extra) {
1413 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1414
1415 if (!info)
1416 return;
1417
1418 kfree(info->lba_to_pba);
1419 kfree(info->pba_to_lba);
1420}
1421
f5b8cb9c
MD
1422static int
1423sddr09_common_init(struct us_data *us) {
1424 int result;
1425
1426 /* set the configuration -- STALL is an acceptable response here */
1427 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
191648d0
JP
1428 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1429 us->pusb_dev->actconfig->desc.bConfigurationValue);
f5b8cb9c
MD
1430 return -EINVAL;
1431 }
1432
1433 result = usb_reset_configuration(us->pusb_dev);
191648d0 1434 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
f5b8cb9c 1435 if (result == -EPIPE) {
191648d0 1436 usb_stor_dbg(us, "-- stall on control interface\n");
f5b8cb9c
MD
1437 } else if (result != 0) {
1438 /* it's not a stall, but another error -- time to bail */
191648d0 1439 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
f5b8cb9c 1440 return -EINVAL;
1da177e4 1441 }
f5b8cb9c
MD
1442
1443 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1444 if (!us->extra)
1445 return -ENOMEM;
1446 us->extra_destructor = sddr09_card_info_destructor;
1447
1448 nand_init_ecc();
1449 return 0;
1da177e4
LT
1450}
1451
f5b8cb9c 1452
1da177e4
LT
1453/*
1454 * This is needed at a very early stage. If this is not listed in the
1455 * unusual devices list but called from here then LUN 0 of the combo reader
1456 * is not recognized. But I do not know what precisely these calls do.
1457 */
0ff71883 1458static int
f5b8cb9c 1459usb_stor_sddr09_dpcm_init(struct us_data *us) {
1da177e4
LT
1460 int result;
1461 unsigned char *data = us->iobuf;
1462
f5b8cb9c
MD
1463 result = sddr09_common_init(us);
1464 if (result)
1465 return result;
1466
1da177e4 1467 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
0dc08a35 1468 if (result) {
191648d0 1469 usb_stor_dbg(us, "send_command fails\n");
1da177e4
LT
1470 return result;
1471 }
1472
191648d0 1473 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1da177e4
LT
1474 // get 07 02
1475
1476 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
0dc08a35 1477 if (result) {
191648d0 1478 usb_stor_dbg(us, "2nd send_command fails\n");
1da177e4
LT
1479 return result;
1480 }
1481
191648d0 1482 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1da177e4
LT
1483 // get 07 00
1484
1485 result = sddr09_request_sense(us, data, 18);
0dc08a35 1486 if (result == 0 && data[2] != 0) {
1da177e4
LT
1487 int j;
1488 for (j=0; j<18; j++)
1489 printk(" %02X", data[j]);
1490 printk("\n");
1491 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1492 // 70: current command
1493 // sense key 0, sense code 0, extd sense code 0
1494 // additional transfer length * = sizeof(data) - 7
1495 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1496 // sense key 06, sense code 28: unit attention,
1497 // not ready to ready transition
1498 }
1499
1500 // test unit ready
1501
f5b8cb9c 1502 return 0; /* not result */
1da177e4
LT
1503}
1504
c20b15fd
AS
1505/*
1506 * Transport for the Microtech DPCM-USB
1507 */
0ff71883 1508static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
c20b15fd
AS
1509{
1510 int ret;
1511
9cb78c16 1512 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
c20b15fd
AS
1513
1514 switch (srb->device->lun) {
1515 case 0:
1516
1517 /*
1518 * LUN 0 corresponds to the CompactFlash card reader.
1519 */
1520 ret = usb_stor_CB_transport(srb, us);
1521 break;
1522
1523 case 1:
1524
1525 /*
1526 * LUN 1 corresponds to the SmartMedia card reader.
1527 */
1528
1529 /*
1530 * Set the LUN to 0 (just in case).
1531 */
1532 srb->device->lun = 0;
1533 ret = sddr09_transport(srb, us);
1534 srb->device->lun = 1;
1535 break;
1536
1537 default:
9cb78c16 1538 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
c20b15fd
AS
1539 ret = USB_STOR_TRANSPORT_ERROR;
1540 break;
1541 }
1542 return ret;
1543}
1544
1545
1da177e4
LT
1546/*
1547 * Transport for the Sandisk SDDR-09
1548 */
0ff71883 1549static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1da177e4
LT
1550{
1551 static unsigned char sensekey = 0, sensecode = 0;
1552 static unsigned char havefakesense = 0;
1553 int result, i;
1554 unsigned char *ptr = us->iobuf;
1555 unsigned long capacity;
1556 unsigned int page, pages;
1557
1558 struct sddr09_card_info *info;
1559
1560 static unsigned char inquiry_response[8] = {
1561 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1562 };
1563
1564 /* note: no block descriptor support */
1565 static unsigned char mode_page_01[19] = {
1566 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1567 0x01, 0x0A,
1568 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1569 };
1570
1571 info = (struct sddr09_card_info *)us->extra;
1da177e4
LT
1572
1573 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1574 /* for a faked command, we have to follow with a faked sense */
1575 memset(ptr, 0, 18);
1576 ptr[0] = 0x70;
1577 ptr[2] = sensekey;
1578 ptr[7] = 11;
1579 ptr[12] = sensecode;
1580 usb_stor_set_xfer_buf(ptr, 18, srb);
1581 sensekey = sensecode = havefakesense = 0;
1582 return USB_STOR_TRANSPORT_GOOD;
1583 }
1584
1585 havefakesense = 1;
1586
f0183a33
FB
1587 /*
1588 * Dummy up a response for INQUIRY since SDDR09 doesn't
1589 * respond to INQUIRY commands
1590 */
1da177e4
LT
1591
1592 if (srb->cmnd[0] == INQUIRY) {
1593 memcpy(ptr, inquiry_response, 8);
1594 fill_inquiry_response(us, ptr, 36);
1595 return USB_STOR_TRANSPORT_GOOD;
1596 }
1597
1598 if (srb->cmnd[0] == READ_CAPACITY) {
1599 struct nand_flash_dev *cardinfo;
1600
1601 sddr09_get_wp(us, info); /* read WP bit */
1602
1603 cardinfo = sddr09_get_cardinfo(us, info->flags);
1604 if (!cardinfo) {
1605 /* probably no media */
1606 init_error:
1607 sensekey = 0x02; /* not ready */
1608 sensecode = 0x3a; /* medium not present */
1609 return USB_STOR_TRANSPORT_FAILED;
1610 }
1611
1612 info->capacity = (1 << cardinfo->chipshift);
1613 info->pageshift = cardinfo->pageshift;
1614 info->pagesize = (1 << info->pageshift);
1615 info->blockshift = cardinfo->blockshift;
1616 info->blocksize = (1 << info->blockshift);
1617 info->blockmask = info->blocksize - 1;
1618
1619 // map initialization, must follow get_cardinfo()
1620 if (sddr09_read_map(us)) {
1621 /* probably out of memory */
1622 goto init_error;
1623 }
1624
1625 // Report capacity
1626
1627 capacity = (info->lbact << info->blockshift) - 1;
1628
1629 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1630
1631 // Report page size
1632
1633 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1634 usb_stor_set_xfer_buf(ptr, 8, srb);
1635
1636 return USB_STOR_TRANSPORT_GOOD;
1637 }
1638
1639 if (srb->cmnd[0] == MODE_SENSE_10) {
1640 int modepage = (srb->cmnd[2] & 0x3F);
1641
f0183a33
FB
1642 /*
1643 * They ask for the Read/Write error recovery page,
1644 * or for all pages.
1645 */
1da177e4
LT
1646 /* %% We should check DBD %% */
1647 if (modepage == 0x01 || modepage == 0x3F) {
191648d0
JP
1648 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1649 modepage);
1da177e4
LT
1650
1651 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1652 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1653 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1654 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1655 return USB_STOR_TRANSPORT_GOOD;
1656 }
1657
1658 sensekey = 0x05; /* illegal request */
1659 sensecode = 0x24; /* invalid field in CDB */
1660 return USB_STOR_TRANSPORT_FAILED;
1661 }
1662
1663 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1664 return USB_STOR_TRANSPORT_GOOD;
1665
1666 havefakesense = 0;
1667
1668 if (srb->cmnd[0] == READ_10) {
1669
1670 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1671 page <<= 16;
1672 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1673 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1674
191648d0
JP
1675 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1676 page, pages);
1da177e4 1677
0dc08a35
MD
1678 result = sddr09_read_data(us, page, pages);
1679 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1680 USB_STOR_TRANSPORT_ERROR);
1da177e4
LT
1681 }
1682
1683 if (srb->cmnd[0] == WRITE_10) {
1684
1685 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1686 page <<= 16;
1687 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1688 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1689
191648d0
JP
1690 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1691 page, pages);
1da177e4 1692
0dc08a35
MD
1693 result = sddr09_write_data(us, page, pages);
1694 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1695 USB_STOR_TRANSPORT_ERROR);
1da177e4
LT
1696 }
1697
f0183a33
FB
1698 /*
1699 * catch-all for all other commands, except
1da177e4
LT
1700 * pass TEST_UNIT_READY and REQUEST_SENSE through
1701 */
1702 if (srb->cmnd[0] != TEST_UNIT_READY &&
1703 srb->cmnd[0] != REQUEST_SENSE) {
1704 sensekey = 0x05; /* illegal request */
1705 sensecode = 0x20; /* invalid command */
1706 havefakesense = 1;
1707 return USB_STOR_TRANSPORT_FAILED;
1708 }
1709
1710 for (; srb->cmd_len<12; srb->cmd_len++)
1711 srb->cmnd[srb->cmd_len] = 0;
1712
1713 srb->cmnd[1] = LUNBITS;
1714
1715 ptr[0] = 0;
1716 for (i=0; i<12; i++)
1717 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1718
191648d0 1719 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1da177e4
LT
1720
1721 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
0dc08a35 1722 if (result) {
191648d0
JP
1723 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1724 result);
0dc08a35 1725 return USB_STOR_TRANSPORT_ERROR;
1da177e4
LT
1726 }
1727
41c2497b 1728 if (scsi_bufflen(srb) == 0)
1da177e4
LT
1729 return USB_STOR_TRANSPORT_GOOD;
1730
1731 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1732 srb->sc_data_direction == DMA_FROM_DEVICE) {
1733 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1734 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1735
191648d0
JP
1736 usb_stor_dbg(us, "%s %d bytes\n",
1737 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1738 "sending" : "receiving",
1739 scsi_bufflen(srb));
1da177e4 1740
41c2497b 1741 result = usb_stor_bulk_srb(us, pipe, srb);
1da177e4
LT
1742
1743 return (result == USB_STOR_XFER_GOOD ?
1744 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1745 }
1746
1747 return USB_STOR_TRANSPORT_GOOD;
1748}
1749
f5b8cb9c
MD
1750/*
1751 * Initialization routine for the sddr09 subdriver
1752 */
0ff71883 1753static int
f5b8cb9c
MD
1754usb_stor_sddr09_init(struct us_data *us) {
1755 return sddr09_common_init(us);
1756}
0ff71883 1757
aa519be3
AM
1758static struct scsi_host_template sddr09_host_template;
1759
0ff71883
AS
1760static int sddr09_probe(struct usb_interface *intf,
1761 const struct usb_device_id *id)
1762{
1763 struct us_data *us;
1764 int result;
1765
1766 result = usb_stor_probe1(&us, intf, id,
aa519be3
AM
1767 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1768 &sddr09_host_template);
0ff71883
AS
1769 if (result)
1770 return result;
1771
8fa7fd74 1772 if (us->protocol == USB_PR_DPCM_USB) {
0ff71883
AS
1773 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1774 us->transport = dpcm_transport;
1775 us->transport_reset = usb_stor_CB_reset;
1776 us->max_lun = 1;
1777 } else {
1778 us->transport_name = "EUSB/SDDR09";
1779 us->transport = sddr09_transport;
1780 us->transport_reset = usb_stor_CB_reset;
1781 us->max_lun = 0;
1782 }
1783
1784 result = usb_stor_probe2(us);
1785 return result;
1786}
1787
1788static struct usb_driver sddr09_driver = {
aa519be3 1789 .name = DRV_NAME,
0ff71883
AS
1790 .probe = sddr09_probe,
1791 .disconnect = usb_stor_disconnect,
1792 .suspend = usb_stor_suspend,
1793 .resume = usb_stor_resume,
1794 .reset_resume = usb_stor_reset_resume,
1795 .pre_reset = usb_stor_pre_reset,
1796 .post_reset = usb_stor_post_reset,
1797 .id_table = sddr09_usb_ids,
1798 .soft_unbind = 1,
e73b2db6 1799 .no_dynamic_id = 1,
0ff71883
AS
1800};
1801
aa519be3 1802module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);